
Classification and comparison of ligand-binding sites derived

from grid-mapped knowledge-based potentials

Christian Hoppe a,b, Christoph Steinbeck b, Gerd Wohlfahrt a,*
a Orion Pharma, Medicinal Chemistry, P.O. Box 65, FIN-02101 Espoo, Finland

b University of Cologne, Cologne University Bioinformatics Center (CUBIC), Zülpicher Str. 47, D-50674 Köln, Germany
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Abstract

We describe the application of knowledge-based potentials implemented in the MOE program to compare the ligand-binding sites of several

proteins. The binding probabilities for a polar and a hydrophobic probe are calculated on a grid to allow easy comparison of binding sites of

superimposed related proteins. The method is fast and simple enough to simultaneously use structural information of multiple proteins of a target

family. The method can be used to rapidly cluster proteins into subfamilies according to the similarity of hydrophobic and polar fields of their

ligand-binding sites. Regions of the binding site which are common within a protein family can be identified and analysed for the design of family-

targeted libraries or those which differ for improvement of ligand selectivity.

The field-based hierarchical clustering is demonstrated for three protein families: the ligand-binding domains of nuclear receptors, the ATP-

binding sites of protein kinases and the substrate binding sites of proteases. More detailed comparisons are presented for serine proteases of the

chymotrypsin family, for the peroxisome proliferator-activated receptor subfamily of nuclear receptors and for progesterone and androgen

receptor. The results are in good accordance with structure-based analysis and highlight important differences of the binding sites, which have been

also described in the literature.
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1. Introduction

Selectivity towards a biological target is an important

property for a drug candidate in order to minimize potential side

effects. Traditionally, this has been achieved by cycles of

modification and testing of lead compounds. In the absence of

structural information of the protein targets, ligand-based

QSAR methods have been used to improve specificity, of which

comparative molecular field analysis (CoMFA) [1,2] is one of

the most successful. A drawback of this approach is that it

requires a set of known active molecules with different

specificities and whose three-dimensional structures have to be

aligned in a meaningful way.
Abbreviations: AR, androgen receptor; LBD, ligand-binding domain; NR,

nuclear receptor; PCA, principal component analysis; PLS, partial least

squares; PPAR, peroxisome proliferator-activated receptor; PR, progesterone

receptor; RMSD, root mean square deviation
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With the rapidly increasing number of protein structures,

knowledge of the three-dimensional arrangement of ligand-

binding sites became a valuable tool to guide drug design and to

introduce receptor specificity early in the discovery process.

Molecular fields derived from protein structures have been used

to classify and to compare the binding sites of different related

receptors [3–5]. These fields were calculated, e.g. with the GRID

program [6] using probes whose interaction energies are defined

by empirical force fields. Non-grid-based mapping of protein

sites has been performed, e.g. by MCSS [7,8], which optimizes

the position and orientation of multiple probes in the binding

sites. The computationally more demanding MCSS method gives

more details than GRID as additional orientational information is

provided [8], but as the probe positions are not fixed here,

comparison with related receptors is more complex.

Besides empirical force fields, knowledge-based potentials

have been proven to characterise receptor–ligand interactions

in an appropriate way [9,10]. The use of empirical packing

preferences and knowledge-based potentials to assess preferred

binding sites in proteins is a well established concept; some
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examples of this approach include the work of Thornton and co-

workers [11], as well as the IsoStar [12] and SuperStar methods

produced by Verdonk and co-workers [13]. The advantage of

knowledge-based potentials is their ability to describe complex

interactions influenced by entropic effects or many-body

interactions, which are difficult to quantify with empirical force

fields [14].

After mapping of the binding sites, different methods for

comparison can be applied, which usually rely on superposition

of related protein structures. Principal component analysis [4]

or trend vector methods [15] can be applied to extract relevant

differences between the fields of the receptors. The first method

identifies the most variable features among all receptors in a

reduced descriptor space, while the second one finds contour

levels above chance correlations from a vector in the original

descriptor space.

Most studies have been focussed on the identification of

regions which differ between receptors in order to improve

selectivity of a ligand, but regions which are common within a

protein family are also of interest for the design of family-

targeted libraries or to support identification of privileged

substructures.

In the present paper, we describe the application of

knowledge-based potentials implemented in MOE [16], which

use experimental contact statistics fitted to analytical functional

forms to identify specific interactions with a protein structure.

These potentials include besides distance-dependent also angle

and out-off plane dependent distributions. MOE contact statistics

have already successfully been used to help refine results from

molecular docking runs [17] on the NSAID/COX-2 system, to

aid in biodistribution prediction [18] and to explain inhibitor–

protein contacts in insect cytochrome P450 binding sites [19]. We

calculated the binding probabilities for a polar and a hydrophobic

probe on the intersection points of a grid to allow easy

comparison of binding sites of superimposed related proteins.

The method is fast and simple enough to simultaneously use

structural information of multiple proteins of a target family.

