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M otivation

Many aspects of computer graphics and computer imagery differ from aspects of conven-
tional graphicsandimagery because computer representationsare digital and discrete, whereas
natural representations are continuous. In a previous lecture we discussed the implications
of quantizing continuousor high precisionintensity valuesto discrete or lower precisionval-
ues. Inthissegquence of lectures we discusstheimplicationsof sampling a continuousimage
at adiscrete set of locations (usually aregular lattice). Theimplicationsof the sampling pro-
cess are quite subtle, and to understand them fully requires a basic understanding of signal
processing. These notes are meant to serve as a concise summary of signal processing for
computer graphics.

Reconstruction

Recall that a framebuffer holdsa 2D array of numbers representing intensities. The display
creates a continuous light image from these discrete digital values. We say that the discrete
image is reconstructed to form a continuousimage.

Althoughit is often convenient to think of each 2D pixel as alittle square that abutsits
neighborstofill theimage plane, thisview of reconstructionisnot very general. Insteaditis
better to think of each pixel asapoint sample. Imagine an image as asurface whose height at
apointisequal to theintensity of theimage at that point. A single sampleisthena*spike;”
the spikeislocated at the position of the sample and itsheight is equal to the intensity asso-
ciated with that sample. The discreteimage is a set of spikes, and the continuousimage is
a smooth surface fitting the spikes. One obvious method of forming the continuous surface
is to interpol ate between the samples.

Sampling

We can make a digital image from an analog image by taking samples. Most smply, each
sample records the value of the image intensity at a point.

Consider a CCD camera. A CCD camera records image values by turning light energy
into electrical energy. The light sensitive area consist of an array of small cells; each cell
produces asinglevalue, and hence, samplestheimage. Notice that each sampleistheresult
of all thelight falling on asinglecell, and correspondsto an integral of all thelight withina
small solidangle (see Figure 1). Your eyeissimilar, each sampleresultsfrom the action of a
single photoreceptor. However, just like CCD cells, photoreceptor cells are packed together
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Figure 1: A CCD camera. Each cell of the CCD array receiveslight fromasmall solid angle
of thefield of view of the camera. Thus, when a sample istaken the light is averaged over
asmall area

in your retina and integrate over a small area. Although it may seem like the fact that an
individual cell of a CCD camera, or of your retina, samples over an areaisless than ideal,
the fact that intensitiesare averaged in thisway will turn out to be an important feature of
the sampling process.

A vidicon camera samples an image in slightly different way than your eye or a CCD
camera. Recall that atelevision signa is produced by a raster scan process in which the
beam moves continuously from left to right, but discretely from top to bottom. Therefore,
intelevision, theimageis continuousin the horizontal direction. and sampled in the vertical
direction.

The above discussion of reconstruction and sampling leadsto an interesting question: Is
it possible to sample an image and then reconstruct it without any distortion?

Jaggies, Aliasing

Similarly, we can create digital images directly from geometric representationssuch aslines
and polygons. For example, we can convert a polygon to samples by testing whether a point
isinside the polygon. Other rendering methods also involve sampling: for example, in ray
tracing, samples are generated by casting light rays into the 3D scene.

However, the sampling processis not perfect. The most obvious problem isillustrated
when apolygonor checkerboard issampled and displayed as shownin Figure 2. Notice that
the edge of a polygon is not perfectly straight, but instead is approximated by a staircased
pattern of pixels. The resultingimage hasjaggies.

Another interesting experiment is to sample a zone plate as shown in Figure 3. Zone
plates are commonly used in optics. They consist of a series of concentric rings; as the
ringsmove outwardradially from their center, they become thinner and more closely spaced.
Mathematically, we can describe the ideal image of a zone plate by the simple formula

sin r? = sin (22 + y?). If we sample the zone plate (to sample an image given by a for-
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Figure2: A ray traced image of a3D scene. Theimageisshown at full resolution on theleft
and magnified on the right. Note the jagged edges along the edges of the checkered pattern.

mula f(x, y) at apointisvery easy; we simply plug in the coordinates of the point into the
function f), rather than see asingle set of concentric rings, we see several superimposed sets
of rings. These superimposed sets of rings beat against one another to form a striking Moire
pattern.

These examples lead to some more questions. What causes annoying artifacts such as
jaggies and Moire patterns? How can they be prevented?

Digital Signal Processing

Thetheory of signal processing answersthe questionsposed above. In particular, it describes
how to sample and reconstruct images in the best possible ways and how to avoid artifacts
dues to sampling.

