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Abstract

Threads are the vehicle. for concurrency in many approaches

to parallel programming. Threads separate the notion of a

sequential execution stream from the other aspects of tradi-

tional UNIX-like processes, such as address spaces and 1/0

descriptors. The objective of this separation is to make the

expression and control of parallelism sufficiently cheap that

the programmer or compiler can exploit even fine-grained

parallelism with acceptable overhead.

Threads can be supported either by the operating system

kernel or by user-level library code in the application ad-

dress space, but neither approach has been fully satisfactory.

This paper addresses this dilemma. First, we argue that the

performance of kernel threads is inherently worse than that

of user-level threads, rather than this being an artifact of

existing implementations; we thus argue that managing par-

allelism at the user level is essential to high-performance

parallel computing. Next, we argue that the lack of system

integration exhibited by user-level threads is a consequence

of the lack of kernel support for user-level threads provided

by contemporary multiprocessor operating systems; we thus

argue that kernel threads or processes, as currently con-

ceived, are the wrong abstraction on which to support user-

level management of parallelism. Finally, we describe the

design, implementation, and performance of a new kernel in-

terface and user-level thread package that together provide

the same functionality as kernel threads without compromis-

ing the performance and flexibility advantages of user-level

management of parallelism.
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1 Introduction

The effectiveness of parallel computing depends to a great

extent on the performance of the primitives that are used to

express and control the parallelism within programs. Even

a coarse-grained parallel program can exhibit poor perfor-

mance if the cost of creating and managing parallelism is

high. Even a fine-grained program can achieve good per-

formance if the cost of creating and managing parallelism is

low.

One way to construct a parallel program is to share mem-

ory bet ween a collection of traditional UNIX-like processes,

each consisting of a single address space and a single se-

quential execution stream within that address space. Un-

fortunately, because such processes were designed for multi-

programming in a uniprocessor environment, they are sim-

ply too inefficient for general-purpose parallel programming;

they handle only coarse-grained parallelism well.

The shortcomings of traditional processes for general-

purpose parallel programming have led to the use of threads.

Threads separate the notion of a sequential execution stream

from the other aspects of traditional processes such aa ad-

dress spaces and 1/0 descriptors. This separation of con-

cerns yields a significant performance advantage relative to

traditional processes.

1.1 The Problem

Threads can be supported either at user level or in the kernel.

Neither approach has been fully satisfactory.

Ueer-level threads are managed by runtime library rou-

tines linked into each application so that thread management

operations require no kernel intervention. The result can be

excellent performance: in systems such as PCR [Weiser

et al. 89] and FastThreads [Anderson et al. 89], the cost of

user-level thread operations is within an order of magnitude

of the cost of a procedure call. User-level threads are also

flexible; they can be customized to the needs of the language

or user without kernel modification.

User-level threads execute within the context of tradi-

tional processes; indeed, user-level thread systems are typi-

cally built without any modifications to the underlying oper-

ating system kernel. The thread package views each process

as a “virtual processor”, and treats it like a physical pro-
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cessor executing under its control. In reality, though, these

virtual processors are being multiplexed across real, physi-

cal processors by the underlying kernel. Many “real world”

factors, such as multiprogramming, 1/0, and page faults,

distort the equivalence between virtual and physical proces-

sors; in the presence of these factors, user-level threads built

on top of traditional processes can exhibit poor performance

or even incorrect behavior.

Multiprocessor operating systems such as Mach [Tevanian

et al. 87], Topaz [Thacker et al. 88], and V [Cheriton 88]

provide direct kernel support for multiple threads per ad-

dress space. Programming with kernel threads avoids sys-

tem integration problems: the threads that are used by the

programmer or compiler are directly scheduled by the ker-

nel. Unfortunately, the performance of thread management

primitives for kernel threads, although typically an order

of magnitude better than for traditional UNIX processes,

has been typically an order of magnitude worse than for

user-level threads. Consequently, kernel threads, just like

traditional processes, are too heavyweight for use in many

parallel programs. This is suggested by the fact that user-

level threads have ultimately been implemented on top of the

kernel threads of both Mach (CThreads [Draves & Cooper

88]) and Topaz (WorkCrews [Vandevoorde & Roberts 88]).

User-level threads are built on top of kernel threads exactly

as they are built on top of traditional processes; they have

exactly the same performance, and they suffer exactly the

same system integration problems.

The parallel programmer, then, has been faced with a dif-

ficult dilemma: employ kernel threads, which “work right”

but perform poorly, or employ user-level threads imple-

mented on top of kernel threads or processes, which perform

well but are functional y deficient.

1.2 The Goals of This Work

In this paper we address this dilemma. We describe a ker-

nel interface and a user-level thread package that together

provide:

● F’tmctionaiitg: Our system can mimic the behavior of a

kernel thread management system, even in the presence

of multiprogramming, 1/0, and page faults:

– No processor idles in the presence of ready

threads.

– No high-priority thread waits for a processor while

a low-priority thread runs.

– When a thread traps to the kernel to block (for ex-

ample, because of a page fault), the processor on

which the thread was running can be used to run

another thread from the same or from a different

address space.

● Performance: In our system, the cost of common thread

management operations is within an order of ma~ni-

tude of a procedure call — essentially the same as that

achieved by the best existing user-level thread manage-

ment systems (which suffer from poor system integra-

tion).

● Flexibility: The user-level part of our system is struc-

tured to simplify application-specific customization. It

is simple to change the policy for scheduling an ap-

plication’s threads, or even to provide a different con-

currency model such as workers [Moeller-Nielsen &

Staunstrup 87], Actors [Agha 86], or Futures [Halstead

85].

The difficulty in achieving these goals in a multipro-

grammed multiprocessor is that the necessary control and

scheduling information is distributed between the kernel and

each applicat ion’s address space. The kernel, in order to ef-

fectively allocate processors to applications, needs access to

user-level scheduling information (e.g., how much parallelism

there is in each address space). The user-level support soft-

ware, in order to effectively manage parallelism, needs to

be aware of certain state transitions that are hidden in the

kernel (e.g., processor re-allocations and 1/0 events).

1.3 The Approach

Our approach provides each application with a uir-taal mult-

iprocessor, an abstraction of a dedicated physical machine.

Each application knows exactly how many (and which) pro-

cessors have been allocated to it and has complete control

over which of its threads are running on those processors.

The operating system kernel has complete control over the

allocation of processors among address spaces including the

ability to change the number of processors assigned to an

application during its execution.

To achieve this, the kernel notifies the address space

thread scheduler of every event affecting the address space.

The kernel’s role is to vector events that influence user-level

scheduling to the address space for the thread scheduler to

handle, rather than to interpret these events on its own, as

in a traditional operating system. Also, the thread system in

each address space notifies the kernel of the subset of user-

level events that can affect processor allocation decisions. By

communicating upward a22 kernel events, functionality is im-

proved because the application has complete knowledge of its

scheduling state. By communicating downward only those

events that affect processor allocation, good performance is

preserved, since most events (e.g., simple thread scheduling

decisions) do not need to be reflected to the kernel.