Using several structures of the same receptor helps to identify the

most important interacting regions, which are, e.g. seen with all

ligands. Compared to fields derived from a single protein

structure this also reduces spurious results, which could be

related to experimental inaccuracy or to flexible side-chains

resulting in small differences among crystal structures of the

same receptor. The method can be used to rapidly cluster proteins

into subfamilies according to the similarity of hydrophobic and

polar fields of their ligand-binding sites. Regions of the binding

site which are common or differ within a protein family can be

identified and analysed. Knowledge about common regions is,

e.g. useful for the design of family-targeted libraries and

differences can be used to improve selectivity of a ligand.

The field-based clustering method is demonstrated for three

protein families containing many pharmaceutically relevant

targets: the LBDs of nuclear receptors, the ATP-binding sites of

protein kinases and the substrate binding sites of proteases

[4,5,20,21].

Three serine proteases from the chymotrypsin family are

used in the test set. Two of them, thrombin and factor Xa, are
involved in the blood clotting cascade and are therefore

important targets in the development of anticoagulant or

antithrombotic drugs. Trypsin is a pancreatic enzyme involved

in digestion. Therefore, selectivity for thrombin and factor Xa

over trypsin would improve bioavailability and minimize side

effects [4,22].

Most proteins of the nuclear receptor superfamily (NR)

act as ligand-activated transcription factors, but the exact

mechanism by which the nuclear receptors affect gene

transcription is still poorly understood, as is in many cases

the role of the subfamilies and their subtypes [2]. Despite the

low sequence identity between the LBDs of different NR

subfamilies, all NRs share a similar fold and many can bind a

range of similar ligands. Depending if the bound ligand is

agonistic or antagonistic, the carboxyl-terminal helix H12 is

found in either one or another orientation. In the agonist-

bound conformation H12 closes the ligand-binding site and

shields it from the solvent, whereas in the antagonist-bound

conformation H12 does not close the binding pocket. This

leads to rather large differences between the properties of the

binding sites in the two conformations. A detailed pairwise

comparison is presented for the progesterone and androgen

receptor, whose binding sites are very similar. High

selectivity for only one of the closely related androgen,

progesterone, glucocorticoid or mineralocorticoid receptors

is important in order to reduce side effects of drug candidates

[23,24].

The superfamily of eukaryotic protein kinases is formed of

homologous proteins related by their catalytic domains.

Although they may have different regulation modes or substrate

specificities, they share a common catalytic core structure,

which indicates how phosphate is transferred from the kinase to

a hydroxyl group in the protein substrate [5]. Kinases play an

important role in diverse biological processes such as

controlling, signalling and triggering a broad variety of cellular

events. Of pharmaceutical interest is the possibility of

inhibiting the ATP binding site [5,25–29]. A problem with

this approach is that, besides the different kinase subfamilies,

more than 2000 ATP-utilizing proteins are estimated in the

human genome.

These examples of NRs, kinases and proteases illustrate that

methods for analyzing subfamilies or improving subtype

specificity of ligands are important in the development of

compounds with fewer side effects.

2. Methods

2.1. Protein structures

The protease dataset consists of 13 protein X-ray structures

and was taken from literature [30] (Table 1). Sixty-seven

nuclear receptor X-ray structures from three subfamilies [31]

were taken from the NucleaRDB [32] (Table 2). The kinase

dataset was retrieved from the PDB [33] using the search

criteria human, X-ray, resolution equal or lower than 2.5 Å and

the datasets from Deng et al. [34] and Naumann and Matter [5]

(Table 3). Overall 75 protein kinase structures were chosen.
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Table 1

List of crystal structures used in the serine protease test set

Family/PDB code Organisma R (Å) Ligand name Ca Ca (%) RMSD Ca

Alpha-thrombin

1dwdb HU 3.0 NAPAP REF REF REF

1dwb HU 3.2 Benzamidine 257 100 0.000

1dwc HU 3.0 MD-805 257 100 0.121

1qur HU 2.0 Benzamidine 257 100 0.330

7kme HU 2.1 SEL2711 248 96.5 0.319

Coagulation factor Xa

1fax HU 3.0 – 203 79.0 0.816

1hcg HU 2.2 – 204 79.4 0.820

1xkb HU 2.4 FX-2212A 205 79.8 0.838

Trypsin

1ppc BO 1.8 NAPAP 199 77.4 0.752

1mts BO 1.9 – 200 77.8 0.743

1mtu BO 1.9 – 200 77.8 0.743

1mtv BO 1.9 – 200 77.8 0.758

1mtw BO 1.9 – 198 77.0 0.729

R is the resolution of the X-ray structure. Ca refers to the number and percentage of Ca-backbone atoms, which are aligned by the program BRAGI to the given

RMSD.
a HU, human; BO, bovine.
b Reference structure for superposition.

