
Fair and Secure Synchronization for Non-Cooperative Concurrent
Systems

By

Yuvraj Patel

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2021

Date of final oral examination: August 12, 2021

The dissertation is approved by the following members of the Final Oral
Committee:

Andrea C. Arpaci-Dusseau, Professor, Computer Sciences
Remzi H. Arpaci-Dusseau, Professor, Computer Sciences
Mikko H. Lipasti, Professor, ECE
Michael M. Swift, Professor, Computer Sciences

© Copyright by Yuvraj Patel 2021

All Rights Reserved

i

To
My parents – the living form of Gods

My sisters – Heny and Biji
My wife – Ankita

My children – Zeus and Yelena
My favorite animals – Mr. T and Kinky Tail (the Mapogo lion coalition)

My favorite gods – Lord Shiva and Lord Hanuman

A Life’s Work
Titled by Andrea Arpaci-Dusseau and Remzi-Arpaci-Dusseau

Words by Yuvraj Patel (written in Summer 2002)

Life-previously,
Was like the dark,

Feeling all alone in,
The whole Universe.

Life-now,
Is full of beautiful Stars and Galaxies,

Glooming and Lightning,
Every moment of my life.

Life-in future,
Would see My Universe,
Full of joy and happiness,

Claiming the eternity of my soul.

ii

Acknowledgments

First and foremost, I would like to extend my deepest gratitude to my ad-
visors, Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau. This Ph.D.
would not have been possible without their guidance and support. An-
drea and Remzi made this journey of mine enjoyable and full of insights.
Whenever I met them during the regular meetings, I would come out of
the meetings as a better researcher. Their feedback has always been apt
depending on the project status.

Even though they work together, both of them have the uniqueness
that they bring to the table. Andrea always takes the work one level above
and beyond what I have been thinking. I always tell people to talk to
Andrea whenever they believe that they have done the maximum that
one can ever do in their project. She will listen to you carefully and then
slowly start building a better idea than what you have presented. Remzi
always emphasizes on experimentation and how we should conduct ex-
periments. I will never forget his emphasis on measure then build strat-
egy. He is a quick-thinker and always comes up with fantastic ideas dur-
ing the meeting itself.

Both Andrea and Remzi are very caring and always available. Well,
that is the advantage of having two advisors (reliability - I must say.).
Apart from talking about technical stuff, they always inquire about my
family too. Even though their expertise is in storage systems, they al-

iii

lowed me to work on concurrency and had trust and faith in me. This
trust and faith helped me give enough confidence to sail through rough
weather. They gave me a chance to teach Introduction to Operating Sys-
tems course during the summer and provided me with all the help they
can. I am grateful to have chosen UW Madison and Andrea and Remzi
as my advisors. Thank you, Andrea and Remzi, for being wonderful ad-
visors.

I want to express my sincere appreciation and thankfulness to my
committee members – Michael Swift and Mikko Lipasti. Both of them
asked insightful questions and provided invaluable feedback for my re-
search and dissertation. Mike has been an excellent teacher, and he has
been on the papers that I have included in this dissertation. I enjoyed
working with him. He spent time browsing Linux kernel code during the
meetings and was always available even during the weekends for a quick
chat. He helped me while I was teaching during the summer too. I hope
to continue collaborating with him in the future as well. I learned a lot by
attending Mikko’s Advanced Architecture classes.

I was fortunate to work with a few wonderful colleagues at Hewlett
Packard Labs during my internship. I would like to thank my mentors
– Yupu Zhang and Daniel Gmach. I would also like to thank Kimberly
Keeton, Haris Volos, and my manager Daniel Feldman for their support.
I had fun working with you all on the memory manager during my in-
ternship. In particular, Yupu being an alumnus from our group, helped
me a lot. I would also like to thank David Dice from Oracle Labs for his
continued support and feedback. His valuable feedback has helped make
our papers better. Unfortunately, he could not be part of the committee
due to his other commitments. I look forward to collaborating with Dave
in the near future.

I am blessed to have been part of a wonderful ADSL group at UW
Madison – Thanumalayan Pillai, Lanyue Lu, Ramnatthan Alagappan,

iv

Samer Al-Kiswany, Zev Weiss, Aishwarya Ganeshan, Tyler Harter, Suli
Yang, Jun He, Sudarsun Kannan, Jing Liu, Kan Wu, Anthony Rebello,
Youmin Chen, Leo Prasath Arulraj, Dennis Zhou, Eunji Lee, Chenhao Ye,
Guanzhou Hu, Vinay Banakar, Akshat Sinha, Abigail Matthews, and Rui-
jian Huang. I would like to thank them for their feedback on my research
during the group meetings and hallway discussions.

Many others have helped me either directly or indirectly during my
Ph.D. I would like to appreciate the help and support received from the
Computer Sciences Department and CSL staff. Angela Thorp has been
extremely helpful and a go-to person to seek any information related to
graduate studies. I would also like to thank the CCTAP program for pro-
viding funding for child care expenses for several years. I want to thank
Cloudlab for providing an excellent environment to run experiments.

I would especially like to thank Shankar Pasupathy for being a mentor,
friend, and elder brother who has constantly guided me for more than a
decade. He was my mentor while I was interning at NetApp in 2007. His
contributions towards my success cannot be measured in words. I would
not have joined UW Madison if it was not for him. I followed his advice as
he is an alumnus of the department. Thank you, Shankar, for constantly
motivating me and teaching me various things in life. I will never forget
your contributions, and you will have a special place in my heart forever.
I would also like to thank my other colleagues at NetApp and SanDisk. I
have learned a lot interacting with you all.

I would also like to extend my sincerest thanks to my professors - Shan
Sundar Balasubramaniam, Sanjiv Kumar Choudhary, M.S. Radhakrish-
nan, Apoorva Patel, Roshan Shah, Amit Ganatra, Minesh Thaker, Tejas
Patel, Divyang Pandya, Manilal Amipara, Rajiv Ranjan, Yogesh Kosta,
and Ratnik Gandhi. All of you have taught me both technical and non-
technical aspects that have helped me shape my life. I want to take this
opportunity to express my appreciation to all my school teachers who al-

v

ways believed in me and constantly motivated me to aim high.
I would also like to extend my thanks to my friends in Madison – An-

shul Purohit, Mohit Verma, Srinivas Tunuguntla, Amrita Roy Choudhury,
Varun Chandrasekaran, Akhil Guliani, Meenakshi Syamkumar, Ram Du-
rairajan, Akshat Sinha, Vinay Banakar, Uyeong Yang, Arjun Singhvi,
Archie Abhaskumar, Vikas Goel, Rogers Jeffrey, Prabu Ravindran, and
his family, Yogesh Phogat and his family. I am thankful for your kind-
ness, friendship, and support.

I want to express my thanks to my wonderful and supportive family,
who have always been there, encouraging and supporting me throughout
my life. I am very grateful to have such a family – my grandmother, un-
cles, aunts, and cousins. They have always celebrated my success and
motivated me during my failures. Even today, whenever I talk to my
grandmom, she always reminds me to work hard and never relax. She
continues to say these words ever since I was in high school – "Just work
for a few more years, and then life will be wonderful." My uncle Sanjay
and cousins Maniti, Radhika, and Jayvi have been supportive. Your pres-
ence in the family makes me relax a bit whenever I am worried about my
parents’ health. My late aunt Neeta and uncle Nikhil would have been
happy to see me earn a Ph.D. They both have always considered me their
son. It was my aunt Neeta who thought about getting me married to my
wife. I want to thank you for coming up with that idea. I would also like
to thank my other aunt Hema, who regularly calls my wife and inquires
about my work and health. Thank you for caring and being such a con-
stant motivation. I would also like to thank Hetal Patel for being a great
friend and elder brother. You have been inspiring in many ways and will
always be.

I want to express my gratitude to my father-in-law Purushottam Pend-
harkar for being a wonderful person. You are always ready to travel to
the USA whenever we need your help. You have always trusted me and

vi

backed my decisions. I always look up to you as a father and have great
respect for you. Thank you for being part of my family.

I want to thank my two sisters – Heny and late Biji, and my brother-in-
law Amit for your unconditional love, care, and unlimited support. All
three of you always have supported me throughout my life and encour-
aged me to pursue research and chart my course. Both my sisters are a
strong pillar of my life, and I have looked up to you whenever I needed
help. Heny keeps a constant tab on me and always provides valuable
suggestions, and forces me to think out of the box. Even though it’s been
almost ten years since you left Biji, I remember you every day. Immedi-
ately after my defense, everyone remembered you and joked about the
iconic dance you would have performed after I defended my work. With-
out your persuasion, I would have never married. I want to thank my
brother-in-law for being a constant source of motivation. You have known
me ever since I was in school. I am in the field of Computer Science just
because of you. I am 100% sure that if it were not for you, I would have
been a Physicist.

I do not have enough words to thank my parents - Ajay and Anjana.
I consider my parents as the living form of God and worship them every
day. I know how both of you have struggled and sacrificed to make all
your three kids successful. Mere words are not enough to express my
love to you. You always encouraged me to take risks and embrace failures
to achieve success. I can always rely upon you whenever I need help and
your willingness to travel to the USA whenever I need you. You constantly
inspire me to aim higher and continue to remain humble and grounded.
I am incredibly indebted to my parents for their unconditional love.

I want to thank my two kids – Zeus and Yelena, for being beautiful
kids. You are my two eyes through which I see the new world. Both of
you would wait for me to come home so that we all can play. I am sorry
for not being there to play with you many times and spend time with

vii

you. I always look forward to the funny jokes that Zeus shares and the
numerous projects that we have done together and will continue to do.
It is fun to pretend-play with Yelena. You have inspired me to work on
fairness aspects in this dissertation as both of you used different tricks to
compete and seek attention.

Finally, one person that deserves my special heartfelt thanks is my wife
– Ankita. She is a perfect partner and friend. As Ankita is not from a
Computer Science background, we hardly talk about work. She has been
patient enough for the past six years and has taken full responsibility to
run the home smoothly. Even though you have not worked on this dis-
sertation directly, you still are part of this dissertation in spirit. Without
your help, support, trust, and love, it would have been impossible to have
gotten through this six-year journey. Immediately after my defense, my
mom congratulated you for supporting me and being part of my success
and life for being the driving force. Thank you for being part of my life
and family.

