
Matrix Animation and Polar Decomposition

Ken Shoemake
Computer Graphics Laboratory

University of Pennsylvania
Philadelphia, PA 19104

Tom Duff
 AT&T Bell Laboratories
Murray Hill, NJ 07974

Abstract

General 3×3 linear or 4×4 homogenous matrices can be
formed by composing primitive matrices for translation,
rotation, scale, shear, and perspective. Current 3-D
computer graphics systems manipulate and interpolate
parametric forms of these primitives to generate scenes and
motion. For this and other reasons, decomposing a
composite matrix in a meaningful way has been a long-
standing challenge. This paper presents a theory and
method for doing so, proposing that the central issue is
rotation extraction, and that the best way to do that is Polar
Decomposition. This method also is useful for renormal-
izing a rotation matrix containing excessive error.

Résumé

Des matrices correspondant à des transformations linéaires
en 3 dimensions, ou bien à des transformations homogènes
en 4 dimensions, peuvent être construites en composant des
matrices qui décrivent des transformations élémentaires:
déplacement, rotation, homothétie, glissement, et perspec-
tive. Les systèmes actuels de visualisation graphique a trois
dimensions manipulent des formes paramétriques de ces
transformations élémentaires, pour recréer des scènes et des
mouvements. Il en découle l’intéret de trouver des décompo-
sitions pratiques de matrices composées. Nous présentons
ici une technique pour trouver de telles decompositions. Le
problème fondamental est l’extraction des rotations, et nous
démontrons qu’une décomposition polaire est la méthode de
choix. Cette méthode est aussi utile quant il faut
renormaliser une matrice de rotation qui contient des erreurs
excessives.

Keywords: homogeneous matrix, matrix animation,
interpolation, rotation, matrix decomposition, Polar
Decomposition, QR Decomposition, Singular Value
Decomposition, Spectral Decomposition, greedy algorithm

Introduction

Matrix composition is well established as an important part
of computer graphics practice and teaching [Foley 90]. It is
used to simplify and speed the transformation of points,
curves, and surfaces for modeling, rendering, and animation.

Matrix decomposition—the focus of this paper—is less
well known in computer graphics. It is useful for a variety of
purposes, especially animation and interactive manipul-
ation.

The usual transformations of an object can be described by
3×4 affine matrices; but the 12 entries of such a matrix are
not very meaningful parameters. To understand, much less
modify, matrices requires a good decomposition. Any
decomposition must account for all 12 degrees of freedom
(16 for 4×4 matrices) in the independent parameters of the
primitives used. A decomposition that provides too few
parameters will not be able to handle all inputs, while one
that provides too many will not be stable and well-defined.
The greatest problem, however, is ensuring that the
decomposition is meaningful.

Most widely used 3-D animation systems, typified by
Stern’s bbop at NYIT [Stern 83], Gomez’s twixt at Ohio
State [Gomez 84] and Duff’s md at Lucasfilm (later Pixar)
allow the parameters of primitive transformations to be set
interactively at key times, and compute transformations at
intermediate times by spline interpolation in parameter
space. Sometimes, however, only a composite matrix is
available at each key frame, or more design flexibility is
needed than that allowed by a hierarchy of primitive
transformations. It is possible to interpolate the entries of a
composite matrix directly, but the results are usually
unsatisfactory. Decomposition allows the use of standard
interpolation methods, and can give much better results.
Matrix animation is discussed in more detail below.

Most authors have considered decomposition with less
stringent criteria than ours. A common motivation is the
need to synthesize an arbitrary matrix from a limited set of
primitives, without regard for meaningfulness of the
decomposition [Thomas 91]. Typically, these methods rely
on a sequence of shears [Greene 86], and give factors that
depend on the coordinate basis used. Shears are one of the
less common operations in graphics, and a sequence of
shears is a poor choice for animation. In contrast, the
decomposition we propose has a simple, physical, coor-
dinate independent interpretation, preserves rigid body
motion as much as possible, and animates well.