The kernel mechanism that we use to realize these ideas

is called schedzder activations. A scheduler activation is the

execution context for an event vectored from the kernel to an

address space; the address space thread scheduler uses this

context to handle the event — to modify user-level thread

data structures, to execute user-level threads, and to make

requests of the kernel.

We have implemented a prototype of our design on the

DEC SRC Firefly multiprocessor workstation [Thacker et al.

88]. While the differences between scheduler activations and

kernel threads are crucial, the similarities are great enough

that the kernel portion of our implementation required only

relatively straightforward modifications to the kernel threads

of Topaz, the native operating system on the Firefly. Simi-

larly, the user-level portion of our implementation involved

relatively straightforward modifications to Fast Threads, a
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user-level thread system originally designed to run on top of

Topaz kernel threads.

Since our goal is to demonstrate that the exact function-

ality of kernel threads can be provided at the user level, the

presentation in this paper assumes that user-level threads

are the concurrency model used by the programmer or com-

piler. We emphasize, however, that other concurrency mod-

els, when implemented at user level on top of kernel threads

or processes, suffer from the same problems as user-level

threads — problems that are solved by implementing them

on top of scheduler activations.

2 User-Level Threads: Perfor-

mance Advantages and Func-

t ionalit y Limitations

In this section we motivate our work by describing the advan-

tages that user-level threads offer relative to kernel threads,

and the difficulties that arise when user-level threads are

built on top of the interface provided by kernel threads

or processes. We argue that the performance of user-level

threads is inherently better than that of kernel threads,

rather than this being an artifact of existing implementa-

tions. User-level threads have an additional advantage of

flexibility with respect to programming models and environ-

ments. Further, we argue that the lack of system integration

exhibited by user-level threads is not inherent in user-level

threads themselves, but is a consequence of inadequate ker-

nel support.

2.1 The Case for User-Level Thread

Management

It is natural to believe that the superior performance of

user-level threads is a result of the particular attention that

has been paid to this aspect of their design, and that the

same performance enhancements could be applied within

the kernel, yielding kernel threads that achieve the same

performance as user-level threads without the compromises

in functionality. Unfortunately, this turns out not to be the

case, for two reasons:

● The cost of accessing thread management operations:

With kernel threads, the program must cross an extra

protection boundary on every thread operation, even

when the processor is being switched between threads

in the same address space. This involves not only an ex-

tra kernel trap, but the kernel must also copy and check

parameters in order to protect itself against buggy or

malicious programs. By contrast, invoking user-level

thread operations can be quite inexpensive, particularly

when compiler techniques are used to expand code in-

line and perform sophisticated register allocation. Fur-

ther, safety is not compromised: address space bound-

aries isolate misuse of a user-level thread system to the

program in which it occurs.

● The cost of generality; With kernel thread manage-

ment, a single underlying implementation is used by all

Topaz Ultrix

Operation FastThreads threads processes

Null Fork 34 948 11300

SignaL Wait 37 441 1840

Table 1: Thread Operation Latencies (psec.)

applications. To be general-purpose, a kernel thread

system must provide any feature needed by any reason-

able application; this imposes overhead on those appli-

cations that do not use a particular feature. In contrast,

the facilities provided by a user-level thread system can

be closely matched to the specific needs of the appli-

cations that use it, since different applications can be

linked with different user-level thread libraries. As an

example, most kernel thread systems implement pre-

emptive priority scheduling, even though many parallel

applications can use a simpler policy such as first-in-

first-out [Vandevoorde & Roberts 88].

These factors would not be important if thread manage-

ment operations were inherently expensive. Kernel trap

overhead and priority scheduling, for instance, are not major

contributors to the high cost of UNIX-like processes. How-

ever, the cost of thread operations can be within an order of

magnitude of a procedure call. This implies that any over-

head added by a kernel implementation, however small, will

be significant, and a well-written user-level thread system

will have significantly better performance than a well-written

kernel-level thread system.

To illustrate this quantitatively, Table 1 shows the perfor-

mance of example implementations of user-level threads, ker-

nel threads, and UNIX-like processes, all running on similar

hardware, a CVAX processor. FastThreads and Topaz kernel

threads were measured on a CVAX Firefly; Ultrix (DEC’S

derivative of UNIX) was measured on a CVAX uniprocessor

workstation. (Each of these implementations, while good, is

not “optimal”. Thus, our measurements are illustrative and

not definitive.)

The two benchmarks are: Null Fork, the time to cre-

ate, schedule, execute and complete a process/thread that

invokes the null procedure (in other words, the overhead

of forking a thread), and Signal- Wait, the time for a pro-

cess/thread to signal a waiting process/thread, and then

wait on a condition (in other words, the overhead of synchro-

nizing two threads together). Each benchmark was executed

on a single processor, and the results were averaged across

multiple repetitions. For comparison, a procedure call takes

about 7 psec. on the Firefly, while a kernel trap takes about

19 #sec.

Table 1 shows that while there is an order of magnitude

difference in cost between Ultrix process management and

Topaz kernel thread management, there is yet another order

of magnitude difference between Topaz threads and Fast-

Threads. This is despite the fact that the Topaz thread

code is highly tuned with much of the critical path written

in assembler.

Commonly, a tradeoff arises between performance and

flexibility in choosing where to implement system ser-
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vices [Wulf et al. 81]. User-level threads, however, avoid

this tradeoff: they simultaneously improve both performance

and flexibility. Flexibility is particularly important in thread

systems since there are many parallel programming models,

each of which may require specialized support within the

thread system. With kernel threads, supporting multiple

parallel programming models may require modifying the ker-

nel, which increases complexity, overhead, and the likelihood

of errors in the kernel.

2.2 Sources of Poor Integration in User-

Level Threads Built on the Tradi-

tional Kernel Interface

Unfortunately, it has proven difficult to implement user-level

threads that have the same level of integration with system

services as is available with kernel threads. This is not in-

herent in managing parallelism at the user level, but rather

is a consequence of the lack of kernel support in existing sys-

tems. Kernel threads are the wrong abstraction for support-

ing user-level thread management. There are two related

characteristics of kernel threads that cause difficulty:

● Kernel events, such as processor preemption and 1/0

blocklng and resumption, are handled by the kernel in-

visibly to the user level.

o Kernel threads are scheduled obliviously with respect

to the user-level thread state.

These can cause problems even on a uniprogrammed sys-

tem. A user-level thread system will often create as many

kernel threads to serve as “virtual processors” as there are

physical processors in the system; each will be used to run

user-level threads. When a user-level thread makes a block-

ing 1/0 request or takes a page fault, though, the kernel

thread serving as its virtual processor also blocks. As a re-

sult, the physical processor is lost to the address space while

the 1/0 is pending, because there is no kernel thread to serve

as an execution context for running other user-level threads

on the just-idled processor.

A plausible solution to this might be to create more ker-

nel threads than physical processors; when one kernel thread

blocks because its user-level thread blocks in the kernel, an-

other kernel thread is available to run user-level threads

on that processor. However, a difficulty occurs when the

1/0 completes or the page fault returns: there will be more

runnable kernel threads than processors, each kernel thread

with a user-level thread loaded into its context. In deciding

which kernel threads are to be assigned processors, the oper-

ating system will implicitly choose which user-level threads

are assigned processors.

