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ABSTRACT

Making changes to software is a difficult task. Up to 70% of the effort in the software

process goes towards maintenance. This is mainly because programs have poor structure

(due to poor initial design, or due to repeated ad hoc modifications) which makes them

difficult to understand and modify. The focus of this thesis is duplication in source code,

which is a major cause of poor structure in real programs. We make two contributions: (a) a

novel program-slicing-based approach for detecting duplicated fragments in source code, and

(b) a pair of algorithms, one that works on a single selected fragment of code, and the other

that works on a group of matching fragments, for making the fragment(s) easily extractable

into a separate procedure.

The key, novel aspect of our duplication-detection approach is its ability to detect “dif-

ficult” groups of matching fragments, i.e., groups in which matching statements are not in

the same order in all fragments, and groups in which non-matching statements intervene

between matching statements. Our procedure-extraction algorithms are an advance over

previous work in this area in two ways: they employ a range of transformations, including

code motion and duplication of predicates, to handle a wide variety of difficult clone groups

that arise in practice; and they are the first, to our knowledge, to address the extraction

of fragments that contain exiting jumps (jumps from within the region containing the frag-

ment to locations outside that are not the “fall through” exit of the region). We present



xi

experimental results, using implementations of our duplication-detection algorithm and one

of our extractability algorithms, that indicate that our approaches are effective and useful

in practice.
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Chapter 1

Introduction

Software maintenance involves changing programs to remove bugs, add new features,

adapt to changes in the environment, or improve the structure of the program. Maintenance-

related changes are continually made to programs after they are deployed. However, main-

tenance is a difficult activity, with the effort needed to make a change often being out of

proportion to the magnitude of the change. In fact, a study of 487 companies [LS80] found

that over 70% of the total effort in the software life cycle went to maintenance activities (as

opposed to initial development).

Maintenance is difficult because programs often have poor structure. One aspect of poor

structure is lack of modularity – the part of the program that is pertinent to the upcoming

change is not localized and is not easily locatable. Poor structure is sometimes due to

poor initial design or lack of necessary features in the programming language, but is often

due to repeated, poorly planned changes made to programs. Belady and Lehman [BL76]

hypothesize that under real conditions programmers cause program structure to degrade

exponentially with age. They provide supporting evidence for their hypothesis: in a study

of the development of the OS/360 system, they found that even though the amount of new

code added to the system was roughly the same in each successive release, the time taken

per release grew exponentially with the age of the system.

The maintainability of a much-modified program can be improved by periodically re-

structuring the program (improving its structure without affecting its externally observed

behavior). Restructuring rolls back the degradation caused by ad-hoc modifications, and
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therefore improves future maintainability. However, restructuring itself is a maintenance

activity; as such it is time consuming, and it carries the risk of inadvertently changing the

program’s semantics (behavior). For these reasons, and also because it does not have any

immediate benefits, restructuring is rarely done in practice. The study by [LS80], mentioned

earlier, found that only about 5% of the time devoted to maintenance is spent in restructur-

ing activities. This motivates the need for developing restructuring tools, which reduce the

effort required for restructuring programs, and give a guarantee that the program’s behavior

is not changed in any way. The focus of our work is on providing tool support for dealing

with one of the common sources of poor program structure, duplication in source code.

1.1 Duplication in source code

This thesis presents automatic techniques for:

• detecting duplicated fragments (clones) in source code, and

• eliminating duplication by extracting clones into separate procedures, and replacing

them by calls to these procedures.

Programs undergoing ongoing development and maintenance often have a lot of du-

plicated code, a fact that is verified by several reported studies. For instance, a study

by [LPM+97] looked at six releases of a large telecommunications-software system, with

each release averaging 14.8 million lines of code. Their finding was that on the average 7%

of the functions in a release were exact clones of other functions. Another study [Bak95]

found that in the source code of the X Window System (714,479 lines of code), there were

2,487 matching pairs of (contiguous) fragments of length at least 30 lines (the matches were

exact, except possibly for one-to-one variable-name substitutions). These matches involved

19% of the entire source code. The same study found that in a production system of over

1.1 million lines 20% of the source code was duplication.

Duplication is usually caused by copy-and-paste activities: a new feature that resembles

an existing feature is implemented by copying and pasting code fragments, perhaps followed
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by some modifications (such modifications result in the creation of “inexact” copies). Pro-

grammers often take this approach because it is quicker and safer, at least in the immediate

term, than the other approach of factoring out the code that is common to the old and

new features into a separate procedure, and calling this procedure from both places. This is

especially true when, due to differences between the existing and new features, it is necessary

to restructure the existing code to tease out the part that is needed by the new feature.

Programmers also introduce duplication by reimplementing functionality that already

exists in the system, but of which they are not aware. We have located several clones in real

programs that have nearly identical functionality, that have many matching lines, but that

nevertheless differ in the way the matching lines are ordered. These clones are evidence that

duplication can be introduced without copy-and-paste.

Duplication in source code, irrespective of the reason why it exists, is the cause for several

difficulties. It increases the size of the code, which can be a problem in domains (such as

embedded systems) where space is a limited commodity. It also makes software maintenance

more difficult (which is the aspect we focus on). For example, if an enhancement or bug

fix is done on a fragment, it may be necessary to search for clones of the fragment to

perform the corresponding modification. Therefore, not only is the effort involved in doing a

modification increased, but so also is the risk of doing it incorrectly. By modifying some, but

not all copies of a fragment, bugs may be removed incompletely, or worse still, new bugs may

be introduced (due to the inconsistency introduced between the clones). In fact, the study

by Lague et al. [LPM+97] found that whenever a function was modified, the change was

usually propagated to some but not all other copies of the function; i.e., it is likely that some

propagations that were necessary for correctness were nevertheless missed. Basically, since

the copies of a fragment can be related to (be “coupled” with) each other, their presence can

be an indication of poor modularity. This, in general, makes maintenance more difficult.

Detecting clones and eliminating them therefore offers several benefits. Elimination works

by extracting the cloned code into a separate new procedure, and replacing each clone by a

call to this procedure. This reduces the size of the program, and since there will be only one
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copy of a clone to maintain, improves maintainability. Furthermore, the fact that the new

procedure can be reused may cut down on future duplication.

There are certain situations in which clone detection by itself, without extraction, gives

benefits. Extracting a group of clones into a separate procedure can in some cases reduce

the understandability of the program; this can happen when the differences between the

clones are so significant that a lot of restructuring is needed for extraction, or that the

extracted procedure contains a lot of guarded code, or many parameters. Extraction can

also be infeasible in situations where the overhead of a procedure call cannot be tolerated,

although automated inlining by the compiler, or the use of macros instead of procedures

(where available) can offset this disadvantage. Finally, the programming language may have

limitations that work against clean extraction. Clone detection alone can be used as a

reporting mechanism in these situations, with some benefits: it can be used to find other

copies (if any) once an enhancement or bug-fix is made to a fragment, it can be used as an

aid for program understanding, and it can be used to guide design decisions if the system

is re-engineered or redeveloped from scratch (for some reason). It is noteworthy though

that most moderate-to-large-size clones are likely to be extractable into separate procedures.

This estimate is made by Baker [Bak95], and is also supported by our own experience (see

Chapter 7).

Tool support for both activities – clone detection, and clone elimination via procedure

extraction – is desirable. Manual clone detection can be very time consuming; so can manual

clone elimination, although to a lesser extent. Due to the size and complexity of software

systems, manual clone detection is likely to miss clones. Manual clone extraction, on the

other hand, carries the risk of introducing unintended bugs into the program. The study

by [LPM+97], which looked at six releases of a large system, provides evidence regarding the

usefulness of tool support for clone detection and elimination. The study found that that

system’s developers detected and eliminated clones (manually) on a regular basis. However,

the developers missed many opportunities; in fact, each new release contained more clones
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than the previous release, because the number of new clones introduced exceeded the number

of old clones eliminated.

1.2 Motivating example

Figure 1.1 contains an example (with two code fragments) that we use to illustrate clone

detection and elimination. The two clones are indicated using “++” signs. The first fragment

has a loop that iterates over all employees, while the second fragment has a loop that iterates

over employees whose records are present in the file fe. Each clone computes the pay for the

current employee (indexed by emp): if the employee has worked over 40 hours it computes

overtime pay using the overtime pay rate available in the array OvRate, then picks up the

base pay from the array BasePay, then checks that the company’s policy that overtime pay

does not exceed base pay is respected, then computes and stores the total pay into the

array Pay (the three arrays are global variables, as is the file pointer fe). Besides the set

of employees that each fragments deals with, the two code fragments have other differences.

The first fragment obtains the hours worked from the Hours array, whereas the second

fragment obtains this information from the fe file. Also, the first fragment (alone) counts

the number of employees earning overtime pay (via the statement “nOver++”), while the

second fragment (alone) caps the overtime hours worked at 10.

The two clones in this example have characteristics that make them difficult to detect.

Each clone is non-contiguous (i.e., has intervening non-matching statements). Also, the

matching statements in the two clones are out-of-order : the relative positions of the two

statements “if (hours > 40) ..” and “base = BasePay[emp]” are different in the two

clones, as are the relative positions of the two statements “oRate = OvRate[emp]” and

“excess = hours - 40”.

The clone pair in this example is also difficult to extract. Let us first consider the

extractability of each individual clone in the example (into a procedure of its own). Each

clone is difficult to extract for two reasons: the clone is non-contiguous, and it involves

an exiting jump (the break statement). A non-contiguous set of statements is difficult to
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Original fragment 1 Original fragment 2

emp = 0;

while(emp < nEmps) {

hours = Hours[emp];

++ overPay = 0;

++ if (hours > 40) {

++ oRate = OvRate[emp];

++ excess = hours - 40;

nOver++;

++ overPay = excess*oRate;

++ }

++ base = BasePay[emp];

++ if (overPay > base) {

++ error("policy violation");

++ break;

++ }

++ Pay[emp] = base+overPay;

emp++;

}

fscanf(fe, "%d", &emp);

while(emp != -1) {

++ base = BasePay[emp];

++ overPay = 0;

fscanf(fe, "%d", &hours);

++ if (hours > 40) {

++ excess = hours - 40;

if (excess > 10)

excess = 10;

++ oRate = OvRate[emp];

++ overPay = excess*oRate;

++ }

++ if (overPay > base) {

++ error("policy violation");

++ break;

++ }

++ Pay[emp] = base+overPay;

fscanf(fe, "%d", &emp);

}

Figure 1.1 Example illustrating two clones
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extract because it is not clear which of the several “holes” that remain after the statements

are removed should contain the call to the new procedure. Exiting jumps are jumps within

the region that contains the statements in the clone, whose targets are outside the region

and are not the “fall-through” exit of the region. A code fragment that involves an exiting

jump cannot be extracted as such because, after extraction, control returns from the new

procedure to a single statement in the remaining code (the statement that immediately

follows the call).

The extractability of both clones into a single separate procedure is complicated by the

out-of-order match; to guarantee that the extraction is semantics-preserving the statements

in one or both clones must be reordered to provide a single matching sequence of statements

for the extracted procedure.

1.3 Steps in clone detection and elimination

Clone detection and elimination involves the following steps:

1. Identify all groups of clones (groups of matching sets of statements) in the program.

2. For each group of clones, check if the group is a good candidate for extraction; if yes,

then:

(a) For each individual clone in the group, if the statements in the clone are non-

contiguous and/or involve exiting jumps, apply semantics-preserving transforma-

tions to the clone to make its statements form a contiguous, well-structured block

of code that contains no exiting jumps. Such a block is extractable, i.e., easy to

extract into a separate procedure, because it is contiguous and because control

flows from it to a unique outside statement.

(b) If the group of clones involves out-of-order matches, transform one or more of the

clones so that matching statements are in the same order in all clones; this makes

the group of clones extractable into a single separate procedure.
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(c) Extract the new procedure, and replace each (transformed) clone by a call to this

procedure.

In this thesis we focus on automatic techniques for Steps 1, 2(a), and 2(b). Providing

automated support for Step 1 is important because, as we mentioned earlier, manual clone

detection is time consuming, and involves the risk of missing clones. Steps 2(a) and 2(b) are

non-trivial to perform, and hence benefit from automation, because they involve semantics-

preserving code transformations. These transformations, if done manually, involve the risk

of inadvertently introducing errors into the program, and can be time consuming.

We do not address Step 2(c) of clone-group elimination. The main issue in that step is

to determine what local variables, “input” parameters, and “output” parameters the proce-

dure needs. This has been addressed in previous clone-group extraction approaches [Zas95,

DEMD00]; although those approaches would need to be modified to work on source-level

languages.

We envision that the programmer will inspect the clone groups detected automatically in

Step 1, decide which ones are good candidates for extraction, and then supply them to the

extraction component (Steps 2(a) and 2(b)). Although our proposed approach for Step 1

(introduced below) generally identifies clone groups that are likely to be good candidates for

extraction (this is discussed in Section 3.2.2), it is not perfect; the programmer will need to

select which clone groups to extract, and furthermore, might need to adjust (modify) the

selected clones to make them “ideal” for extraction. We discuss in greater detail the nature

of programmer involvement that is required while using the approach, in Sections 3.4.4

and 3.4.5.

It is noteworthy that since there is some subjectivity in this matter, no automatic ap-

proach for clone detection is likely to identify exactly the clone groups that the programmer

would like to extract. Therefore, although support can be provided to automate the pro-

cess of duplication elimination significantly, a certain amount of programmer involvement is

unavoidable.
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1.4 Contribution 1: Automated approach for clone detection

An approach for clone detection in source code, and a tool based on this approach that

finds clones in C programs and displays them to the programmer, are key contributions

of this thesis. The novel aspect of the approach is the use of program dependence graphs

(PDGs) [FOW87], and a variation on program slicing [Wei84, OO84] to find isomorphic

subgraphs of the PDG that represent clones. The key benefits of a slicing-based approach,

compared with previous approaches to clone detection that were based on comparing text,

control-flow graphs, or abstract-syntax trees, is that the tool can find non-contiguous clones,

clones in which matching statements are out of order, and clones that are intertwined with

each other (the example in Figure 1.1 illustrates the first two characteristics, while the

example in Figure 3.6 illustrates intertwined clones). Such inexactly matching clones are

usually introduced when programmers copy code and then modify it so that it suits the new

requirements. They can also be introduced when programmers reimplement functionality

that already exists in the system, with slight changes.

The other key benefit of the approach is that clones found are likely to be meaningful

computations, and thus good candidates for extraction (this is addressed in Section 3.2.2).

We describe the approach in detail in Chapter 3, with a discussion of the strengths and

limitations of the approach, and examples of interesting clone groups found in real programs.

We then describe the implementation in Chapter 7, and provide the results of experiments

with the implementation on real programs. The goals of these experiments were to quantify

the efficacy and limitations of the approach.

Our implementation is for C programs. However, our ideas apply to imperative languages

in general, or to any language for which PDGs can be built.
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1.5 Contribution 2: Automated approach for clone-group extrac-
tion

Our second key contribution is a pair of algorithms that support extraction of a group

of clones into a separate procedure:

1. The first algorithm, which we call the “individual-clone extraction algorithm”, carries

out Step 2(a) of the clone-elimination process (see Section 1.3). The input to the

algorithm is a clone (a set of statements) that is non-contiguous and/or involves exiting

jumps; the algorithm transforms the clone to make it (individually) extractable into

a separate procedure. The algorithm handles exiting jumps by converting them into

non-exiting jumps. It handles non-contiguity by moving together the set of statements

in the clone to the extent possible; any intervening non-clone statements that cannot be

moved out of the way are “promoted”, which means they are retained in the extracted

procedure in guarded form.

2. The second algorithm is for making a group of clones extractable. We call this the

“clone-group extraction” algorithm. This algorithm first invokes the individual-clone

algorithm on each clone in the group. It then permutes the statements in each clone

so that matching statements are in the same order in all clones.

We illustrate the two algorithms by showing the result of applying the clone-group extrac-

tion algorithm to the two clones in Figure 1.1. Recall that the first step in the clone-group

algorithm is the application of the individual-clone algorithm on each clone in the group;

Figure 1.2 shows the result of this step. The resultant code illustrates all four transformation

techniques that the individual-clone algorithm incorporates:

1. Statement reordering: As many intervening non-clone statements as possible are

moved out of the way to make each clone contiguous. In this example, the two non-

clone statements “nOver++” and “fscanf(fe,"%d",&hours)” that intervene between

cloned statements in the two clones, respectively, are moved.
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Individual-clone algorithm output 1 Individual-clone algorithm output 2

if (hours > 40)

nOver++;

++ overPay = 0;

++ if (hours > 40) {

++ oRate = OvRate[emp];

++ excess = hours - 40;

++ overPay = excess*oRate;

++ }

++ base = BasePay[emp];

++ if (overPay > base) {

++ error("policy violation");

++ exitKind = BREAK;

++ goto L1;

++ }

++ Pay[emp] = base+overPay;

++ exitKind = FALLTHRU;

L1: if(exitKind == BREAK)

break;

fscanf(fe,"%d",&hours);

++ base = BasePay[emp];

++ overPay = 0;

++ if (hours > 40) {

++ excess = hours - 40;

**** if (excess > 10)

**** excess = 10;

++ oRate = OvRate[emp];

++ overPay = excess*oRate;

++ }

++ if (overPay > base) {

++ error("policy violation");

++ exitKind = BREAK;

++ goto L2;

++ }

++ Pay[emp] = base+overPay;

++ exitKind = FALLTHRU;

L2: if(exitKind == BREAK)

break;

Figure 1.2 Output of individual-clone extraction algorithm on fragments in Figure 1.1
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Clone-group algorithm output 1 Clone-group algorithm output 2

if (hours > 40)

nOver++;

++ overPay = 0;

++ if (hours > 40) {

++ excess = hours - 40;

++ oRate = OvRate[emp];

++ overPay = excess*oRate;

++ }

++ base = BasePay[emp];

++ if (overPay > base) {

++ error("policy violation");

++ exitKind = BREAK;

++ goto L1;

++ }

++ Pay[emp] = base+overPay;

++ exitKind = FALLTHRU;

L1: if(exitKind == BREAK)

break;

fscanf(fe,"%d",&hours);

++ overPay = 0;

++ if (hours > 40) {

++ excess = hours - 40;

**** if (excess > 10)

**** excess = 10;

++ oRate = OvRate[emp];

++ overPay = excess*oRate;

++ }

++ base = BasePay[emp];

++ if (overPay > base) {

++ error("policy violation");

++ exitKind = BREAK;

++ goto L2;

++ }

++ Pay[emp] = base+overPay;

++ exitKind = FALLTHRU;

L2: if(exitKind == BREAK)

break;

Figure 1.3 Output of clone-group extraction algorithm on fragments in Figure 1.1
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2. Predicate duplication: Moving the statement “nOver++” requires creating a dupli-

cate copy of the predicate “if (hours > 40)”.

3. Promotion: The intervening non-clone statement “if (excess > 10) excess=10”

in the second fragment cannot be moved out of the way without affecting the program’s

semantics. Therefore it is promoted (as indicated by the “****” signs), meaning it will

occur in the extracted procedure in guarded form (the extracted procedure is shown

in Figure 1.4(b)).

4. Handling exiting jumps: The break statement cannot simply be included in the

extracted procedure. Firstly, it is not possible to have a break statement without the

corresponding loop in a procedure. Furthermore, no exiting jump of any kind can be

included in the extracted procedure without any compensatory changes, because, as

mentioned earlier, control flows out from a procedure call to a single statement – the

statement that follows the call. Therefore, the extracted procedure (Figure 1.4(b)) has

a return in place of the break; it also sets a flag (the new global variable exitKind)

to indicate whether the break must be executed after the procedure returns.

In the output of the individual-clone algorithm (Figure 1.2) the appropriate assign-

ments to exitKind are included, a new copy of the break, conditional on exitKind

is added immediately after the cloned code, and its original copy is converted into a

goto to the new conditional statement.

Other exiting jumps (caused by returns, continues and gotos) are handled similarly,

with exitKind set to a value that encodes the kind of jump.

Notice that the region that originally contained each clone (i.e., everything from the first

cloned statement through the last, in Figure 1.1) has been transformed such that in the

output of the individual-clone algorithm (Figure 1.2) there is a contiguous block of code

that contains the clone and that contains no exiting jumps (this block is indicated by the

“++” signs in the first fragment, and by the “++”/“****” signs in the second fragment).
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(a) Rewritten Fragment 1

emp = 0;

while(emp < nEmps) {

hours = Hours[emp];

if (hours > 40)

nOver++;

CalcPay(emp,hours,0);

if(exitKind == BREAK)

break;

emp++;

}

Rewritten Fragment 2

fscanf(fe, "%d", &emp);

while(emp != -1) {

fscanf(fe,"%d",&hours);

CalcPay(emp,hours,1);

if(exitKind == BREAK)

break;

fscanf(fe, "%d", &emp);

}

(b) Extracted Procedure

void CalcPay(int emp,

int hours,int doLimit) {

int overPay,excess,

oRate,base;

++ overPay = 0;

++ if (hours > 40) {

++ excess = hours - 40;

if (doLimit)

**** if (excess > 10)

**** excess = 10;

++ oRate = OvRate[emp];

++ overPay = excess*oRate;

++ }

++ base = BasePay[emp];

++ if (overPay > base) {

++ error("policy violation");

++ exitKind = BREAK;

++ return;

++ }

++ Pay[emp] = base+overPay;

++ exitKind = FALLTHRU;

}

Figure 1.4 Example in Figure 1.1 after extraction
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This contiguous block of code is easily extractable into a separate procedure. The algorithm

does not modify any code outside the region that contains the clone, and therefore that code

(which includes the loop header) is not shown in Figure 1.2.

After applying the individual-clone algorithm on each clone, the clone-group algorithm

permutes the statements in one or more clones so that matching statements are in the same

order in all clones. Figure 1.3 shows the resulting code (which is the final output of the

algorithm). Note the differences between the code in Figures 1.2 and 1.3: the statements

in the first clone have been permuted so that “excess = hours - 40” is before “oRate =

OvRate[emp]”, and the statements in the second clone have been permuted so that “base

= BasePay[emp]” is after the “if (hours > 40) ..” statement. (The algorithm permutes

statements only when certain data- and control-dependence-based conditions that are suffi-

cient to guarantee semantics preservation hold; otherwise it fails, with no permutations.)

The new procedure is created, after the algorithm terminates, by basically “merging”

copies of the two contiguous blocks produced by the algorithm into a single block: one

of the two copies of the cloned code is eliminated, and promoted code from both blocks

is retained. The parameters and local variables are determined at this time; promoted

statements are surrounded by guards that check boolean flag parameters that are set to

true/false, as appropriate, at each call to the new procedure; also, the gotos produced by

the algorithm (from exiting jumps) are converted into returns. Then, each of the contiguous

blocks produced by the algorithm is simply replaced by a call to the new procedure (with

the correct actual parameter values, including the call-site-specific boolean guards). Most

of these steps can be automated, although the programmer might want to choose names for

the extracted procedure and its parameters/locals.

Figure 1.4 shows the new procedure, as well as the rewritten fragments obtained by

replacing the contiguous blocks produced by the algorithm with calls to this procedure.

Notice that the intervening non-clone code moved to before the contiguous blocks by the

algorithm, as well as the conditional jump code introduced after the blocks, are present

adjacent to the calls in the rewritten fragments.
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The individual-clone extraction algorithm has applications of its own outside the context

of clone-group extraction. One such application is the decomposition of long procedures

into multiple smaller procedures. Legacy programs often have long procedures that contain

multiple strands of computation (sets of statements), each one achieving a distinct goal.

Such strands may occur either one after the other within the procedure, or may be inter-

leaved with each other. Interleaved strands occur often in real programs, and complicate

program understanding [LS86, RSW96]. Interleaved strands can be separated by applying

the individual-clone algorithm to each strand so that it becomes a contiguous extractable

block of code; the strands can then be extracted into separate procedures. This improves

the program’s understandability, eases maintenance by localizing the effects of changes, and

facilitates future code reuse. This activity can also be an important part of the process of

converting poorly designed, “monolithic” code to modular or object-oriented code. In this

thesis, however, we focus on the use of the extraction algorithms in the context of clone-group

extraction only.

We define both of the extraction algorithms in the context of the C language. (For the

purposes of this dissertation we do not address switch statements; the clone-detection tool

actually handles switch statements, using a variant of the CFG representation proposed

in [KH02]; we believe that the extraction algorithms, which currently do not handle switch

statements, work with little or no modification if the representation proposed in [KH02] is

used.) The algorithms are provably semantics preserving (proofs in Appendices B and C).

Since semantic equivalence is, in general, undecidable, it is not possible to define an algorithm

that succeeds in semantics-preserving procedure extraction whenever that is possible; there-

fore, the algorithms are based on safe conditions that are sufficient to guarantee semantics

preservation.

Our approach is an advance over previous work on procedure extraction in two respects:

• It employs a range of transformations – statement reordering, predicate duplication,

guarded extraction, and exiting jump conversion – to handle various kinds of difficult

clone groups that arise in practice.
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• It is the first to address extraction of fragments that contain exiting jumps into separate

procedures.

We discuss both these aspects in greater detail in Chapter 9.

In addition to the extraction algorithms, a (related) contribution of this thesis is a study

of 50 groups of clones that we considered worthy of extraction, identified in 3 real programs

using the clone-detection tool. The goals of the study were:

• To determine what proportion of the clone groups involved problematic characteristics

such as non-contiguity, out-of-order matches, and exiting jumps.

• To determine how well the extraction algorithms performed (on the 50 clone groups)

compared with two previous algorithms ([LD98] and [DEMD00]), and compared with

the results produced manually (by the author).

We found that nearly 54% of the clone groups exhibited at least one problematic char-

acteristic. We also found that our algorithms produced exactly the same output as the

programmer on 70% of the difficult groups, while the previous algorithms matched that

“ideal” output on only a small percentage of the difficult groups. Because many of the indi-

vidual clones in the study were non-contiguous and/or involved exiting jumps, and because

some of the clone groups had out-of-order matches, the study measures the performance of

both of the extraction algorithms. The study was performed using a partial implementation.

The heart of the individual-clone extraction algorithm was implemented; the rest of this

algorithm was applied manually, as was the clone-group extraction algorithm.

The rest of this dissertation is organized as follows. Chapter 2 introduces assumptions

and terminology for the clone-detection approach, and provides some background on program

dependence graphs and slicing. Chapter 3 defines the clone-detection approach, discusses its

strengths and weaknesses, and provides examples of clone groups found by the implementa-

tion of the approach in real programs. Additional terminology required for the extraction
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algorithms is introduced in Chapter 4. We then define the individual-clone extraction algo-

rithm and clone-group extraction algorithms, respectively, in Chapters 5 and 6. We provide

experimental results regarding the efficacy and limitations of the clone-detection approach

in Chapter 7. Then, in Chapter 8, we discuss our study of the extraction algorithms when

applied to the dataset of 51 clone groups obtained using the clone-detection tool. Chapter 9

discusses related work, as well the advances made in this thesis over previous approaches.

Finally, Chapter 10 provides directions for future work, as well as the conclusions of this

thesis. The appendices contain proofs of correctness (semantics-preservation) for both of the

extraction algorithms.
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Chapter 2

Assumptions, terminology, and background

We assume that programs are represented by a set of control-flow graphs (CFGs), one per

procedure. Each CFG has a distinguished enter node as well as a distinguished exit node.

The other kinds of CFG nodes are: assignment nodes, procedure-call nodes, predicate nodes

(if, while, do-while), and jumps (goto, return, continue, break). Each assignment

statement in the source code is represented by one assignment node in the CFG; the same

is true for predicates and jumps. Procedure calls that represent values (i.e., function calls)

are not given separate nodes; rather they are regarded as part of the node that represents

the surrounding expression. Other procedure calls (ones that return no value or ones whose

values or not used) are represented using separate nodes. Labels are not included in the

CFG, and are implicitly represented by an edge from a goto node to its target.

A CFG’s exit node has no outgoing edge; predicate nodes have two outgoing edges,

labeled true and false; assignments and procedure-call nodes have a single outgoing edge.

Jump nodes are considered to be pseudo-predicates (predicates that always evaluate to true),

as in [BH93, CF94]. Therefore, each jump is represented by a node with two outgoing edges:

the true edge goes to the target of the jump, and the (non-executable) false edge goes to

the node that would follow the jump if it were replaced by a no-op. Jumps are treated as

pseudo-predicates so that the statements that are semantically dependent on a jump – as

defined in [KH02] – are also control dependent on it (control dependence is defined later in

this section). True edges out of jump nodes are called jump edges ; every other CFG edge

is called a non-jump edge. Every node in a CFG lies on some path from the enter node to
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the exit node. For technical reasons the enter node is also treated as a pseudo-predicate;

its true edge goes to the first actual node in the CFG, while its (non-executable) false edge

goes straight to the exit node.

Example: Figure 2.1 contains the CFGs (CFG subgraphs, actually) for the fragments

in Figure 1.1. Labels on edges out of the predicate nodes have been omitted for the sake

of clarity. Note that the breaks are pseudo-predicates, with two outgoing edges; the non-

executable false edges are shown dashed. 2

We allow the input programs to make use of features such as pointers, address-of oper-

ators, structures, and global variables. We do assume, however, that the appropriate static

analyses, e.g., pointer analysis and inter-procedural GMOD/GREF analysis, have been done

so that use and def sets (an over-approximation of the set of variables whose values may

be used, and defined, respectively) are known for each CFG node. In particular, if a node

in a procedure includes a procedure call or a dereference of a pointer, then the use and/or

def sets of that node can include variables that do not occur literally in the node, and/or

non-local variables. We assume that predicates have no side-effects (so every predicate node

has an empty def set); this is not a severe restriction, because predicates that do have

side-effects can be decomposed into one or more assignments/procedure calls, followed by a

“pure” predicate.

We make use of the following (standard) definitions:

Definition 1 (Postdomination) A node p in a CFG postdominates a node q in the same

CFG if every path from q to the exit node, including ones that involve non-executable edges,

goes through p. Every node postdominates itself, by definition.

Definition 2 (Control dependence) A node p is C-control dependent on node q, where

C is either true or false, iff q is a predicate node and p postdominates the C-successor of q

but does not postdominate q itself. q is said to be a control-dependence parent of p, and p

is said to be a control-dependence child of q.

The following definition is adapted from [KKP+81].
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Definition 3 (Flow dependence) A node p is flow dependent on a node q iff some variable

v is defined by q, and used by p, and there is a v-def -free path P in the CFG from q to p

that involves no non-executable edges1. We say that this flow dependence is induced by path

P .

2.1 Program dependence graphs and slicing

Program dependence graphs (PDGs) were proposed in [FOW87] as a convenient program

representation for several program analyses and transformations. The PDG for a procedure

includes all of the nodes in the procedure’s CFG, except for the exit node. The edges in

the PDG represent the control dependences and flow dependences computed using the CFG;

i.e., there is a control- (flow-) dependence edge from a node q to a node p in a PDG iff p is

control- (flow-) dependent on p. As in the CFG, control-dependence edges are labeled true

or false.

Example: Figure 2.2 shows an example program, its CFG, and its PDG. Ignore, for now,

the distinction between bold and non-bold nodes in the PDG. Labels on control-dependence

edges in the PDG are omitted for the sake of clarity (every such edge in this example is

labeled true). (This example is taken directly from [KH02].) 2

Our clone-detection approach makes use of PDGs, and a variation of an operation called

slicing. Slicing was originally defined by Weiser [Wei84]. Informally, the backward slice of a

procedure from a node S is the set of nodes in that procedure that might affect the execution

of S, either by affecting some value used at S, or by affecting whether and/or how often S

executes.

Weiser provided a CFG-based, dataflow-analysis-based algorithm for computing the back-

ward slice from a node S in a procedure. Ottenstein and Ottenstein [OO84] provided a

1the original definition in [KKP+81] does not involve non-executable edges, because their CFGs have only
executable edges
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true

true

   prod = prod * k;
   k++;
}
print(k);
print(prod);

prod = 1;
k = 1;
while (k <= 10) {

prod = 1

while (k <= 10)

print(prod)

exit

print(k)

enter

prod = prod * k

k++

(c) PDG

prod = 1 print(prod)

prod = prod * k

print(k)

k++

while (k <= 10)k = 1

enter

control
dependence

flow
dependence

(a) Example Program (b) CFG

k = 1

Figure 2.2 An example program, its CFG, and its PDG. The PDG nodes in the backward
slice from “print(k)” are shown in bold.
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more efficient algorithm that uses the PDG: Start from S and follow the control- and data-

dependence edges backwards in the PDG. The nodes in the slice are all the nodes reached

in this manner.

Example: The bold nodes in the PDG in Figure 2.2 constitute the backward slice from

“print(k)”. 2

Analogous to a backward slice, the forward slice of a procedure from a node S is the set

of nodes in the procedure that might be affected by S. The forward slice from S can be

computed as the set of nodes reachable from S by following edges forward in the PDG.
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Chapter 3

Duplication detection in source code

This chapter describes our clone-group detection algorithm. The algorithm performs three

steps:

Step 1. Find all pairs of clones.

Step 2. Remove clone pairs that are subsumed by other clone pairs.

Step 3. Combine pairs of clones into larger groups.

This chapter is organized as follows. Section 3.1 introduces Step 1 of the algorithm – the

slicing-based approach to finding pairs of clones. This step is the heart of the algorithm. The

motivation behind the slicing-based approach, and the benefits of this approach, are provided

in Section 3.2. Section 3.3 provides certain details about the clone-pairs detection approach

that are omitted from Section 3.1; it also specifies Steps 2 and 3 of the algorithm. Section 3.4

provides examples of interesting clone groups found by the approach, and discusses some of

the limitations of the approach.

3.1 Finding all pairs of clones

We first describe Step 1 of the algorithm informally, together with an illustration using

an example. We then provide the formal description of this step in Section 3.1.2.

A high-level outline of Step 1 is:

1. Partition all nodes in all PDGs into equivalence classes, such that two nodes are in the

same class if and only if they match (as defined below).
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2. For each pair of matching nodes (root1, root2), find two matching subgraphs of the

PDGs that contain root1 and root2, such that the subgraphs are “rooted” at root1

and root2, using a variation of the slicing operation. The pair of subgraphs found is

a pair of clones.

The notion of matching nodes is defined (recursively) as follows:

• Two expressions match if they have the same syntactic structure, ignoring variable

names and literal values; e.g., “b + 1” matches “d + 2”, but does not match “d - 2”

or “2 + d”. Array references match other array references iff the subscript expressions

match.

Because variable names are ignored while matching expressions, variable names in a

clone may not map one-to-one with variable names in other corresponding clones; e.g.,

the node “a + a + b” matches “p + q + q”, with q mapped both to a and to b, and

with a mapped both to p and to q. We consider the implications of this in Section 3.4.3.

• Two function calls within expressions (or two procedure-call nodes) match if and only

if both are calls to the same function, and corresponding actual parameters match

(as expressions); e.g., “f(a+1, b())” matches “f(c+2, b())”, but does not match

“f(c+2, d())” or “f(c-2, b())”.

• Two assignments match if and only if the left hand sides, as well as the right hand

sides, match (as expressions).

• Two predicates match if and only if their expressions match, and both are of the same

kind (while, do-while, if).

• Two jumps match if and only if they are of the same kind (return, goto, break,

continue). For returns, their expressions must match, too.

The heart of the algorithm that finds two matching subgraphs is the use of backward

slicing: Starting from root1 and root2 we slice backwards in lock step, adding a (flow-
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or control-dependence) predecessor (and the connecting edge) to one slice iff there is a

corresponding, matching predecessor in the other PDG (which is added to the other slice).

The two predecessors just added to the slice-pair are said to be mapped to each other, as are

the two connecting edges. Forward slicing is also used: whenever a pair of matching loop

or if predicates (p1, p2) is added to the pair of slices, we slice forward one step from p1

and p2, adding their matching control-dependence successors (and the connecting edges) to

the two slices. Here again, the successors (connecting edges) just added to the slice-pair are

said to be mapped to each other. Note that while lock-step backward slicing is done from

every pair of matching nodes in the two slices, forward slicing is done only from matching

predicates. When the process described above finishes, it will have identified two matching

“partial” slices (PDG subgraphs) that represent a pair of clones. (Our motivation for using

backward slicing and forward slicing is given, respectively, in Sections 3.2.2.2 and 3.2.2.3.)

3.1.1 Illustration using an example

Figure 3.1 shows a group of four clones (indicated by the “++” signs) identified by the

implementation of the approach, on the source code of the Unix utility bison. The function

of the duplicated code is to grow the buffer pointed to by p if needed, append the current

character c to the buffer and then read the next character. The PDGs for Fragments 1 and 2

in Figure 3.1 are shown in Figure 3.2. We illustrate the process of finding a pair of matching

partial slices, starting from matching nodes 3a and 3b in the PDGs. Slicing backward from

nodes 3a and 3b along their incoming control-dependence edges we find nodes 5 and 8 (the two

while nodes). However, these nodes do not match (they have different syntactic structure),

so they are not added to the partial slices. Slicing backward from nodes 3a and 3b along

their incoming flow-dependence edges we find nodes 2a, 3a, 4a, and 7 in the first PDG, and

nodes 2b, 3b, and 4b in the second PDG. Node 2a matches 2b, and node 4a matches 4b, so

those nodes (and the edges just traversed to reach them) are added to the two partial slices.

