
The LAM Implementation of MPI:

Features, Dynamic Process Control, and Checkpointing

Jeffrey M. Squyres, Andrew Lumsdaine

Department of Computer Science and Engineering

University of Notre Dame

1

Overview
� Introduction: Parallel Computing

� MPI (and others)

� The LAM implementation of MPI

� LAM + Condor = Lamdor

� Conclusions / Future Work

2

Introduction: Parallel Computing
� Shared memory

– Typically multi-threaded, sometimes multi-process

– All sharing common memory

– Not [directly] the focus of this talk

Cache

CPU CPU

CacheCache

CPU CPU

CacheCache

RAM

3

Introduction: Parallel Computing
� Distributed memory

– Typically separate processes

– Explicit sending of messages; little [direct] use of shared

memory

RAMRAM RAM RAM

CPU

CacheCache

CPUCPU

CacheCache

CPU

4

Message Passing: The Contenders
� Parallel Virtual Machine (PVM)

– Research project at Oak Ridge National Labs

– First message passing package on clusters

– Attracted a large user base

� Message Passing Interface (MPI)

– MPI-1 standardized in 1994, MPI-2 standardized in 1997

– Vendor and open source implementations

– Source code portable

5

PVM: The Good
� Daemon-based run-time environment

� Popularized manager / worker model using dynamic processes

� Load factoring / environment querying

� Inter-implementation communication

� Still has a large user following

6

PVM: The Bad
� Usually forces an extra buffer copy

� No true asynchronous communication

� Nondeterministic behavior (particularly with groups)

� Weak message safety (only one context at a time)

� Losing vendor support

7

What is MPI?
� A specification for a message passing API

� Two documents:

– MPI-1: Basic message passing (send, receive, collectives,

etc.)

– MPI-2: Extensions to MPI-1 (one-sided, C++, dynamic

processes, etc.)

� Specifically written to enable high performance

� Designed for clusters all the way up to “Big Iron”

8

MPI: The Good
� Learned from previous designs: NX, Zipcode, PVM, etc.

� No extra memory copy

� Capable of true asynchronous communication

� Deterministic behavior, ease of discovering identity

� Strong message safety

� Strong (and continuing) vendor support

� Uses fastest message passing available (shmem, TCP, etc.)

9

MPI: The Bad
� Some of the previous is “implementation dependent”

– True asynchronous communication

– Use of fastest message passing channel

� No [portable] fault tolerance

� MPI’s design does not preclude any of these, but much of this is

[intentionally] left unspecified

10

MPI Terminology
� Rank: A single entity in a parallel job

� Communicator: A group of ranks plus a unique message

passing context

� MPI COMM WORLD: Default communicator that contains all

ranks

11

MPI Code Example: Hello World

int main(int argc, char* argv[]) {

int me, total;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &me);

MPI_Comm_size(MPI_COMM_WORLD, &total);

printf("Hello world: %d of %d\n",

me, total);

MPI_Finalize();

return 0;

}

12

Overview
� Introduction: Parallel Computing

� MPI (and others)

� The LAM implementation of MPI

� LAM + Condor = Lamdor

� Conclusions / Future Work

13

The LAM Implementation of MPI
� Originally written at the Ohio Supercomputing Center

– Targeted at transputers

– Top MPI layer was added later

– MPI has since become the main focus of work

� Everyone graduated, moved on

– LAM/MPI was orphaned for about a year

� Project moved to Notre Dame in 1998

14

MPI Conformance
� Full MPI-1 conformance

� Much MPI-2 functionality

– MPI I/O (ROMIO)

– MPI C++ bindings

– One-sided communication

– Dynamic process control

� Interoperable MPI (IMPI)

– Point-to-point and some collectives

15

LAM/MPI: Features
� Daemon-based run-time environment

– Fast startup of user programs

– Guaranteed cleanup of user programs

– External monitoring

� Flexible mpirun

– SMP-friendly syntax

– SPMD or MPMD

– Can distribute executables; no global filesystem required

– Pseudo-tty support

– Environment variable and working directory export

16

LAM/MPI: More Features
� Optimized point-to-point message passing

– “Short-circuit” optimization

– Short call stack; “uncomplicated” engine

– Combined TCP / shared memory message passing

– True asynchronous message passing

� Monitoring tools

– XMPI: GUI message passing patterns

– mpimsg : pending messages

– mpitask : running LAM tasks

17

LAM/MPI: Still More Features
� Heterogeneous support

– Portable to most POSIX systems

– On-the-fly endian conversion (if necessary)

� Debugging support

– Ability to mpirun non-MPI executables (e.g., debuggers)

– Totalview support on the way

– Purify clean

– Open source (some users actually do source dive!)

