
Implementing Subdivision Surface Theory http://www.gamasutra.com/features/20000425/sharp_pfv.htm

1 of 10 11/3/2003 11:38 AM

Gama Network Presents:

Implementing Subdivision Surface Theory
By Brian Sharp 
Gamasutra
April 25, 2000
URL: http://www.gamasutra.com/features/20000425/sharp.htm

In my previous article "Subdivision Surface Theory" , I explained what subdivision surfaces were 
and why game developers should be interested in them. I also covered a couple different kinds of
subdivision surfaces in their mathematical forms and briefly discussed their benefits and
detriments. Most everything was in English, and the rest was expressed using equations. There
were no code listings last month, not even a hint of C++, but I promised to discuss an
implementation, and so that's the goal of this article. I'll cover a sample implementation of the
modified butterfly scheme as discussed in last month's article, complete with a shiny, new demo.

Why the Butterfly?

In "Subdivision Surface Theory" , I wrote about a number of schemes and those were only the tip
of the iceberg, so it's worth spending some time justifying the choice I've made for this
implementation. Why use the modified butterfly? To explain my reasoning, it helps to look at
more general characteristics of schemes and their advantages and disadvantages. The major
differences tend to hinge on whether a scheme is approximating or interpolating.

Approximating schemes have a number of benefits. The surfaces they produce are generally very
fair, and they are generally the favored schemes for use in high-end animation. For instance,
Pixar uses Catmull-Clark surfaces for their character animation. The downside of approximating
schemes are substantial, though. The major one is that because the scheme doesn't interpolate
its control net, the shape of the limit surface can be difficult to envision from looking at the control
net. The caveat is that as the net becomes denser, the surface will generally be closer to the net.
But for games, the net itself won't be tens of thousands of polygons, so the surface can differ
substantially from the net.

Interpolating schemes are a different story. They can exhibit problems with fairness, with ripples
and undulations over the surface, especially near tight joint areas. Also, they aren't used in
high-end rendering quite as much, which can mean that they're the focus of less research. But
their major benefit is that the surface is substantially easier to envision by looking at the net.
Since the surface passes through all the net vertices, it won't "pull away" from the net. The
fairness issues are the price to pay for this, though. Approximating schemes are fair because the
surface isn't constrained to pass through the net vertices, but interpolating schemes sacrifice the
fairness for their interpolation.

Nonetheless, I feel that the fairness issues present less of a challenge to intuition than an
approximating surface does. For example, in many cases, existing artwork can be used with
interpolating schemes with some minor adjustments to smooth out rippling, whereas adapting
existing polygonal art to be a control net for an approximating scheme is a much more difficult
task.

Among interpolating schemes, the butterfly scheme has a number of things going for it. It's one of
the better-researched schemes. It's also computationally fairly inexpensive. Finally, the results of
subdivision tend to look good and conform fairly well to what intuition would expect. Therefore,



Implementing Subdivision Surface Theory http://www.gamasutra.com/features/20000425/sharp_pfv.htm

2 of 10 11/3/2003 11:38 AM

Figure 1. The stencil used 
for the regular case of the
modified butterfly scheme.

Figure 2. The stencil
used for the 

extraordinary case of 
the modified butterfly

scheme.

Figure 3. The stencil used
for the tangent mask of a 

it's my model of choice.

Butterfly in Review

If you haven't already, you probably should read my article from
last month's issue for the deeper explanation of the modified
butterfly scheme. But in case you haven't, I'll summarize it here.
Given a triangular mesh, the control net, we want to subdivide it
one step. We first add a vertex along each edge according to 
specific rules. If the endpoints of the edge are both of valence 6,
then we use the stencil in Figure 1, with the weights:

If one endpoint is of valence 6 and the other is extraordinary (not
of valence 6) then we use a special stencil that takes into account

just the extraordinary vertex, shown in Figure 2. The weights are computed as follows:

If both endpoints are extraordinary, we average the results of using
the above extraordinary stencil on each of them. Again, if this seems
a bit too terse, refer to last month's article where I discuss the
scheme in substantially more detail. 