(Nodes 3a and 3b have already been added, so those nodes are not reconsidered.) Slicing

backward from nodes 2a and 2b, we find nodes 1a and 1b, which match, so they (and the
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Fragment 1 Fragment 2

while (isalpha(c) ||

c == ’_’ || c == ’-’) {

++ if (p == token_buffer+maxtoken)

++ p = grow_token_buffer(p);

if (c == ’-’) c = ’_’;

++ *p++ = c;

++ c = getc(finput);

}

while (isdigit(c)) {

++ if (p == token_buffer+maxtoken)

++ p = grow_token_buffer(p);

++ *p++ = c;

numval = numval*10 + c - ’0’;

++ c = getc(finput);

}

Fragment 3 Fragment 4

while (c != ’>’) {

if (c == EOF) fatal();

if (c == ’\n’) {

warn("unterminated type name");

ungetc(c, finput);

break;

}

++ if (p == token_buffer+maxtoken)

++ p = grow_token_buffer(p);

++ *p++ = c;

++ c = getc(finput);

}

while (isalnum(c) ||

c == ’_’ || c == ’.’) {

++ if (p == token_buffer+maxtoken)

++ p = grow_token_buffer(p);

++ *p++ = c;

++ c = getc(finput);

}

Figure 3.1 Duplicated code from bison, with non-contiguous clones
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p = grow_token_buffer(p)

*p++ = c c = getc(finput)

p = grow_token_buffer(p)

while (isalpha(c) ||
      c==’_’’ || c==’−’)

if(c==’−’)

c=’_’

*p++ = c c = getc(finput)

2b:

1b: 4b:

2a:

1a:
6:

7:

4a:

3b:

3a:

9:

5:

8:

Flow dependence

Control dependence

while (isdigit(c))

if(p==token_buffer+
maxtoken)

numval = numval*20
+c−’0’

if(p==token_buffer+
maxtoken)

Figure 3.2 Matching partial slices starting from nodes 3a and 3b. The nodes and edges in
the partial slices are shown in bold.
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traversed edges) are added. Furthermore, nodes 1a and 1b represent if predicates; therefore

we slice forward from those two nodes. We find nodes 2a and 2b, which are already in the

slices, so they are not reconsidered. Slicing backward from nodes 4a and 4b, we find nodes

5 and 8, which do not match; the same two nodes are found when slicing backward from

nodes 1a and 1b.

The partial slices are now complete. The nodes and edges in the two partial slices are

shown in Figure 3.2 using bold font. These two partial slices correspond to the clones of

Fragments 1 and 2 shown in Figure 1.1 using “++” signs.

3.1.2 Formal specification of Step 1 of the algorithm

Figures 3.3 and 3.4 specify the approach for finding clone pairs. Procedure

FindAllClonePairs in Figure 3.3 is the “main” function. It partitions the set of all nodes

in all PDGs into equivalence classes, and then invokes Subroutine FindAClonePair on each

pair of matching nodes to find the two matching partial slices rooted at that pair. Actually,

Procedure FindAllClonePairs incorporates some optimizations. Thus the above description

is not entirely accurate; we postpone discussion of this matter to Section 3.3.

Procedure FindAClonePair is the one that finds a matching partial slice pair from a pair

of matching starting nodes. This procedure maintains two data structures, worklist and

curr (we discuss the other data structure, globalHistory, in Section 3.3). curr is the set

of currently mapped pairs of PDG edges; therefore, when FindAClonePair finishes, curr

contains the entire clone pair (the mapped edges also tell us which nodes are mapped). The

pair of roots is the first node pair to be included in the slice pair; i.e., this pair is unlike

all other matching node pairs, which are reached along PDG edges from other matching

node pairs. To accommodate this exception we initialize curr (in the beginning of Proce-

dure FindAClonePair) with the edge pair (root1 → ⋄, root2 → ⋄), where the ⋄ is some

dummy node.

worklist is a set of pairs of nodes that have already been mapped and included in the

clone pair, but from which we are yet to slice backward (or forward, for mapped predicates).
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Procedure FindAllClonePairs.

1: For each PDG p in the program create p.list, the list of all nodes in p sorted in the reverse of

the order in which nodes are visited in a depth-first traversal of p starting from its entry node.

2: Partition the set of all nodes in the program (i.e., in all PDGs) into equivalence classes, such

that matching nodes are in the same class. Represent each class as a list, and sort the list such

that the relative ordering of nodes from a single PDG p within the list is the same as their

ordering in p.list.

3: Initialize globalHistory to empty.

4: for all PDGs p in the program do

5: for all nodes root1 in p.list do

6: for all nodes root2 in root1’s equivalence class (a list), not including root1 and not

including nodes following root1 in the list do

7: if (root1, root2) is not present in globalHistory then

8: Call FindAClonePair (root1, root2).

9: end if

10: end for

11: end for

12: end for

Procedure FindAClonePair (root1, root2).

1: Initialize curr and worklist to empty.

2: Place the pair of edges (root1 → ⋄, root2 → ⋄) in curr. {That is, map these two edges to

each other and add them to the current clone pair.} Place (root1, root2) in worklist, and

in globalHistory.

3: repeat

4: Call GrowCurrentClonePair.

5: until worklist is empty.

6: Write curr (the current clone pair) to output.

Figure 3.3 Algorithm to find pairs of clones
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Procedure GrowCurrentClonePair.

1: Remove a node pair (node1, node2) from worklist.
{Map flow-dependence parents of node1 to flow-dependence parents of node2, as follows.}

2: for all flow-dependence parents p1 of node1 in the PDG that are not an end-point of any edge in curr

do

3: if there exists a flow-dependence parent p2 of node2 such that:
• p2 is in the same equivalence class as p1, and p2 is not an end-point of any edge in curr, and
• the two flow-dependence edges p1 → node1 and p2 → node2 are either both loop carried, or are
both loop independent (defined in Section 3.3.2.1), and
• the predicates of the loops crossed by the flow-dependence edge p1 → node1 are in the same
equivalence class as the corresponding predicates of the loops crossed by the flow-dependence edge p2

→ node2

then

4: Place (p1 → node1, p2 → node2) in curr. {That is, map the two edges to each other and add them

to the current clone pair.} Place (p1, p2) in worklist, and in globalHistory.
5: end if

6: end for

{Map control-dependence parents of node1 to control-dependence parents of node2, as follows.}
7: for all control-dependence parents p1 of node1 in the PDG that are not an end-point of any edge in

curr do

8: if there exists a control-dependence parent p2 of node2 such that:
• p2 is in the same equivalence class as p1, and p2 is not an end-point of any edge in curr, and
• the two control-dependence edges p1 → node1 and p2 → node2 have the same label (true or false)
then

9: Place (p1 → node1, p2 → node2) in curr. Place (p1, p2) in worklist, and in globalHistory.
10: end if

11: end for

12: if node1 and node2 are predicates then

13: {Map control-dependence children of node1 to control-dependence children of node2, as follows.}
14: for all control-dependence children c1 of node1 in the PDG that are not an end-point of any edge in

curr do

15: if there exists a control-dependence child c2 of node2 such that:
• c2 is in the same equivalence class as c1, and c2 is not an end-point of any edge in curr, and
• the two control-dependence edges node1 → c1 and node2 → c2 have the same label (true or
false).
then

16: Place (node1 → c1, node2 → c2) in curr. Place (c1, c2) in worklist, and in globalHistory.
17: end if

18: end for

19: end if

Figure 3.4 Subroutine for growing current clone pair, invoked from Figure 3.3
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worklist is initialized to (root1, root2), and FindAClonePair finishes when worklist

becomes empty.

FindAClonePair calls a subroutine GrowCurrentClonePair, shown in Figure 3.4.

GrowCurrentClonePair removes a node-pair (node1, node2) from worklist, and maps

matching flow-dependence and control-dependence predecessors of these two nodes, as well

as matching control-dependence successors, if node1 and node2 are predicates. Note that

for two flow-dependence predecessors to be mapped to each other, we have two restrictions,

one to do with loop-carried and loop-independent edges, and the other to do with predicates

of the loops crossed by the two edges. We discuss these two restrictions in Section 3.3.

Note that in general there may be multiple ways of mapping predecessors (or successors)

of (node1, node2) to each other; when there are several choices the algorithm chooses one

among them, while ensuring that the maximum possible number of predecessors (successors)

are mapped to each other.

3.2 Motivation behind the approach, and its benefits

Previous approaches for clone detection either work on the source text of the program,

or on the abstract syntax tree (AST) representation, or on the control-flow graph (CFG)

representation. Source code is a linear representation, which forces the programmer to

arbitrarily pick one particular ordering of statements from among several potential choices

that are all semantically equivalent. The other two representations are closely tied to the

source; in particular, both representations reflect the ordering of statements in the source

code (although they do abstract away certain lexical aspects of the source). As a result, these

previous approaches cannot find duplicated fragments that match inexactly at the source-

code level, but where the inexactness is purely an artifact of differing arbitrary choices the

programmer made for the different copies. The key hypothesis we make is that if a group of

fragments have similar functionality (and match syntactically at the statement level), then

flow- and control-dependences between statements are identical (or very similar) in all the

fragments, even if the fragments match inexactly considering the ordering of statements.
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Fragment 1 Fragment 2

fp3 = lookaheadset + tokensetsize;

for (i=lookaheads[state];

i < k; i++) {

++ fp1 = LA + i*tokensetsize;

++ fp2 = lookaheadset;

++ while (fp2 < fp3)

++ *fp2++ |= *fp1++;

}

fp3 = base + tokensetsize;

...

if (rp) {

while ((j = *rp++) >= 0) {

...

++ fp1 = base;

++ fp2 = F + j*tokensetsize;

++ while (fp1 < fp3)

++ *fp1++ |= *fp2++;

}

}

Figure 3.5 Duplicated, out-of-order code from bison

This hypothesis forms the basis for our approach: use PDGs, which abstract away irrelevant

aspects of the ordering among statements and reflect only flow- and control-dependences,

and find clones by finding matching subgraphs in the PDGs. As stated in the Introduction,

the approach has two major benefits – finding inexact matches, and finding clone groups that

are good candidates for extraction. We discuss these benefits in the following subsections.

3.2.1 Finding non-contiguous, out-of-order, and intertwined
clones

One example of non-contiguous clones identified by the implementation of the approach in

the source code of bison was given in Figure 3.1. By running the tool on a set of real programs,

we have observed that non-contiguous clones that are good candidates for extraction (like

the ones in Figure 3.1) occur frequently (see Section 8 for further discussion). Therefore,

the fact that the approach can find such clones is a significant advantage over most previous

approaches to clone detection.

Non-contiguous clones are one kind of inexact matching. Another kind of inexact match-

ing occurs when the ordering of matching statements is different in the different clones. The

two clones shown in Figure 3.5 (again from bison) illustrate this. The clone in Fragment 2
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++ tmpa = UCHAR(*a),

xx tmpb = UCHAR(*b);

++ while (blanks[tmpa])

++ tmpa = UCHAR(*++a);

xx while (blanks[tmpb])

xx tmpb = UCHAR(*++b);

++ if (tmpa == ’-’) {

tmpa = UCHAR(*++a);

...

}

xx else if (tmpb == ’-’) {

if (...UCHAR(*++b)...) ...

Figure 3.6 An intertwined clone pair from sort.

differs from the one in Fragment 1 in two ways: the variables have been renamed (including

renaming fp1 to fp2 and vice versa), and the order of the first and second statements (in

the clones, not in the fragments) has been reversed. This renaming and reordering does not

affect the flow or control dependences; therefore, the approach finds the clones as shown in

the figure, with the first and second statements in Fragment 1 that are marked with “++”

signs matching the second and first statements in Fragment 2 that are marked with “++”

signs.

Our approach is also effective in finding intertwined clones. An example of such clones in

the Unix utility sort is given in Figure 3.6. In this example, one clone is indicated by “++”

signs while the other clone is indicated by “xx” signs. The clones take a character pointer

(a/b) and advance the pointer past all blank characters, also setting a temporary variable

(tmpa/tmpb) to point to the first non-blank character. The final component of each clone is

an if predicate that uses the temporary. The predicates were the roots of the two matching

partial slices (the second one – the second-to-last line of code in the figure – occurs 43 lines

further down in the code).
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3.2.2 Finding good candidates for extraction

A key goal of ours, which has driven several design decisions, is to find groups of clones

that can be extracted into separate procedures. A group of clones is a good candidate for

extraction if:

• The group is extractable; i.e., it is possible to create a separate procedure and to replace

each clone with a call to this procedure, such that the semantics of the program is

preserved.

• The group would be considered interesting by a programmer.

• The clones are not too small.

Intuitively, a group of clones is interesting if:

• Each clone in the group performs a meaningful computation that makes sense as a

separate procedure; i.e., the functionality of the clone can be easily explained in English,

or equivalently, the new procedure obtained from the clone can be given a meaningful

name.

• The clones in the group all have similar functionality; i.e., the English explanations of

the functionalities of the clones are similar.

An example of a pair of interesting clones is the one shown in Figure 1.1. The functionality

of the cloned code in that example can be explained as follows: Compute the base pay and

overtime pay of an employee; then, if overtime pay does not exceed base pay compute the

total pay, else report an error. Another example of an interesting clone pair is the one shown

in Figure 3.1. As we mentioned earlier, the function of the cloned code in that example is

to grow the buffer pointed to by p if needed, append the current character c to the buffer

and then read the next character. Sections 3.4.1 and 3.4.2 present several other examples

of interesting clone groups found in real programs by the implementation of the approach
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(any clone group that does not satisfy the informal characterization presented above is called

“uninteresting”).

One aspect of meaningfulness is that the cloned code performs a single conceptual oper-

ation (is highly cohesive [SMC74]):

• it computes a small number of outputs (every variable for which there is a flow-

dependence edge from inside the clone to outside is an output of the clone).

• all the cloned code is relevant to the computation of the outputs (i.e., the backward

slices from the statements that assign to the outputs should include the entire clone).

Another aspect of meaningfulness is that the cloned code represent a “logically complete”

computation (we return to this later).

We now discuss how the characteristics required of good clone groups are likely to be

satisfied by the clone pairs found by the algorithm.

3.2.2.1 Similar functionality due to matching dependences

Two clones are likely to have similar functionality if for every flow- (control-) dependence

edge between two nodes in one of the clones, there is a flow- (control-) dependence edge

between the matching two nodes in the other clone. Although the way we construct matching

partial slice pairs does not entirely guarantee this property, because our (sole) mechanism

for growing a slice pair is adding matching pairs of dependence edges to it, many dependence

edges within an identified clone have matching dependence edges in the other clone. This

makes it likely that clone pairs identified have similar functionality.

3.2.2.2 Cohesion due to backward slicing

The heart of the algorithm is backward slicing. A backward slice from a starting node

automatically satisfies one of the two aspects of cohesiveness – every statement in the slice is

relevant to the outputs computed at the starting node. Therefore, a backward slice is likely
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Fragment 1 Fragment 2

if (tmp->nbytes == -1) {

error (0, errno, "%s", filename);

errors = 1;

free((char *) tmp);

goto free_lbuffers;

}

if (tmp->nbytes == -1) {

error (0, errno, "%s", filename);

errors = 1;

free((char *) tmp);

goto free_cbuffers;

}

Figure 3.7 Error-handling code from tail that motivates the use of forward slicing.

to be cohesive. For the same reason, when a pair of matching partial slices is obtained by

lock-step backward slicing, both partial slices are likely to be cohesive.

3.2.2.3 Complete computations due to forward slicing

In many situations, backward slicing by itself only identifies clones that are subsets of

“logically complete” clones that would make sense as a separate procedure. In particular,

conditionals and loops sometimes contain code that forms one logical operation, but that is

not the result of a backward slice from any single node.

One example of this situation is error-handling code, such as the two fragments in Fig-

ure 3.7 from the Unix utility tail. The two fragments are identical except for the target of

the final goto, and are reasonable candidates for extraction. They both check for the same

error condition, and if it holds, they both perform the same sequence of actions: calling the

error procedure, setting the global errors variable, and freeing variable tmp. Each of the

two fragments is a “logically complete” computation, as the entire sequence of actions is con-

ditional on, and related to, the controlling condition. (The final goto cannot be part of the

extracted procedure; instead, that procedure would need to return a boolean value to specify

whether or not the goto should be executed. This is described in detail in Section 5.6.)

Note that the two fragments cannot be identified as clones using only backward slicing,

since the backward slice from any statement inside the if fails to include any of the other
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statements in the if. Thus, with backward slicing only, we would identify four clone pairs –

each one containing one of the pairs of matching statements inside the if statements, plus

the if predicates. The forward-slicing step from the pair of matched if predicates allows

us to identify just a single clone pair – the two entire if statements, which are logically

complete computations.

Another example where forward slicing is needed is a loop that sets the values of two

related but distinct variables (e.g., the head and tail pointers of a linked list). In such

examples, although the entire loop corresponds to a single logical operation, backward slicing

alone is not sufficient to identify the whole loop as a clone.

Note that we do forward slicing only in a restricted manner. While we do backward

slicing from every pair of mapped nodes in the clone pair being currently built, along flow-

and control-dependence edges, we do forward slicing only from mapped predicates along

control-dependence edges. Forward slicing along control-dependence edges makes sense for

the reason mentioned above: we want to find groups of statements that form logically atomic

units because of control dependence on a common condition. However, in our experience,

forward slicing along flow-dependence edges gives bad results: many separate computations

(each with its own outputs) can be flow dependent on an assignment statement, and includ-

ing them all in the clone pair (by forward slicing from the assignment) destroys cohesiveness.

Extractability is the remaining desirable characteristic; it is discussed in Section 3.3.2.

3.3 Some details concerning the algorithm

3.3.1 Step 2 of the algorithm: Eliminating subsumed clones

A clone pair P1 subsumes another clone pair P2 iff, treating each clone as a set of nodes,

the two clones in P1 are supersets of the two clones in P2. There is no reason to report

subsumed clone pairs; it is better to reduce the number of clone pairs reported, and to let

the user split large clones if there is some reason to do so. Step 2 of the algorithm finds and

deletes all clone pairs that are subsumed by other clone pairs.
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Figure 3.8 A slice-pair subsumed by another slice-pair

We employ two heuristics in Step 1 of the algorithm in an effort to avoid producing

subsumed clone pairs in the first place. The motivation for doing so is to reduce the running

time of Step 1, which is proportional to the number of clone pairs produced (Step 2 is quite

efficient, comparatively).

3.3.1.1 Heuristic 1: do not treat previously mapped nodes as roots

Assume procedure FindAClonePair is called with two nodes p and q as roots, and assume

two nodes r and s get mapped to each other during the process of finding the matching slice-

pair starting from (p, q). Clearly (r, s) will be placed in the worklist after they are mapped

to each other (see procedure GrowCurrentClonePair in Figure 3.4); therefore backward

slicing will take place from r and s during the production of the slice-pair rooted at (p, q)

(forward slicing will also take place, if r and s are predicates). This means that if we later

try to produce a slice-pair with r and s as roots, we are likely to produce a slice-pair that is

subsumed by the slice-pair rooted at (p, q) found earlier.

The situation just described is depicted pictorially in Figure 3.8. The slice-pair rooted

at (p, q) is shown using one kind of shading (r and s are mapped to each other within this

slice-pair). The subsequently generated slice-pair rooted at (r, s) is shown using a different

kind of shading.

Our heuristic, based on the observation just made, is: remember each pair of nodes that

has so far been mapped to each other in some slice-pair, and do not consider this pair of nodes
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as roots in the future. The set globalHistory is used for this purpose; pairs are inserted into

it in Procedure GrowCurrentClonePair (Figure 3.4), while Procedure FindAllClonePairs

(Figure 3.3) searches it to determine which node pairs should be not considered as root pairs.

3.3.1.2 Heuristic 2: try nodes as roots in a good order

The purpose of this heuristic is to make the earlier heuristic more effective. Consider the

example in Figure 3.8: the earlier heuristic will take effect, and the subsumed slice-pair will

be not produced, only if the algorithm tries (p, q) as a pair of roots before trying (r, s) as

a pair of roots. The second heuristic therefore attempts to find a good order in which to

try the nodes as roots. Intuitively, the idea is to try nodes that are closer to the “leaves”

of a PDG (assuming PDGs were acyclic graphs) as roots before nodes that are farther away

from the “leaves”. This heuristic is incorporated into the approach as follows: For each

PDG p, do a depth-first traversal of p starting from its entry node. Then, for any two

nodes p and r in p, look at the order in which these two nodes were visited (for the first

time) during the depth-first traversal, and try the later-visited node as root first. Procedure

FindAllClonePairs (in Figure 3.3) implements this heuristic.

Note that if there are no cycles in a PDG then this DFS-based approach guarantees that

nodes that come “afterwards” in a PDG are tried as roots first. In the presence of cycles,

although the notion of “afterwards” is not well defined, the approach still imposes some

order on the nodes in the cycle.

3.3.2 Improving the chances of identifying extractable clones

Recall that one of the goals for the approach is to find groups of clones that are extractable

(Section 3.2.2); i.e., we want to find groups of clones such that all the clones can be replaced

(say, with the help of our extraction algorithms) by a call to a single, separate procedure

without any change in the program’s semantics. We now describe two aspects of Step 1 of

the clone-detection algorithm that improve the likelihood that extractable clone groups are

found.
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Fragment 1 Fragment 2

sum = 0

i = 0;

while(i <= 10) {

sum = sum + i;

i++;

}

sum = 0;

i = 0;

while(i < 10) {

i++;

sum = sum + i;

}

Figure 3.9 Example illustrating treatment of loops by algorithm

3.3.2.1 Distinguishing loop-carried flow dependences from loop-

independent flow dependences

Consider the example pair of code fragments in Figure 3.9. Consider the clone pair

identified by the algorithm, starting from the two matching statements “sum = sum + i”.

In both fragments this statement is the target of a flow-dependence edge from the statement

“i++”; however, the flow occurs from a previous iteration to a successive iteration in the

first fragment, whereas in the second fragment the flow occurs within the same iteration. If

the algorithm did not distinguish these two kinds of flows, it would map the two statements

“i++” to each other in the backward slicing step (it would not map any other nodes to each

other, as explained later). In other words, each clone would consist of the two statements

“sum = sum + i” and “i++”. However, this pair of clones is not extractable in any obvious

way (our clone-group extraction algorithm would fail on this pair). The problem is that

the two matching statements cannot be reordered, without affecting semantics, in either

fragment.

To avoid such problems, the algorithm distinguishes loop-independent flows from loop-

carried flows, and maps only flows of like kind to each other (see the second bullet-point

condition within the statement labeled 3 in Procedure GrowCurrentClonePair, Figure 3.4).

Formally, a loop-independent flow from a node n to a node m is a flow from n to m via a

path that involves no back edges of loops that contain both n and m. A back edge of a loop



43

is a CFG edge from a node inside the loop to the loop’s header (entry node). Any flow that

is not loop-carried is loop-independent.

Therefore, in the example in Figure 3.9, starting from the two statements “sum = sum +

i” as roots, the algorithm actually maps no other nodes to each other.

3.3.2.2 Loops crossed by mapped flow-dependence edges must
have matching predicates

We describe here the loop-crossing condition – the third bullet-point condition within

the statement labeled 3 in Figure 3.4. Consider again the example in Figure 3.9. If the loop-

crossing condition were not part of the algorithm, then starting from the two statements

“sum = sum + i” as roots, the algorithm would follow flow-dependence edges backward and

map the two statements “i = 0” to each other, and also the two statements “sum = 0”

to each other. In other words, each clone would consist of three statements: “sum = 0”,

“i = 0”, and “sum = sum + i”. Once again, there is no obvious way to extract these two

clones: extracting the loops themselves is not possible, because the two loop predicates are

non-matching, while the only other option – moving the first two statements in each clone

to inside the loop – changes the semantics of the program. The clone-group extraction

algorithm would, once again, fail on this pair of clones. The loop-crossing condition, which

we explain below, prevents the flow-dependence edges from “i = 0” to “sum = sum + i” in

the two fragments from being mapped to each other, and likewise for the flow-dependence

edges from “sum = 0” to “sum = sum + i”.

The loop-crossing condition is as follows. For each flow-dependence edge n → m, we

build a pair of lists: the first list contains the predicates of the loops that contain n, and the

second list contains the predicates of the loops that contain m. Both lists are sorted from

innermost loop to outermost loop, and both lists omit the predicates of loops that contain

both n and m. Two flow-dependence edges are mapped to each other only if the first lists of

both edges match, and the second lists of both edges match. Two lists match if both contain

the same number of predicates, and corresponding predicates in the two lists match.
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Figure 3.10 Illustration of clone-pairs grouping

In the example under discussion, the pair of lists for the dependence edge “i = 0” → “sum

= sum + i” in the first fragment is (empty list, (“while (i <= 10)”)), while the pair for the

corresponding dependence edge in the second fragment is (empty list, (“while (i < 10)”)).

The second lists of the two edges do not match (the first lists match trivially), and so the

two instances of “i = 0” are not mapped to each other.

3.3.3 Step 3 of the algorithm: Grouping pairs of clones

We describe here Step 3 of the algorithm – combining pairs of clones (generated in

Step 1 and filtered by Step 2) into groups. The example in Figure 3.10, which shows three

PDG subgraphs, illustrates Step 3. Say a1, a2, a3 match each other, b1, b2, b3 match each

other, and c1, c2, c3 match each other. Considering the ai’s as roots, Step 1 finds three

pairs of clones; the first pair is {b1 → a1, c1 → a1}, {b2 → a2, c2 → a2}, the second pair is

{b1 → a1, c1 → a1}, {b3 → a3, c3 → a3}, while the third pair is {b2 → a2, c2 → a2}, {b3 →

a3, c3 → a3}. Notice that the first clone in the first pair is identical to the first clone in the

second pair, that the second clone in the first pair is identical to the first clone in the third

pair, and that the second clone in the first pair is identical to the second clone in the second

pair. Therefore, Step 3 merges the three clone pairs into a single group of three clones:

{b1 → a1, c1 → a1}, {b2 → a2, c2 → a2}, {b3 → a3, c3 → a3}.

We now formally specify the algorithm for Step 3, beginning with two definitions. A clone

is said to be “identical” to another clone iff the two of them, treated as sets of dependence

edges, are equal; two clone pairs are said to “overlap” iff a clone in one of the pairs is identical

to a clone in the other. The approach for this step is: Partition the set of all clone pairs

(that remain after Step 2) based on the transitive closure of the overlap relation (i.e., place
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two clone pairs in the same partition if the two are related by the transitive closure of the

overlap relation). Finally, generate one group of clones from each partition, by unioning the

pairs of clones in the partition and eliminating duplicate copies of identical clones.

3.4 Discussion

Based on experiments (see Chapter 7) with the implementation of the clone-detection

approach, we infer that the approach is likely to find most interesting clone groups, including

ones that involve non-contiguous clones and out-of-order matches. It finds a few uninterest-

ing clones, but mainly at small sizes. (For this reason, and for other reasons discussed in

Section 3.4.4, the programmer needs to examine the output of the tool, and determine from

that the clone groups that are good candidates for extraction.) We provide quantitative

evidence for these claims in Chapter 7. In this section we present a discussion of the merits

and drawbacks of the approach, in a qualitative sense.

3.4.1 Examples of interesting, extractable clones identified

Some examples of interesting clone groups identified by the tool we implemented are

listed below. Each example, except the one involving intertwined clones, is from the source

code of the Unix utility bison; the intertwined clones are from the source code of the Unix

utility sort. These clone groups can all be extracted into separate procedures in a fairly

straightforward manner, and all make sense as separate procedures.

• The four-clone group shown in Figure 3.1; note that two of the clones are non-

contiguous.

• The two clones shown in Figure 3.11 using the “++” signs. Both clones are from the

module of bison that reads the input grammar (bison is a parser generator). Each

case block shown performs the following task: if the current character is a “$”, it

reads the next character and based on what that is, it reads the rest of the token in

an appropriate manner.
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In this example the tool did not identify the ideal clone pair. Ideally, the two statements

labeled (1) should have been mapped to each other; however, the statement labeled

(1) in the first clone is actually mapped to the statement labeled (10) in the second

clone. Also, the calls to “getc” outside the two case blocks, and the switch predicates,

should have been excluded from the clone pair. (The calls to getc cannot be extracted

together with the rest of the clone because of certain flow dependences from these

nodes to other nodes that are not shown in the figure. The switch can technically be

extracted out, by making a duplicate copy of it, but the extracted procedure is more

readable if it contains only the contents of the “case ’$’” block.)

In other words, the tool identified a variant of the ideal clone pair. In fact the tool

identified several other variants of this same ideal clone pair (we discuss this further

in Section 3.4.4). Note that even the ideal clones in this example are non-contiguous

(because the two statements labeled (3) and the statement labeled (2) have to remain

unmapped).

• The two clones shown in Figure 3.5. These were part of a three-clone group. The third

clone involved a different renaming of variables, and used the same statement ordering

as the clone in Fragment 1.

• The pair of intertwined clones shown in Figure 3.6 from sort. Here too the tool found a

variant of the ideal clone pair – ideally the if predicates should not have been included

in the clone pair.

• A group of seven clones, identical except for variable names. Two of the clones are

shown in Figure 3.12. This code prints the contents of an array (check / rrhs), ten

entries to a line, separated by commas.
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++ switch(c) {

...

++ case ’$’:

++ c = getc(finput); (1)

++ type_name = NULL;

++ if (c == ’<’) {

++ register char *cp = token_buffer;

++ while ((c = getc(finput)) != ’>’

++ && c > 0)

++ *cp++ = c;

++ *cp = 0;

++ type_name = token_buffer;

++ c = getc(finput);

++ }

++ if (c == ’$’) {

++ fprintf(fguard, "yyval");

++ if (!type_name)

type_name = rule->sym->type_name; (3)

++ if (type_name)

++ fprintf(fguard, ".%s", type_name);

++ if(!type_name && typed) (4)

++ warns("$$ of ‘%s’ has no declared

++ type", rule->sym->tag);

++ }

++ else if (isdigit(c) || c == ’-’) {

++ ungetc (c, finput);

++ n = read_signed_integer(finput);

++ c = getc(finput);

++ if (!type_name && n > 0)

++ type_name = get_type_name(n, rule);

++ fprintf(fguard, "yyvsp[%d]",

++ n - stack_offset);

++ if (type_name)

++ fprintf(fguard, ".%s", type_name);

++ if(!type_name && typed) (5)

++ warnss("$%s of ‘%s’ has no declared

++ type", int_to_string(n),

++ rule->sym->tag);

++ continue;

++ }

++ else

++ warni("$%s is invalid", (8)

++ printable_version(c));

++ break;

...

}

++ c = getc(finput); (9)

++ c = getc(finput); (10)

c = getc(finput); (11)

++ c = getc(finput); (12)

++ switch(c) {

...

++ case ’$’:

c = getc(finput); (1)

++ type_name = NULL;

++ if (c == ’<’) {

++ register char *cp = token_buffer;

++ while ((c = getc(finput)) != ’>’

++ && c > 0)

++ *cp++ = c;

++ *cp = 0;

++ type_name = token_buffer;

value_components_used = 1; (2)

++ c = getc(finput);

++ }

++ if (c == ’$’) {

++ fprintf(fguard, "yyval");

++ if (!type_name)

type_name = get_type_name(n, rule); (3)

++ if (type_name)

++ fprintf(fguard, ".%s", type_name);

++ if(!type_name && typed) (4)

++ warns("$$ of ‘%s’ has no declared

++ type", rule->sym->tag);

++ }

++ else if (isdigit(c) || c == ’-’) {

++ ungetc (c, finput);

++ n = read_signed_integer(finput);

++ c = getc(finput);

++ if (!type_name && n > 0) (13)

++ type_name = get_type_name(n, rule);

++ fprintf(fguard, "yyvsp[%d]",

++ n - stack_offset);

++ if (type_name)

++ fprintf(fguard, ".%s", type_name);

++ if(!type_name && typed) (5)

++ warnss("$%s of ‘%s’ has no declared

++ type", int_to_string(n),

++ rule->sym->tag);

++ continue;

++ }

++ else

++ warni("$%s is invalid", (8)

++ printable_version(c));

++ break;

...

}

++ c = getc(finput); (9)

++ c = getc(finput); (10)

++ c = getc(finput); (11)

++ c = getc(finput); (12)

(The four final calls to getc actually occur non-contiguously in both fragments.)

Figure 3.11 Two non-contiguous clones identified by the tool in bison
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++ j = 10;

++ for (i = 1; i <= high; i++) {

++ putc(’,’, ftable);

++ if (j >= 10) {

++ putc(’\n’, ftable);

++ j = 1;

++ }

++ else

++ j++;

++ fprintf(ftable, "%6d", check[i]);

++ }

++ j = 10;

++ for (i = 1; i <= nrules; i++) {

++ putc(’,’, ftable);

++ if (j >= 10) {

++ putc(’\n’, ftable);

++ j = 1;

++ }

++ else

++ j++;

++ fprintf(ftable, "%6d", rrhs[i]);

++ }

Figure 3.12 Seven copies of this clone were found in bison
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3.4.2 Examples of interesting, not-easily-extractable clones iden-
tified

The tool also finds some clone groups that are not as readily extractable, but are still

interesting. Some of these clone groups can be extracted by a programmer (although they

would pose challenges to automatic clone-group extraction algorithms, such as our own); such

groups are clearly worth reporting. However, there are some interesting groups identified

that are not easily extractable even by a programmer, but are still worth identifying and

reporting, for a variety of reasons: Mere knowledge of the existence of such clone groups may

improve program understanding. Bug-fixes and enhancements done on one fragment can be

more reliably propagated to other similar fragments that need the same change. Finally, if

the program is ever re-implemented (for any reason), knowledge of the existence of clones will

assist in the creation of a better new design that obviates the need for the clones. Interesting

but not-easily-extractable clone groups identified by the tool fall into several categories, as

discussed below.

3.4.2.1 Category 1: extraction costs outweigh benefits

In this category the clones perform meaningful computations, but the cloned code is not

large enough for the benefits of extraction to outweigh the costs; e.g., the extracted procedure

might need too many parameters, or too many predicates (relative to the size of the clones)

might need to be duplicated to make a group extractable.

3.4.2.2 Category 2: extraction requires appropriate language sup-
port

For the clone groups in this category, the clones within a group differ such that extraction

can be performed only with appropriate language support. Examples of clone groups that

fall into this category are ones that involve slight differences in operators. For example, two

clones identified by the tool were mostly identical, but a “+” in one of the clones corresponded

to a “-” in the other. In other cases clones in a group differ in the types of the variables



50

they involve. For example, there are three for loops in a file in bison, such that each loop

iterates over a linked list, and all three loops are syntactically identical to each other; the

list elements are of different struct types, but each of the types has a next field and a

number field, with the loop doing a computation on the number fields. Procedure extraction

is problematic for both these examples; however with a language like C, macros can be used

to eliminate the clones in both examples. The second example can also be handled using a

template mechanism (as in C++).

3.4.2.3 Category 3: extraction requires sophisticated transforma-

tions

For the clone groups in this category, the clones within a group differ such that sophis-

ticated semantics-preserving transformations are required for extraction.

For example, consider the clone pair shown in Figure 3.13 that is identified by the tool

in bison. The two

case ’\’’: case ’"’ blocks have the same functionality: they read a string (delimited

by single/double quotes) from the input stream finput. Notice that an “if .. else if

..” statement in the first clone (the first statement in the while loop’s body) is replaced

with a sequence of two if statements (in the opposite order) in the second clone. This

difference is a matter of structure, not of semantics. Although our automatic clone-group

extraction algorithm is not sophisticated enough to recognize that one of these clones can

be restructured to make it syntactically identical to the other (and therefore cannot handle

this clone pair), a programmer ought to be able to do this restructuring, and the subsequent

extraction. This extraction would improve the program. Therefore, it is beneficial for clone

groups such as this one to be identified; the tool identifies this clone group, in spite of the

difficult characteristics it exhibits. It does so by:

1. starting from the two matching calls fatal("unterminated string")

2. slicing back from the roots along control-dependence edges to reach the two “if (c

== EOF)” predicates
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3. slicing back from there along loop-carried flow-dependence edges to reach the two “c

= match” statements (these flow dependences occur due to a while loop, not shown

in Figure 3.13, that surrounds each switch statement)

4. slicing backward from there to reach the rest of the clone pair (with forward slicing

also, from predicates reached).

Note that here the tool identified a variant of the ideal clone pair – the ideal clone pair

does not include the switch predicates, and does not include the three other case blocks

(see Figure 3.13).

Another example in this category is a pair of similar fragments, shown in Figure 3.14,

with each fragment reading in a comment from the input grammar. While the two fragments

have many matching statements, there are significant differences between the two:

• The while loop in the first clone has the predicate “while(!ended)”, while in the

second clone the corresponding predicate is “while(in comment)”. The first clone

sets ended to 1 inside the loop when it sees the end of the comment, whereas the

second one sets in comment to 0 when it sees the end of the comment.

• The first clone writes out every character in the comment to one output stream,

faction, whereas the second clone writes out every character to one stream fattrs

and also to another stream fdefines, if fdefines is not null.

