U
4

- A,

g g

Chowr

R U B o 3

oo A
T

¥

Q1.1

Arcball Rotation Control

Ken Shoemake

University of Pennsylvania
Philadelphia, PA
shoemake @graphics.cis.ypenn.edu

¢ Introduction <

Previous Gems have explained how to manipulate rotations in 3D with a virtual track-
ball (Hultquist 1990), and in both 3D and 4D with a rolling ball (Hanson 1992). Both
methods are essentially the virtual sphere of a recent survey (Chen et al. 1988), and
simulate some physical action. In so doing, however, they exhibit hysteresis, or path
dependence. That is, when you drag the mouse from point A to point B, the end result
will change depending on the path you follow. Hanson uses this effect as a way to rotate
around the axis perpendicular to the screen (which I will call z), but usually it is just a
counterintuitive nuisance. This Gem presents C code for the Arcball rotation controller
(Shoemake 1992), which is path independent. It is cheaper to implement than the other
methods, but better behaved and more versatile. One special feature of Arcball is its
ability to handle with equal ease both free rotation and constrained rotation about any
axis. The simplest implementation uses quaternions (Shoemake 1985).

& Arcs to Rotations ¢

Recall that a unit quaternion ¢ = [(z,y, z),w] = [Vsin6, cosf| represents a rotation
by 20 around the axis given by the unit vector ¥, and that the quaternion product
gp represents the rotation p followed by g. Now suppose we have two points on a unit
sphere in 3-space, Vo and V1, considered as unit quaternions [vg,0] and [¥1,0]. Their
“ratio” V1V ! converts the arc between them to a rotation.! What rotation do we get?
Because the points give us pure vector quaternions, we have vV 1= [Vo X V1, Vg - v1].
Thus the axis of rotation is perpendicular to the plane containing the two vectors, and
the angle of rotation is twice the angle between them.

The Arcball controller displays this sphere on the screen (cheaply, as the circle of its
silhouette), and uses the mouse down and drag positions on the sphere as the end points
of an arc generating a rotation. The user clicks down at vy and drags to vi. As the

1Be careful not to confuse the unit quaternion hypersphere, where a single point represents a rotation,
with this ordinary sphere, where a pair of points is required.

Copyright © 1994 by Academic Press, Inc.

All rights of reproduction in any form reserved.

IBM ISBN 0-12-336155-9

175 Macintosh ISBN 0-12-336156-7

176 < Transformations

mouse is dragged, ¥1 changes continuously, and so does the rotation. While dragging,
we draw the changing arc and also the turning object.

Broken down into elementary steps, we do the following. Call the screen coordinates
of the cursor at mouse down sy = (7g,%0,0), the screen coordinates of the center of

the Arcball ¢, and its screen radius 7. Compute v = (sp —c¢)/r, and z = /1 — [[vo|%.
Then ¥ = vg + (0,0, 2) is our first point on the unit sphere. Do the same thing with
the current cursor coordinates to get V1, and with these two points compute the unit
quaternion gdrag = [Vo X V1,V0 - V1]. We use the Arcball to manipulate an object’s
orientation, which at mouse down we save as a quaternion, ggown- While dragging, we
compute the object’s current orientation as gnow = Gdragldown. SO long as the mouse
button is held we use the same Vg and ggown; upon release we permanently update the
object’s orientation to gnow-

¢ Arcball Properties <

Arcball’s most important properties are hard to convey in print: it has a good “feel” and
can be mastered in minutes. This is partly because the object motion mimics the mouse
motion. If you drag across the center of the sphere, the object rotates in the direction
the mouse moves. If you drag around the edge of the sphere, the object rotates around
z in the same direction. But there is more to Arcball. With a single mouse stroke it is
possible to rotate 360° around any axis. In fact, opposite points on the edge give the
same rotation, so it is possible to wrap around and keep turning. And strokes add like
vectors, which is truly remarkable since rotations do not commute.

This last property is the source of Arcball’s path independence and requires a brief
explanation. Consider two consecutive strokes, as in Figure 1.

Figure 1. Arc addition.

