
Protocols for Secure Computations
(extended abstract)

Andrew C. Yao
University of California Berkeley, California 94720

1 Introduction
Two millionaires wish to know who is richer; however,
they do not want to find out inadvertently any additional
information about each other’s wealth. How can they
carry out such a conversation?

This is a special case of the following general prob-
lem. Suppose m people wish to compute the value of a
function f(x1, x2, x3, . . . , xm), which is an integer-valued
function of m integer variables xi of bounded range. As-
sume initially person Pi knows the value of xi and no
other x’s. Is it possible for them to compute the value of
f , by communicating among themselves, without unduly
giving away any information about the values of their own
variables? The millionaires’ problem corresponds to the
case when m = 2 and f(x1, x2) = 1 if x1 < x2, and
0 otherwise. In this paper, we will give precise formu-
lation of this general problem and describe three ways
of solving it by use of one-way functions (i.e., functions
which are easy to evaluate but hard to invert). These
results have applications to secret voting, private query-
ing of database, oblivious negotiation, playing mental
poker, etc. We will also discuss the complexity question
“How many bits need to be exchanged for the computa-
tion”, and describe methods to prevent participants from
cheating. Finally, we study the question “What cannot
be accomplished with one-way functions”.

Before describing these results, we would like to put
this work in perspective by first considering a unified
view of secure computation in the next section.

2 A Unified View of Secure Computation
Since one-way functions were first proposed in 1976
(Diffie and Hellman [1]), they have been used in two
kinds of applications. The first kind is concerned with
the encryption and transmission of messages to make
them unreadable and unalterable for eavesdroppers and
saboteurs [1, 2, 3, 4]. The second kind of applications
includes “mental poker” (Shamir, et.al. [5]), in which two
players deal cards by communicating over a telephone
line, and “coin flipping” (Blum [6]), in which two mutually
suspecting parties are to generate an unbiased bit. It
would be desirable to have a unified framework where
all these applications can be related, and where com-
mon proof techniques can be developed for proving the
security of protocols. More fundamentally, such a frame-
work is essential if we are ever to understand the intrinsic
power and limitation of one-way functions. For example,

without a precise model it would be hard to answer a
question such as “Is it possible for three mutually sus-
pecting parties to interactively generate a bit with bias
1/e ?”

In response to this need, we propose to adopt the fol-
lowing view. Two parties Alice and Bob, in possession
of private variables i and j respectively, wish to commu-
nicate so that Alice can evaluate a function f(i, j), and
Bob a function g(i, j). There may be some eavesdrop-
pers or saboteurs on the communication line. The pur-
pose of a protocol would be to design an algorithm for
Alice and Bob to follow, such that certain security con-
straints (against saboteur) and privacy constraints (Alice
may not wish to reveal the exact value of i) can be satis-
fied.

In one extreme, when the computation component is
trivial, e.g. if f = constant and g(i, j) = i, then we get
the first kind of applications mentioned before, in which
the basic concern is eavesdropping and sabotage. In
the other extreme, when such external threats can be ig-
nored, but the computation of f and g is nontrivial, then
we get the problem which is to be studied in this paper.
(Mental poker and coin flipping represent a stochastic
version of this problem which will also be discussed.)
Note that, although we have used Alice and Bob in the
above description, all discussions can be extended to
the case of m parties communicating.

It would be natural to discuss these two special cases
together. However, due to length considertion, we
will report here only the results corresponding to the
computation-intense case with no outside saboteurs.
Results on the other case will be reported elsewhere.

3 Deterministic Computations

3.1 Solutions to the Millionaires’ Problem

In this abstract, we will describe in detail only one of the
three solutions we have.

For definiteness, suppose Alice has i millions and Bob
has j millions, where 1 < i, j < 10. We need a protocol
for them to decide whether i < j, such that this is also
the only thing they know in the end (aside from their own
values). Let M be the set of all N -bit nonnegative inte-
gers, and QN be the set of all 1-1 onto functions from
M to M . Let Ea be the public key of Alice, generated by
choosing a random element from QN .