Table 2

List of 67 crystal structures of nuclear receptors used in the analysis

Family/PDB code Organisma R (Å) Inhibition mechanismb Ligand name Ca Ca (%) RMSD Ca

RXR-alpha

1dkf HU/MO 2.5 ANT OLI 142 57.9 1.016

1fby HU 2.2 AG REA 147 60.0 1.103

1fm6 HU 2.1 AG REA 149 60.8 1.029

1fm9 HU 2.1 AG REA 124 50.6 0.971

1k74 HU 2.3 AG REA 147 60.0 1.036

1mv9 HU 1.9 AG HXA 151 62.0 0.965

1mvc HU 1.9 AG BMS649 152 62.1 0.990

1mzn HU 1.9 AG BMS649 165 63.3 1.074

RAR-y

1exa HU 1.6 AG BMS270394 135 55.1 1.099

1exx HU 1.6 AG BMS270395 137 55.9 1.139

1fcx HU 1.5 AG BMS184394 137 55.9 1.114

1fcy HU 1.3 AG CD564 138 56.3 1.120

1fcz HU 1.3 PAG BMS181156 135 55.1 1.103

1fd0 HU 1.3 SR11254 134 54.6 1.091

PR

1a28 HU 1.8 AG STR 164 66.9 0.963

1e3k HU 2.8 AG Metribolone 174 71.0 1.022

ER-a

1a52 HU 2.8 AG EST 219 90.0 0.441

1ere HU 3.1 AG EST 232 94.5 0.438

1err HU 2.6 ANT RAL 211 86.1 0.487

1g50 HU 2.9 AG EST 235 95.9 0.473

1gwq HU 2.4 AG ZTW 236 96.3 0.448

1gwr HU 2.4 AG EST 232 94.6 0.419

1l2i HU 1.9 AG ETC 233 95.1 0.291

1pcg HU 2.7 AG EST 222 91.3 0.371

1qkt HU 2.2 AG EST 209 85.3 0.430

1qku HU 3.2 AG EST 235 95.9 0.463

1uom HU 2.8 ANT PTI 205 84.6 0.407

3erdc HU 2.0 AG DES REF REF REF

3ert HU 1.9 ANT OHT 204 83.2 0.505

ER-b

1l2j HU 2.9 ANT ETC 184 75.1 0.910
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Table 2 (Continued )

Family/PDB code Organisma R (Å) Inhibition mechanismb Ligand name Ca Ca (%) RMSD Ca

1nde HU 3.0 ANT MON 191 77.9 0.842

1qkm HU 1.8 ANT GEN 194 78.1 0.827

1qkn RA 2.2 ANT RAL 201 82.0 0.718

AR

1e3g HU 2.4 AG Metribolone 171 69.8 0.963

1gs4 HU 1.9 ZK5 169 60.9 0.901

1i37 RA 2.0 AG DHT 171 69.8 0.939

1i38 RA 2.0 AG DHT 171 69.8 0.948

PPAR-a

1i7g HU 2.2 AG AZ242 113 46.1 1.103

1k7l HU 2.5 AG GW409544 126 51.4 1.203

1kkq HU 3.0 ANT GW6471 116 47.7 1.157

PPAR-y

1fm6 HU 2.1 AG BRL 129 56.6 1.164

1fm9 HU 2.1 AG GI262570 132 53.9 1.135

1i7i HU 2.3 AG AZ242 120 48.9 1.159

1k74 HU 2.3 AG GW409544 128 52.2 1.135

1knu HU 2.5 AG YPA 127 51.8 1.182

2prg HU 2.3 AG BRL 132 53.8 1.101

4prg HU 2.9 PAG 0072 131 53.4 1.196

PPAR-d

1gwx HU 2.5 AG GW2433 108 44.1 1.206

2gwxd HU 2.3 – – – – –

3gwx HU 2.4 AG EPA 107 43.6 1.101

PXR

1ilh HU 2.7 AG SRL 133 54.2 1.149

VDR

1db1 HU 1.8 AG VDX 149 60.8 1.088

1ie8 HU 1.5 AG KH1 149 61.0 1.110

1ie9 HU 1.4 AG VDX 147 60.0 1.089

TR-b

1bsx HU 3.7 AG T3 132 53.8 1.101

1nax HU 2.7 AG IH5 122 50.2 1.154

1nq1 HU 2.9 AG 4HY 139 57.0 1.149

1nq2 HU 2.4 AG 4HY 132 54.3 1.137

1nuo HU 3.1 AG 4HY 119 48.9 1.134

1n46 HU 2.2 AG PFA 131 53.5 1.141

ERR3

kv6 HU 2.7 AG DES 173 70.1 0.805

ROR-a

1n83 HU 1.6 AG Cholesterol 131 53.4 1.176

ROR-b

1k4w RA 1.9 AG STE 140 57.1 1.181

HF-4y

1lv2 HU 2.7 PLM 146 59.5 1.037

GCR

1m2z HU 2.5 AG DEX 163 66.5 0.979

1nhz HU 2.3 ANT 486 160 63.3 1.046

LXR-b

1p8d HU 2.8 AG CO1 150 62.5 1.146

PregnaneX

1ilh HU 2.7 AG SR12813 135 51.8 1.161

R is the resolution of the X-ray structure. Ca refers to the number and percentage of Ca-backbone atoms, which are aligned by the program BRAGI to the given