Composition and Decomposition

Three types of matrix are commonly used for 3-D graphics:
3×3 linear, 3×4 affine, and 4×4 homogeneous; similar types
with one less column and row are used for 2-D graphics. The
homogeneous matrix is most general, as it is able to
represent all the transformations required to place and view
an object: translation, rotation, scale, shear, and perspec-
tive. Any number of transformations can be multiplied to
form a composite matrix, so that a point can be transformed
from model space coordinates to screen space coordinates in
a single step.Generally, however, perspective is treated as a
separate step in the viewing process—because lighting
calculations must be done first—and not used for modeling
or object placement. All the transformations except per-
spective can be accomodated by an affine matrix, which, in
turn, can be considered just a 3×3 linear matrix with a trans-
lation column appended. (Following [Foley 90], we write
points as column vectors, [x y z 1]T, which are multiplied
on the left by the matrix.)

P =

1 0 0 0

0 1 0 0
0 0 1 0
x y z w+1

T =

1 0 0 x

0 1 0 y
0 0 1 z
0 0 0 1

R =

1–2(y2+z2) 2(xy–wz) 2(xz+wy) 0

2(xy+wz) 1–2(x2+z2) 2(yz–wx) 0
2(xz–wy) 2(yz+wx) 1–2(x2+y2) 0

0 0 0 1

K =

x 0 0 0

0 y 0 0
0 0 z 0
0 0 0 1

H =

1 hxy hxz 0

hyx 1 hyz 0
hzx hzy 1 0
0 0 0 1

Figure 1. Primitive Transformation Matrices

Each primitive transformation has a more meaningful and
concise representation than its matrix: a vector for most, a
quaternion for rotations. It is not too difficult to recover the
concise form if the matrix for the primitive is available
[Goldman 91][Shoemake 91]. Once primitives have been
multiplied into a composite matrix, however, recovery is
generally impossible. Even so, a great deal can be done, as
we shall see.

Primitive recovery is difficult for three reasons: absorption,
order, and interaction. The first two problems are intrac-
table; the third is the focus of this paper. Absorption is
simple: a sequence of translations gives a result which is
indistinguishable from a single translation, or from any
number of different sequences; the same is true of other
primitives. Order is also simple: the effect of a translation
followed by a scale could as easily be achieved by com–
posing primitives in the opposite order; likewise for other
pairs. Interaction is more subtle: most transformations
change all columns of the matrix, so scaling (for example)
affects translation; all pairs of primitives interact. Notice
any shear can be achieved by combining rotation and scale.

While absorption and order cannot be unscrambled, they can
be standardized; for animation and other applications of
interest, this usually suffices. Absorption can simply be
ignored; that is, no attempt is made to tease apart a trans-
lation (except perhaps into x, y, and z components). Order
is handled most easily by assuming a canonical order, such
as Perspective of Translation of Rotation of Scale of object.
Which canonical order is chosen is partly a matter of taste;
this particular one makes translation trivial to extract, and
places perspective in the order expected for a transformation
to camera coordinates. If more information is made avail-
able in a particular situation, it may be possible to improve
upon these standard assumptions; for example, it may be
known that only x translation took place, or that scaling
was done last. Such special case extraction is outside the
scope of this paper.

Rigidity and Rotation

A perspective matrix of the form given above is easy to
extract as a left factor of a composite homogeneous matrix,
C = PA, with non-singular 3×3 corner; the details are left as
an exercise for the reader. Notice that the usual perspective
matrix includes translation and scale; we have chosen the
minimal form necessary to reduce C to an affine matrix.†

Likewise, a translation is easy to extract as the left factor of
the remaining affine matrix, A = TM; simply strip off the
last column. The matrix M then essentially will be the 3×3
matrix of a linear transformation. It would be simplest not
to factor M at all, but to animate its entries directly. The
results of this overly simple approach are visually discon-
certing, but worth investigating.

Direct matrix interpolation treats each component of the
matrix separately, and creates intermediate matrices as
weighted sums of nearby key matrices. For example, linear
interpolation between keys M1 and M2 uses (1–t)M1+tM2,
while cubic spline interpolation uses affine combinations,
α1M1+α2M2+α3M3+α4M4, with α1+α2+α3+α4 = 1. The
results of this approach are immediately deduced from the
linearity of matrix multiplication.

P r o p o s i t i o n : A point transformed by a
weighted sum of matrices equals the weighted sum
of the transformed points; that is,

(∑
i

 αi Mi) p = ∑
i

 αi (Mi p).

An example of this behavior can be seen in Figure 2, where
the chin and hat back move steadily along a line from initial
to final position, as do all the points. (We will use planar
examples because they are easier to interpret on the page,
but illustrate the same issues as spatial examples.) Notice
that the interpolated matrix twice becomes singular as the

† But a permutation matrix may also be needed to provide
pivoting for what is, in effect, a block LU decomposition.

image appears to flip over. At any moment of singularity
the image will collapse onto a line (or worse, a point).