– Lots of online help: web pages, man pages

18

Daemon-Based Run-Time Environment
� User level, not root level

� Launch the LAM RTE: lamboot <hostfile >
node2 node3

node0 node1

lamboot

lamd

lamd

lamd

lamd

19

Running MPI Programs
� mpirun sends a message to the local daemon

node1

lamd

lamd

node0

lamd

lamd

mpirun −np 4 foo

node2 node3

20

Running MPI Programs: Step 2
� The daemons fork / exec the child, setup stdin / stdout, etc.

node0 node1

foo

foo foo

foo

lamd lamd

lamdlamd

mpirun −np 4 foo

node2 node3

21

Running MPI Programs: Step 3
� During MPI Init() , each MPI rank connects all others

lamdlamd

lamd lamd

mpirun

node1

node3node2

node0

foo foo

foo foo

22

MPI Init: Mutual Awareness
� Out-of-band messaging is used during MPI Init()

– Each rank contacts mpirun

– mpirun sends full list of out-of-band peer addresses

foo

3.
ad

dr
es

s_
0

ad
dr

es
s_

1

ad
dr

es
s_

0
ad

dr
es

s_
1

ad
dr

es
s_

0

1.

ad
dr

es
s_

1

2.

foo

mpirun −np 4 foo

23

MPI Init: Peer-to-Peer Setup
� More out-of-band messaging used between MPI ranks

– Each rank opens a dynamic “listening” socket

– Pairwise, “acceptor” rank sends port number to “listener”

foo foo

port_num
Out of band

1.

2.
TCP socket

Acceptor Connector

24

MPI Dynamic Processes
� MPI Comm spawn() is used to launch a group of children

processes

– It is a collective (blocking) call across the spawning

communicator

� Children processes will have their own unique

MPI COMM WORLD

� Parents and children will share a “bridge” communicator that

they can communicate with

25

MPI Comm spawn: Same as MPI Init
� Replace mpirun instance with MPI Comm spawn() instance

� Do same out-of-band messaging

3.

ad
dr

es
s_

0
ad

dr
es

s_
1

ad
dr

es
s_

0
ad

dr
es

s_
1

ad
dr

es
s_

0

1.

ad
dr

es
s_

1

2.

child child

MPI_Comm_spawn

26

MPI Comm spawn: Slight Differences
� Children must create parent communicator

� MPI Comm spawn() must also send parent addresses

4.

child child

pa
re

nt
_0

pa
re

nt
_1

pa
re

nt
_0

pa
re

nt
_1

MPI_Comm_spawn

27

MPI Bandwidth Performance: TCP
� MPI performance on the Coral cluster

� ICASE / NASA Langley Research

� 32 nodes

– Phase 2: 16 dual pentium III/500, PC100

– Phase 3: 16 dual pentium III/800, PC133

� Gigabit ethernet interconnection network

28

MPI Bandwidth Performance: TCP
� MPICH latency over TCP: 175us

� LAM latency over TCP: 129us

29

MPI Bandwidth Performance: Myrinet
� Linux pentium cluster at Indiana University

� Myrinet interconnection network

� Numbers collected using NetPIPE 2.4 benchmark application

30

MPI Bandwidth Performance: Myrinet

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−1

10
0

10
1

10
2

10
3

NetPIPE 2.4 Bandwidth Performance:

Message size (bytes)

B
an

dw
id

th
 (

M
bp

s.
)

MPICH−gm
LAM/gm

31

MPI Latency Performance: Myrinet

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−5

10
−4

10
−3

10
−2

10
−1

NetPIPE 2.4 Latency Performance

Message size (bytes)

La
te

nc
y

(s
ec

.)

MPICH−gm
LAM/gm

32

Overview
� Introduction: Parallel Computing

� MPI (and others)

� The LAM implementation of MPI

� LAM + Condor = Lamdor

� Conclusions / Future Work

33

LAM + Condor = Lamdor
� We want to run LAM jobs under Condor

– Get MPI-2 features in Condor (spawn, put / get, etc.)

– Take MPI support burden away from Condor team

� Bring MPI into distributed [dynamic] computing

– Manager / worker process model

– Some degree of fault tolerance

� Eventual goal: cycle-scavenging parallel jobs

– Transparent checkpoint/migrate/restart support for MPI jobs

34

Applies Outside of Condor Environments
� Clusters aren’t as stable as Beowulfers would have you believe

– Nodes die, switches and routers fail, etc.

– That is: even dedicated clusters are dynamic clusters

� Scale LAM up to grid-sized problems: dynamic MPI

environments

� Use the standalone checkpoint library outside of a Condor flock

– Resource maintenance (e.g., Beowulf-style clusters)

– Queue management / dedicated resource time

– Program fault protection

35

Overview
� Introduction: Parallel Computing

� MPI (and others)

� The LAM implementation of MPI

� LAM + Condor = Lamdor

� Conclusions / Future Work

36

Conclusions / Future Work
� Get LAM/MPI to run under the Condor static scheduler

� Extend LAM/MPI to dyanmic and unreliable environments

– Properly define (redefine?) MPI semantics / models for

dynamic environments

� Extend LAM/MPI to handle grid-sized problems

� Experiment with checkpoint / migrate / restart schemes

37