RMSD.
a HU, human; BO, bovine; RA, rat; MO, mouse.
b ANT is an antagonistic and AG is an agonistic ligand or receptor conformation.
c Reference structure for superposition.
d Used in the PPAR study.
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Table 3

List of 75 crystal structures of protein kinases used in the analysis

Family/PDB code Organisma R (Å) Ligand name Ca Ca (%) RMSD Ca

PKA

1atpb MO 2.2 ATP REF REF REF

1bx6 MO 2.1 Balanol 311 92.6 0.779

1cdk RAB 2.0 AMPPNP 336 100 0.362

1fmo MO 2.2 ADP 336 100 0.356

1jbp MO 2.2 ADP 336 100 0.361

1l3r MO 2.0 ADP 336 100 0.363

1ydr BO 2.2 H7+ 332 98.8 0.360

1yds BO 2.2 H8+ 332 98.8 0.329

1ydt BO 2.3 H89+ 332 98.8 0.349

CDK2

1aq1 RA 2.5 Staurosporine 174 51.7 1.059

1b38 HU 2.0 ATP 170 50.6 1.127

1b39 HU 2.1 ATP 171 50.8 1.139

1ckp HU 2.0 Purvalanol 170 50.6 1.102

1di8 HU 2.2 – 171 50.8 1.141

1dm2 HU 2.1 Hymenialdisine 176 52.4 1.062

1e1v HU 1.9 NU2058 153 45.5 1.170

1e1x HU 1.8 NU6027 167 49.7 1.179

1e9h HU 2.5 Indirubin 160 47.6 1.106

1fin HU 2.3 ATP 157 46.7 1.113

1fvt HU 2.2 – 179 53.3 1.146

1gii HU 2.0 1PU 173 51.5 1.172

1gij HU 2.2 2PU 168 50.0 1.180

1gz8 HU 1.3 MBP 105 56.7 1.168

1hck HU 1.9 ATP 168 50.0 1.128

1jsv HU 2.0 U55 170 50.6 1.139

1ke5 HU 2.2 LS1 172 51.2 1.172

1ke6 HU 2.0 LS2 172 51.2 1.157

1ke7 HU 2.0 LS3 174 51.8 1.177

1ke8 HU 2.0 LS4 171 50.8 1.160

1ke9 HU 2.0 LS5 172 51.2 1.172

1oir HU 1.9 HDY 171 50.8 1.105

1oit HU 1.6 HDT 171 50.8 1.166

1qmz HU 2.2 ATP 170 50.6 1.110

CaMK-I/CDK1

1a06 RA 2.5 – 149 53.4 1.120

CK-1 alpha

1csn BA 2.0 ATP 173 51.5 1.147

2csn BA 2.5 CKI7 172 51.2 1.210

CK-2 alpha

1daw MA 2.2 AMPPNP 173 51.5 1.073

1day MA 2.2 GMPPNP 171 50.9 1.092

1j91 MA 2.2 TBS 172 51.2 1.087

1lp4 MA 1.8 AMPPNP 174 51.8 1.085

MAP/ERK2

1erk RA 2.3 – 162 48.2 1.105

1gol RA 2.8 ATP 161 47.9 1.103

3erk RA 2.1 SB220025 162 47.0 1.121

P38

1a9u HU 2.5 SB203580 148 44.05 1.113

1bl6 HU 2.5 SB216995 141 41.9 1.102

1bl7 HU 2.5 SB220025 141 41.9 1.090

1bmk HU 2.4 SB218655 141 41.9 1.090

1kv1 HU 2.5 BMU 136 40.5 1.106

1p38 MO 2.1 – 144 42.9 1.096

1pme HU 2.0 SB202190 158 47.0 1.119

Phosphorylase kinase

1phk RAB 2.2 ATP 216 64.3 0.900

1ql6 RAB 2.4 ATP 217 64.6 0.889
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Table 3 (Continued )