• The single “if..else if..else..” statement inside the while loop in the first clone

is replaced by a sequence of three separate if statements in the second clone, and the

matching is out-of-order.

Here again, the tool is able to identify (variants of) this clone pair. It is useful to identify

this clone pair, because a programmer could restructure one of the two fragments to make

it identical to the other, and then derive benefit by extracting the clones into a separate

procedure.
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++ switch(c) {

...

++ case ’\’’:

++ case ’"’:

++ match = c;

++ putc(c, faction);

++ c = getc(finput);

++ while (c != match) {

++ if (c == ’\n’) {

++ warn("unterminated string");

++ ungetc(c, finput);

++ c = match;

++ continue;

++ }

++ else if (c == EOF)

++ fatal("unterminated string at

++ end of file");

++ putc(c, faction);

++ if (c == ’\\’) {

++ c = getc(finput);

++ if (c == EOF)

++ fatal("unterminated string");

++ putc(c, faction);

++ if (c == ’\n’)

++ lineno++;

++ }

++ c = getc(finput);

++ }

++ putc(c, faction);

++ break;

...

++ ... three other case blocks ...

++ switch(c) {

...

++ case ’\’’:

++ case ’"’:

++ match = c;

++ putc(c, fguard);

++ c = getc(finput);

++ while (c != match) {

++ if (c == EOF)

++ fatal("unterminated string at

++ end of file");

++ if (c == ’\n’) {

++ warn("unterminated string");

++ ungetc(c, finput);

++ c = match;

++ continue;

++ }

++ putc(c, fguard);

++ if (c == ’\\’) {

++ c = getc(finput);

++ if (c == EOF)

++ fatal("unterminated string");

++ putc(c, fguard);

++ if (c == ’\n’)

++ lineno++;

++ }

++ c = getc(finput);

++ }

++ putc(c, fguard);

++ break;

...

++ ... three other case blocks ...

Figure 3.13 Two clones in bison that are semantically identical but structurally different
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case ’/’:

putc(c, faction);

c = getc(finput);

if (c != ’*’ && c != ’/’)

continue;

cplus_comment = (c == ’/’);

putc(c, faction);

c = getc(finput);

ended = 0;

while (!ended) {

if (!cplus_comment && c == ’*’) {

while (c == ’*’) {

putc(c, faction);

c = getc(finput);

}

if (c == ’/’) {

putc(c, faction);

ended = 1;

}

}

else if (c == ’\n’) {

lineno++;

putc(c, faction);

if (cplus_comment)

ended = 1;

else

c = getc(finput);

}

else if (c == EOF)

fatal("unterminated comment");

else {

putc(c, faction);

c = getc(finput);

}

}

break;

case ’/’:

c = getc(finput);

if (c != ’*’ && c != ’/’)

ungetc(c, finput);

else {

putc(c, fattrs);

if (fdefines)

putc(c, fdefines);

cplus_comment = (c == ’/’);

in_comment = 1;

c = getc(finput);

while (in_comment) {

putc(c, fattrs);

if (fdefines)

putc(c, fdefines);

if (c == ’\n’) {

lineno++;

if (cplus_comment) {

in_comment = 0;

break;

}

}

if (c == EOF)

fatal("unterminated comment at

end of file");

if (!cplus_comment && c == ’*’) {

c = getc(finput);

if (c == ’/’) {

putc(’/’, fattrs);

if (fdefines)

putc(’/’, fdefines);

in_comment = 0;

}

}

else

c = getc(finput);

}

}

break;

Figure 3.14 Two fragments in bison that each read a comment from the input grammar
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Note that although this example clone pair and the previous one were identified by the

tool despite differences in structure between the clones, the tool cannot in general find all

clone pairs where the clones have similar (or identical) semantics, irrespective of structure

and irrespective of syntactic similarity (that would require solving the program equivalence

problem, which is undecidable). Our approach can find clones only when the statements

in one clone match the statements in the other clone (syntactically) and when dependences

match.

3.4.2.4 Category 4: multiple options for extraction

The clone groups in this category are challenging in the sense that there are multiple

options for extraction, none of which is clearly superior to the others. Consider the example

clone pair in Figure 3.15, identified by the tool in bison. The two fragments each compute a

set (implemented as a bit vector), by adding items to the set in each iteration of the outer

loop. Each fragment actually uses two bit vectors, one to hold the current set and the other

to hold the set as it was at the end of the previous iteration. The body of the outer loop in

the first fragment performs the following tasks:

1. Copy the current set, which is in the bit vector pointed to by N, into the bit vector

pointed to by Np.

2. Turn on additional bits in the bit vector pointed to by Np (this happens in the second

for loop – its actual functionality can be ignored for our purposes).

3. Check if the bit vectors pointed to Np and N are identical. If yes, then nothing was

added to the bit vector in this iteration; therefore, quit the loop. Otherwise, let N point

to the bit vector that Np points to, and vice versa. Therefore N ends up pointing to

the latest version of the set, whereas Np ends up pointing to the set as it was at the

beginning of the current iteration. Then start the next iteration.

The second fragment has similar functionality, except that its second step differs in what

it does (the clones also differ in variable names). Note that both clones identified by the tool
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++ while (1) {

++ for (i = WORDSIZE(nvars) - 1; i >= 0;

++ i--)

++ Np[i] = N[i];

++ for (i = 1; i <= nrules; i++) {

if (!BITISSET(P, i)) {

if (useful_production(i, N)) {

SETBIT(Np, rlhs[i] - ntokens);

SETBIT(P, i);

}

}

++ }

++ if(bits_equal(N, Np, WORDSIZE(nvars)))

++ break;

++ Ns = Np;

++ Np = N;

++ N = Ns;

++ }

++ FREE(N);

++ while (1) {

++ for (i = WORDSIZE(nsyms) - 1; i >= 0;

++ i--)

++ Vp[i] = V[i];

++ for (i = 1; i <= nrules; i++) {

if (!BITISSET(Pp, i) && BITISSET(P, i)

&& BITISSET(V, rlhs[i])) {

for (r=&ritem[rrhs[i]]; *r>=0; r++) {

if (ISTOKEN(t = *r)

|| BITISSET(N, t - ntokens)) {

SETBIT(Vp, t);

}

}

SETBIT(Pp, i);

}

++ }

++ if(bits_equal(V, Vp, WORDSIZE(nsyms)))

++ break;

++ Vs = Vp;

++ Vp = V;

++ V = Vs;

++ }

end_iteration:

++ FREE(V);

Figure 3.15 Two non-contiguous clones identified by the tool in bison
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are non-contiguous. In this example, unlike in the previous two examples, there is no single

obvious strategy for extraction. There are a number of extraction options for this example,

each with its own pros and cons:

• The intervening mismatching code from each fragment can be placed in the extracted

procedure, guarded by boolean parameters. This option is probably not desirable,

because the mismatching code fragments are of large size. However, this is the option

that would be adopted by our clone-group extraction algorithm on this example.

• Each of the two intervening mismatching fragments can be made into a separate pro-

cedure; the matching code can then be extracted such that it contains an indirect call

(*fp), where fp is a function pointer parameter that is set at each call site to the

appropriate procedure.

• The clone pair identified by the tool can be split into two, with the initial match-

ing chunks being extracted into one procedure and the later matching chunks being

extracted into another.

This option, although advantageous in the sense that it involves no guarded code or

calls through function pointers, does have the disadvantage of separating the two cloned

chunks, which are logically related, into two (independent) procedures. However, in

an object-oriented language, this disadvantage can be somewhat overcome by making

the two extracted procedures methods of a common class.

Whereas other previous approaches to clone detection would report each of the two pairs

of matching chunks in this example as a separate clone pair, our approach reports them as

a single clone pair. This is beneficial in two ways:

• As the two cloned chunks are logically related, from the program-understanding per-

spective it helps if they are shown together as a single clone pair.
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• Although the final decision might very well be to split the clone pair into two, presenting

them as one clone pair allows the user to consider all the extraction options listed above.

In other words there is greater flexibility.

3.4.3 Non-one-to-one variable-name mappings

Most of the clone groups identified by the clone-detection approach have the property that

variable names in the clones in a group are involved in a one-to-one mapping; i.e., if a variable

v1 occurs in some position in a clone such that a variable v2 occurs in the corresponding

position in some other clone in the group, then for every position in the first clone where

v1 occurs the corresponding position in the second clone has v2, and vice versa. (All the

example clone groups shown so far in this dissertation have this property.) This property

is desirable because it makes the task of determining the parameters and local variables

of the extracted procedure straightforward (every group of mapped variables becomes a

parameter/local variable of the extracted procedure). However, the clone-detection approach

does not explicitly guarantee this property (recall that, as stated early in this chapter, two

nodes are regarded as matching if their internal expressions are identical ignoring all variable

names and literal values); in fact our implementation did find a few interesting clone groups

that did not satisfy this property. Most such clone groups were, however, still extractable,

although determining the local variables and parameters for the extracted procedure is non-

trivial.

An example of such a clone pair identified by the tool is shown in Figure 3.16. The two

clones are identical, except in the lines labeled (1) and (2); in particular every occurrence of

p (p2) in the first clone corresponds to an occurrence of p (p2) in the second clone, except that

the occurrence of p in the line labeled (1) in the first clone corresponds to p2 in the second

clone. In other words, the variable renaming is not one-to-one (the variable-name mismatch

on line (2), where o_file matches o_override, is not a problem, since these two variables do

not occur anywhere else in the two clones). However, this clone group can be extracted: The

line labeled (1) will, in the extracted procedure, be “p2 = next_token (t + 6)”, where
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if (ignoring)

in_ignored_define = 1;

else {

p2 = next_token (p + 6); (1)

if (*p2 == ’\0’)

fatal (&fileinfo,

_("empty variable name"));

p = strchr (p2, ’\0’);

while (isblank ((unsigned char)p[-1]))

--p;

do_define(p2, p - p2, o_file, (2)

infile, &fileinfo);

}

if (ignoring)

in_ignored_define = 1;

else {

p2 = next_token (p2 + 6); (1)

if (*p2 == ’\0’)

fatal (&fileinfo,

_("empty variable name"));

p = strchr (p2, ’\0’);

while (isblank ((unsigned char)p[-1]))

--p;

do_define(p2, p - p2, o_override, (2)

infile, &fileinfo);

}

Figure 3.16 Example clone pair from make illustrating non-one-to-one variable renaming
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++ p = filename;

...

++ ...p...

....

++ ..p...

++ p = filename;

...

++ ...filename...

....

++ ..filename...

Figure 3.17 Skeleton of a clone pair in make that illustrates non-one-to-one variable
renaming

t is a parameter that is given the values of the variables p and p2 from the two call sites,

respectively. The other variable occurrences in the extracted procedure are identical to the

corresponding occurrences in the two clones, with both p and p2 being “output” parameters

of the extracted procedure.

Figure 3.17 shows (the skeleton of) another clone pair identified by the tool in make that

exhibits non-one-to-one variable renaming. The renaming is not one-to-one in this example

because p in the first clone is mapped to p in the second clone in the first line, but to

filename in the other lines. In this example extraction can be performed by replacing the

second and third occurrences of p in the first clone by filename; this copy propagation step

makes the two clones identical, thereby enabling the creation of the new procedure.

In both the examples above, which were found in real programs by the tool, there was a

clean way to produce the extracted procedure in spite of the non-to-one variable renaming.

It is a strength of our approach that it is able to identify clone groups such as these that are

interesting and extractable, but exhibit non-one-to-one renaming.

Parts (a) and (b) in Figure 3.18 show an (artificial) example clone pair that can be

identified by the approach, but that exhibits characteristics that almost never occur in

practice; the approach can identify this pair of clones by starting from the second pair

of matching nodes (involving the “*” operator), and slicing back from the right-hand-side

operands of the “*” operations to reach the first pair of matching nodes. The variable

renaming in this pair of clones is clearly non-one-to-one; moreover, assuming that variables

b and c are live at the exit of the first clone, and variables e and f are live the exit of the



60

(a) Clone 1

++ b = a + 1;

++ c = a * b;

(c) Rewritten Clone 1

f(&b, &a, &c, &a);

(b) Clone 2

++ e = d + 1;

++ f = e * e;

(d) Rewritten Clone 2

f(&e, &d, &f, &e);

(e) Extracted Procedure

void

f(int *p1, int *p2,

int *p3, int *p4) {

(*p1) = (*p2) + 1;

(*p3) = (*p4) * (*p1);

}

Figure 3.18 Extraction of a difficult-to-extract pair of clones

second clone, because of the mismatching data flows (the left-hand-side operand of the “*”

operator uses a value defined outside the clone in the first clone, but a value defined inside

the clone in the second clone), the solutions discussed in earlier examples do not work. An

extraction solution that does work for this example is shown in parts (c), (d), and (e) of

Figure 3.18; notice that every variable occurrence in the extracted procedure is a pointer

dereference, and that appropriate addresses are passed in the two call sites to ensure that

data flows remain identical before and after extraction. This transformation is not a very

good one, because it is likely to worsen the understandability of the program. However, as we

said earlier, clone groups that we observed in practice almost never exhibit such mismatching

data flows; the few clone groups in real programs that did exhibit non-one-to-one variable

renamings were, in the vast majority of cases, cleanly extractable, as illustrated by the

previous two examples in this section.

3.4.4 A drawback of the approach: variants

An ideal clone group is a clone group that a programmer would consider interesting. A

variant is a clone group that resembles, but is not identical to, an ideal clone pair. The

difference between the variant and the ideal could be in terms of which nodes are included

in the clone group, and/or how the mappings between the nodes in the clones are defined.

Our approach to clone-group detection does have the drawback of often identifying, instead
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of an ideal clone group, multiple (overlapping) clone groups that are all variants of the ideal

group.

We use the clone pair in Figure 3.11, which is identified by the tool in the source code of

bison, and which is a variant of an ideal clone pair, to describe why variants are identified.

The ideal clone pair in this case is the two entire case blocks, excluding the statement labeled

(2) and the two statements labeled (3), and nothing more. The variant clone pair identified

by the tool (shown in Figure 3.11) was obtained by starting from the two matching calls to

warni. Here is how (and why) the variant pair identified by the tool differs from the ideal

pair:

• The two switch predicates are included in the variant identified; they were reached by

backward slicing (along control-dependence edges) from the the pair of case labels.

• Statements (9), (10) and (12) in the first fragment are mapped to statements (9),

(11) and (12) in the second fragment, respectively; these pairs of nodes are reached by

slicing back from the two switch predicates along loop-carried flow-dependence edges

(these flow dependences occur due to a while loop, not shown in Figure 3.11, that

surrounds each switch statement).

• Statement (1) in the first clone is mapped to statement (10) in the second clone,

instead of being mapped to statement (1) in the second fragment. Here is why this

happened: There is a loop-carried flow-dependence edge in the first fragment from

statement (1) to the switch predicate. There is no flow dependence from (11) to the

switch predicate (the path between these two nodes is blocked by a redefinition of c not

shown in the figure). In the second fragment, there are loop-carried flow-dependence

edges from both statements, (1) and (10), to the switch predicate. Therefore there is

non-determinism in the algorithm – when slicing backward from the switch predicates,

(1) in the first fragment could be mapped to either (1) or (10) in the second fragment;

the algorithm ended up making the second (and less desirable) choice.
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The tool also identifies other clone pairs, besides the one shown in Figure 3.11, that are

variants of the same ideal clone pair. One of these other clone pairs is shown in Figure 3.19.

This pair was identified by starting the slicing from predicate (4) in the first fragment and

predicate (5) in the second fragment. In fact the tool identifies yet another clone pair that is

very similar to the one shown in Figure 3.19; the only difference is that this pair was obtained

by starting the slicing from (5) in the first fragment and (4) in the second fragment. Note

that statement (11) in the first fragment is present in the clone pair in Figure 3.19 but

not in the clone pair in Figure 3.11; if this were not true then the clone pair in Figure 3.19

would have been subsumed by the clone pair in Figure 3.11, and therefore would have been

removed from the output of the tool (see Step 2 of the algorithm, at the beginning of this

chapter).

The production of multiple variants of an ideal clone group, instead of just the ideal

group, causes some problems:

• The running time of the tool is proportional to the number of clone groups produced;

therefore, every additional variant produced increases the time requirement.

• Users have to view more clone groups than they would have to if just the ideal groups

were reported. Moreover, they need to recognize which reported variants correspond

to the same ideal group, and they need to determine the ideal groups.

• The operation of Step 3 of the algorithm – grouping – can be affected. Say there

is a group of many (more than two) clones in a program. The algorithm begins by

identifying several pairs of clones (in Step 1). If each clone pair identified is exactly the

ideal one, then all the clone pairs are related to each other via the “overlap” relation

(see Section 3.3.3). Therefore all these pairs would be merged in Step 3 into a single

clone group, which is the ideal outcome. However, due to the variants problem, Step 1

could end up identifying pairs of clones such that no clone in a pair is identical to any

other clone in another pair. If this happens then Step 3 of the algorithm would merge

nothing, therefore leaving all the clone pairs in the final output (which is undesirable).
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++ switch(c) {

...

++ case ’$’:

++ c = getc(finput); (1)

++ type_name = NULL;

++ if (c == ’<’) {

++ register char *cp = token_buffer;

++ while ((c = getc(finput)) != ’>’

++ && c > 0)

++ *cp++ = c;

++ *cp = 0;

++ type_name = token_buffer;

++ c = getc(finput);

++ }

if (c == ’$’) {

fprintf(fguard, "yyval");

if (!type_name)

type_name = rule->sym->type_name; (3)

if (type_name)

fprintf(fguard, ".%s", type_name);

++ if(!type_name && typed) (4)

warns("$$ of ‘%s’ has no declared

type", rule->sym->tag);

}

else if (isdigit(c) || c == ’-’) {

ungetc (c, finput);

n = read_signed_integer(finput);

c = getc(finput);

if (!type_name && n > 0)

type_name = get_type_name(n, rule);

fprintf(fguard, "yyvsp[%d]",

n - stack_offset);

if (type_name)

fprintf(fguard, ".%s", type_name);

if(!type_name && typed) (5)

warnss("$%s of ‘%s’ has no declared

type", int_to_string(n),

rule->sym->tag);

continue;

}

else

warni("$%s is invalid", (8)

printable_version(c));

break;

...

}

++ c = getc(finput); (9)

++ c = getc(finput); (10)

++ c = getc(finput); (11)

++ c = getc(finput); (12)

++ switch(c) {

...

++ case ’$’:

c = getc(finput); (1)

++ type_name = NULL;

++ if (c == ’<’) {

++ register char *cp = token_buffer;

++ while ((c = getc(finput)) != ’>’

++ && c > 0)

++ *cp++ = c;

++ *cp = 0;

++ type_name = token_buffer;

value_components_used = 1; (2)

++ c = getc(finput);

++ }

if (c == ’$’) {

fprintf(fguard, "yyval");

if (!type_name)

type_name = get_type_name(n, rule); (3)

if (type_name)

fprintf(fguard, ".%s", type_name);

if(!type_name && typed) (4)

warns("$$ of ‘%s’ has no declared

type", rule->sym->tag);

}

else if (isdigit(c) || c == ’-’) {

ungetc (c, finput);

n = read_signed_integer(finput);

++ c = getc(finput);

if (!type_name && n > 0)

type_name = get_type_name(n, rule);

fprintf(fguard, "yyvsp[%d]",

n - stack_offset);

if (type_name)

fprintf(fguard, ".%s", type_name);

++ if(!type_name && typed) (5)

warnss("$%s of ‘%s’ has no declared

type", int_to_string(n),

rule->sym->tag);

continue;

}

else

warni("$%s is invalid", (8)

printable_version(c));

break;

...

}

++ c = getc(finput); (9)

++ c = getc(finput); (10)

++ c = getc(finput); (11)

++ c = getc(finput); (12)

(The four final getc()s actually occur non-contiguously, in both fragments.)

Figure 3.19 A clone pair identified by the tool – this pair and the pair in Figure 3.11 are
variants of the same ideal pair
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As discussed in Section 3.2.2.3, the use of forward slicing in the algorithm helps suppress

the production of variants. In addition, the approach incorporates two other heuristics,

distinguishing loop-carried flow dependences from loop-independent ones (Section 3.3.2.1),

and requiring that the loops crossed by mapped flow dependences have matching predicates

(Section 3.3.2.2), for the same purpose. These heuristics increase the likelihood that nodes

that should not be mapped to each other ideally are not mapped to each other by the

algorithm. These heuristics, together with forward slicing, suppress (but do not eliminate)

the production of variants. Therefore, rather than supplying every clone group identified by

the tool directly to an automatic clone-group extraction algorithm, a programmer should

look at the clone groups reported, and adjust them to make them ideal. These adjustments

may include:

• Removing unnecessary nodes from a clone group; e.g., statements (9), (10), (11)

and (12) should be removed from both clones shown in Figure 3.11.

• Adjusting how the nodes in a clone are mapped to nodes in other clones; e.g., the two

statements labeled (1) in Figure 3.11 should be mapped to each other.

• Adding nodes that are not part of the reported clone group, but should be.

• Splitting a large reported clone group into several smaller ones. For instance, the clone

pair shown in Figure 3.13 should be split into four clone pairs, one for each case block.

As another example, the clone pair in Figure 3.15 should perhaps be split into two

clone pairs.

In addition, when the tool reports multiple variant clone groups for the same ideal group

(as illustrated in Figures 3.11 and 3.19), the programmer needs to recognize this, and avoid

redundant work. To support this it might be possible to devise simple, automatic heuristics

that group together related clone groups produced by the tool, and pick and show one or a

few promising candidates from each group to the user.
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In conclusion, the approach does suffer from the problem of variants. However, this is

not an overwhelming problem. In fact, after we ran the tool on the source code of the GNU

utility make, one person (the author) was able to look at all clone groups reported by the

tool whose clones had 30 or more nodes (127 groups), and determine the corresponding ideal

clone groups that were worthy of extraction (11 groups), in less than 4 hours time (we chose

thirty nodes as a size threshold to save manual effort – in our experience interesting clones

are often large). The source code of make is over 30,000 lines long; manual examination of

this much source code is likely to take far more time, and would involve a fair of amount of

risk in terms of missed clones.

3.4.5 Other problems with the approach

Our approach has two other drawbacks, besides identifying variants, that we discuss in

this section.

3.4.5.1 Uninteresting clones are identified

The approach sometimes finds uninteresting clones (clones that do not represent a mean-

ingful computation that makes sense as a separate procedure). An example of a pair of

uninteresting clones identified by the tool in bison is shown in Figure 3.20; these two clones

were identified by starting from the two matching calls to putc, and by following data-

dependence edges backward to reach the matching assignments to c. The two clones are not

meaningful computations, and are not extractable either, even by a programmer.

Although the approach does find uninteresting clones, in our experience the problem is

not a severe one. We found in our experiments (Chapter 7) that most uninteresting clone

groups found by the tool are rather small in size. Conversely, we also found that most

interesting clones were somewhat large in size. Therefore a good heuristic to get around the

problem of uninteresting clones is to pick some reasonable size-threshold and look only at

reported clones of size larger than that threshold.
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while(brace_flag ? ...) {

switch(c) {

...

case ’}’:

++ putc(c, fguard);

...

++ c = getc(finput);

case ’\’’: case ’"’:

...

++ c = getc(finput);

...

case ’/’:

...

++ c = getc(finput);

...

++ c = getc(finput);

...

case ’$’:

...

++ c = getc(finput);

...

}

...

}

while (c != ’}’) {

switch(c) {

...

case ’/’:

...

++ c = getc(finput);

...

case ’$’:

...

++ c = getc(finput);

...

case ’@’:

++ c = getc(finput);

...

++ c = getc(finput);

...

default:

++ putc(c, faction);

}

++ c = getc(finput);

}

Figure 3.20 A pair of uninteresting clones identified by the tool in bison
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1a: c = 2;

2a: d = a * b;

3a: e = b / 2;

4a: f = c + d + e;

1b: c = a - 2;

2b: d = a * b;

3b: e = b / 2;

4b: f = c + d + e;

1c: c = a - 2;

2c: d = 2 + a;

3c: e = b / 2;

4c: f = c + d + e;

Figure 3.21 Example illustrating a group of clones missed by the tool

3.4.5.2 Some groups of clones are missed

The algorithm sometimes misses groups that consist of more than two clones because

it first finds clone pairs, and then combines them into groups. Consider the (toy) example

shown in Figure 3.21. Assuming that the nodes labeled 4 are tried first as roots, the approach

identifies three clone pairs for this example:

• The pair rooted at (4a, 4b) that also contains the node pairs (2a, 2b) and (3a, 3b).

• The pair rooted at (4a, 4c) that also contains the node pair (3a, 3c).

• The pair rooted at (4b, 4c) that also contains the node pairs (1b, 1c) and (3b, 3c).

Note that none of the six individual clones listed above are identical to each other.

Therefore Step 3 of the algorithm (Section 3.3.3) would do nothing on this example, and

the final output would contain all three clone pairs listed above. Note that the ideal group

of three clones, with each clone consisting of a node labeled 3 and a node labeled 4, should

have been identified but was not. In essence, the problem is that when we have multiple

corresponding fragments, matches between an individual pair of fragments may be larger

than the global match, and may be different from matches between other pairs of fragments.

This problem, to some extent, is unavoidable with our current approach. The solution to

this problem would be to modify the approach to find groups of clones directly.
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3.4.6 Time complexity of the approach

In this section we discuss the time complexity of the clone-detection algorithm. We

assume that the PDGs, CFGs and ASTs of all procedures have already been built, and that

each flow-dependence edge has already been marked loop-carried or loop-independent. We

assume that hash table lookups can be done in constant time, and that the maximum nesting

depth of any node in any AST is bounded by a constant.

The worst-case time complexity of the algorithm is O(N2E), where N is the total number

of nodes in the given program, and E is the maximum number of edges in the PDG of any

procedure in the program. We explain this result below, with reference to the procedures in

Figures 3.3 and 3.4:

Procedure FindAllClonePairs: The initial step of partitioning all nodes into equivalence

classes basically involves doing a depth-first search on each CFG in the program. This

takes O(N) time.

Then, procedure FindAllClonePairs calls procedure FindAClonePair O(N2) times.

That procedure is basically a wrapper around procedure GrowCurrentClonePair,

which we discuss next.

Procedure GrowCurrentClonePair: This procedure repeatedly removes node pairs from

the worklist, and for each such pair (node1, node2), maps flow-dependence parents

of node1 to matching flow-dependence parents of node2, control-dependence parents

of node1 to matching control-dependence parents of node2, and control-dependence

children of node1 to matching control-dependence children of node2 (if node1 and

node2 are predicates).

We first consider the mapping of the control-dependence parents. Using hash tables

whose keys are a combination of the expressions inside the predicates and the labels on

the control-dependence edges, the control-dependence parents of node1 can be mapped

to the control-dependence parents of node2 in time O(p), where p is the total number

of control-dependence parents of the two nodes.
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Similarly, the control-dependence children (and flow-dependence parents) of node1 and

node2 can be mapped to each other in time proportional to the total number of such

children (parents).

In other words, for each pair of nodes (node1, node2) removed from the worklist,

processing takes time proportional to the total number of PDG edges incident on these

two nodes. Also, since each node is a member of at most one pair of nodes removed

from the worklist, no PDG edge is visited more than twice during any invocation

of procedure GrowCurrentClonePair (flow-dependence edges are visited only once;

control-dependence edges are visited at most twice – once from the parent and once

from the child). Therefore the worst-case time complexity of one invocation of this

procedure is O(E).

That means that the worst-case time complexity of the entire clone-detection algorithm

is O(N2E).

Note that the expected number of edges in a PDG is at most Me, where M is the

maximum number of nodes in any procedure (in any program), and e is the expected value

of the average number of PDG edges incident on a node in a PDG. We expect M to be

independent of N (the program size); in other words, we expect that procedure sizes have

a constant upper bound, albeit some large constant. Furthermore, we expect e to be a

small constant; in experiments we did using PDGs built by the tool CodeSurfer [Csu], for

large example programs such as bison and make, we found that the average number of

intra-procedural PDG edges per node in a program varied between 2.3 and 3.8.

Although the worst-case time bound of the algorithm is O(N2E), the running time in

practice would be less than that, because the time complexity we have derived here does not

take into account the heuristic that a pair of nodes that gets mapped in some clone pair be

not used a root pair at all in the future (see Section 3.3.1.1). We expect that this heuristic

will let the running time of the approach be much less than what the theoretical result of

this section suggests. Chapter 7 presents actual running times of the implementation of
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the algorithm on three real programs; those numbers indicate that in practice the running

time of the tool grows faster than linearly with the size of the program, but much below a

quadratic rate.
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Chapter 4

Terminology for extraction algorithms

In this chapter we introduce terminology that is needed by the individual-clone and

clone-group extraction algorithms (in addition to the terminology introduced in Chapter 2).

A block is a subgraph of a CFG that corresponds to a single (simple or compound) source-

level statement. Therefore there are several kinds of blocks: assignment, jump (one kind

for each kind of jump), procedure call, if, while, and do while. Each block has a unique

entry node that is the target of all non-jump edges whose sources are outside the block and

whose targets are inside. Each block also has a unique fall-through exit node (outside the

block) such that all non-jump edges whose sources are inside the block and whose targets

are outside have this node as their target.

A block sequence b is a sequence of blocks B1, B2, . . . , Bn (where n ≥ 1) such that the

entry node of block Bi is the fall-through exit node of block Bi−1, for each i in the range 2

through n. The entry node of B1 is the entry node of the entire block sequence b, while the

fall-through exit node of Bn is the fall-through exit of b. Each of the blocks Bi is said to

be a constituent of the block sequence b. Any block sequence obtained by dropping zero or

more leading blocks and zero or more trailing blocks from b is said to be a sub-sequence of b.

A maximal block sequence is one that is not a sub-sequence of any other block sequence.

Nodes are nesting children of predicates in the usual sense (e.g., a node in the “then” part

of an if statement is a true-nesting child of that if statement’s predicate). Block sequences

are nesting children of the blocks that contain them, and of the corresponding predicates.

For example, the “then” and “else” parts of an if statement are maximal block sequences
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that are the true and false nesting children, respectively, of the if block that corresponds

to that if statement; these two block sequences are also nesting children of the if predicate

that corresponds to that if statement. A loop-block has just one maximal block sequence

as its nesting child – the block sequence that constitutes the body of the loop. Assignment,

jump, and procedure-call blocks have no nesting children.

Example: Consider the second CFG fragment in Figure 2.1. The entire fragment is a

while block. The region marked H plus the following fscanf statement is a maximal block

sequence that is the true nesting child of the outer while block. j2, e2, the fscanf statement,

and f2 are the first four constituent blocks of this maximal block sequence. Of these blocks,

f2 is the only one that has a maximal block sequence nested inside it (the “then” part of the

if statement). 2

A hammock is a subgraph of a CFG that has a single entry node (a node that is the

target of all edges from outside the hammock that enter the hammock), and from which

control flows out to a single fall-through exit node (a node that is outside the hammock that

is the target of all edges leaving the hammock). More formally, given a CFG G with nodes

N (G) and edges E(G), a hammock in G is the subgraph of G induced by a set of nodes

H ⊆ N (G) such that:

1. There is a unique entry node e in H such that:

(m 6∈ H) ∧ (n ∈ H) ∧ ((m, n) ∈ E(G)) ⇒ (n = e).

2. There is a unique fall-through exit node t in N (G) − H such that:

(m ∈ H) ∧ (n 6∈ H) ∧ ((m, n) ∈ E(G)) ⇒ (n = t).

An e-hammock (a hammock with exiting jumps) is a subgraph of a CFG that has a single

entry node, and, if all jumps are replaced by no-ops, a single fall-through exit node; i.e., an

e-hammock is a hammock that is allowed to include one or more exiting jumps (jumps whose

targets are not inside the hammock and are not the hammock’s fall-through exit node).

It can be shown that a CFG subgraph is an e-hammock iff the subgraph is a block

sequence having the additional property that its entry node is the target of all incoming
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jump edges (those whose sources are outside the block sequence). The block sequence is a

hammock if, additionally, all outgoing jump edges go to its fall-through exit node.

Example: Every block sequence (including the non-maximal ones) in the second CFG

in Figure 2.1 is an e-hammock; e.g., the circled block sequence labeled H. The two blocks

“fscanf(..,&hours)” and f2 together form a block sequence that is a hammock. 2

The following definitions are adapted from [KKP+81].

Definition 4 (Anti dependence) A node p is anti dependent on a node q iff q uses some

variable v, p defines v, and there is a path P in the CFG from q to p that involves no

non-executable edges. We say that this anti dependence is induced by path P .

Definition 5 (Output dependence) A node p is output dependent on a node q iff both p

and q define some variable v, and there is a path P in the CFG from q to p that involves no

non-executable edges. We say that this output dependence is induced by path P .

Flow, anti, and output dependences are collectively known as data dependences. A data

dependence between two nodes can be induced by more than one path, and one or more

kinds of data dependences may exist between two nodes.
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Chapter 5

Individual-clone extraction algorithm

In this chapter we present the individual-clone extraction algorithm, which can be sum-

marized as follows:

Given: The set of nodes that are to be extracted into a separate procedure (the nodes in

a single clone), as well as the CFG of the procedure that contains these nodes. The

given nodes are referred to in this chapter as the marked nodes.

Do: Find the smallest e-hammock (single-entry CFG subgraph that corresponds to a se-

quence of source-level statements) that contains the marked nodes and that contains

no backward exiting jumps (defined in Section 5.1). Transform this e-hammock in a

semantics preserving manner such that:

• As many of the unmarked nodes in the e-hammock as possible are moved out of

the e-hammock, and

• The e-hammock becomes a hammock (which is a single-entry single-outside-exit

structure).

The transformation done by the individual-clone algorithm is illustrated using the

schematic in Figure 5.1. Part (a) of that figure shows the original clone (the shaded nodes are

the marked nodes); notice that the e-hammock of the clone (the first four nodes) contains an

unmarked node, in addition to the marked nodes. In other words, the clone is non-contiguous.

The e-hammock also contains an exiting jump.
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(b)

hammock

(a)

e−hammock

Figure 5.1 Transformation done by the individual-clone algorithm
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Non-contiguous clones are a problem because it is not clear which of the several “holes”

that are left behind after the marked nodes are removed should contain the call to the new

procedure (in Figure 5.1(a) there were two such holes if the marked nodes were removed).

Exiting jumps are a problem, too; a clone that involves an exiting jump cannot be extracted

as such because, after extraction, control returns from the new procedure to a single node in

the remaining code (the node that immediately follows the call). Figure 5.1(b) contains the

transformed output of the algorithm. The intervening unmarked node has been moved out

of the way of the marked nodes (in general only the intervening unmarked nodes that can

be moved out without affecting semantics are moved out; the others are left behind in the

e-hammock of the clone). The e-hammock has also been converted into a hammock, which,

being a single-entry single-outside-exit structure, is easy to replace by a call; this conversion

is done by converting the exiting jump into a non-exiting jump to the “fall-through exit” of

the clone, and by placing a new copy of the exiting jump outside the clone, controlled by an

appropriate condition.

The algorithm runs in polynomial time (in the size of the e-hammock that contains the

marked code), always succeeds in converting the e-hammock into a hammock (which is not

the case for some previous approaches), and is provably semantics preserving (proofs are

given in Appendices A and B). It performs the following steps:

Step 1:

Find the smallest e-hammock H that contains the marked nodes, and contains no

backward exiting jumps. Because the marked nodes can be non-contiguous, the e-

hammock can contain unmarked nodes in addition to marked nodes. Also, the e-

hammock can contain exiting jumps (whenever we say “exiting jump” in this chapter,

we mean an exiting jump of the e-hammock identified in this step).

(Note: the algorithm transforms H, leaving the rest of the CFG unchanged.)

Step 2:
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Determine a set of ordering constraints among the nodes in the e-hammock based on

data dependences, control dependences, and the presence of exiting jumps.

Step 3:

Promote any unmarked nodes in the e-hammock that cannot be moved out of the way

of the marked nodes without violating ordering constraints. The promoted nodes will

be present in the extracted procedure in guarded form (as indicated in the example in

Figure 1.4(b)).

From this point on, the promoted nodes are regarded as marked.

Step 4:

Partition the nodes in the e-hammock into three “buckets”: before, marked, and after.

The marked bucket contains all the marked nodes. The before and after buckets

contain intervening unmarked nodes that were moved out of the way. Nodes that are

forced by some constraint to precede some node in the marked bucket are placed in

the before bucket; nodes that are forced by some constraint to follow some node in the

marked bucket are placed in the after bucket; each other intervening node is placed

arbitrarily in before or after.

An assignment or procedure-call node in the e-hammock is assigned to exactly one

of the three buckets during the partitioning. However, whenever a node is placed

in a bucket, all its control-dependence ancestors in H are also placed in the same

bucket; if those ancestors (predicates or jumps) are already present in other buckets,

the algorithm creates new copies for the current bucket. In other words, predicates and

jumps may be duplicated (therefore, strictly speaking, this step partitions only the set

of non-predicate and non-jump nodes). However, any individual bucket will contain

only one copy of any node (a bucket is a set of nodes).