Figure 2. Direct Matrix Interpolation

Consider a square centered at the origin, and two key
matrices: the identity and a 180° rotation. Since there are
only two keys, only linear interpolation makes sense.
Then, however, the theorem implies that each corner of the
square will move linearly to its rotated position, which is
diagonally opposite; the square will collapse through the
origin. Although the distortions diminish with smaller
angles of rotation, the square loses its shape. We expect
rotations to transform the shape rigidly; direct matrix
interpolation fails to do so. On the other hand, there is no
problem with matrices for translation, scale, or shear.

Experiments with apparent motion (flash one image, flash
another, see motion) suggest that the human visual system
infers rigid motion as much as possible [Carlton 90]
[Shepard 84]. Rotation is the only rigid transformation that
is distorted by direct matrix interpolation. It therefore
seems reasonable to conclude that the central problem for
matrix animation is to extract a rotation in the best
possible way, so that it can be interpolated as a rotation.

Decomposition Methods

Rotation matrices have simple defining properties: each
column is a unit length vector which is perpendicular to the
others, and the third column is the cross product of the first
two. (Rows satisfy the same properties.) The first two
properties are those of orthogonality, and can be summa-
rized as QTQ = I; the last makes the orthogonality special,
and can be stated as det(Q) = +1. Orthogonality alone
implies that the determinant must be either +1 or –1, with
the latter indicating the presence of a reflection in the
matrix. A 3×3 orthogonal matrix with negative determinant
can be converted to a pure rotation by factoring out a –I.

Numerical analysts have developed a number of algorithms
for orthogonal matrices [Golub 89] [Press 88], in large part
because orthogonality limits the accumulation of numerical
error. Given a square—and presumably non-singular—
matrix, three promising orthogonal decompositions are
available: QR decomposition, Singular Value Decompo-
sition (SVD), and Polar Decomposition. The QR factors of a

matrix M = QR are, respectively, orthogonal and lower
triangular. The SVD gives three factors, M = UKVT, with U
and V orthogonal and K diagonal and positive. The less
common Polar Decomposition, M = QS , yields an or-
thogonal factor and a symmetric positive definite factor.
The latter two decompositions can factor singular matrices,
with “positive” replaced by “non-negative” in the factors.

More than one algorithm is available to compute each
decomposition. The oldest and best-known method for QR
Decomposition is called Gram-Schmidt orthogonalization.
Each row of the matrix is considered in turn, with each
divided by its magnitude to give a unit vector, then project-
ed onto the remaining rows to subtract out any parallel
component in each of them. A better method is to accumu-
late Householder reflections, orthogonal transformations
which can zero out the elements above the diagonal.

There is no simple SVD algorithm. The most common
approach is first to use Householder reflections to make M
bidiagonal, then to perform an iteration involving QR
Decomposition until the off-diagonal entries converge to
zero. While this is numerically reliable, it is complicated to
code, and by no means cheap.

It is possible to compute a Polar Decomposition using the
results of SVD, suggesting great cost; but a simpler method
is available [Higham 86]. Compute the othogonal factor by
averaging the matrix with its inverse transpose until
convergence: Set Q0 = M , then Q i+1 = 1/2(Q i+ Q i

–T) until

Qi+1 – Qi≈ 0. This is essentially a Newton algorithm for the
square root of I, and converges quadratically when Q i is

nearly orthogonal. Finding the Q factor of a 2×2 matrix is
easy. Suppose

M = ()a b
c d ;

then

Q = M + sign(det(M))()d –c
–b a ,

scaled by a factor that makes the columns unit vectors.

Polar Decomposition Advantages

Care is needed in choosing among the possibilities, since
the purposes of numerical linear algebra are different from
those of computer graphics. The worst of the three choices
seems to be SVD: it is the most expensive to compute, and
the orthogonal matrices it produces are practically useless.
A matrix which is already a pure rotation can be factored in
an infinite variety of ways into the two orthogonal matrices
of the decomposition, which is disastrous in the context of
matrix animation. Small perturbations of the input matrix
can cause different orthogonal factors to be chosen, even
though the set of singular values is stable. Interpolating
unreliable matrices will produce erratic results: consider the
following two decompositions.

