
Experience with Grapevine:
The Growth of a Distributed System
MICHAEL D. SCHROEDER, ANDREW D. BIRRELL,
and ROGER M. NEEDHAM
Xerox Palo Alto Research Center

Grapevine is a distributed, replicated system that provides message delivery, naming, authentication,
resource location, and access control services in an internet of computers. The system, described in
a previous paper [1], was designed and implemented several years ago. We now have had operational
experience with the system under substantial load. In this paper we report on what we have learned
from using Grapevine.

Categories and Subject Descriptors: C.2.4 [Computer Communication Networks]: Distributed
Systems--distributed applications, distributed databases; C.4 [Computer Systems Organization]:
Performance of Systems--reliability, availability, serviceability; H.2.4 [Database Management]:
Systems--distributed systems; H.2.7 [Database Management]: Database Administration; H.4.3
[I n f o r m a t i o n Systems Applications]: Communications Applications--electronic mail

General Terms: Design, Experimentation, Reliability

Additional Key Words and Phrases: Grapevine

1. INTRODUCTION

Grapevine is a distributed, replicated system that provides message delivery,
naming, authentication, resource location, and access control services in an
internet of computers. The system, described in a previous paper [1], was designed
and implemented several years ago. Operational experience with the system
under substantial load has proved the original design sound in most aspects,
although there have been some surprises. In this paper we report on what we
have learned from using Grapevine. Our experience may offer some help to
designers of new systems.

The utility of computer mail systems is widely recognized. Most computing
environments provide a mail service. Local systems with similar properties
become interconnected through internets like Arpanet [13], UUCP [14] and
CSNET [6]. Recent work by IFIPS WG6.5 [8] addresses standards for intercon-
necting dissimilar systems. Some work has been reported on homogeneous

Authors' addresses: M.D. Schroeder and A.D. Birrelh Xerox Corporation, Palo Alto Research Center,
3333 Coyote Hill Road, Palo Alto, CA 94304; R.M. Needham: Computer Laboratory, Cambridge
University, Corn Exchange Street, Cambridge CB2 3QG, UK.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0734-2071/84/0200-0003 $00.75

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984, Pages 3-23.

4 • M.D. Schroeder, A. D. Birrell, and R. M. Needham

systems that provide a richer set of functions, such as COCOS [9]. No reported
message system provides a combination of services or exhibit a homogeneous
distributed implementation similar to Grapevine's.

After a brief structural overview of Grapevine in Sections 2 and 3 we present
observations in Sections 4-9 based on operational experience with the system.
The observations are divided into six general topics that are relevant to the
design of most distributed systems. We conclude in Section 10 with a brief
description of the changes made to adapt the prototype Grapevine system for use
as the Xerox 8000 NS product message system and clearinghouse.

2. STRUCTURAL OVERVIEW

A brief description of the system structure will provide a framework for the
discussion that follows. (The reader is encouraged to refer to [1] for a detailed
discussion of the objectives and structure of Grapevine.) Grapevine operates in
the Xerox research internet. This computer communications network is a collec-
tion of Ethernet local networks [10, 11], gateways, and long distance links that
interconnects personal workstation computers and shared server computers.
Grapevine is implemented as a Mesa [12] program that runs on a set of dedicated
server computers. The usual server computer is an Alto [17] with 128 Kbytes of
main memory and 5 Mbytes of disk storage. The processor can perform a simple
Mesa procedure call in about 30 microseconds. The disks were known from the
start of the project to be too small, but larger replacements were not easily
available at the time.

Figure 1 shows the location, as of the summer of 1983, of the Grapevine servers
in a stylized topology of the internet. Client programs of Grapevine run on
various workstation and server computers attached to the internet. Communi-
cation among Grapevine servers, and among clients and servers, is built on
internet protocols that provide a uniform means for addressing any computer
attached to any local network in order to send individual packets or to establish
and use byte streams [3, 16].

The services provided by Grapevine are divided into the message service and
the registration service. Each Grapevine server is a combination of a message
server program and a registration server program. All message servers cooperate
to provide Grapevine's message service, and all registration servers cooperate to
provide Grapevine's registration service. Each service is a client of the other.

The message service accepts messages prepared by clients for delivery to
individual recipients and distribution lists. Messages are buffered in inboxes on
message servers until the recipient requests them. Messages need not be human
readable text; Grapevine never looks at the content of messages. Any message
server can accept any message for delivery, thus providing a replicated submission
service. Each message server will accept retrieval requests for inboxes on that
server. A user of the computer mail system has inboxes on at least two message
servers, thus replicating the delivery path.

The registration service provides naming, authentication, access control and
resource location functions to clients; it is based on a registration database that
maps names to information about the users, machines, services, distribution lists,
ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

Experience with Grapevine • 5

Semillon

Cabernet

I Zinfandel

Mission

Morlot

Gamay

I PinotNoir

56K

561(

56K

Ch.rdonn., I

Riesling

Conco,d [

Aurora

\
C en nBlan¢l

Barbera I

~ = = ~ GreeneKing 1

~====~ deChaunac I

Muscat 1

Catawba

Fig. 1. The location of Grapevine servers in the internet. This diagram shows the placement of the
17 Grapevine servers, represented by rectangles, in a stylized internet topology. Each circle represents
a collection of Ethernets serving a local area; a circle contains the names of the registries for most
mail system users in that area. The long distance links are shown as curved lines labelled with their
data rates. Unlabelled lines are 9.6K bps.

and access control lists that those names signify. The registration data is used to
control the message service; it is accessed directly for the resource location, access
control and authentication services, and is used to configure Grapevine itself.

There are two types of entries in the registration database: group entries and
individual entries. We call the name of an entry in the registration database an
RName. A group entry contains a set of RNames of groups and individuals, along
with other information. Groups are a way of naming collections of RNames. The
groups form a naming network with no structural constraints. They are used
primarily as distribution lists, but are also used to represent access control lists

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

6 • M.D. Schroeder, A. D. Birrell, and R. M. Needham

and collections of similar resources. An individual entry contains a password, an
ordered list of inbox sites, and a connect site, as well as additional information.
The inbox site list indicates, in order of preference, the message servers where
the individual's messages may be buffered. The connect site is an internet address
for making a connection to the individual. Individuals are used to represent
human users and servers, in particular the servers that implement Grapevine.
For mail users, the inbox site list normally contains a primary and a secondary
inbox site.

We use a partitioned naming scheme for RNames. The partitions serve as a
basis for dividing the administrative responsibility and for distributing the
database among the registration servers. We structure the name space of RNames
as a two-level hierarchy. An RName is a character string of the form F.R where
R is a registry name and F is a name within that registry. Registries correspond
to locations, organizations, and applications that exist within the user commu-
nity.