Before my Ph.D., I worked in Industry for almost nine years, design-
ing filesystems and storage systems. I was well settled and doing great
work while earning a good amount of money. By the time the majority
of the students complete their Ph.D., I started my journey. Many people
suggested that I rethink my decision to start Ph.D. The real reason why
I pursued Ph.D. is to seek answers to a few questions that I had. I have
answered a few of them, not fully answered a few of them, discarded a
few of them, and added a few more new questions to my list. I have al-
ready got the prize of pursuing a Ph.D. – the pleasure of pursuing the
questions. It was and will always be about the journey. Thank you, God,
for everything I have.

viii

Contents

Acknowledgments ii

Contents viii

List of Tables xii

List of Figures xv

Abstract xxv

1 Introduction 1
1.1 Lock Usage . 3
1.2 Scheduler-Cooperative Locks 6
1.3 Taming Adversarial Synchronization Attacks using Trātr. . 8
1.4 Contributions . 10
1.5 Overview . 12

2 Background 15
2.1 Concurrency, Synchronization & Mutual Exclusion 15
2.2 Locks . 17

2.2.1 Crucial Lock Properties 18
2.2.2 Categorizing Lock Algorithms 22
2.2.3 Waiting Policy . 25

ix

2.3 Common Synchronization Primitives Implementation . . . 27
2.3.1 Pthread Spinlock . 27
2.3.2 Pthread Mutex . 29
2.3.3 Ticket Lock . 31
2.3.4 MCS & K42 variant 32
2.3.5 Linux Kernel’s Queued Spinlock 37
2.3.6 Reader-Writer Lock 38
2.3.7 Read-Copy Update 41

2.4 Summary . 43

3 Lock Usage 45
3.1 Scheduler Subversion . 50

3.1.1 Imbalanced Scheduler Goals 50
3.1.2 Non-Preemptive Locks 53
3.1.3 Causes of Scheduler Subversion 54

3.2 Synchronization under Attack 57
3.2.1 Synchronization and Framing Attacks 59
3.2.2 Threat Model . 63
3.2.3 Synchronization and Framing Attacks on Linux

Kernel . 64
3.3 Summary & Conclusion . 83

4 Scheduler-Cooperative Locks 85
4.1 Lock Opportunity . 87

4.1.1 Inability to Control CPU Allocation 87
4.1.2 Lock Opportunity . 90

4.2 Scheduler-Cooperative Locks 91
4.2.1 Goals . 92
4.2.2 Design . 93
4.2.3 u-SCL Implementation 94
4.2.4 k-SCL Implementation 98

x

4.2.5 RW-SCL Implementation 100
4.3 Evaluation . 102

4.3.1 Fairness and Performance 103
4.3.2 Proportional Allocation 107
4.3.3 Lock Overhead . 108
4.3.4 Lock Slice Sizes vs. Performance 110
4.3.5 Real-world Workloads 114

4.4 Limitations and Applicability 124
4.5 Summary & Conclusion . 126

5 Taming Adversarial Synchronization Attacks using Trātr. 127
5.1 Mitigating Adversarial Synchronization 129

5.1.1 Existing Solutions . 131
5.1.2 Scheduler-Cooperative Locks 132
5.1.3 Summary . 135

5.2 Trātr. 135
5.2.1 Goals . 136
5.2.2 Overview . 136
5.2.3 Design & Implementation 138

5.3 Evaluation . 149
5.3.1 Overall Performance 149
5.3.2 Performance of Trātr. Components 161
5.3.3 Overhead . 165
5.3.4 Real-World Scenarios 175
5.3.5 Adding Directory Cache to Trātr. 178
5.3.6 False Positives . 179
5.3.7 False Negatives . 181

5.4 Limitations . 185
5.5 Summary & Conclusion . 186

6 Related Work 188

xi

6.1 Lock Usage Fairness . 188
6.2 Scheduler subversion . 189
6.3 Adversarial Synchronization 190
6.4 Scheduler-Cooperative Locks 191
6.5 Trātr. 193

7 Conclusions & Future Work 195
7.1 Summary . 196

7.1.1 Lock Usage . 196
7.1.2 Scheduler-Cooperative Locks 198
7.1.3 Taming Adversarial Synchronization Attacks using

Trātr. 199
7.2 Lessons Learned . 200
7.3 Future Work . 202

7.3.1 Expand SCLs to Support Other Schedulers and Locks203
7.3.2 SCLs in Multiple Locks Situation 203
7.3.3 Work Conserving Nature of SCLs 204
7.3.4 Scheduler-driven fairness 205
7.3.5 Analyzing Linux Kernel to find Vulnerable Data

Structures . 207
7.3.6 Combining SCLs and Trātr. 208
7.3.7 Attacks on Concurrency Control Mechanisms 209
7.3.8 Opportunity-based fairness for other non-

preemptive resources 210
7.4 Closing Words . 211

Bibliography 212

xii

List of Tables

3.1 Application & Workload details. The table shows the workload
details for various user-space applications and the Linux kernel that
we use to measure the critical section lengths. 55

3.2 Lock hold time (LHT) distribution. The table shows LHT dis-
tribution of various operations for various user-space applications
and the Linux Kernel that use different data structures. 57

3.3 Summary of the attacks. Brief description of the three attacks on
the Linux kernel. While the inode cache and directory cache attacks
are synchronization attacks, the futex table attack is a framing attack.
Note the different methods that we use to launch the attacks. 65

4.1 Lock Opportunity and Fairness. The table shows lock opportu-
nity and the Jain fairness index for the toy example across the range
of different existing locks, as well as the desired behavior of a lock. . . 90

5.1 Implementation summary of Trātr.. Implementation details of
the four slab-caches and three data structures that Trātr. defends
against the synchronization and framing attacks. 140

5.2 Performance of two benchmarks. Observed Throughput at the
end of the experiment of the IC and FT benchmarks for Vanilla kernel
without an attack, with an attack for Vanilla & Trātr. 150

xiii

5.3 Applications used for studying overhead. List of the applica-
tions that are part of the Phoronix test suite that we use to understand
the overhead in Trātr. 166

5.4 Benchmarks used for studying overhead. List of the bench-
marks that are part of the Phoronix test suite that we use to under-
stand the overhead in Trātr. 167

5.5 Performance overhead study for applications. Comparison of
performance for the various applications for the Vanilla kernel and
Trātr. -T with just tracking enabled for all the slab-caches relative to
Vanilla kernel. 169

5.6 Performance overhead study for benchmarks. Comparison of
performance for the various benchmarks for the Vanilla kernel and
Trātr. -T with just tracking enabled for all the slab-caches. 170

5.7 Applications used to study kernel threads overhead. List of
the applications that are part of the Phoronix test suite used for mea-
suring the impact of kernel threads. 172

5.8 Memory overhead study for the applications.Comparison of
the memory overhead for various applications for the Vanilla kernel
and Trātr. -T with just tracking enabled for all the slab-caches. The
numbers in the bracket in the last column show the % increase in the
total memory allocated to all the slab caches. 173

5.9 Memory overhead study for the benchmarks.Comparison of
the memory overhead for various benchmarks for the Vanilla kernel
and Trātr. -T with just tracking enabled for all the slab-caches. The
numbers in the bracket in the last column shows the % increase in
the total memory allocated to all the slab caches. 174

5.10 Real-world scenarios study with three real-world applica-
tions. List of the real-world applications and their workloads used
for understanding how Trātr. performs in real-world scenarios. . . . 175

xiv

5.11 Real-world scenario description. List of three real-world sce-
nario summary and resource allocation to each container in each of
the scenario. 175

xv

List of Figures

3.1 Scheduler subversion with UpScaleDB. We use a modified
benchmarking tool ups_bench available with the source code of Up-
ScaleDB to run our experiments. Each thread executes either find or
insert operations and runs for 120 seconds. All threads are pinned
on four CPUs and have default thread priority. “F” denotes find
threads while “I” denotes insert threads. “Hold” represents the crit-
ical section execution, i.e., when the lock is held; “Wait + Other”
represents the wait-times and non-critical section execution. The
value presented on the top of the dark bar is the throughput (oper-
ations/second). 51

3.2 Performance of Exim Mail Server under inode cache attack.
Throughput and Average Latency timeline of Exim Mail Server
when under inode cache attack. Prepare to attack means that the at-
tacker starts to launch the attack and initiates probing to break the
hash function and identify the superblock address. Upon identify-
ing the superblock address, the attacker can target a hash bucket and
launch an attack. 68

xvi

3.3 Internal state of inode cache when under inode cache attack.
The graph present an overall picture of the inode cache when an at-
tacker is launching the attack. In particular, the timeline shows the
lock hold times, the cumulative wait times to acquire the inode cache
lock, and the maximum number of entries of the victim and the at-
tacker in the inode cache. The victim is running the Exim Mail Server. 71

3.4 Performance of UpScaleDB under futex table attack.
Throughput and Average Latency timeline of UpScaleDB when
under futex table attack. Prepare to attack means that the attacker
starts to launch the attack and initiates probing to identify the hash
bucket that UpSCaleDB uses. After identifying the hash bucket, the
attack is launched by spawning thousands of threads and parking
them in the identified hash bucket. 74

3.5 Internal state of futex table when under futex table attack.
The graphs present an overall picture of the futex table when an at-
tacker is launching the attack. In particular, the timeline shows the
lock hold times, the cumulative wait times to acquire the hash bucket
lock, and the maximum number of entries of the victim and the at-
tacker in the futex table. The victim is running UpScaleDB. 76

3.6 Performance of Exim Mail Server under directory cache at-
tack. Throughput timeline of Exim Mail Server when under direc-
tory cache attack. There is no need to prepare for the attack with direc-
tory cache attack. The attack starts immediately by creating millions
of negative dentries. 79

xvii

3.7 Internal state of dentry cache when under dentry cache at-
tack. The graphs present an overall picture of the dentry cache when
an attacker is launching the attack. In particular, the timeline shows
the lock hold times for the read-side critical section, the time taken to
complete synchronize_rcu() call, and the maximum number of the
entries of the victim and attacker in the dentry cache. The victim is
running the Exim Mail Server. 82

4.1 Impact of Critical Section Size. The behavior of existing locks
when the critical section sizes of two threads differ. The CFS sched-
uler is used, and each thread is pinned on a separate CPU. “wait”
represents the time spent waiting to acquire the lock; “hold” rep-
resents the critical section execution, i.e., the time the lock is held;
“other” represents the non-critical section execution. 88

xviii

4.2 User-space Scheduler-Cooperative Locks. The lock is shown
as a dashed box, and each lock acquisition request is shown as a node
(box). The arrow represents the pointer to the next node that forms
the queue. “R” indicates running, and the lock is owned. “W” indi-
cates waiting for the slice. In (1), the lock is initialized and free. (2)
A single thread A has acquired the lock. The tail “T” pointer points
to itself and the next “N” pointer points NULL. (3) Thread B arrives
to acquire the lock and is queued. As B is the next-in-line to acquire
the lock; it spins instead of parking itself. The tail and the next point-
ers point to B. (4) Thread A releases the lock, but B will wait for its
turn as the lock slice has not expired. (5) Thread C also arrives to
acquire the lock and is queued after B. C parks itself as it is not the
next-in-line to acquire the lock. The tail now points to the C as it is
the last one to request lock access. (6) Thread A again acquires the
lock as it is the owner of the lock slice. (7) Thread A releases the lock.
(8) A’s lock slice is over, and B is now the owner of the slice. C is
woken up and made to spin as it will acquire the lock next. The tail
and the next pointers now point to C. (9) A again tries to acquire the
lock but is penalized and therefore will wait for the penalty period to
be over before it can be queued. 95

xix

4.3 Reader-Writer Scheduler-Cooperative Locks. The dashed box
represents the lock. “N” represents the value of the counter. “READ-
SLICE” and “WRITESLICE” represents the read and write slice that
the lock is currently in. In (1) The lock is initialized and free. (2)
A reader thread R1 acquires the lock and continues its execution in
the critical section. (3) Another reader thread, R2, also joins in. (4)
Reader R1 leaves the critical section. (5) A writer thread W1 arrives
and waits for the write slice to start. (6) Write slice is started, and
W1 waits for reader R2 to release the lock. (7) Reader R2 releases the
lock and the writer W1 acquires the lock. (8) Reader R1 now arrives
again and waits for the read slice to start. (9) W1 releases the lock,
and the read slice starts allowing the reader R1 to acquire the lock. . 100

4.4 Comparison on 2 CPUs. The graphs present a comparison of four
locks: mutex (Mtx), spinlock (Spn), ticket lock (Tkt), and u-SCL
(SCL) for 2 (a and b) and 16 (c and d) threads, each has the same
thread priority. For 2 threads, each thread has a different critical sec-
tion size (1 µs vs. 3 µs). For 16 threads, half have shorter critical
section sizes (1 µs) while others have a larger critical section size (3
µs). “TG” stands for the thread group. 104

4.5 Comparison on 16 CPUs. The graphs present a comparison of
four locks: mutex (Mtx), spinlock (Spn), ticket lock (Tkt), and u-
SCL (SCL) for 2 (a and b) and 16 (c and d) threads, each has the
same thread priority. For 2 threads, each thread has a different critical
section size (1 µs vs. 3 µs). For 16 threads, half have shorter critical
section sizes (1 µs) while others have a larger critical section size (3
µs). “TG” stands for the thread group. 106

xx

4.6 Changing Thread Proportionality. Comparison of the four locks:
mutex (Mtx), spinlock (Spn), ticket lock (Tkt), and u-SCL (SCL)
for four threads running on two CPUs having different thread prior-
ities (shown as ratios along the bottom) and different critical section
sizes. The number on the top of each bar shows the lock usage fairness.107