Family/PDB code Organisma R (Å) Ligand name Ca Ca (%) RMSD Ca

2phk RAB 2.6 ATP 221 65.8 1.166

DAP

1ig1 HU 1.8 AMPPNP 210 62.5 1.001

1jkk HU 2.4 AMPPNP 210 62.5 1.008

1jkl HU 1.6 AMPPNP 212 63.1 1.006

IRK

1gag HU 2.7 112 137 40.7 1.122

1i44 HU 2.4 AMPPNP 114 33.9 1.215

1ir3 HU 1.9 AMPPNP 136 40.5 1.137

FGFIR

1agw HU 2.4 SU4984 122 36.3 1.130

1fgi chainA HU 2.5 SU5402 120 35.7 1.217

1fgi chainB HU 2.5 SU1 123 36.6 1.225

c-Src

1ksw HU 2.8 AMPPNP 140 41.7 1.212

2src HU 1.5 AMPPNP 146 43.5 1.219

1GF-IR

1jqh HU 2.1 PP1 141 41.9 1.193

1k3a HU 2.1 ACP 139 41.3 1.129

HCK

1ad5 HU 2.6 AMPPNP 150 44.6 1.184

1qcf HU 2.0 PP1 141 41.9 1.193

LCK

1qpc HU 1.6 AMPPNP 147 43.8 1.161

1qpd HU 2.0 Staurosporine 149 44.4 1.141

3lck HU 1.7 – 132 39.3 1.148

1qpe HU 2.0 PP2 141 41.9 1.146

1qpj HU 2.2 Staurosporine 159 47.3 1.124

ABL

1fpu MO 2.4 STI-571 141 41.9 1.136

1iep MO 2.1 STI-571 140 41.7 1.155

R is the resolution of the X-ray structure. Ca refers to the number and percentage of Ca-backbone atoms, which are aligned by the program BRAGI to the given

RMSD.
a HU, human; BO, bovine; RA, rat; MO, mouse; RAB, rabbit; BA, bacteria.
b Reference structure for superposition.
Cofactors, counter-ions, structural water and additional peptide

chains were removed. Water was excluded in the comparison as

not all structures contain all equivalent water molecules. This

would be a source of additional noise in the analysis.

2.2. Superposition of protein structures

All protein structures were superimposed on a reference

protein structure. As reference protein for the protease

dataset, we used alpha-thrombin (1dwd), estrogen receptor

alpha in an agonistic conformation with diethylstilbestrol as

ligand (3erd) for the NR dataset and for the kinase dataset a

cyclic adenosine 50-monophosphate (cAMP)-dependent

protein kinase (1atp). For the superposition of alpha carbons,

the method of Lessel and Schomburg [35] was used with

default parameters as implemented in the program BRAGI

[36]. From structures with two chains of identical amino

acid sequence, only the first one was considered. If there

were two different chains, as in heterodimers, both chains

were used.
2.3. Knowledge-based interaction fields of ligand-binding

sites

All calculations were performed with the MOE program

package [16]. The interaction field calculation and the binding

site comparison were done with a script in SVL (the native

Scientific Vector Language of MOE). First, a consensus binding

site for the aligned structures was defined in such a way that

each protein atom within 4.5 Å from the corresponding ligands

belongs to the binding site. A grid with a lattice constant of

0.5 Å was spanned over this consensus binding site. Different

grid-spacing has been tested. Spacing of 1 Å led to a rather

broad distribution of properties resulting in not readily

interpretable pictures. Grid-spacing of 0.25 Å was impractical

for technical reasons as the field maps became very large. The

clustering process took about 10-fold longer and produced the

same results as with 0.5 Å spacing.

In the next step, a knowledge-based contact potential for two

probes was calculated on each grid point for all aligned protein

structures (ligands and crystal water were excluded). A
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hydrophobic and a polar probe were used as implemented in the

contact statistics method of MOE. The polar probe is derived

from nitrogen and oxygen atoms capable of forming hydrogen

bonds or metal interactions, whereas the hydrophobic type

consists of all non-polar atoms like carbon, sulphur and

halogens. The resulting contact probabilities for the two probes

on the grid points are saved into vectors, with the position in

each vector corresponding to the same grid point in different

proteins.

The interaction fields can be calculated in two ways: only

one structure is used for calculating the contact probability

fields, or the contact probability field is calculated from several

aligned protein structures, of either the same or different

receptors, which we will subsequently call the ‘‘assembly-set

approach’’. Only one contact probability field is calculated for

each probe. To analyse differences and similarities of the

hydrophobic and polar fields between different subfamily

structures, the corresponding fields are subtracted from each

other for so-called difference fields or added for so-called

similarity fields:

differenceField½i� ¼ fieldOne½i� � fieldTwo½i�

similarityField½i�

¼
1� ðabsðfieldOne½i� � fieldTwo½i�ÞÞ;

if fieldOne½i� � 0:9& fieldTwo½i� � 0:9

0

8><
>:

where i is the actual grid point and differenceField, similarity-

Field, fieldOne, fieldTwo are vectors of double values. Only

probabilities were accepted with an absolute value equal or

greater than 0.9 or 1.8 for both field types, respectively. In an

initial analysis, we found that cut-off values of 0.85 produce too

many difference fields in order to obtain easily interpretable

pictures. Using cut-offs of 0.95 produced very few similar

regions even for the comparison of closely related receptors.

Clustering the protein families using these values did not result

in different subfamilies than with a cut-off of 0.9.

The geometric centres of the resulting probability fields can

be calculated for the construction of receptor-based pharma-

cophores or for further visual analysis.