As far as the butterfly scheme's characteristics, it's interpolating
because points in a control net also lie on the limit surface - the
subdivision process doesn't move existing vertices. It's also
triangular as it operates on triangular control nets. It's stationary as
it uses the same set of rules every time it subdivides the net, and
uniform because every section of the net is subdivided with the same
set of rules.

One aspect of the scheme that I
mentioned last month but didn't 
define was the tangent mask of the
butterfly scheme. This is the mask 
used to compute the tangent vectors
explicitly at a vertex, which we use to find the vertex normals.
The mask is large and therefore may look intimidating, but it's
just a bunch of numbers, and a few multiplications and additions
later, we've got the answer. 

For regular vertices, the process involves the 1- and
2-neighborhood of the vertex (so it uses vertices that are one
and two steps away.) Between both neighborhoods, there are 18 
vertices, and so the scalars, corresponding to the indexing shown
in Figure 3, are:



Implementing Subdivision Surface Theory http://www.gamasutra.com/features/20000425/sharp_pfv.htm

3 of 10 11/3/2003 11:38 AM

regular vertex.

Multiplying the vertices by l0 and l1 gives us two different tangent vectors, the normalized cross
product of which is our normal. For extraordinary vertices the normal is actually easier to find, as
it depends only on the 1-neighborhood of the vertex. The two tangent vectors in this case can be
found as:

Here, t0 and t1 are the tangents, N is the vertex valence, and ei is the ith neighbor point of the
vertex in question, where e0 can be any of the points (it doesn't matter where you start) and the
points wind counterclockwise. Crossing the two resulting vectors and normalizing the result
produces the vertex normal.

Implementation: The Big Idea

The idea behind our implementation is, at a high level, very straightforward. Given one control
net, we want some piece of functionality that can take that net and output a more complex net, a
net that has been advanced by a single subdivision step.

That sounds easy enough, right? Unfortunately, that description doesn't translate very directly to
C++ code. So we need to define some of our terms and be more specific. First of all, what's a
control net? We know what it is conceptually, but what kind of data structure is it and how is it
manipulated? After that, of course, we need to define that "black box" bit of functionality that
subdivides the net, and quantify how it works.

To establish our control net data structure, we start with nothing and build our way up as needed.
So, the first thing we need is the base representation that will eventually pass into OpenGL. That's
just a few arrays. We need an array for our vertices, our texture coordinates, and our colors.
Furthermore, we'll need an array of indices into those arrays to define our faces; every three
indices defines a triangle.

If we can do our tessellating with no more than that, then that's great. But chances are we're
going to need to keep around more information than just that. The important thing is that
whatever information is added to the data structure needs to be renewable. That is, since the
process is iterative, the information we have in the simpler net coming in must also exist in the
more complex net coming out, so that we can feed the complex net back in to produce an even
more complex net.

It's worth asking why we'd need more information than just the vertices and faces. After all, if we
need to determine whether one vertex is connected to another by an edge, we can determine that
by looking through the faces. Or if we need to find all the edges, we could just do that by running
through the face list, too. The problem here is in the running time of the lookups. When we're
subdividing an edge, we need to find out a lot of information about nearby vertices and faces, and
we'd like it to be as fast as possible. Regardless of the processor speed, looking through all the
faces to find a vertex's neighbors will be slower than if we have that information available
explicitly. This is because looking through the list of faces takes O(F) time, where F is the number
of faces. On the other hand, if we have the information stored explicitly, it only takes O(1) time -
constant time. That means that as we add more faces to the model, the former solution takes
longer, whereas the latter remains the same speed.

We don't have the information we need to decide what else to add to the control net data
structure, so we'll work on the procedure for subdividing a net and add data to the control net as
necessary.



Implementing Subdivision Surface Theory http://www.gamasutra.com/features/20000425/sharp_pfv.htm

4 of 10 11/3/2003 11:38 AM

The Subdivision Step

Our task, then, is this: given a net, we need to subdivide it into a more complex net. Working
from the modified butterfly rules, this is fairly straightforward. We need to add a vertex along
each edge of the net. Then we need to split each face into four faces using the new vertices.