4.7 Lock Overhead Study. The figure presents two lock overhead stud-
ies. On the left(a), the number of threads and CPU cores are in-
creased, from 2 to 32, to study scaling properties of u-SCL and re-
lated locks. We pin each thread on a separate CPU. On the right(b),
the number of CPUs is fixed at two, but the number of threads is
increased from 2 to 32. 109

4.8 Impact of lock slice size on performance. The top figure (a)
shows the throughput across two dimensions: critical section and
the slice size. The bottom figure (b) shows the wait-time distribution
when the lock slice varies, and the critical section size is 10 µs. . . . 111

4.9 Interactivity vs. Batching. The figure shows the comparison of
the wait-time to acquire the lock for mutex, spinlock, ticket lock and
u-SCL. 113

4.10 Mutex and u-SCL performance with UpScaleDB. The same
workload is used as Section 3.1.1. The same CFS scheduler is used
for the experiments. “F” denotes find threads while “I” denotes insert
threads. The expected maximum lock hold time is shown using the
dashed line. “Hold” represents the critical section execution, i.e., the
time until the lock is held; “Wait + Other” represents the wait-times
and non-critical section execution. The number on top of the dark
bar represents the throughput (operations/second). The left figure
(a) shows the same graph as shown in Section 3.1.1. The right figure
(b) shows the performance of u-SCL. 115

xxi

4.11 Comparison of RW-SCL and KyotoCabinet The dark bar shows
the lock hold time for each individual thread and the light bar shows
the lock opportunity not being unused. The values on top of the bar
shows the aggregated throughput (operations/sec) for the writer and
reader threads. 117

4.12 Performance of RW-SCL with reader and writer scaling. For
reader scaling, only one writer is used while for writer scaling, only
one reader is used. The number of readers and writers vary for reader
scaling and writer scaling experiments. The dark bar shows the lock
hold time while the light bar shows the unused lock opportunity. The
values on top of the bar shows the throughput of the writers and read-
ers. 119

4.13 Rename Latency. The graph shows the latency CDFs for SCL and
the mutex lock under the rename operation. The dark lines show
the distributions for the long rename operation (the bully), whereas
lighter lines represent the short rename operation costs (the victim).
Dashed lines show standard mutex performance, whereas solid lines
show k-SCL performance. 120

4.14 Rename lock performance comparison. The figure presents a
comparison of two locks – mutex and k-SCL for 2 threads on two
CPUs; each has the same thread priority, and one thread is perform-
ing rename operations on a directory that is empty while another
thread is performing rename on a directory having a million empty
files. 122

4.15 k-SCL inactive thread detection. Timeline showing inactive
threads detection and how the latency of the bully program varies
depending on the number of active threads. 123

xxii

5.1 IC benchmark performance comparison for spinlock and k-
SCL in Linux kernel. Timeline of the throughput showing the im-
pact due to the attack for the Vanilla kernel having spinlock and kernel
having k-SCL under the inode cache attack. 134

5.2 High-level design of Trātr.. Design showing the four mechanisms
of Trātr. . The Tracking and Prevention mechanisms are part of slab-
cache management. Layer 1 Detection measures the synchronization
stalls to indirectly measure long critical sections. On finding longer
stalls, Trātr. triggers layer two checks if a user has a majority of object
allocations. On finding one, Trātr. identifies that user as an attacker
and initiates prevention and recovery mechanisms. The prevention
mechanism prevents the attacker from allocating more entries. De-
pending on the type of data structure, an appropriate recovery is ini-
tiated. The upper box shows the common code, while the lower box
shows data structure-specific code. 138

5.3 Flowchart of the kernel thread associated with a data struc-
ture. The kernel thread that is associated with a data structure per-
forms the detection and recovery mechanism. As part of the detec-
tion mechanism, the thread probes the synchronization primitives. If
a synchronization stall is more than the threshold, appropriate action
is initiated. Upon detecting an attack, the thread executes the TCA
check to identify the attacker and initiate prevention window. Lastly,
the thread initiates the recovery of the data structure. 141

5.4 Probing window behavior under normal conditions. Under
normal conditions without an attack, during the probing window,
after probing a lock once, the kernel threads sleep for 5 to 20 millisec-
onds. Note that the size of the probing window is randomly chosen. . 143

xxiii

5.5 Probing window behavior when under attack. When an at-
tack is ongoing, during the probing window, upon identifying that
one synchronization stall is more than the threshold limit, Trātr. dy-
namically increases the probing window size and aggressively probes
the synchronization primitive to detect an attack early. 144

5.6 IC benchmark performance without attack, with attack and
with Trātr.. (a) Timeline of the throughput showing the impact on
the throughput due to the attack for the Vanilla and Trātr. kernel.
With Trātr. , the attacker is not able to launch an attack. (b) Timeline
of the average latency observed every second while creating the files. 152

5.7 Internal state of inode cache when under inode cache attack.
The graphs present an overall picture of the inode cache when an at-
tacker is launching the attack. In particular, the timeline shows the
lock hold times of the attacker, the cumulative wait times to acquire
the inode cache lock, and the maximum number of entries of the at-
tacker for the Vanilla kernel and Trātr. . The victim is running the IC
benchmark. 154

5.8 FT benchmark performance without attack, with attack and
with Trātr.. (a) Timeline of the throughput showing the impact on
the throughput due to the attack for the Vanilla and Trātr. kernel. (b)
Timeline of the average latency for another experiment of the time to
release the lock. 157

5.9 Internal state of futex table when under futex table attack.
The graphs present an overall picture of the futex table when an at-
tacker is launching the attack. In particular, the timeline shows the
lock hold times of the victim, the cumulative wait times to acquire the
hash bucket lock, and the maximum number of entries of the attacker.
The victim is running FT benchmark. 159

xxiv

5.10 Performance of Trātr. components. Throughput timeline for the
futex and inode cache attacks explaining the importance of detection,
prevention and recovery. We also show the timeline for Trātr. -TDP.
Trātr. -TDP denotes the kernel version that has the tracking, detection
and prevention mechanisms enabled. (a) For Trātr. -TDP, as there is
no recovery mechanism enabled, the FT benchmark observes a sig-
nificant drop in the performance. (b) However, for IC benchmark,
the prevention mechanism prevents the attacker from expanding the
hash bucket leading to similar performance as Trātr. 162

5.11 Performance comparison of the various applications across
different scenarios. Performance comparison of Vanilla and Trātr.
with and without attack when subjected to different attacks. (a) &
(b) shows the performance when multiple applications run within a
single machine for futex table and inode cache attack. (c) shows the
ability of Trātr. to handle simultaneous attacks. 177

5.12 Performance comparison of the Exim mail server when un-
der dcache attack. Performance comparison of Vanilla and Trātr.
with and without attack when subjected to directory cache attack.
Timeline of the throughput showing the impact on the throughput
due to the attack for the Vanilla and Trātr. kernel. 178

5.13 Performance comparison of victim when a defense aware at-
tacker launches inode cache attack. (a) Timeline of the through-
put showing the impact on the throughput due to the defense-aware
attacker. (b) Lock hold times comparison to highlight how the
defense-aware attacker remains under the threshold limits to evade
detection. 182

5.14 Performance comparison of victim when a defense aware at-
tacker launches futex table attack. Timeline of the throughput
showing the impact on the throughput due to the defense-aware attacker.184

xxv

Abstract

In shared environments such as operating systems, servers (databases,
key-value stores), and hypervisors, multiple tenants with varied require-
ments compete to access the shared resources, making strong perfor-
mance isolation necessary. Locks are widely used synchronization prim-
itives that provide mutual exclusion in such environments. This disserta-
tion focuses on the concurrency issues arising from sharing synchroniza-
tion primitives amongst multiple tenants.

Shared data structures change as multiple tenants execute their work-
loads. These state changes can lead to a situation where the critical section
sizes vary significantly. In this dissertation, we ask the following ques-
tion: what happens to performance and fairness when a single lock pro-
tects variable-sized critical sections?

To answer the above question, in the first part of this dissertation, we
introduce the idea of lock usage that deals with the time spent in the
critical section. We then study unfair lock usage in benign and hostile
settings. For benign settings, unfair lock usage can lead to a new prob-
lem called scheduler subversion where the lock usage patterns determine
which thread runs instead of the CPU scheduler. In a hostile setting, un-
fair lock usage can lead to a new problem we call adversarial synchro-
nization. Using Linux containers, we introduce a new class of attacks
– synchronization attacks – that exploit kernel synchronization to harm

xxvi

application performance. Furthermore, a subset of these attacks – fram-
ing attacks – persistently harm performance by expanding data structures
even after the attacker quiesces. We demonstrate three such attacks on the
Linux kernel, where an unprivileged attacker can target the inode cache,
the directory cache, and the futex table.

In the second part of the dissertation, to mitigate scheduler subver-
sion, we introduce Scheduler-Cooperative Locks (SCLs), a new family of
locking primitives that control lock usage and aligns with system-wide
scheduling goals; our initial work focuses on proportional share sched-
ulers. Unlike existing locks, SCLs provide an equal or proportional time
window called lock opportunity within which each thread can acquire the
lock one or more times. We design and implement three different SCLs
– a user-level mutex lock (u-SCL), a reader-writer lock (RW-SCL), and
a simplified kernel implementation (k-SCL). Our evaluation shows that
SCLs are efficient and achieve high performance with minimal overhead
under extreme workloads. We port SCLs in two user-space applications
(UpScaleDB and KyotoCabinet) and the Linux kernel to show SCLs can
guarantee equal or proportional lock opportunity regardless of the lock
usage patterns.

In the third part of the dissertation, to mitigate adversarial synchro-
nization, we design Trātr., a Linux kernel extension. Trātr. can detect and
mitigate synchronization and framing attacks with low overhead, prevent
attacks from worsening, and recover by repairing data structures to their
pre-attack performance. Trātr. comprises four mechanisms: tracking, de-
tection, prevention, and recovery. Our evaluation shows that Trātr. can
detect an attack within seconds, recover instantaneously while guaran-
teeing similar performance to baseline, and detect simultaneous attacks.

1

1
Introduction

The last decade has seen a phenomenal change in the hardware arena,
where computer architects focus on adding more cores to the machines
instead of increasing CPU frequency [65, 137]. This change is primarily
driven by the physical limitations of semiconductor-based microelectron-
ics to reduce the size of the individual components. Therefore, software
developers have to rethink their applications to leverage the multicore
machines instead of relying on application performance increasing due
to an increase in the CPU frequency.

While leveraging these multicore machines to build concurrent sys-
tems, developers focus on embracing concurrency [76, 146]. When mul-
tiple events occur concurrently, certain interleavings are not desired and
can lead to incorrect behavior. Thus, care has to be taken to always syn-
chronize the possible interleavings to avoid undesirable behavior.

Synchronization is an act of handling the concurrent events atomically
and by ensuring the ordering of events properly. Various synchroniza-
tion primitives have been designed by researchers and practitioners for
decades [10, 16, 26, 28, 37, 38, 45, 48, 50, 53, 56, 57, 62, 64, 73, 74, 85, 86,
101, 102, 109, 119, 131, 133, 135, 164].

Mutual exclusion is one of the ways to implement atomicity where a
critical section needs to be executed atomically to avoid undesirable be-
havior. A critical section is part of the program accessing shared data and
hence needs to be protected by synchronization primitives. Locks are one

2

of the most common options to enforce mutual exclusion. However, it is
not always easy to design concurrent systems, and many concurrent sys-
tems suffer from bottlenecks [14, 18, 31, 49, 50, 57, 69, 82, 96, 99, 106, 107,
124, 148, 162].