In a traditional system, when there are more runnable

threads than processors, the operating system could em-

ploy some kind of time-slicing to ensure each thread makes

progress. When user-level threads are running on top of ker-

nel threads, however, time-slicing can lead to problems. For

example, a kernel thread could be preempted while its user-

level thread is holding a spin-lock; any user-level threads

accessing the lock will then spin-wait until the lock holder

is rescheduled. Zahorjan et al. [91] have shown that time-

slicing in the presence of spin-locks can result in poor per-

formance. As another example, a kernel thread running a

user-level thread could be time-sliced out to run another ker-

nel thread that has no user-level thread available to it (i.e.,

one that is idling in its user-level scheduler). Or a kernel

thread running a high-priority user-level thread could be re-

scheduled in order to run a kernel thread that happens to

be running a low-priority user-level thread.

Exactly the same problems occur with multiprogramming

as with 1/0 and page faults. If there is only one job in the

system, it can receive all of the machine’s processors; if an-

other job enters the system, the operating system should

preempt some of the first job’s processors to give to the new

job [Tucker & Gupta 89]. The kernel then is forced to choose

which of the first job’s kernel threads, and thus implicitly

which of the user-level threads running in their context, to

run on the remaining processors. The need to preempt pro-

cessors from an address space also occurs due to variations

in parallelism within jobs; Zahorjan and McCann [90] show

that the dynamic re-allocation of processors among address

spaces in response to variations in parallelism is important

to achieving high performance.

While a kernel interface can be designed to allow the user

level to influence which kernel threads are scheduled when

the kernel has a choice [Black 90], this choice is intimately

tied to the user-level thread state; the communication of this

information between the kernel and the user-level negates

many of the performance and flexibility advantages of using

user-level threads in the first place.

Finally, ensuring the logical correctness of a user-level

thread system built on kernel threads can be difficult. Many

applications, part icularl y those that require coordination

among multiple address spaces, are free from deadlock based

on the assumption that all runnable threads eventually re-

ceive processor time. When kernel threads are used directly

by applications, the kernel satisfies this assumption by time-

slicing the processors among all of the runnable threads. But

when user-level threads are multiplexed across a fixed num-

ber of kernel threads, the assumption may no longer hold:

because a kernel thread blocks when its user-level thread

blocks, an application can run out of kernel threads to serve

as execution contexts, even when there are runnable user-

level threads and available processors.

3 Effective Kernel Support for

the User-Level Management

of Parallelism

Section 2 described the problems that arise when kernel

threads are used by the programmer to express parallelism

(poor performance and poor flexibility) and when user-level

threads are built on top of kernel threads (poor integration

with system services). To address these problems, we have

designed a new kernel interface and user-level thread system

that together combine the functionality of kernel threads

with the performance and flexibility of user-level threads.
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The operating system kernel provides each user-level

thread system with its own virtual multiprocessor, the ab-

straction of a dedicated physical machine except that the

number of processors in that machine may change during

the execution of the program. There are several aspects to

this abstraction:

●

●

●

b

●

The kernel allocates processors to address spaces; the

kernel has complete control over how many processors

to give each address space’s virtual multiprocessor.

Each address space’s user-level thread system has com-

plete control over which threads to run on its allocated

processors, as it would if the application were running

on the bare physical machine.

The kernel notifies an address space whenever theker-

nelchanges thenumber of processors assigned toit; the

kernel also notifies the address space whenever a user-

level thread blocks or wakes up in the kernel (e.g., on

1/0). The kernel’s role is to vector events to the address

space for the thread scheduler to handle, rather than to

interpret these events on its own.

The address space notifies the kernel when it wants

more or needs fewer processors. This allows the kernel

to correctly allocate processors among address spaces

based on their needs. However, the user level notifies

the kernel only of the subset of user-level events that

might affect processor allocation decisions. As a result,

performance is not compromised; the vast majority of

address space events (e.g., thread scheduling decisions)

do not suffer the overhead of communication with the

kernel.

The application programmer sees no difference, except

for performance, from programming directly with kernel

threads. Our user-level thread system manages its vir-

tual multiprocessor transparently to the programmer,

providing programmers a normal Topaz thread inter-

face [Birrell et al. 87]. (The user-level runtime system

could easily be adapted, though, to provide a different

parallel programming model.)

In the remainder of this section we describe how kernel

events are vectored to the user-level thread system, what

information is provided by the application to allow the kernel

toappropriately allocat eprocessor samongjobs, and how we

handle user-level spin-locks.

3.1 Explicit Vectoring of Kernel Events

to the User-Level Thread Scheduler

The communication between the kernel processor allocator

and the user-level thread system is structured in terms of

scheduler activations. The term “scheduler activation” was

selected because each vectored event causes the user-level

thread system to reconsider its scheduling decision of which

threads to run on which processors.

A scheduler activation serves three roles:

● It serves as a vessel, or execution context, for running

user-level threads, in exactly the same way that a kernel

thread does.

●

●

A

It notifies the user-level thread system of a kernel event.

It provides space in the kernel for saving the proces-

sor cent ext of the activation’s current user-level t bread,

when the thread is stopped by the kernel (e.g., because

the thread blocks in the kernel on 1/0 or the kernel

preempts its processor).

scheduler act ivation’s data structures are quite similar

to those of a traditional kernel thread. Each scheduler acti-

vation has two execution stacks — one mapped into the ker-

nel and one mapped into the application address space. The

kernel stack is used whenever the user-level thread running in

the scheduler activation’s context executes in the kernel, for

example, on a system call; the kernel also maintains a control

block for each activation (akin to a thread control block) to

record the state of the scheduler activation when its thread

blocks in the kernel or is preempted. The user-level thread

scheduler runs on the activation’s user-level stack and main-

tains a record of which user-level thread is running in which

scheduler activation. Each user-level thread is allocated its

own stack when it starts running [Anderson et al. 89]; this

way, when a thread blocks on a user-level lock or condition

variable, the thread scheduler can resume running without

kernel intervention.

When a program is started, the kernel creates a scheduler

activation, assigns it to a processor, and upcalls into the ap-

plication address space at a fixed entry point. The user-level

thread management system receives the upcall and uses that

activation as the context in which to initialize itself and run

the main application thread. As the first thread executes,

it may create more user threads and request additional pro-

cessors. In this case, the kernel will create an additional

scheduler activation for each processor and use it to upcall

into the user level to tell it that the new processor is avail-

able. The user level then selects and executes a thread in

the context of that activation.

Similarly, when the kernel needs to notify the user level of

an event, the kernel creates a scheduler activation, assigns

it to a processor, and upcalls into the application address

space. Once the upcall is started, the activation is similar to

a traditional kernel thread — it can be used to process the

event, run user-level threads, and trap into and block within

the kernel.