The protocol proceeds as follows:

0272-5428/82/0000/0160$00.75 © 1982 IEEE

1

1. Bob picks a random N -bit integer, and computes
privately the value of Ea(x); call the result k.

2. Bob sends Alice the number k − j + 1;

3. Alice computes privately the values of yu = Da(k−
j + u) for u = 1, 2, . . . , 10.

4. Alice generates a random prime p of N/2 bits, and
computes the values zu = yu (mod p) for all u; if
all zu differ by at least 2 in the mod p sense, stop;
otherwise generates another random prime and re-
peat the process until all zu differ by at least 2; let
p, zu denote this final set of numbers;

5. Alice sends the prime p and the following 10 num-
bers to B: z1, z2, . . . , zi followed by zi + 1, zi+1 +
1, . . . , z10 + 1; the above numbers should be inter-
preted in the mod p sense.

6. Bob looks at the j-th number (not counting p) sent
from Alice, and decides that i ≥ j if it is equal to x
mod p, and i < j otherwise.

7. Bob tells Alice what the conclusion is.

This protocol clearly enables Alice and Bob to decide
correctly who is the richer person. To show that it meets
the requirement that they cannot get any more informa-
tion about the wealth of the other party, we need to de-
fine a precise model which will be done in Section 3.2.
Here we will informally argue why the requirement is
met.

Firstly Alice will not know anything about Bob’s wealth
j, except for the constraint on j implied by the final re-
sult that Bob told her, because the only other information
coming from Bob is that Bob knows the vaue of Da(s) for
some s between k − j + 1 to k − j + 10. As the function
Ea is random all the 10 possibilities are equally likely.

What does Bob know? He knows yj (which is x) and
hence zj . However, he has no information about the val-
ues of other zu, and by looking at the numbers Alice sent
him, he cannot tell if they are zu or zu + 1.

This has not finished the argument yet, as Alice or
Bob might try to figure out the other person’s value by
making more calculations. For example, Bob might try
to randomly choose a number t and check if Ea(t) =
k − j + 9; if he succeeds, he then knows the value y9

to be t, and knows the value of z9, which enables him to
find out whether i ≥ 9. That would be an extra piece of
information that Bob is not supposed to find out, if i ≥ j
has been the outcome of the previous conclusion. Thus,
one also has to include in the formal definition that not
only the participants do not gain information as a result
of the exchange specified by the protocol, but also they
cannot perform calculation within a reasonable amount
of time to gain this information. In the formal definition to
be given in Section 3.2, we will define this precisely.

One may have noticed the possibility that some party
may cheat in the process, by deviating from the agreed

protocol. For example, Bob may lie to Alice in the fi-
nal step and tell Alice the wrong conclusion. Is there a
way of designing a protocol such that the chance of a
successful cheating becomes vanishingly small, without
revealing the values of i and j? We will show that this is
possible in Section 3.3. (Note that this is a stronger re-
quirement than the verifiability requirement used in the
mental poker protocol in Shamir et. al. [5].)

We have two other solutions to the millionaires’ prob-
lem based on different principles. The first of them as-
sumes that Alice and Bob each owns a private one-way
function, where these functions satisfy the commutativ-
ity property, i.e. EaEb(x) = EbEa(x). The other solution
makes use of a probabilistic encryption method invented
by Goldwasser and Micali [2].

3.2 Model for the General Problem
As these three solutions base their security on different
assumptions, a precise model has to be specified in de-
tail for each solution. In this abstract, we will only give
the model that corresponds to the first solution.

For simplicity, we will only give the definitions and re-
sults for the case when f is 0−1 valued and m = 2 (Alice
and Bob). Generalization of the results to general m will
be briefly discussed in Section 5. The proofs for the gen-
eral case involve additional technical complications, and
there are extra security considerations such as possible
“collusions” that are absent in the 2-person case.