Designers of locking algorithms keep several properties in mind –
safety, liveness, fairness, and performance while designing a locking al-
gorithm [138]. Guaranteeing fairness to all the participating entities is
one of the key properties. Lock fairness is a well-studied problem, and
many solutions are available that provide fairness properties [45, 53, 73,
90, 102, 109, 139, 147, 150]. These solutions have been designed keeping
in mind that the locks will be used in a cooperative environment where
the locks are used within the same program. Any side effect of a possible
unfair behavior will be observed within the program itself.

Shared infrastructure is becoming common in data centers and cloud
computing environments where multiple tenants run on the same physi-
cal hardware. In these environments, tenants having varied requirements
can compete to access the resources and thus place a heavy burden on sys-
tem software to isolate mutually distrusting tenants. Multiple solutions
such as Eyeq, IceFS, cgroups, and Pisces are available to provide strong
performance isolation so that the behavior of one tenant cannot harm the
performance of other tenants [47, 72, 81, 100, 112, 143, 158].

This dissertation focuses on the locks within the shared environments
and the concurrency problems that arise due to the sharing. One of the
implicit assumptions while offering lock fairness is that the critical sec-
tions are similar in size. However, this assumption may be broken in the
shared environments where one tenant may entirely have different re-
quirements than the other. When data structures grow or shrink due to
varying workloads, the critical section will likely change depending on
the state of the data structure.

In this dissertation we ask the question – what is the impact on perfor-

3

mance and fairness properties when a single lock protects variable-sized
critical sections? In particular, we question if the critical section can in-
crease in size naturally in due course or during scenarios where a mali-
cious actor can artificially increase the size. We answer the question by
introducing a new lock property – lock usage, that is lacking in the pre-
vious locking algorithms [123]. Lock usage is the amount of time spent
in the critical section while holding the lock.

This dissertation has three parts to it. In the first part, we introduce
lock usage and understand the impact of unfair lock usage in benign and
hostile settings. In doing so, we present two new problems – scheduler
subversion [123] and adversarial synchronization [121] – that can lead
to poor performance and denial-of-service. Scheduler subversion is an
imbalance in the CPU allocation when the lock usage pattern dictates the
CPU allocation instead of the CPU scheduler. In adversarial synchroniza-
tion, a malicious actor attacks the synchronization primitives to harm ap-
plication performance.

In the second part, we address the scheduler subversion problem by
designing Scheduler-Cooperative locks, a new family of locking algo-
rithms that can guarantee lock usage fairness [123]. Finally, in the third
part, we address the problem of adversarial synchronization by designing
Trātr.1, a new Linux extension that can quickly detect and mitigate attacks
on the synchronization primitives [121].

1.1 Lock Usage
Locks are an integral component of any concurrent system. Locks are
used to ensure mutual exclusion, and hence they should ensure specific
properties such as safety, liveness, and fairness while having low over-
head to enable frequent access.

1Trātr. in Sanskrit means a guardian or a protector. It is pronounced as Traa + tru

4

Amongst all the properties, fairness offers the strongest guarantees
as it ensures a static bound before a thread can acquire a lock and make
forward progress. Generally, the static bound is defined by the order in
which the threads acquire the locks. By doing so, no thread can access the
lock twice while some other threads are kept waiting. We call this type of
fairness lock acquisition fairness.

In the first part of the dissertation, we show that a critical lock property
called lock usage is missing. We define lock usage as the amount of time
spent in the critical section while holding the lock. For example, if two
threads are trying to access a lock that protects a linked list, a thread that
traverses the linked list is going to spend more time in the critical section
compared to another thread that always inserts an entry at the head of
the linked list.

When one or more threads continue to spend more time in the criti-
cal section than other threads, an imbalance created in the lock usage can
lead to two problems – performance and security. A data structure con-
tinuously undergoes state changes depending on the workload that will
eventually grow or shrink a data structure. Therefore, as the data struc-
ture state changes, there will be a variation in the critical section sizes that
the thread executes.

The problem of lock usage becomes crucial in shared environments
such as a server (databases, key-value stores, etc.), operating system, or
hypervisor, where multiple tenants are executing a variety of applications
and workloads. In such environments, multiple tenants are accessing the
same shared infrastructure that is protected by various synchronization
primitives such as locks, reader-writer locks, and RCU.

A new problem related to performance occurs due to lock usage im-
balance, when a thread that spends more time in the critical section is al-
located an equivalent CPU time compared to another thread that spends
less time in the critical section. Although the CPU scheduling goals may

5

have been to allocate each thread an equal share of CPU, both the threads
may not receive equal share leading to an imbalance in the CPU schedul-
ing goals. We call this new problem scheduler subversion and is found in
a benign setting where tenants compete against each other to access the
shared locks but are not malicious.

Scheduler subversion is an imbalance caused in the CPU allocation,
and it arises when instead of the CPU scheduler determining the propor-
tion of the CPU each thread obtains, the lock usage pattern dictates the
share. Using a real-world application – UpScaleDB, we illustrate the prob-
lem and then explain what conditions can lead to scheduler subversion
problem. We observe that lock contention happens when threads spend
more time in the critical section that can significantly vary in size.

Another problem related to security occurs in a hostile setting where
tenants are competing to access the shared locks and may be malicious.
In such a setting, a malicious actor can artificially grow the data structure
to create performance interference via adversarial synchronization. Once
the data structure grows, the critical section size will be longer; if the ma-
licious actor holds the lock longer, the victims will have to wait longer to
acquire the lock causing artificial lock contention, leading to poor perfor-
mance. We call this a synchronization attack.

If victims happen to access the expanded data structure, they will be
forced to spend more time in the critical section. Other victims will have
to now wait longer to acquire the lock too. We call this a framing attack
where the malicious actor forces the victim to spend more time in the
critical section and make other victims wait to acquire the lock leading to
poor performance.

We show three different attacks on the Linux kernel where an unpriv-
ileged malicious actor can target three different vulnerable kernel data
structures leading to poor performance and denial-of-service using con-
tainers. Even though the goal of the malicious actor is to target the syn-

6

chronization primitives, the method applied to launch an attack is differ-
ent. It signifies that there is more than one way to launch synchronization
and framing attacks.

Even though containers provide significant isolation through a vari-
ety of techniques, we show that synchronization and framing attacks can
bypass those isolation techniques making the victims suffer economically
while observing poor performance and denial-of-service.

Therefore, it becomes crucial to consider lock usage as an essential
property to support in shared environments where multiple tenants can
execute various applications and workloads. Furthermore, to guarantee
strong performance isolation in such environments, it is necessary to look
at lock usage.

1.2 Scheduler-Cooperative Locks
In the second part of this dissertation, we continue looking into the
problem of scheduler subversion. Scheduler subversion arises when the
threads spend most of their time in the critical section, and the critical sec-
tion sizes vary significantly. Once these two conditions hold, there is an
imbalance in the lock usage leading to scheduler subversion. In this part,
we focus on addressing the problem of scheduler subversion by building
locks that align with the scheduling goals.

As discussed earlier, in existing applications, the critical section size
varies when the data structure grows. The critical section size is not a
static property and continues to change dynamically depending on the
data structure state. Therefore, to remedy the problem of scheduler sub-
version, we define the concept of lock usage fairness.

Lock usage fairness ensures that each competing thread receives an
equal or proportional opportunity to use the lock. To quantify the lock
usage fairness, we introduce a new metric – lock opportunity. Lock op-

7

portunity is defined as the amount of time a thread spends holding a lock
or acquiring the lock because the lock is available. As each thread is guar-
anteed a dedicated window of opportunity, no thread can dominate the
lock usage leading to an imbalance in the scheduling goals.

Using a simple example, we show how existing locks – a simple spin-
lock, a pthread mutex, and a ticket lock – cannot control the CPU alloca-
tion. In all these cases, we observe that these locks have a very low lock
usage fairness score. Even though a ticket lock ensures lock acquisition
fairness, it still has a low lock usage fairness index. Therefore, a need
arises to design a new locking primitive where lock usage and not just
the lock acquisition determines the lock ownership.

Building upon the idea of lock usage fairness, we design Scheduler-
Cooperative Locks (SCLs) – a new family of locks that align with the CPU
scheduling goals and ensures lock usage fairness. The key components of
an SCL lock are lock usage accounting, penalizing the threads depending
on the lock usage, and dedicated lock opportunity using lock slice. SCLs
provide a dedicated window of opportunity to all the threads. Thereby,
SCLs are non-work-conserving relative to state-of-the-art locks.

Lock usage accounting helps with the lock usage tracking of all the
threads participating in the lock acquisition process. The accounting in-
formation can then help identify the dominant threads, and they can be
penalized appropriately for using their full quota of lock usage. By penal-
izing the dominant threads, SCLs present an opportunity to other threads
to acquire the lock. Lastly, to avoid excessive locking overheads, SCLs use
lock slices to allow a window of time where a single thread is allowed to
acquire or release as often as it would like. Threads alternate between
owning the lock slices, and thus one can view that lock slices virtualizes
the critical section to make the threads believe that it has the lock owner-
ship to itself.

Using these three components, we implement three different types of

8

SCLs – a user-space SCL (u-SCL), a reader-writer SCL (RW-SCL), and a
simple kernel implementation (k-SCL). We use existing lock implemen-
tations to implement these three SCLs and extend them to support lock
usage fairness. It shows that it is easy to extend the existing locking algo-
rithms to support lock usage fairness. Furthermore, the implementations
use existing and new optimization techniques to improve efficiency and
lower the overhead.

We experimentally show that SCLs can achieve the desired behav-
ior of allocating CPU resources proportionally in a variety of synthetic
lock usage scenarios. We also show that SCLs have low overhead and
can scale well. We also demonstrate the effectiveness of SCLs by porting
SCLs in two user-space applications (UpScaleDB and KyotoCabinet) and
the Linux kernel. In all three cases, regardless of the lock usage patterns,
SCLs ensure that each thread receives proportional lock allocations that
match those of the CPU scheduler.

1.3 Taming Adversarial Synchronization
Attacks using Trātr.

In the third part of this dissertation, we shift the focus from the benign
settings in a shared environment to hostile settings. We now look into
how we can address the security aspects of lock usage fairness when a
malicious actor can deliberately grow the data structures to launch syn-
chronization and framing attacks.

Using the three different synchronization and framing attacks on three
different data structures in the Linux kernel, we illustrate there is no sin-
gle way to launch the synchronization and framing attacks. Instead, an
attacker has multiple options to launch these attacks and can launch these
attacks simultaneously. Even worse, with framing attacks, the attacker
does not have to participate once the data structure has grown signifi-

9

cantly. Thus, a malicious actor can inflict severe performance and eco-
nomic impact on the victims using these attacks.

Attacks on synchronization primitives can be addressed by interrupt-
ing one of the criteria necessary for an attack by using lock-free data struc-
tures, universal hashing, balanced trees, randomized data structures, or
partitioning of data structures. However, none of these solutions are com-
petent in addressing the synchronization and framing attacks as these
solutions are already vulnerable to attacks, introduce performance over-
head, or require rewriting the kernel. Therefore, a new approach is neces-
sary that is lightweight, can trigger an automatic response and recovery,
and flexible to support multiple data structures.

To address the problem of adversarial synchronization, we design
Trātr.– a Linux extension to detect and mitigate synchronization and fram-
ing attacks with low overhead, prevent attacks from worsening, and re-
cover by repairing data structures to their pre-attack performance. As the
Linux kernel comprises multiple data structures, Trātr. provides a general
framework for addressing these attacks.

Trātr. employs four mechanisms – tracking, detection, prevention, and
recovery to detect and mitigate the attacks. Trātr. tracks the data structure
usage by each tenant and stamps each kernel object with the tenant infor-
mation that it can use at a later point in detecting an attack and perform
recovery. The detection mechanism periodically monitors synchroniza-
tion stalls to detect an attack. Upon detecting a possible attack, Trātr. uses
the tracking information to identify the attacker and initiate mitigation
mechanisms.