The registration database is distributed and replicated. Distribution is at the
level of an entire registry, that is, each registration server contains either entries
for all RNames in a registry or no entries for that registry. No registration server
contains all registries. Also, each registry is replicated in several different regis-
tration servers. A registration server provides access to the information about
the names in the registries that it contains. Any server that contains a replica of
a registry can accept a change to that registry from a client. That server takes
the responsibility for propagating the change to the other relevant servers. The
updates are propagated by Grapevine messages.

Associated with each registry is a group of human administrators, called
registrars, who are responsible for creating, updating, and deleting individuals
and groups in the registry. The registrars for different registries operate indepen-
dently of one another, except in unusual circumstances. An important part of
the administrative burden for a registry is assumed by the users themselves, each
of whom can add or remove his own RName as a member of certain groups. A
user can also become the owner of a group; the owner can add and remove
arbitrary member names. All these functions are carried out by making changes
in the registry data through administrative interface programs that are clients of
Grapevine.

A client program of Grapevine generally obtains services through code, called
the GrapevineUser package, that runs in the client's computer. We have provided
versions of this package for several language and operating environments. This
package has two roles: it implements the internet protocols for communicating
with particular Grapevine servers, and it performs the resource location required
to choose which server to contact for a particular function, given the data
distribution and server availability situation of the moment. GrapevineUser thus
makes the multiple Grapevine servers look like a single service. A client using
the GrapevineUser package never has to mention the name or internet address
of a particular Grapevine server.

The primary clients of Grapevine are various mail system interface programs,
of which Laurel [4] is the most widely used. Some other clients of Grapevine
ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

Experience with Grapevine • 7

implement file server authentication and access controls, remote-procedure-call
binding [2] 1 and process controls for an integrated circuit facility [5].

3. STATE OF THE SYSTEM

As of the fall of 1981 there were 5 Grapevine servers [1]. The registration
database contained about 1500 individuals and 500 groups. The total number of
messages presented for delivery was about 2500 each working day. Since then
the system has grown considerably. By the summer of 1983 there were 17
Grapevine servers. The registration data base contained about 4400 individuals
and 1500 groups. Over 8500 messages were presented for delivery in a typical
work day, leading to over 35,000 message receptions. Table I and Figure 1 give
more details on the size of the system at that time. The growth and heavy use of
the system have enabled us to see how well the design has lived up to expectations
in actual operation.

4. EFFECTS OF SCALE

An objective of Grapevine design was the ability to increase system capacity over
a large range by adding more servers of fixed power, rather than by using more
powerful servers. Ideally one should be able to 1) measure the total load placed
on the system by a particular community, 2) know how much load a single server
can carry, and then 3) compute the number of servers required by using simple
division. To meet the ideal the cost of any computation performed by a single
server should have a fixed upper bound, and not grow as a function of the total
system load or the number of servers used to meet the load. This way the power
of an individual server will not limit the growth of the system. The task of the
system designer is to meet the ideal well enough to reach a specific maximum
system size and total load.

Grapevine design reflects careful attention to this principle of distributed
system design. Our specification was a maximum system size of 30 Grapevine
servers and a total load generated by 10,000 users. With the exceptions discussed
below, the original design appears to meet this specification. Different approaches
would be necessary in some cases to expand the system much beyond that
specification.

The only direct manifestation of the total system size in an individual server
is the space required to store the configuration information that is known by
every registration server and the time required to execute resource location
algorithms. Every registration server knows the names and addresses of all
message and registration servers. Every registration server also knows the names
of all registries, and knows for each the names of all servers that contain registry
replicas. The amount of disk space required to store this configuration informa-
tion (about 15 Kbytes for the present system or less than one percent of the disk
space available on a server) will not prevent the system from meeting the
specification. To go beyond the specification might require the added complexity

1 R e f e r e n c e 2 a p p e a r s in t h i s i s sue on p a g e s 39-59 .

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

8 M . D. S c h r o e d e r , A . D. B i r re l l , a n d R. M . N e e d h a m

Table I. Distribution of Inboxes and Registry Replicas"

SERVERS

REGISTRIES

dc+lb+ d los

sthq

es henr pa pasa rx wbst x rcc

p s p s p s p s p s p s p s p s p s

Auro ra 137

Barbera

Cabernet

Catawba

Chardonnay

Chen inB lanc

Concord

deChaunac

Gamay

GreeneKing

Merlot

Mission

Muscat

PinotNoir

Riesling

Semillon

Zinfandel

0 0 286 11 0 4 45 354 17 1 27

2go 0 0 0 0 353 0 " 1

219 263 0 *11 0 * 1

17 0 44 250

0 137

0 0

1 792

0 O 0 161 0 0

6 7 * 2

3 0

294 0 0 114

498 1

161 0

O 0 250 44

0 0

0 * 4

129 35

103 102

128 243

45 4

114 0 0 0

0 0 0 0

27 0

a Only the major registries for computer mail users are shown. The "p" column for each registry is
the number of primary inboxes at various servers for registry individuals. The "s" column is the
number of secondary inboxes. Entries containing numbers but no asterisk (.) indicate the sites of
replicas of registry data. Compare the numbers in this table with Figure 1 to see the impact of
network topology and the geographic location of users on the configuration of the system.

of keeping only partial configuration information in each server, that is, adding
another layer to the naming hierarchy. The present resource location algorithm
chooses the nearest up server from among those providing the resource in
question. The time required to make this choice from up to 30 servers is acceptable
if the choice is not made too often. At some point beyond that size, however,
resource location by this method will become too expensive, and more complex
schemes that limit choice to a precomputed, fixed-size subset will be required.

Division of the registration database into registries is the primary method for
preventing scaling problems. A growing user community is met with more
registries, not larger ones (see Section 5 for further discussion of this point). The
number of replicas of a registry is independent of the number of servers and of

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

Experience with Grapevine 9

the number of users in the whole system. Thus, the amount of registration data
on one registration server will not grow with the size of the system.