The first step, adding new vertices along each edge, tells us quite a bit about some more
information we'll need in the control net data structure. There's no fast and simple way to find all
the edges unless we store them explicitly. An edge needs to be able to tell us about its end points
since we need to use those in the butterfly stencil for computing the new vertex. Furthermore, the
stencil extends to the end points' neighbors, so the end point vertices need to know about the
edges they're connected to.

The second step, breaking existing faces into new faces, requires that the faces know about their
vertices, which they already do. The faces also need to know about their edges. While they could
find this by asking their vertices for all their edges and fishing through them, that requires a fair
amount more work for every lookup, and so we'll explicitly store with each face the information
about its edges, too.

That increases the load a fair amount. Our data structure now has arrays of vertices, edges, and
faces. Vertices know about their edges, edges know about their vertices, and faces know about
their vertices and edges.

Graphs and Subdivision

It's worth noting that the data structure we're working with is nothing new and unusual. It's a
specific example of a general data structure known simply as a graph. A graph is anything
composed of vertices connected by edges. For instance, a linked list and a binary tree are both
special kinds of graphs. 

What makes our problem a little tougher than, say, writing a singly-linked list class is that the
graph of vertices in a model is considerably more complex than the graph of nodes in a linked list.
First, the nodes in a linked list have a single edge coming out of them (pointing to the next node)
and one coming in (from the previous node.) Our graph has six edges coming into each regular
vertex and potentially many more than that for extraordinary vertices.

Furthermore, in the case of a singly-linked list or a binary tree, the edges have direction. That is,
you don't generally walk backward through the list or up the tree. Furthermore, these structures
are acyclic - there are no "loops" in them - so from a given vertex, there's no path that leads back
to the same vertex. In our case, the edges are undirected. You need to be able to traverse every
edge in both directions.

Discussing graphs in this context is really just "interesting facts" rather than being a crucial
contribution to our implementation, but it confirms what we already know: our data structure is
complicated. The one saving grace is that our algorithm is based on locality, so we don't need to
worry about traversing huge distances across the graph to find information we need to subdivide.
This is one benefit of using a scheme with minimal support. A scheme with much broader support
would be computationally much harder to evaluate, and hence be much slower and far more
difficult to implement.

It also confirms the direction we're taking to implement the data structure - it's based wholly on
locality so that the time it takes to find one vertex given another is proportional to the number of
edges between them. There are other ways of representing graphs for the myriad applications
that have different requirements. Cormen and his co-authors (see For Further Info at the end of
this article) provide an excellent introduction to graph theory.

Control Net Details

So we know the data we need in our control net data structure and we know the steps the



Implementing Subdivision Surface Theory http://www.gamasutra.com/features/20000425/sharp_pfv.htm

5 of 10 11/3/2003 11:38 AM

tessellation needs to execute. We're ready to dig into the lower-level implementation details. First,
we'll go back to the information in the control net structure and look at how it should be laid out.

Listing 1 shows the layout of the data. There tend to be two schools of thought on data layout.
One method is dubbed the "structure of arrays" (SOA) and the other is the "array of structures"
(AOS). The idea is that the SOA method stores multiple parallel arrays whereas the AOS method
stores all the data interleaved in the same array. I've personally never run into a situation where
the two approaches differed greatly in speed, and so when I lay out data I generally try to blend
the two approaches for clarity's sake. That's why some of the data in the listing is shown as
separate arrays of base types and some are stored as arrays of small objects.

The vertices are stored in OpenGL-friendly arrays. While OpenGL allows for interleaved arrays,
many applications tend to store their data in parallel arrays, and that's why I choose to do so as
well. The vertices, texture coordinates, normals, and colors each have their own arrays. These
arrays are dynamically grown; when I need to add another vertex and there isn't sufficient room,
I allocate new arrays that are twice the size of the current ones and move the data into the new
arrays. This strategy amortizes the cost of memory allocation and is one I use for most of my
memory management.

Each vertex also has a VertexEdges associated with it. VertexEdges keeps track of the edges that
the vertex is a part of. Following the theme of making lookups as fast as possible, the edges are
stored sorted by winding order, so each successive edge in the array is the next edge in
counterclockwise winding order from the previous edge.