Step 5:
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Create three e-hammocks from the nodes in the before, marked, and after buckets,

respectively. Let the relative ordering of nodes within each e-hammock be the same

as in the original e-hammock H. String together the before, marked, and after e-

hammocks, in that order, to create a new (composite) e-hammock O; do this by using

the entry node of the marked e-hammock as the fall-through exit node of the before

e-hammock, and using the entry node of the after e-hammock as the fall-through exit

node of the marked e-hammock.

Step 6:

Convert the marked e-hammock (which is now a part of the composite e-hammock O)

into a hammock by converting all exiting jumps in it to gotos whose targets are the

entry node of the after e-hammock, and by placing compensatory code in the beginning

of the after e-hammock. The composite e-hammock O, after this conversion, is the

output of the algorithm. Finally, replace the original e-hammock H in the CFG with

the new e-hammock O to obtain a resultant program that is semantically equivalent

to the original, and from which the marked nodes are extractable (because they form

a hammock).

Example: Consider the two CFGs in Figure 2.1, which correspond to the two fragments

in Figure 1.1. Each clone is indicated using shaded nodes. The e-hammock of each clone

(i.e., H) that is identified in Step 1 of the algorithm is indicated using a dashed oval. The two

corresponding output e-hammocks O produced by the algorithm are shown in Figure 5.2;

each dashed oval here indicates the “marked” hammock, while the fragments before and

after this oval are the “before” and “after” e-hammocks, respectively. 2

The rest of this chapter is organized as follows. The six steps in the algorithm are

described, respectively, in Sections 5.1 through 5.6. Section 5.7 summarizes the features of

the algorithm, while Section 5.8 discusses its worst-case complexity.
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Figure 5.2 Result (O) of applying individual-clone algorithm on each clone in Figure 2.1.
Each dashed oval is the “marked” hammock; the fragments above and below the ovals are

the “before” and “after” e-hammocks, respectively.
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5.1 Step 1: find the smallest e-hammock containing the clone

This step identifies the smallest e-hammock H that contains the marked nodes, and

contains no backward exiting jumps – exiting jumps whose targets are postdominated by

the entry node of H. The algorithm for finding this e-hammock is given in Figure 5.3 (we

discuss later the reason for disallowing backward exiting jumps). The algorithm is based on

the fact that every e-hammock is a block sequence. We start by assigning all marked nodes

to a set included, and finding the most deeply nested, shortest block sequence sequence

that completely contains included. If sequence includes no nodes (besides the entry node)

that are targets of outside jumps, and contains no backward exiting jumps, then we stop

(sequence is the e-hammock we seek). Otherwise, we add the offending outside jumps as

well as the targets of the backward exiting jumps to the set included, and find the mostly

deeply nested, shortest block sequence that contains (the newly updated set) included.

This process continues until the block sequence in hand (sequence) is an e-hammock that

contains no backward exiting jumps.

Example: We trace the algorithm in Figure 5.3 on the first clone in Figure 2.1. included

initially contains all the marked nodes (the shaded nodes). The most deeply nested, shortest

block sequence that contains all the marked nodes is [e1, f1, j1, b1, k1]. In the first for loop

(lines 4-6) the node “nOver++” gets added to included. Then entry gets set to e1. Nothing

gets added to included in the second for loop (lines 9-17); there are no edges coming into

any of the included nodes from outside except to e1, and the target of d1 (the only exiting

jump) is not postdominated by e1. Therefore H is equal to the included nodes, as indicated

by the dashed oval in Figure 2.1. 2

The left column of Figure 5.4 has an example that illustrates the need to disallow back-

ward exiting jumps. The marked nodes are indicated by the “++” signs. Notice that the

intervening unmarked node “n++” cannot be moved after all the marked nodes, because

there is a flow dependence from “n++” to the marked node “avg = sum / n”. Therefore,
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1: included nodes = marked nodes

2: repeat

3: Find the most deeply nested, shortest block sequence sequence that contains all the

included nodes.

4: for all constituent blocks c of sequence do

5: Add all nodes in c to included.

6: end for

7: entry = entry node of the first constituent block of sequence

8: done = true

9: for all included nodes v do

10: if (v != entry) and (there is a CFG edge from some non-included node s to v)

then

11: Add s to included. Set done = false.

12: end if

13: if (v is a jump node) and (the true target t of v is non-included) and (entry

postdominates t) then

14: Add t to included. Set done = false.

15: end if

16: end for

17: until done

18: Smallest containing e-hammock H = included nodes.

Figure 5.3 Algorithm to find the smallest e-hammock that contains the marked nodes



82

Original Fragment H Output O

L: k++;

++ sum = sum + k;

++ if(k < 10)

++ goto L;

n++;

++ avg = sum / n;

n++;

++ L: k++;

++ sum = sum + k;

++ if(k < 10)

++ goto L;

++ avg = sum / n;

Figure 5.4 Example illustrating backward exiting jumps

“n++” can only be moved before all the marked nodes. Notice also that the first three state-

ments in the example – “k++”, “sum = sum + k”, and “if(k < 10) goto L” – form a loop.

Therefore, if we move “n++” to just before the first marked node, “sum = sum + k”, we

would be moving it from its original location outside the loop to inside the loop, which is

an incorrect transformation. The correct transformation is to move “n++” to before “k++”,

therefore keeping it outside the loop. If the algorithm did not have the no-backwards-jumps

requirement, the smallest e-hammock found by Figure 5.3 would only include the statements

“sum = sum + k” through “avg = sum / n”. “n++” would then be moved out to the be-

fore e-hammock, i.e., before “sum = sum + k” (which would be the first node in the marked

hammock). In other words, “n++” would be moved between “k++” and “sum = sum + k”.

This, as we noted earlier, is an incorrect transformation.

We now illustrate how the algorithm does the correct transformation as a result of the

no-backwards-exiting jumps requirement. The algorithm in Figure 5.3, when applied to this

example, initially puts the statements from “sum = sum + k” through “avg = sum / n”

into sequence. It then adds “k++” to sequence in lines 13-15 (because “k++” is the target

of the goto and is postdominated by the current entry node “sum = sum + k”). Therefore,

the e-hammock finally identified in Step 1 is the entire fragment shown in the left column of

Figure 5.4.
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Subsequently, Step 3 (described in Section 5.3) promotes “k++” (but not “n++”). There-

fore “k++” becomes the first node in the marked hammock. Then, “n++” is moved to the

before e-hammock (i.e., to before “k++”). The final result of the algorithm (which is seman-

tically equivalent to the original) is shown in the right column of Figure 5.4.

5.2 Step 2: generate ordering constraints

This step is the heart of the extraction algorithm; it determines constraints among the

nodes in H based on data dependences, control dependences and the presence of exiting

jumps. The constraints generated are of three forms: “≤” constraints, “⇒” constraints, and

“;” constraints. Each constraint involves two nodes in H (the meanings of the three kinds

of constraints are given in Figure 5.5). The constraints are used in Step 3 to determine

which unmarked nodes must be promoted; they are also used in Step 4 to determine how

to partition the remaining unmarked nodes between the before and after buckets, while

preserving data and control dependences, and therefore the original semantics.

The constraints are generated in two steps. In the first step “base” constraints are

generated, using the rules in Figure 5.5. In the second step extended constraints are generated

from the base constraints, as described in Figure 5.6. The extended constraints are implied

by base constraints, but must be made explicit in order for Step 3 (promotion) and Step 4

(partitioning of unmarked nodes) to work correctly. Each rule in Figure 5.6 specifies the

pre-conditions on the left hand side of the “⊢”, and the corresponding extended constraint

that is generated on the right hand side.

The following subsections explain the (base and extended) constraints-generation rules

of Figures 5.5 and 5.6, categorized by their reason of generation (data dependences, control

dependences, or presence of exiting jumps).

5.2.1 Data-dependence-based constraints

The first rule in Figure 5.5 and the first rule in Figure 5.6 both pertain to data depen-

dences. The essential idea is that if a node n is data dependent on a node m, then no copy
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1. Data-dependence constraints: For each pair of nodes m, n in H such that n is data (i.e.,

flow, anti, or output) dependent on m, and such that the data dependence is induced

by a path contained in H, generate the constraint m ≤ n. This means that (a copy of)

m must not be placed in any bucket that follows a bucket that contains (a copy of) n

(recall that the order of the buckets is before, marked, after).

2. Control-dependence constraints: For each node n in H, and for each predicate or jump

p in H such that n is (directly or transitively) control dependent on p in the original

CFG, generate a constraint n ⇒ p. This means that (a copy of) p must be present in

each bucket that contains (a copy of) n.

3. Antecedent constraints: For each node n in H that is neither a predicate nor a jump and

for each exiting jump j in H such that there is a path in H (ignoring non-executable

edges) from n to j generate a constraint n ; j. This means two things:

• if n is in the after bucket then a copy of j must be included in the same bucket.

• if n but not j is in the marked bucket then a copy of j must be included in the

after bucket.

Figure 5.5 Rules for generating base ordering constraints

Apply the following rules repeatedly until no more extended constraints can be generated:
1. a ≤ b, b ≤ c ⊢ a ≤ c.

2. p ≤ b, a ⇒ p ⊢ a ≤ b.

3. b ≤ p, a ⇒ p ⊢ b ≤ a.

4. n ; j, j ≤ m ⊢ n ≤

m.

Figure 5.6 Generation of extended ordering constraints
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of m should be present in a bucket that comes after a bucket that contains a copy of n.

This, together with the fact that the relative ordering of nodes within any result e-hammock

(before, marked, or after) is the same as in the original e-hammock H (see Section 5.5),

ensures that any node n is flow/anti/output dependent on a node m in the output of the

algorithm iff it is flow/anti/output on node m in the original program. This property is an

important aspect of our sufficient condition to guarantee semantics preservation.

Example: Consider the second clone in Figure 2.1. One of the data-dependence con-

straints generated for that example is: “fscanf(..,&hours)” ≤ “if(hours > 40)” (due to

a flow dependence). This constraint forces the fscanf statement to be placed in the before

bucket in Step 4, since the fscanf statement is an unmarked node and the if predicate is

marked. 2

5.2.2 Control-dependence-based constraints

The second rule in Figure 5.5 generates base control-dependence constraints. These

constraints, together with the fact that in the resultant CFG produced by the algorithm

the relative ordering of nodes within any e-hammock (before, marked, or after) is the same

as in the original e-hammock H, ensure that control dependences in the original code are

preserved; this too is an important aspect of semantics preservation.

Example: Consider the first clone in Figure 2.1. One of the control-dependence-based

constraints generated for this clone is “nOver++” ⇒ “if(hours > 40)”, which says that a

copy of the predicate “if(hours > 40)” must be placed in the same bucket as “nOver++”.

Since the if predicate is also a control-dependence parent of several marked nodes, a copy

will also be placed in the marked bucket. This is the reason for the duplication of the if

predicate in the algorithm output shown in Figure 5.2.

The if needs to be present in the same bucket as the node “nOver++” to ensure that this

node executes only in those iterations of the loop in which “hours > 40” is true (otherwise

this node would execute in every iteration of the loop, which is not the original semantics).

2
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2: ...

1: if (x > 0)
T F

3: x++

Figure 5.7 Example illustrating control-dependence-based extended constraints

Control dependence is also used to generate extended constraints. The second and third

rules in Figure 5.6 are the pertinent rules, and we illustrate them using the example in

Figure 5.7. Assume that node 3 is marked, nodes 1 and 2 are unmarked, and node 2 does

not involve the variable x. The base constraints that are generated are 1 ≤ 3 (due to anti

dependence), and 2 ⇒ 1 (due to control dependence). The second rule in Figure 5.6 therefore

applies, yielding the extended constraint 2 ≤ 3. This constraint makes intuitive sense, given

the meanings of the two base constraints that were used to produce it. Because node 3

is marked, this constraint forces the algorithm (in Step 4) to place node 2 (and a copy of

node 1) in the before bucket. This is the correct outcome.

If the extended constraint 2 ≤ 3 were not produced, then node 2 would be unconstrained.

Therefore it could be placed in the after bucket in Step 4, which would be followed by an

assignment of a copy of node 1 to the same bucket (due to 2 ⇒ 1). This is a violation

of the base constraint 1 ≤ 3 (node 3 is in the marked bucket); therefore, the algorithm

would have to undo the assignments of nodes 1 and 2 to after (by backtracking). The

extended-constraints rules allow the algorithm to avoid backtracking.

5.2.3 Exiting-jumps-based constraints

The final rules in both Figures 5.5 and 5.6 are based on the presence of exiting jumps.

Before describing these rules, we present an example in Figure 5.8 that illustrates the intri-

cacies in handling exiting jumps. The left column in the figure is a fragment of code, with

the marked nodes indicated by the “++” signs (the surrounding loop, to which the break

pertains, is not shown). The data- and control-dependence-based constraints generated for
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Original Fragment H Incorrect Output Correct Output O

++ x = 0;

y = x;

if (p)

break;

a = 1;

++ b = a;

if (p)

break;

a = 1;

++ x = 0;

++ if (p)

++ break;

++ b = a;

y = x;

if (p)

goto L1;

a = 1;

L1:

++ x = 0;

++ if (p)

++ goto L2;

++ b = a;

L2:

y = x;

if (p)

break;

Figure 5.8 Example illustrating handling of exiting jumps
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this example are “x = 0” ≤ “y = x”, “a = 1” ≤ “b = a” (both due to flow dependences),

and “a = 1” ⇒ “break”, “a = 1” ⇒ “if (p)”, “b = a” ⇒ “break”, “b = a” ⇒ “if (p)”

(all due to control dependences; recall that the break is a pseudo-predicate, which means

that the two nodes following it are control dependent on it). The middle column shows the

output of the algorithm if it generated no exiting-jumps-based constraints and did no other

special processing of exiting jumps. Note that “a = 1” and “y = x” have been moved out to

the before and after e-hammocks respectively; and copies of the if predicate and the break

have been placed both in before and in marked because “a = 1” (in before) and “b = a” (in

marked) are control dependent on them. This output, however, is incorrect: whenever “p”

is true in the initial state, none of the assignment nodes would be reached, whereas in the

original code “x = 0” and “y = x” would be reached.

Before we discuss the correct solution, we introduce a definition.

Definition 6 (Antecedent of an exiting jump) An antecedent of an exiting jump j in

H is any node n such that n is not a predicate or jump and such that there is a path in H

involving no non-executable edges from n to j.

Informally speaking, an antecedent of an exiting jump is a node that can be reached in an

execution of H before control reaches the exiting jump.

Returning to the example in the middle column of Figure 5.8, the problem is as follows: A

copy of the break was placed in the before e-hammock because “a = 1” (which is in before)

is control dependent on it; however, this break ends up bypassing its antecedents “x = 0”

and “y = x” (in the marked and after e-hammocks, respectively), although its purpose is to

bypass “a = 1” only. Similarly, the copy of the break in the marked hammock incorrectly

bypasses its antecedent “y = x” in the after e-hammock, although its purpose is to bypass

“b = a” only. The solution we adopt is based on the following rule:

Rule for exiting jumps: Let j be any exiting jump in H, let n be any antecedent

of j, and let B be the e-hammock of O (B is before, marked or after) that

contains n. A copy of j is needed either in B, or in some e-hammock of O that
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follows B. The last copy of j remains an exiting jump, but each previous copy is

converted into a goto whose target is the fall-through exit of the e-hammock that

contains that copy. This goto will (correctly) bypass subsequent nodes within

that e-hammock that were originally control dependent on j, but will not bypass

n.

The final column of Figure 5.8 illustrates the above rule. Notice that a copy of the break

is placed in the after e-hammock even though this e-hammock contains no nodes that are

control dependent on the break; the reason for this is that “y = x” is an antecedent of the

break.

The exiting-jumps-based constraints (in Figures 5.5 and 5.6) can now be explained. The

final rule in Figure 5.5 is a direct consequence of the “Rule for exiting jumps” defined above.

The final rule in Figure 5.6 is based on the following reasoning:

1. n ; j implies that a copy of j is needed either in n’s bucket or in some bucket that

follows n’s bucket.

2. j ≤ m implies that m should not be present in any bucket that precedes a bucket that

contains j.

3. the above two points imply that m should not be present in any bucket that precedes

the bucket that contains n; i.e., n ≤ m.

5.3 Step 3: promote unmovable unmarked nodes

Figure 5.9 gives the procedure for promoting nodes. The first rule in that figure follows

intuitively from the meaning of a “≤” constraint. Consider the third rule. Recall that the

constraint m ⇒ p means that a copy of p is required in the same bucket as m (i.e., in the

marked bucket); this constraint does not disallow copies of p from being present in other

buckets. In spite of this it makes sense to promote p, because this promotion might lead us

to discover that some other unmarked node r cannot be moved out of the way of the marked
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Apply the following rules repeatedly, in any order, until no more nodes can be promoted:

1. If there exist constraints m1 ≤ n and n ≤ m2, such that n is unmarked and m1, m2 are

marked, promote n.

2. If there exist constraints m1 ; j and j ≤ m2, such that j is unmarked and m1, m2 are

marked, promote j.

3. If there exists a constraint m ⇒ p such that m is marked and p is unmarked, promote

p.

A promoted node is regarded as marked as soon as it is promoted.

Figure 5.9 Procedure for promoting nodes
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nodes and needs to be promoted (e.g., there might exist constraints m3 ≤ r and r ≤ p, where

m3 is a marked node). The second rule in Figure 5.9 is based on the following reasoning:

1. m1 in the marked bucket and m1 ; j means that a copy of j is needed either in the

marked bucket or in the after bucket.

2. m2 in the marked bucket and j ≤ m means that j should not be placed in the after

bucket (i.e., it must be in the before or marked bucket).

3. The above two points imply that a copy of j is needed in the marked bucket. Therefore,

repeating our earlier argument, j needs to be promoted.

Example: Consider the second clone in Figure 2.1. Two of the data-dependence con-

straints in this example are “excess = hours-40” ≤ “excess=10” (due to output depen-

dence), and “excess=10” ≤ “overPay = excess*oRate” (due to flow dependence). These

two constraints cause “excess=10” to be promoted (by the first rule in Figure 5.9). This

in turn causes the predicate “if(excess > 10)” to be promoted (due to the constraint

“excess=10” ⇒ “if(excess > 10)”). The remaining unmarked node “fscanf(..&hours)”

does not get promoted. 2

5.4 Step 4: partition nodes into buckets

We have so far discussed informally how a node can be forced by the constraints into a

particular bucket; this notion is formalized in Figure 5.10. The procedure for partitioning

nodes into buckets is given in Figure 5.11. The procedure is iterative; it assigns forced nodes

to their buckets whenever possible, and arbitrarily selects unforced nodes and assigns them

to arbitrary buckets when no forced nodes are available.

We note again that since predicates and jumps can be placed in multiple buckets, this

step, strictly speaking, partitions only the set of non-predicate and non-jump nodes.

Example: Consider the first clone in Figure 2.1. All the marked nodes are first assigned

to the marked bucket. No nodes are subsequently forced. Therefore the unmarked node
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A node r is forced into the before bucket if r is not in the marked bucket and any of the

following conditions hold:

B1: there exists a constraint r ≤ b, where b is a node in the before bucket.

B2: there exists a constraint r ≤ m, where m is a node in the marked bucket.

A node s is forced into the after bucket if any of the following conditions A1 through A4

hold. Conditions A1-A3 are applicable only if s is not in the marked bucket; A4 is applicable

even if s is in the marked bucket.

A1: there exists a constraint a ≤ s, where a is a node in the after bucket.

A2: there exists a constraint m ≤ s, where m is a node in the marked bucket.

A3: there exists a constraint m ; s, where m is a node in the marked bucket.

A4: there exists a constraint a ; s, where a is a node in the after bucket.

Figure 5.10 Rules for forced assignment of nodes to buckets
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Place each marked (and promoted) node in the marked bucket. Then, partition the unmarked

nodes into before and after :

1: repeat

2: if there exists at least one node that is forced to be in one of the two buckets before

or after (as defined in Figure 5.10), and is not already in that bucket then

3: Let n be an arbitrarily chosen forced node, and let B be the bucket into which n is

forced. Assign n to B (make a fresh copy in case n is already in another bucket)

4: else if there exists at least one node that is not a “normal” predicate (i.e., not an if,

while, or do-while predicate) and that is not in any bucket, including the marked

bucket then

5: Let n be an arbitrarily chosen unmarked non-normal-predicate that is not in any

bucket. Assign n to one of the two buckets before or after, chosen arbitrarily.

6: end if

7: If a node n was assigned in the previous if statement to a bucket, then place copies of

predicates and jumps in H on which n is (directly or transitively) control dependent

in the same bucket as n.

8: until no node was assigned to any bucket in the current iteration

Figure 5.11 Procedure for partitioning nodes into buckets
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“nOver++” is arbitrarily placed in a bucket, say before. This causes a copy of its control-

ling predicate “if(hours > 40)” to be also placed in that bucket. That completes the

partitioning of this clone.

Consider next the second clone in Figure 2.1. Here, after the marked nodes (including the

two promoted nodes “if(excess > 10)” and “excess = 10”) are assigned to the marked

bucket, there does exist a forced node: the unmarked fscanf node is forced by the flow-

dependence constraint “fscanf(..,&hours)” ≤ “if(hours>40)” (and by other constraints)

into the before bucket. This unmarked node has no control-dependence ancestors in H,

therefore no predicate is simultaneously placed in before. That completes the partitioning of

this clone. 2

5.5 Step 5: create output e-hammock O

The first thing in this step is to convert each of the three buckets into its corresponding

e-hammock. A bucket B is converted into its corresponding e-hammock by making a copy

of H and removing from that copy non-B nodes (nodes that are not in B). A non-B node

in H that has no incoming edges from B-nodes (nodes in B) is removed from the copy of

H simply by deleting it and all its incident edges. Considering the other case, let t be any

non-B node that does have incoming edges from B-nodes in H. It can be shown that t

satisfies the following two properties (see Lemma B.3 and its proof in Appendix B):

1. At most one B-node in H can be reached first (i.e., without going through other

B-nodes) along paths in H starting at t.

2. Moreover, if a B-node h can be reached by following paths in H from t, then there is

no path from t that leaves H without going through h.

If no B-node in H is reachable from t, then t is removed from the copy of H by redirecting

all edges entering it to the fall-through exit of this copy. On the other hand, if a unique

B-node h is reachable from t in H, then all edges entering t in the copy are redirected to h.
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The entry node of the copy (which will be an e-hammock) is the entry node e of H, if e is a

B-node, else it is the unique B-node in H that is first reached from e.

As a result, if in any execution of H control flows through some B-node m, then through

some sequence of non-B nodes, then through another B-node t, then in the created e-

hammock corresponding to B the immediate CFG successor of m is t. In other words,

considering the nodes in B, the relative ordering of these nodes within the created e-hammock

corresponding to B is the same as it is in H. This property, together with the property

that the partitioning of nodes into buckets in Step 4 satisfies all constraints, is sufficient to

guarantee semantics preservation.

After the three result e-hammocks are created (as described above), they are strung

together in the order before, marked, after to obtain the e-hammock O.

Example: Consider the first clone in Figure 2.1. At the end of the previous step, the

before bucket contains “nOver++” and n1, the marked bucket contains all the shaded nodes

in that figure, and the after bucket is empty. Creating the before e-hammock consists of

creating a copy of H, and removing every node from that copy except for “nOver++” and

n1. As a result n1 becomes the entry node of the before e-hammock; the true edge out of

n1 goes to “nOver++” (which is the unique before node reachable from g1 in H); the false

edge out of n1 as well as the edge out of “nOver++” go to the fall-through exit of the before

e-hammock (because no before nodes are reachable from those two edges in H). Creating

the marked e-hammock involves removing only the node “nOver++”. The result e-hammock

O (as it is at the end of the next step, Step 6) is shown within the dashed oval in Figure 5.2.

2

5.6 Step 6: convert marked e-hammock into a hammock

Exiting jumps are now processed specially, as described below. If copies of an exiting-

jump node j of H are present in multiple result e-hammocks (before, marked, after), then

each copy except the last one is converted into a goto whose target is the fall-through exit

of the e-hammock that contains that copy (see “Rule for exiting jumps” in Section 5.2.3).
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Additionally, if the marked e-hammock contains the last copy of an exiting jump j, then

the following are done: This copy is converted into a goto whose target is the entry of the

after e-hammock. An assignment “exitKind = enc” is inserted just before this new goto,

where enc is a literal that encodes the kind of j (break, continue, return, or goto). In case

j is a goto or return, and there are multiple exiting jumps in the marked e-hammock of the

same kind as j (goto or return), then enc additionally encodes which goto/return j is;

this is needed because different gotos can have different targets, and different returns can

have different return expressions. A new assignment “exitKind = FALLTHRU” is placed in

the marked e-hammock, at its end (i.e., all edges from within the marked e-hammock whose

targets were the fall-through exit of that e-hammock are redirected to this new assignment,

and a CFG edge is added from this assignment to that fall-through exit). Finally, the

following new compensatory code is placed at the entry of the after hammock (as the target

of the newly obtained goto): an if statement of the form “if (exitKind == enc) jump”,

where jump is a copy of the exiting jump j. All told, these activities have the following

effect: every exiting jump in the marked e-hammock is converted into a jump to the fall-

through exit of that e-hammock, thereby changing this e-hammock into a hammock. The

assignments to exitKind and the compensatory code are added to “undo” the change in

semantics caused by the jump conversion; in other words, the behavior of the converted

marked hammock together with the compensatory code is the same as the behavior of the

unconverted marked e-hammock.

Note that copies of a goto node in H may be present in more than one of the created

e-hammocks, with each copy having a different target. In that case, unique labels will need

to be supplied for each copy during conversion of O into actual source code (but this is

straightforward).

The algorithm is now finished. When the marked hammock is extracted out into a

separate procedure all gotos in this hammock whose targets are the fall-through exit of this

hammock are simply converted into returns.
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Example: Consider again the first clone in Figure 2.1. The break is present in only one

e-hammock – the marked e-hammock. This being the last copy of the break, it is converted

into a goto whose target is the entry of the after e-hammock. The assignments to exitKind

are then introduced in the marked hammock, and compensatory code is introduced in the

after e-hammock. The final result is shown in Figure 5.2. In Figure 5.2 the marked hammock

is indicated with the dashed oval, while the fragments preceding and following this oval are

the before and after e-hammocks, respectively. 2

5.7 Summary

The algorithm described in this chapter combines the techniques of statement reordering,

promotion, and predicate duplication to extract difficult clones. The idea is to use statement

reordering to move as many unmarked nodes that intervene between marked nodes as possible

into the before and after buckets; only the unmarked nodes that cannot be moved away

while satisfying the ordering constraints are promoted. Predicate duplication is tied in with

reordering and happens indirectly: whenever a node is placed in a bucket, all its control-

dependence ancestors are placed in the same bucket (even if they are already present in other

buckets).

The goal behind this strategy is to deal with as many unmarked nodes as possible using

movement (i.e., reordering) and to minimize promotions; this is a good thing, because it

reduces the amount of guarded non-clone code in the extracted procedure. The algorithm

never fails; i.e., it always succeeds in making the marked nodes form a hammock (it promotes

as many nodes as are necessary to avoid failure).

Our key contribution in the context of this algorithm is the rules for generating ordering

constraints. The constraint-generation rules take into account not just data and control de-

pendences, but also the presence of exiting jumps, which have not been handled in previously

reported approaches for the same problem. The constraints generated have the following de-

sirable properties:
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• No node can be forced (in Step 4 of the algorithm) into both the before and the after

buckets by the constraints. (As many nodes as needed are promoted, by the promotion

rules, to guarantee that this never happens.)

• The constraints are “complete”; i.e., if at any point in Step 4 there is no node available

that is forced by the constraints, then any one of the remaining unassigned nodes n can

be selected and assigned to either of the two buckets before or after, with the guarantee

that the remaining nodes can be partitioned without violating any constraints, without

a need to backtrack to n to try the other choice (bucket) for it. The absence of

backtracking in the algorithm allows it to have worse-case time complexity that is

polynomial in the size of the e-hammock H (details in Section 5.8).

• Any partitioning of the nodes in the original e-hammock H into before, marked, and

after that satisfies all constraints is provably semantics preserving (see proof in Ap-

pendix B).

In general there may be many partitionings that satisfy all constraints. Step 4 of the

algorithm finds one such partitioning, by making arbitrary choices when nothing is

forced. We prove in Appendix A that the partitioning found by the algorithm indeed

satisfies all constraints.

5.8 Complexity of the algorithm

The worst-case time complexity of the individual-clone algorithm is O(n2V + n3), where

n is the number of nodes in the smallest e-hammock that contains the marked nodes, and V

is the number of variables used and/or defined in the e-hammock. We derive this result in

the rest of this section by discussing each step of the algorithm. We assume that the CFGs

and Abstract Syntax Trees (ASTs) of all procedures are already available; we also assume

that the use and def sets and control-dependence ancestors of all nodes are pre-computed.

We assume that hash table lookups take constant time. The derivation makes use of the fact

that the number of edges adjacent on any node in a CFG is bounded by a constant.
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Step 1: This step finds the smallest e-hammock that contains the marked nodes. Figure 5.3

gives the procedure for this step. This procedure needs O(n2) time in the worst-case,

as explained below.

The outermost repeat loop in that figure iterates at most n times (because each

iteration adds at least one node to included, and the final contents of included is the

e-hammock H, which has n nodes). Let us consider the body of the repeat loop.

Finding the most deeply nested, innermost block sequence sequence that contains the

included nodes takes O(n) time (essentially, it requires a walk up the AST from the

included nodes until their lowest common ancestor is reached; we assume that the

depth of the AST is bounded by a constant). The second forall loop in the repeat

loop’s body also takes O(n) time. Therefore the total time requirement of this step is

O(n2). (We assume that postdominators have been computed initially; that has time

complexity O(n2).)

Step 2: Generating base constraints, as specified in Figure 5.5, takes O(n2V ) time, as

explained below.

It can be shown that whenever there is a path in the e-hammock H from a node m to

a node n such that the def set of one of these two nodes has a non-empty intersection

with the def or use set of the other node, there exists a (direct or extended) constraint

m ≤ n. Therefore, data-dependence constraints can be computed in time O(n2V ), by

doing a depth-first search starting from each node in the e-hammock (intersection of

two def/use sets takes worst-case O(V ) time, using hash tables).

Generating control-dependence constraints takes O(n2) time, since each node has at

most O(n) control-dependence ancestors.

Antecedent constraints can be generated, again using depth-first search from each node,

in O(n2) time.

We now shift our attention to the generation of extended constraints, the procedure for

which is given in Figure 5.6. This procedure takes O(n3) time. The fundamental step
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in this procedure, which is repeated until no new constraints are generated is: when a

new constraint m ≤ n is generated, iterate through all existing constraints that involve

m or n, and generate a set of new “≤” constraints using those constraints and m ≤ n.

Each execution of this fundamental step takes O(n) time, and it can be executed at

most n2 times (that is the total number of possible “≤” constraints).

Step 3: The procedure for promoting nodes is given in Figure 5.9. This procedure takes

O(n2) time. The fundamental step in this procedure, which is repeated until no more

nodes are promoted, is: for each marked node m and for each node m that gets

promoted, iterate through the constraints that involve m and see if the other nodes

mentioned in those constraints need to be promoted, using the rules in Figure 5.9.

This fundamental step takes O(n) time, and it is repeated at most n times.

Step 4: The procedure for partitioning nodes into buckets is given in Figures 5.11 and 5.10.

This step takes O(n2) time, as explained below.

Whenever a node p is added to a bucket, each other node m that in turn gets forced

into some bucket via “≤” constraints involving p and m can be found in constant time.

This can be done, basically, by maintaining a graph whose nodes are the nodes being

partitioned and whose edges are the “≤” constraints, and by removing nodes from this

graph as soon as they are assigned to any bucket. Once m is added to its bucket, O(n)

time is needed to add its control-dependence ancestors to the same bucket, and to add

exiting jumps of which it is an antecedent to the after bucket (if necessary). On the

other hand, when no forced node is available, selecting an unforced unassigned node

takes constant time. Therefore this entire step takes O(n2) time.

Step 5: This step involves, for each of the three buckets B, making a copy of the original

e-hammock H and removing from that copy nodes that are not in B. The nodes can

be removed by repeating the following step as long as there remain non-B nodes in

the copy: select a non-B node t that has an outgoing edge to a B-node (it can have

at most one outgoing edge to a B-node, as observed in Section 5.5), and remove t by
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redirecting all edges coming into it to its B-successor. This entire iterative step takes

O(n) time.

Step 6: This step basically involves visiting each node in each of the three buckets, and

doing some constant-time processing if that node is an exiting jump. Therefore, this

step takes O(n) time.

In practice, when we applied a partial implementation of this algorithm to a dataset of

43 difficult clones in real programs (see Chapter 8), we found that the algorithm took 14

seconds or less on all but two of the largest clones in the dataset (it took about 5 minutes

for each of those two largest clones).
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Chapter 6

Clone-group extraction algorithm

This chapter describes the clone-group extraction algorithm. The input to the algorithm

is a group of clones, and a mapping that specifies how the nodes in one clone match the

nodes in the other clones (details about this mapping are given in Section 6.2). The output

from the algorithm is a transformed program such that:

• each clone is contained in a hammock (which is suitable for extraction into a separate

procedure), and

• matching statements are in the same order in all clones.

The algorithm can fail in certain situations; this means that the matching statements

will not be the in same order in all clones (although each clone will definitely be contained

in a hammock). We discuss this in detail in Section 6.3.

6.1 Algorithm overview

The first step in the clone-group extraction algorithm is to apply the individual-clone

algorithm to each clone in the given group. That algorithm finds the e-hammock containing

the clone, moves as many of the non-clone nodes in the e-hammock as possible out of the

way, and converts exiting jumps into non-exiting jumps so that the clone is contained in a

marked hammock that is suitable for extraction. From here on, whenever we say “clone”,

we actually mean the marked hammock that contains the clone and that was produced by

the individual-clone algorithm.
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if(p)

d = b + 2

e = b − 2

true

true true

Figure 6.1 Example illustrating clone-group extraction

Recall that, as stated in Chapter 4, a block is a CFG subgraph that corresponds to a

single (simple or compound) statement at the source-code level, whereas a block sequence

corresponds to a sequence of statements. Recall also that every hammock is a block sequence.

Each clone is a block sequence (because every hammock is a block sequence). This outermost-

level block sequence of the clone is regarded, for the purposes of the clone-group algorithm,

as a maximal block sequence. Clearly, this maximal block sequence can itself contain smaller

blocks and maximal block sequences nested inside. The given clone group is said to be in

order if corresponding maximal block sequences in the different clones, at all levels of nesting,

are in order (have mapped blocks in the same order). If a maximal block sequence b in a

clone and its corresponding maximal block sequences in other clones are not in-order, then it

is not clear how extraction can be done while preserving semantics (because the single block

sequence in the extracted procedure that represents b and its corresponding block sequences

will have to be in one particular order). Therefore, our approach is to visit maximal block

sequences in the clones, at all levels of nesting, and permute as many of them as needed to

make all sets of corresponding block sequences (at all levels of nesting) be in-order.
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true
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d = b + 2

e = b − 2

true

a = b * c

Figure 6.2 Output of clone-group extraction algorithm on clone group in Figure 6.1

6.1.1 Illustrative example

Figure 6.1 shows an (artificial) example group with three clones. The node-mapping

is the obvious one: the ais are mapped, the bis are mapped, and so on. The clones are

shown after the individual-clone algorithm has been applied to them. Each clone is, at the

outermost level, a maximal block sequence that consists of an if block and two assignment

blocks. Each if block in turn contains a nested maximal block sequence (its “then” part).

The three outermost-level maximal block sequences correspond, as do the three maximal

block sequences nested inside the three if blocks. Notice that neither of these two sets

of corresponding maximal block sequences is in-order. Figure 6.2 contains the output of

the algorithm for this example. Notice that the algorithm has permuted the outermost-level

maximal block sequence in clone (a), as well as the inner maximal block sequence in clone (c).

As a result, both sets of corresponding maximal block sequences are in-order, which means

the group is in-order (and easy to extract).

Our approach for permuting a set of corresponding block sequences is defined later, in

Figure 6.7 and in Section 6.3. However, it is notable that the approach uses control- and

data-dependence-based sufficient conditions to conservatively estimate whether semantics-

preserving permutations are possible; if the sufficient conditions allow, then it makes the set

in-order, otherwise it fails (i.e., does no transformation).
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Figure 6.3 A clone-group with partial matches

6.1.2 Handling partial matches

Consider now a different example clone group, shown in Figure 6.3. As in the previous

example, each node labeled xi is mapped to nodes labeled xj . Notice that the node c1 in the

first clone is unmapped (has no matching node in the other clones); notice also that g2 and

g3, although mapped to each other, are not mapped to any node in the first clone. These

partial matches do come up in practice, and the algorithm handles them. Partial matches

introduce two complications, the first of which is that the notion of “corresponding” maximal

block sequences becomes less obvious. In the example in Figure 6.3, it is intuitively clear

that the “then” parts of the three if blocks correspond; this is because the three if blocks

are mapped, which means they will be represented by a single if statement in the extracted

procedure, and that if statement will have only one “then” part. However, not every node

in each of these three maximal block sequences is mapped to some node in some other block

sequence. In fact, even if the “then” part of some clone in this example had no mapped

nodes, it would still correspond to the other “then” parts (because its if predicate is mapped

to the other if predicates). We therefore define the correspondence between block sequences,

as well as the mapping between blocks, recursively, as follows:
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• The outermost-level maximal block sequences (i.e., the entire clones) correspond, by

definition.