One aspect of Grapevine design that has not scaled properly involves distri-
bution lists. As the system grew we were surprised to discover that the size of
certain distribution lists increased as a fraction of the total user community.
These lists have nothing to do with organizational structure, geographic location,
job responsibilities, or projects. Rather, they reflect general interests held by a
fixed fraction of the entire user community. An example is a list called Ta×t.pa
used to exchange information about federal taxes. This list contains about a
sixth of the entire mail user community and has over 500 members. The message
delivery algorithm used by Grapevine has the accepting server determine the best
inbox site for each recipient. As the user community grew, we noticed that under
worst case conditions messages to such large, general interest lists began to take
more than 10 minutes to process, delaying delivery of other messages. The time
required to process messages to such lists will continue to increase with the size
of the user community, thus placing a limit on the size of the system. Unless
changes are made in the delivery algorithm, the system is already close to that
limit. The frequency with which members are added or deleted for such general
interest lists also tends to grow with the size of the list, as does the computational
cost of adding or deleting a member.

We now believe that a more satisfactory way to handle system-wide interest
lists is by adding an indirection in their interpretation. Suppose we had a registry
All that we used for such lists, and that our tax distribution list was called
Taxt.AII. The members would not be individuals but sublists associated with the
various registries, for example Taxt.pa, Taxt.es, etc. We would arrange that each
individual be on the sublist associated with his own registry, and ensure that this
remained so by making it an automatic part of adding a name to Taxt.AII. The
size of a sublist would be limited by the number of individuals in a registry. The
delivery algorithm would be changed so that, when a message has recipient
distribution lists from the All registry, the accepting message server would expand
such lists only one level. After this first level expansion had occurred, the recipient
groups and individuals would be sorted into steering lists by registry. Each
steering list would be forwarded with a copy of the message to some Grapevine
server whose registration server would know that registry. These message servers
would finish the delivery to steering list recipients, including expanding distri-
bution lists like Ta×t.pa, in the normal way. Thus, the delivery computation
would be spread among a number of Grapevine servers that would be proportional
to the number of recipients. The load on an individual message server would be
tied to the size of a registry, which would not need to grow as the size of the user
community increased. Grapevine handles large distribution lists if their semantics
are identical to those of small distribution lists. Bulletin boards, which have
rather different semantics, may offer another solution to this problem.

The proposed change to the structure of general interest distribution lists, and
to the delivery algorithm, would probably allow Grapevine to expand to its
specified 10,000 user size. For a larger user community, however, a related issue
would begin to cause problems. As the community grew the number of messages

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

10 • M.D. Schroeder, A. D. Birrell, and R. M. Needham

sent to such a list would also increase. At some point the number of messages
arriving for a user would start to overwhelm both the user and the system. We
do not know if this phenomenon has a natural sociological limit. In the world of
paper, the problem is controlled by the distribution of information through
periodicals that have editors to filter the input. An analogous filtering mechanism
will be required in the world of electronic message systems before they can
become universal.

A quite different scale effect depends on the size of the underlying internet. As
the size of the user community increases, so does the size of the internet. The
path from one server to another through the internet is through a series of links
and gateways. As the number of gateways in the path increases, the probability
of being able to establish a direct connection decreases. At some point, Grape-
vine's practice of delivering a message by direct connection from the accepting
message server to the preferred inbox site becomes unsuitable. If such delivery
were along a path with multiple unreliable links, and if there were other Grapevine
servers along the way, then multistep forwarding could usually deliver the
message faster. The unreliable links would be negotiated one at a time. With a
longest path length of 11 gateways, we occasionally receive complaints from users
about the message delivery delays that result.

5. CONFIGURATION DECISIONS

Running Grapevine requires the ability to make configuration decisions about
how many servers to have, where to place them, and how to distribute registry
replicas and inboxes among them. A number of factors influence these configu-
ration decisions and it has been hard to develop guidelines for making such
decisions (Table I and Figure 1 shows the current configuration).

A message is shared among all recipient inboxes on the same server and is
stored only once. The effect of sharing is enhanced if the assignment of inboxes
to message servers corresponds to the patterns of communication. A requirement
for taking maximum advantage of message sharing is that the servers be large
enough to match, in some sense, the unit size of the organization. An organization
with very large groups of people who depend on messages to communicate among
themselves would need to be provided with larger servers. In practice, the
organizational structure imposed by management and social considerations pro-
vides a natural limit to the capacity needed in a single server. With Grapevine's
present configuration and load the average message is shared among 4.7 inboxes:
certain messages are shared among as many as 300 inboxes on a server and more
than half the messages are not shared at all.

Deciding when to add new servers to the system is quite straightforward.
Within a local area a server will be added when the load on the existing server
gets too large. The system has grown from one to five servers in Palo Alto
(Cabernet, Chardonnay, Riesling, Semillon, and Zinfandel in Figure 1) and in E1
Segundo (CheninBlanc, Concord, Gamay, Merlot, and Mission) as the use of the
message system has expanded. When a population of users develops that is
separated from the nearest server by one or more slow or unreliable network
links, it usually is appropriate to add a local server. The servers in England
(GreeneKing) and Toronto (deChaunac) are fairly lightly loaded, but are useful

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

Experience with Grapevine • 11

because of the unreliable nature of the links between those areas and the rest of
the internet.

In cases where there is a heavy enough local load to require multiple local
servers, a configuration we have considered but not tried would be to use a pair
of machines on the same local net, one of which would be just a message server
and the other just a registration server. This division of function might simulate
a single, larger server. Most of the disk space of the message server would be
available for inboxes and the entire connection limit would be available to
message reading and sending. Maximum advantage of message sharing would be
realized; the registration server would realize similar benefits. In both servers,
the working set of data might better fit into the disk page cache in memory,
allowing more efficient operation. Of course, other servers would have to provide
secondary inboxes and registry replicas as backups for the dual server.

Primary inboxes are usually assigned to the server that is closest to the
workstation from which a user normally reads new messages. In local areas with
more than one server, it is important to divide the assignment of primary inboxes
evenly among the servers. The division should not be arbitrary or the benefit of
sharing message bodies will be diminished. Our experience is that division along
organizational lines reflects communication patterns and is easy to administer.
It has been harder to develop a rationale for assignment of secondary inbox sites.
The obvious assignment to the next nearest server can overload the secondary
server when the primary one fails (see Section 9, on reliability, for further
discussion of this point). Splitting secondary assignments to prevent this over-
loading tendency can impact the effectiveness of message sharing. If certain
network links are known to be less reliable than others, it can be important to
get secondary inboxes on the "other side" of the unreliable link, to prevent
messages from using up resources by circulating through the pending queues on
servers when the link is down. This last consideration can be particularly
important for the inboxes of registration servers, which tend to have a high
volume of database update messages. For registration and message servers we
have adopted a policy of having the primary inbox on the server itself, the
secondary inbox nearby, and a tertiary inbox at the other end of the internet.
The secondary and tertiary inboxes are placed on the more lightly loaded servers.