The edges themselves prefer the AOS format. Each edge is stored as nothing more than two
indices into the vertex arrays. Adding another nitpicking detail, I sort the indices by value. It
comes in handy as there are many cases where I can skip a conditional by knowing that they're in
sorted order.

The faces are stored simply as an array of indices into the vertex arrays, where every three
indices defines a triangle. Since the control net is totally triangular, I don't need any complicated
support for variable-sized faces.

That's it for the storage of the control net. Now we need to understand the details of the
tessellation process.

Subdivision Step Details

As mentioned earlier, the subdivision step consists of subdividing edges and then building new
faces from them. The top-level function that does this is shown in Listing 2. For the edge 
subdividing, I iterate over the edges. At each edge, I check the valences of the end point vertices
to determine which subdivision rules to use. Upon deciding that, I apply the rules and produce the
new vertex. It's then added to the end of the vertices array.

Furthermore, the edge is split into two edges. One of them uses the slot of the old edge, and one
of them is added to the back of the edge array. For use in building the faces, I keep two lookup
tables. One maps from the old edge index to the index of the new vertex I just created. The other
maps from the old edge index to the index of the new edge that I just added.

Building the faces is somewhat more involved, as it requires a fair amount of bookkeeping when
creating the four new faces to be sure that they're all wound correctly and have their correct
edges. For each face, I have the corner vertices and the edges. From the two lookup tables I
created while subdividing edges, I also know the new vertices and new edges.

I shuffle all that data around to get it in a known order so that I can then build faces out of it. I
also end up adding three more edges connecting the new vertices inside the triangle. Those new
edges need to be added to the new vertices' edge lists, and they need to be added in the correct
winding order. This isn't much code, but it's tricky and bug-prone.



Implementing Subdivision Surface Theory http://www.gamasutra.com/features/20000425/sharp_pfv.htm

6 of 10 11/3/2003 11:38 AM

Using this function, I can iterate over that as many times as I like. Each iteration increases the
polygon count by a factor of four. When I decide to stop, only then do I need to worry about
calculating vertex normals. Iterating over the vertices with the modified butterfly tangent mask
finds those handily.

Colors and Texture Coordinates

The previously described procedure finds the vertices and normals, but not the colors or texture
coordinates. These deserve their own discussion. Colors are nice because they can be interpolated
using the same scheme as the vertices. If the butterfly scheme produces smooth surfaces in XYZ
space, it will also produce smoothness in RGBA space. It's certainly possible to linearly interpolate
the colors. That will result in colors that don't change abruptly, but whose first derivative changes
abruptly, resulting in odd bands of color across the model, similar to Gouraud interpolation
artifacts.

Texture coordinates are a somewhat more difficult problem. Current consumer hardware
interpolates color and texture over polygons in a linear fashion. For colors, this isn't what we
generally want: Gouraud interpolation of color exhibits significant artifacts. But for texturing, it is
what we want. The texture coordinates should be linearly interpolated, stretching the texture
uniformly across a face.

Therefore, when I interpolate texture coordinates during subdivision, I just linearly interpolate
them. Furthermore, higher-order interpolation doesn't necessarily make sense at all, as different
faces of the control net might have totally different sections of the texture, or even have totally
different textures mapped onto them. While the data structure doesn't currently support this
(vertices would need to be capable of having multiple sets of texture coordinates), it could
certainly be desirable. In this case, neighboring vertices' texture coordinates are in totally
different spaces, so interpolating between them doesn't make sense.

So, I'll stay with linear interpolation for texture coordinates. In terms of elegance, this method is
a little disappointing. If we interpolated everything using the modified butterfly scheme, we could
treat vertices not as separate vertex, color, and texture-coordinate data, but as one
nine-dimensional vector, (x,y,z,r,g,b,a,u,v), and just perform all the interpolation at once. Alas, in
this case, elegance needs to take a back seat to pragmatism.

Now we know how to start with a control net and step forward, producing increasingly detailed
control nets, all the while keeping our data structures intact and keeping our vertices, colors, and
texture coordinates intact, and generating normals for the finished model. What else is there left
to cover?