Signal processingisavery useful tool incomputer graphicsand image processing. There
are many other applications of signal processing ideas, for example:

1. Images can be filtered to improve their appearance. Sometimes an image has been
blurred while it was acquired (for example, if the camera was moving) and it can be
sharpened to look less blurry.

2. Multiplesignals (or images) can be cleverly combined into a singlesignal, so that the
different components can later be extracted from the single signal. Thisisimportant
intelevision, where different color imagesare combined to form asinglesignal which
is broadcast.



Figure 3: Sampling the equationsin (22 + y?). Rather than asingle set of rings centered at
the origin, notice there are several sets of superimposed rings beating against each other to
form a pronounced Moire pattern.



Frequency Domain vs. Spatial Domain

The key to understanding signal processing is to learn to think in the frequency domain.

Let’sbegin with amathematical fact: Any periodic function (except various monstrosi-
tiesthat will not concern us) can always be written as a sum of sine and cosine waves.

A periodicfunctionisafunctiondefinedinaninterval 7' that repeatsitself outsidethein-
terval. The sinefunction—sin z—is perhapsthe simplest periodic function and has aninter-
val equal to 27. It iseasy to see that the sinefunctionis periodic sincesin (z + 27) = sin .
Sines can have other frequencies, for example, the sine function sin 27 f2 repeatsitself f
timesin theinterval from 0 to 1. f isthe frequency of the sine function and is measured in
cycles per second or Hertz.

If we could represent a periodic functionwith asum of sinewaves each of whose periods
were harmonics of the period of the origina function, then the resulting sum will also be
periodic (sinceall the sinesare periodic). The above mathematical fact saysthat such asum
can alwaysbefound. Thereasonwe canrepresent all periodicfunctionsisthat wearefreeto
choose the coefficients of each sine of adifferent frequency, and that we can use an infinite
number of higher and higher frequency sine waves.

Asan example, consider arather periodic train of square pulses. Thisfunction is nasty
becauseit isdiscontinuousin value and derivativeat the beginning and ending pointsof each
pulse. A square pulsetrainisthelimitasn — oo of
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Wherethe angular frequency (in radians) w = 27 f. A plot of thisformulafor four different
valuesof n isshowninFigure4. Noticethat as » increases, the sum of cosinesmore closely
approximates the ideal square pulse.

More generally, a non-periodic function can also be represented as a sum of sin’s and
cos's, but now we must use all frequencies, not just multiples of the period. This meansthe
sum isreplaced by an integral.

flz)= %/_Oo F(w)e“?dw
where ¢“¥ = coswz + isinwz (i = /—1). F(w) are the coefficients of each sine and
cosine; I'(w) is called the spectrum of the function f(z).

The spectrum can be computed from a signal using the Fourier transform.

Flw) = /OO fz)e ™ dy

— 0

Unfortunately, we do not have time to derive these formulas; the reader will have to accept
them as true. For thoseinterested in their derivation, we refer you to Bracewell.
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Figure 4: Four approximationsto a square pulse. Notice that each approximation involves
higher frequency terms and the resulting sum more closely approximatesthe pulse. Asmore
and more high frequencies are added, the sum converges exactly to the square pulse. Note
also the oscillation at the edge of the pulse; thisis often referred to as the Gibbs phenomen,

or ringing.



Toillustratethe mathematics of the Fourier transform, let us calculate the Fourier transform
of a single square pulse (prevously, we considered the Fourier series of a periodic train of
sguare pulses). A square pulse is described mathematically as

L z] <
square(z) = 0 |o|>

DO | = | =

The Fourier transform of thisfunction is straightforward to compute.

/ square(z) e~ dr = / e~ dy

— 0 —=

= sincf

Here we introduce the sinc function defined to be

sin T

sincx =
T

Note that sin 72 equals zero for all integer values of =, except » equals zero. At zero, the
situation is more complicated: both the numerator and the denominator are zero. However,
careful analysisshowsthat sinc 0 = 1.

Thus,
. ()_ 1 n=0
sinc(n) = 0 n#0

A plot of the sinc function is shown below. Notice that the amplitude of the oscillation de-
creases as x moves away from the origin.
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It is important to build up your intuition about functions and their spectra. Figure 5
shows some example functionsand their Fourier transforms.

The Fourier transform of cos wz is two spikes, one at —w and the other at +w. This
should beintuitively true because the Fourier transform of afunction is an expansion of the
function in terms of sines and cosines. But, expanding either a single sine or a single co-
sineinterms of sinesand cosinesyieldsthe original sine or cosine. Note, however, that the
Fourier transform of a cosineistwo positive spikes, whereas Fourier transform of asineis
onenegative and one positivespike. Thisfollowsfrom the property that the cosineisan even
function (cos —wt = coswt) whereasthe sineisan odd function (sin —wt = — sin wt).