Upon detecting an attack, Trātr. prevents the attacker from allocating
more kernel objects, thereby preventing the attacker from further expand-
ing the data structure. Prevention alone is not enough as victims of fram-
ing attacks can continue to observe poor performance. Therefore, Trātr.
initiates recovery mechanism to repair the data structure to the pre-attack

10

state. As the data structures are different, Trātr. uses two different recov-
ery methods - isolating the attacker or evicting the attacker’s entries.

The current implementation of Trātr. supports three different data
structures - the inode cache, the futex table, and the directory cache track-
ing four different slab-caches associated with the three data structures
and monitors two different synchronization mechanisms – spinlock and
RCU.

We demonstrate the effectiveness of Trātr. on the inode cache attack,
the futex table attack, and the directory cache attack. We show that Trātr.
can quickly detect an attack, thereby preventing the victim from observ-
ing poor performance. Trātr. can quickly initiate recovery to bring the
victims’ performance to pre-attack level. At a steady state, without an
attack, Trātr. imposes around 0-4% of tracking overhead on a variety of
applications. The other three mechanisms incur less than 1.5% impact
on the performance without an attack. We also show that Trātr. can detect
multiple attacks simultaneously, and it is easy to add a new data structure
to Trātr..

1.4 Contributions
We list the main contributions of this dissertation.

• Lock usage. We present a new dimension to the existing proper-
ties of locks by introducing lock usage. Lock usage deals with the
amount of time spent in the critical section while holding the lock.
When multiple threads belonging to the same application or dif-
ferent applications participate in the lock acquisition process, lock
usage plays a crucial role in ensuring all the participating threads
can acquire the lock and execute critical sections.

11

• Lock usage fairness. We introduce a new factor to the existing fair-
ness property of locks by coining lock usage fairness. Lock usage
fairness guarantees that each competing entity receives a time win-
dow to use the lock perhaps once or many times. We call this win-
dow of opportunity lock opportunity and use it to measure lock us-
age fairness. Lock usage fairness becomes an important property
in shared environments such as servers, operating systems, and hy-
pervisors where multiple tenants can compete to acquire the shared
data structures protected by synchronization mechanisms. Unfair
lock usage can lead to performance and security issues.

• Scheduler subversion. For benign settings within shared envi-
ronments, multiple tenants can introduce lock contention and also
grow the data structures while executing their workloads. In do-
ing so, the critical section size changes. When there is enough lock
contention and the presence of variable-sized critical sections, there
arises a new problem of scheduler subversion. Scheduler subver-
sion is an imbalance created due to unfair lock usage where the lock
usage determines the CPU share each thread obtains instead of the
CPU scheduler.

• Scheduler-Cooperative Locks. To address the problem of sched-
uler subversion, we design Scheduler-Cooperative Locks, a new
family of locks that can ensure lock usage fairness by aligning with
the CPU scheduling goals. SCLs provide an equal or proportional
lock opportunity to each thread within which each thread can ac-
quire the lock one or more times.
SCLs utilize three important techniques to achieve their goals: track-
ing lock usage, penalizing threads that use locks excessively, and
guaranteeing exclusive lock access with lock slices. Using these
three techniques – we implement three different SCLs: a user-level

12

mutex lock (u-SCL), a reader-writer lock (RW-SCL), and a simpli-
fied Linux kernel implementation (k-SCL).

• Adversarial synchronization. For hostile settings within shared en-
vironments, malicious actors can deliberately grow the shared data
structures, thereby leading to artificial lock contention. When such
a situation arises, there can be security arising leading to poor per-
formance and denial-of-services.
Using the idea of adversarial synchronization, we present a new
class of attacks – synchronization attacks – that exploit Linux kernel
synchronization to harm application performance. Using contain-
ers, we show how an unprivileged malicious actor can control the
duration of kernel critical sections to stall victims running in other
containers on the same operating system.
A subset of the synchronization attacks termed framing attacks, not
only stall the victims to access the synchronization mechanisms, but
also forces the victims to execute the expanded data structures mak-
ing their critical section also longer.

• Trātr.. To address the problem of adversarial synchronization, we
design Trātr., a Linux extension, to quickly detect synchronization
and framing attacks, prevent attacks from worsening, and recover
by repairing data structures to their pre-attack performance. Trātr.
relies on four mechanisms - tracking, detection, prevention, and re-
covery for efficient working. Trātr. provides a general framework for
addressing the attacks, and adding new data structures is easy.

1.5 Overview
We briefly describe the contents of the different chapters in the disserta-
tion.

13

• Background. Chapter 2 provides background on concurrency syn-
chronization and mutual exclusion. We discuss the properties of
locks and how locks are designed. Finally, we discuss the imple-
mentation of commonly used synchronization primitives that we
will use in the dissertation.

• Lock usage fairness. Chapter 3 introduces the idea of lock usage
fairness and the importance of lock usage fairness in shared en-
vironments. We introduce the problem of scheduler subversion
where the lock usage pattern dictates the CPU allocation instead of
the CPU scheduler determining the share of the CPU each thread
obtains. Further, we introduce the problem of adversarial synchro-
nization by describing synchronization and framing attacks. We
also illustrate synchronization and framing attacks on three Linux
kernel data structures and explain the performance and economic
impacts on the victims.

• Scheduler-Cooperative Locks. In Chapter 4, we start by studying
how existing locks can lead to the scheduler subversion problem.
Then, we introduce the idea of lock opportunity – a new metric to
measure lock usage fairness. We discuss how lock usage fairness
can be guaranteed by Scheduler-Cooperative Locks (SCLs), a new
family of locking primitives that controls lock usage and thus aligns
with system-wide scheduling goals. Lastly, we present the design,
implementation, and evaluation of three different SCLs: a user-level
mutex lock (u-SCL), a reader-writer lock (RW-SCL), and a simpli-
fied kernel implementation (k-SCL).

• Taming adversarial synchronization attacks using Trātr.. In Chap-
ter 5, we first start by discussing how existing solutions cannot solve
the problem of adversarial synchronization. Then, we discuss the
design, implementation, and evaluation of Trātr., a Linux kernel ex-

14

tension, to detect and mitigate synchronization and framing attacks
with low overhead, prevent attacks from worsening, and recover by
repairing data structures to their pre-attack performance.

• Related Work. In Chapter 6, we discuss how other research work
and systems are related to this dissertation. We first discuss the
work related to lock usage fairness, scheduler subversion, and ad-
versarial synchronization. Then, we compare and contrast the work
on SCLs and Trātr. with existing work.

• Conclusions and Future Work. Chapter 7 summarizes this disser-
tation where we present a brief overview of lock usage and how the
problems related to lock usage can be solved. We then present some
lessons learned during the course of this dissertation, followed by
the possible directions this work can be extended.

15

2
Background

In this chapter, we provide a background on various topics that are rele-
vant to this dissertation. We start with a brief overview of concurrency,
synchronization, and mutual exclusion in Section 2.1. Then, we discuss
crucial lock properties, the five lock algorithm categories, and the waiting
policy used to design locks in Section 2.2. Finally, we discuss the imple-
mentation of common synchronization primitives in Section 2.3.

2.1 Concurrency, Synchronization & Mutual
Exclusion

Processor clock speeds are no longer increasing. Instead, computer archi-
tecture designers are focusing on designing chips with more cores. There-
fore, to utilize these chips with more cores and achieve efficiency, system
designers have to figure out how to decompose the programs into small
parts that can run concurrently. These concurrent parts need to execute
either in an orderly fashion or run independently and may interact with
each other. Concurrent systems are systems that can be decomposed into
various units of computation that can run at the same time. Concurrency
is a property of such concurrent systems where multiple events in the
form of computations are happening at the same time. As these events

16

can interact, the number of possible interleavings in the system can be
extremely large, leading to complexity.

Whenever concurrent events happen, there will be various interleav-
ings that are not desired, i.e., they are incorrect from the behavioral per-
spective and may lead to unforeseen problems. Such conditions are called
as race conditions, and there has to be a way to avoid such undesired inter-
leavings that can lead to non-deterministic results. Synchronization is an
act of handling concurrent events in such a manner that we can avoid in-
correct interleavings. Synchronization does so by making the concurrent
events happen in certain time order.

A synchronization primitive is a mechanism that will ensure a tempo-
ral ordering of the events that we believe will always be correct. From
a process synchronization perspective, threads and processes both have
to rely on synchronization for correctness purposes. We use process and
threads interchangeably to discuss the idea of process synchronization.
Furthermore, when multiple processes use a synchronization primitive,
they interact with the primitive itself to identify the ordering and coor-
dinate to avoid undesired interleavings. Thus, we believe that using the
synchronization primitive can influence the behavior of the process itself.

Every type of synchronization primitive offers either atomicity, order-
ing, or both. Atomicity ensures that a specified event or a sequence of
events will either happen all together or not at all. Thus, there can never
be any undesirable interleavings possible with atomicity. On the other
hand, many times, just ensuring atomicity alone is not enough. An addi-
tional requirement of guaranteeing order is necessary too. Thus, ordering
ensures that a specified event or a sequence of events never happens until
a certain pre-condition is true.

One of the ways to implement atomicity is by enforcing mutual exclu-
sion. One or more operations can be executed at a time by enforcing mu-
tual exclusion. The set of operations that needs to execute in mutual ex-

17

clusion is called a critical section. The critical section accesses the shared
variable, counters, or shared data structure, etc. Thus, mutual exclusion
is a way to ensure that no two processes can exist in the critical section si-
multaneously. Multiple threads or processes that want to access the criti-
cal section will have to use a synchronization primitive to ensure mutual
exclusion.

There are different ways to ensure mutual exclusion, such as using
atomic instructions, locks, reader-writer locks, semaphores, monitors,
and read-copy-update [138]. Locks are one of the widely-used synchro-
nization primitives to build concurrent systems such as operating sys-
tems, user-space applications, and servers. A lock can be used across two
or more processes or within a single process to ensure mutual exclusion
across threads. Locks provide an intuitive abstraction of isolation where
only one process is executing the critical section. When a lock is held,
no other process is allowed to enter the critical sections that accesses the
same shared data until the process completes executing the critical section
and releases the lock.

There are several other synchronization primitives available, such as
condition variables and monitors that developers can use to ensure or-
dering. Condition variable, a popular primitive, is a queue of waiting
processes where the processes wait for a certain condition to be true. A
condition variable is always associated with a mutual exclusion lock and
can also be implemented by using other synchronization primitives such
as semaphores [25].

2.2 Locks
We now discuss how locks can be designed. Firstly, we describe the vari-
ous properties of locks. Then, we discuss the five locking algorithm cate-
gories depending on how the locks transfer the lock ownership, whether

18

they can address the performance demands, etc. Lastly, we discuss the
waiting policy that various locking algorithms use to decide when the
lock is unavailable.

To interact with the locks, processes and threads use the two most
common APIs available with the locks – lock() and unlock(). The lock()
or acquire() API is used to acquire the lock. Once the thread acquires
the lock, it can continue with the execution of the critical section. If the
lock is not free, the thread will wait until another thread completes the
execution of the critical section. Lock contention happens when a thread
tries to acquire a lock that is held by another process. The unlock() or
release() API is used by the thread holding the lock to release the lock.
Once the lock is released, another waiting thread can acquire the lock.

2.2.1 Crucial Lock Properties

Locks should exhibit certain properties so that one can evaluate the ef-
ficacy of the lock. The few crucial properties that lock designers should
focus on are:

1. Safety. The safety property ensures that nothing bad will happen
in the system. There are two aspects related to nothing bad. The
first one is that the atomicity has to be guaranteed. The lock should
always ensure mutual exclusion so that no two threads can execute
the critical section simultaneously and lead to incorrect behavior.
Secondly, locks should avoid deadlocks and is generally done by the
user of the locks. When deadlocks happen, threads continue to wait
for each other to release the locks, thereby getting into a bad state
where no progress is being made. Locks that allow nesting or where
the lock acquisition order is not maintained can lead to deadlocks.
Many locks try to avoid deadlocks by breaking at least one of the

19

four conditions needed to end up in a deadlock that Coffman et al.
identified [42].