The crucial distinction between scheduler activations and

kernel threads is that once an activation’s user-level thread

is stopped by the kernel, the thread is never directly resumed

by the kernel. Instead, a new scheduler activation is created

to notify the user-level thread system that the thread has

been stopped. The user-level thread system then removes

the state of the thread from the old activation, tells the

kernel that the old activation can be re-used, and finally de-

cides which thread to run on the processor. By contrast, in

a traditional system, when the kernel stops a kernel thread,

even one running a user-level thread in its context, the ker-

nel never notifies the user level of the event. Later, the

kernel directly resumes the kernel thread (and by implica-

tion, its user-level thread), again without notification. By

using scheduler activations, the kernel is able to maintain

the invariant that there are always exactly as many running
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Add this processor (processor)

Execute a runnable user-lewe! thread.

Processor has been preempted (preempted activation #and its machine state)

Return to the r-eadyhst the user-ler.Ie~ thr-ead that was executitagin the

context of the preempted scheduler activation.

Scheduler activation has blocked (blocked activation #)

The blocked scheduler activation is no longer using its processor.

Scheduler activation has unblocked (unblocked activation # and its machine state)

Return to the ready list the user-level thread that was executing in the

context of the blocked scheduler activation.

Table 2: Scheduler Activation Upcall Points

scheduler activations (vessels for running user-level threads)

as there are processors assigned to the address space.

Table 2 lists the events that the kernel vectors to the user

level using scheduler activations; the parameters to each up-

call are in parentheses, and the action taken by the user-

level thread system is italicized. Note that events are vec-

tored at exactly the points where the kernel would otherwise

be forced to make a scheduling decision. In practice, these

events occur in combinations; when this occurs, a single up-

call is made that passes all of the events that need to be

handled.

As one example of the use of scheduler activations, con-

sider what happens when a user-level thread blocks in the

kernel. The kernel uses a fresh scheduler activation to notify

the user-level thread system of the event, thus allowing the

processor to be used to run other user-level threads. Later,

when the user-level thread is unblocked, the kernel does not

directly resume it, but again uses a fresh activation to notify

the user-level thread scheduler of the event. This notifica-

tion, of course, requires a processor. If the address space

has no processors, the kernel must allocate one to do the

upcall — the upcall notifies the thread system both that

it has a new processor and that the blocked thread can be

resumed. Alternatively, the kernel may have to preempt a

processor from the address space to do the upcall; in this

case, the upcall notifies the user-level thread system, first,

that the original thread can be resumed, and second, that

the thread that had been running on that processor was

preempted. The user-level thread system can then put both

threads back on the ready list before deciding which of the

two should be run first on this processor.

When a user-level thread blocks in the kernel or is pre-

empted, most of the state needed to eventually resume it

is already at the user level — namely, the thread’s stack

and control block. The thread’s register state, however, is

saved by low-level kernel routines, such as the interrupt and

page fault handlers; the kernel passes this state to the user

level as part of the upcall notifying the address space of the

preemption or 1/0 completion.

Exactly the same mechanism is used when a processor

is preempted due to multiprogramming. For example, sup-

pose the kernel decides to take a processor away from one

address space and give it to another. The kernel does this

by sending the pro~essor an interrupt, stopping the old ac-

tivation, and then using the processor to do an upcall into

the new address space with a fresh activation. The kernel

need not obtain permission in advance from the old address

space to steal its processor; to do so would violate the se-

mantics of address space priorities if the new address space

has higher priority than the old address space. However, the

old address space must still be notified that the preemption

occurred. The kernel does this by doing another preemp-

tion on a different processor still running in the old address

space. The second processor is used to make an upcall into

the old address space using a fresh scheduler activation, no-

tifying the address space that two user-level threads have

been stopped. The user-level thread scheduler then has full

control over which of these threads should be run on its re-

maining processors. (When the last processor is preempted

from an address space, we could simply skip notifying the

address space of the preemption, but instead, we delay the

notification until the kernel eventually re-allocates it a pro-

cessor. Notification allows the user level to always know

which processors it has been assigned, in case it is explicitly

managing cache locality.)

The above description is over-simplified in several minor

respects. First, if t breads have priorities, an additional pre-

emption may have to take place beyond the ones described

above. For inst ante, on an 1/0 completion, some processor

could be running a thread with a lower priority than both

the unblocked and the preempted thread. In that case, the

user-level thread system can ask the kernel to interrupt the

thread running on that processor and start a scheduler ac-

tivation once the thread has been stopped. The user level

can know to do this because it knows exactly which thread

is running on each of its processors.

Second, while we described the kernel as stopping and sav-

ing the context of user-level threads, the kernel’s interaction

with the application is entirely in terms of scheduler activa-

tions. The application is free to build any other concurrency

model on top of scheduler activations; the kernel’s behavior

is exactly the same in every case. In particular, the kernel

needs no knowledge of the data structures used to represent

parallelism at the user level.
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Add more processors (additional # of processors needed)

Allocate more processors to this address space and start

them running scheduler activations.

This processor is idle ()

Preempt this processor if another address space needs it.

Table 3: Communication from the Address Space to the Kernel

Third, scheduler activations work properly even when a

preemption or a page fault occurs in the user-level thread

manager when no user-level thread is running. In this case,

it is the thread manager whose state is saved by the kernel.

The subsequent upcall, in a new activation with its own

stack, allows the (reentrant) thread manager to recover in

one way if a user-level thread is running, and in a different

way if not. For example, if a preempted processor was in the

idle loop, no action is necessary; if it was handling an event

during an upcall, a user-level context switch can be made to

continue processing the event. The only added complication

for the kernel is that an upcall to notify the program of a

page fault may in turn page fault on the same location; the

kernel must check for this, and when it occurs, delay the

subsequent upcall until the page fault completes.

Finally, a user-level thread that has blocked in the kernel

may still need to execute further in kernel mode when the

1/0 completes. If so, the kernel resumes the thread tem-

porarily, until it either blocks again or reaches the point

where it would leave the kernel. It is when the latter occurs

that the kernel notifies the user level, passing the user-level

thread’s register state as part of the upcall.

3.2 Notifying the Kernel of User-Level

Events Affecting Processor Alloca-

tion

The mechanism described in the last sub-section is indepen-

dent of the policy used by the kernel for allocating proces-

sors among address spaces. Reasonable allocation policies,

however, must be based on the available parallelism in each

address space. In this sub-section, we show that this in-

formation can be efficiently communicated for policies that

both respect priorities and guarantee that processors do not

idle if runnable threads exist. These constraints are met by

most kernel thread systems; as far as we know, they are not

met by any user-level thread system built on top of kernel

threads.

The key observation is that the user-level thread system

need not tell the kernel about every t bread operation, but

only about the small subset that can affect the kernel’s pro-

cessor allocation decision. By contrast, when kernel threads

are used directly for parallelism, a processor traps to the ker-

nel even when the best thread for it to run next — a thread

that respects priorities while minimizing overhead and pre-

serving cache context — is within the same address space.

In our system, an address space notifies the kernel when-

ever it makes a transition to a state where it has more

runnable threads than processors, or more processors than

runnable threads. Provided an application has extra threads

to run, and the processor allocator has not re-assigned it ad-

ditional processors, then those processors must be busy else-

where, and changing the amount of parallelism within the

address space cannot violate the constraints. Similarly, if an
. .

apphcatlon has notified the kernel that it has idle processors,

and the kernel has not taken them away, then there must be

no other work in the system, and the kernel need not be

notified of changes in parallelism, up to the point where the

application has more work than processors. (An extension

to this approach handles the situation where threads, rather

than address spaces, have globally meaningful priorities.)