1 0 0
0 1 0
0 0 1

99.3 0 0
0 99.4 0
0 0 99.5

1 0 0
0 1 0
0 0 1

 =

0 0 1
1 0 0
0 1 0

99.4 0 0
0 99.3 0
0 0 99.5

0 1 0
0 0 1
1 0 0

.

Although both are perfectly valid decompositions, inter-
polation of the primitives will give visible distortions
—not at all what the user expects! Floating point variations
in the least significant digit can cause an SVD algorithm to
choose the first decomposition for one key, and the second
for the next. Many SVD routines order the singular values
by magnitude, which only exacerbates the problem. There
seems to be no way to avoid having small input changes
cause large output changes.

QR Decomposition is a much better choice, though it still
presents problems. Unlike the factors of SVD, the QR
factors can be determined uniquely, and are stable under
small perturbations. Also, the algorithms for QR are simple
and efficient. The drawback is that the orthogonal matrix
extracted is not particularly meaningful: it is not inde-
pendent of the coordinate basis used, and so has no
“physical” significance. That is, if the matrix M is given in
a rotated and uniformly scaled basis M ′ = BMB–1, coordi-

nate independent factors would have the form Q′ = BQB–1

and R ′ = B R B –1; but the latter is no longer a lower
triangular matrix, since that property is not preserved under
similarity transforms. This is unfortunate for animation
purposes, because it makes results much less predictable.
Suppose, for example, M is constructed by rotating then
scaling; although the Q factor might be expected to capture
the rotation, it will not. Only when M is constructed by
scaling then rotating will QR recover the original factors.

The Polar Decomposition factors are unique, coordinate
independent, and simple and efficient to compute. Further-
more, the orthogonal factor Q is the closest possible
orthogonal matrix to M , a property which is also coor-
dinate independent. That is, Q satisfies the following
conditions.

Find Q minimizing || Q–M ||F
2

subject to QTQ – I = 0,

where the measure of closeness, the Frobenius matrix norm
squared, is

|| Q–M ||F
2
 = ∑

i,j
 (qij–mij)2 .

Since this important claim appears in [Higham 88] without
proof, a proof is given in the Appendix. When M has
positive determinant, Q will be a pure rotation, otherwise it
will include a reflection. It might seem preferable to exclude
reflections, but there is no well-defined nearest rotation. For
example, every 2-D rotation is equally distant from every
2-D reflection. (Polar Decomposition is applicable to
matrices of any size and shape.) A rotation has the form

()c –s
s c , with c2+s2=1, while a reflection is ()a b

b –a , with

a2+b2=1. The sum of the squares of the differences is
(c–a)2+(–s–b)2+(s–b)2+(c+a)2 = 2(c2+s2)+2(a2+b2) = 4. As
noted earlier, however, a 3×3 Q matrix which includes a
reflection (indicated by a negative determinant) can be
factored as Q = R(–I).

Closeness also makes Polar Decomposition good for matrix
renormalization. Moderate amounts of numerical noise can
be removed in a single iteration of the averaging algorithm.
This improves and formally grounds [Raible 90].

The combination of uniqueness and closeness guarantees
that small input perturbations will not produce large output
variations. The Q factor of Polar Decomposition appears to
be the best possible rotation. What, then, is the S factor?
As the appendix shows, in some rotated coordinate system
S is diagonal—in other words, a scale matrix. This form of
scaling is preserved through coordinate changes, and has a
good claim to being a new primitive, stretch. The S factor
can move to the other side of the Q factor without changing
form, though its value will change to QTSQ . Thus Polar
Decomposition has a very physical interpretation.

I S

Q QS

Figure 3. Physical View of Polar Decomposition

One drawback of Polar Decomposition is that there is no
explicit representation of shear. As explained earlier,
interaction is to blame; shear will be factored as rotation
and stretch. In two dimensions, for example, a simple shear
will factor as

H = ()1 h
0 1

=
1

√4+h2
 ()2 h

–h 2 ()2 h
h 2+h2

1

√4+h2

= QS.

As Figures 4 and 5 show, the appearance of a factored anima-
tion can be quite different from that of a direct animation for
shear. Nevertheless, factorization gives a reasonable result.