Animation

While it's beyond the scope of this article to describe how you might implement a full animation
system that uses subdivision surfaces, it's worth describing how subdivision surfaces and
animation can coexist. If your game is one that stores the animated model as a series of full
models, clearly you don't even have to think about it - subdividing those individual meshes will
just work.

Skeletal animation is a somewhat more interesting problem. One of the nice things about
subdivision surfaces is that a skeletal animation system should be able to transform the control
net before subdivision, saving you the cost of multiple-matrix skinning on the high-polygon final
model. This does have some downsides, though. Depending on the model and a host of other
factors, the skeletal animation might cause the model to flex in strange ways or to exhibit
increased rippling or unfairness.

The other downside is that it doesn't allow your application to take advantage of forthcoming
hardware that supports skinning on the card. Depending on the speed of that skinning, though,
and on how many times you subdivide the model, the savings of you doing a reduced number of
transforms may or may not be worth the loss of offloading.



Implementing Subdivision Surface Theory http://www.gamasutra.com/features/20000425/sharp_pfv.htm

7 of 10 11/3/2003 11:38 AM

Figure 4. Subdivision steps
of a colored shape in the 

demo.

Adaptivity

Since this is a scalable geometry solution, it's worth asking if we can adaptively subdivide based
on curvature or distance to the camera. In my previous Game Developer articles on tessellating
Bézier patches ("Implementing Curved Surface Geometry," June 1999, and "Optimizing Curved
Surface Geometry," July 1999) such adaptivity was a major focus.

The problem with adaptive solutions for subdivision surfaces is that, unlike patches, subdivision
surfaces don't easily expose a closed-form parameterization. The only easy way to tessellate them
is through recursion. So we rely on the fact that as we recurse, we're converging on a limit
surface. And no matter how we tessellate, we should be converging on the same limit surface.

If we tessellate adaptively, we've changed the control net. Some of the net might be at a higher
level of tessellation than the rest. And so we've broken the rules, and our net is no longer
converging on the same surface. This is a worst case scenario for scalable geometry - it produces
a "popping" that you simply can't avoid, since the underlying surface is now fundamentally
different.

Furthermore, although this could probably be dealt with somehow, would it be worth it? Consider
that a game probably won't be subdividing the control net more than four times. If your original
net is, say, 1,000 polygons, four subdivision steps bring it to 256,000 polygons. The span of
low-end to high-end machines isn't yet quite that large. So the end result of an elaborate
adaptivity scheme would just be a model that was subdivided three times in some areas, maybe
four in others: a whole lot of work for negligible benefits.

If you're using subdivision schemes for characters, then unless your characters are gigantic,
adaptivity based on distance from the camera won't be worth much, either. Plus, characters tend
to be fairly uniformly curved; most of them don't have large flat sections and jagged spikes in
other areas. Therefore, in the end, you might be able to squeeze some benefits out of an
adaptivity scheme, but the amount of work necessary to do so is fairly daunting. It's probably
sufficient to pick a subdivision level based on distance to the camera and field-of-view angle and
tessellate to it.

The Demo and Further Work

As promised, this article is accompanied by a demo built off the
sample implementation provided above. A few screenshots are
shown in Figures 4 and 5. The demo is available at my web site
(see For Further Info at the end of this article) and comes with
source code and a couple of sample models.

I'll freely admit that the demo is not at the point where you could
drop it straight into your game and witness a stunning
transformation (unless shiny salamanders are exactly what your
game needs). There's a good deal more to be done with the demo.
For starters, it's worth asking what to do when even the base
control net is too dense. If a character is far away from the
camera, maybe you'd only like to draw a 200-polygon version? In
that case, integrating a separate mesh-reduction algorithm that
you apply to the simplest net when needed could solve the
problem nicely.

Another issue that the demo
doesn't address is the question of 
caching. I currently regenerate the subdivision from the base net
every frame. Is it worth caching subdivisions? On one hand, it
could make things faster, but if the models being subdivided are
characters, then the animation probably makes caching less 



Implementing Subdivision Surface Theory http://www.gamasutra.com/features/20000425/sharp_pfv.htm

8 of 10 11/3/2003 11:38 AM

Figure 5. Subdivision steps
of a salamander model in 

the demo.

useful, since the model you created in one frame isn't in the right
position by the next frame.