• Two blocks are mapped to each other if the two maximal block sequences of which

they are constituents correspond, and the two blocks contain nodes that are mapped

to each other.

• Two inner-level maximal block sequences correspond if both are C-nesting children of

blocks that are mapped to each other, for some boolean value C.

In other words we start with the outermost-level maximal block sequences (which cor-

respond by definition), and extend the correspondence to inner levels by determining which

blocks are mapped to each other. The algorithm makes certain assumptions on the given

node-mapping (specified in Section 6.2). Those assumptions have the following implications:

Uniqueness: A block in a clone is mapped to at most one block in any other clone. Similarly,

a maximal block sequence is a clone corresponds to at most one maximal block sequence

in any other clone.

Transitivity: The mapping between blocks is a transitive relationship, and so is the corre-

spondence between maximal block sequences.

Kind-Preservation: Mapped blocks are of the same kind (e.g., while blocks are mapped to

while blocks, and if blocks are mapped to if blocks).

Example: Consider the clones in Figure 6.3. Blocks b1, b2, and b3 are mapped to each

other; so are g2 and g3, and so are the three if blocks. There are two sets of corresponding

maximal block sequences: the first set is the three outermost-level maximal block sequences

(the three entire clones), while the second set is the “then” parts of the three if blocks. 2

A second complication introduced by partial matches is that a set of corresponding max-

imal block sequences cannot simply be defined to be in-order iff mapped blocks are in the

same order in all the block sequences in the set; this is because a constituent block of a block
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sequence in the set can be mapped to blocks in some, but not all other block sequences in the

set (e.g., blocks g1 and g2 in Figure 6.3), or can be altogether unmapped (e.g., block c1 in the

same figure). Our solution to this problem is based on partitioning the constituent blocks of

the given set of maximal block sequences into equivalence classes; two blocks belong to the

same equivalence class iff they are mapped to each other (recall that the blocks-mapping is

one-to-one and transitive). The set of block sequences is defined to be in-order iff all of the

block sequences in the set are consistent with some total order on the equivalence classes.

Our algorithm is outlined in Figure 6.4. The idea, basically, is to visit each set of

corresponding maximal block sequences and check if it is already in-order; if it is not in-order,

permute one or more block sequences in the set so that all the sequences become consistent

with some total order on the equivalence classes. This permutation takes polynomial time,

except in the situation (which is unusual in practice) where there are gotos from one block

in a maximal block sequence to another block in the same sequence (Section 6.3.2 addresses

this situation). As stated earlier, the algorithm bases its permutations on conditions that

are sufficient to guarantee semantics preservation, and fails if there is no way to make the

set in-order while respecting these conditions.

Example: Consider the three inner-level maximal block sequences in Figure 6.3 (i.e., the

“then” parts of the if statements). There are four equivalence classes of blocks for this

set of block sequences, b = {b1, b2, b3}, c = {c1}, f = {f1, f2, f3}, and g = {g2, g3}. This

set of maximal block sequences is not currently in-order: the block sequence in clone (a) is

inconsistent with any total order in which f comes before b, and the corresponding block

sequences in the other two clones are inconsistent with any total order in which b comes

before f . Figure 6.5 shows the output of the algorithm for this example. Notice that the

inner-level block sequences in clones (b) and (c) have been permuted, so that all three inner-

level block sequences satisfy the total order b, c, f, g (due to data flows, this is the only total

order that preserves semantics).
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Given: A group of clones that satisfy the assumptions stated in Section 6.2.

Step 1: Apply the individual-clone algorithm individually to each clone in the given group

of clones.

Step 2:

for all sets S of corresponding maximal block sequences in the clones (at all levels

of nesting) do

if S is not in-order then

Use the procedure in Figure 6.7 to make S in-order. If that procedure fails,

then fail.

end if

end for

(At this point, the group of clones is in order or the algorithm has failed.)

Figure 6.4 Clone-group extraction algorithm.
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a = b * c

(b)

f = a + d + e

a = b * c

f = a + d + e

a2

d2

e2

g2

f 2

b2

a1

d1

e1

f 1

c1

b1

a3

d3

e3

g3

f 3

b3

(a)

if(p)
true

if(p)
true

h = e / 3

(c)

f = a + d + e

if(p)

d = b + 2

g = d * 2

true

e = g − 2

a = b * c

e = b − 2

d = b + 2

h = e / 3

e = b − 2

d = b + 2

Figure 6.5 Output of algorithm on example in Figure 6.3

Notice also that the outermost-level block sequence in clone (a) has been permuted, so

that the set of all three outermost-level block sequences satisfies the total order: d, if-block,

e. 2

Once the algorithm completes, and all sets of corresponding maximal block sequences

are in-order (assuming the algorithm did not fail), it is easy to construct a single procedure

that can replace all the clones. Each set of corresponding maximal block sequences S in

the clones is represented by one maximal block sequence b in the extracted procedure. Each

equivalence class of blocks of S is represented by a single constituent block of b; this block

is guarded by a boolean flag parameter if its class does not contain a block from every block

sequence in S. The order of blocks in b is the same as the total order with which the block

sequences in S are consistent.

The rest of this chapter is organized as follows. Section 6.2 formally specifies the input to

the algorithm. Section 6.3 presents the approach to making a set of corresponding maximal

block sequences in-order. Finally, Section 6.4 discusses the complexity of the algorithm.
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6.2 Input to the algorithm

In this section we formally specify the input to the algorithm, and the assumptions made

by the algorithm regarding the input. The input is a group of clones (a mapping that

defines how the nodes in one clone match the nodes in the other clones), and the CFGs

of the procedures that contain the clones. Each individual clone is a set of nodes that is

contained within a single procedure; however, different clones in the group can be in different

procedures.

The algorithm handles a wide variety of clone groups with difficult characteristics:

• Individual clones can be non-contiguous, and can involve exiting jumps.

• Mapped nodes can be in different orders in the different clones.

• When the group consists of more than two clones, a node in one clone can be mapped

to nodes in some but not all other clones (as illustrated in Figure 6.3). In fact, different

clones in the group can consist of different numbers of nodes.

We call the tightest e-hammock that contains a clone and that has no backward exiting

jumps (defined in Section 5.1) the “e-hammock of that clone”. This e-hammock, like any

e-hammock, is a block sequence. Because a clone can be non-contiguous, its e-hammock

can contain nodes that are not part of the clone. The e-hammock can also contain exiting

jumps. The given mapping between nodes in the clones is assumed to satisfy the following

properties:

• The mapping is transitive; i.e., if m, n and t are nodes in three different clones, m is

mapped to n and n is mapped to t, then m is mapped to t.

• A node in a clone is mapped to at most one node in each other clone (this allows for

a node in a clone to be mapped to nodes in some but not all other clones).

• The clones are “non-overlapping”; i.e., the e-hammocks of the different clones are

disjoint.
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• The mapping preserves nesting relationships; i.e., if a node n is mapped to a node m,

then one of the following must be true: neither node is a nesting child of a predicate

that is inside the e-hammock of that node’s clone, or both nodes are C-nesting children

of predicates within their respective e-hammocks such that the two predicates are

mapped, for some boolean value C (in other words, the two predicates belong to the

clones, too).

• Mapped nodes are of the same “kind”; e.g., an assignment node is mapped only to

other assignment nodes, a while predicate is mapped only to other while predicate

nodes, and so on.

• Exiting gotos are mapped only to exiting gotos, and non-exiting gotos are mapped

only to non-exiting gotos. Moreover, mapped non-exiting gotos have mapped targets.

(For other kinds of jumps this property is implied by the assumption that the mapping

preserves nesting relationships.)

Clone groups reported by our clone-detection tool often, but not always, satisfy the

assumptions mentioned above. The examples in Figures 1.1 and 3.1 are ones that satisfy

the above assumptions; the example in Figure 8.4 is one that does not satisfy the nesting-

preservation requirement (the predicate “if(filename != 0)” in the first clone is inside the

e-hammock of that clone, is a nesting parent of several cloned nodes, but is not mapped to

any predicate in the second clone).

A clone group reported by the detection tool that does not satisfy these assumptions

will need to be adjusted manually by the programmer so that it satisfies the assumptions

before it is supplied to the extraction algorithm. (Section 3.4.4 discussed another reason why

programmers might need to adjust reported clone groups, namely that they can be variants

of ideal clone groups.)
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6.3 Making a set of corresponding maximal block sequences in-
order

Step 2 of the clone-group extraction algorithm (Figure 6.4) involves visiting each set of

corresponding maximal block sequences that is not in-order, and making it in-order. The

procedure to make a set of corresponding maximal block sequences in-order, which is the

focus of this section, is given in Figure 6.7. The basic idea behind this procedure is to

compute ordering constraints for each block sequence in the set based on control and data

dependences (the procedures for computing the constraints are given in Figure 6.6), and then

to permute one or more block sequences in the set while respecting the constraints so that

all the block sequences in the set become consistent with some total order on the equivalence

classes of blocks; respecting the constraints guarantees that the permutation is semantics

preserving. The procedure in Figure 6.7 fails (without permuting any block sequence) if such

a constraints-respecting permutation does not exist. The following two subsections describe,

respectively, the two key steps in this procedure: generating the ordering constraints, and

permuting the block sequences.

6.3.1 Constraints generation

The procedure in Figure 6.6(a), which is invoked from Step 1 in Figure 6.7, generates

control-dependence-based constraints. Constraints are needed to preserve control depen-

dences while permuting a block sequence if it has any of the following properties: there are

jumps outside the sequence whose targets are inside, there are jumps inside the sequence

whose targets are outside, or there are jumps from one constituent block of the sequence to

another. If none of these conditions hold for a block sequence, then any permutation pre-

serves all control dependences, and therefore no control-dependence-based constraints are

needed.

Figure 6.8 contains an (artificial) illustrative example. Assume every node in the example

(except the predicates and jumps) is an assignment. Nodes b1, c1, f1, and e1 are mapped to

b2, c2, f2, and e2, respectively. Also, the two “if(p)” nodes are mapped to each other, as
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Input: A set of corresponding maximal block sequences S. A constituent block of a block sequence
in S is mapped to at most one constituent block of any other block sequence in S, and the mapping
is transitive.
Output: Control-dependence- and data-dependence-based constraints.

(a) Procedure for generating control-dependence-based constraints:

1: for all block sequences b in S do

2: for all constituent blocks Bj of b do

3: if Bj contains a jump whose target is outside b or contains a node that is the target
of a jump outside b then

4: for all other constituent blocks Bi of b do

5: if Bi precedes Bj in b then generate constraint Bi < Bj else generate constraint
Bj < Bi. (Bi < Bj means that Bi must precede Bj after the permutation.)

6: end for

7: end if

8: for all constituent blocks Bm of b such that Bm follows Bj and there is a jump in
either of these two blocks whose target is in the other block do

9: generate a constraint Bj < Bm.
10: for all constituent blocks Bl of b, Bl 6= Bj and Bl 6= Bm do

11: if Bl is between Bj and Bm then

12: generate constraints Bj < Bl and Bl < Bm.
13: else

14: generate constraint Bl 6∈ [Bj , Bm] (this means that Bl must not be in between
Bj and Bm after the permutation).

15: end if

16: end for

17: end for

18: end for

19: end for

(b) Procedure for generating control-dependence-based constraints:

1: for all block sequences b in S do

2: for all pairs of constituent blocks Bi, Bj of b such that Bi precedes Bj do

3: if some node in Bj is data-dependent on some node in Bi then generate constraint
Bi < Bj.

4: end for

5: end for

Figure 6.6 Procedures for generating control-dependence- and data-dependence-based
constraints
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Input: A set of corresponding maximal block sequences S. A constituent block of a block sequence

in S is mapped to at most one constituent block of any other block sequence in S, and the mapping

is transitive.

Output: Either one or more of the block sequences in S are permuted such that S becomes

in-order, or the algorithm fails (no transformation is done).

Step 1. Generate control-dependence-based constraints as specified in Figure 6.6(a).

Step 2. Generate data-dependence constraints as specified in Figure 6.6(b).

Step 3. Create a constraints graph C. For each equivalence class M of constituent blocks of S

create a vertex in C to represent M . (A constituent block of some block sequence in S that

is mapped to no other block forms an equivalence class by itself. ) For each constituent block

B of S, let v(B) denote the vertex in C that represents the class to which B belongs.

Step 4. For each constraint Bi < Bj, add an edge in C from v(Bi) to v(Bj).

Step 5. Find a topological ordering of the vertices in C that also respects each “6∈” constraint. A

“6∈” constraint Bn 6∈ [Bj , Bm] is respected iff v(Bn) is not between v(Bj) and v(Bm) in the

topological ordering.

Step 6.

1: if no such topological ordering exists then

2: fail (S cannot be made in-order while satisfying all constraints)

3: else

4: for all block sequences b in S do

5: permute b according to the topological ordering; i.e., a constituent block Bi of b

precedes a constituent block Bj of b in the permutation iff v(Bi) precedes v(Bj) in

the topological ordering.

6: end for

7: end if

Figure 6.7 Procedure for making a set of corresponding block sequences in-order
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Figure 6.8 Example illustrating control dependence constraints
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are the two “if(q)” nodes. The assignment nodes d and g are unmapped, as are the two

gotos. Our algorithm allows such unmapped jumps, and these make extraction challenging

(unmapped jumps are plausible in real clones; e.g., a computation could occur at two places,

but one of them could have an intervening statement that checks some boundary condition

and jumps out based on that).

In the procedure in Figure 6.6(a), control-dependence-based constraints are generated at

two places, the first of which is the statement “if Bi precedes Bj ..” (line 5). The block

sequence (a1, c1, h1, d, e1) in Figure 6.8(a) illustrates the need for these constraints. Notice

that h1 contains a jump whose target is outside the sequence. Therefore, any permutation of

this sequence needs to preserve the property that d and e1 come after h1 (otherwise d and e1

would execute whether or not the goto in h1 executes, which is incorrect). Similarly, a1 and

c1 need to come before h1 (else the goto could incorrectly bypass a1 and c1). The constraints

generated in line 5 cover these situations; note that the meaning of the constraint Bi < Bj

is that Bi must precede Bj in the permutation.

The other place in Figure 6.6(a) where control-dependence-based constraints are gener-

ated is the statement “if Bl is between Bj and Bm ..” (lines 11-15). The block sequence

(e2, c2, a2, g, h2) in Figure 6.8(b) illustrates the need for these constraints. Notice that there

is a jump in block a2 whose target is in h2. The constraint needed here is more complex: g

must remain between blocks a2 and h2, whereas e2 and c2 can be anywhere except between

these two blocks. Note that the meaning of the constraint Bl 6∈ [Bj , Bm] is that Bl cannot

be between Bj and Bm after the permutation.

Data-dependence-based constraints ensure preservation of data dependences. They are

generated in a straightforward manner, using the procedure in Figure 6.6(b) (which is invoked

from Step 2 of Figure 6.7).

6.3.2 Permuting the block sequences

After all the constraints are generated, each block sequence in the given set S is permuted

in a constraints-respecting manner to make the set in-order. Our approach for this is to first
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find a total order on the equivalence classes of constituent blocks of S that respects all

constraints, and then, for each block sequence in S, determine its permutation by essentially

projecting out of the total order the classes that include no block from this sequence. This

ensures that each block sequence’s permutation satisfies all constraints, and is at the same

time consistent with the total order.

Recall that the constraints generated (in Figure 6.6) are in terms of individual constituent

blocks of S, not equivalence classes. A total order on the equivalence classes satisfies a

constraint c iff the total order satisfies the constraint that is obtained by replacing every

block mentioned in c with the class that that block belongs to.

A total order of the equivalence classes that respects all constraints does not always exist.

If in fact no such order exists, the algorithm fails for the given set S (i.e., does not permute

the block sequences in S to make them in-order).

Notice that in the procedure in Figure 6.7, a constraints graph is used to find the total

order on the equivalence classes. Each vertex in this graph represents one equivalence class,

while the “<” constraints are encoded as its edges. Step 5 finds a topological ordering of

this graph that also satisfies the “6∈” constraints (this topological ordering is the constraints-

respecting total order on the equivalence classes). Step 5 is non-trivial. However a helpful

observation is that any “6∈” constraint of the form a 6∈ [b, c] is logically equivalent to the

constraint (a < b) ∨ (c < a). Therefore a straightforward way to implement this step is:

for each constraint a 6∈ [b, c] add one of the two edges a → b, c → a to the constraints

graph, and see if a topological ordering is possible (i.e., see if the resulting graph is acyclic);

use backtracking to systematically explore the choices until an ordering is found (and fail

otherwise). This approach, although simple, has worst-case time complexity exponential

in the number of “ 6∈” constraints. However, this is unlikely to be a problem in practice

because “ 6∈” constraints arise only under the unusual situation where there is a goto in

one constituent block of a block sequence whose target is in another constituent block of

the same sequence. In our experimental studies (Section 8), there were no instances of a
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e f j b k v

Figure 6.9 Constraints graph for the two outermost-level block sequences in the example
in Figure 5.2

“ 6∈” constraint. Still, an interesting open question is whether there is a polynomial-time

algorithm for Step 5.

Example: Consider the example in Figure 5.2. Say the algorithm first visits the pair of

outermost-level block sequences (e1, f1, j1, b1, k1, v1) and (j2, e2, f2, b2, k2, v2). The constraints

graph for this pair is shown in Figure 6.9. Vertex e in this graph represents the equivalence

class {e1, e2}, vertex f represents the equivalence class {f1, f2}, and so on.

Notice that b1 and b2 both contain jumps whose targets are outside the respective block

sequences. Therefore the algorithm generates the following control-dependence-based con-

straints: e < b, f < b, j < b, b < k, and b < v (these are the rewritten constraints). There

are no “ 6∈” constraints. The data-dependence constraints (again, after rewriting) are: e < f ,

b < v (both due to output dependences), and e < b, e < k, f < b, f < k, j < b, j < k

(all due to flow dependence). Each of these constraints is an edge in the constraints graph

(Figure 6.9).

A topological ordering of this graph is: e, f, j, b, k, v. The block sequences, when per-

muted in a manner consistent with this total ordering, become (e1, f1, j1, b1, k1, v1) and

(e2, f2, j2, b2, k2, v2). Notice that this pair of block sequences is now in-order.

The other pair of corresponding maximal block sequences in this example that is not

in-order is (g1, h1, i1), (h2, l, g2, i2) (l is unmapped). The vertices in the constraints graph

for this pair are are {g, h, l, i}, and a total ordering of these vertices that respects all data-

dependence-based constraints is h, l, g, i (there are no control-dependence constraints for

this pair). These two block sequences, when permuted according to this ordering, become

(h1, g1, i1), (h2, l, g2, i2). The third pair of corresponding maximal block sequences in this

example (the “then” parts of the “if(overPay > base)” blocks) is already in-order. The
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code in Figure 1.3 that is indicated with the “++”/“****” signs is the result of applying the

above mentioned permutations to the clones in Figure 5.2.

A note about the exitKind assignments: recall that these assignments are introduced

by the individual-clone algorithm, and are not part of the original clones. However, the

“exitKind = FALLTHRU” assignments, of which there is at most one per clone (at its end),

are always considered mapped. Other exitKind assignments are considered mapped if

they correspond to exiting jumps that were originally mapped; e.g., the two assignments

“exitKind = BREAK” in Figure 5.2 are considered mapped because the two original break

statements to which they correspond are mapped. 2

6.4 Complexity of the algorithm

Let G be the given group of clones. In this section we assume that the individual-clone

algorithm has already been applied to each clone in G; therefore, that algorithm’s time

complexity is not included in the time complexity we present here. We use the following

terminology throughout this section:

• n is the total number of nodes in all the clones in G.

• J is the total number of jump nodes in the procedures that contain the given clones.

• V is the total number of variables used/defined in G.

We assume, as we did with the clone-detection algorithm and the individual-clone al-

gorithm, that the following structures have been built and are available to the algorithm:

CFGs and ASTs of all procedures, and use/def sets of nodes. We also assume that hash

table lookups take constant time, and that the depths of ASTs are bounded by a constant.

We first present the time complexity of the procedure in Figure 6.7. The input to this

procedure is a set S of corresponding maximal block sequences; the procedure makes the set

in-order, if possible, by permuting one or more block sequences, and fails otherwise. The

worst-case time complexity of this procedure is O(NJ + nSV + N2V + 2MJM2), where
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• N is the total number of constituent blocks of the block sequences in S (counting

outermost-level blocks only).

• M is the number of groups of mapped blocks. M can at most be equal to N (this worst

case happens if no constituent block is mapped to any other constituent block).

• nS is the total number of nodes in S (nS ≤ n).

The above result is explained below, after we present the worst-case time complexity of

the entire clone-group algorithm.

The procedure in Figure 6.7 is invoked as many times as the number of sets of corre-

sponding maximal block sequences in G (outermost-level and nested). This number is at

most n. Also, N, nS, and M can each be at most equal to n, for any set of corresponding

block sequences S, and J can be at most equal to n. Therefore, the worst-case time com-

plexity of the entire clone-group algorithm, after some simplification, is O(n3V + 2nJn3). In

the case where there are no “ 6∈” constraints, which is what we expect for the vast majority

of inputs, this time complexity reduces to O(n3V ) (as explained below).

We now provide a (brief) derivation of the time-complexity result for the procedure in

Figure 6.7:

• Control-dependence-based constraints can be generated in time O(NJ), essentially by

visiting each jump node once and generating the O(N) constraints it is involved in.

(The approach specified in Figure 6.6(a) for generating control-dependence-based con-

straints is a naive one compared to the approach just mentioned; that naive approach

takes O(N2J) time.)

• The set of variables used/defined by nodes in the block, for all blocks, can be computed

in time O(nSV ).

Then, data-dependence-based constraints can be generated (see Figure 6.6(b)) in time

O(N2V ).
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• There are at most JM “ 6∈” constraints. Recall that, as described in Section 6.3.2, each

of these constraints is equivalent to the logical or of two “<” constraints, and that the

approach to finding a topological order that satisfies all constraints is to systematically

explore each of the two choices for each “ 6∈” constraint. In other words the approach

can try O(2JM) choices in the worst case. For each choice, the approach checks for

cycles in the constraints graph and does a topological sort of that graph if there are

no cycles (Step 5 in Figure 6.7); this takes O(M2) time (there are at most M2 “<”

constraints). Note that if there are no “6∈” constraints, then there is only choice to

explore, and therefore the time complexity of finding the final topological order is

simply O(M2).

Finally, Step 6 of the algorithm takes O(N) time.
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Chapter 7

Experimental results for the clone-detection algorithm

In this chapter, we present experimental results from the implementation of our clone-

detection algorithm (Chapter 3). The tool finds clones in C programs. It uses CodeSurfer

[Csu] to process the source code and build the PDGs. CodeSurfer also provides a GUI to

display the clone groups identified by the tool using highlighting.

Recall that the clone-detection algorithm has three main steps: finding clone pairs, re-

moving subsumed clone pairs, and combining the remaining clone pairs into groups. The

first step, finding clone pairs, is implemented using Scheme, because CodeSurfer provides

a Scheme API to the PDGs. The other two steps of the algorithm are implemented using

C++.

For our first study our goals were to run the tool on some real programs to see what its

time requirement was, and to see how many groups of clones it found and how large those

clones were. We show in Figure 7.1:

• The sizes (in lines of source code and in number of PDG nodes) of three Unix utilities,

make, bison, and sort, on which we ran the tool, and

• The running times for the three steps of the algorithm.

We used a 1 GHz Pentium III machine with 512 MB of memory for the experiments.

Figure 7.2 presents the results of running the tool on those three programs. For each

of eight clone size ranges, three sets of numbers are reported: the number of clone groups

identified that contain clones of that size, and the maximum and mean numbers of clones
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Program Size Running Times (elapsed time)

Program
# of lines
of source

# of PDG
nodes

find clone
pairs (Scheme)

eliminate
subsumed
clone pairs

(C++)
combine pairs

into groups(C++)

make 30,499 288,572 400 min. 20 sec. 15 sec.

bison 11,540 31,197 18 min. 9 sec. 12 sec.

sort 1,961 6,712 4 min. 2 sec. 2 sec.

Figure 7.1 Example program sizes and running times

in those groups. Our experience indicates that clones with fewer than five PDG nodes are

unlikely to be interesting to the programmer or good candidates for extraction; therefore,

they are not reported by the tool.

When run on the Unix utilities, the tool found a number of interesting clones, many

of which were non-contiguous and some of which involved out-of-order matches. (Some

examples of the interesting clones identified by the tool were presented in Sections 3.4.1

and 3.4.2.) These results seem to validate both the hypothesis that programs often include

a significant amount of “inexact” duplication, and the potential of our approach to find

interesting clones.

To further evaluate the tool we performed two additional studies, described below. The

goals of these studies were to understand:

• Whether the tool is likely to find (variants of) all the clone groups that a human would

consider interesting;

• How many “uninteresting” clone groups the tool finds (i.e., groups that are not variants

of any of the interesting groups), and how large those uninteresting clones are;

• To what extent the tool finds multiple variants of interesting clone groups rather just

the “ideal” versions of those groups (the problem of variants was discussed in Sec-

tion 3.4.4);
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Clone Size Ranges (# of PDG nodes)

make 5–9 10–19 20–29 30–39 40–49 50–59 60–69 70–106

# clone groups 1417 391 64 40 39 5 3 40

max # clones in a group 43 29 6 7 2 5 7 2

mean # clones in a group 2.9 2.8 2.4 2.5 2 2.6 3.7 2

bison 5–9 10–19 20–29 30–39 40–49 50–59 60–69 70–227

# clone groups 469 149 36 11 7 10 4 27

max # clones in a group 61 26 7 3 2 2 2 2

mean # clones in a group 3.5 2.6 2.4 2.1 2 2 2 2

sort 5–9 10–19 20–29 30–39 40–48

# clone groups 96 50 20 8 13

max # clones in a group 9 3 2 2 2

mean # clones in a group 2.5 2 2 2 2

Figure 7.2 Results of running the clone-detection tool
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• How often non-contiguous clones, out-of-order clone groups, and intertwined clones

occur in practice;

• How many of the interesting clone groups are also good candidates for extraction into

separate procedures.

For the first study, we examined one file (lex.c, 620 lines of code) from bison manually,

and found four interesting clone groups. We then ran the tool on lex.c; it identified 41 clone

groups. Nineteen of those groups were variants of the interesting manually-identified clone

groups, including several variants for each of the four interesting groups. The remaining 22

clone groups identified were uninteresting in our judgment (an example of an uninteresting

clone group identified by the tool, that was actually not encountered in this study, was shown

in Figure 3.20). More than half of the uninteresting clone groups (12 out of 22) had clones

with fewer than 7 nodes (which was the size of the smallest interesting clone); the largest

uninteresting clone identified had 10 nodes.

For the second study, we examined all 95 clone groups identified by the tool for bison

whose clones had 20 or more nodes (the largest identified clone had 227 nodes). We chose 20

as the starting size to test the hypothesis that the uninteresting clones identified by the tool

tend to be quite small. Ten of the 95 clone groups identified were uninteresting; the largest

of these uninteresting clones contained 28 nodes. The remaining 85 groups identified were

variants of 17 interesting clone groups (in both of the studies some of the groups identified by

the tool were actually variants of the union of several neighboring interesting clone groups).

In the two studies, we encountered a total of 18 interesting clone groups (three groups

showed up in both studies) containing a total of 64 individual clones. Of those 64, 22

were non-contiguous. Three of the 18 clone groups involved out-of-order matches, and none

involved interleaved clones. (In Chapter 8, we present similar statistics about a larger dataset

of interesting clone groups that we used to evaluate the extraction algorithms.)

Fifteen of the eighteen interesting clone groups were also good candidates for extraction

into separate procedures. The remaining three groups, although interesting, were not large
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enough for the benefits of extraction to outweigh the costs; one of them would have required

too many parameters as a separate procedure, the second one would have required several

mismatching expressions whose total size was large relative to the size of the clone to be

parameterized away, and the third one would have required too many predicates to be

duplicated relative to the size of the clone.

7.1 Discussion

The results of our experiments indicate that our approach is capable of finding interesting

clones. Many of these clones are non-contiguous, and some of the groups involve out-of-order

matches. The tool is not likely to miss any clones that a human would consider interesting,

and additionally is not likely to produce too many clones that a human would consider

uninteresting (except small ones).

The two studies also reveal that the tool often finds multiple variants of ideal clones

rather than just the ideal ones. To some extent this problem is intrinsic to the slicing-based

approach (as discussed in Section 3.4.4). However, artifacts of CodeSurfer magnify the

number of variants generated. For example, conservative pointer analysis sometimes causes

spurious flow-dependence edges in the PDGs, which in turn cause the slicing to proceed

non-ideally (CodeSurfer implements Andersen’s flow-insensitive context-insensitive pointer-

analysis algorithm [And94]). Another such factor is CodeSurfer’s treatment of complex

predicates (predicates that involve short-circuiting operators such as “&&”, or that involve

procedure calls); we discuss this factor below in detail.

Consider the example clone pair in Figure 3.11. Two variants of the ideal clone pair

in that figure that were produced by the tool were shown in Section 3.4. One of them,

shown in Figure 3.11, was produced by starting the slicing from the two matching state-

ments labeled (8). The other one, shown in Figure 3.19, was produced by starting the

slicing from the matching predicates (4) and (5) in the first and second fragments, re-

spectively. The production of these two variants is not unexpected, given the design of our

approach. However, additional variants of the same ideal clone pair are produced because
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t = !type_name;

if(!t)

goto L;

t = typed;

L: if(t)

Figure 7.3 CodeSurfer’s decomposition of the predicate “if(!type name && typed)”

CodeSurfer decomposes complex predicates. We illustrate the problem using the predicate

“if(!type_name && typed)”, which occurs twice in each clone in that example (with labels

(4) and (5)). CodeSurfer turns each of those predicates into a sequence of nodes, as shown

in Figure 7.3 (t in that figure is a new temporary variable). As a result of this decomposition

the approach finds other variant clone pairs, in addition to the two mentioned above; e.g., it

finds a variant by starting the slicing from the node “t = !type_name” that was obtained

from the predicate labeled (5) in the first fragment and the node “t = !type_name” that

was obtained from the predicate labeled (13) in the second fragment. This variant would

not have been produced if CodeSurfer did not decompose complex predicates, because the

nodes (5) and (13), when not decomposed, are syntactically non-matching.

All told, however, the tool’s usefulness outweighs the problem caused by variants. As

mentioned in Section 3.4.4, we were able to examine all 127 clone groups reported by the

tool for make whose clones had 30 or more nodes, in less than four hours time. Manual clone

detection is likely to take far more time, and moreover, would involve the risk of missing

clones. Furthermore, it might be possible to devise simple, automatic heuristics that group

together related variant clone groups produced by the tool, and pick and show one or a few

promising candidates from each group to the user.

As for the running time, the tool is currently quite slow. The generation of variants is

partly a cause for this. Another major cause for this is that the key step in the algorithm,

finding clone pairs, is implemented in an interpreted language (Scheme). Yet another factor

is that our primary concern has been improving the quality of clones found, as opposed to

improving efficiency. Therefore, improvements in the tool’s engineering have the potential to
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speed it up significantly. Additional heuristics to reduce the production of variants can help,

too. Finally, it may be possible (and profitable) to generate clone groups directly, rather

than generating clone pairs and then combining them into groups (because for each clone

group that contains k clones, we currently generate (k2 − k)/2 clone pairs first).
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Chapter 8

Experimental results for extraction algorithms

This chapter presents the results of some studies we did to evaluate the performance of

both of our extraction algorithms, in comparison to an “ideal” extraction (performed by us,

using our best judgment). We began the studies by identifying 50 groups of clones involving

173 individual clones in three real programs, using the clone-detection tool. Our first goal

for the studies was to evaluate our individual-clone extraction algorithm. For this, we first

extracted each individual clone in the dataset using our best judgment (we call this the “ideal

extraction”); some techniques used during this process (reordering statements, handling

exiting jumps, duplicating predicates, promotion) are also used by the algorithm, but other

techniques not incorporated in the algorithm were also used as necessary (this is described

later). After performing the ideal extraction, we applied the individual-clone algorithm to

the clones in the dataset, and compared its results to those of the ideal extraction.

Our second goal for the studies was to evaluate the clone-group extraction algorithm.

Our methodology was similar: do an “ideal extraction” on each clone group, then apply the

clone-group algorithm to the groups, and then compare the two outcomes.

Chapter 9 presents the results of other studies we did, to compare our algorithm to two

previously reported automatic approaches to procedure extraction, [LD98] and [DEMD00].

8.1 Dataset selection

Our studies were performed using a dataset of 50 clone groups, involving 173 individual

clones, from three programs: the Unix utilities make and bison (the sizes of which were given
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# clone groups: 50

# individual clones: 173

Max. clones per group: 14

Median clones per group: 2

Max. clone size (# statements and predicates): 53

Median clone size: 7

# non-contiguous clones: 30

# clones with exiting jumps: 25

# difficult clones: 43

# out-of-order groups: 10

# groups where mapping violates nesting relationships: 3

# difficult groups: 27

Figure 8.1 Dataset statistics
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in Figure 7.1), and NARC1 [WM99], a graph-drawing engine developed by IBM. We used 4 of

the 70+ files in NARC for the studies; the combined sizes of these four files was 11,060 lines

of code. Figure 8.1 presents some statistics about the clone groups in the dataset. Forty-

three of the 173 individual clones (25%) were individually difficult, i.e., were non-contiguous

and/or involved exiting jumps; 12 individual clones had both these difficult characteristics.

Ten clone groups exhibited out-of-order matching. We call a clone group difficult if any of

its individual clones are difficult, or if the group exhibits out-of-order matching, or if the

mapping between nodes in the clones in the group does not preserve nesting relationships

(see Section 6.2). Twenty-seven clone groups out of the 50 in the dataset (54%) were difficult.

The clone groups in the dataset were identified using the clone-detection tool (see Chap-

ters 3 and 7). Because the tool often identifies multiple variants of a single ideal clone group

instead of just the ideal group, we examined the output of the tool, determined what the

ideal clone groups were, and chose for the dataset those ideal groups that were good can-

didates for extraction into separate procedures (using our best judgment). The program

make contributed 11 clone groups to the dataset; we obtained these by examining all clone

groups reported by the tool for make whose clones had 30 or more nodes. The program

bison contributed 16 clone groups to the dataset (all but one of these were found in the

study described in Chapter 7 where we examined all clone groups reported for bison whose

clones had 20 or more nodes). For NARC we examined about 250 reported clone groups

containing the largest clones, and from those identified 23 ideal clone groups for the dataset.

8.2 Implementation

We have partially implemented the individual-clone extraction algorithm, for C pro-

grams. We used CodeSurfer for this implementation, too; in particular the implementation

uses CFGs, node def/use sets, and control-dependence edges computed by CodeSurfer. Be-

cause CodeSurfer supports program analysis only, and not transformations, we implemented

1NARC is a registered trademark of IBM.
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Steps 1 through 4 of the individual-clone algorithm (see Chapter 5); i.e., the implementa-

tion finds the tightest e-hammock of a clone, computes all constraints, promotes unmovable

intervening non-clone nodes, and partitions the remaining unmarked nodes into the before

and after buckets. The implementation uses highlighting in conjunction with the CodeSurfer

GUI both to accept the nodes in a clone as input, and to display the final contents of the

three buckets before, marked, and after.

8.3 Performance of the individual-clone extraction algorithm

In this section, we examine the performance of the individual-clone algorithm on the

clones in the dataset, in comparison to the ideal extraction. We used the partial implemen-

tation of the individual-clone algorithm for this study; its running time was less than 14

seconds (elapsed time) on all clones in the dataset except the two largest ones, on each of

which it took about 5 minutes. Figure 8.2(a) summarizes the comparison of this algorithm

with the ideal extraction. The 173 clones in the dataset are partitioned into four disjoint

groups, one per row in Figure 8.2(a). The first row shows that 130 of the clones were not

individually difficult (i.e., were contiguous, and did not involve exiting jumps); therefore,

the individual-clone algorithm has nothing to do on these clones. The second row shows

that the algorithm performed ideally on 29 out of 43 difficult clones; of these 29 clones, 16

were non-contiguous and 19 involved exiting jumps (i.e., 6 clones had both difficult charac-

teristics). The third row pertains to 8 clones on which the the approach (as described in

Chapter 5) would by itself not produce the ideal output, but on which the implementation,

due to CodeSurfer’s decomposition of complex predicates (see the example in Figure 7.3),

managed to produce the ideal output. The fourth row shows that the algorithm produced

non-ideal output on 6 difficult clones (more on this row and the previous row later in this

section).
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Category
#

total
# non-
contig.

# exiting
jumps

Not difficult 130

Difficult, ideal output 29 16 19

Difficult, ideal output
due to CodeSurfer’s

representation 8 8 3

Difficult, non-ideal output 6 6 3

173 30 25

(a) Characterization of algorithm output

Technique
Ideal

output

Ideal output, due
to CodeSurfer’s
representation

Non-ideal
output

human algo.

