
ALICE: Application-Level Intelligent Crash Explorer

This is a user documentation of the ALICE tool, which can be used to
discover “crash vulnerabilities” in applications. Crash vulnerabilities are prob-
lems that get exposed by a sudden power loss or system crash while the appli-
cation is running, and the application cannot recover correctly after rebooting
the machine. ALICE focuses on single-node applications that run atop file
systems. ALICE is different from similar tools in that it aims to find vulner-
abilities that might occur across all file systems, including future ones. AL-
ICE is also unique in targeting vulnerabilities associated with different source-
code lines of the application, instead of checking the application’s correctness
atop arbitrarily (or systematically, but less useful) simulated crash scenar-
ios. ALICE is designed to be extensible: both how it checks different source
lines, and the combined behavior it assumes of underlying file systems, can
be customized. The ALICE tool is a by-product of a research project (http:
//research.cs.wisc.edu/adsl/Publications/alice-osdi14.html) in the
University of Wisconsin-Madison.

1

http://research.cs.wisc.edu/adsl/Publications/alice-osdi14.html
http://research.cs.wisc.edu/adsl/Publications/alice-osdi14.html

Chapter 1

Installation

ALICE was tested to work on Ubuntu-12.02, and should be expected to work
on similar (i.e., Linux-like) operating systems. The following are specific re-
quirements:

1. Python-2.7, as the default version of python invoked via /usr/bin/env python.

2. Standard software build tools, such as gcc and GNU Make.

3. The libunwind libraries, installable in Ubuntu-12.02 using apt-get install libunwind7.

The following are the steps to install ALICE:

1. Download the most recent source-code tarball of ALICE, and untar it.
This should produce a directory named alice.

2. Set the environmental variable ALICE_HOME to point to the alice di-
rectory (i.e., the untared directory). For example, this can be done
by adding the line export ALICE_HOME=/wherever-untarred/alice to
your .bashrc file.

3. Set the PATH environmental variable to include the alice/bin directory.
For example, this can be done by adding the line export PATH=$PATH:

/wherever-untarred/alice/bin to your .bashrc file.

4. Install the alice-strace tracing framework by moving into the alice/alice-strace
directory, and running ./configure; make; make install;

2

Chapter 2

Basic Usage

The typical workflow for using ALICE has two steps. First, an application
workload is run, and a trace of its activities are recorded. Second, ALICE is
given this trace and a checker script (explained later); ALICE explores the
trace and displays discovered vulnerabilities. This documentation explains the
typical usage of ALICE by using a toy application.

Toy application

The toy application can be found in alice/example/toy/toy.c; the reader is
encouraged to go through it. The application does the following:

1. It updates a file called file1, changing the contents of the file from
“hello” to “world”. The update is done using a typical “write to tempo-
rary file and rename” sequence, so that the contents are updated atom-
ically. Immediately after updating, the application prints a message to
the user’s terminal (the user can then supposedly assume that the file
has been updated, and that the file will contain “world” even if a power
loss happens).

2. It creates two links to the file, link1 and link2. The (imaginary) seman-
tics of the toy application require both these links to be created atomically
(i.e., if a power loss happens, either both links exist or neither do not).

Step 1: Running the application and recording a trace

A script that runs the application and records a trace, along with all initializa-
tion setup, can be found in alice/example/toy/toy_workload.sh; the reader
is encouraged to go through it.

To perform Step 1, two directories are needed. The first, the workload
directory, is where the files of the application will be stored. The application,
as it runs, will modify the workload directory and its contents. For the toy
application, this is the place where file1, link1, and link2, are placed. The

3

CHAPTER 2. BASIC USAGE 4

toy_workload.sh script first creates the workload directory, workload_dir,
and then initializes it with the file file1 containing “hello”.

The other needed directory, traces directory is for storing the (multiple)
traces that are recorded as the application is run. The toy_workload.sh

script next creates this directory, traces_dir. After setting up the work-
load directory and the traces directory, the toy_workload.sh script does a
few more initialization things: compiling the toy.c application, and cding into
workload_dir so that the toy application can be run within there.

The toy_workload.sh script finally runs the application and records traces,
by issuing the following command:

alice-record --workload_dir . \

--traces_dir ../traces_dir \

../a.out

If the reader is familiar with the strace utility, the above command is sim-
ilar to an invocation of strace: alice-record is a script that records traces,
while ../a.out is the actual application to be run (the process and all sub-
processes of ../a.out are traced, similar to strace with the -ff option). The
alice-record script requires two mandatory arguments: the workload direc-
tory and the traces directory (alice-record takes one more optional argument,
--verbose, to control verbosity).