Figure 4. Direct Shear Interpolation Figure 5. Decomposed Shear Interpolation

Direct Stretch Animation

Although S can be factored into diagonal form, S = UKUT

(using a symmetric eigenvalue routine [Golub 89]
[Carnahan 69]), as with SVD the factorization is not unique.
This unavoidable indeterminacy combined with small
numerical errors could cause different U’s to be chosen at
different keys, and the resulting interpolation would suffer
greatly. Fortunately, however, S matrices can be
interpolated directly, and will preserve their form and
meaning. That is, α 1S1+α 2S2+… yields a symmetric

matrix, which for non-negative αi will also be positive defi-
nite, so it is not necessary to choose a diagonalizing
rotation U . If some U diagonalizes both S1 and S2 simul-

taneously, then α1S1+α2S2 = U(α1K1+α2K2)UT, so direct
interpolation simply interpolates the scale factors, as
desired. Weights α i for interpolation will usually include
negative values (to ensure smooth motion), so the
interpolated S matrices can become singular; but the same
thing can happen with pure scale matrices. In both cases
this does not seem to be a serious problem, and can be
solved using spline tension.

Figure 6. Polar Decomposed Matrix Interpolation

Factored Stretch Animation

Diagonalization of S as UKUT is still a useful alternative if
it can be stabilized across keys. (Even without sta-
bilization, an interactive user interface will certainly deal
with stretch in factored form.) So in this section—which
can be skipped on first reading—we consider the following

problem: Given two stretch matrices, S 1 and S 2 ,
interpolated in that order, how can their diagonalizing
rotations, U 1 and U 2 , be chosen to be as similar as
possible? More precisely, if the rotation taking U1 into U2
is designated by U12 = U1

TU2, the problem is to minimize
the absolute angle of rotation performed by U12. Further-
more, so that the results can easily be generalized to a series
of matrices Si, let U1 be fixed. (Then fix U2 while minimiz-
ing U23, and so on. Begin with U0 = I.)

There are three cases, depending on how many identical
values occur on the diagonal K2. When all three values are
the same, it is possible to set U2 = U1. Uniform scaling is
common in computer graphics practice, and is easily
detected by inspection of S2, which will already be diagonal
with identical values. When all three values are different, we
have 24 choices for U 2. These are obtained by all axis
permutations (6), times all axis sign combinations (8),
achievable by a rotation (divide by 2). When exactly two
values are the same, we have an extension of the all different
case: free rotation is allowed around one of the axes. The
last two cases are discussed more fully below.

An easy way to measure the rotation U12 is to convert it into
a unit quaternion. ([Shoemake 85] introduces unit quater-
nions as a representation of 3-D rotation and discusses how
to interpolate them.) Its real component is cos(θ/2), where

θ is the total rotation angle. Picking U2 to maximize the
quaternion’s real component minimizes the angle.

There is a quick way to do this maximization. Let q be the
quaternion corresponding to U12. The 24 variations corre-
spond to qp, where p is one of 48 quaternions (including
both p and –p) that map the coordinate axes into
themselves: p = [x y z w] can be one of [0 0 0 ±1],

[0 0 ±1 ±1]/√ 2, [±1 ±1 ±1 ±1]/2, or a permutation of these.
The real part of qp is wqwp–xqxp–yqyp–zqzp, which is simple
to maximize because of the simple form of each p. We take
the absolute values of the components of q, sort them, and
choose the maximum of either the largest, or half the sum of

all four, or 1/√ 2 times the sum of the two largest. Then we
can work backwards from our choices to deduce the
corresponding p.

If exactly two of K2’s values are the same, we have a con-
tinuous optimization. As before, we are free to permute the
axes, but we have the additional freedom to rotate by any
angle in the plane of equal scaling. We can arrange for the
equal values to be the first two, so that a change of
coordinates rotating around the z axis leaves K2 unchanged.
So our problem is to pick p and r to maximize the real
component of qpr, where p is one of the 48 quaternions
above and r = [0 0 s c], with c2+s2=1, is a quaternion that
rotates about the z axis.

The product of a quaternion [x y z w] with r = [0 0 s c] is

[xc+ys yc–xs zc+ws wc–zs]. Choosing c = w/√w2+z2 and

s = –z/√w2+z2 maximizes the real component to √w2+z2 .
Consequently, the best p is one that maximizes w2+z2. Only
six values of p give essentially different results. These are
[0 0 0 1], [1 1 1 1]/2, [1 1 1 –1]/2 and each of these times
[1 0 0 0]. Summing the squares of the w and z components
from the product of q with each of these and subtracting 1/2
gives ±(w2+z2–1/2), ±(xz–wy) and ±(wx+yz). Choose the p
corresponding to the largest positive value, and if the
negative sign was used, post-multiply p by [1 0 0 0].