IIl.1 Arcball Rotation Control < 177

nearest arc

R

cursor

(b)

Figure 2. (a) Constraint implementation. (b) Constraint selection.

A stroke from vy to Vi followed by a stroke from Vi to Vo gives the same ef-
fect as a direct stroke from vy to V9. That’s because the composite quaternion is
(971 (¥1951) = %995, The benefit is a more forgiving interface with a solid feel.
Once you start dragging, where the mouse is positioned matters, but not how you got
there. There is no permanent penalty for losing a mouse sample, which is often hard to
avoid; the behavior is like lossless incremental accumulation. Path independence also
makes displaying an arc meaningful, since it really does show you the cumulative effect
of your drag.

Like Hanson, we can also use a pair of controllers to turn objects in 4D. The com-
plexity of rotations grows with the square of the dimension, giving in 4D 6 degrees of
freedom. We can use an arbitrary quaternion, p, to describe a point, and a pair of unit
quaternions, 4 and v, to describe a rotation. In 3D, we use the formula upu™'; a 4D
version is uvpu . Adjust u with one Arcball, and v with the other.

¢ Adding Constraints <

We can now rotate with full freedom, but sometimes we want less. Fortunately, Arcball
can easily be augmented with axis constraints.? (See Figure 2a.) To implement this, take
your original Arcball points, subtract their components parallel to your chosen axis, and
renormalize onto the sphere. Call the unit axis vector &; then compute v{, = vo—(¥¢-a)a,
and v = v(/||v{||. Do the same for vy. If either v{, or v| ends up with negative z, negate

*Where you get an axis is up to you. It could be a coordinate axis, a surface normal, a body principal
axis of inertia, a light reflection direction, or whatever.

178 < Transformations

that vector to its opposite on the front hemisphere. Using these new points instead of
the originals to compute ggrag, your rotation is now constrained.

Here’s an easy way to pick one axis from a small set of choices. Signal constraint mode
by holding down, say, the [SHIFT] key. Have the controller pop up arcs superimposed on
the Arcball, one for each of your axes. As you move the mouse around before clicking,
the closest arc should be highlighted. (See Figure 2b.) When you click down with the
mouse, you are constrained to the axis for the closest arc, and the other arcs disappear.
There is both a visual clue (seeing pop-up arcs) and a kinesthetic clue (holding down
the [SHIFT] key) that you are in constraint mode. When you release only the mouse
button, you stay in constraint mode and are again shown all the arc choices. When you
release the [SHIFT| key, you return to free mode, signaled by having the constraint arcs
disappear. If you have different axis sets (object axes, camera axes, et cetera), you can
hold down different keys to signal constraint mode.

¢ Code ¢

/****% BallMath.h - Essential routines for Arcball. ****x/
#ifndef _H BallMath
#define _H_BallMath
#include "BallAux.h"

HVect MouseOnSphere (HVect mouse, HVect ballCenter, double ballRadius);
HVect ConstrainToAxis (HVect loose, HVect axis);

int NearestConstraintAxis(HVect loose, HVect *axes, int nAxes);

Quat Qt_FromBallPoints (HVect from, HVect to);

voild Qt_ToBallPoints (Quat ¢, HVect *arcFrom, HVect *arcTo);

#endif

/-k*'k** EOF *****/

/****% BallAux.h - Vector and quaternion routines for Arcball. *****x/
#ifndef _H_BallAux

#define _H_BallAux

typedef int Bool;

typedef struct {float x, v, z, w;} Quat;
enum QuatPart {X, Y, Z, W, QuatlLen};
typedef Quat HVect;

typedef float HMatrix[QuatLen] [QuatLen];

extern Quat gOne;

HMatrix *Qt_ToMatrix(Quat ¢, HMatrix out);
Quat Qt_Conj(Quat q);

Quat Qt_Mul (Quat gL, Quat gR);

HVect V3_(float x, float y, float z);
float V3_Norm(HVect v);

HVect V3_Unit (HVect v);

HVect V3_Scale(HVect v, float s);

HVect V3_Negate (HVect v);