Moving without duplication 4 2

Moving with duplication 3 5

Moving with predicate-value reuse 8 1

Exiting jumps 19 3 3 3

Promotion 9 2 4 4

(b) Techniques used on difficult clones, with number of clones

Figure 8.2 Comparison of the individual-clone algorithm and ideal extraction
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8.3.1 Techniques used to make clones extractable

Figure 8.2(b) enumerates, for each transformation technique incorporated in the algo-

rithm, the number of difficult clones on which the technique was used in both the ideal

extraction and the extraction performed by the algorithm. Each technique appears in its

own row. The second column (labeled “Ideal output”) pertains only to the difficult clones

on which the algorithm performed ideally, and would have performed ideally even without

CodeSurfer’s decomposition of predicates. The third column (labeled “Ideal output, due to

CodeSurfer’s representation”) pertains to the difficult clones on which the algorithm per-

formed ideally, but as a result of CodeSurfer’s decomposition of predicates. The last two

columns pertain to the clones on which the algorithm performed non-ideally; two separate

sets of numbers are required for these clones because the algorithm and the ideal extraction

do not involve the exact same techniques on these clones. Note that more than one technique

was applied on certain clones to make them extractable; such clones are counted separately

under each technique that was applied.

Regarding the techniques: “moving without duplication” means moving an intervening

unmarked node to before or after without any duplication of predicates (i.e., the unmarked

node’s control-dependence ancestors are not placed in any other bucket except the one that

contains that node); “moving with duplication” on the other hand, occurs when an interven-

ing unmarked node is moved out with duplication of predicates. The technique of handling

exiting jumps is applicable on each clone that involves exiting jumps, and therefore the

numbers in that row are the numbers in the last column of Figure 8.2(a).

The technique “moving with predicate-value reuse” is one that is not incorporated in

the algorithm, but that is used (on 9 different clones) during the ideal extraction. This

technique is essentially an extension of “moving with duplication”, used in situations where

moving with duplication is not possible. It is illustrated by the example clone pair shown in

Figure 8.3, which is from the program bison and which belongs to the dataset. Each clone

in this example first checks if the current character in the input stream finput is a digit or

minus sign; if yes, it reads an integer from the stream, else it prints a warning. The warning
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++ c = getc(finput);

++ if (isdigit(c) || c == ’-’) {

++ ungetc (c, finput);

++ n = read_signed_integer(finput);

++ c = getc(finput);

++ }

++ else {

warni("@%s is invalid",

printable_version(c));

++ n = 1;

++ }

++ fprintf(fguard, "yylsp[%d]",

++ n-stack_offset);

++ yylsp_needed = 1;

++ c = getc(finput);

++ if (isdigit(c) || c == ’-’) {

++ ungetc (c, finput);

++ n = read_signed_integer(finput);

++ c = getc(finput);

++ }

++ else {

warn("invalid

@-construct");

++ n = 1;

++ }

++ fprintf(fguard, "yylsp[%d]",

++ n-stack_offset);

++ yylsp_needed = 1;

Figure 8.3 A clone pair in bison extracted using predicate-value reuse
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statements do not match (they invoke different functions), and are therefore not part of the

clone pair. The ideal extraction, in our judgment, involves having the extracted procedure

return a boolean value (the value of the predicate “if (isdigit(c) || c == ’-’)”); the

two warning statements are placed after the two call sites, respectively, conditional on the

value returned by the procedure. This option is preferable to promoting both the warning

statements, because it avoids placing guarded code in the extracted procedure, and also be-

cause the future reusability of the extracted procedure is improved (each future call to this

procedure can print its own warning message, as appropriate). Note that regular duplication,

i.e., letting the warning statements be in the after code, conditional on a copy of the predi-

cate “if (isdigit(c) || c == ’-’)”, would not work in this example, for such a copy, if

present, might use the wrong of value of c (because of the statement “c = getc(finput)”

in the marked bucket). The solution to this problem that was adopted in the ideal extraction

was to return that predicate’s value, which, in essence, is the same as saving the predicate’s

value into a temporary variable (in the marked bucket), and using that variable in place of a

copy of the original predicate in the after code. We call this technique predicate-value reuse.

Our individual-clone algorithm does not incorporate the predicate-value reuse technique.

However, recall that CodeSurfer, as part of its decomposition of complex predicates, intro-

duces a temporary variable t to hold the value of the entire predicate (see the example in

Figure 7.3). Therefore, on the example in Figure 8.3, the implementation of the individual-

clone algorithm was able to move out the warning statements to the after code, placing

in that bucket a copy of just the final (CodeSurfer-generated) predicate “if(t)” (see Fig-

ure 7.3). In other words, due to this artifact of CodeSurfer, the implementation was able

to produce the same output on the example in Figure 8.3 as would have been produced if

predicate-value reuse was in fact incorporated in the algorithm. (The temporary variable

t, the assignment to which stays in the marked bucket, can be converted into a return

value of the procedure at the time of actual extraction.) The third row in Figure 8.2(a)

and third column in Part (b) of that figure (both titled “Ideal output, due to CodeSurfer’s

representation”) pertain to the 8 clones in the dataset on which the ideal extraction involved
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++ hash = 0;

if (filename != 0) {

if (*filename == ’\0’) {

return 1;

}

p = filename;

++ for (;*p != ’\0’; ++p)

++ HASH (hash, *p);

++ hash %= DIRFILE_BUCKETS;

...

}

++ hash = 0;

++ for (;*p != ’\0’; ++p)

++ HASH (hash, *p);

++ hash %= DIRFILE_BUCKETS;

(a) (b)

Figure 8.4 A difficult clone pair in the dataset from make

predicate-value reuse and on which the implementation produced the ideal output due to

CodeSurfer’s decomposition of predicates. From here on, we regard these 8 clones as clones

on which the algorithm performed ideally.

8.3.2 Non-ideal behavior of individual-clone algorithm on some
clones

Although the individual-clone algorithm produced the ideal output on a vast majority of

the difficult clones (86%), it did produce non-ideal output on 6 clones (see Figure 8.2(a)).

On 3 of these 6 clones the algorithm performed non-ideally by over-aggressively moving in-

tervening non-clone nodes with duplication of several predicates; these non-clone nodes were

promoted in the ideal extraction for reasons of readability, although semantics-preservation

did not strictly require that they be promoted.

For 1 of the 6 clones on which the algorithm performed non-ideally, the ideal extraction

involved moving out an intervening non-clone node using the predicate-value reuse tech-

nique. The predicate in this clone was a simple predicate (one involving no short-circuiting

operators) whose value CodeSurfer did not store in a temporary variable. Therefore, the

algorithm ended up promoting the intervening non-clone node.
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There are 2 remaining clones on which the individual-clone algorithm performed non-

ideally, both for similar reasons. One of these 2 clones is shown in Figure 8.4(a) (Part (b)

of that figure shows another clone, which happens to be an easy clone, that is in the same

clone group as the clone in Part (a)). In the fragment in Part (a) the variable hash is

not live after the for loop; thus, the assignment “hash = 0” can be moved inside the

“if(filename != 0)” statement, to the point just before the for loop, so that the clone

becomes contiguous (and this is what is done by the ideal extraction). However, the algo-

rithm, to guarantee that the program’s semantics is preserved, never moves nodes across

the boundaries of conditionals. Therefore, on this example, it promoted all the intervening

non-clone nodes (except for “p = filename”, which was moved to the before bucket with

duplication of predicates).

8.4 Performance of the clone-group extraction algorithm

In this section, we examine the performance of the clone-group extraction algorithm on

the 50 clone groups in the dataset. As with the evaluation of the individual-clone algorithm,

we first performed an “ideal extraction” on each clone group in the dataset, and then applied

the clone-group extraction algorithm to those clone groups. For Step 1 of the clone-group

algorithm, which is an application of the individual-clone algorithm to each clone in the group

(see Figure 6.4), we used the partial implementation of the individual-clone algorithm. We

did not implement Step 2 of the clone-group algorithm; we performed that step manually

for this study, using information provided by CodeSurfer about def/use sets of nodes to

determine the safety of a permutation, whenever that was not obvious.

Figure 8.5 presents the results of the comparison of the algorithm’s output to the ideal

output. The set of all clone groups in the dataset is divided into four disjoint categories, one

per row. The first row shows that 23 of the 50 clone groups were “not difficult”; these groups

were extractable to begin with, so there was nothing for the algorithm to do. The second row

shows that the algorithm produced exactly the ideal output on 19 of the 27 difficult groups

(70%). These 19 groups contain 62 individual clones, 29 of which were individually difficult.
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Groups Individual clones

Category
#

total
# out-
of order

#
total

#
difficult

# non-
contig.

# exiting
jumps

Not difficult 23 88

Difficult, ideal 19 6 62 29 16 16

Difficult, non-ideal 4 1 8 7 7 4

Difficult, algorithm fails 4 3 15 7 7 5

50 10 173 43 30 25

Figure 8.5 Performance of clone-group algorithm in comparison to ideal extraction

The third row indicates that the algorithm produced non-ideal results on 4 clone groups,

and the fourth row indicates that it failed on 4 other clone groups (we address these issues

in the following sections). Ten of the 27 difficult groups involved out-of-order matches; the

algorithm was able to reorder clones in 7 out of these 10 groups (although it still produced

non-ideal output on one of these seven groups, as discussed later).

The three clone groups shown in Figures 3.1, 3.5, and 3.11 are examples of clone groups

that were in the dataset and on which the algorithm produced ideal results. The algorithm

moved out the intervening non-clone statements in the example in Figure 3.1, and re-ordered

the out-of-order group shown in Figure 3.5. In the case of the example in Figure 3.11, the

input given to the algorithm (i.e., the ideal clones) consisted of the two “case ’$’” blocks;

the two case labels themselves were left out of the clones, and so were the two statements

labeled (3), and the statement labeled (2) (in the second clone); the two statements labeled

(1) were mapped to each other. The algorithm promoted the statement labeled (2) and the

two statements labeled (3) (they cannot be moved out without affecting data dependences,

and in our judgment it is appropriate for them to be in the extracted procedure in guarded

form).

We now discuss the groups on which the algorithm failed, either because of out-of-order

issues or because the node-mapping did not preserve nesting relationships, and the groups

on which it performed non-ideally.
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8.4.1 Failure due to out-of-order issues

The algorithm failed on one out-of-order group that it could not make in-order. The two

clones in this group have the following form:

Clone 1 Clone 2

if (p) v |= K; if (q) v |= L;

if (q) v |= L; if (p) v |= K;

The first if statement in the first clone is mapped to the second if statement in the

second clone, and the second if statement in the first clone is mapped to the first if

statement in the second clone. Therefore, the two if statements have to be permuted in

one of the clones for the group to become in-order. However, the clone-group algorithm

performs neither permutation, because of the output dependence (on the variable v) from

the first if statement to the second if statement (in both clones). In other words, it fails.

However, one of the two clones was permuted in the ideal extraction, by recognizing that two

bitwise-or assignments done to the same variable (v) can be permuted without any change

in semantics.

8.4.2 Failure due to mappings not preserving nesting structure

The clone-group algorithm failed on 3 clone groups whose node mappings did not pre-

serve nesting relationships. One of these 3 groups is the group shown in Figure 8.4. Note

that the algorithm would have actually succeeded on this example had the individual-clone

algorithm (which is applied in Step 1 of the clone-group algorithm – see Figure 6.4) done the

ideal transformation: move “hash = 0” to the point just before the for loop, rather than

promoting the intervening non-clone nodes.

The two other clone groups on which the algorithm failed are groups that inherently

violate the nesting-preservation requirement (i.e., Step 1 of the algorithm had no role in the

failure). One of these clone groups is the group shown in Figure 3.13.
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8.4.3 Non-ideal performance of the algorithm

The clone-group algorithm performed non-ideally on 4 clone groups. We consider the

output of the clone-group algorithm to be non-ideal if it does not exactly match the ideal

output. This can occur either because Step 1 of the algorithm (the individual-clone algo-

rithm) produces non-ideal output, or it can occur because of a shortcoming in Step 2. As

discussed in Section 8.3.2, the individual-clone algorithm produced non-ideal output on 6

clones. One of those clones is the clone in the left column of Figure 8.4; recall that the

clone-group extraction algorithm failed on the clone group shown in that figure as a result.

The other five clones on which the individual-clone algorithm performed non-ideally were

members of 3 groups, and thus Step 1 accounted for 3 of the 4 clone groups for which the

clone-group algorithm produced non-ideal output. There was one additional group on which

the clone-group algorithm performed non-ideally, even though Step 1 produced the correct

output and even though the group was not out-of-order. Both clones in this group con-

tained promoted fragments (after the individual-clone algorithm was applied to the clones).

The ideal extraction involved recognizing that the promoted fragments in the two clones,

although not matching each other syntactically, had the same semantics; therefore the pro-

moted fragment in one of the clones was rewritten to make it identical to the other promoted

fragment (so that both fragments could be extracted without the use of any guarding in the

extracted procedure). The clone-group algorithm does not incorporate any transformations

besides movement of non-clone nodes (in Step 1), and reordering of cloned nodes (in Step 2).

Therefore, on this example, the final output contained both the mismatching fragments, as

promoted code (i.e., both fragments would have to be placed in the extracted procedure in

guarded form).

8.5 Program size reduction achieved via procedure extraction

We performed another study whose goal was to determine the space-savings that can

be achieved via extraction of clone groups. We performed this study on the 4 files in the
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# of
lines of
source

# of
PDG
nodes

# of clone
groups

extracted

total # of
clones

extracted
file size

reduction
avg. func. size

reduction

file 1 1677 2235 3 6 1.9% 5.0%

file 2 2621 4006 12 24 4.7% 12.4%

file 3 3343 6761 3 7 2.1% 4.4%

file 4 3419 4845 12 40 4.9% 10.3%

Figure 8.6 Space savings achieved in NARC via procedure extraction

NARC program, by manually extracting 30 groups of clones (77 individual clones) in the best

manner according to our judgment (i.e, we performed “ideal” extractions). We extracted the

clone groups into macro definitions, rather than procedures, to avoid changing the running

time of the program. Extracting clones groups into macros also allowed us to extract some

groups that were not used in the dataset in the previous study because the differences among

the clones in those groups made procedure extraction infeasible or undesirable (in that study

we only considered clone groups that were good candidates for extraction into procedures).

The results of this study are summarized in Figure 8.6, which gives, for each of the four

files:

• the file’s size (in lines of source code and in number of PDG nodes);

• the number of clone groups that were extracted;

• the total number of extracted clones;

• the reduction in size of the file (in terms of lines of code);

• the average reduction in size for functions that included at least one extracted clone

(in terms of lines of code).



143

8.6 Summary

Difficult-to-extract clone groups occur frequently in practice. In the dataset, which con-

tains all large clones that were good candidates for extraction that were found in three real

programs by the clone-detection tool, 25% of the clones were individually difficult – were

non-contiguous and/or involved exiting jumps. In particular, 17% of the individual clones

were non-contiguous, and 14% of them involved exiting jumps (6% of the clones involved

both these characteristics). Twenty percent of the clone groups in the dataset involved out-

of-order matches; 54% of the clone groups were difficult – were out-of-order, or had one or

more clones that were individually difficult, or had matchings that did not preserve nesting

structure. The clone-group extraction algorithm produced the same output as an “ideal

extraction” (done by us, using our best judgment) on 70% of the difficult groups (groups

that are not difficult are extractable to begin with, so there is nothing for the algorithm to

do). Considering that no automatic algorithm is likely to be able to employ the full range

of transformation techniques used by a human, (and thus 100% ideal performance by an

automatic algorithm is probably not feasible) we regard the results of the studies as very

encouraging, indicating that the algorithm is likely to be useful in practice. In Chapter 9 we

present the results of experiments in which we applied two previously reported approaches

to procedure extraction to the clone groups in the dataset; our findings in those experiments

was that our approach outperformed theirs on a vast majority of the clone groups in the

dataset.
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Chapter 9

Related Work

In the first part of this chapter, we discuss previously reported work that is related to

our work on clone detection. The second part of the chapter focuses on previous work that

is related to our work on procedure extraction.

9.1 Related work on clone detection

The key advance of our work over previous work in clone detection is the use of a slicing-

based approach that is able to identify interesting clones even in the presence of difficult char-

acteristics such as non-contiguity and out-of-order matching. Previous approaches to clone

detection [Mar80, FMW84, LDK95, Vah95, DBF+95, Zas95, MLM96, KDM+96, Bak97,

BYM+98, ACCP98, BG98, CM99, KL99, Run00, CSCM00, DEMD00], with a single ex-

ception [BG98], either work on the source text of the program, or on the abstract syntax

tree (AST) representation, or on the control-flow graph (CFG) representation. The problem

with these representations, which are closely tied to the source code, is that they encode

the often arbitrary choice of statement-ordering that the programmer made while writing

the program. Therefore these approaches, unlike ours, are in general unable to find clone

groups with difficult characteristics that are nevertheless good candidates for extraction into

separate procedures.

We discuss previously reported approaches to clone detection in Sections 9.1.1 through

9.1.5. Then, in Sections 9.1.6 and 9.1.7, we discuss previous work in areas that are closely

related to clone detection.
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9.1.1 A text-based approach

Baker [Bak95, Bak97] describes a text-based approach that finds all pairs of matching

“parameterized” code fragments in source code. A code fragment matches another (with

parameterization) if both fragments are contiguous sequences of source lines, and some global

substitution of variable names and literal values applied to one of the fragments makes the

two fragments identical line by line. Comments are ignored, as is whitespace within lines.

Because this approach is text-based and line-based, it is sensitive to lexical aspects like the

presence or absence of new lines, and the ordering of matching lines in a clone pair. Our

approach does not have these shortcomings. Baker’s approach does not find intertwined

clones. It also does not (directly) find non-contiguous clones. A postpass can be used to

group sets of matching fragments that occur close to each other in the source, but there is

no guarantee that such sets belong together logically.

Other text-based approaches to clone detection are [Mar80, FMW84, LDK95, Vah95,

Zas95, CM99, CSCM00]. Of these approaches, the approach of [Vah95] works on source

code, and uses the Agrep [WM92] tool to find inexact matches. The other approaches work

on intermediate-level code, assembly code or Java bytecode, and find exact matches only

(modulo renamed variables, for some of them).

9.1.2 AST-based approaches

Yang [Yan91] proposes an approach to find the syntactic differences between two pro-

cedures; this problem, although not the same as clone detection, is related to it. Yang’s

approach is to represent each procedure using its AST, and to use dynamic programming

to find the largest possible one-to-one matching between nodes in the two ASTs such that

the matching preserves nesting relationships (see Section 6.2) as well as the order between

sibling nodes. The two procedures are then displayed next to each other, with the non-

matching nodes highlighted. This approach is purely syntactic, and is therefore sensitive to

the ordering of statements and names of variables.
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Baxter et al. [BYM+98] propose an AST-based approach to finding clones in source

code. They find exact clones by finding identical AST subtrees, and inexact clones by

finding subtrees that are identical when variable names and literal values are ignored. Non-

contiguous and out-of-order matches are not found. Their approach completely ignores

variable names when asked to find inexact matches; this is a problem because ignoring

variable names results in ignoring all data flows, which could result in matches that are not

meaningful computations worthy of extraction.

Araújo et al. [ACCP98] propose an AST-based approach to detecting clones in assembly

code; the clones they find are expressions that do not span basic-block boundaries.

9.1.3 Metrics-based approaches

Kontogiannis et al. [KDM+96] define an approach that uses dynamic programming, in

a manner similar to Yang’s approach, to compute a similarity metric between all pairs of

begin-end blocks in the program. This approach does not find clones in the sense of the

other clone-detection approaches discussed so far. It only gives similarity measures, leaving

it to the user to go through block pairs with high reported similarity to determine whether

or not they are clones. Also, since it works only at the block level it can miss clone fragments

that are smaller than a block, and it does not effectively deal with variable renamings or with

non-contiguous or out-of-order matches. Other approaches to computing similarity metrics

between fragments of code (at various levels of granularity) are [DBF+95, MLM96].

9.1.4 CFG-based approaches

Several CFG-based approaches [KL99, Run00, DEMD00] have been proposed for clone

detection and elimination. All these approaches work on intermediate-level code or assembly

code. The approach of Kunchithapadam et al. [KL99] finds isomorphic single-entry single-

exit subgraphs in basic-block-level CFGs such that corresponding basic blocks have identical

sequences of instructions. The approach of Runeson [Run00] is similar to the approach of

Kunchithapadam et al., but they allow matching instructions in corresponding basic blocks
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to be out-of-order if the instructions can be made in-order via semantics-preserving permu-

tations. They also allow variables names to differ across clones in a group (although they

require a one-to-one map between the names). They do not find non-contiguous clones, nor

do they find clones that are non-isomorphic in the basic-block level CFGs (i.e., they restrict

out-of-order sections to be contained within basic blocks).

We postpone discussion of the approach of Debray et al. [DEMD00] to Section 9.2.4.

9.1.5 Dependence-based approaches

The primary goal of the work described by Bowdidge and Griswold in [BG98] is to help

convert procedural code to object-oriented code by identifying methods. As part of this

process, they do a limited form of clone detection. We do not discuss the details of their

approach here; however, their idea essentially is to find clones by finding matching groups

of paths in the PDG such that corresponding nodes in the paths match syntactically. Our

approach, in contrast, is to matching partial slices; our observation is that most clones that

are interesting and worthy of extraction are not simply paths in the PDG. However, their use

of paths allows them to present results in a factored form: when different groups of matching

paths have common prefixes, they display the common prefixes only once. It is less clear if

clones that are partial slices can be presented in factored form.

We reported our slicing-based approach to clone detection in [KH01]. Subsequently,

another slicing-based approach [Kri01] for clone detection was proposed by Jens Krinke.

The major difference between the two approaches is that while we use backward slicing

primarily, and forward slicing along control-dependence edges, they use forward slicing only.

We have experimented with full forward slicing; our experience was that it often resulted in

meaningless clones (several unrelated computations can often be reached by slicing forward

from a node that is a dependence predecessor of all of them). Furthermore, forward slicing

only can miss interesting computations. Many interesting computations have just one output;

such computations can be identified directly by slicing backward from any node that uses
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Figure 9.1 PDG subgraphs illustrating Krinke’s approach

the output of that computation. Therefore backward slicing is intuitively better suited for

finding interesting computations.

There is one other difference between our approach and that of Krinke. Consider the two

PDG subgraphs in Figure 9.1 (the dashed edges are flow-dependence edges). Starting from

the two matching nodes 1 and 1′, their approach would map 2 to 2′ and 3 to 3′. They then

match 5′ to both 4 and to 5 (because (4, 5′) is reachable from the matching nodes (2, 2′) and

(5, 5′) is reachable from the matching nodes (3, 3′)). In fact, their output is simply a pair of

subgraphs, that possibly have different numbers of nodes, with no mapping provided between

the nodes in the two subgraphs. Our approach, on the other hand, always maps a node in

a clone to one specific node in the other clone, making arbitrary choices when multiple

possibilities exist. It is our view that the usability of the tool is improved by sticking to the

intuitive notion that a clone pair is a one-to-one mapping between two sets of nodes.

Reps and Yang [RY89] showed, for a restricted language, that two program components

(statements or predicates) have identical execution behavior (produce identical sequences of

“outputs”) if the (complete) backward slices taken from those two components are isomor-

phic. This result holds even if the two components are from different programs. They use

this notion not for clone detection, but for program integration (the details of which are not

important here). In our approach we find matching partial slices, as opposed to matching

complete slices. We do this because, in the context of clone detection, requiring mapped
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nodes to have identical execution behaviors is too strict. For example, in Figure 3.1, no two

mapped components have identical execution behaviors (because the while loop predicates

that control them are non-matching).

9.1.6 Searching for specified patterns

Various approaches have been proposed in the past that can be broadly classified as ap-

proaches to searching for specified patterns in a program. This, clearly, is different from but

related to clone detection. Paul and Prakash [PP94] propose an approach for letting users

search for program fragments using patterns in a pattern language that is obtained by ex-

tending the source language. Rich and Wills [RW90] propose a scheme to identify clichés in

programs. Clichés are frequently used programming idioms; e.g., linear searches, successive-

approximation loops. Their approach is based on representing a database of clichés as well

as input programs using plans, which are hierarchical graphical representations of programs.

They then provide techniques for searching the input programs for occurrences of clichés,

and also to “parse” the program and build a “derivation tree” whose nodes represent clichés

(successively from lower-level clichés to high-level clichés). Griswold and Notkin [GN93] de-

fine a tool-box of program analysis and transformation operations. One of the operations

they provide is scope-substitute-call, which, when given a function, finds other frag-

ments of code in the program that match this function and can potentially be replaced by

calls to it; they find the matching fragments by searching for PDG subgraphs that match

the PDG of the given function.

9.1.7 Subgraph isomorphism

A number of people have studied the problem of identifying maximal isomorphic sub-

graphs [BB76, McG82, BSJL92, WZ97]. Since this in general is a computationally hard

problem, these approaches typically employ heuristics that seem to help especially when

the graphs being analyzed are representations of molecules. In our approach we identify

isomorphic partial slices, not general isomorphic subgraphs. We do this not only to reduce
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the computational complexity, but also because clones found this way are more likely to be

meaningful computations that are desirable as separate procedures.

9.2 Previous work related to procedure extraction

Previous work that is related to our work on procedure extraction falls into three broad

categories:

1. Work on eliminating gotos in source code,

2. Work on compiler-based loop transformations, and

3. Work on procedure extraction itself.

The problems solved in the first two categories are different from ours. However, our

technique of using the variable exitKind to handle exiting jumps bears some resemblance to

the techniques used by work in the first category (eliminating gotos), e.g., [AM72, Oul82].

Similarly, our operation of splitting the tightest e-hammock H that contains a clone into

a sequence of three e-hammocks bears resemblance to the loop distribution transforma-

tion [Ban93] used by work in the second category above. In this transformation, a single loop

is split into several loops with duplication of the loop predicate, and of other predicates in the

loop’s body, if necessary. However, it is not clear that previously proposed loop-distribution

approaches handle exiting jumps. Doing code motion in the presence of exiting jumps is

a non-trivial problem that we address. In their context, since the e-hammock they split is

always a complete loop, handling exiting jumps is perhaps not as important, because there

can be no exiting breaks or continues in that situation. On the other hand, since in our

context an e-hammock can be just a part of a loop body, we can have exiting jumps that

are breaks or continues (gotos and returns can be exiting jumps in both contexts).

It is worth noting that in our approach we never split loops; i.e., we duplicate only if

predicates and jumps, and assign a loop in H entirely to a single resultant e-hammock (we

do not enforce this directly – the constraints generated in the presence of a loop indirectly
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enforce this). We take this approach because duplicating loops would require duplicating the

assignment statements that update the variables used in the loop predicate; this (duplication

of assignments) is something we do not do, because, in general, it can require transformations

such as renaming variables or copying and restoring entire data structures. Such transfor-

mations can reduce code readability and adversely affect the program’s efficiency.

A large amount of work has been done in the past regarding procedure extraction;

e.g., [Mar80, FMW84, GN93, LDK95, Zas95, LD98, BMD+99, KL99, CM99, CSCM00,

Run00, DEMD00]. Of these, the approach of [LD98] is for extracting a single (possibly

non-contiguous) fragment of code, whereas the others address extraction of a group of

clones. Some of the clone-group extraction approaches work at the source-code level [GN93,

BMD+99], whereas the others [Mar80, FMW84, LDK95, Zas95, KL99, CM99, CSCM00,

Run00, DEMD00] target assembly code with the aim of compacting it. Our approach is an

advance over these previous approaches in two respects:

• It is the first approach, to our knowledge, to address extraction of fragments that

contain exiting jumps.

• It employs a range of techniques (code motion, predicate duplication, handling exiting

jumps, promotion) to make clone groups that exhibit a variety of difficult characteristics

suitable for extraction. Our work is an advance over previous approaches in that we not

only employ a wide range of transformations, but also identify appropriate conditions

under which to apply each transformation so that results are usually close to ideal. In

particular, our approach addresses the non-trivial problem of doing code motion in the

presence of exiting jumps.

We now discuss how previous work compares to our work in terms of the two aspects

mentioned above.
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9.2.1 Exiting jumps

The work of [GN93] is for Scheme programs, and thus does not address programs that

contain jumps, whether they are exiting jumps or not. Most previous approaches to pro-

cedure extraction handle jumps, but not exiting jumps. For each of the example clones in

Figure 1.1, the smallest exiting-jump-free region that contains the marked code is the entire

outer while loop. The previous approaches would be able to extract this entire region, but

not just the marked code shown in the figure. While in this particular example it is arguable

whether being able to extract the marked code only is a major advantage, in general, the

loop could contain a lot of non-matching code in addition to the matching code; if that is

the case, extracting the entire loops means that all that non-matching code would have to

be placed in the extracted code in guarded form. Worse still, if there were a return in

that example in place of the break, then the region of the clone would be not just the loop,

but everything else that follows until the end of the procedure. In our studies we noted

that exiting returns occur quite frequently in practice (usually to handle error/exceptional

conditions).

The approach of Marks [Mar80], which works on assembly code, extracts fragments that

contain exiting jumps. However, it is notable that the machine they assume uses a single

branch-and-link register to store the return address, which implies that call graphs have

maximum depth two. This allows them to leave exiting jumps in original fragments un-

changed in extracted procedures, but their solution does not apply to procedure extraction

in the source code of a language such as C.

Some of the previous approaches [FMW84, CM99] allow clones to contain exiting jumps

in restricted situations where corresponding exiting jumps in the clones in the group have

the same target and the last instruction in each clone is an exiting jump. In this case they do

not extract the clones into a separate procedure; instead they retain one of the clones in the

group and replace all other clones by jumps (rather than calls) to the retained clone. They

call this technique tail merging. Chen et al. [CLG03] have recently proposed an extended

kind of tail merging that handles clones in which corresponding exiting jumps do not have
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the same target. If an exiting jump in one clone does not have the same target as the

corresponding exiting jump in the other clones, then in the retained clone they replace that

exiting jump by conditional jumps to the appropriate targets. This is similar to our exitKind

transformation, although they incorporate the additional optimization of not introducing a

new variable (i.e., exitKind) if there is one already available in the program whose value

indicates the location from which control entered the retained clone.

While these approaches do handle exiting jumps, tail merging is not a suitable technique

for application to source code that is maintained by programmers, because it reduces un-

derstandability. Furthermore, tail merging is inapplicable to the source code of a language

like C when the clones in a group are in different procedures (because jumps cannot cross

procedure boundaries).

One of the previous assembly-code approaches [LDK95] allows extraction of clones that

contain multiple entry points (not multiple outside exits). Although this could potentially be

simulated in source code by having extra parameters in the extracted procedure and having

gotos in the beginning of the procedure that transfer control to the appropriate point based

on the parameter values, we do not incorporate this technique; it is not clear how useful this

technique would be in source code, and moreover it has the disadvantage of producing code

that is poorly structured.

9.2.2 Using a range of transformations

Previous approaches to automatic clone-group extraction either employ only a narrow

range of techniques, or employ restrictive versions of these techniques, thereby making them

unsuitable for extraction of various kinds of difficult clone groups that come up in practice.

The approaches proposed in [Mar80, FMW84, LDK95, Zas95, KL99, CM99, CSCM00] do not

extract non-contiguous clones or out-of-order groups at all. The approach of Griswold and

Notkin [GN93] is capable of extracting out-of-order groups. They provide limited support

for extracting non-contiguous clones, via a set of semantics-preserving primitives that the

programmer can use to move individual non-clone statements; however they provide no
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automatic assistance in determining which statements need to be promoted, and in which

direction the others can be moved – i.e., before or after the cloned code. The approach of

Runeson [Run00] also is capable of extracting out-of-order groups (but not non-contiguous

clones), provided the clones in a group are isomorphic in the basic-block level CFGs (see our

earlier discussion of this approach in Section 9.1.4). The approaches of [DEMD00, CLG03]

allow non-contiguous clones, although in a more restrictive manner than ours; moreover,

they deal with non-contiguous clones simply by promoting all intervening non-clone nodes

(they do no code motion). We discuss the approach of Debray et al. [DEMD00] in greater

detail in Section 9.2.4. The approach of Balazinska et al. [BMD+99], while incorporating

object-oriented techniques for clone extraction in source code, is conceptually similar to the

approach of Debray et al.

To be fair, however, it is notable that there is a difference between the motivations of

previous clone-group extraction approaches that work on the assembly-code level and that

of our approach: whereas the goal of our algorithm is to extract a given group of clones that

represent a meaningful computation, their goal is to find and extract groups of clones that

yield space savings. Because of this difference, it might be reasonable for those algorithms

to find and extract small, easy subsets of larger, more meaningful clones. However, their

techniques are insufficient when dealing with extraction of programmer-specified clone groups

in source code (as indicated by some studies of ours, discussed below).

The approach of Lakhotia and Deprez [LD98], which handles single-fragment extraction

only, uses a range of transformations, although in a more restrictive fashion than ours. We

discuss their approach in detail in Section 9.2.3.

Prior to reporting our current individual-clone extraction algorithm in [KH03], we re-

ported a less powerful approach for the same problem in [KH00]. Our previous algorithm

employed code motion to handle non-contiguous clones; however it did not employ the tech-

niques of promotion or duplication of predicates, and it did not handle exiting jumps. As a

result, that algorithm is likely to fail on many difficult clones that come up in practice (our

current algorithm never fails).
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9.2.3 Comparison of our algorithm with Lakhotia’s algorithm

The approach of Lakhotia et al. [LD98] is the one that is closest to ours in spirit. They

address extraction of a single fragment of code (i.e., their algorithm is comparable to our

individual-clone algorithm).

The approach of Lakhotia et al. is to find the tightest (normal) hammock H containing

the marked nodes, and to create a marked and an after hammock from the nodes in H (they

do not use a before hammock). The key differences between our approach and theirs are:

• They promote all nodes in H that are in the backward slice from the marked nodes.

We do not do this, because we can move such code to the before bucket (which they

do not use).

• We allow dataflow from the marked hammock to the after hammock. They disallow

this, and instead place in the after hammock all nodes in H that are in the backward

slice from unmarked/unpromoted nodes. This can cause duplication of the marked

code in the after bucket, thereby defeating the purpose of extraction.

• Our use of code motion is better than theirs, and so is our use of promotion. As a

result we always succeed in transforming the marked code to make it extractable; on

the other hand they fail whenever their marked and after buckets have a common

output variable.

• They do not handle exiting jumps, and therefore have to start from the tightest ham-

mock containing the marked code. The tightest hammock is usually larger (and never

smaller) than the tightest e-hammock, which means they have more unmarked nodes

to deal with, which exacerbates all the problems mentioned earlier.

• They do allow duplication of assignments, and saving and restoring variable values

(although they do not address the difficult issues that come up in this context when

arrays and pointers are present). Our approach duplicates only predicates and does

not save and restore values. Although these features of their approach can potentially
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Category
total #
clones

# non
contig.

# exiting
jumps

Both outputs non-ideal 3 3 1

Their output non-ideal, ours ideal 15 5 11

They fail, we succeed non-ideally 3 3 2

They fail, our output ideal 22 19 11

43

Figure 9.2 Comparison of our algorithm and Lakhotia’s algorithm

make it better than ours in some cases, it can also increase duplication of marked code.

In practice, their other drawbacks outweigh these features, as indicated by our studies

of the comparative performance of their algorithm with ours (discussed below).

To illustrate some of the advantages of our approach over that of Lakhotia et al., consider

the clone group from bison shown in Figure 3.1. When applied to the clone in Fragment 1,

their algorithm promotes the intervening non-clone if statement (because the definition of

c in that statement reaches a subsequent use of c in a cloned node). When applied to the

clone in Fragment 2, their algorithm fails (they place the assignment “c = getc(finput)”

in both the marked and the after buckets, and c is an output variable in both buckets,

because of data flow in the original code from the assignment “c = getc(finput)” to the

use the of c in the while predicate). On the other hand our algorithm does the ideal thing

on both these clones: move the intervening non-clone nodes out of the way of the cloned

nodes.

Similarly, on the example in Figure 1.1, because of the exiting jumps, they can only

extract the two entire loops.

Figure 9.2 provides data comparing the performance of our individual-clone algorithm

and Lakhotia’s algorithm, on the clones in our dataset of Chapter 8. We performed the

comparison by (partially) implementing their algorithm, using the same CodeSurfer-based

framework that we used for the implementation of our algorithm. In Figure 9.2 and in the
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following discussion we talk about difficult clones only, because no transformation is required

by either algorithm to make the non-difficult clones extractable. The 43 difficult clones are

divided into four disjoint categories (based on the performance of the two algorithms on the

clones), with one category per row. The first row is for clones on which both algorithms

succeeded but produced non-ideal output; the second row is for clones on which our algorithm

produced ideal output whereas theirs produced non-ideal output; the third row is for clones

on which their algorithm failed and our algorithm succeeded but produced non-ideal output,

and the fourth row is for clones on which they failed while we produced ideal output. Their

algorithm did not produce the ideal output on even one clone in the dataset; and on all but

3 clones (those in the first row) their algorithm performed worse than ours. An important

reason for this is that they do not handle exiting jumps: They failed on 8 clones (on which

our algorithm succeeded) and performed non-ideally on 7 clones (on which our algorithm

performed ideally) solely because of exiting jumps; i.e., if the exiting jumps were removed

they would succeed on the 8 clones, and perform ideally on the 7.