2. Liveness. The liveness property ensures that eventually something
good will happen, i.e., if the lock is free and a few threads are trying
to acquire the lock, at least one thread will eventually acquire it and
make forward progress.
A stronger variant of liveness is starvation freedom; any given
thread can never be prevented from making forward progress. A
weaker variant, livelock freedom, deals with the fact that, as a
whole, the system may make forward progress even though there
may be threads that are starving. Deadlock avoidance approaches
may lead to a livelock occasionally. A livelock is similar to a dead-
lock, where the processes do not make forward progress; how-
ever, the states of the processes involved in the livelock constantly
changes with regard to one another [21].

3. Fairness. On closer inspection, livelock freedom does not adhere
to the notion of fairness as there is a possibility that one or more
threads may starve and eventually never make forward progress.
Similarly, for starvation freedom, there is no bounded time associ-
ated with waiting. An arbitrary amount of time can be spent before
the thread is guaranteed forward progress. Therefore, there arises
a need to have some bounds on how long the thread should wait
before it is guaranteed to make forward progress.
By bounding the wait times to acquire the locks, each thread will
get a fair chance to acquire the lock without starving. The bound-
ing time can be defined in any way possible. Generally, the bound-
ing wait time is defined by the order in which the threads acquire
the lock. Thus, no thread can access a lock twice while some other

20

threads are kept waiting. We call this type of fairness acquisition
fairness.
To guarantee lock acquisition fairness, the locks need to maintain
some state and remember the order in which the threads tried to
acquire the lock. This state information can be either simple or com-
plex depending on the assumptions.

4. Performance. The performance of the lock largely depends on two
aspects. The first aspect is overhead, and the second aspect is scal-
ability. Ideally, a good locking algorithm should have low over-
head so that frequent usage of the lock is possible and should scale
well such that its performance should not degrade as the number of
CPUs increases.
Lock overhead deals with various factors such as the memory space
allocated for the locks, initializing and destroying the locks, and
the time taken to acquire and release the locks with and without
lock contention. As the locks need to maintain states, there is al-
ways some memory allocation associated with the locks. For sim-
ple locks, the memory space needed may be a few bytes. While for
complex locks, as more information needs to be stored, the memory
space needed is high. As thousands of locks may be used to imple-
ment concurrent systems, the total memory space needed becomes
crucial [55].
Similarly, there may be use-cases where the locks need to be initiated
and destroyed frequently. The lock design should keep this factor
in mind while designing the locks. There can be performance issues
if the lock initialization and destroying takes a significant amount
of time.
The time taken to acquire and release the locks should be minimal.
The performance of the lock should not vary much irrespective of

21

how many threads are participating in the lock acquisition process.
If the threads spend enough time performing locking operations,
the performance of the application will be impacted. Lock designers
should keep in mind different cases that are worth considering, such
as what is the overhead when only a single thread is acquiring and
releasing the lock; what happens when there are multiple threads
participating in the lock acquisition process, i.e., during heavy lock
contention.
There is a significant relationship between the cache-coherence pro-
tocols of the underlying hardware and the locks [50]. As the locks
are implemented using atomic instructions, their performance de-
pends on the cost associated with these atomic instructions. Execu-
tion of these atomic instructions does not scale well in the presence
of non-uniform memory access (NUMA) nodes. More so, with con-
tention, the performance of the atomic instructions degrade quickly,
leading to a performance collapse. Hence, while designing the
locks, one will have to keep in mind the presence of NUMA nodes
and the number of CPUs in the system.
Locks should enable correctness while still ensuring that they
incur low-overhead and can scale well with the number of
CPUs. Researchers and practitioners have put forth decades of ef-
fort to design, implement, and evaluate various synchronization
schemes [10, 16, 26, 28, 37, 38, 45, 48, 50, 53, 56, 57, 62, 64, 73, 74,
85, 86, 101, 102, 109, 119, 131, 133, 135, 164].

Generally, simple locks are efficient in terms of overhead as they do
not maintain too much state information leading to low memory over-
head. However, they do not scale well as the number of CPUs increase.
Furthermore, they cannot guarantee acquisition fairness as there is not
enough state information available to decide on lock ownership. On the

22

other hand, complex locks will have memory overhead. Still, they may
guarantee acquisition fairness as they have enough state information to
identify the lock ownership.

Even though we do not discuss the properties of other synchronization
primitives, the properties that we discuss for the lock also hold for other
synchronization primitives. We will now discuss the simple and complex
locks and the properties they guarantee.

2.2.2 Categorizing Lock Algorithms

The body of existing work on locking algorithms is rich and diverse. Nu-
merous optimized locking algorithms have been designed over the past
few decades to ensure mutual exclusion and address the concerns re-
lated to scalability, low overhead, and fairness. All of these locking al-
gorithms can be split into five categories – competitive succession, direct
handoff succession, hierarchical approaches, load-control approaches,
and delegation-based approaches [71].

The first two categories are based on how the lock ownership is trans-
ferred from the current lock owner to the next owner while releasing the
lock. The other three categories support NUMA machines by building hi-
erarchies to reduce lock migration across NUMA nodes, controlling how
many threads participate in the lock acquisition process, and delegating
the execution of the critical sections to the current lock owner. While the
last three categories focus more on improving lock performance, many
locks in these categories guarantee acquisition fairness. Compared to the
first two categories that have a simple design, the locks belonging to the
last three categories have a complex design.

1. Competitive succession. Locking algorithms in this category are
one of the simplest algorithms that comprise of one or a few shared
variables accessed via atomic instructions. There is no specific di-

23

rection on passing the lock ownership from the current lock owner
to other competing threads. Once the current lock owner releases
the lock, all the waiting threads compete to be the next lock owner.
As these algorithms use atomic instructions, the cache-coherence
protocol of the underlying hardware plays a role in deciding who
the next lock owner will be. Due to this reason, any thread can ac-
quire the lock in any order leading to unfair behavior and starvation.
There can even be instances when an arriving thread may acquire
the lock while the existing waiting threads continue to wait to ac-
quire the lock [53]. Multiple threads concurrently access the shared
variables using atomic instructions generating cache-coherence traf-
fic leading to performance problems.
Simple spinlock [138], backoff spinlock [16, 109], test and test-and-
set lock [16], mutexee lock [61], and the standard Pthread mutex
lock [92] are the examples of locks that belong to this category.

2. Direct handoff succession. Locking algorithms in this category al-
ways decide on who the next owner is going to be instead of allow-
ing all the competing threads to compete for the lock ownership.
The threads participating in the lock acquisition process can spin
on a local variable, reducing the cache-coherence traffic. Hence,
such algorithms are scalable and incur low overhead as the waiting
threads do not have to access the shared variables for lock owner-
ship.
MCS [109, 138], CLH [45, 102, 138], ticket lock [21, 138], and par-
titioned ticket lock [48] are examples that follow the strategy of
directly handing off the lock ownership to the chosen one. Even
though ticket lock and partitioned ticket lock uses a global variable
to keep note of the successor, they can be implemented efficiently to
reduce cache-coherence traffic.

24

3. Hierarchical approaches. Locking algorithms in this category are
designed to scale well on NUMA nodes. The algorithms do so by en-
suring that the lock ownership does not migrate across the NUMA
nodes frequently. Rather, the lock ownership transfers between dif-
ferent NUMA nodes periodically where all the threads running on
that NUMA node can acquire the lock. These locking algorithms
are built using either competitive succession or direct handoff suc-
cession. HBO [131], HCLH [141], FC-MCS [56], HMCS [37] are
examples of the locks that belong to this category.
Locks based on the lock cohorting framework [57] also belong to
this category. A cohort lock combines two locking algorithms where
one lock is used as a global lock to transfer the lock ownership at
the NUMA node level. In contrast, the other lock is used locally to
transfer lock ownership to participating threads within the NUMA
node. For example, the CBO-MCS lock corresponds to the global
lock being backoff spinlock and the local lock being MCS lock. Sim-
ilarly, the C-PTL-TKT lock corresponds to the global and local lock
as partitioned ticket lock and ticket lock, respectively. C-TKT-TKT
(HTicket) [50] lock comprises both the global and local lock being
ticket lock.

4. Load-control approaches. Locking algorithms that prevent per-
formance collapse by limiting the number of participating threads
come under the load-control approaches. These locks can adapt to
the changing lock contention and accordingly decide on whether to
allow multiple threads to participate in the lock acquisition process
or not. Locks such as MCS-TP [73], GLS [18], SANL [164], LC [82],
AHMCS [38], and, Malthusian algorithms [53] fall under this cate-
gory.

5. Delegation-based approaches. Delegation-based approaches com-

25

prise of threads delegating the execution of the critical section to
another thread typically holding the lock. This way, threads can
avoid the transfer of lock ownership, and only one thread can ex-
ecute the critical section on behalf of others. Doing so helps in
improving the performance as there is less data migration across
caches, improving the cache locality. Locks such as Oyama [119],
Flat Combining [74], RCL [99], FFWD [135], CC-Synch [62], and
DSM-Synch [62] fall under this category.

2.2.3 Waiting Policy

Apart from deciding who the next lock owner will be, the locking algo-
rithms also have to decide what the waiting threads should do when the
lock is not readily available. The locking algorithms use three main wait-
ing policies.

1. Spinning. This is one of the simplest approaches where the wait-
ing threads loop continuously to check the lock status and acquire
the lock once it is available. As the threads continuously probe the
lock status without doing any useful work, in this approach, other
threads that are waiting for the CPU are not scheduled, thereby
wasting CPU. Additionally, such an approach might also not work
where saving power is crucial.
Modern processors provide special instructions such as PAUSE to
inform the CPU that the thread is spinning, and the CPU can re-
lease shared pipeline resources to the sibling hyperthreads [53].
Techniques such as fixed or randomized backoff are also used to re-
duce the cache-coherence traffic. Modern hardware also provides
facilities such as lowering the frequency of the waiting thread’s
core [160] or notifying the core to switch to idle state [61]. Often,
the lock developers rely on the sched_yield() system call to volun-

26

tarily relinquish the CPU and let other threads be scheduled [21].
However, when there are very few threads waiting to be sched-
uled, yielding the CPU is not guaranteed to be useful, and the wait-
ing thread will often trigger context switches degrading the perfor-
mance.

2. Blocking or immediate parking. With the blocking approach, a
waiting thread immediately blocks until the thread is again able
to acquire the lock. Whenever the thread needs to block, the CPU
scheduler needs to be informed same to not schedule the thread un-
til the lock is available. On Linux, this is often done by using the
futex system call [63]. While releasing the lock, the lock holder can
inform the CPU scheduler to allow the scheduling of the blocking
thread. The futex system call allows the user to specify how many
threads should be woken to participate in the lock acquisition pro-
cess.
Unlike the spinning approach, this approach is often efficient when
the total number of threads exceeds the available CPUs. As the wait-
ing threads immediately block, other threads do get a chance to use
the CPU for other work. If all the threads wait to acquire the lock,
only the thread holding the lock will run.

3. Spin-then-park. The spin-then-park approach takes the middle
ground between the spinning and block approaches. It is a hybrid
approach where a fixed or adaptive spinning threshold can be used
to first spin until a certain threshold and then can block the thread if
the lock is still not available [84]. This approach is useful as it tries
to avoid the high cost of context switching the thread while block-
ing but at the same time avoids the threads from spinning for a long
time, allowing other threads to schedule.