The Fourier transform of a constant function isasingle spike at the origin. Once again
thisshould beintuitivelytrue. A constant function doesnot vary intimeor space, and hence,
does not contain sines or cosines with non-zero frequencies.

Comparing theformulafor the Fourier transformwiththeformulafor theinverse Fourier
transform, we see that they differ only in the sign of the argument to the exponential (and a
normalization constant of 1/27). Thisimpliesthat Fourier transform and theinverse Fourier
transform are qualitatively the same. Thus, if we know the transform from the space domain
to thefrequency domain, we also know thetransform from thefrequency domain to the space
domain. Thus, the Fourier transform of a single spike at the origin consists of sines and
cosines of al frequencies equally weighted.

Inthe above discussionwe have used theterm spike several timeswithout properly defin-
ingit. A deltafunction hasthe property that it is zero everywhere except at the origin.

dz)=0 x#0
The value of the deltafunction is not really defined, but itsintegral is. That is,
/OO d(z)de =1

Oneimagines adeltafunction to be a square pulse of unit areain the limit as the base of the
pulse becomes narrower and narrower and higher and higher.

The example Fourier transform pairs aso illustrate two other functions. The Fourier
transform of a sequence of spikes consist of a sequence of spikes (a sequence of spikesis
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Figure 6: Animage and its Fourier transform

sometimes referred to as the shah function). Thiswill be very useful when discussing sam-
pling.

It also turns out that the Fourier transform of a Gaussian is equal to a Gaussian.

The spectrum of afunction tellsthe relative amounts of high and low frequenciesin the
function. Rapid changes imply high frequencies, gradua changes imply low freguencies.
The zero frequency component, or dc term, is the average value of the function.

The above ideas apply equally to images. Figure 6 showsthe ray traced picture and its
Fourier transform. In animage, high frequency components contribute to fine detail, sharp
edges, etc. and low frequency components represent large objects or regions.

Another important concept is that of a bandlimited function. A function is bandlimited
if its spectrum has no freguencies above some maximum frequency. Said another way, the
spectrum of a bandlimited function occupies a finite interval of frequencies, not the entire
frequency range.

To summarize: the key point of thissection isthat a function f can be easily converted
from the space domain (that is, a function of z) to the frequency domain (that is, afunction,
albeit adifferent function, of w), and vice versa. Thus, afunction can beinterpretedin either
of two domains: the space or the frequency domain. The Fourier transform and the inverse
Fourier transform can be used to interconvert between the two domains. Some properties
and operations on functions are easier to seein the space domain, othersare easier to seein
the frequency domain.
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Figure 7: Perfect low-pass (top), high-pass (middl€), and band-pass (bottom) filters.

Convolution and Filtering

The spectrum of a function can be modified to attenuate or enhance different frequencies.
Modifying asignal or animage inthisway iscalled filtering. Mathematically, the properties
of filters are easiest to describe in the frequency domain.

H(w) = F(w) x G(w)

Here, H isthe spectrum of thefiltered function, /' isthe spectrum of the original function,
and (&' isthe spectrum of thefilter. The symbol x indicates simple multiplication. Each fre-
quency component of the input function is multiplied by the corresponding frequency com-
ponent of the filter function to compute the value of the output function at that frequency
component.

Theeffects of filtersare shownin Figure 7. Filters are characterized by how they change
different frequency components. A low-pass filter attenuates high frequencies relative to
low frequencies; a high-passfilter attenuates low frequencies relative to high frequencies;
a band-pass filter preserves a range of frequencies relative to those outside that range. A
perfect low-passfilter leavesall frequencies below its cut-off frequency and removes all fre-
guencies above the cut-off frequency. Thus, in the frequency domain, alow-passfilter isa
sguare pulse (see Figure 7). Similarly, a perfect high-passfilter completely removesall fre-
guencies below the cut-off frequency, and a perfect band-passfilter removes all frequencies
outsideits band.

When an image is filtered, the effect is very noticeable. Removing high frequencies
leavesablurry image (see Figure 8). Removing low frequencies enhances the high frequen-
ciesand creates asharper image containing mostly edgesand other rapidly changing textures
(see Figure 9). The cutoff frequency for the high pass and the low passfilter isthe samein
the examples shownin Figure 8 and Figure 9. Since the sum of the low and high passfilters
is1, thesum of thefiltered picturesmust equal the original picture. Therefore, if the pictures
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Figure 8: Applicationof alow-passfilter to animage. Noticethat the resultingimage onthe
rightisblurry. Thisisbecausethefilter removesall the highfrequencieswhich represent fine
detail.