Several factors affect the definition of registries and the distribution of registry
replicas. We usually have defined registries to correspond to significant geograph-
ical areas (e.g., es for E1 Segundo, pa for Palo Alto, or dlos for Dallas), instead
of to organizations or small geographical areas (e.g., building 35). We felt that
this assignment was the most stable and the easiest to remember. Large corpo-
rations tend to restructure their organization charts and move people from one
building to another reasonably frequently, and we did not want to change account
names every time that happened. We now believe that the decision to use only
geographical registries was mistaken. It would improve things to add organiza-
tional registries for certain distribution lists. A distribution list then could be
placed in a geographic or organizational registry according to its purpose. Indi-
viduals would remain in geographical registries. For example, an organization
using Grapevine currently has its people evenly split between the es and pa
registries, corresponding to its two locations. The organizational distribution

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

12 • M.D. Schroeder, A. D. Birrell, and R. M. Needham

lists are arbitrarily put in one of these registries, es. As a result, the entire es
registry needs to be available in Palo Alto as well as El Segundo. If the
organizational distribution lists were put in their own registry, then only this
smaller registry would need to be available in Palo Alto.

In choosing where to put registry replicas, there are five considerations to be
made: the first is making a registry's data easily accessible to the message servers
containing inboxes for that registry. When a user retrieves buffered messages,
authentication and inbox site location may occur interactively, so fast response
is important. The second consideration is getting the contents of distribution
lists close to the message servers that accept messages addressed to them.
Distribution list expansion occurs after the interactive connection with the client
is closed, so fast response is not an issue here. Distribution list contents are not
cached by a message server, however, so expansion of a large, remote list can
take a long time, delaying the processing of other messages on the input queue.
The third consideration is keeping registry data available to all clients even when
certain internet links breakdown. Experience indicates that some links are more
vulnerable than others. We want replicas of a registry on both sides of an
unreliable link. The fourth consideration is having enough replicas to make the
probability of losing a registry's data because of disk catastrophes almost zero.
The second, third, and fourth considerations lead to having three replicas of each
registry. For large registries, the first consideration can produce several more
replicas, which is another reason for not having large registries. There are seven
copies of the es registry and six of the pa registry; five servers are required to
contain the inboxes for the individuals in each of these registries. The fifth and
final consideration for determining registry configuration is to avoid overloading
any given registration server with registration data or updates.

6. TRANSPARENCY OF DISTRIBUTION AND REPLICATION

Most users and registrars treat Grapevine as if it were implemented on a single,
large, reliable computer that contained all registration data and inboxes, and to
which all workstations were connected through high-speed links. Our experience
is that most of the time this unitary model serves users and registrars well. There
are, however, a few ways in which Grapevine's distributed, replicated implemen-
tation shows through now and then to surprise users and registrars.

The most common cause for surprise is delays in propagating registration
database changes. Registry replicas will contain different data while an update
is propagating. Since updates are propagated by message, inconsistencies can last
for many minutes. It sometimes happens that a registrar makes a change to a
registry, attempts to do something else which depends on that change, and then
finds that the change has apparently been lost. For example, a registrar creates
a new individual and tries to add it to a distribution list; the second operation
uses a different registration server, so the individual seems not to exist yet. This
is not a frequent occurrence, and retrying usually solves the problem. An admin-
istrative interface program that picked one registration server for a registry
during a session and stuck with it unless that server became inaccessible would
reduce the incidence of this problem. A similar problem can occur when a user
adds an individual to a distribution list and then immediately sends a message

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

Experience with Grapevine • 13

to that list. If a different server accepted the message for delivery than accepted
the distribution list update, then the new member might not receive the message.
The sender would probably not notice that this had happened.

Certain tools that registrars would find useful are harder to provide because of
the distributed implementation of Grapevine. It would be helpful for a registrar
to know that a certain distribution list is no longer being used, but the distributed
nature of the implementation makes it hard to record distribution list usage. The
database update algorithms are intended for updates to a predominantly static
collection of data, and are unsuitable for propagation of rapidly changing details.
There is, further, no notion of any kind of "home server" for a registry at which
its statistics should be accumulated. We would have thought more about account-
ing facilities if use charges had been considered.

Deleted names can cause a different management problem with a distributed
implementation. Ideally the deletion of a name from a registry would remove it
from all groups immediately. It is not practical to do this, because we have no
means of knowing even in which registries there are groups containing the deleted
name. Consequently the choice we made was to notify the owners of a distribution
list when an invalid user was found in their list, that is, when the list was being
used to send a message. Automatic deletion at this point is feasible.

It is necessary sometimes for registrars to have an understanding of the effects
of their administrative actions on the distributed implementation. This is partic-
ularly true of changes to inbox site lists for individuals. In the original design,
whenever an inbox site was removed or demoted, for example, by being made
secondary rather than primary, its contents were remailed. Remailing can involve
a large number of messages, especially when the user has not retrieved his
buffered messages for several months, and can generate a large load on the
system. We have mitigated this problem by changing the remailing policy so that
messages are remailed only when a site is removed from an inbox site list. Even
so, substantial remailing can and does occur. It has proved necessary to have a
rule of practice that an inbox site should not be removed if there are more than
a specified number of messages there; the user is forced to retrieve the messages
before the inbox site is removed. We now believe that automatic remailing from
removed inbox sites is a mistake. It would be better for the abandoned inbox to
be marked for deletion but continue to be accessible until emptied by message
retrieval. This would make it necessary to have a manual override in such cases
as planned removal of a server from the system. If this change were made then
registrars would no longer have to worry about this problem.

Users are sometimes surprised by Grapevine's apparent failure to eliminate a
duplicate message from an inbox. Although the usual cause is a sender presenting
amessage for delivery twice, the distributed registration database does provide a
way for real duplicates to occur. The expanded recipient list for a message can
contain several instances of a single name, usually because that name appears in
two distribution lists, both of which are recipients. For a message sent to one or
more distribution lists, the accepting message server may discover that some
distribution lists cannot be expanded because all registry replicas have become
unavailable, usually due to internet links going down. In this circumstance we
have chosen to complete delivery to the known recipients and leave delivery to

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

14 M.D. Schroeder, A. D. Birrell, and R. M. Needham

the recipients in unexpanded distribution lists until later. This choice can produce
duplicated messages. The alternative of waiting until all expansions are completed
to deliver any messages removes this source of duplicates, but can needlessly
delay delivery to some recipients and is more expensive and complex to imple-
ment.