However, handling exiting jumps is not the only advantage of our algorithm over theirs;

our notion of when unmarked nodes can be moved away is less restrictive than theirs, and

our rules for promotion are better (e.g., recall the performance of their algorithm on the two

non-contiguous clones in Figure 3.1). There are 20 clones (other than the 15 mentioned in

the previous paragraph) on which they perform unsatisfactorily due to reasons other than

exiting jumps (i.e., these clones either have no exiting jumps, or the problem persists even if

all exiting jumps are removed). In particular, they failed on 16 clones in this category, and

performed non-ideally on the remaining four. In contrast, our algorithm performed ideally

on 17 of these 20 groups (and produced non-ideal output on the remaining 3).

9.2.4 Comparison of our algorithm with Debray’s algorithm

We selected the assembly-code compaction approach of Debray et al [DEMD00], from

among the various previously reported clone-group extraction approaches, for a more detailed

comparison with our approach. The reason we selected their approach is that it employs more



158

techniques than other previous assembly-code compaction approaches, is conceptually similar

to the source-code based approach of [BMD+99], and is likely to perform better than the other

source-code based approach [GN93] because groups involving non-contiguous clones, whose

extraction is addressed by [DEMD00] but not by [GN93], occur more frequently in our dataset

than out-of-order groups that are handled better by [GN93]. (The approach of Debray et

al. does not, strictly speaking, employ more techniques than that of Runeson [Run00];

Runeson’s approach allows out-of-order matches, but as with the approach of [GN93], it

disallows non-contiguous clones.)

The basic approach of Debray et al. works as follows: For each procedure, they build a

CFG in which the nodes represent basic blocks. They then find groups of isomorphic single-

entry single-exit subgraphs in the CFGs such that corresponding basic blocks have identical

instruction sequences (modulo register renamings), and then extract each group into a new

procedure.

In an extension to their basic approach, they allow corresponding basic blocks to have

non-identical instruction sequences; in that case they walk down the two sequences in lock-

step and “promote” every mismatching instruction (i.e., it is included in the extracted proce-

dure with a guard). Thus, although inexact matches are allowed, every mismatch is handled

by using the guarding mechanism: every intervening non-matching statement and every copy

of an out-of-order matching statement is placed in the extracted procedure with guarding.

(Although they propose this extension, they disable it in their experiments because it hurt

performance).

In addition to the fact that they use guarding to handle all mismatches, their approach

has two other weaknesses compared with ours:

1. The requirement that the CFG subgraphs be isomorphic prevents many reasonable

clone groups from being extracted; e.g., they would fail to extract the clone group in

Figure 3.1 because the intervening non-matching statement “if (c == ’-’) c = ’_’”

makes the four basic-block-level CFG subgraphs that contain the four clones non-

isomorphic.
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Category
# clone-
groups

1. They fail (ours ideal) 9

2. Their output non-ideal (ours ideal) 6

3. They fail (our output non-ideal) 2

4. Both outputs non-ideal 1

5. Both fail 3

6. Both outputs ideal 4

7. Their output ideal (ours non-ideal) 1

8. We fail (their output non-ideal) 1

27

Figure 9.3 Comparison of our algorithm to that of Debray et al.

2. Because they are restricted to extracting single-entry single-exit structures, they cannot

handle exiting jumps. For instance, in the example of Figure 1.1, due to the presence

of the breaks, the smallest single-entry single-exit structure enclosing each clone is the

entire surrounding loop. Therefore they could extract the entire loop, but not just the

desired clones.

Figure 9.3 provides data comparing the performance of our algorithm and that of Debray

et al. on the 27 difficult clone groups in our dataset of Chapter 8. We did not implement

their algorithm for this comparison; however, because they do no code motion and instead

promote all intervening non-clone nodes, we could manually apply their algorithm in a

straightforward manner.

The 27 difficult clone groups are divided into 8 disjoint categories, with one per row in

Figure 9.3. As shown in rows 1 through 5 and 8, their algorithm either fails or performs

non-ideally on a vast majority of the clone groups, 22 out of 27, while our algorithm fails

on none and produces non-ideal output on only 8 of those 27 groups. The main reason for

the better performance of our algorithm is that, as discussed earlier, it employs a variety

of transformations to tackle difficult aspects, while their algorithm uses promotion only.
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As shown in the last two rows of Figure 9.3, their algorithm performs better than ours

on 2 clone groups. On one of these groups we perform non-ideally by over-aggressively

moving intervening non-clone nodes out of the way using duplication of predicates, whereas

guarding, which is their solution, is the ideal outcome. The other group is the out-of-order

group mentioned in Section 8.4.1 on which our algorithm fails; they succeed (non-ideally) on

this group by using guarding.

Since we reported our individual-clone extraction algorithm in [KH03], De Sutter et

al. [SBB02] have proposed an approach to clone detection and elimination; this approach is

quite similar to that of Debray et al., except that they also find exactly matching sequences

of instructions that are parts of basic blocks (the approach of Debray et al. treats entire

basic blocks as the units of clone detection).
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Chapter 10

Conclusions

Code duplication is a widespread problem in real programs. Duplication is usually caused

by copy-and-paste: a new feature that resembles an existing feature is implemented by

copying and pasting code fragments, perhaps followed by some modifications. Duplication

degrades program structure. Detecting clones (instances of duplicated code) and eliminating

them via procedure extraction gives several benefits: program size is reduced, maintenance

becomes easier (bug fixes and updates done on a fragment do not have to be propagated to its

copies), and understandability is improved (only one copy has to be read and understood).

In this thesis, we focused on the detection and extraction of inexactly matching groups

of clones, i.e., groups whose individual clones are non-contiguous, groups in which matching

statements are in different orders in different clones, and groups where variable names are

not identical in all clones. Our first contribution was a novel program-dependence-based

approach that identifies duplication by finding matching “partial” slices in PDGs. This

approach is an advance over previous approaches to clone detection that work on source

text, CFGs, or ASTs, in its ability to find inexact matches. The approach also has the

benefit of being likely to identify clones that are good candidates for extraction into separate

procedures (are meaningful computations, and are extractable).

Non-contiguous clones, and groups where matching statements are out-of-order, are non-

trivial to extract. Exiting jumps – jumps from within the code region that contains a

clone to outside that region – also complicate extraction, because after extraction control

flows out of the procedure-call to a single statement, the statement that follows the call.
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Semantics-preserving transformations are required when difficult characteristics such as non-

contiguity, out-of-order matches, and exiting jumps are present, so that each clone becomes

a contiguous well-structured block that is suitable for extraction, and so that matching

statements are in-order across the group. The second contribution of this thesis was a pair of

algorithms, one for making an individual fragment extractable, and one for making a group

of clones extractable. These algorithms are an advance over previous work on procedure

extraction in two ways: they are the first to handle exiting jumps, and they employ a

range of semantics-preserving transformations to make clone groups that exhibit a variety

of difficult characteristics extractable. We provide proofs of semantics preservation for both

our extractability algorithms.

We have implemented our clone-detection algorithm, and the heart of our single-fragment

extractability algorithm. We have experimented with the clone-detection algorithm on sev-

eral real programs, and have found that it is likely to identify most clones that a programmer

would consider interesting, and only a few clones that a programmer would consider uninter-

esting (mainly at small sizes). The main drawback of the approach is that it often identifies

multiple variants of an “ideal” clone group, instead of just the ideal groups. Therefore, the

programmer needs to examine the output of the tool and determine the ideal clone groups

that the reported clone groups correspond to. However, in our experience, this is not an

overwhelming burden.

We have also experimented with our extractability algorithms, using a dataset of clone

groups identified by our clone-detection tool. We found that the algorithms produced the

“ideal output” – the best output according to our judgment – over 70% of the time. Con-

sidering that no automatic algorithm is likely to incorporate the full sophistication of a

programmer, we regard these results as very encouraging. Furthermore, when compared to

two previously reported approaches to procedure extraction, we found that our algorithm

outperformed theirs on a vast majority of the inputs.

Future work on the clone-detection approach could include devising heuristics beyond

those currently proposed that reduce the “variants” problem. Engineering efforts can be
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made to speed up the tool, and an extension to the approach could be developed to directly

identify groups of clones, rather than identifying clone pairs first and then grouping them,

as we do now. From the extraction perspective, future work could include experimental

studies involving programmers (other than the author) to further evaluate the usefulness of

the approach. Future work could also include devising and evaluating a scheme to determine

the parameters that are needed by a procedure that replaces a group of clones. Finally, in

addition to making these follow-on improvements, it would be interesting to think about

higher-level applications for the techniques proposed in this thesis. In particular, it might

be worthwhile to investigate (semi) automated approaches that make use of clone detection,

procedure extraction and perhaps other transformations as underlying tools with the goal of

improving the overall structure and maintainability of a program (in all aspects).
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Appendix A: The partitioning in the individual-clone

algorithm satisfies all constraints

Theorem A.1 The partitioning of nodes (into buckets before, marked and after) done in

Step 4 of the individual-clone algorithm (Figure 5.11, Chapter 5) satisfies all constraints

generated in Step 2 of that algorithm (Figures 5.5 and 5.6).

We first recall a few details of the individual-clone algorithm. Step 4 partitions the nodes

in H into the three buckets before, marked, and after. Copies of a predicate node in H may

be present in multiple buckets, although a single bucket has at most one copy of a node.

The ordering of the three buckets is before, then marked, then after. There are three kinds

of constraints. A constraint p ≤ q is satisfied iff no copy of p is in a bucket that follows H ,

where H is the earliest bucket that contains a copy of q. A constraint p ⇒ q is satisfied iff

every bucket that has a copy of p also has a copy of q. A constraint p ; q is satisfied iff a

copy of q is present either in H or in some bucket that follows H , where H is the last bucket

that contains (a copy of) p.

While any constraint can be satisfied (or not satisfied) only at the end of Step 4 (when

partitioning is complete), “≤” constraints can be violated at intermediate points in the

execution of Step 4. A constraint “p ≤ q” is said to be violated at an intermediate point if

a copy of p is present in some bucket that follows the first bucket to have a copy of q. Note

that a “≤” constraint cannot be violated if one or both nodes involved in the constraint are

not present in any bucket yet; also, a constraint that is violated at some intermediate point

remains violated from then on, despite any other assignments done later in the step. “⇒”

and “;” constraints can never be violated at intermediate points in Step 4; intuitively, the

reason for this is that while “≤” constraints rule out certain assignments, “⇒” and “;”

constraints rule nothing out (they only require certain properties).

The first sub-step in Step 4 is to assign the marked (and promoted) nodes to the marked

bucket (see Figure 5.11). No constraints are violated at the end of this sub-step, because
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“⇒” and “;” constraints can never be violated, and because “≤” constraints cannot be

violated when only the marked bucket is non-empty.

The next sub-step in Step 4 is the repeat loop. The node n assigned in the “if..else

if..” statement in that loop is called the initiator of that iteration of the loop. Lemmas A.2

and A.3 concern this loop.

Lemma A.2 Consider any iteration of the repeat loop in Step 4 (Figure 5.11), such that:

• an initiator node n is assigned to a bucket B in the “if..else if..” statement in

that loop (B is before or after).

• the nodes assigned in previous iterations did not cause any constraints to be violated.

The assignment of n to B does not cause any constraints to be violated.

Proof of Lemma A.2. For contradiction, assume that the assignment of n to B

violates a constraint c. Since only “≤” constraints can be violated, and since no constraint

of the form p ≤ q can be violated when p is in before or q is in after, c has to have one of

the following forms: n ≤ b, n ≤ m, a ≤ n, m ≤ n, where a is a node that is already in after,

b is a node that is already in before, and m is a node that is already in marked. We consider

each of these cases below, and in each case show that a contradiction results.

Case (c is of the form n ≤ b, where b is a node in before, or of the form n ≤ m, where m

is a node in marked): In this case B = after (otherwise c is not violated). Note that

according to Rules B1 and B2 in Figure 5.10, c forces n into before. The only possible

reason why n was placed in after in spite of this is that some other constraint c2 forces

n into after. Here are the possibilities for the form of c2 (basically, these are obtained

from rules A1-A4 in Figure 5.10, respectively):

Case (c2 is of the form a ≤ n, where a is a node in after): c is of the form n ≤ b

or n ≤ m. Therefore, by the first rule for generating extended constraints (see

Figure 5.6), one of the two extended constraints a ≤ b, a ≤ m exists. Each of
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these extended constraints is violated even before n is assigned (because a, b, and

m are respectively in after, before, and marked). This is a contradiction of the

statement of this Lemma.

Case (c2 is of the form m2 ≤ n, where m2 is a node in marked): If c is of the form

n ≤ b, the extended constraint m2 ≤ b exists. This constraint was violated even

before n was assigned, which, as we noted earlier, is a contradiction.

On the other hand, if c is of the form n ≤ m, then the first promotion rule in

Figure 5.9 would have caused n to have been promoted; i.e., a copy of n is already

in the marked bucket. But in this case m2 ≤ n could not have forced n into after

(Rule A2 applies only when n is not already present in the marked bucket). This

is a contradiction of our earlier claim that c2 forces n into after.

Case (c2 is of the form m2 ; n, where m2 is a node in the marked bucket): This

constraint exists because m2 is an antecedent of n. If c is of the form n ≤ b,

the fourth rule in Figure 5.6 applies, which means that the extended constraint

m2 ≤ b exists. This constraint was violated even before the assignment of n,

which is a contradiction.

On the other hand, if c is of the form n ≤ m, then the second promotion rule

in Figure 5.9 would have caused n to have been promoted; i.e., a copy of n is

already in the marked bucket. But in this case the constraint m2 ; n does not

force n into the after bucket, which contradicts our earlier claim that c2 forced n

into after.

Case (c2 is of the form a ; n, where a is a node that is already in the after bucket):

That is, a is an antecedent of n. If c is of the form n ≤ b (n ≤ m), then the fourth

rule in Figure 5.6 applies, giving rise to the extended constraint a ≤ b (a ≤ m).

Both these extended constraints were violated even before n was assigned, which

is a contradiction.
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Case (c is of the form a ≤ n, where a is a node in after, or of the form m ≤ n, where m

is a node in marked): In this case B = before (otherwise c is not violated). Note that

according to Rules A1 and A2 in Figure 5.10, c forces n into after. The only possible

reason why n was placed in before in spite of this is that some other constraint c2 forces

n into before. Here are the possibilities for the form of c2 (basically, these are obtained

from Rules B1 and B2 in Figure 5.10, respectively):

Case (c2 is of the form n ≤ b, where b is a node in before): c is of the form a ≤

n or m ≤ n. Therefore, by the first rule for generating extended constraints

(Figure 5.6), one of the two extended constraints a ≤ b, m ≤ b exists. Each of

these extended constraints is violated even before n is assigned (because a, b, and

m are respectively in after, before, and marked). This is a contradiction of the

statement of this Lemma.

Case (c2 is of the form n ≤ m2, where m2 is a node in marked): If c is of the form

a ≤ n, the extended constraint a ≤ m2 exists. This constraint was violated even

before n was assigned, which is a contradiction.

On the other hand, if c is of the form m ≤ n, then the first promotion rule in

Figure 5.9 would have caused n to have been promoted; i.e., a copy of n is already

in the marked bucket. But in this case n ≤ m2 could not have forced n into before

(Rule B2 applies only when n is not already present in the marked bucket). That

is a contradiction of our earlier claim that c2 forced n into before.

2

Lemma A.3 No constraints are violated at any intermediate point in the execution of the

repeat loop in Step 4 (see Figure 5.11).

Proof of Lemma A.3. The proof is by induction on the number of nodes assigned

in the loop so far to buckets. Each iteration of the loop consists of the assignment of the

initiator node n of that iteration to a bucket (in one of the two branches of the if statement),
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followed by the assignment of the non-initiator nodes (control-dependence ancestors of the

initiator).

Base case

We need to prove that the first node n assigned in the loop causes no constraints to be

violated. No constraint can be violated when just the marked bucket is non-empty. In other

words, no constraints were violated just before assignment to n to before/after. Therefore

Lemma A.2 applies, which implies that the assignment of n resulted in no violations of any

constraints.

Inductive case

The inductive hypothesis is that a certain number of nodes have already been assigned

to before and after, and that these assignments cause no constraints to be violated. There

are two sub-cases under the inductive case: the node currently being assigned is an initiator,

and the node currently being assigned is not an initiator.

We first consider the case where the current node n is an initiator, and is assigned to a

bucket B. Because no constraints were violated prior to the assignment of n to B (inductive

hypothesis), Lemma A.2 applies, and implies that the assignment of n to B results in no

violations of any constraints.

We now consider the second case case, where the currently assigned node p is a non-

initiator, is assigned to a bucket B, and is a control-dependence ancestor of an initiator node n

that was assigned to B at the beginning of the current iteration of the loop. For contradiction,

say the assignment of p violates a constraint c; c has to be of the form p ≤ q (q ≤ p), where

q is a node was earlier assigned to some bucket. Since p is a control-dependence ancestor

of n, there exists a sequence of control-dependence constraints n ⇒ q1 ⇒ q2 ⇒ · · · ⇒ p;

therefore, there exists an extended constraint n ≤ q (q ≤ n). Since n and p are both in B,

p ≤ q (q ≤ p) is violated implies that n ≤ q (q ≤ n) is also violated. Since n and q both were

assigned before p, n ≤ q (q ≤ n) was violated before the assignment of p. This contradicts

the inductive hypothesis, and therefore we are done. 2

Proof of Theorem A.1.
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We now show that every constraint generated in Step 2 of the algorithm (Figures 5.5

and 5.6) is satisfied at the end of Step 4 (Figure 5.11).

“≤” constraints: Lemma A.3 showed that none of these constraints are violated at the end

of Step 4. Therefore, all these constraints are satisfied at the end of this step (some of

the “normal” predicates in H have possibly not been assigned to any bucket at the end

of the step; “≤” constraints that mention such unassigned nodes are trivially satisfied).

“⇒” constraints: Each of these constraints is satisfied, because whenever a node is assigned

to a bucket, its control-dependence ancestors are also assigned to the same bucket.

“;” constraints: These are satisfied at the end of Step 4, because Rules A3 and A4

(Figure 5.10) ensure that the appropriate nodes are forced into buckets as long as

unsatisfied “;” constraints remain. Recall that the repeat loop in this step does not

terminate until no forced nodes remain.

2
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Appendix B: The individual-clone algorithm is

semantics-preserving

Recall that the individual-clone algorithm (Chapter 5) identifies the e-hammock H that

contains the marked nodes, and transforms this e-hammock into the output e-hammock

O. In this section we prove that this transformation is semantics-preserving; i.e., we show

that the original e-hammock H and the resultant e-hammock O produced by the algorithm

are semantically equivalent. Recall that Step 6 of the algorithm has two substeps: In the

first substep each copy of exiting jump except for its final copy is converted into a goto;

in the second substep exiting jumps in the marked bucket are converted into gotos, and

compensatory code is added to the after bucket. In this section, we assume that O is the

resultant e-hammock as it is at the end of the first substep of Step 6 of the algorithm;

our assumption is justified because the second substep of Step 6 is obviously semantics-

preserving.

Recall that there are three e-hammocks in O: before, marked and after. In this section,

whenever we refer to an e-hammock H in O, we mean that H is either the before, or marked,

or after e-hammock.

Theorem B.1 A program state is a tuple of values, with one value for each variable in the

program. Let EH be an execution of the e-hammock H (treating H as if it were a complete

program) starting from some program state s. Similarly, let EO be the execution of the

e-hammock O from the same starting state s. Each of the two executions is a sequence of

(dynamic) instances of the nodes in H. The two executions satisfy the following properties:

• the program states at the conclusions of the two executions are identical, and

• control flows out of H and O, at the conclusions of the two executions respectively, to

the same node outside H (in the containing CFG).

In other words, H and O have identical semantics.
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In the rest of this section we state and prove three key properties, ConstraintsSat , Iden-

tExecs , and DefsReached . We finally use these three properties to prove Theorem B.1.

Definition 7 (Actual definitions) Recall that, as stated in Chapter 2, the def (use) set

of a node n in H is a statically computed over-approximation of the set of variables that

may be defined (used) at that node. An instance of n within one of the two executions

EH, EO actually defines a variable if that variable is actually assigned to by that instance.

Therefore, the actually defines set of an instance of n is a subset of the def set of n; also, the

actually defines set contains more than one variable only if the expression inside n includes

procedure calls.

We now introduce terminology that we use throughout the proof:

• A node n is said to use (define) a variable v iff v is in n’s statically computed use (def )

set.

• An instance of a node n is said to use a variable v iff n uses v (i.e., by definition, use

sets of instances are identical to the use sets of the corresponding nodes).

• An instance of a node n is said to define a variable v iff that instance actually defines

v (i.e., as far as instances are concerned, we use “define” as shorthand for “actually

define”).

• An (actual) definition of a variable v in an instance im in an execution (EH or EO) is

said to reach some instance in that occurs somewhere after im in that same execution

iff no other instance between im and in in that execution (actually) defines v.

• If a node n uses a variable v, then the value of v consumed by an instance of n is the

value of variable v when that instance begins execution. Two instances of a node n are

said to consume identical values if, for every variable v in the use set of n, the values

of v consumed by the two instances are identical.



172

We now state and prove Property ConstraintsSat .

Property ConstraintsSat. Let im and in be any two instances in the execution EH such

that im comes before in, and such that both instances define some variable v or one defines

v and the other uses v. Let m and n be the two nodes in H of which im and in are instances,

respectively. No copy of of m is present in an e-hammock in O that follows any e-hammock

in O that contains a copy of n. (Recall that the ordering of the three e-hammocks in O is

before, marked, and after ; also note that at least one of the two nodes m, n defines a variable,

and is therefore present in only e-hammock in O.)

Proof of Property ConstraintsSat. By considering the various cases for im and in,

we show that the constraint m ≤ n is generated in Step 2 of the algorithm. Property Con-

straintsSat then follows automatically, because the partitioning in Step 4 of the algorithm

(as described in Figure 5.11) satisfies all constraints (Theorem A.1).

Case (im and in both define v): Because im precedes in in EH, n is output dependent on

m, with the dependence induced by a path contained in H. Therefore the constraint

m ≤ n is generated (see the first rule in Figure 5.5).

Case (im uses v and in defines v): Because im precedes in in EH, n is anti dependent on

m, with the dependence induced by a path contained in H. Therefore the constraint

m ≤ n is generated (first rule in Figure 5.5).

Case (im defines v and in uses v):

Case (an instance is of some node s ∈ H is in between im and in in EH such that v

belongs to the def set of s): Let ip be the last instance in EH in between im and

in such that v belongs to the def set of p, where p is the node of which ip is an

instance. p is output dependent on m, and n is flow dependent on p. Therefore

the constraints m ≤ p and p ≤ n are generated. These two constraints result in

the generation of the extended constraint m ≤ n (first rule in Figure 5.6).

Otherwise: n is flow dependent on m. Therefore the constraint m ≤ n is generated.2
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Our goal now is to prove Property IdentExecs . We work towards that by stating three

lemmas (and proving the second and third of these).

Lemma B.2 Let q be any node that is neither the entry node nor the exit node of a CFG.

Let

S = [(p1 = entry) → p2 → · · · → pm → q] be a path in the CFG (m could be equal to 1 in

which case the path is simply [(p1 = entry) → q]). There exists an integer k, 1 ≤ k ≤ m such

that:

1. pk is a predicate node in S (recall that the entry node is a predicate, too), and

2. the edge from pk to its successor in S is labeled C, where C is either “true” or “false”,

and

3. q postdominates only the C-edge of pk; i.e., q is C-control dependent on pk, and

4. for all l, k < l ≤ m: q postdominates pl

Lemma B.3 Let H be any e-hammock in O (H is before, marked, or after). A node p in

H is called an H-node if (a copy of) p is present in H (a copy of p could also be present in

some other e-hammock L in O, in which case p is also an L-node). Let t be any non-H node

in H.

1. At most one H-node in H can be reached first (i.e., without going through other

H-nodes) along paths in H starting at t.

2. Moreover, if an H-node h can be reached by following paths in H from t, then there is

no path from t that leaves H without going through h.

Proof of Lemma B.3.

We first prove the first statement in the lemma. The proof is by contradiction. That is,

assume there exist two H-nodes p and q in H such that there exist paths

P1 = [(p1 = t) → p2 → · · · pm → p] and Q1 = [(q1 = t) → q2 → · · · qn → q], such that both
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paths are contained within H and such that each of the pis and qis is a non-H node. Since

every node is assumed to be reachable from the entry node of the CFG, clearly there is a

path P from entry to t. Applying Lemma B.2 on the path P + P1, we infer that either

p postdominates t, or p is control dependent on some node pi in P1 that precedes p. This

second case actually cannot hold, for the following reason: Whenever a node is placed in a

bucket the algorithm places copies of all its control ancestors in that bucket; this contradicts

our starting assumption that p is a H-node whereas every other node on P1 is a non-H node.

Therefore we have shown that p postdominates t. Applying a similar argument on the path

P + Q1 we can show that q also postdominates t. Because each of the two nodes p, q can be

reached from t without going through the other (via paths P1, Q1 respectively), the previous

postdomination result implies that both p and q postdominate each other. However, that

is possible only if p = q. Therefore we have proved the first statement in the lemma by

contradiction.

We now prove the second statement in the lemma, again by contradiction. Say an H-node

h is first reached from t via a path that is contained in H. Repeating the earlier argument,

we can show that h postdominates t. Consider the path from t that leaves H without going

through h. Since h postdominates t, h postdominates the edge e in this path that actually

leaves H. But once control leaves H, the only way to reach h is by re-entering H through

its entry node. Therefore the entry node of H postdominates e. This actually is impossible,

by the following reasoning: e is either the executable edge out of an exiting jump, or e is a

fall-through edge to the fall-through exit node of H. The first case cannot be true because H

has no backward exiting jumps, while the second case cannot be true in any CFG (because

of the presence of the non-executable edges, the entry node of a block or block-sequence can

never postdominate the fall-through exit node of that block/block-sequence). 2

Definition 8 (first reached) Let m be an H-node in H, let e be a CFG edge out of m (e

is labeled true or false if m is a predicate), and let t be the target of the edge e. We define

the node first reached(m, e, H), using four cases.

Case (t is an H-node in H): first reached(m, e, H) = t.
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Case (t is a non-H node in H and h is the unique H-node in H that is reached first from t

along paths in H): first reached(m, e, H) = h.

Case (t is a non-H node in H and no H-node in H is reachable from t along paths in H):

first reached(m, e, H) does not exist.

Case (t is outside H): first reached(m, e, H) does not exist.

Lemma B.4 Let H be any e-hammock in O (H is before, marked or after). A maximal

non-H subgraph is defined as a subgraph of H that consists only of nodes not in H , and that

satisfies two properties:

• for each CFG edge p → q in H such that neither p nor q is in H , if one of p, q belongs

to the subgraph then the other one belongs to it, too.

• Treating all edges in the CFG as undirected, the subgraph is connected.

The statement of this lemma is that each maximal non-H subgraph has exactly one of

the following two properties:

• there is a unique t outside the subgraph such that every edge leaving the subgraph

goes to t, t is in H, and t is in H . Clearly, t is the unique H-node that is first reached

from each node in the subgraph.

• no nodes in H that also belong to H are reachable from nodes in the subgraph.

Proof of Lemma B.4. Let G be any maximal non-H subgraph in H. We define an

end point of G as:

• either an H-node m in H such that there is an edge in H from some node in G to m,

or

• some node n in G such that the target of some edge leaving n is outside H.



176

G may have a number of end points; we call an end point of the first kind an H end-point,

and an end point of the second kind a non-H end-point. For any end point p we define the

reachability set of p to be the set of nodes in G from which there is a path in G to p (if p

is a non-H end-point, then by definition it belongs to its own reachability set). Every end

point of G clearly has at least one node in its reachability set. Furthermore, every node in G

belongs to the reachability set of at least one end point of G. (For any node t in G consider

any path from t to the exit node of the CFG; if an H-node is encountered on this path then

the first such node is the end point of G to whose reachability set t belongs; else t belongs

to the reachability set of the last node in this path that belongs to G.)

If G has no H end-points, or one H end-point and no non-H end-points, then verify that

it satisfies the lemma; therefore we are done.

We now show that G cannot have more than one H end-point, or one H end-point and

some non-H end-points. For contradiction, let m be an H end-point of G, and let G have

at least one other end point. Let M be the reachability set of m. We have two cases for M .

The first case is when every node in G is also in M . In this case, any node r in G that

is in the reachability set of some end point n other than m (there is at least one such node

r) is also in the reachability set of m. We return to this case later.

The remaining case is when M is a strict subgraph of G. Recall that G is a maximal

non-H subgraph of H; therefore, by definition, when all edges are treated as undirected

edges G is a connected subgraph of H; therefore, M being a strict subgraph of G, we infer

that there exists an edge e = r → s such that both r and s are in G but only one of them

is in M . If s belongs to M then r would have to belong to M too (because there would be

a path from r to m via s); therefore r, but not s, belongs to M . Therefore s belongs to the

reachability set of some other end point n of G (recall that every node in G belongs to the

reachability set of some end point). Therefore, due to the edge r → s, r too belongs to the

reachability set of n.

In other words, we have shown that in both cases some node r in the reachability set

of m is also present in the reachability set of another end point n. That is, the H-node
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m is reached first from r along paths contained in H, and either n is another H-node that

is reached first from r or there is a path in H from r that leaves H (via n) without going

through m. Neither of this can be possible (according to Lemma B.3). Therefore G cannot

have more than one H end-point, or one H end-point and some non-H end-points. 2

Recall that each e-hammock H in O is created (in Step 5 of the algorithm) by making

a copy of H and removing from that copy maximal non-H subgraphs. Recall also that a

subgraph that has a single H end-point is removed by redirecting all edges coming into the

subgraph to that end point, whereas a subgraph that has no H end-points is removed by

redirecting all edges coming into it to the fall-through exit of H . Therefore, we have the

following corollary of Lemma B.4.

Corollary B.5 Let H be an e-hammock in O.

1. If the entry node n of H is an H-node then n is also the entry node of H ; else the

unique H-node in H that is first reached from n along paths in H is the entry node of

H .

2. Let m be any H-node in H, and e be a CFG edge out of m in H. The target of the

same edge e in H is:

• outside H , if first reached(m, e, H) does not exist

• equal to the node first reached(m, e, H) in H , if first reached(m, e, H) exists

Recall the terminology we introduced earlier: s is some program state, EH is the exe-

cution of H with s as the initial state, and EO is the execution of O with s as the initial

state. The execution EO is clearly decomposable into three consecutive sub-executions,

E
before
O

, Emarked
O

, E
after
O

, corresponding to the three consecutively stringed e-hammocks

before, marked, and after. The execution EH of the original e-hammock H is also decom-

posable into three sub-executions: for any B (where B is before, marked or after), the B

sub-execution EB
H

of EH is simply the projection of EH restricted to instances of B-nodes.
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The three sub-executions of EH may therefore be interleaved, and may even overlap (be-

cause any instance in EH of a predicate/jump that belongs to multiple e-hammocks in O

will belong to multiple sub-executions).

Two corresponding sub-executions of EH and EO (for instance, E
before
H and E

before
O )

are said to be identical if (a) the two sub-executions consist of equal number of instances,

and (b) corresponding instances (position-wise) in the two sub-executions are instances of

the same CFG node, and consume identical values. Point (b) implies that corresponding

instances define the same set of variables, with the same values.

Property IdentExecs. An e-hammock H in O (H is before, marked or after) is said to

be reached in the execution EO if control reaches the entry node of this e-hammock in EO

(an e-hammock would not be reached if control reaches a copy of an exiting jump in some

preceding e-hammock in O, and that copy has not been converted into a goto whose target

is within O).

For any e-hammock H that is reached in the execution EO, EH
O

(the H sub-execution of

EO) is identical to EH
H

(the H sub-execution of EH).

Proof of Property IdentExecs. The proof is by induction on the position of an e-

hammock H in O (first, second, or third). Actually, we combine the base-case and inductive

arguments into a single argument; letting H be any e-hammock in O that is reached in EO, we

prove that EH
H

is identical to EH
O

. The inductive hypothesis is that for each e-hammock B in

O that precedes H , the two sub-executions EB
H

and EB
O

are identical (B is definitely reached in

EO because H is reached). We call this inductive hypothesis the “outer” inductive hypothesis

(to distinguish it from the “inner” induction, introduced below). Within the proof, we make

distinctions (wherever needed) between the case where there is no e-hammock in O that

precedes H and the case where such e-hammocks do exist.

We use an “inner” induction to show that EH
H is identical to EH

O ; this induction is on

the length of EH
H

(i.e., on the number of instances in this sub-execution). The base-case

argument and inductive argument for the inner induction follow.
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Base case: Let n be the entry node of H, if that node is an H-node, else let n be the

unique H-node in H that is first reached from the entry node along paths in H. Clearly

then, the first instance in EH
H

(i.e., the first instance of an H-node in EH) is an instance of

n. By Corollary B.5, n is the entry node of H . Therefore the first instance in EH
O is also an

instance of n.

We now show that both these first instances, which we call nH and nO respectively,

consume identical values for v, where v is any variable used by n; in other words nH and

nO consume identical values. Let dH be the closest instance that precedes nH in EH and

that defines v (for now we assume that no variable is used in H without being defined first;

this assumption is unrealistic, but we re-address it later in the proof). In other words,

the definition in dH reaches the use in nH. Let d be the node in H of which dH is an

instance. Since nH is the first instance in EH of an H-node, d is not present in H . Applying

Property ConstraintsSat on dH and nH, we determine that d is present in some e-hammock

D in O that precedes H (for instance, if H is after, D could be before or marked). By the

outer inductive hypothesis:

1. ED
H is identical to ED

O .

2. let dO be the instance in ED
O

that corresponds position-wise to dH in ED
H

; dO is an

instance of d.

3. dH and dO consume identical values, and therefore assign the same value to variable v.

Our goal now is to show that no instance that defines v intervenes between the instances

dO and nO in EO; that would imply that nH and nO consume the same value of v, and

therefore we would be done. This goal is achieved by proving two properties:

1. dO is the last instance in ED
O

to define v.

2. for each e-hammock B in O that is in between D and H , EB
O

contains no instance that

defines v.
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It is sufficient to show these properties, because nO is the first instance in EH
O

. We first

consider the first property. For contradiction, assume there is some instance eO in ED
O that

follows dO and that defines v. Let e be the node of which eO is an instance. We already

know that ED
H is identical to ED

O ; therefore there is an instance eH in ED
H that corresponds

position-wise to eO, that comes after dH, that defines v, and that is an instance of e. Because

dH is the closest definition of v to precede nH in EH, eH comes after nH in EH. Applying

Property ConstraintsSat on eH and nH, the node e should be present either in H or in some

e-hammock in O that comes after H (because n is in H). However D, which contains e, is

present before H in O. Therefore we are done showing the first property.

The second property can be proved in a similar manner. For contradiction assume that

for some e-hammock B in O that is in between D and H , EB
O contains an instance fO

that defines v; let f be the node of which fO is an instance. Applying the outer inductive

hypothesis on EB
O

and EB
H

, we know that there is an instance fH in EH that defines v, and that

is an instance of the same node f . Again, because dH is the closest definition of v to precede

nH in EH, either fH precedes dH or comes after nH in EH. Applying Lemma ConstraintsSat

we infer that f should either be in the e-hammock D, or in some e-hammock that precedes

D in O, or in the e-hammock H , or in some e-hammock that comes after H in O. However

B, which contains f , is in between D and H . Therefore we are done showing the second

property, and hence the entire base case.

Inductive case: The inductive hypothesis of the “inner” induction is that the first i

instances in EH
H

are identical to the first i instances in EH
O

, where i is some integer that is

≥ 1. In particular, the ith instance in EH
H

and the ith instance in EH
O

are both instances

of the same node m, have consumed identical values, and have therefore produced the same

result. Therefore control leaves both ith instances out of the same edge e (e is the true or

false edge out of m if m is a predicate, and is the sole edge out of m otherwise). We now

have two cases:

Case (first reached(m, e, H) does not exist): In this case clearly EH
H

contains only i in-

stances. By Corollary B.5, edge e out of m in H has its target outside H . Therefore,
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EH
O

also has only i instances. The inductive hypothesis is that the first i instances are

identical in the two sub-executions; therefore we are done proving Property IdentExecs .

Case (first reached(m, e, H) exists): Let t = first reached(m, e, H). Clearly, the (i + 1)st

instance tH in EH
H is an instance of t. By Corollary B.5, the target of the edge e in H

is also t. Therefore, the (i + 1)st instance tO in EH
O

is also an instance of t.

It remains to be shown that in the second case above tH and tO consume identical values.

We prove this for any single variable v that is used by t, using two cases.

Case (none of the first i instances in EH
H

define v): Let dH be the closest instance that

precedes tH in EH and that defines v. In other words, the definition in dH reaches

the use in nH. Let d be the node of which dH is an instance, and let d belong to

an e-hammock D in O. The case we are in currently implies D 6= H . Applying

Property ConstraintsSat on the instances dH and tH, we infer that D precedes H in

O. By the outer inductive hypothesis:

1. ED
H

is identical to ED
O

.