Protocol . Assume Alice has a public one-way func-
tion Ea, whose inverse function Da is known only to Al-
ice; similarly Bob has a public Eb, and a private inverse
Db. Assume that Ea and Eb are independently and ran-
domly drawn from QN , the set of all the possible 1-1
onto functions on N -bit integers. A protocol A for com-
puting a function f(i, j) specifies exactly how Alice and
Bob should communicate as follows. Alice and Bob send
strings to each other alternately. Each time after Bob has
finished transmission, Alice examines the information so
far in her possession, which consists of some sequence
of strings α1, α2, . . . , αt, and some relations among the
strings (e.g. Eb(α3) = α9, α8 has an odd number of
1’s); based on the bits that have so far been transmit-
ted between her and Bob, the protocol specifies how
she should compute in private strings αt+1, αt+2, . . . , αs

where each new string αu is a function of the earlier
strings, or of the form Ea(y), Eb(y) or Da(y) where y is
a string already obtained. The choice of which function
to apply or whether to evaluate Eb or Da is in general
probabilistic, i.e. she will decide to evaluate E(4), or to
compute α2 + 3α8 based on the outcomes of some coin
tosses. After she has finished this computation, she will
send a string to Bob, again the string is chosen proba-
bilistically. Now it is Bob’s turn to compute strings and
send a string according to the protocol. We agree that
there is a special symbol whose appearance means the
end of the execution of the protocol. By that time, the

2

protocol has an instruction for each participant to com-
pute the function value f in private. Finally, we require
that, in a protocol, the total number of evaluations of E’s
and D’s by Bob and Alice be bounded by O(Nk), where
k is an integer chosen in advance.

Privacy Constraint . Let ε, δ > 0, and f(i, j) be a 0-1
valued function. Assume that initially all pairs of (i, j)
values are equally likely. Suppose Bob and Alice carry
out the computation faithfully according to the protocol.
At the end, Alice can in principle, from her computed
value v of the function and the strings in her possesion,
compute a probability distribution of the values of j; call
this pi(j). A protocol is said to satisfy the (ε, δ)-privacy
constraint if the following conditions are satisfied:

1. pi(j) = 1
|Gi|

`
1+ O(ε)

´
for j ∈ Gi, and 0 otherwise,

where Gi is the set of j for which f(i, j) = v,

2. if Alice tries afterwards to perform more calcula-
tions with no more than O(Nk) evaluations of E’s
and D’s, then with probability at least 1− δ she will
still get the above distribution on j, and

3. the above requirement is also true for Bob.

Theorem 1 For any ε, δ > 0 and any function f , there
exists a protocol for computing f that satisfies the (ε, δ)-
privacy constraint.

It is possible to consider the more general case when
the initial distribution of (i, j) is nonuniform. We will not
go into that here. In Section 4, that becomes a special
case of probabilistic computations.

3.3 Additional Requirements
(A) Complexity . The solution given earlier for the mil-
lionaires’ problem will become impractical if the range n
of i, j become large, since the number of bits transmit-
ted is proportional to n. An interesting question is then,
to determine the minimum number of bits needed by any
protocol to compute f that satisfies the (ε, δ)-privacy con-
straint. Conceivably, there are functions that are easily
computable without the privacy requirement, but become
infeasible with the extra privacy constraint. Fortunately,
we can prove that this is not the case. Let A be a pro-
tocol, let T (A) denote the maximum number of bits ex-
changed between Alice and Bob when A is used.

Theorem 2 Let 1 > ε, δ > 0 and f(i, j) be a 0-1 func-
tion. If f can be computed by a boolean circuit of
size C(f), then there is a protocol A computing f sat-
isfying the (ε, δ)-privacy constraint such that: T (A) =

O
“
C(f) log 1

εδ

”
.

In fact, if f can be computed by a Turing machine in
time S, then the protocol can be implemented such that

both Alice and Bob have Turing machine algorithms to
execute the protocol with a time bound O

`
S log(1/εδ)

´
.

However, there exist functions that need exponentially
many bits transmitted between Bob and Alice with the
privacy constraint. Let Fn be the family of 0-1 valued
function f(i, j) with i and j being n-bit integers. Clearly,
at most n bits of transmitted information can compute f ,
in the absence of the privacy constraint (See Yao [7] for
further discussions).

Theorem 3 Let 1
5

> ε, δ > 0 be fixed. Let f be a random
element of Fn, then any protocol A that computes f with
(ε, δ)-privacy constraint must have T (A) > 2n/2 for all
large n.