Grapevine's replicated message delivery service sometimes produces surprising
results. All message servers are able to accept messages for delivery from any
user to any recipients. We assume that the primary consideration is allowing a
user to send a message if at all possible, independent of the availability of the
local server. The resource location algorithm places delivery with the nearest
responding message server without asking or informing the user. Placing delivery
with a nonlocal server immediately, however, can result in a longer delivery time
than placing the message with the local server a little later. The time may be
very much longer if an intervening internet link fails after placement and before
forwarding. Users occasionally wonder if a message has been lost if it does not
arrive within a few minutes. An associated second order effect is that Grapevine
lacks detailed knowledge about the properties of the internet. Resource location
decisions are based on the number of internet links in a path, but cannot take
into consideration the bandwidth, reliability, or congestion of those links. A
server two ethernets away is usually a better choice than one that is two phone
lines away, but Grapevine cannot tell them apart.

As described earlier, the message server that accepts a message for delivery is
responsible for expanding all recipient distribution lists and determining the best
inbox site for all recipient individuals. When large distribution lists or large
numbers of individuals are from a registry whose nearest replica is far away, this
design can lead to long delivery times. In such cases, improved delivery times
would result if the message server forwarded the message to another that is closer
to a registry replica for list expansion and inbox site location. On occasion more
than an hour has been expended in moving the contents of a large distribution
list and the inbox site lists for many individuals over a slow line, and in then
sending essentially the same information back again with a small message tacked
o n .

In designing the system we assumed that users would not want to know much
about its state of availability or accessibility, and accordingly they are not told
about such things. This was a wrong decision. If a user cannot obtain a service
he needs--typically he may find that he cannot receive his mail--he will want
to know what the problem is. It might be that the server is down, or that it is
restarting, or that it is inaccessible, and the experienced user will have a
reasonable perception of how long these states are liable to last and in what
circumstances he should bring them to someone's attention. This is an area in
which we believe there is a good deal still to be found out, in particular as to how
far it is worth complicating the system in order to give accurate information
automatically. The state of a distributed, replicated system is much harder to
determine and to describe to a user than the state of a unitary one.

7. ADJUSTING TO THE LOAD

In building Grapevine many design decisions were made based on assumptions
about the nature of the expected load. Efficient operation of the system depended
ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

Experience with Grapevine • 15

on the accuracy of these predictions. Grapvine provided a new set of services to
a user community that was growing quickly. While in most instances the original
design decisions have stood up well, in a few cases our predictions about the
detailed nature of the load proved to be wrong, which sometimes leads to bizarre
performance problems. Some facilities that worked well initially broke down as
the load grew. To keep the system working well we needed to adjust certain
strategies and algorithms to the actual load.

In the original Grapevine design all database changes were propagated to other
servers by including the entire changed entry in a message. A server receiving
such an update merged it with the local entry, producing a new version of the
entry that contained the latest information from both the old local entry and the
update. As the system expanded, the size of distribution lists and the frequency
of updates increased. The size and frequency of update messages increased
correspondingly, as did the cost of performing merges. During the middle of the
day some servers would get an hour or more behind in delivering messages
because of the update load. When a registration server was down for a day and
could not read update messages, its secondary inbox site would run out of free
disk space. We responded to these problems by adding a new mechanism to
propagate one sort of update. The most frequent change to the registration data
is adding or removing one member from a distribution list. Most lists allow users
to add and remove their own name. List owners and registrars also perform this
operation frequently. For this case we made Grapevine include only the change
in the update message. Thus the typical update message now contains just a list
name and the added or deleted member, rather than the entire contents of the
list. In addition to making a large reduction in the size of the average update
message, the computation cost of the incremental update is much less than the
cost of the merge. For a large list, the merge can take several minutes while the
incremental update takes just a few seconds. Introduction of these "brief" updates
produced enough extra capacity that the system could easily keep up with the
midday load. We retain updating by complete merging of entries for all other
types of database changes, because they occur infrequently and because for
certain sequences of changes, (e.g., to an inbox site list), the order-preserving
behavior of merges is required for correctness.

A design goal of Grapevine was to become the source of authentication and
access control information for the internet. Before Grapevine was available, each
file server maintained its own record of user names and passwords. It also
maintained complete access control lists for each file. A user requiring access to
several file servers had to be registered independently with each. After Grapevine
servers had become fairly widely spread in the internet, the standard file server
was changed to use Grapevine for both of these functions. The file servers no
longer contain the passwords of clients. The file server checks a user's credentials
with Grapevine. Any valid Grapevine individual can login to any file server.
Access control lists contain the names of Grapevine individuals and groups. To
determine if access to a particular file is allowed, the file server looks for the
name of the logged in individual on the access control list of the file. If the name
is not found then the file server asks Grapevine if the individual is a member of
any of the groups on the access control list. There were three potential pitfalls
in this scheme. First, it could require both the file server and a suitable Grapevine

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

16 • M.D. Schroeder, A. D. Birrell, and R. M. Needham

server to be accessible for a file access to succeed. Second, it might be noticeably
slower in making access control decisions than the old scheme. Third, it might
overload the Grapevine servers with authentication and access control checks.
To overcome these pitfalls, the results of authentication and access control
checks are cached in the file server. The cache time-out is 12 hours. After that
time-out an authentication is rechecked, but a timed-out authentication is
believed if no Grapevine server can be contacted. Positive and negative group
membership results are timed-out the same way. The cached negative results are
just used as a hint to optimize the order of membership checks. The long time-
out means that certain authentication and access control changes can take a long
time to become effective: adding permission to reference a file takes effect quickly;
the effect of revoking permission and changing passwords can be delayed, but
that is consistent with our security environment.

We were somewhat surprised to discover that, even with caching, users com-
plained that access control checks could take a very long time, especially when
access to the file was denied. The problem stemmed from the way Grapevine
groups are nested. Groups can contain groups, and the membership check used
for access control determines membership in the closure. Some of the high-level
organizational groups used for access control had 50 groups nested to three levels
naming several hundred individuals. The nested groups were not all in the same
registry. The membership check required finding the type of each name encoun-
tered by asking a registration server, and if it was a group then getting its
membership list, possibly from another registration server. To discover that a
name was not in the closure could take five minutes. These problems were
overcome by two changes. First, a new type of membership check was introduced.
It assumes a name is that of an individual unless the first part of the name ends
with the "up-arrow" character: 1'. Since that character is used to distinguish
distribution lists for the convenience of human users, it provides a syntactic
method for recognizing the groups that require further expansion. With the "up-
arrow" closure, it is no longer necessary to look up every name in the registration
database, only the names of syntactically recognized groups. Since a particular
name can never change from its original type, whether it is a group name or an
individual name, it would have been possible to mark names automatically and
avoid the explicit syntactic distinction. Second, for the most complex groups
used for access control, a parallel flattened version is maintained. The file server
uses this flattened version for access control checks. The flattened version,
whether manually or automatically created, can be slightly out of date. The
addition of the file server authentication and access control load to Grapevine
triggered a need for additional servers, but has greatly simplified file sharing in
the internet.