Whether or not the modified butterfly scheme is the right one for
you, this demo should provide a decent starting point for
experimentation. Hopefully, between these two articles, I've given
a solid overview of subdivision surfaces, and maybe even gotten 
somebody interested in using them in a game or two. Questions
and comments are heartily encouraged, and in the meantime, I
hope to find myself amazed by the next generation of fully
scalable, beautiful games. 

For Further Info:

The demo and other resources are available at my web site: 
http://www.cs.dartmouth.edu/~bsharp/gdmag

Additional Resources

Cormen, T., C. Leiserson, and R. Rivest, Introduction to Algorithms. Cambridge, Mass.: M.I.T.
Press, 1998.

Zorin, D. "Stationary Subdivision and Multiresolution Surface Representations." Ph.D. diss.,
California Institute of Technology, 1997. (Available at ftp://ftp.cs.caltech.edu/tr/cs-tr-97-32.ps.Z)

Zorin, D., P. Schröder, and W. Sweldens. "Interpolating Subdivision for Meshes with Arbitrary
Topology." Siggraph '96. pp. 189-192. (Available from ACM Digital Library.)

When he's not sleeping through meetings or plotting to take over the world, Brian's
busy furtively subdividing, hoping one day to develop his own well-defined tangent
plane. Critique his continuity at bsharp@acm.org.

Listing 1. The Data Used to Represent the Control Net.

class ButterflySurface
{

public:
    ...

protected:
    ...

    // Information about the vertices
   &nbspint numVerts;
   &nbspint vertCapacity;
   &nbspfloat* verts;
   &nbspfloat* vertNorms;
   &nbspVertexEdges* vertEdges;
   &nbspfloat* texCoords;
   &nbspfloat* colors;

    // Information about the faces; 
    // all faces are triangles.
   &nbspint numFaces;
   &nbspint faceCapacity;
   &nbspint* faces;



Implementing Subdivision Surface Theory http://www.gamasutra.com/features/20000425/sharp_pfv.htm

9 of 10 11/3/2003 11:38 AM

   &nbspint* faceEdges;

    // Connectivity information,
    // needed for tessellating.
   &nbspint numEdges;
   &nbspint edgeCapacity;
   &nbspButterflyEdge* edges;
};

// Classes used in control net storage.
class VertexEdges
{
public:
   &nbspVertexEdges();
   &nbspVertexEdges(const VertexEdges& source);
   &nbspVertexEdges& operator=(const VertexEdges& source);
   &nbspint numEdges;
   &nbspint edges[MAX_VERTEX_VALENCE];
};

class ButterflyEdge
{
public:
   &nbspbool operator==(const ButterflyEdge& cmp) const;
   &nbspbool operator<(const ButterflyEdge& cmp) const;
   &nbspint v[2];
};

 

Listing 2. The Top-level Function Used to Tessellate a Control Net. 

// This tessellates the surface.
void ButterflySurface::tessellate()
{
    // Loop controls.
   &nbspint x;

   &nbspfor (int level=0; level<maxRecursion; level++)
    {
        // This is how we later find the new
        // vertices created along edges. 
       &nbspint* edgeVertMap = new int[numEdges];
       &nbspfor (x=0; x<numEdges; x++)
        {
           &nbspedgeVertMap[x] = -1;
        }

        // This is how we find the new other 
        // half-edge made when the edge is
        // split.
       &nbspint* edgeEdgeMap = new int[numEdges];
       &nbspfor (x=0; x<numEdges; x++)
        {
           &nbspedgeEdgeMap[x] = -1;
        }

       &nbsptessellateEdges(edgeVertMap, edgeEdgeMap);



Implementing Subdivision Surface Theory http://www.gamasutra.com/features/20000425/sharp_pfv.htm

10 of 10 11/3/2003 11:38 AM

       &nbspbuildNewFaces(edgeVertMap, edgeEdgeMap);

       &nbspdelete[] edgeVertMap;
       &nbspdelete[] edgeEdgeMap;
    }

    // Only at the end here do we generate
    // our normals.
   &nbspgenerateVertexNormals();
}

 

Copyright © 2003 CMP Media Inc. All rights reserved.