This method for stabilizing the S decomposition is a greedy
algorithm. It extends partial solutions at each stage by
finding an optimal continuation, with no backtracking.
There is no guarantee that this produces a global optimum—
a locally inferior choice could possibly be warranted
because it allows better choices further on that more than
compensate. However, we can prove the following:

Proposition: Given a sequence Si of symmetric,
positive definite matrices, none of which has a di-
agonalization with exactly two equal values, the
greedy algorithm given above picks a sequence of
rotation matrices Ui that minimizes the sum of the
rotation angles between adjacent rotations.

The proof depends on two observations. First, the Si with
three equal values do not affect the sum; and second, the
axis-permuting rotations p form a group. With this in mind,
let 〈pi〉 be the greedy sequence of permutations, and 〈Pi〉 the
optimal sequence. Suppose now that some pk ≠ Pk. Then the

discrepency δ = P k
–1 pk is in the group, and can post-multi-

ply every Pi, i ≥ k without increasing the angle sum. For Pk
is replaced by pk, which by definition of the greedy sequence
gives the smallest angle possible at that step; and none of
the other angles change, since δ–1q i

–1qi+1δ has the same

angle as the original q i
–1qi+1. So 〈pi〉 is also optimal.

With double values, however, some greedy sequences are not
optimal. In mitigation, we point out that floating-point
arithmetic stands between us and any reliable determination
of equality of values, and that the additional freedom offered
by equal values only causes the greedy algorithm to find
solutions with smaller total rotation. Furthermore, the
global optimization problem in the general case is a mixed-

integer programming problem of the sort that is often NP-
complete. (But we make no claims as to the status of this
particular problem.)

Lest this extended discussion leave the wrong impression,
we point out that diagonalization has not been necessary in
our experience. The animations achieved by direct S
interpolation look as good as those using the more
elaborate procedure. (Also, the code required is much shorter
than the discussion.) Since the developer of an animation
system may choose not to introduce our new stretch
primitive, however, we have offered a reasonable
alternative.

Conclusions

With the assistance of Polar Decomposition, a non-singular
4 × 4 homogeneous matrix M can be factored into
meaningful primitive components, as

M = PTRNS,

where P is a simple perspective matrix, T is a translation
matrix, R is a rotation matrix, N is ±I, and S is a symmetric
positive definite stretch matrix. The stretch matrix can
optionally be factored, though not uniquely, as UKU T,
where U is a rotation matrix and K is diagonal and positive.
For a 4×3 affine matrix the perspective factor can be
dropped; and for a 3×3 linear matrix, so can the translation.
Also, N can be multiplied into S if desired.

Polar Decomposition produces factors QS which are unique,
coordinate independent, and both simple and efficient to
compute. The factors have a physical, visual interpretation
not found with other decomposition methods. The PTRNS
decomposition is useful for a variety of purposes, including
matrix animation and interactive interfaces. It has the minor
disadvantage that it does not directly represent shear.

Acknowledgements

Craig Reynolds first raised this challenge with Ken. John
Gilbert, Eric Grosse, and Eugene Salamin shared their wis-
dom regarding numerical techniques and linear algebra. We
thank Ed Shonberg for providing our French translation.

Appendix

Theorem: The Polar Decomposition factor Q is the closest
possible orthogonal matrix to M , with closeness measured
using the Frobenius matrix norm. That is, Q satisfies the
following conditions.

Find Q minimizing || Q–M ||F
2

subject to QTQ – I = 0,

where

|| Q–M ||F
2
 = ∑

i,j
 (qij–mij)2 .

Proof: Though expressed in matrix terms, the proof
simply requires finding the minimum of a quadratic function,

which we learned to do in calculus by finding where the

derivative is zero. We can express ||M ||F
2
 as the diagonal

sum—the trace—of M TM , and incorporate the orthogo-
nality constraint as a linear term using a symmetric
Lagrange multiplier matrix Y. So, as the reader can verify,
we can differentiate

trace [(Q–M)T(Q–M) + (QTQ – I)Y]

with respect to Q and equate to zero to obtain

2(Q–M) + 2QY = 0

which simplifies to

Q(I+Y) = M.