(B) Mutually-Suspecting Participants . So far the dis-
cussions have assumed that Bob and Alice observe the
rules specified by an agreed protocol. What if either of
them might cheat in order to gain additional information
or to mislead the other party to receive a wrong answer?
It is true that with our protocol, any cheating will be dis-
covered if there is a verification stage afterwards where
both parties are required to reveal all their private com-
putation. However, that will force both parties to reveal
their variables. As will become clear in the applications
to be given later, this sometimes can be a serious draw-
back. The following results will show that one can thwart
cheating, without asking either to reveal the variable.

Since a protocol can never prohibit Alice (or Bob) from
behaving as if she had a different variable value i′, the
most that a protocol can achieve is to make sure that this
is the only cheating that Alice (or Bob) can do.

Definition 1 Consider an instance in the execution of a
protocol. We will consider it to be a successful cheat-
ing by Alice, if Alice does not behave consistently with
any value of i and yet Bob does not detect it. A success-
ful cheating by Bob is defined similarly.

Theorem 4 Let 1 > γ > 0. Under the same assumption
of Theorem 2, there exists a protocol A for computing f
such that

1. T (A) = O
“
C(f) log 1

εδγ
log 1

γ

”
, and

2. if one participant behaves according to A, the prob-
ability of a successful cheating by the other partici-
pant is at most γ.

3.4 Applications
Secret Voting . Suppose a committee of m members
wish to decide on a yes-no action. Each member is to
write an opinion xi, and the final action can be regarded
as a function f(x1, x2, x3, . . . , xm). The results obtained
in this paper means that it is possible to agree on the
final action f , without anyone knowing the opinion of any
other member’s. Furthermore, the protocol makes the

3

probability of anyone having a successful cheating very
remote.

Oblivious Negotiation . Suppose that Alice is trying to
sell Bob a house. In principle, each one has a strat-
egy of negotiation in mind. If we number all the possible
strategies of Alice as A1, A2, . . . , At, and those of Bob’
as B1, B2, . . . , Bu, then the outcome (no deal, or sell at
x dollars, . . .) will be decided once the actual strategies
Ai, Bj used have been determined. Write the outcome
as f(i, j), then it is possible to carry out the negotia-
tion obliviously, in the sense that Alice will not gain any
information on Bob’s negotiation tactics except that it is
consistent with the outcome, and vice versa.

Private Querying of Database . The theorems we have
proved can be extended to the case when each person
Pi is computing a different function fi. In particular, Alice
may wish to compute a function f(i, j) and Bob wishes
to compute a trivial function g(i, j) = constant, meaning
that Bob will know nothing about i in the end. If we re-
gard Bob as a database query system with j the state of
the database, and Alice is asking query number i, then
Alice can get answer to the query without knowing any-
thing else about the data in it, while the database system
does not know what Alice has queried.

4 Probabilistic Computations
Let us consider the case with two parties Bob and Alice
(m = 2). Let V and W be finite sets. A function p from
V ×W to the interval [0, 1] is called a probability density
if the sum of p(v, w) over v and w is equal to 1. Let
P (V, W) be the set of all such probability densities.

Let I, J be finite sets of integers. Let F = {fij |i ∈
I, j ∈ J} ⊆ P (V, W) be a family of probability densi-
ties. Initially, Alice knows the value of i ∈ I, and Bob
knows j ∈ J ; the values of (i, j) obey a certain initial
probability desity q ∈ P (I, J). They wish to send mes-
sages between them, so that at the end Alice will obtain
a value v ∈ V and Bob a value w ∈ W with probability
fij(v, w). The privacy constraint is that the information
Alice can obtain about j and w is no more than what
can be inferred from her values of i and v (plus a cor-
responding constraint on Bob). This statement can be
made precise in terms of q and F ; we omit its full gen-
erality here but simply give an illustration for the special
case q = constant. In this special case, the distribution
h(w) that Alice can infer from the computation she has
done should, according to the privacy constraint, is equal
to

1

|J |
X
j∈J

fij(v, w)P
x∈W fij(v, x)

For example, mental poker would correspond to the
following situation: I = J = {0}, q is a constant, V =
W is the set of all 5-element subsets of {1, 2, . . . , 52},

f00(v, w) is 0 if v and w are not disjoint and equal to a
constant otherwise.