Grapevine is designed so that inboxes are read sequentially and the contained
messages then deleted. The assumption is that clients have a place to store
received messages, that is, that computer mail system users have personal
workstations with local disks. Users with personal workstations, however, occa-
sionally need access to accumulated messages when away from their workstations.
To permit access from home or when traveling, we provide a service that allows
message reading and sending from standard terminals. Using this service, avail-

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

Experience with Grapevine • 17

able through a dial-in port, the messages in a user's inboxes can be read in
random order without being deleted. We did not anticipate the demand that
would be generated by the proliferation of personal computers within the com-
pany. Computer mail is extremely useful, and these users want access to it. Their
computers generally have no special software for interfacing to Grapevine. Rather
they run programs which simulate standard terminals and contact our terminal
service. The result is a growing number of users who access the message system
only via the terminal service. The Grapevine inboxes that are intended as buffers
become semipermanent repositories for these users, loading the system in unin-
tended ways. The disks begin to fill up with messages, the protocols intended for
sequential access to all the messages in an inbox are used to inefficiently simulate
random access to a subset, and connections to the servers remain open for long
periods. In this case we refused to alter the system to meet the new load. The
problem has been controlled by administrative limits on the numbers o f such
users. We conclude that any viable, commercial message system must provide
well thought out facilities for users who have only terminals, or personal com-
puters that simulate terminals, for accessing the message system. In particular,
more inbox storage space, protocols for efficiently accessing the accumulated
messages in random order, and higher connection limits are required.

8. OPERATION OF A DISPERSED SYSTEM

Because Grapevine is geographically dispersed, it is important for smooth and
efficient operation to make monitoring, control and repair functions accessible
through the internet. Two different sorts of people are involved in operating the
system: operators for the server computers and system experts. Operators must
be present at the site of each Grapevine server, so it is important that they be
able to carry out their duties with a minimum of special knowledge about how
Grapevine works. System experts are in short supply and are remote from almost
all servers. They must be able to do their job without traveling to the server sites.

The responsibilities of operators include rebooting the machine, loading spe-
cific programs into it for diagnosis or repair, and getting broken hardware fixed.
Grapevine software is prepared to be stopped without warning and restarted
using simple procedures posted on the server. Thus operators with a minimum
of training can deal with power failures, arrange for repair of broken hardware
by local technicians, and handle similar problems without central coordination
or advice. The replication of services in Grapevine usually allows such repairs to
be made without depriving local users of any services.

Some server failures, however, require assistance from experts who know in
detail how Grapevine works. The most common example is a corrupted disk.
When the disk has incorrect bits stored on it due to hardware failures or software
bugs then the server may crash and not be restartable. In such cases the operator
runs a special program on the Grapevine computer that allows access to the disk
from a remote workstation. An expert, contacted by phone or message, diagnoses
and repairs the problem using an interface program on his workstation which
reads and writes the Grapevine server's disk one-page-at-a-time over the internet.
The expert's interface program contains facilities for interpreting and displaying
the data structures on the disk. Repair of isolated disk errors is possible because

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

18 * M.D. Schroeder, A. D. Birrell, and R. M. Needham

of redundant, low-level structural information. At a higher level, all registry data
is replicated on other servers, allowing the content of registration database
entries to be replaced. We made an engineering decision early in the Grapevine
design not to replicate message bodies. Thus repairing a corrupted disk may
require replacing a broken message with an apology, a measure that has been
necessary just once. (We justified the decision not to replicate message bodies
because the cost was too high for the benefit derived. Message bodies are almost
never lost and, when they are, a sender frequently has a copy of an important
message and will notice that it did not solicit a response from the recipient).
Once the bits that were wrong are inverted, the server can be restarted from the
expert's workstation. In the current system, remote disk repair has been needed
once every two or three months, and usually takes less than a hour to perform.
It would be straightforward to add code to the server restart sequence to make
most such repairs and reduce the need for expert intervention; in a commercial
system development of such software would be justified. In the case of total disk
failure, the only recourse is to build a new server disk from scratch. All unretrieved
messages would be lost, but registry data, except for unpropagated updates, would
be replaced from the replicas on other servers. We have had only one total disk
failure.

Grapevine servers include a facility, called the viticulturist's entrance, for
remote monitoring and control via an interactive byte stream through the
internet. A standard protocol is used that allows a remote workstation to behave
like a terminal. Use of viticulturist operations is controlled with Grapevine's
authentication and access control mechanisms. Facilities include displaying
various operating statistics, altering variables that control certain resource man-
agement algorithms, and manually starting automatic processes. A server can be
restarted with new software. Using the viticulturist's entrance with other com-
munications protocols, such as file transfer, we have been able to operate this
widely dispersed, growing system without experts ever visiting remote server
sites.

One monitoring feature of the servers has been of particular value in under-
standing how the system works and in finding problems. Each server maintains
a text log of its actions. For example, the following five items abstracted from
Cabernet's log show the entries concerned with the acceptance and delivery of a
message sent to a distribution list. Of the seven list members, six had local
inboxes sites and one was on another server. The long number is a message-
identifier.

15:14:02 Created 3#273®2588022842: sender Schroeder.pa
15:14:05 Received 3#273®2588022842:1 recipients, 137 words
15:14:20 Delivered 3#273®2588022842, 6 local, 1 remote.
15:14:21 RecipientLog 3#273®2588022842: TransportS.ms
15:14:30 Forwarded 3#273@2588022842 to Riesling.ms

The logs are backed up to circular buffers on file servers so that more than a
week's history is always available. If malfunctions occur the build-up to failure
can readily be reconstructed from these logs. It is possible to trace distributed
operations through the logs of the various servers by tracking unique identifiers.
When a user complains that a message did not arrive in a timely way, for example,

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

Experience with Grapevine 19

we can determine the details of its journey. Perhaps of even greater value is the
ability for log additions to be viewed dynamically through the viticulturist's
entrance. A system expert can open viticulturist's connections to several servers
at once from his workstation and watch (in separate windows) the servers operate.
Dynamic viewing has two advantages. First, the expert can see whether corrective
action has had the desired effect, for example, by watching the free disk space
increase as a result of forcing the archiving of a large inbox (see Section 9).
Second, he can notice oddities. Recently, for example, we noticed that a registra-
tion server was taking so long to process an update that the connection to its
inbox timed out. This meant that the update message was not deleted from the
inbox, so that when the registration server reopened its connection it received
the same update over again, more or less indefinitely. This was easily remedied,
but it was the serendipitous aspect of log viewing that detected the problem.