For comparisons of receptor families, the interaction fields

of the two probes were calculated for several aligned protein

structures (assembly-set approach). Only probabilities were

accepted with a value equal or greater than 0.9 and with at least

four other significant values within 1 Å radius around the

respective grid point. Otherwise, the probability for a grid point

was set to zero in order to improve the signal–noise ratio by

suppressing areas of weak or unspecific interactions. The grid-

based probability fields were inspected visually and displayed

with MOE.

2.4. Clustering of the interaction fields

The interaction fields of hydrophobic or polar probes for

single structures can be clustered to show the relationships

among the different subtypes and receptor families. A
consensus grid was calculated from the hydrophobic and polar

probe grids. For this purpose, only probabilities equal or higher

than 0.9 were taken into account, all other probabilities were set

to zero. Hydrophobic probe probabilities were set positive,

polar probe probabilities negative. No scaling was applied to

any of the two fields. Clustering of these consensus grids was

performed with an integrated pair of programs Cluster 3.0/

TreeView [37]. Distance measure was based on the Pearson

correlation and a hierarchical complete linkage clustering was

then produced.

3. Results

Before applying our method to clustering of larger protein

families and detailed pairwise comparison of selected

members, we tried to estimate its performance for two field-

based comparisons of binding sites described in the literature:

serine proteases from the chymotrypsin family [4,30] and the

PPAR subfamily of nuclear receptors [21].

3.1. Serine proteases

In this example, we analyse the differences between

thrombin and two other serine proteases, trypsin and factor

Xa (Table 1). Fig. 1 shows the hierarchical single linkage

clustering of the polar and hydrophobic fields of their binding

sites. Field-based clustering groups the proteins in the same

way as sequence-based clustering (not shown).

Fig. 2 shows the differences between the hydrophobic and

polar probe fields in the binding sites of trypsin and factor Xa in

respect to thrombin. The differences in the hydrophobic fields

of factor Xa and trypsin (green and red mesh) near residue 99 in

the D pocket can be explained by a loop in thrombin containing

residues 96–98, which reduces the space in this region of the

binding site (Fig. 2). Furthermore, in factor Xa a Phe is in

position 174, but in trypsin there is a Gln, which is indicated by

a large hydrophilic difference field (red solid) in this area of the

factor Xa binding site.

In the P pocket, Tyr60a in thrombin has no counterpart in the

other two enzymes—reflected by the corresponding hydro-

philic difference fields (green solid). This is similar for Tyr99 in

factor Xa. This mutation blocks a part of the binding site, which

is accessible in thrombin and trypsin. This is indicated by the

corresponding hydrophobic difference fields (red and green

mesh). Two additional differences seen in the hydrophobic

fields in the S1 pocket correspond to the mutation of Glu192 in

thrombin to Gln in trypsin and factor Xa, respectively, to the

mutation of Ser190 in trypsin to Ala190 in thrombin and factor

Xa.

Differences and similarities displayed are in good accor-

dance with the literature [4,15] and are able to explain different

specificities of certain inhibitors.

3.2. PPAR family

The second system we analyse is the PPAR family (Table 2).

Fig. 3 shows the hierarchical clustering of the molecular fields
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Fig. 1. Hierarchical complete single linkage clustering of 13 serine proteases

according to the molecular fields derived from their ligand-binding sites. The

Pearson correlation coefficient was used as distance measure.

Fig. 2. The hydrophobic (mesh) and polar (solid) difference fields between

thrombin and trypsin (red) and thrombin and factor Xa (green). The amino acids

in the binding-site are coloured red (trypsin), green (factor Xa) and yellow

(thrombin). The inhibitor NAPAP is shown in grey. The pockets are labelled in

white.
of the binding sites of PPARa, PPARg and PPARd in complex

with different ligands. The clustering groups the PPARa

structure 1i7g in the PPARd cluster and the PPARg structure

4prg in the PPARa cluster. 1i7g is an agonistic conformation

whereas the PPARa structure 1kkq is an antagonistic one. 2gwx

has no ligand bound, so that the binding site is more similar

(closed site) to the 1i7g structure than to the antagonistic 1kkq

one (open site). 4prg is a structure with a partial agonist and the

receptor conformation is closed like with full agonists, but the

ligand occupies a similar volume to the antagonistic ligand in

the 1kkq structure. These findings are in accordance with the

literature [21].

In Fig. 4, the difference fields derived from the PPAR-

binding sites indicate the importance of the following regions.
The reduction of the size of the distal pockets because of

mutations in positions 264 and 284 for PPARd (left distal) and

for PPARa and g of residues 281, 348, 339 (left distal) and 288

(right distal) is reflected by the location of the hydrophobic and

hydrophilic difference fields (see Fig. 4, mesh fields below

Val339). Also an exchange in position 364 is mentioned in the

literature [21], which affects the shape of the left distal pocket,

but this is not obvious from the fields shown in Fig. 4.

The effect of the exchange in position 453 (Leu to Met) in

PPARd, which causes steric hindrance at the entrance of the

binding pocket, is seen in the hydrophilic difference field in the

head region (red solid). This hydrophilic difference field is also

influenced by a mutation of His323 (PPARd) to Tyr (PPARa).