Step 2: Supply ALICE with the trace and the checker, and
get back list of vulnerabilities

Step 2 requires the user to supply ALICE with a checker script. The checker
script will be invoked multiple times by ALICE, each invocation corresponding
to a (simulated) system crash scenario that could have happened while the
application was running in Step 1. During each invocation, the checker script
will be given a directory that reflects the state of the workload directory if the
(simulated) crash had really happened. If the given crashed-state workload
directory has an expected (i.e., consistent) set of files, the checker script should
exit with status zero, and should exit with a non-zero status otherwise.

ALICE supplies the checker script with two command-line arguments. The
first is the path to the crashed-state workload directory. The second command-
line argument to the checker script is the path to an stdout file. The stdout
file contains all the messages that had been printed to the user’s terminal at
the time of the crash (corresponding to the supplied crashed-state workload
directory), and can be used by the checker to check for durability, as explained
below. Note that the crashed-state workload directory supplied by ALICE
might differ from the original workload directory in Step 1. Hence, for ap-
plications that expect the absolute path of the contents within the workload
directory to not have changed (a small subset of applications in our experi-
ence), the checker script needs to move the supplied directory to the original
directory, and then operate atop the original directory.

CHAPTER 2. BASIC USAGE 5

The checker script for the toy application can be found in alice/example/

toy/toy_checker.py, and the reader is encouraged to go through it. The
script first changes the current working directory into the crashed-state direc-
tory supplied by ALICE, and reads all the messages printed in the terminal at
the time of the crash by reading the stdout file supplied by ALICE. If the ap-
plication has printed the “Updated file1 to world” message, the checker script
makes sure that file1 contains “world”; otherwise, the checker script makes
sure that file1 contains either “hello” or “world”. The checker script then
makes sure that either link1 and link2 are both present, or are both not
present. If any of the checked conditions do not hold, the checker script results
in an assertion failure, thus exiting with a non-zero status (and thus informing
ALICE that the application will fail if the simulated crash scenario happens in
real).

After writing the checker script, the user can invoke the alice-check script
to actually run ALICE and get the list of vulnerabilities. The reader is en-
couraged to run the following command from within the alice/example/toy

directory, to get a list of vulnerabilities discovered in the toy application (after
running toy_workload.sh first).

alice-check --traces_dir=traces_dir --checker=./toy_checker.py

The alice-check script has the following arguments:

traces dir Mandatory. The traces directory, from Step 1.

checker Mandatory. The checker script.

threads Optional, default is 4. ALICE invokes checker scripts paral-
lely, each checker script given a separate crashed-state directory
to work on. Some applications do not allow multiple simultaneous
invocations, and might require this option to be set to 1.

debug level Optional, default is 0. Verbosity of warnings, can be 0,
1, or 2.

ignore mmap Optional, default is False. The current version of AL-
ICE does not trace mmap-writes, and cannot correctly work with
application workloads that use memory mapping to modify rele-
vant files (see caveats and limitations). If the recorded trace dur-
ing Step 1 involves a writeable mmap() to a seemingly relevant file,
alice-check aborts execution by default. However, some applica-
tion workloads use mmap() only on files that are irrelevant to crash
consistency, for example to implement a shared-memory lock deal-
ing with multi-process concurrency synchronization. This option
can be set to True if the user is sure that the mmap()s observed
while running the application workload are irrelevant to finding
crash vulnerabilities. Some database applications use mmap() for
concurrency control, even when configured not to use mmap() for
otherwise accessing files, and require this option.

CHAPTER 2. BASIC USAGE 6

Understanding ALICE’s output

ALICE first outputs a list of list of the logical operations that form the up-
date protocol used by the application workload invoked in Step 1. The logical
operations displayed is similar to a system-call trace, except that it is easier
to understand, for example substituiting file names instead of file descriptor
numbers.

ALICE then displays any discovered vulnerabilities. Vulnerabilities are dis-
played in two ways: dynamic vulnerabilities, relating to different operations
in the update protocol, and static vulnerabilities, relating to source-code lines.
The proper display of static vulnerabilities requires the originally traced appli-
cation to have debugging symbols; also, ALICE associates each logical opera-
tion to one of the stack frames in the logical operation’s stack trace to display
static vulnerabilities, and this association can sometimes be faulty.

Chapter 3

Customizing, Extending, and
Hacking

ALICE is designed to be extensible. The current version of ALICE strips off
many features that were previously implemented, in hopes that a smaller code
base promotes extensions. However, the current version is also not sufficiently
commented, and does not follow some good coding practices; a well-commented
version of the software might be released in the future if users shows interest.