Another way that Grapevine provides feedback to system experts is through
the dead letter facility. Whenever a message is returned to its sender, a copy of
the header of the returned message along with the reasons for delivery failure
are sent to a special distribution list. This list contains the names of system
experts, who thus see evidence of unusual events associated with message delivery.

Most hardware and software failures cause the server to end up in the Mesa
language debugger with an uncaught signal. The version of Mesa in which
Grapevine was written includes no facilities for remote debugging, so this event
requires intervention by operators to note thesignal name and restart the server.
It would be straightforward to replace the debugger with a special program that
reported the signal name and restarted the server, perhaps after requiring a
remote authorization. With this change operators would almost never need to
intervene.

9. RELIABILITY

A design objective of Grapevine is high reliability. A primary technique for
achieving high reliability is replication of function among several servers. When
one server is unavailable, others can perform the same functions for clients. The
goal is that failure of a single Grapevine server not make any service unavailable
to any client. Our experience in running Grapevine shows that this approach has
been extremely successful. Most users do not notice when a server fails, and we
sometimes have to prod local site personnel to get a server restarted.

Bug-free software, reliable hardware, and reliable communications are the
foundations of a reliable system. Equally important, but more subtle, is appro-
priate management of resources. Lack of resources can lead to expanding paral-
ysis of the system. The basic resources are processor cycles, memory space,
communications bandwidth, and disk space. In Grapevine, processor cycle and
memory space capacities are reflected by limits on the number of connections of
various sorts a server will allow at one time. Communications bandwidth is a
resource that Grapevine cannot manage directly; Grapevine is but one of many
customers of the internet and must compete for service as best it can. Disk space
is managed by having Grapevine servers dynamically reject new connections that
might cause further disk space allocation when the free disk space is below 5%
of the total available. No mechanisms are included for a server to abort existing

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

20 • M.D. Schroeder, A. D. Birrell, and R. M. Needham

computations when disk space is low, so a server can still deadlock itself by
running out. Single server disk deadlock has occurred only a few times, and is
treated as a symptom of an overloaded server. It also is possible for multiserver
deadlocks to develop, for example with each server refusing to accept incoming
messages for local inboxes because it cannot forward outgoing messages to the
others. Multiserver deadlock has occurred only when specifically provoked by an
exerciser in a test system.

It is easy to overlook the implication of the fact that using redundancy to
achieve reliability requires the system to have spare resources in normal opera-
tion. Such extra capacity is also important for handling peak loads gracefully.
Spare capacity, however, tends to get used up, without anyone noticing, as system
load grows. When a server then fails and load shifts to others, the additional load
might be rejected, thus defeating the goal of reliable service. For a while the load
on Grapevine was growing rapidly. The system would operate reliability, without
expert intervention, for a month or two at a time and then without warning a
server failure, load peak, or communication failure would set off a chain reaction
of overloading. On one notable occasion, inadvertent remailing of a very large
inbox caused a paralysis of disk overloading to spread in two days to all but two
isolated servers. This event caused us to change the software so that a server can
be restarted even when there is no free space left on the disk, and to be more
careful about provoking remailing of large numbers of messages.

To some extent, we have learned how to configure the system to reserve
capacity and spread the backup responsibility. The simplest way is to configure
some servers to have only secondary inboxes on them (see Concord and
CheninBlanc in Table I), although it is sometimes hard to convince managers to
buy the required extra servers. Another technique is to split the secondary
inboxes for individuals whose primary inboxes are on a certain server among
several other servers, so when the primary server fails the load is spread to more
than one other server. In general, system experts need to think carefully about
how loads will be distributed when various servers become unavailable or when
various communication links go down, and configure the registration data and
inbox site assignments so that sensible behavior will result. These arrangements
need to be reviewed from time to time as the pattern and size of loads change.

Grapevine is used for purposes other than delivering computer mail. In one
case, Grapevine message and registration services are used to control an inte-
grated circuit manufacturing facility [4]. An extra Grapevine server (Chardonnay)
was added to the system, and configured with very little registry data and few
inboxes to obtain extra reliability and performance for this application. This
configuration insures that the server will not be overloaded with registration
service requests or inboxes. The present design, however, includes no facilities
for restricting access to its maildrop service. Its position in the internet indicates
that under normal operation only local clients use it as a maildrop. But when
other servers are unavailable this "extra" maildrop capacity is quickly found by
the resource location algorithms, and this server can get backed up with messages
to forward. We conclude that mechanisms are required in this case to limit the
set of clients that can use a server's maildrop resource, so that this capacity can
be reserved for its intended use.
ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

Experience with Grapevine • 21

J

Grapevine design follows the principle that any interactive request can be
performed by one of several different servers. In one instance this principle has
been violated, and the result is the expected perception by users of a less reliable
service. Grapevine servers have very small disks in relation to the total size of
the messages that can accumulate in an inbox. To keep the small server disk
from filling up, every night all inboxes containing any messages older than seven
days are archived to a nearby file server. Archiving is transparent to the client;
when an inbox is emptied any archived messages are retrieved from the file server
by the Grapevine server and then presented to the client. Between ten and twenty
percent of the messages retrieved from Grapevine have been archived. Archiving
was one of the last features added to Grapevine and it was not done very well. If
the file server containing archived messages for an inbox is not accessible, then
no messages may be retrieved from that inbox. Unfortunately, the inbox is still
unavailable to receive new messages. In this state, then, new messages for a
client will be directed to an inbox from which they cannot be retrieved. Thus
availability of the message delivery path to an individual that has archived
messages can depend on the availability of a particular archival file server. The
rest of Grapevine's services are reliable enough that this exception is conspicuous
to users. Message retrieval protocols that allow for some messages in an inbox to
be inaccessible would solve this problem. A larger disk and less frequent archiving
would also be desirable. For the largest community now served by a single
Grapevine server, a disk of 80 Mbytes would make it possible to dispense with
archiving altogether, as long as registrars were informed of unusual accumulations
of messages and had tools for deleting the oldest subset of messages from an
inbox.

With the present archiving arrangements it is still possible for a disk to get
too full. System reliability would be improved if the age parameter that controls
archiving were adjusted automatically in relation to the amount of free disk space
remaining, and if inboxes that grew larger than some threshold were instantly
archived. The latter mechanism would help the server defend itself against the
arrival of a large amount of material for one or a few inboxes over a short period
of time, as occasionally happens.