Figure 9: Application of ahigh-passfilter toanimage. Noticethat inthe resultingimagethe
low frequencies have been removed and only placesin the image that are changing, such as
edges, remain.
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in the right hand column are added together, the original picture in the left hand columnis
returned.

The properties of filters are easiest to see in the frequency domain. However, itisim-
portant to be ableto apply filtersin either the frequency domain or the space domain. Inthe
frequency domain, filteringisachieved by simply multplying spectra, value by value. Inthe
gpace domain, filtering is achieved by a more complicated operation called convolution.

o0

hw) =Fog= [ f@gly-a)da
Where the binary operator & represents convolution.

Toillustrate convolution, suppose the input function consistsof a single spike at the ori-
gin. In the forward view of convolution, we center the filter function at each point along
the input function and multiply thefilter everywhere by the value of the function. If thein-
put isasingle spike at the origin, then the input function is zero everywhere except at zero.
Thus, thefilter is multiplied by zero everywhere except at the origin where it is multipled
by one. Therefore, the result of convolving the filter by a delta function is the filter itself.
Mathematically, thisfollowsimmediately from the definition of the delta function.

/ _@)gly —a)de = g(y)

Many physical processesmay be described asfilters. If suchaprocessisdrivenby adelta
function, or impul se, theoutput will bethe characteristic filtering function of the system. For
this reason, filters are sometimes referred to as impul se response functions.

Convolution is a very important idea so let us consider another example—the convo-
[ution of two sguare pulses as shown in Figure 10. The figure shows the convolution as a
backward mapping. One square pulse, the one corresponding to the input signal, is shown
stationary and centered at the origin. The other square pulse, representing the filter, moves
along the output axis from left to right. Each output value is the integral of the product of
thefilter and theinput. In the case of two pulses, this equals the area of overlap of the two
sguare pulses. Thisarea starts out zero when the pulses are digoint, beginsto increase lin-
early when they first touch, reaches a maximum when they are superimposed, and then be-
ginsto decrease until they are just touching, after which it returns to zero. Theresultisa
triangle or tent function.

Convolvingafunction or an image with asquare pulseisan interesting operation. First,
notice that this can be interpreted as setting the output to the average of the input function
over theareawhere the pulseisnon-zero. Make sure that you are convinced of this! Second,
recall that the Fourier transform of a square pulseisasinc function. Referring to Figure 11,
noticethat the sinc function goesto zero at higher frequencies. Thus, asincfunctionisalow-
pass filter. This property should be intuitively true, since averaging an input image over a
region should blur it and remove high frequencies.

What isthe spectrum of the function resulting from convolving two square pul ses? Con-
volvingtwo functionscorrespondsto multiplyingtheir spectra, therefore, convolvingasguare
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Figure 10: Convolution of two square pulses
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Figure 11: Theresults of convolving a square pulse with itself multiple times.
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pulse with a square pul se corresponds to the multiplication of two sinc functions. Similarly,
the convolution of n pulsescorrespondstothe sincraised to the then’th power. Thefunction
produced by convolving a pulse with itself » timesis called a B-spline. We will encounter
B-splines again when discussing methods for representing curves and surface. Another in-
teresting fact isthat in the limit as » goesto infinity the convolution of » pulses approaches
a Gauusian.

The convolution theorem states that multiplying two spectra in the frequency domain
corresponds to convolving the functionsin the space domain.

fRge FxxG

Because the Fourier transform and the inverse Fourier transform are so similar, asymmetric
interpretation is also true. That is, multiplying two functions in the space domain corre-
sponds to convolving the functionsin the frequency domain.

fxge FRG

Sampling and Reconstruction

With this background on frequency space and convolution, we can now analyze the pro-
cesses of sampling and reconstruction.

In the space domain, sampling can be viewed simply as multiplying the signal by se-
quence of spikeswith unit area. Since the spikes are zero everywhere except at integer val-
ues, thishas the result of throwing away all the information except at the sample points. At
the sample points, theresult isthe value of the function at that point. Thisview of sampling
in the space domain isillustrated in the top half of Figure 12.

Additional insight into the sampling process, however, can be gained by considering
sampling in the frequency domain. Recall the convolution theorem. This theorem states
that multiplying two signalsin one domain (in this case, the space domain) corresponds to
convolving the signals in the other domain (the frequency domain). Thus, multiplying the
function by a sequence of spikesin the space domain corresponds to convolving the spec-
trum of the original function with the spectrum of a sequence of spikes. However, recall
that the Fourier transform of a sequence of spikesisitself a sequence of spikes. Thus, inthe
frequency domain, sampling correspondsto convolving the spectrum of the function with a
sequence of spikes. Convolving with a sequence of spikes causesthe original functionto be
replicated—a new copy of the spectrum is centered at a spike. The view of samplinginthe
frequency domain isillustrated in the bottom half of Figure 12.