27

Generally, deciding the waiting policy approach is not directly related
to the five locking algorithms categorization we discussed above. One can
choose any waiting policy which designing the locks. However, there are
few things developers have to keep things in mind. If the critical section is
small, using the blocking approach will not be efficient as there is a high
cost associated with the context switching. For such critical sections, the
spinning approach is beneficial as all the threads will acquire the lock in
a short period. Conversely, if the critical section size is long, blocking the
threads immediately is a good idea to avoid the threads spinning unnec-
essarily.

2.3 Common Synchronization Primitives
Implementation

Now that we have discussed how locks can be designed, we will dis-
cuss the design of a few synchronization primitives that we will use in
this dissertation. We start by discussing a few common locks used to de-
sign user-space applications and the Linux kernel. Then, we will discuss
the implementation of two other types of synchronization primitives –
reader-writer locks and read-copy-update (RCU).

2.3.1 Pthread Spinlock

The pthread spinlock is one of the simplest and most widely-used
spinlocks provided by the pthread library [88]. We show the pseudo-
code of the pthread spinlock in Listing 2.1. The lock comprises only a
single shared integer variable, and it uses atomic instructions for locking
and unlocking purposes. The lock is initialized to free so that any arriving
thread can acquire the lock.

28

typedef v o l a t i l e i n t pthread_spin lock_t ;

i n t p t h r e a d _ s p i n _ i n i t (pthread_spinlock_t ∗ lock)
{

// I n i t i a l i z e t h e l o c k t o 0 (f r e e) .
i n t i n i t _ v a l u e = 0 ;
__atomic_s tore (lock , &i n i t _ v a l u e , __ATOMIC_RELAXED) ;
return 0 ;

}

i n t pthread_spin_lock (pthread_spinlock_t ∗ lock)
{

i n t expected = 0 ;
i f (__atomic_compare_exchange_n (lock , &expected , 1 , 1 , __ATOMIC_ACQUIRE,

__ATOMIC_RELAXED)) {
// Acqu i r ed t h e l o c k , r e t u r n now .
return 0 ;

}
// Spin u n t i l t h e l o c k i s not f r e e .
do {

// F i r s t c h e c k i f t h e l o c k i s f r e e .
do {

expected = __atomic_load_n (lock , __ATOMIC_RELAXED) ;
} while (expected != 0) ;

} while (! __atomic_compare_exchange_n (lock , &expected , 1 , 1 , __ATOMIC_ACQUIRE,
__ATOMIC_RELAXED)) ;

// F i n a l l y , t h e l o c k i s a c q u i r e d .
return 0 ;

}

i n t pthread_spin_unlock (pthread_spinlock_t ∗ lock)
{

i n t unlock = 0 ;
// Mark t h e l o c k f r e e .
__atomic_s tore (lock , &unlock , __ATOMIC_RELEASE) ;
return 0 ;

}

Listing 2.1: Pthread spinlock pseudo-code

29

While trying to acquire the lock, the thread first uses an atomic in-
struction to set the shared variable value to 1. If it succeeds, it returns
and starts executing the critical section. If it fails, then it spins until the
lock is free. While spinning, the thread tries first to check the value of the
shared variable. Then, the thread again tries to atomically set the shared
variable value to 1 to acquire the lock on finding it free. If it fails, then it
again loops.

One can observe that the memory overhead of the pthread spinlock
is minimal while the implementation is also extremely simple. How-
ever, pthread spinlock does not guarantee lock acquisition fairness and
a thread, either a spinning thread or newly arriving thread can succeed
while executing the atomic instruction.

2.3.2 Pthread Mutex

The pthread mutex is another widely used locking primitive provided
by the pthread library. Unlike the spinlock version, the mutex lock
blocks if the lock is not free instead of spin-waiting. The pseudo-code of
pthread mutex is shown in Listing 2.2. In addition, one can configure the
pthread mutex with the PTHREAD_MUTEX_ADAPTIVE_NP initializa-
tion attribute to let the thread spin on the lock until either the maximum
spin count (default is 100) is reached, or the lock is acquired [91].

For a spinlock, the lock can either be in 0 (free) or 1 (acquired) state.
For a mutex lock, the lock can be in one of three states – 0 for free, 1 for
acquired with no waiters, i.e., no other thread is blocked or about to block,
and >1 for acquired with waiters present.

When a thread tries to acquire the lock, it checks if the lock is free or
not. If it is free, the lock value is set to 1 atomically to indicate that it is
acquired. If the lock is already acquired, the thread will block itself until
it acquires the lock and sets the lock value to 2. The futex syscall is used
to block the threads.

30

i n t sys_ futex (void ∗addr1 , i n t op , i n t val1 , s t r u c t t imespec ∗ timeout ,
void ∗addr2 , i n t val3)

{
return s y s c a l l (SYS_futex , addr1 , op , val1 , timeout , addr2 , val3) ;

}

typedef i n t mutex ;

i n t mutex_ini t (mutex ∗m)
{

∗m = 0 ; // I n i t t h e l o c k t o 0 .
return 0 ;

}

i n t mutex_lock (mutex ∗m)
{

i n t c = 0 ;
__atomic_compare_exchange_n (m, &c , 1 , 0 , __ATOMIC_SEQ_ACQUIRE,

__ATOMIC_RELAXED) ;
i f (! c) {

return 0 ; // Got t h e l o c k , r e t u r n now .
} e lse i f (c == 1) {

/∗ The l o c k i s now c o n t e n d e d . ∗/
c = __atomic_exchange_n (m, 2 , __ATOMIC_SEQ_CST) ;

}

while (c) {
/∗ Wait in t h e k e r n e l . ∗/
sys_ futex (m, FUTEX_WAIT_PRIVATE , 2 , NULL, NULL, 0) ;
c = __atomic_exchange_n (m, 2 , __ATOMIC_SEQ_CST) ;

}
return 0 ;

}

i n t mutex_unlock (mutex ∗m)
{

i n t s t a t e = __atomic_exchange_n (m, 0 , __ATOMIC_SEQ_CST) ;

i f (s t a t e > 1) {
/∗ We need t o wake someone up . ∗/
sys_ futex (m, FUTEX_WAKE_PRIVATE, 1 , NULL, NULL, 0) ;

}
return 0 ;

}

Listing 2.2: Pthread mutex pseudo-code

31

While releasing the lock, the thread will first unconditionally set the
lock to 0. Then it will wake up one thread who will again try to acquire
the lock by issuing the futex syscall. If it succeeds, then it will return else
again block itself.

There are two aspects to note here. Firstly, as the waiting threads im-
mediately block, the waiting threads will not use the CPU, making it an
efficient lock. Secondly, by frequently calling futex syscall to block, a lot
of time is spent moving from user-mode to kernel-mode and back.

2.3.3 Ticket Lock

The pthread Spinlock and pthread Mutex are examples of competi-
tive succession category where the lock ownership order is not pre-
determined. The threads are free to acquire the lock in any order. Such a
design can lead to a scenario where one thread waits for a very long time
to acquire the lock and starve, leading to poor performance.

The ticket lock is an example of the direct handoff category and ad-
dresses starvation [139]. The ticket lock assigns the lock ownership de-
pending on the order in which the threads try to acquire the lock, i.e., in
the first-in-first-out order. All the threads that requested to acquire the
lock before the arriving thread are guaranteed to acquire the lock before
the arriving thread acquires the lock.

By using the atomic instruction fetch_add, one can implement a ticket
lock. A simple implementation of the ticket lock is shown in Listing 2.3.
Whenever an arriving thread tries to acquire the ticket lock, it executes
the atomic instruction to obtain a ticket number. The arriving thread then
waits for its turn by continuously checking if its ticket number is the same
as the currently serving ticket. In that case, the thread acquires the ticket
lock and starts executing the critical section. While releasing the lock, the
lock owner simply increases the currently serving ticket by 1 to let the
next thread acquire the lock.

32

typedef s t r u c t lock {
i n t n e x t _ t i c k e t ;
i n t c u r r e n t l y _ s e r v i n g ;

} t i c k e t _ l o c k ;

void t i c k e t _ l o c k _ i n i t (t i c k e t _ l o c k ∗ lock)
{

lock−>n e x t _ t i c k e t = 0 ;
lock−>c u r r e n t l y _ s e r v i n g = 0 ;

}

void t i c k e t _ l o c k _ a c q u i r e (t i c k e t _ l o c k ∗ lock)
{

// Obtain my t i c k e t .
i n t my_ticket = __atomic_fetch_add(&lock−>n e x t _ t i c k e t , 1 , __ATOMIC_SEQ_CST) ;
// Loop u n t i l i t i s my turn t o a c q u i r e t h e l o c k .
while (lock−>c u r r e n t l y _ s e r v i n g != my_ticket) ;

}

void t i c k e t _ l o c k _ r e l e a s e (t i c k e t _ l o c k ∗ lock)
{

// Move t h e c u r r e n t t i c k e t by 1 .
lock−>c u r r e n t l y _ s e r v i n g = lock−>c u r r e n t l y _ s e r v i n g + 1 ;

}

Listing 2.3: Ticket lock pseudo-code

Even though the code we have mentioned here simply spins until its
turn comes, a lock designer can employ either a fixed or randomized back-
off strategy, yield the CPU, or block the thread if the critical section size
is known and the time to acquire the lock is more than the context-switch
time.

2.3.4 MCS & K42 variant

Like ticket lock, MCS lock also belongs to the direct handoff category.
Threads can perform an arbitrary number of remote accesses leading to
cache-coherence traffic while trying to acquire the ticket lock. MCS lock
solves this problem by ensuring that every thread spins on a local variable
that lies in the stack frame of the thread [138]. The pseudo-code for the
MCS lock is shown in Listing 2.4.

Each thread allocates a node containing a queue link and a locked vari-

33

s t r u c t lnode {
s t r u c t lnode ∗next ; // Use f o r queue ing .
i n t locked ; // L o c a l v a r i a b l e f o r s p i n n i n g .

} ;

typedef s t r u c t lock {
s t r u c t lnode ∗ t a i l ;

} mcs_lock ;

void mcs_acquire (mcs_lock ∗ lock , s t r u c t lnode ∗p)
{

s t r u c t lnode ∗prev ;
p−>next = NULL; // I n i t t h e new node .
p−>locked = 0 ;
// At tach t h e t h r e a d t o t h e end o f t h e t a i l .
__atomic_exchange(&lock−>t a i l , &p , &prev , __ATOMIC_SEQ_CST) ;

i f (prev != NULL) {
prev−>next = p ;
while (! p−>locked) ; // Spin u n t i l i t s your turn .

}
}

void mcs_release (mcs_lock ∗ lock , s t r u c t lnode ∗p)
{

s t r u c t lnode ∗next ;
s t r u c t lnode ∗desired ;
s t r u c t lnode ∗cmp_pointer ;
// Get t h e nex t r i g h t f u l owner .
__atomic_load(&p−>next , &next , __ATOMIC_SEQ_CST) ;

i f (next == NULL) { // S e t t a i l t o NULL.
desired = NULL;
cmp_pointer = p ;
i f (__atomic_compare_exchange(&lock−>t a i l , &cmp_pointer , &desired , 1 ,

__ATOMIC_SEQ_CST , __ATOMIC_SEQ_CST)) {
return ;

}
do { // Some o t h e r t h r e a d j u s t a r r i v e d .

__atomic_load(&p−>next , &next , __ATOMIC_SEQ_CST) ;
} while (next == NULL) ;

}
next−>locked = 1 ;

}

Listing 2.4: MCS lock pseudo-code

34

able. The threads use this locked variable to spin until it’s time for the
thread to acquire the lock. A thread that either holds the lock or waits for
the lock form a chain together in first-in-first-out order. The lock owner-
ship transfers from one node to another node that forms the queue. As
shown in the listing, the lock itself is a pointer to the node of the thread
at the tail of the queue. The lock is free if the tail pointer is null.

While trying to acquire the lock, the thread first allocates a node, ini-
tializes the node fields, and then swaps it to the end of the queue’s tail.
If the swap value is NULL, the thread has acquired the lock. If the swap
value is non-NULL, the thread will spin wait by looking at the node’s
locked variable.