Table 3 lists the kernel calls made by an address space on

these state transitions. For example, when an address space

notifies the kernel that it needs more processors, the kernel

searches for an address space that has registered that it is

not using all of its processors. If none are found, nothing

happens, but the address space may get a processor in the

future if some address space later decides it has an extra.

These notifications are only hints: if the kernel gives an ad-

dress space a processor that is no longer needed by the time

it gets there, the address space simply returns the proces-

sor to the kernel with the updated information. Of course,

the user-level thread system must serialize its notifications

to the kernel, since ordering matters.

It might seem that a drawback to this approach is the as-

sumption that applications will be honest in reporting their

parallelism to the operating system. This problem is not

unique to multiprocessors: a dishonest or misbehaving pro-

gram can consume an unfair proportion of resources on a

multiprogrammed uniprocessor as well. In either kernel-

level or user-level thread systems, multi-level feedback can

be used to encourage applications to provide honest infor-

mation for processor allocation decisions. The processor al-

locator can favor address spaces that use fewer processors

and penalize those that use more. This encourages address

spaces to give up processors when they are needed elsewhere,

since the priorities imply that it is likely that the processors

will be returned when they are needed. On the other hand, if

overall the system has fewer threads than processors, the idle

processors should be left in the address spaces most likely

to create work in the near future, to avoid the overhead of

processor re-allocation when the work is created.

Many production uniprocessor operating systems do

something similar. Average response time, and especially

interactive performance, is improved by favoring jobs with

the least remaining service, often approximated by reducing

the priority of jobs as they accumulate service time. We

expect a similar policy to be used in multiprogrammed mul-
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tiprocessors to achieve the same goal; this could easily be

adapt ed to encourage honest reporting of idle processors.

3.3 Critical Sections

One issue we have not yet addressed is that a user-level

thread could be executing in a critical section at the instant

when it is blocked or preempted. ] There are two possible ill

effects: poor performance (e.g., because other threads con-

tinue to test an application-level spin-lock held by the pre-

empted thread) [Zahorjan et al. 91], and deadlock (e.g., the

preempted thread could be holding a lock on the user-level

thread ready list; if so, deadlock would occur if the upcall at-

tempted to place the preempted thread onto the ready list).

Problems can occur even when critical sections are not pro-

tected by a lock. For example, FastThreads uses unlocked

per-processor (really, per-activation) free lists of thread con-

trol blocks to improve latency [Anderson et al. 89]; accesses

to these free lists must be done atomically with respect to

preemptions.

Prevention and recovery are two approaches to dealing

with the problem of inopportune preemption. With pre-

vention, inopportune preemptions are avoided through the

use of a scheduling and locklng protocol between the ker-

nel and the user level. Prevent ion has a number of serious

drawbacks, particularly in a multiprogrammed environment.

Prevention requires the kernel to yield control over proces-

sor allocation (at least temporarily) to the user-level, vio-

lating the semantics of address space priorities. Prevention

is inconsistent with the efficient implementation of critical

sections that we will describe in Section 4.3, Finally, in

the presence of page faults, prevention requires “pinning”

to physical memory all virtual pages that might be touched

while in a critical section; identifying these pages can be

cumbersome.

Instead, we adopt a solution based on recovery. When

an upcall informs the user-level thread system that a thread

has been preempted or unblocked, the thread system checks

if the thread was executing in a critical section. (Of course,

this check must be made before acquiring any locks.) If so,

the thread is continued temporarily via a user-level context

switch. When the continued thread exits the critical section,

it relinquishes control back to the original upcall, again via

a user-level context switch. At this point, it is safe to place

the user-level thread back on the ready list. We use the same

mechanism to continue an activation if it was preempted in

the middle of processing a kernel event.

This technique is free from deadlock. By continuing the

lock holder, we ensure that once a lock is acquired, it is al-

ways event ually released, even in the presence of processor

preemption or page faults. Further, this technique supports

arbitrary user-level spin-locks, since the user-level thread

system is always notified when a preemption occurs, allow-

1The need for critical sections would be avoided if we were

to use wait-free synchronization [Herlihy 90]. Many commercial

architectures, however, do not provide the required hardware sup-

port (we assume only an atomic test-and-set instruction); in addi-

tion, the overhead of wait-free synchronization can be prohibitive

for protecting anything but very small data structures.

ing it to continue the spin-lock holder. Although correctness

is not affected, processor time may be wasted spin-waiting

when a spin-lock holder takes a page fault; a solution to this

is to relinquish the processor after spinning for a while [Lo

& Gligor 87].

4 Implementation

We have implemented the design described in Section 3 by

modifying Topaz, the native operating system for the DEC

SRC Firefly multiprocessor workstation, and FastThreads, a

user-level thread package.

We modified the Topaz kernel thread management rou-

tines to implement scheduler activations. Where Topaz for-

merly blocked, resumed, or preempted a thread, it now per-

forms upcalls to allow the user level to take these actions

(see Table 2). In addition, we modified Topaz to do explicit

allocation of processors to address spaces; formerly, Topaz

scheduled threads obliviously to the address spaces to which

they belonged. We also maintained object code compatibil-

ityy; existing Topaz (and therefore UNIX) applications still

run as before.

FastThreads was modified to process upcalls, to resume

interrupted critical sections, and to provide Topaz with the

information needed for its processor allocation decisions (see

Table 3).

In all, we added a few hundred lines of code to Fast-

Threads and about 1200 lines to Topaz. (For comparison,

the original Topaz implementation of kernel threads was over

4000 lines of code.) The majority of the new Topaz code was

concerned with implementing the processor allocation policy

(discussed below), and not with scheduler activations per se.

Scheduler activations are a mechanism, not a policy [Wulf

et al. 81]. Our design is “neutral” on the choice of policies

for allocating processors to address spaces and for scheduling

threads onto processors. Of course, some pair of policies had

to be selected for our prototype implementation; we briefly

describe these, as well as some performance enhancements

and debugging considerations, in the subsections that follow.

4.1 Processor Allocation Policy

The processor allocation policy we chose is similar to the

dynamic policy of Zahorjan and McCann [90]. The pol-

icy “space-shares” processors while respecting priorities and

guaranteeing that no processor idles if there is work to do.

Processors are divided evenly among address spaces; if some

address spaces do not need all of the processors in their

share, those processors are divided evenly among the re-

mainder. Space-sharing reduces the number of processor

re-allocations; processors are time-sliced only if the number

of available processors is not an integer multiple of the num-

ber of address spaces (at the same priority) that want them.

Our implementation makes it possible for an address space

to use kernel threads, rather than requiring that every ad-

dress space use scheduIer activations. Continuing to support

Topaz kernel threads was necessary to preserve binary com-

patibility with existing (possibly sequential) Topaz applica-

tions. In our implementation, address spaces that use kernel
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threads compete for processors in the same way as applica-

tions that use scheduler activations. The kernel processor

allocator only needs to know whether each address space

could use more processors or has some processors that are

idle. (An application can be in neither state; for instance, if

it has asked for a processor, received it, and has not asked

for another processor yet.) The interface described in Sec-

tion 3.2 provides this information for address spaces that use

scheduler activations; internal kernel data structures provide

it for address spaces that use kernel threads directly. Proces-

sors assigned to address spaces using scheduler activations

are handed to the user-level thread scheduler via upcalls;

processors assigned to address spaces using kernel threads

are handed to the original Topaz thread scheduler. As a

result, there is no need for static partitioning of processors.