2. let dO be the instance in ED
O

that corresponds position-wise to dH in ED
H

; dO is

an instance of d.

3. dH and dO consume the same values, and therefore assign the same value to

variable v.

Our goal now is to show that no instance that defines v intervenes between the instances

dO and tO in EO; that would imply that tH and tO consume the same value of v, and

therefore we would be done. This goal is achieved by proving three properties:

1. dO is the last instance in ED
O to define v.

2. for each e-hammock B in O that is in between D and H , EB
O contains no instance

that defines v.
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3. none of the first i instances EH
O

define v.

The first two properties are proved exactly as in the base case. The third property

follows from the inner inductive hypothesis.

Case (v is defined in the first i instances in EH
H

): Let dH be the last instance among the first

i instances in EH
H to define v. Let d be the node of which dH is an instance; clearly d

belongs to H . We first show that there are no instances that intervene between dH and

tH in EH that define v. For contradiction, assume there was such an instance eH; this

instance cannot be an instance of an H-node because in that case it would be among

the first i instances in EH
H

, and dH would not be the last instance among the the first

i instances in EH
H to define v. In other words, the node e of which eH is an instance

does not belong to H . However, applying Property ConstraintsSat on the instances

dH and eH in EH, we infer that e belongs to some e-hammock in O that follows H (H

contains d). Applying Property ConstraintsSat on the instances eH and tH in EH, we

infer that d is in some e-hammock that precedes H (H contains t). We thus have a

contradiction. Therefore there is no instance in EH that intervenes between dH and tH

and that defines v. In other words, the value of v defined in dH reaches tH.

By the inner inductive hypothesis, there is an instance dO in EH
O that corresponds to

dH in EH
H

, such that dO defines the same value of v as dH. Also, since dH is the last

among the i instances in EH
H to define v, by the same inductive hypothesis no instance

that follows dO and that precedes tO in EH
O

defines v. In other words the value of v

defined in dO reaches tO. Therefore we have shown that tH and tO consume the same

value of v.

With that we have finished arguing the inductive case. A note about the assumption

in the proof that no variable is used in H without being defined first: We can enforce this

assumption, just for the sake of the proof, by constructing a hammock I that is simply a

sequence of assignments v = v, where v is any variable that could be used in H without

being defined first. We can then prepend I to both H and O, thus letting it be the first



183

hammock in both. The base-case of the outer induction would then be to show that EI
H

is

identical to EI
O; this is clearly true because EH and EO start from the same initial state s.

The rest of the proof remains the same as above. 2

Now that we have proved Properties ConstraintsSat and IdentExecs , we move on to

proving Property DefsReached .

Property DefsReached. Let dH be an instance in the execution EH such that dH defines

some variable. Let d be the node in H of which dH is an instance, and let D be the e-hammock

in O that contains d (because d defines variables, it belongs to a unique e-hammock in O).

D is reached in the execution EO (i.e., control enters D during the execution EO).

Proof of Property DefsReached . The only reason D would not be reached in EO is

that some e-hammock H that precedes D in O is reached in EO, and within EH
O an exiting

jump j that has not been converted into a goto (in Step 6 of the algorithm) is reached.

Applying Property IdentExecs on H , an instance of j is present in EH
H

(i.e., is present in

EH). Since j is an exiting jump, this instance of j is the last instance in EH; in other words,

the instance dH comes before the instance of j in EH. This implies that there is a path in

H from d to j, which in turn implies that there is a constraint d ; j (see the third rule

in Figure 5.5). Recall the partitioning of nodes in H into the e-hammocks in O satisfies all

constraints (Theorem A.1); therefore, because d ; j is satisfied, we infer that a copy of j is

present either in D or in some e-hammock in O that follows D. In other words, the copy of j

in H is not the last copy of j in O; therefore, the copy of j in H would have been converted

into a goto (whose target is the fall-through exit of H) in Step 6; but this contradicts our

starting claim that j in H has not been converted into a goto. 2

We finally use Properties ConstraintsSat , IdentExecs , and DefsReached to prove Theo-

rem B.1.

Proof of Theorem B.1.

Our goals are to prove that:

• the program states at the conclusions of the two executions EH and EO are identical,

and
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• control flows out of H and O, at the conclusions of the two executions respectively, to

the same node outside H (in the containing CFG).

We first prove the first statement in the theorem – the final states at the end of executions

EH and EO are identical. We actually prove that for any single variable v, the value of v

is identical at the end of the two executions. There are two broad cases: either v is not

defined by any instance in EH, or v is defined in EH. In the first case, we can show that v

is not defined in EO either (i.e., the final value of v at the end of each of the two executions

is simply the value of v in the initial state s). We show by this contradiction: assume v is

defined EH
O

, where H an e-hammock in O (before, marked, or after) that is reached in EO.

Applying Property IdentExecs EH
H

also defines v; however, that contradicts our claim that

v is not defined in EH.

We now look at the second case – v is defined by some instance in EH. Let dH be the last

instance in EH to define v, and let d be the node in H of which dH is an instance. Let D be

the e-hammock in O that contains d. Property DefsReached says that D is reached in EO,

while Property IdentExecs says that some instance in ED
O

defines v. Property IdentExecs

also says that the last instance dO in ED
O

to define v is identical to dH; i.e., dO is an instance

of d, it consumes identical values as dH, and it therefore assigns the same value to v as dH.

We now complete the proof by showing that no instance in EH
O

defines v, where H is any

e-hammock in O that comes after D and that is reached in EO. For contradiction, assume

there is such an e-hammock H in O, and assume eO is an instance in EH
O

that defines v. Let

e be the node in H of which eO is an instance. By Property IdentExecs there is an instance

eH in EH
H

that is identical to eO. Since dH is the last instance in EH to define v, eH precedes

dH in EH. Since both these instances define v, Property ConstraintsSat applies, and states

that e is not present in any e-hammock in O that follows the e-hammock that contains d.

However H contains e, and our claim was that it comes after D. We have therefore proved

by contradiction that dO is the last instance in EO to define v. Therefore the final value of v

at the end of the two executions EH and EO is equal to the value assigned to v by dH (and

dO).
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We now prove the second statement in the theorem – control flows out of H and O, at

the conclusions of the two executions EH and EO, respectively, to the same outside node (in

the containing CFG). There are two broad cases to consider: control flows out of H to its

fall-through exit in EH, or control flows out of H through an exiting jump j. In the first case,

because control does not reach any exiting jump in EH, we infer (using Property IdentExecs)

that control reaches no exiting jump in EH
O , where H is any e-hammock that is reached in

EO. In other words, for each e-hammock H in O, control flows out of H to its fall-through

exit in EO. That is, control flows out of O in EO to the fall-through exit of O. In other words

control flows out of H and O, in the two executions, respectively, to the fall-through exits of

the two respective e-hammocks. However, these two fall-through exit nodes are actually the

same node in the containing procedure (because the transformation done by the algorithm

is to simply replace H with O in the containing CFG).

We now go to the other case – control leaves H in EH through an exiting jump j (i.e., an

instance of j is the last instance in EH, and no other instance in EH but the last one is an

instance of any exiting jump). Let L be the last e-hammock in O to have a copy of j. We

first show that L is reached in the execution EO. If L is before, or if L is marked and before

is empty, this is trivially true.

Say L is marked and before is non-empty. We have two cases: either before has a copy of

j, or it does not. Consider the first case. Since an instance of j is the last instance in EH,

Property IdentExecs tells us that an instance of j is the last instance in Ebefore
O . However,

because before does not contain the last copy of j (L does), the copy of j in before is a goto

whose target is the fall-through exit node of before (see Step 6 of the algorithm). Therefore

control flows out of before in Ebefore
O to the fall-through exit of before. The other case is

that before does not have a copy of j. Since the last instance in EH is the only instance of

an exiting jump in EH, the last instance in Ebefore
H is not an instance of any exiting jump;

by Property IdentExecs , the same is true for Ebefore
O

. Therefore control flows out of before

in Ebefore
O to the fall-through exit of before. Therefore, in either case, control reaches the
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fall-through exit of before (i.e., the entry of marked) in EO; i.e., L is reached in EO. (A

similar argument can be used to show that L is reached even it is the after e-hammock.)

Property IdentExecs is now applicable, and according to it EL
H

is identical to EL
O
. Since

an instance of j is the last instance in EH, and since j is in L, we infer that an instance

of j is the last instance in EL
O
. That is, control reaches j in L in the execution EO. Since

the copy of j in L is the last copy of j in O, this copy of j has not been converted into a

goto whose target is the fall-through exit of L; i.e., this copy remains in its original form –

a return, break, continue, or goto. Therefore control leaves O via the copy of j in L in

the execution EO. In other words, control leaves H and O via j in the two executions EH

and EO, respectively. It can easily shown that this implies our final result: control flows out

of H and O, at the conclusions of the two executions EH and EO, respectively, to the same

in the containing CFG (the argument proceeds by considering each possibility for the kind

of j: break, continue, return, or goto). 2
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Appendix C: The clone-group algorithm is semantics-

preserving

Recall that the first step in the clone-group algorithm is to apply the individual-clone

algorithm on each individual clone. We have already proven this step to be semantics-

preserving. The individual-clone algorithm produces a marked hammock corresponding to

each clone, and this marked hammock is a block sequence. Recall that the approach of

the clone-group algorithm (Figure 6.4) is to visit each set of corresponding maximal block

sequences (the outermost set, and inner sets at all levels of nesting) individually, and to

make that set in-order by permuting one or more of its block sequences (this permutation

is done by the procedure in Figure 6.7). Let M be any one of the marked hammocks.

From the perspective of M , the clone-group algorithm visits all maximal block sequences

in M , including M itself and including inner maximal block sequences nested inside M ,

and permutes these block sequences. Let bm be M itself, or any one of the maximal block

sequences nested somewhere inside M (at any depth). In this section we prove that the

permutation done by the algorithm to bm is semantics-preserving. Clearly it follows from

this that the transformation to M , and hence the transformation to each marked hammock

in the group, is semantics-preserving. That would complete the proof that the clone-group

algorithm is semantics preserving.

The result we prove is stated formally as Theorem C.1.

Theorem C.1 Let M be any one of the marked hammocks (block sequences) produced

by the individual-clone algorithm, when it is invoked as a subroutine by the clone-group

algorithm on one of the given clones. Let bm be any one of the maximal block sequences

in M (bm could be M itself, or could be a maximal block sequence nested inside M at any

depth). Note that bm is not necessarily a hammock (although M is a hammock); i.e., there

may be jumps outside bm whose targets are in bm, and there may be jumps in bm whose

targets are outside.
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Let b′m be the transformed result produced by the algorithm; i.e., b′m is a permutation

of bm. The statement of this theorem is that bm and b′m are semantically equivalent. That

is, considering executions of bm and b′m from identical initial program states s, and from the

same starting node e (a starting node e is either the entry node of bm/b′m, or a node in bm/b′m

that is the target of an outside jump), we have the following properties:

• the executions of bm and b′m terminate with the same final states.

• either control flows out of bm to its fall-through exit and control flows out of b′m to

its fall-through exit, OR control leaves bm through a jump j whose target is outside

bm and control leaves b′m through the same jump j. In other words, both executions

terminate with control reaching the same outside node.

Throughout this section we use bm to refer to a marked hammock, or a maximal block

sequence nested somewhere inside a marked hammock. b′m is the permutation of bm produced

by the algorithm.

Definition 9 (constituent chains of hammocks) Let B1, B2, . . . , Bm be the sequence of

blocks that constitute bm; i.e., bm = [B1, B2, . . . , Bm]. A sub-sequence H = [Bj , . . . , Bk] of

bm is said to be a constituent hammock of bm iff there are no jump nodes in H whose targets

are outside H and no jump nodes outside H whose targets are in H . (Note that this is

stricter than simply saying that H is a hammock, because here we disallow jumps from

outside H to come even into the entry node of H , and we disallow jumps in H to go even to

the fall-through exit of H .)

If A1, A2, . . . , Ak are consecutive sub-sequences of bm such that each Ai is a constituent

hammock of bm, then [A1, A2, . . . , Ak] is said to be a constituent chain of hammocks of bm.

(Note that a constituent chain of hammocks is itself a constituent hammock.)

A permutation of a constituent chain of hammocks [A1, A2, . . . , Ak] has intuitive meaning:

it is a permutation of the constituent blocks of the chain, treating each Ai as an atomic unit

whose contiguity and internal ordering is preserved.



189

B
1

B
1

2
B

B
3

B
4

B
5

B
6

(a) (b)

B
1

2
B

B
3

B
4

B
5

B
6

B
7

S

S

1

2

b

B
7

S1

(c)

B
2

B
3

B
4

B
5

b

bs

B
1

2
B

B
4

B
3

B
5

B
6

b’

bp

b’o

bs

b

bp

bo

bs

B
1

B
3

B
4

B
5

b’

b’

b

p

s

B
2

S’
b’

2

B
1

2
B

B

B

B
5

B
6

4

3

bp

m m

m m

mm
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Example: Figure C.1 contains illustrative examples that we will use throughout this

section. Consider the block sequence bm on the left side of Figure C.1(c). B3 and B4 are

constituent hammocks of bm; therefore [B3, B4] is a constituent chain of hammocks of bm.

The sub-sequences S1 and S2 are two other constituent hammocks of bm; therefore [S1, S2]

is another constituent chain of hammocks of bm.

In Figure C.1(a) [B1, B2] is a constituent chain of hammocks of bm; so is [B4, B5]. 2

Let B be any constituent block of bm. Due to the presence of jumps that affect B, B

may execute (i.e., control may enter B) zero, one, or more times during any execution of bm.

Intuitively, a jump in bm affects B if its source is before B and its target is either after B

or outside bm, or if its source is after B and target is before B. A jump outside bm affects

B if its target is in bm but after B. In general, an arbitrary permutation of bm changes the

set of jumps that affect B; if that happens B may execute different number of times before

and after the permutation, which implies that semantics may not be preserved. However,

any permutation of any constituent chain of hammocks C = [A1, A2, . . . , Ak] of bm preserves

the effects of all jumps on all constituent blocks of bm. The reason for this is that whenever

control enters C during an execution, control enters each hammock Ai in C exactly once

before leaving C; this is true originally, and is true after any arbitrary permutation the Ais.

In the rest of this section we introduce a series of definitions and lemmas, which will

finally be used to prove Theorem C.1. First, we state Lemma C.2 (we provide no proof, for

the result is fairly obvious).

Lemma C.2 Let S1 and S2 be any two sub-sequences of bm such that the two overlap, and

neither is completely contained in the other. Let the first constituent block of S2 come after

the first constituent block of S1 in bm. Clearly there are three smaller sub-sequences in bm:

a sub-sequence Sa that is a prefix of S1 and that does not overlap S2, a sub-sequence Sb

that is the region where S1 and S2 overlap, and a sub-sequence Sc that is a suffix of S2 and

that does not overlap S1. If the constituent blocks of S1 occur contiguously in b′m, and if

the constituent blocks of S2 occur contiguously in b′m, then the constituent blocks of each
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smaller sub-sequence (Sa, Sb, and Sc) occur contiguously in b′m; i.e., b′m consists of three sub-

sequences S ′
a, S

′
b, and S ′

c, in that order, such that S ′
a, S

′
b, and S ′

c are permutations of Sa, Sb,

and Sc, respectively.

Example: Consider bm and b′m in Figure C.1(c). Sub-sequence [B1, . . . , B5] of bm overlaps

sub-sequence [B2, . . . , B6] of bm; also the constituent blocks of each of these two sub-sequences

occur contiguously in b′m. Therefore Lemma C.2 applies; the three smaller sub-sequences of

bm are [B1], [B2, . . . , B5], and [B6]. Notice that these three sub-sequences occur in the same

order in b′m, and that the second sub-sequence is permuted. 2

We now provide some definitions. A forward jump in bm is a jump node in a constituent

block of bm whose target is in another constituent block of bm that follows. Similarly, a

backward jump in bm is a jump node in a constituent block of bm whose target is in some

preceding constituent block of bm. A jump interval of bm is a sub-sequence [Bi, . . . , Bj] of bm

such that there is either a forward jump from Bi to Bj or a backward jump from Bj to Bi.

Bi and Bj are respectively called the head and tail of the jump interval. Two jump intervals

of bm are said to be overlapping if the two intervals share at least one constituent block in

common. A set S of jump intervals of bm is said to be connected if every interval in S is

related to every other interval in S via the transitive closure of the overlap relationship (note

that the overlap relation itself is not transitive). The head of S is the earliest constituent

block of bm that belongs to any interval in S, while the tail of S is the last constituent block

of bm to belong to any interval of S.

Example: In Figure C.1(c) S2 is a connected set of two overlapping jump intervals,

[B1, . . . , B5] and [B2, . . . , B6]. 2

Lemma C.3 If [Bj, . . . , Bm] is a jump interval of bm, then:

• Bj comes before Bm in b′m, and

• the blocks sub-sequence [Bj , . . . , Bm] occur contiguously in b′m.
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Proof of Lemma C.3. From the definition of jump interval it follows that there is a

forward/backward jump connecting Bj and Bm. The loop “forall constituent blocks Bl of

b . . .” in Figure 6.6(a) (lines 10-16) therefore applies; the constraints generated there ensure

that the properties stated above hold in b′m. 2

Lemma C.4 Let S be any connected set of jump intervals of bm, and let Bh and Bt respec-

tively be the head and tail of S.

1. Every constituent block of bm that is in between Bh and Bt belongs to some interval

in S; i.e., S is a sub-sequence of bm.

2. The constituent blocks of S occur contiguously in b′m; i.e., some permutation of S is a

sub-sequence of b′m.

Proof of Lemma C.4. The first property follows in a straightforward manner from

the definition of a connected set of jump intervals. We prove the second property using

induction on the number of jump intervals in S.

The base case is when S consists of a single jump interval. In this case Lemma C.3 states

that the constituent blocks of this interval occur contiguously in b′m.

The inductive case is that S has n jump intervals, and that S is connected. Let Bl be

the last constituent block of bm to satisfy the property that it is the head of some interval

in S. Let L be any one of the intervals in S whose head is Bl. Because S is connected,

and because the head of no interval in S comes after Bl, it follows that S ′ = (S − {L}) is

a connected set of jump intervals. Applying the inductive hypothesis, we infer that S ′ is a

sub-sequence of bm, and that the constituent blocks of S ′ occur contiguously in b′m. If the

sub-sequence L is completely contained within the sub-sequence S ′, then the sub-sequences

S and S ′ are equal, and we are done proving the lemma. If the sub-sequence S ′ is completely

contained within the sub-sequence L, then the sub-sequence S is equal to the sub-sequence

L; Lemma C.3 states that L is contiguous in b′m, and there we are done. On the other hand,

if the none of the above two conditions are true, then Lemma C.2 applies (with S ′ and L
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here substituting for S1 and S2 in that lemma’s statement). That lemma states that the

constituent blocks of bm that are in present in the union of S ′ and L occur contiguously in

b′m; in other words the constituent blocks of S occur contiguously in b′m. 2

Let b be any sub-sequence of bm. We define an entering jump of b to be any jump node

outside b whose target is in b. Similarly, a leaving jump of b is a jump node in b whose

target is outside b. A jump interval of bm / constituent hammock of bm / constituent chain

of hammocks of bm, when completely contained in b, is said to be a jump interval of b /

constituent hammock of b / constituent chain of hammocks of b.

Lemma C.5 Let b be any sub-sequence of bm such that the constituent blocks of b occur

contiguously in b′m; i.e., some permutation b′ of b is a sub-sequence of b′m (bm and b′m were

introduced earlier in this section). There exists a set S of constituent chains of hammocks

of b such that the only differences between b and b′ are that chains in S are permuted in b′.

Proof of Lemma C.5. The proof is by induction on the length of the permuted block

sequence b. The base case is when b consists of one block only; the Lemma holds trivially in

this case because there there are no permutations of a sequence of length one.

In the inductive case, let b consist of n blocks, where n > 1. The inductive hypothesis

is that for any proper sub-sequence c of b, if some permutation c′ of c is a sub-sequence

of b′, then c and c′ differ only in that some set of constituent chains of hammocks of c are

permuted in c′. Our argument is based on the structure of b, and we have three cases.

Case 1 (b has an entering jump or a leaving jump): Let Bj be any constituent block of

b that is the target of an entering jump of b, or that contains a leaving jump of b. Call this

jump j. Let bp be the prefix of b up to but not including Bj , and let bs be the suffix of b

starting at the constituent block that immediately follows Bj.

We now prove that all constituent blocks of bp precede Bj in b′, and that all constituent

blocks of bs come after Bj in b′. If j is also an entering/leaving jump of the full sequence bm,

then the constraints generated in the first if statement (lines 3-7) in Figure 6.6(a) clearly

ensure this. On the other hand, say j is not an entering/leaving jump of bm. In that case
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j is a forward/backward jump of bm such that Bj is the head or tail of the jump interval

caused by this jump, and such that the other end point of this interval is outside b. Say Bj

is the head of this interval (the argument for the case when Bj is the tail is similar). If Bj

is the first constituent block of b, then according to Lemma C.3 every subsequent block of b

follows Bj in b′. On the other hand, if this is not the case, then note that b and the jump

interval caused by j are two overlapping sub-sequences of bm that each remain contiguous in

b′m (this is true for b according to this lemma’s statement, and is true for the jump interval

according to Lemma C.3). Therefore Lemma C.2 applies (with bp here substituting for Sa

there, and [Bj ] + bs substituting for Sb there). This lemma, together with Lemma C.3, tells

us that the constituent blocks of bp precede Bj in b′, and that the constituent blocks of bs

come after Bj in b′.

We have shown so far that b′ is equal to some permutation b′p of bp, followed by Bj ,

followed by some permutation b′s of bs. One of bp or bs may be empty, but clearly both are of

length less than n. Therefore the inductive hypothesis applies, which means bp differs from

b′p only in that some constituent chains of hammocks of bp are permuted in b′p (the same is

also true about bs and b′s). Therefore we can infer that b′ differs from b only in that some

set of constituent chains of hammocks of b are permuted in b′ (with each such chain being

completely inside bp or bs).

Example: Figure C.1(a) illustrates this case. Assume b is equal to the entire sequence

bm. B3 in this example corresponds to Bj in the argument above, [B1, B2] corresponds to bp,

and [B4, B5] corresponds to bs. Notice that bm and b′m differ in that the constituent chain of

hammocks [B1, B2] is permuted in b′. 2

Case 2 (every constituent block of b belongs to some jump interval of b, and the set of all

jump intervals of b is connected): Let S be some minimal connected set of jump intervals

of b such that the head of S is the first constituent block of b and the tail of S is the last

constituent block of b (the case we are in guarantees that such an S exists). Let Bl be the

last constituent block of b to satisfy the property that it is the head of some interval in S.

Let L be any one of the intervals in S whose head is Bl. Because S is connected, and because
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the head of no interval in S comes after Bl, it follows that S1 = (S − {L}) is a connected

set of jump intervals. Clearly, because the sub-sequence S is equal to b (see the definition

above), the sub-sequence S1 is a sub-sequence of b. Therefore, applying Lemma C.4, we infer

that the constituent blocks of S1 occur contiguously in b′. We call this inference I1.

The constituent blocks of L are contained in b and occur contiguously in b (because L

is a jump interval of b). Lemma C.3 therefore tells us that constituent blocks of L occur

contiguously in b′. We call this inference I2.

We now make our third inference, I3: (a) the sub-sequences S1 and L of b overlap, (b) the

head of S1 is the first constituent block of b, (c) the tail of S1 is not the last constituent block

of b, (d) the head of L is not the first constituent block of b, and (e) the tail of L is the last

constituent block of b. Recall that the set of blocks S is the union of the set of blocks S1 and

the set of blocks L. Property (a) holds because otherwise the set S would not be connected.

Property (b) holds because otherwise the first constituent block of b would not belong to S

(recall that the head of L does not come before the head of any other jump interval in S). If

the tail of S1 is the last constituent block of b, then together with (b), we would infer that the

sub-sequence S1 contains the sub-sequence L, which would make S non-minimal. Therefore,

Property (c) holds. This in turn implies Property (e) (because the last constituent block of

b definitely belongs to S). This in turn implies Property (d) (otherwise the sub-sequence L

would contain the sub-sequence S1, which would make S non-maximal). Therefore we are

done showing I3.

From I3 it follows that b can be partitioned into three consecutive smaller sub-sequences:

bp, which is the prefix of the sub-sequence S1 that does not overlap with L, then bo, which

is the overlapping portion of the two sub-sequences S1 and L, and finally bs, which is the

suffix of the sub-sequence L that does not overlap with S1. Each of these three smaller

sub-sequences is non-empty, and therefore each one is of length less than n.

Inferences I1-I3 allow us to apply Lemma C.2; S1 here corresponds to S1 in that lemma’s

statement, and L here corresponds to S2 in that lemma’ statement. That lemma tells us

that b′ is equal to some permutation of bp followed by some permutation of bo followed by
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some permutation of bs. Because bp is of length less than n, the inductive hypothesis applies,

which means bp differs from b′p only in that some constituent chains of hammocks of bp are

permuted in b′p (the same is also true about bo and b′o, and bs and b′s). Therefore we infer that

b′ differs from b only in that some set of constituent chains of hammocks of b are permuted

in b′ (with each such chain being completely inside one of the three smaller sub-sequences of

b).

Example: Figure C.1(b) illustrates this case. Assume b is equal to the entire sequence

bm. Notice that every constituent block of bm belongs to one of the two jump intervals, and

that the two intervals are connected. Notice also that the difference between bm and b′m is

that the constituent chain of hammocks [B3, B4] of bm, which is inside bo, is permuted in b′m.

2

Case 3 (the default case): In this case the set of all jump intervals of b is either not

connected, or does not include every constituent block of b. Our strategy now is to partition

b into a series of sub-sequences S1, S2, . . . , Sk. Each sub-sequence Si either consists of a single

constituent block of b (if that block belongs to no jump interval), or consists of those blocks

that belong to some maximal connected set of jump intervals of b. Each Si is contained in

b. k is greater than one, because otherwise every constituent block of b belongs to the same

maximal connected set of jump intervals, which is the previous case. The constituent blocks

in each Si occur contiguously in b′; this is trivially true if Si consists of a single block, and

is true in the other case also according to Lemma C.4. In other words, b′ differs from b in

that each Si in b is permuted in b′, and the outer sequence S1, S2, . . . , Sk is permuted in b′.

Since k is greater than one each Si has less than n blocks; therefore the permutation of each

Si corresponds to the permutation of some set of constituent chains of hammocks inside Si

(by the inductive hypothesis).

We complete the proof by showing that each Si is itself a constituent hammock of b, which

implies that the permutation of the outer sequence S1, S2, . . . , Sk is also a permutation of

a constituent chain of hammocks of b. Let us call the source and target of a jump the two

ends of the jump. Since b has no entering or leaving jumps (by the case we are in now), we
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only to have to show that there are no forward/backward jumps in b whose one end is in Si

but whose other end is outside Si, for all i between 1 and k. For contradiction assume this

is not true; i.e., assume there is a forward/backward jump whose one end is in Si, for some

i, but whose other end is in a constituent block Bj of b that is not inside Si. In other words,

there is a jump interval I involving Bj and a constituent block of Si. Therefore, since Si is a

connected set of jump intervals, the intervals in Si unioned with {I} is also a connected set

of jump intervals. But that implies that Si is not a maximal connected set of jump intervals

of b, which is a contradiction. 2

Example: Figure C.1(c) illustrates this case. Assume b is the entire sequence bm. Notice

that bm consists of two sub-sequences: S1, which is a single block, and S2, which is a maximal

set of connected jump intervals. Notice that both S1 and S2 are constituent hammocks of bm.

Also notice that bm and b′m differ as follows: (i) the constituent chain of hammocks [B3, B4]

of bm, which is inside S2, is permuted in b′m, and (ii) the constituent chain of hammocks

[S1, S2] of bm is permuted in b′m. 2

Lemma C.6 Let C be a constituent chain of hammocks of bm, and let C ′ be a constituent

chain of hammocks of b′m such that C ′ is a permutation of C (bm and b′m were introduced

earlier in this section). C and C ′ are semantically equivalent; i.e., if C and C ′ are executed,

respectively, with identical initial program states s, then the final program states when

control leaves C and C ′, respectively, are identical.

(Note: Since C and C ′ are hammocks, each one has a unique entry node, and a unique

node outside to which control flows. Therefore, semantic equivalence of C and C ′ can be

defined just in terms of the program states.)

Before we provide the proof for this lemma, we state a sublemma.

Sublemma 1 Let H be any one of the hammocks of the chain C; therefore, H is present in

C ′ also. H is said to have an upwards exposed use of a variable v if there is a path in H from

its entry to a node that uses v, and there is no node on this path that defines v. Consider

the execution of H within the execution of C (from starting state s). Let I be the vector of
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values for variables that have upwards-exposed uses in H , at the point of time when control

enters H during the execution of C. Provided control enters H during the execution of C ′

with the same vector of values I for variables that have upwards-exposed uses in H , we have:

• any variable v is defined inside H during the execution of C iff v is defined inside

H during the execution of C ′ (as in Appendix B, whenever we say that a variable is

defined in an execution, we mean that the variable is actually defined by some instance

in that execution).

• the final value assigned to v inside H (which we simply call “the value assigned to v

by H”) during the execution of C is equal to the final value assigned to v by H during

the execution of C ′.

We omit a detailed proof for Sublemma 1; the result of this sublemma is intuitive because

H in C is identical to H in C ′, and because the execution behavior of a hammock depends

only on the initial values of variables that have upwards-exposed uses in it.

Proof of Lemma C.6. In the initial part of the proof we show that for each hammock

H in C and for each variable v, either v is not defined in either execution of H (within the

execution of C and within the execution of C ′), or the same value is assigned to v by H in

both executions. In the end we argue that this implies the result of Lemma C.6.

An observation we make is that since there are no jumps from one hammock of C to

another (they would not be constituent hammocks of C if such jumps existed), and no jumps

whose source/target (but not both) are in C (again, for the same reason), the execution of

C consists of a single execution of each hammock of C, in their order of presence within C;

also, the same is true for C ′.

Our proof is by induction on the position of hammock H within C. Therefore, the base

case is regarding H1 – the first hammock of C. Let v be any variable that has an upwards-

exposed use in H1, and let Hk be any subsequent hammock of C that defines v. The node

in Hk that defines v is clearly anti dependent on the node in H1 that uses v, via a path that

is contained in C; therefore a constraint B1 < Bk is generated in Step 2 of the algorithm
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(Figure 6.7), where B1 is the constituent block of H1 that contains the use, and Bk is the

constituent block of Hk that contains the definition. This constraint ensures that Bk comes

after B1 in b′m ( Steps 5 and 6 in the algorithm always create permutations that respect

all constraints). Now, because C ′ is a permutation of C with each hammock treated as an

individual unit, we infer that Hk comes after H1 in C ′. In other words, we have shown that

no hammock that follows H1 in C and that defines variables that have upwards-exposed uses

in H1 comes before H1 in C ′. Therefore the program states at the start of the two executions

of H1 (within the executions of C and C ′) are equal to each other (and to s) wrt variables

that have upwards-exposed uses in H1.

We now go onto the inductive case. Consider the nth hammock Hn of C. The inductive

hypothesis is that for each of the previous hammocks Hi in C, where i < n, the execution of

Hi within the execution of C and and the execution of Hi within the execution of C ′ assigned

identical values to variables. Let v be any variable that has an upwards-exposed use in Hn.

We now show that the value of v when the execution of Hn begins within the execution of

C is identical to the value of v when the execution of Hn begins within the execution of C ′.

We have two cases to consider.

The first case is that a value was assigned to v in the execution of C before control

reached Hn. Let Hd be the last hammock of C that assigns to v before control enters Hn.

Therefore, there is a path in C from a node d in Hd to a node n in Hn such that d defines

v and n uses v; therefore, either n is flow dependent on d, or n is flow dependent on some

other node u that is output dependent on d. Therefore, there exists a (directly generated or

transitive) constraint Bd < Bn (see Step 2 in Figure 6.7) where Bd is the constituent block

of Hd that contains d and Bn is the constituent block of Hn that contains n. Therefore,

following the argument presented earlier, we infer that Hd comes before Hn in C ′. Let the

value assigned to v by Hd in the execution of C be v′. Clearly, this is the value of v when

Hn begins executing within the execution of C. Because d < n, the inductive hypothesis

applies, and tells us that the value assigned to v by Hd in the execution of C ′ is also v′.

Our goal now is to prove that no hammock between Hd and Hn in C ′ assigns to v in the
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execution of C ′. For contradiction assume some hammock Hk that is in between Hd and Hn

assigns to v during the execution of C ′.

Hk cannot be after Hn in C; for if that were the case then the node in Hk that defines

v would be anti-dependent on the node in Hn that uses v (i.e., n), which means that the

constraint Bn < Bk would have been generated, where Bn is the constituent block of Hn

that contains n and Bk is the constituent block of Hk that contains the definition of v.

This implies that Hk could not have come before Hn in C ′. Therefore Hk precedes Hn in

C; therefore the inductive hypothesis applies, which tells us that Hk assigns a value to v

in the execution of C also (our claim was that it assigns a value to v in the execution of

C ′). Because Hd is the last hammock before Hn to assign a value to v in the execution

of C, Hk has to precede Hd in C; however, in that case, the node in Hd that defines v is

output dependent (in C) on the node in Hk that defines v, which means that a constraint

Bk < Bd would have been generated by the algorithm, where Bk is the constituent block of

Hk that contains the definition of v and Bd is the constituent block of Hd that contains the

definition of v. However, this constraint is not respected in C ′, which is not possible (the

output of the algorithm respects all constraints). Therefore we have shown that Hd is the

last hammock that assigns to v before control enters Hn in the execution of C ′. Therefore,

in both executions, the value of v when control enters Hn is v′.

The remaining case is that no hammock of C that precedes Hn assigns to v before

control enters Hn in the execution of C. In this case, using an argument that is a subset of

the previous case’s argument, we can show that the value of v when control enters Hn both

executions is equal to the value of v in the initial state s.

We are done showing that the values of all variables that have upwards-exposed uses in

Hn are identical at the time execution of Hn begins, within the executions of C and C ′.

Therefore Sublemma 1 applies, and tells us that Hn assigns identical values to variables in

both executions. The inductive proof is now complete.

We now show that for any variable v the value of v is the same at the end of the executions

of C and C ′. Say no hammock of C assigned to v during the execution of C; then by the
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result proved above, the same is true in the execution of C ′. Therefore the value of v, in

both cases, is simply the initial value of v (the value of v in the state s), and we are done

proving Lemma C.6.

On the other hand, say Hv is the last hammock of C to assign to v in the execution of

C. By the inductive proof above, Hv assigns to v in the execution of C ′ also, and moreover

in both cases Hv assigns the same value v′ to v. We now need to show that no hammock

that comes after Hv in C ′ assigns to v. For contradiction assume there is such a hammock

Hk. By the inductive result proved above, Hk assigns to v in the execution of C also. Since

Hv is the last hammock of C to assign to v, Hk comes before Hv in C. In that case the node

in Hv that defines v is output dependent on the node in Hk that defines v, which means

a constraint Bk < Bv is generated by the algorithm, where Bk is the constituent block of

Hk that contains the definition of v and Bv is the constituent block of Hv that contains the

definition of v. This constraint is violated in C ′, which is not possible. Therefore we have

shown that the final value of v after both executions is v′. 2

Proof of Theorem C.1. Rather than providing a detailed proof we provide some intu-

ition on how Lemmas C.5 and C.6 imply Theorem C.1. Recall that according to Lemma C.5

the only difference between bm and b′m is that some set S of constituent chains of hammocks

of bm are permuted in b′m. Moreover, for each chain C in S, C is semantically equivalent to

its permutation C ′ in b′m (Lemma C.6), and both C and C ′ are single-entry single-outside-

exit regions. In other words, assuming control enters C and C ′ with identical states, control

leaves C and C ′ to reach the same outside node, with identical states. If no two chains of

S overlap, this is sufficient to guarantee that executions of bm and b′m from identical initial

program states s, and from the same starting node e, finish with identical program states

and finish at the same node (which is outside bm/b′m).

Things are not as obvious if chains in S overlap; if two chains C1 and C2 in S overlap,

ambiguity exists over whether b′m is obtainable from bm by permuting either of these chains

first, or whether one of these chains needs to be permuted first. However, note that in the

proof of Lemma C.5 only Case 3 allows for overlapping chains. In this case we note that one
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of the permuted chains is the outer chain S1, S2, . . . , Sk, whereas each other permuted chain

is completely inside one of the hammocks Si of the outer chain. In other words, whenever

two chains in S overlap, one of the two chains is completely contained in a single hammock

of the other chain. In other words, the order in which chains in bm are permuted does not

matter – any order gives the same result (i.e., b′m). 2

Example: As we noted earlier, in the example of Figure C.1(c), b′m differs from bm in that

the following two constituent chains of hammocks of bm are permuted in b′m: [B3, B4], and

[S1, S2]. These two chains overlap; however the first chain is completely contained inside the

one of the hammocks (S2) of the second chain. 2
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