The results in Section 3 have generalizations to the
probabilistic case. Basically, a reasonable probabilis-
tic computation remains feasible when the privacy con-
straints are imposed. We will not give the details here.

One interesting corollary of our results is that mental
poker can be played with any general public-key system.
It differs from Shamir et. al’s solution [5] in that we do
not require the one-way functions used to be commu-
tative, and that we can play it with a public-key system
(instead of using private keys). (A solution with a special
one-way function with publicized keys for playing men-
tal poker was known in [2], but that solution depends on
the special properties of the one-way function involved.)
Moreover, the present solution uses much fewer bits as
the number of cards becomes greater. Suppose we
have a deck of n cards, and Alice and Bob each want
to draw a random card from the deck in turn. All the pre-
viously known solutions transmit cn bits of information
between Bob and Alice, while our scheme only needs
about c(log n)2 bits.

5 Generalization to m-Party Case
When m parties A1, A2, . . . , Am collaborate to compute
a function f(x1, x2, . . . , xm), more than one parties may
collude to cheat. We will show that even the most severe
constraint can be met in the following sense: No matter
how many participants may collude, any cheating act will
be detected and identified by all the honest parties (even
if as many as m−1 dishonest guys try to help cover up).
We now make it precise.

Let V be the range of the function f(x1, x2, . . . , xm),
where xi ∈ Xi. For any nonempty K ⊆ {1, 2, . . . , m},
define HK = Xt1 × Xt2 × · · · × Xt|K| , where
{t1, t2, . . . , t|K|} = K. Let K′ = {1, 2, . . . , m} − K, and
define HK′ similarly. For any i ∈ H ′

K and v ∈ V , let
Gi(v) ⊆ HK be the set of all j ∈ HK such that the
(unique vector) x = (x1, x2, . . . , xm), whose projection
on HK′ and HK equals i and j respectively, satisfies
f(x) = v. Let qi,v(j) = 1/|Gi(v)| for j ∈ Gi(v) and 0
otherwise. (If all the participants Ar with r ∈ K′ collude
to infer the probabilty distribution of the variable values of
other participants, and if the only information available,
in addition to their only variable values i, is that the func-
tion f has value v, then qi,v(j) is the distribution they
can infer.) Let ε, δ > 0. A protocol A is said to satisfy the
(ε, δ)-private constraint if for every nonempty K, even if
the participants in K are allowed to perform in private an
amount of calculation polynomial in T (A), they will still
infer, with probability at least 1 − δ, that the distribution
on j is equal to qi,v(j)(1 + O(ε)). A successful cheating
by K′ (with respect to a protocol A) is an instance of the
execution of A, in which at least one participant Ar with
r ∈ K′ behaves inconsistently with any xr ∈ Xr without
being detected by all the participants of K.

4

Theorem 5 For any ε, δ, γ > 0, there exists a protocol
A for computing f which satisfies the (ε, δ)-private con-
straint and which has the property that, for any K′ 6=
{1, . . . , m}, the probability for K′ to have a successful
cheating can not be more than γ.

The value of T (A) in the above theorem is O(|X1| ·
|X2| · . . . · |Xm| · |V |), which is almost optimal in general
as the next theorem shows.

Theorem 6 There exist functions f for which any proto-
col A satisfying the conditions in Theorem 5 must have

T (A) = Ω
“`
|X1| · |X2| · . . . · |Xm|

´1/4
”

.

In special cases protocols can be designed with better
running time than the bound given in Theorem 5. For
example, the parity function f(x1, x2, . . . , xm) = x1 ⊕
x2 ⊕ · · · ⊕ xm and the tally function f(x1, x2, . . . , xm) =
of 1’s in the x’s (the x’s are boolean variables) both
have protocols satisfying Theorem 5 with running time
polynomial in m.