Changes in the hydrophobic and hydrophilic difference fields

(red mesh and solid) for the mutations of residues 292 and 323

can be seen in the right distal pocket and linker region,

respectively. Furthermore, we found a hydrophilic difference

field near Gln259 that originates from differences in its side-

chain orientation. In addition to this, we find differences in the

hydrophobic fields near residues 268 and 270 (yellow mesh),

caused by amino acids located in the second sphere of the

protein up to 5 Å away from the ligand. This difference is not

mentioned in the literature, but in general the results are in good

accordance with other publications [21].

3.3. Clustering of protein families

Figs. 5 and 6 show the results of hierarchical clustering using

the hydrophobic and polar consensus fields of 75 protein

kinases and 67 NRs, respectively.

In the kinase dataset (Table 3), the cdk2 family was grouped

into four clusters (Fig. 5). The first cluster consists of 13 cdk2

structures without the cyclin A ligand so that the activation loop
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Fig. 3. Hierarchical complete single linkage clustering of 13 PPARs according

to the molecular fields derived from their ligand-binding sites. The Pearson

correlation coefficient was used as distance measure.

Fig. 4. The hydrophobic difference fields (mesh) and polar difference fields

(solid) of PPARg (yellow) and PPARd (red) in respect to PPARa. The inhibitors

from the X-ray structures 1fm9 (PPARg), 1i7g (PPARa) and 1gwx (PPARd) are

shown in yellow, green and red, respectively. For clarity, only approximate

positions of amino acid side-chains are indicated by the residue numbers from

the PPARg structure (1fm9).
is oriented towards the binding site. This is the same for the

structures in the last cluster with eight members (Fig. 5), but

these two clusters have different binding modes of their ligands.

The ligands of the last cluster are located in the so-called

hydrophobic pocket of the ATP binding site [38]. Each of the

other two clusters consists of only one member (1e9h and

1qmz). Neither is complexed with cyclin A and the two

structures differ in their binding modes. In 1qmz, ATP binds to

the hydrophobic pocket whereas in 1e9h it binds as in the first

cdk2 family cluster. This illustrates that not only changes in the

receptor conformation due to the orientation of the activation
loop can be differentiated by our method, but also those caused

by different binding modes of ligands. This information could

be used to classify ligands according to the changes they induce

to the receptor, which might be linked to functional aspects.

In the NR family (Table 2), no clear separation could be

found between the ligand-binding sites of estrogen receptors a

and b (Fig. 6). Their binding sites differ by only two

conservative exchanges of aliphatic side-chains [39]. Despite a

hydrophobic residue blocking, a large part of the binding

pocket of the orphan receptor ERR, which should result in

rather different molecular fields, its binding site was found to be

most related to that of the two estrogen receptors. This

corresponds well to its sequence-based classification as

estrogen related receptor and its ability to bind a range of

estrogenic compounds [40].

The information obtained with the hydrophobic and polar

probe seems to be sufficient for a rapid discrimination as to

which subfamily a given NR or kinase belongs, as the families

are similar to sequence- or function-based classification of

kinases [5] and NRs [31].

3.4. Pairwise comparison of androgen and progesterone

receptors

In the following, we will discuss results of the assembly-set

approach for the comparison of androgen and progesterone

receptors. Residues, which are different in the binding sites of

the two receptors, are highlighted in Fig. 7a. The fields for the

hydrophobic probe (Fig. 7a) and for the polar probe (Fig. 7b)

are well localized and mostly separated from each other, which

helps to identify specific interactions, differences and

similarities between the two receptors. The hydrophobic

similarity field shows the general preference of the pockets

for hydrophobic ligands (Fig. 7a, red), but also two conserved

regions with a preference for polar groups are seen close to the

C3 and C17 substituents of the steroidal ligands (Fig. 7b, red).
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Fig. 5. Hierarchical complete single linkage clustering of 75 protein kinases

according to the molecular fields derived from their ligand-binding sites. The

Pearson correlation coefficient was used as distance measure.

Fig. 6. Hierarchical complete single linkage clustering of 67 nuclear receptors

according to the molecular fields derived from their ligand-binding sites. The

Pearson correlation coefficient was used as distance measure.
This pattern corresponds well to the orientation of steroidal

ligands in the binding pocket seen in the X-ray structures. The

hydrophobic difference field shows the differences between

progesterone and androgen receptor near residue Thr894(PR)/

Leu880(AR). This difference is caused by higher polarity of

Thr877 in AR compared to Cys891 in PR and the larger space

occupied by the hydrophobic side-chain of Leu880 in AR, and

has been used to explain the specificity for certain ligands [41].