4.2 Thread Scheduling Policy

An important aspect of our design is that the kernel has no

knowledge of an application’s concurrency model or schedul-

ing policy, or of the data structures used to manage paral-

lelism at the user level. Each application is completely free

to choose these as appropriate; they can be tuned to fit the

application’s needs. The default policy in FastThreads uses

per-processor ready lists accessed by each processor in last-

in-first-out order to improve cache locality; a processor scans

for work if its own ready list is empty. This is essentially the

policy used by Multilisp [Halstead 85].

In addition, our implementation includes hysteresis to

avoid unnecessary processor re-allocations; an idle proces-

sor spins for a short period before notifying the kernel that

it is available for re-allocation.

4.3 Performance Enhancements

While the design as just described is sufficient to provide

user-level functionality equivalent to that of kernel threads,

there are some additional considerations that are important

for performance.

The most significant of these relates to critical sections,

described in Section 3.3. In order to provide temporary con-

tinuation of critical sections when a user-level thread is pre-

empted (or when it blocks in the kernel and can be resumed),

the user-level thread system must be able to check whether

the thread was holding a lock. One way to do this is for

the thread to set a flag when it enters a critical section,

clear the flag when it leaves, and then check to see if it is

being continued. The check is needed so that the thread

being temporarily continued will relinquish the processor to

the original upcall when it reaches a safe place. Unfortu-

nately, this imposes overhead on lock acquisition and re-

lease whether or not a preemption or page fault occurs, even

though these events are infrequent. Latency is particularly

important since we use these continuable critical sections in

building our user-level thread system.

We adopt a different solution that imposes no overhead in

the common case; a related technique was used on a unipro-

cessor in the Trellis/Owl garbage collector [Moss & Kohler

87]. We make an exact copy of every low-level critical sec-

tion. We do this by delimiting, with special assembler labels,

each critical section in the C source code for the user-level

thread package; we then post-process the compiler-generated

assembly code to make the copy. This would also be straight-

forward to do given language and compiler support. At the

end of the copy, but not the original version of the critical

section, we place code to yield the processor back to the re-

sumer. Normal execution uses the original code. When a

preemption occurs, the kernel starts a new scheduler activa-

tion to notify the user-level thread system; this activation

checks the preempted thread’s program counter to see if it

was in one of these critical sections, and if so, continues the

thread at the corresponding place in the copy of the critical

section. The copy relinquishes control back to the original

upcall at the end of the critical section. Because normal ex-

ecution uses the original code, and this code is exactly the

same as it would be if we were not concerned about pre-

emptions, there is no impact on lock latency in the common

case. (In our implementation, occasionally a procedure call

must be made from within a critical section. In this case,

we bracket the call, but not the straight line path, with the

setting and clearing of an explicit flag.)

A second significant performance enhancement relates to

the management of scheduler activations. Logically, a new

scheduler activation is created for each upcall. Creating

a new scheduler activation is not free, however, because

it requires data structures to be allocated and initialized.

Instead, discarded scheduler activations can be cached for

eventual re-use. The user-level thread system can recycle

an old scheduler activation by returning it to the kernel as

soon as the user-level thread it had been running is removed

from its context: in the case of preemption, after processing

the upcall that notifies the user level of the preemption; in

the case of blocking in the kernel, after processing the up-

call that notifies the user level that resumption is possible.

A similar optimization is used in many kernel thread im-

plementations: kernel threads, once created, can be cached

when destroyed to speed future thread creations [Lampson

& Redell 80].

Further, discarded scheduler activations can be collected

and returned to the kernel in bulk, instead of being return-

ing one at a time. Ignoring the occasional bulk deposit of

dkcards, our system makes the same number of application-

kernel boundary crossings on 1/0 or processor preemption

as a traditional kernel t bread system. When a kernel t bread

blocks on an 1/0 request, for example, it must cross into

the kernel to do the 1/0; the system crosses back out to

run some other ready thread. When the 1/0 completes, the

system must re-enter the kernel to process the interrupt,
and cross back out to resume the thread. The same kernel

boundary crossings occur in our system. Of course, when the

kernel passes control back to the user level, it does not re-

sume the execution of a particular thread, but rather starts

running in the context of a new scheduler activation that

makes scheduling choices at the user level.
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FastThreads on FastThreads on

Operation Topaz threads Scheduler Activations Topaz threads Ultrix processes

Null Fork 34 37 948 11300

Signal-Wait 37 42 441 1840

Table4: Thread Operation Latencies(~sec.)

4.4 Debugging Considerations

We have integrated scheduler activations with the Firefly

Topaz debugger. There are two separate environments, each

with their own needs: debugging the user-level thread sys-

tem and debugging application code running on top of the

thread system.

Transparency is crucial to effective debugging — the de-

bugger should have as little effect as possible on the sequence

of instructions being debugged. The kernel support we have

described informs the user-level thread system of the state

of each of its physical processors, but this is inappropriate

when the thread system itself is being debugged. Instead,

the kernel assigns each scheduler activation being debugged

a logicai processor; when the debugger stops or single-steps

a scheduler activation, these events do not cause upcalls into

the user-level thread system.

Assuming the user-level thread system is working cor-

rectly, the debugger can use the facilities of the thread sys-

tem to stop and examine the state of application code run-

ning in the context of a user-level thread [Redell 88].

5 Performance

The goal of our research is to combine the functionality of

kernel threads with the performance and flexibility advan-

tages of managing parallelism at the user level within each

application address space. The functionality and flexibility

issues have been addressed in previous sections. In terms of

performance, we consider three questions. First, what is the

cost of user-level thread operations (e.g., fork, block, and

yield) in our system? Second, what is the cost of commu-

nication between the kernel and the user level (specifically,

of upcalls)? Third, what is the overall effect on the perfor-

mance of applications?

5.1 Thread Performance

The cost of user-level thread operations in our system is

essentially the same as those of the FastThreads package

running on the Firefly prior to our work — that is, running

on top of Topaz kernel threads, with the associated poor

system integration. Table 4 adds the performance of our

system to the data for original FastThreads, Topaz kernel

threads, and Ultrix processes contained in Table 1. Our sys-

tem preserves the order of magnitude advantage that user-

level threads offer over kernel threads. There is a 3 psec.

degradation in Null Fork relative to original FastThreads,

which is due to incrementing and decrementing the number

of busy threads and determining whether the kernel must be

notified. (This could be eliminated for a program running

on a uniprogrammed machine or running with sufficient par-

allelism that it can inform the kernel that it always wants as

many processors as are available.) There is a 5 psec. degra-

dation in Signal-Wait, which is due to this factor plus the

cost of checking whether a preempted thread is being re-

sumed (in which case extra work must be done to restore

the condition codes). Although still an order of magnitude

better than kernel threads, our performance would be signif-

icantly worse without a zero-overhead way of marking when

a lock is held (see Section 4.3). Removing this optimization

from FastThreads yielded a Null Fork time of 49 psec. and

a Signal-Wait time of 48 psec. (The Null Fork benchmark

has more critical sections in its execution path than does

Signal-Wait.)