Thus M will be factored as our desired Q times a symmetric
S = I+Y.

M = QS.

This factorization is the Polar Decomposition of M. To use
it we need to solve for S in terms of M. Since QTQ = I, we
must have

(MS–1)T(MS–1) = I.

A symmetric S has a symmetric inverse, so this simplifies
to

S–1MTMS–1 = I,

and finally to

S2 = MTM.

Now, M TM is guaranteed to be symmetric and positive
definite (or semi-definite if M is singular), and so there is a
similarity transform that makes M TM diagonal, with
positive (or zero) real entries. This gives the Spectral
Decomposition of S2.

S2 = UKUT; UTU = I, K =

κ1 0 0

0 κ2 0
0 0 κ3

; κi ≥ 0.

Taking either the positive or negative square root of each
diagonal element of K, we obtain eight candidates for S,

U

±√ κ1 0 0

0 ±√ κ2 0

0 0 ±√ κ3

UT.

However, for Q to be a minimal solution, the second
derivative, 2(I+Y) = 2S, of our function must be positive
definite, which means only the positive square roots are
allowed, and so S is uniquely determined. For any M which
is non-singular, Q is also uniquely determined.

■

References
[Carlton 90] Carlton, Eloise H. and Shepard, Roger N.

“Psychologically Simple Motions as Geodesic Paths,”
Journal of Mathematical Psychology, 34(2), June
1990, 127–228

[Carnahan 69] Carnahan, Brice, Luther, H. A. and Wilkes,
James O., Applied Numerical Methods, Wiley, 1969

[Foley 90] Foley, James D., van Dam, Andries, Feiner,
Steven K., and Hughes, John F. Computer Graphics:
Principles and Practice, 2nd ed., Addison-Wesley, 1990

[Goldman 91] Goldman, Ronald N. “Recovering the Data
from the Transformation Matrix,” Gem VII.2, Graphics
Gems II, Academic Press, 1991, 324–331

[Golub 89] Golub, Gene H., and Van Loan, Charles F.
Matrix Computations, 2nd ed., Johns Hopkins
University Press, 1989

[Gomez 84] Gomez, Julian, “Twixt: a 3-d Animation
System,” Proceedings of Eurographics ‘84, Elsevier
Science Publishers, 1984

[Greene 86] Greene, Ned, “Extracting Transformation
Parameters from Transformation Matrices”, NYIT,
Personal communication

[Higham 86] Higham, Nicholas, “Computing the Polar
Decomposition—With Applications”, SIAM J. Sci. and
Stat. Comp. 7(4), October 1986, 1160-1174

[Higham 88] Higham, Nicholas, and Schreiber, Robert S.
“Fast Polar Decomposition of An Arbitrary Matrix,”
Technical Report 88-942, October 1988, Department of
Computer Science, Cornell University

[Press 88] Press, William H., Flannery, Brian P.,
Teukolsky, Saul A., and Vetterling, William T.,
Numerical Recipes in C, Cambridge University Press,
1988

[Raible 90] Raible, Eric. “Matrix Orthogonalization,”
Graphics Gems, Academic Press, 1990, p. 464.

[Shepard 84] Shepard, Roger N. “Ecological Constraints on
Internal Representation: Resonant Kinematics of
Perceiving, Imagining, Thinking, and Dreaming,”
Psychological Review, 91(4), October 1984, 417–447

[Shoemake 85] Shoemake, Ken. “Animating Rotation with
Quaternion Curves,” Proceedings of SIGGRAPH ’85 (San
Francisco, California, July 22–26, 1985), In Computer
Graphics 19(3), July 1985, 245–254

[Shoemake 91] Shoemake, Ken. “Quaternions and 4×4
Matrices,” Gem VII.6, Graphics Gems II, Academic
Press, 1991, 351–354

[Stern 83] Stern, G., “Bbop—A System for 3d Keyframe
Figure Animation,” S I G G R A P H ‘83 Course Notes,
Introduction to Computer Animation, 1983

[Strang 86] Strang, Gilbert. Introduction to Applied
Mathematics. Wellesley-Cambridge Press, 1986

[Thomas 91] Thomas, Spencer W. “Decomposing a Matrix
into Simple Transformations,” Gem VII.1, Graphics
Gems II, Academic Press, 1991, 320–323