Now let us consider the reconstruction process. The process of recovering the origina
signal from the sampled signal is easiest to analyze in the frequency domain. Remember,
the sampling process resulted in the replication of the spectrum of the original function. If
these replicas do not overlap, then the original can be recovered by the application of a per-
fect low-passfilter. Multiplying the replicated spectrum by a square pulse centered on the

16



Sampling in the Space Domain

Sampling in the Frequency Domain
Figure 12: Sampling
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Reconstruction in the Frequency Domain

Reconstruction in the Space Domain

Figure 13: Reconstruction
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Figure 14: Undersampling a function resultsin aliasing.

original signal’sspectrumwill remove all the extracopiesof the spectrum. Thisisillustrated
in Figure 13.

Of course, for every processin one domain we can create a dual process in the other
domain. In thiscase, multiplyingthe replicated spectrum by a square pulsein the frequency
domain corresponds to convolving the samples with a sinc function (the Fourier transform
of the square pulse) in the spatial domain. The sinc function interpolates the samples, and
therefore reconstructs the continuous image from the set of samples. Thisisillustrated in
Figure 13.

Note that a miraculous thing has happened: The result of the sampling and reconstruc-
tion process is the original function. That is, no information was lost in the sampling pro-
cess. Thisresult isknown as the Sampling Theorem and is due to Claude Shannon who first
discovered it in 1949.

A signal can be reconstructed from its samples without loss of information, if
the original signal has no frequencies above £ the sampling frequency.

For agiven bandlimited function, therate at which it must be sampled is called the Nyquist
Frequency.

Aliasing: Pre- and Post-

There are two reasons the above sampling and reconstruction process may not work out.

First, when afunction is sampled, the replicas of the function’s spectrum may overlap.
In fact, thiswill occur for any function that is not bandlimited, or for any function which is
sampled at less than its Nyquist frequency. When overlap occurs there is no hope of recov-
ering the original function.

If copies of the spectra overlap, then some frequencieswill appear as other frequencies.
In particular, high frequencieswill foldover and appear aslow frequencies. Thissudden ap-
pearance of some frequenciesat other frequenciesisreferred to asaliasing. Theresult of the
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Figure 15: Sampling a sinewave. Sampling the function sin 1.5wz yields the same values
as sampling the function sin 0.5wz. Thus, the higher frequency 1.5w which is above the
Nyquist frequency, cannot be distinguished from the lower frequency 0.5w.

Figure 16: Poor Reconstruction resultsin aliasing.

foldover is that the reconstruction process can not differentiate between the original spec-
trum and the aliased spectrum, and, hence, the function cannot be perfectly reconstructed.
Thiseffect is shown in Figure 14.

To illustrate aliasing consider the following thought experiment. Consider a sine wave
with afrequency of 1.5 cycles per sample. Now sample the sine wave. This sampling rate
isless than the frequency of the function, and hence we may expect aliasing to result. This
isseen in Figure 15. That figure shows that sampling sin (271.5)x yields the same values
assampling sin(270.5)z.

Implicit in the sampling theorem isthat the function be perfectly reconstructed. Unfor-
tunately, thisis often not possible in practice. For one, the perfect low-passfilter isasinc
function. However, convolving the samples with a sinc function is impractical because the
sinc function has infinite extent. Also, in general, reconstructionis a property of the hard-
ware and media. For example, most displaysemploy a two step process. In thefirst step the
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digital value is converted to an analog value using a D/A convertor. Most D/A convertors
sample the input and hold them constant until the next input is available. This corresponds
to convolving the sampled signal with a square pulse. In the second step the analog voltage
isconverted to light using phosphorson themonitor. Most phosphorsemit asmall Gaussian
spot of light centered at the location of the electron beam. This has the effect of convolving
the signal with a Gaussian. Although the combination of thesetwo stepsisalow-passfilter,
thefiltering is not perfect.

Thisis illustrated in Figure 16. Suppose the function is reconstructed with a square
pulse. That would correspond to multiplyingits spectratimesthe transform of the pulse—a
sinc. However, asinc does not perfectly remove al the replicas of the spectra produced by
the sampling process, and so aliasing artifacts would be visible.

In both cases, frequencies may masquerade as other frequencies. The first cause—due
to undersampling—iscalled pre-aliasing; the second cause—due to bad reconstruction—-is
called post-aliasing.
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