The main difference in the polar fields of the two receptors is

also found near Thr894(PR)/Leu880(AR). The polar probe

contour for the androgen receptor is slightly smaller due to the

hydrophobic side-chain of Leu880 and closer to Thr877. Both

receptors show a positive polar contour at 2.1 Å distance from

the backbone carbonyl group of Leu887(PR)/Leu873(AR) and

3.8 Å distance from the backbone nitrogen of Cys891, which is

not targeted by the present ligands.
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Fig. 7. Comparison of the ligand-binding sites of androgen and progesterone receptor. The residues are numbered according to the progesterone receptor (1a28) and

the androgen receptor (1i37) structures. For clarity, only the ligands progesterone (green) and 5a-dihydro-testosterone (brown) are included. (a) The hydrophobic

difference (cyan) and hydrophobic similarity (red) fields obtained by the assembly-set approach, showing the binding site and the ligands of the androgen receptor

crystal structures (1e3g, 1gs4, 1i37, 1i38) in brown and the progesterone receptor crystal structures (1a28, 1e3k) in green. (b) The polar difference (cyan) and polar

similarity (red) fields of AR and PR. (c) The geometric centres of the polar probe (PR green, AR brown) and hydrophobic probe (PR cyan, AR magenta) fields

obtained by the assembly-set approach.
Important ligand–receptor interactions and differences in

these regions are identified by our method [41,42]. The

difference between the two NR binding sites originates mainly

from the Cys891/Thr877 and Thr894/Leu880 mutations. This is

also highlighted in a simpler way in Fig. 7c where the geometric

centres of the polar and hydrophobic difference fields are

displayed.

4. Discussion

We were able to show that mapping of binding sites with

only two knowledge-based probes can produce a classification

of the sites similar to more complex field-based methods

[4,5,21,30]. The chosen combination of cut-off values seems

already sufficient to cluster protein families and to detect

‘‘meaningful’’ differences without using statistical tools like

PLS or PCA, which use scaling of different probes or produce

large matrices. Noise is partly suppressed by using only points,

which have high binding probabilities for a probe and which

have also neighbours with high binding scores. Additionally,

using several structures of the same receptor can further reduce

spurious results originating from small differences between
crystal structures, caused by experimental inaccuracy or

different experimental conditions. It can also account for

protein flexibility to some extent [43], if conformational

changes do not distribute (smear) differences over a too large

area, which would bring the signal under the cut-off value. One

approach to solve this problem with multiple side-chain

conformations would be the use of the same conformation for

certain side-chains in all structures of one receptor [15]. In this

way, important similarities between receptors will not get lost

in the similarity maps. But on the other hand different side-

chain conformations, induced by different ligands, point to

areas, which can adjust to the ligands and this information

could be useful for compound design.

The use of only two probes in original descriptor space

creates maps which are readily and intuitively interpreted by

visual inspection. For all examples described here, the

differences and similarities seem to be consistent with direct

comparison of the protein structures and with conclusions

described in the literature.

Shifts in the superposition of the protein structures can lead

to adjacent difference fields of opposite sign (preference).

Those areas can be often distinguished from real signals by
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visual inspection or should be interpreted at least with caution

(see, e.g. Fig. 7b below the A ring of the steroids). As most

methods which compare field maps, like CoMFA [1], depend

very much on the superposition of the molecules; here the use

of a field-based superposition algorithm [44] might bring some

improvement. Another approach to overcome the alignment

problem would be the use of alignment-independent descriptors

[45]. Therefore, interaction fields derived from single protein

structures could be converted into alignment-independent

descriptors, e.g. by the method described by Pastor et al.

[45]. Similarity of the binding sites would be measured based

on these descriptors and applied to clustering. Back-projection

of interesting features into the protein structure could be used

for visualization and interpretation [46].

Improvement of the presented method could come from the

implementation of a larger number of either knowledge-based

[9,10] or GRID-like probes [6]. Differentiation between

significant and non-significant fields might be sometimes

problematic by using just the simple difference fields [4]. Here,

the use of methods like CPCA or trend vector/PLS, which have

been shown to identify relevant areas and differences in ligand-

binding sites, could bring further improvement [4,15].

The focus of the present method lies on being simple, fast

and robust in order to cluster and compare protein families with

several members. Besides the identification of regions, which

differ between receptors in order to improve selectivity of a

ligand, regions which are common within a protein family are

of interest for the design of family-targeted libraries or to

support identification of privileged or consensus substructures

of ligands. For certain indications, simultaneously targeting

several related receptors can provide a superior therapeutic

effect compared to the action of selective ligands [47].

For virtual screening of compound libraries pharmacophores

can be generated from the probability fields. Therefore,

geometric centres of the difference fields are calculated and

the standard deviation is used as radius for the sphere. At the

moment, no weights are assigned to the individual spheres, but

they could be derived from different contact probabilities of the

probes. This type of pharmacophore, derived from similarity or

difference fields, could be also used as filters for docking

procedures. Pharmacophoric points derived from similarity

fields would express compound features, which are common

within a receptor family, while points derived from difference

fields focus the virtual screening process on more subtype-

selective compounds.
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