10. CONCLUDING REMARKS

Throughout this discussion the reader may have noticed that we have described
potential improvements to Grapevine that have not been carried out. As time
has passed, we have become more and more reluctant to change the software.
This reluctance is partly due to the potential disruption that introduced bugs
would have on the large user community that depends on Grapevine services to
get its work done. It also is due to the fact that we are slowly forgetting the
details of the implementation and thus becoming less able to predict the conse-
quences of changes. The result is that proposed changes to the system are very
carefully considered and only those with a very large payoff or low risk {usually
both) are made.

Another reason why certain improvements have not been made is that Gra-
pevine has been adopted by Xerox as the basis for the 8000 NS product message

ACM Transactions on Computer Systems, Vo|. 2, No. 1, February 1984.

22 • M.D. Schroeder, A. D. Birrell, and R. M. Needham

system and clearinghouse. As a starting point for conversion to a product, the
Grapevine server program was adapted to run under the Pilot operating system
[15] on the 8000 NS processor ("Mission" and "Riesling" are Pilot-based 8000
NS servers). If the operational impact of an improvement would not be immediate
we have tended to tell the implementors of the product system about the change
rather than adding it to Grapevine. Some of the changes proposed in this paper
have already been adopted in the product. The registration service has been
generalized to become the product clearinghouse service. Generalizations include
increasing the number of levels in the naming hierarchy to three so the product
can serve a much larger user community, and allowing an expandable set of
values to be associated with names in the database so the clearinghouse can
answer a wider range of questions. The product message service implements
inboxes in a different way so it can provide better service to users with terminals
instead of workstations; a larger disk allows long-term storage of messages in
inboxes, and the access protocols permit random access to the messages in an
inbox. As a result of the larger disk, the need for automatic archiving is eliminated.
The product system also includes a general facility for interconnecting with a
variety of other message systems--Grapevine has only a special purpose facility
for interconnection with the Arpanet message system. The protocols for using
the product clearinghouse and message services are built on the published remote
procedure call protocols [7], rather than on byte streams.

ACKNOWLEDGMENTS

Dave Redell heads the development of the 8000 NS message system. Ed Taft
designed and implemented the file server facilities that use Grapevine authenti-
cation and access control. Steve Temple designed and implemented the facilities
for remotely patching a Grapevine server disk. Gail Allen, Art Axelrod, Paul
Brol, Carl Chilley, Marcy Congdon, Elinore Cowhig, Ron Cude, Connie Dones,
Lita Germain, Chuck Hains, Robert Kierr, Joyce LaCoe, Michael Rutkaus, Lili
Sanders, Connie Slawecki, Pat ty Smith, Ed Stone, Ron Weaver, and Bob Yost
are remote site personnel who have helped us learn how to administer, expand,
explain, improve, and repair the Grapevine system.

REFERENCES
1. BIRRELL, A.D., LEVIN, R., NEEDHAM, R.M., AND SCHROEDER, M.D. Grapevine: an exercise in

distributed computing. Comraun. ACM 25, 4 (April 1982), 260-274.
2. BIRRELL, A.D. AND NELSON, B.J. Communication techniques for remote procedure calls. ACM

Trans. Comput. Syst. 2, 1 (Feb. 1984), 39-59 (this issue).
3. BOGGS, D.R., SCHOCH, J.F., TAFT, E.A., AND METCALFE, R.M. Pup: An internetwork architec-

ture. IEEE Trans. Commun. 28, 4 (April 1980), 612-634.
4. BROTZ, D.K. Laurel manual. Tech. Rep. CSL-81-6, Xerox Palo Alto Research Center, Palo

Alto, Calif., 1981.
5. BROTZ, D.K. IC fabrication information control via an electronic message system. In Proc.

Electrochemical Society Conference on Computer Controlled IC Processing and Monitoring, San
Francisco, May 1983.

6. COMER, D. The computer science research network: a history and status report. Coramun. ACM
26, 10 (Oct. 1983), 747-753.

7. Courier: the remote procedure call protocol. Xerox System Integration Standard XSIS-038112,
Xerox Corporation, Stamford Conn., Dec. 1981.

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

Experience with Grapevine • 23

8. CUNNINGHAM, I., DELESTRE, D., KERR, I., MYERS, T., SEKIDO, Y., TOUILLET, D., WARE C.,
AND WEST, N. Emerging protocols for global message exchange. In Proc. Compcon '82--25th
IEEE Computer Society International Conference (Sept. 1982), IEEE, New York, pp. 153-161.

9. DAWES, N.W., HARRIS, S., MAGOON, M., MAVEETY, S. AND PETTY, D. The design and service
impact of COCOS, an electronic office system. In Computer Message Systems, R.P. Uhlig (Ed.),
Elsevier-North Holland, New York, 1981, pp. 373-384.

10. Ethernet, a local area network: Data link layer and physical layer specifications version 1.0.
Digital Equipment Corporation, Intel Corporation, Xerox Corporation, September 1980.

11. METCALFE, R.M., AND BOGGS, D.R. Ethernet: Distributed packet switching for local computer
networks. Commun. ACM 19, 7 (July 1976), 395-404.

12. MITCHELL, J.G., MAYBURY, W. AND SWEET, R. Mesa language manual (Version 5.0). Tech.
Rep. CSL-79-3, Xerox Palo Alto Research Center, Palo Alto, Calif., 1979.

13. MYER, T.H. AND VITTAL, J.J. Message technology in the ARPANET. In Proc. IEEE National
Telecommunications Conference 77 (Dec. 1977), IEEE, New York.

14. NOWITZ, D.A. AND LESK, M.E. A dial-up network of UNIX systems. Unix Programmer's
Manual (7th ed.), vol. 2B, Bell Laboratories, Murray Hill, N.J., 1978.

15. REDELL, D.D. Pilot: an operating system for a personal computer. Commun. ACM 23, 2 (Feb.
1980), 81-92.

16. SHOCH, J.F. Internetwork naming, addressing, and routing. In Proc 17th IEEE Computer
Society International Conference (Sept. 1978), IEEE Cat. No. 78 CH 1388-8C, 72-79, IEEE, New
York.

17. THACKER, C.P., MCCREIGHT, E.M., LAMPSON, B.W., SPROULL, R.F., AND BOOTS, D. Alto: A
personal computer. In Computer Structures: Principles and Examples. (2nd ed.), D.P. Siework,
C.G. Bell, and A. Newell (Eds.), McGraw-Hill, New York, 1981.

Received March 1983; revised October 1983; accepted November 1983

ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