5.2 Upcall Performance

Thread performance (Section 5.1) characterizes the frequent

caxe when kernel involvement is not necessary. Upcall per-

formance — the infrequent case — is important, though, for

several reasons. First, it helps determine the “break-even”

point, the ratio of thread operations that can be done at

user level to those that require kernel intervention, needed

for user-level threads to begin to outperform kernel threads.

If the cost of blocking or preempting a user-level thread in

the kernel using scheduler activations is similar to the cost of

blocking or preempting a kernel thread, then scheduler acti-

vations could be practical even on a uniprocessor. Further,

the latency between when a thread is preempted and when

the upcall reschedules it determines how long other threads

running in the application may have to wait for a critical

resource held by the preempted thread.

When we began our implementation, we expected our up-

call performance to be commensurate with the overhead of

Topaz kernel thread operations. Our implementation is con-

siderably slower than that. One measure of upcall perfor-

mance is the time for two user-level threads to signal and

wait through the kernel; this is analogous to the Signal-Wait

test in Table 4, except that the synchronization is forced to

be in the kernel. This approximates the overhead added by

the scheduler activation machinery of making and complet-

ing an 1/0 request or a page fault. The signal-wait time is

2.4 milliseconds, a factor of five worse than Topaz threads.

We see nothing inherent in scheduler activations that is

responsible for this difference, which we attribute to two

implement at ion issues. First, because we built scheduler ac-

tivations as a quick modification to the existing implemen-

t ation of the Topaz kernel thread system, we must maintain

more state, and thus have more overhead, than if we had

designed that portion of the kernel from scratch. As impor-

tantly, much of the Topaz thread system is written in care-
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fully tuned assembler; our kernel implementation is entirely

in Modula-2+: For comparison, Schroeder and Burrows [90]

reduced SRC RPC processing costs by over a factor of four

by recoding Modula-2+ in assembler. Thus, we expect that,

if tuned, our upcall performance would be commensurate e

with Topaz kernel thread performance. As a result, the ap-

plication performance measurements in the next section are

somewhat worse than what might be achieved in a produc-

tion scheduler activations implementation.

5.3 Application Performance

To illustrate the effect of our system on application per-

formance, we measured the same parallel application us-

ing Topaz kernel threads, original FastThreads built on top

of Topaz threads, and modified FastThreads running on

scheduler activations. The application we measured was an

O(N log N) solution to the N-body problem [Barnes & Hut

86]. The algorithm constructs a tree representing the center

of mass of each portion of space and then traverses portions

of the tree to compute the force on each body. The force

exerted by a cluster of distant masses can be approximated

by the force that they would exert if they were all at the

center of mass of the cluster.

Depending on the relative ratio of processor speed to avail-

able memory, this application can be either compute or 1/0

bound. We modified the application to explicitly manage

a part of its memory as a buffer cache for the application’s

data. This allowed us to control the amount of memory used

by the application; a small enough problem size was chosen

so that the buffer cache always fit in our Firefly’s physical

memory. As a further simplification, threads that miss in the

cache simply block in the kernel for 50 msec.; cache misses

would normally cause a disk access. (Our measurements

were qualitatively similar when we took contention for the

disk into account; because the Firefly’s floating point per-

formance and physical memory size are orders of magnitude

less than current generation systems, our measurements are

intended to be only illustrative. ) All tests were run on a six

processor CVAX Firefly.

First, we demonstrate that when the application makes

minimal use of kernel services, it runs as quickly on our

system as on original FastThreads and much faster than if

Topaz threads were used. Figure 1 graphs the application’s

speedup versus the number of processors for each of the three

systems when the system has enough memory so that there is

negligible 1/0 and there are no other applications running.

(Speedup is relative to a sequential implementation of the

algorithm.)

With one processor, all three systems perform worse than

the sequential implementation, because of the added over-

head of creating and synchronizing threads to parallelize

the application. This overhead is greater for Topaz kernel

threads than for either user-level thread system.

As processors are added, the performance with Topaz

kernel threads initially improves and then flattens out. In

Topaz, a thread can acquire and release an application lock

on a critical section without trapping to the kernel, provided

there is no contention for the lock. If a thread tries to acquire

4
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Figure 1: Speedup of N-Body Application vs. Number

of Processors, 1OO$%Oof Memory Available

a busy lock, however, the thread will block in the kernel and

be re-scheduled only when the lock is released. Thus, Topaz

lock overhead is much greater in the presence of contention.

The good speedup attained by both user-level thread sys-

tems shows that the application has enough parallelism; it

is the overhead of kernel threads that prevents good perfor-

mance. We might be able to improve the performance of

the application when using kernel threads by re-structuring

it so that its critical sections are less of a bottleneck or per-

haps by spinning for a short time at user level if the lock is

busy before trapping to the kernel [Karlin et al. 91]; these

optimizations are less crucial if the application is built with

user-level threads.

The performance of original FastThreads and our system

diverges slightly with four or five processors. Even though no

other applications were running during our tests, the Topaz

operating system has several daemon threads which wake

UP periodically, execute for a short time, and then go back
to sleep. Because our system explicitly allocates processors

to address spaces, these daemon threads cause preemptions

only when there are no idle processors available; this is not

true with the native Topaz scheduler, which controls the

kernel threads used as virtual processors by original Fast-

Threads. When the application tries to use all of the proces-

sors of the machine (in this case, six processors), the number

of preemptions for both user-level thread systems is similar.

(The preemptions have only a small impact on the perfor-

mance of original FastThreads because of their short dura-

tion.)

Next, we show that when the application requires kernel

involvement because it does 1/0, our system performs better

than either original FastThreads or Topaz threads. Figure 2

graphs the application’s execution time on six processors as

a function of the amount of available memory.

For all three systems, performance degrades slowly at first,

and then more sharply once the application’s working set

does not fit in memory. However, application performance
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Figure 2: Execution Time of N-Body Application vs.

Amount of Available Memory, 6 Processors

Topaz Original New

threads FastThreads FastThreads

1.29 1.26 2.45

Table 5: Speedup for N-Body Application, Multipro-

gramming Level = 2, 6 Processors, 100’%o of Memory

Available

with original FastThreads degrades more quickly than with

the other two systems. This is because when a user-level

thread blocks in the kernel, the kernel thread serving as

its virtuaf processor also blocks, and thus the application

loses that physicaf processor for the duration of the 1/0.

The curves for modified FastThreads and for Topaz threads

parallel each other because both systems are able to exploit

the parallelism of the application to overlap some of the 1/0

latency with useful computation. As in Figure 1, though, ap-

plication performance is better with modified FastThreads

than with Topaz because most thread operations can be im-

plemented without kernel involvement.