To extend ALICE, readers are required to go through our publication
(http://research.cs.wisc.edu/adsl/Publications/alice-osdi14.html) to
understand ALICE’s design and philosophy. Note that there is some terminol-
ogy difference between the publication and ALICE’s source code; in particular,
logical operations discussed in the publication correspond to micro operations
in the source code, while micro operations in the publication correspond to disk
operations in the source code.

ALICE’s default exploration strategy, which investigates the ordering and
atomicity of each system call and reports any associated vulnerabilities, is
coded in alice/alicedefaultexplorer.py, and can be easily changed. The
alicedefaultexplorer.py code is complicated since it displays static vulner-
abilities and invokes checkers in multiple threads. A functionally equivalent
exploration strategy can be simpler.

ALICE’s default APM is coded in alice/alicedefaultfs.py, and can be
easily changed. The alicedefaultfs.py code is complicated since it models
a file system that can be configured to split file operations in different gran-
ularities. A functionally equivalent file system (with a single granularity) can
be simpler.

Other than the extensions discussed till now, users might try to add support
for more system calls, file attributes, symbolic links, or other such details, in
ALICE. Relevant to these, the _aliceparsesyscalls.py script contains code
that converts system calls into logical operations, while the replay_disk_ops()
function from the alice.py script contains code that re-constructs a directory
from a given list of micro-ops.

7

http://research.cs.wisc.edu/adsl/Publications/alice-osdi14.html

Chapter 4

Caveats and Limitations

ALICE is a safe, but not a complete tool. That is, the application might have
additional vulnerabilities than those discovered and reported. ALICE is thus
not aligned towards comparing the correctness of different applications; specif-
ically, any comparisons when not using equivalent workloads and checkers can
easily produce confusing, wrong inferences. Also, any vulnerability displayed
by ALICE might already be known to an application developer: the applica-
tion documentation might explicitly require that the underlying file system not
behave in those ways that will expose the vulnerability, or might simply not
provide those guarantees that are being checked by the checker.

The default file-system model (APM) used by ALICE is designed to also
find vulnerabilities that can get exposed by future file systems; some crash
scenarios that are possible with the default model do not happen in common
current file systems. Also, ALICE’s output (a list of vulnerabilities) is only
designed to show the number of source lines that require ordering or atomicity.
It is thus erraneous to directly correlate the number of vulnerabilities shown
by ALICE with current real-world impact.

ALICE does not currently attempt to deal with any file attributes (includ-
ing modification time) other than the file size, or with the FD_CLOEXEC and
O_CLOEXEC facilities. If the application’s logic (that is invoked in the workload
and the checker) depends on these, ALICE’s output is probably wrong. Sup-
port for a few rarely-used system calls is also lacking; warning or error messages
are displayed by ALICE if the application workload had invoked such calls. The
situation for symlinks is similar; while the current version of ALICE attempts
to support them slightly, if the application logic depends on symlinks, ALICE’s
output might be wrong.

The current version of ALICE also does not support tracing memory-
mapped writes; applications that use such writes as a part of their (relevant) up-
date protocol cannot use ALICE. Note that a version of ALICE used in our pub-
lished research paper (http://research.cs.wisc.edu/adsl/Publications/
alice-osdi14.html) traced memory-mapped writes, but support was removed
in the interest of distributability.

8

http://research.cs.wisc.edu/adsl/Publications/alice-osdi14.html
http://research.cs.wisc.edu/adsl/Publications/alice-osdi14.html

CHAPTER 4. CAVEATS AND LIMITATIONS 9

Adding support for file attributes, CLOEXEC, symlinks, and mmap() writes
does not require any changes to the design of ALICE, and might be done in
future versions if users deem them helpful.

Chapter 5

Credits, Acknowledgements, and
Contact Information

Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Ala-
gappan, and Samer Al-Kiswany were involved in various aspects of design,
coding, and testing of the ALICE tool. Thanumalayan Sankaranarayana Pillai
(madthanu@cs.wisc.edu) is the primary author, and might serve to be the best
contact for bug reports, feature requests, or other general discussions.

The ALICE tool is a by-product of a research project (http://research.
cs.wisc.edu/adsl/Publications/alice-osdi14.html) in the University of
Wisconsin-Madison, and due credit must be given to all parties who were in-
volved in or contributed to the project.

The alice-strace tracing framework is a slight customization of the strace
tool (http://sourceforge.net/projects/strace/), along with some code
adapted from strace-plus (https://code.google.com/p/strace-plus/). Cred-
its must be given to the authors and contributors of strace and strace-plus.

10

http://research.cs.wisc.edu/adsl/Publications/alice-osdi14.html
http://research.cs.wisc.edu/adsl/Publications/alice-osdi14.html
http://sourceforge.net/projects/strace/
https://code.google.com/p/strace-plus/