The security measure as we considered above is a
strong one. For some purposes, less stringent mea-
sures would be adequate. (For example, one may only
require that no subset K′ be able to force the outcome of
the computation to be a certain value.) Sometimes pro-
tocols with better running time can be designed under
such less stringent requirements. For example, there is
a protocol with running time O(p(m) log q), where p(m)
is a polynomial, for m parties to compute the function
f(x1, x2, . . . , xm) = x1 +x2 + · · ·+xm(mod q), under a
security criterion only slightly relaxed from that given in
Theorem 5.

6 What Cannot be Done?
There are security constraints that can not be achieved
by any protocols. We will only mention two results here.

The first impossibility result is valid for all three models
given in this paper. Suppose m people try to generate a
bit with bias α. It is easy to see how it can be done for
m > 2. For example A generates a random unbiased
bit α1 and sends it to B, B generates a random α2 and
sends it to C, C generates a random α3 and sends it to
A. Now let α = α1 + α2 + α3, and we get an unbiased
α with the property that it remains unbiased even if one
of the persons cheats by generating a biased bit. Let us
call a protocol for generating a bit with bias α robust, if
the bias remains correct if somebody has cheated.

Theorem 7 No protocol A with finite T (A) which gener-
ates a bit with a transcendental bias α can be robust.

The second result is valid for the model defined in Sec-
tion 3.2. Suppose Alice and Bob wish to exchange a pair
of solutions x, y with Ea(x) = 1 and Eb(y) = 1. Is there
a protocol such that an honest party will not be double-
crossed, i.e. swindled out of its secret without getting the
secret from the other party.

Theorem 8 Let A be any protocol for exchanging se-
crets. Then either Alice or Bob will be able to double-
cross successfully with probability at least 1/2.

It is of interest to mention that a different type of ex-
changing secrets is possible in the same model. Sup-
pose Alice wants to know the solution y to Eb(y) = w
and Bob wants to know the solution x to Ea(x) = u, but
Bob does not know the value of w and Alice does not
know u. Let N be the number of bits that the encryption
functions Ea and Eb operate on.

Theorem 9 Let ε > 0 be fixed. There is a protocol A
with polynomial (in N) running time which exchanges se-
crets Db(w) and Da(u), and under which the probability
of anyone double-crossing successfully is bounded by ε.

Different kinds of exchanging secrets have been con-
sidered previously. Blum [6] showed that it is possible to
exchange factors of a large composite numbers (a spe-
cial type of secrets) with vanishing chance for cheating.
Even (private communication, 1981) also devised some
protocols for exchanging secrets.

References
[1] Whitfield Diffie and Martin E. Hellman. New direc-

tions in cryptography. IEEE Transactions on Infor-
mation Theory, IT-22(6):644–654, 1976.

[2] S. Goldwasser and S. Micali. Probabilistic encryp-
tion and how to play mental poker keeping secret all
partial information. In Proceedings of the 14th ACM
Symposium on Theory of Computing (STOC’82),
pages 365–377, San Francisco, CA, USA, May
1982.

[3] M. O. Rabin. Digitalized signatures and public-key
functions as intractable as factorization. Techni-
cal Report LCS/TR-212, Massachusetts Institute of
Technology, 1979.

[4] R. L. Rivest, Adi Shamir, and Leonard M. Adleman.
A method for obtaining digital signatures and public-
key cryptosystems. Communications of the ACM,
21(2):120–126, February 1978.

[5] Adi Shamir, R. L. Rivest, and Leonard M. Adleman.
Mental poker. Technical Report LCS/TR-125, Mas-
sachusetts Institute of Technology, April 1979.

[6] Manuel Blum. Three applications of the oblivious
transfer: Part I: Coin flipping by telephone; part II:
How to exchange secrets; part III: How to send cer-
tified electronic mail. Technical report, University of
California, Berkeley, CA, USA, 1981.

[7] Andrew C. Yao. Some complexity questions related
to distributive computing. In Conference Record of
the 11th ACM Symposium on Theory of Computing
(STOC’79), pages 209–213, Atlanta, GA, USA, April
1979.

5

	Introduction
	A Unified View of Secure Computation
	Deterministic Computations
	Solutions to the Millionaires' Problem
	Model for the General Problem
	Additional Requirements
	Applications

	Probabilistic Computations
	Generalization to m-Party Case
	What Cannot be Done?