Finally, while Figure 2 shows the effect on performance of

application-induced kernel events, multiprogramming causes

system-induced kernel events that result in our system hav-

ing better performance than either original FastThreads or

Topaz threads. To test this, we ran two copies of the N-

body application at the same time on a six processor Firefly

and then averaged their execution times. Table 5 lists the

resulting apeedupa for each =ystemj note that a speedup of

three would be the maximum possible.

Table 5 shows that application performance with modified

FastThreads is good even in a multiprogrammed environ-

ment; the speedup is within 570 of that obtained when the

application ran uniprogrammed on three processors. This

small degradation is about what we would expect from bus

contention and the need to donate a processor periodically to

run a kernel daemon thread. In contrast, multiprogrammed

performance is much worse with either originaf FastThreads

or Topaz threads, although for different reasons. When ap-

explicit processor allocation, it may end up scheduling more

kernel threads from one address space than from the other;

Figure 1 shows, however, that performance flattens out for

Topaz threads when more than three processors are assigned

to the application.

While the Firefly is an excellent vehicle for constructing

proof-of-concept prototypes, its limited number of proces:

sors makes it less than ideal for experimenting with sig-

nificantly parallel applications or with multiple, multipro-

grammed parallel applications. For this reason, we are im-

plementing scheduler activations in CThreads and Mach; we

are also porting Amber [Chase et al. 89], a programming

system for a network of multiprocessors, onto our Firefly

implement ation.

6 Related Ideas

The two systems with goals most closely related to our own

. achieving properly integrated user-level threads through

improved kernel support — are Psyche [Scott et al. 90] and

Symunix [Edler et al. 88]. Both have support for NUMA

multiprocessors as a primary goal: Symunix in a high-

performance parallel UNIX implementation, and Psyche in

the context of a new operating system.

Psyche and Symunix provide “virtual processors” as de-

scribed in Sections 1 and 2, and augment these virtuaf pro-

cessors by defining software interrupts that notify the user

level of some kernel events. (Software interrupts are like

upcalls, except that all interrupts on the same processor use

the same stack and thus are not re-entrant. ) Psyche has also

explored the notion of multi-model parallel programming in

which user-defined threads of various kinds, in different ad-

dress spaces, can synchronize while sharing code and data.

While Psyche, Symunix, and our own work share similar

goals, the approaches taken to achieve these goals differ in

several important ways. Unlike our work, neither Psyche nor

Symunix provides the exact functionality of kernel threads

with respect to 1/0, page faults, and multiprogramming;

further, the performance of their user-level thread operations

can be compromised. We discussed some of the reasons for

this in Section 2: these systems notify the user level of some

but not all of the kernel events that affect the address space.

For example, neither Psyche nor Symunix notify the user

level when a preempted virtuaf processor is re-scheduled.

As a result, the user-level thread system does not know how

many processors it has or what user threads are running on

those processors,

Both Psyche and Symunix provide shared writable mem-

ory between the kernel and each application, but neither

system provides an efficient mechanism for the user-level

thread system to notify the kernel when its processor allo-
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cation needs to be re-considered. The number of processors

needed by each application could be written into this shared

memory, but that would give no efficient way for an appli-

cation that needs more processors to know that some other

application has idle processors.
Applications in both Psyche and Symunix share synchro-

nization state with the kernel in order to avoid preemption at

inopportune moments (e.g., while spin-locks are being held).

In Symunix, the application sets and later clears a variable

shared with the kernel to indicate that it is in a critical

section; in Psyche, the application checks for an imminent

preemption before starting a critical section. The setting,

clearing, and checking of these bits adds to lock latency,

which constitutes a large portion of the overhead when doing

high-performance user-level thread management [Anderson

et al. 89]. By contrast, our system has no effect on lock la-

tency unless a preemption actually occurs. Furthermore, in

these other systems the kernel notifies the application of its

intention to preempt a processor before thepreemption ac-

tually occurs; based on this notification, the application can

choose to place a thread in a “safe” state and voluntarily re-

linquish a processor. This mechanism violates the constraint

that higher priority threads are always run in place of lower

priority threads.

Some systems provide asynchronous kernel 1/0 as a mech-

anism to solve some of the problems with user-level thread

management on multiprocessors [Edler et al. 88] [Weiser

et aJ. 89]. Indeed, our work has the flavor of an asynchronous

1/0 system: when an 1/0 request is made, the processor is

returned to the application, and later, when the 1/0 com-

pletes, the application is notified. There are two major dif-

ferences between our work and traditional asynchronous 1/0

systems, though. First, and most important, scheduler acti-

vations provide a single uniform mechanism to address the

problems of processor preemption, 1/0, and page faults. Rel-

ative to asynchronous 1/0, our approach derives conceptual

simplicity from the fact that sJ1 interaction with the kernel

is synchronous from the perspective of a single scheduler ac-

tivation. A scheduler activation that blocks in the kernel is

replaced with a new scheduler activation when the awaited

event occurs. Second, while asynchronous 1/0 schemes may

require significant changes to both application and kernel

code, our scheme leaves the structure of both the user-level

thread system and the kernel largely unchanged.

Finally, parts of our scheme are related in some ways to

Hydra [Wulf et al. 81], one of the earliest multiprocessor op-

erating systems, in which scheduling policy was moved out

of the kernel. However, in Hydra, this separation came at a

performance cost because policy decisions required commu-

nication through the kernel to a scheduling policy server, and

then back to the kernel to implement a context switch. In

our system, an application can set its own policy for schedul-

ing its threads onto its processors, and can implement this

policy without trapping to the kernel. Longer-term proces-

sor allocation decisions in our system are the kernel’s respon-

sibility, although as in Hydra, this could be delegated to a

distinguished application-level server.

7 Summary

Managing parallelism at the user level is essential to high-

performance parallel computing, but kernel threads or pro-

cesses, as provided in many operating systems, are a poor

abstraction on which to support this. We have described the

design, implementation, and performance of a kernel inter-

face and a user-level thread package that together combine

the performance of user-level threads (in the common case

of thread operations that can be implemented entirely at

user level) with the functionality of kernel threads (correct

behavior in the infrequent case when the kernel must be

involved). Our approach is based on providing each appli-

cation address space with a virtual multiprocessor in which

the application knows exactly how many processors it has

and exactly which of its threads are running on those pro-

cessors. Responsibilities are divided between the kernel and

each application address space:

●

●

●

●

Processor allocation (the allocation of processors to ad-

dress spaces) is done by the kernel.

Thread scheduling (the assignment of an address

space’s threads to its processors) is done by each ad-

dress space.

The kernel notifies the address space thread scheduler

of every event affecting the address space.

The address space notifies the kernel of the subset of

user-level events that can affect processor allocation de-

cisions.

The kernel mechanism that we use to implement these

ideas is called scheduler activations. A scheduler activation

is the execution context for vectoring control from the kernel

to the address space on a kernel event. The address space

thread scheduler uses this context to handle the event, e.g.,

to modify user-level thread data structures, to execute user-

level threads, and to make requests of the kernel. While

our prototype implements threads as the concurrency ab-

st raction supported at the user level, scheduler activations

are not linked to any particular model; scheduler activations

can support any user-level concurrency model because the

kernel has no knowledge of user-level data structures.
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