While releasing the lock, the thread reads its node’s next pointer to
identify the next lock owner. Then the thread changes the value of the
locked variable of the successor thread to indicate the successor thread
that it can now acquire the lock. If the thread finds that there is no suc-
cessor, the thread sets the tail pointer to NULL.

As each thread spins on a separate location, there is less cache-
coherence traffic generated, leading to better performance. However, to
acquire and release the MCS lock, the node and the lock need to be passed
to the acquire and release API. We now show a variant of the MCS lock
called the K42 variant, where there is no need to pass on the node to ac-
quire and release API [138].

Unlike the MCS lock, the K42 variant has the tail and next pointers
in the node structure. The pseudo-code for the K42 variant is shown in
Listing 2.5. When the lock is free, the tail and the next pointers are set
to null. Whenever an arriving thread tries to acquire the lock, it replaces
the null tail pointer with a pointer to the lock itself to notify that no other
thread is waiting.

If a second thread arrives, it will make the lock’s tail and next pointer
point to the node of the second thread. Then it spins to wait for the lock

35

s t r u c t lnode {
s t r u c t lnode ∗next ;
s t r u c t lnode ∗ t a i l ;

} ;

s t r u c t lnode ∗waiting = 1 ;

typedef s t r u c t lock {
s t r u c t lnode queue ;

} k42_lock ;

void acquire (k42_lock ∗ lock)
{

s t r u c t lnode ∗prev , ∗desired , ∗new , ∗succ , ∗temp , ∗oldnew ;

while (1) {
des ired = NULL;
prev = lock−>queue . t a i l ;

i f (prev == NULL) { // Lock a p p e a r s t o be f r e e .
temp = &lock−>queue ;
i f (__atomic_compare_exchange(&lock−>queue . t a i l , &desired , &temp , 1 ,

__ATOMIC_SEQ_CST , __ATOMIC_SEQ_CST)) {
return ;

}
} e lse {

new = (s t r u c t lnode∗) malloc (s i ze of (s t r u c t lnode)) ;
new−>next = NULL;
new−>t a i l = wait ing ;

// We a r e in l i n e now .
i f (__atomic_compare_exchange(&lock−>queue . t a i l , &prev , &new , 1 ,

__ATOMIC_SEQ_CST , __ATOMIC_SEQ_CST)) {
prev−>next = new ;
while (new−>t a i l == wait ing) ; // Spin . Wait f o r your turn .
succ = new−>next ;

i f (succ == NULL) {
lock−>queue . next = NULL;
temp = &lock−>queue ;
oldnew = new ;

// Try t o make l o c k p o i n t t o i t s e l f .
i f (! __atomic_compare_exchange(&lock−>queue . t a i l , &oldnew , &temp , 1 ,

__ATOMIC_SEQ_CST , __ATOMIC_SEQ_CST)) {
// Someone e l s e g o t in be tween . Keep t r y i n g .

36

do {
succ = new−>next ;

} while (succ == NULL) ;

lock−>queue . next = succ ;
}

return ;
} e lse {

lock−>queue . next = succ ;
return ;

}
}

}
}

}

void r e l e a s e (k42_lock ∗ lock)
{

s t r u c t lnode ∗succ ;
s t r u c t lnode ∗desired = NULL;
s t r u c t lnode ∗temp ;

succ = lock−>queue . next ;

i f (succ == NULL) {
temp = &lock−>queue ;

// In form t h e nex t owner a b o u t t h e l o c k r e l e a s e .
i f (__atomic_compare_exchange(&lock−>queue . t a i l , &temp , &desired , 1 ,

__ATOMIC_SEQ_CST , __ATOMIC_SEQ_CST)) {
return ;

}

do {
succ = lock−>queue . next ;

} while (succ == NULL) ;
}

// S e t t i n g l o c k f r e e . No w a i t e r i s p r e s e n t .
succ−>t a i l = NULL;
return ;

}

Listing 2.5: K42 variant pseudo-code

37

owner to free the lock. While waiting, if a third thread arrives, it will form
a queue by updating the next pointer of the second thread, and the lock’s
tail pointer points to the third thread.

When the lock is released, the lock owner will find the next-in-line
thread’s node and change its node’s tail pointer value to null, allowing the
spinning thread to proceed. However, before entering the critical section,
it will have to move the pointers appropriately to the next thread in the
queue.

As one may have noticed, the acquire and release APIs only need to
pass in the k42_lock variable, unlike the MCS lock, where two parameters
need to be passed. Thus, both the MCS lock and K42 variant will ensure
lock acquisition fairness and not starve any thread.

2.3.5 Linux Kernel’s Queued Spinlock

Queued spinlock is a locking mechanism in the Linux kernel, a special
type of spinlocks that also guarantees lock acquisition fairness. This is
enabled by default in the Linux kernel. The implementation of the Linux
kernel is different than the implementation of pthread spinlock that we
discussed earlier. As the name suggests, the queued spinlock is a combi-
nation of the spinlock and MCS lock, thereby guaranteeing lock acquisi-
tion fairness.

The current implementation of the queue spinlocks uses a multi-path
approach. A fast path is implemented using the atomic instructions, and
a slow path is implemented as an MCS lock when multiple threads are
trying to acquire the lock. The lock is four bytes and is divided into three
parts – the lock value, the pending bit, and the queue tail.

Preemption is disabled when the threads try to acquire the lock. As
a thread will not be migrating to another CPU while trying to acquire
the spinlock, only one CPU can contend for only one spinlock at any
given point in time. Therefore, for each CPU, a set of queue nodes is pre-

38

allocated that can be used to form a waiting queue and can encode the
queue address to fit the 4 bytes easily.

A thread acquiring a spinlock tries first to flip the value of the lock
atomically from 0 to 1. If it succeeds, then it has the lock, and it can con-
tinue with the critical section execution. If it fails, it first checks if there
is contention on the lock by checking if any other bit is set (either the
pending bit or the queue tail).

When there is no contention, the thread tries to set the pending bit
atomically, and then spin waits for a bounded time until the current lock
owner released the lock. If there is contention or the lock is not released
before the bounded time, the thread prepares to add itself to the queue.

After setting up the pre-allocated per-CPU queue node, it then adds
itself to the queue and waits for itself to be at the head of the queue to
be the lock owner. Like the MCS lock, the thread waits on the local vari-
able, thereby reducing the cache-coherence traffic. Once at the head of
the queue, the thread will wait for the current lock owner and another
thread waiting on the pending bit to release the lock. The thread can do
so by checking the lock’s value and the pending bit to be 0. When this
happens, the thread can non-atomically acquire the lock and inform its
successor in the queue that it will be at the head of the queue now. While
releasing the lock, the thread updates the lock value to 0.

2.3.6 Reader-Writer Lock

So far, we have seen the implementation of the mutual exclusion locks
that always guarantees that only one thread is executing the critical sec-
tion while all the other threads wait until the thread finishes with the
critical section execution. With such a setting, it is not possible to allow
multiple threads to execute the critical section even though they are not
going to modify the shared state.

39

i n t WA_FLAG = 1 ;
i n t RC_INC = 2 ;
typedef v o l a t i l e i n t rwlock ;

// I n i t i a l i z e t h e l o c k .
void r w l o c k _ i n i t (rwlock ∗ lock)
{

i n t i n i t _ v a l u e = 0 ;
__atomic_s tore (lock , &i n i t _ v a l u e , __ATOMIC_RELAXED) ;

}

void rwlock_reader_acquire (rwlock ∗ lock)
{

// Reader a c q u i r i n g l o c k . I n c r e m e n t by 2 .
__atomic_add_fetch (lock , RC_INC , __ATOMIC_SEQ_CST) ;
// Spin u n t i l w r i t e r i s p r e s e n t .
while ((__atomic_load_n (lock , __ATOMIC_SEQ_CST) & WA_FLAG) == 1) ;

}

void rwlock_reader_re lease (rwlock ∗ lock)
{

// Reader r e l e a s i n g l o c k . Decrement by 2 .
__atomic_sub_fetch (lock , RC_INC , __ATOMIC_SEQ_CST) ;

}

void rwlock_wri ter_acquire (rwlock ∗ lock)
{

i n t expected_wri ters = 0 ;
// Spin u n t i l e i t h e r r e a d e r s o r o t h e r w r i t e r s p r e s e n t .
while (! (__atomic_compare_exchange_n (lock , &expected_wri ters , WA_FLAG, 1 ,

__ATOMIC_SEQ_CST , __ATOMIC_SEQ_CST))) {
expected_wri ters = 0 ;

}
}

void r w l o c k _ w r i t e r_ r e l e a s e (rwlock ∗ lock)
{

// W r i t e r r e l e a s i n g l o c k . Decrement by 1 .
__atomic_sub_fetch (lock , WA_FLAG, __ATOMIC_SEQ_CST) ;

}

Listing 2.6: Centralized reader-preference reader-writer pseudo-code

40

Reader-writer locks relax this constraint of the mutual exclusion locks
by allowing multiple threads to execute the critical section simultane-
ously when they do not modify the shared state. Such threads are termed
readers as they are only reading the shared state. On the other hand, if a
thread needs to modify the shared state, it should exclusively acquire the
lock. Such a thread is termed as a writer. Thus, the readers and writers
are mutually exclusive to each other; readers can always execute concur-
rently.

There are two modes of reader-writer locks – a reader preference lock
and a writer preference lock. A reader preference lock allows a newly ar-
riving reader to bypass an existing waiting writer and continue executing
the critical section. There is a possibility that a writer may starve if read-
ers continue to arrive before all the readers complete the execution of the
critical section. A writer preference lock does not allow a newly arriving
reader to bypass an existing waiting writer. Instead, the arriving reader
will wait for the waiting writer to complete its execution. This way, the
writers are not starved and always get a chance to make forward progress.

Reader-writer locks can be implemented using either centralized algo-
rithms or a queue-based approach [138]. In this thesis, we only focus on
the centralized algorithm and reader-preference reader-writer lock, and
its implementation is shown in Listing 2.6. There are four APIs provided;
the readers use rwlock_reader_acquire() and rwlock_reader_release()
to acquire and release the lock, respectively. The other two API’s The
writer uses rwlock_writer_acquire() and rwlock_writer_release() to ac-
quire and release the lock, respectively.

The lock is a shared variable that is accessed and updated using atomic
instructions. When the value of the variable is 0, the lock is free. If the
variable’s value is even, there are one or readers currently executing the
critical section. If the variable’s value is 1, then there is a writer currently
executing the critical section.

41

When a reader tries to acquire the lock, it increases the value of the
variable by 2. It then spins until the variable value is even, i.e., the writer
releases the reader-writer lock. If there is no writer present, the reader
returns and starts executing the critical section. When the reader releases
the lock, the value of the variable is decreased by 2.

When a writer tries to acquire the lock, it uses the atomic instruction
to check if the lock’s value is 0 and then sets the variable to 1. If there is
any reader or a writer present, the variable’s value will not be 0. After
setting the variable value to 1, it can proceed with executing the critical
section. At the time of releasing the lock, the writer decrements the value
of the variable by 1.

2.3.7 Read-Copy Update

Read-Copy-Update or more commonly known as RCU is a type of
synchronization mechanism originally developed for Linux kernel us-
age [108] and recently extended for user-space usage [52]. RCU is a li-
brary that allows multiple subsystems in the Linux kernel to access shared
data structures efficiently without much overhead. RCU is designed for
situations involving read-mostly workloads. There is close to zero over-
head for the read synchronization, while for the updaters, especially the
deleters, there is a very heavy overhead associated.

RCU comprises three mechanisms that combined helps in a very effi-
cient synchronization mechanism [105]. The three mechanisms are used
to handle the insertion, allowing multiple versions for readers to read
data without any special synchronization effort and deletions.

The first mechanism that deals with insertions help with the ability to
safely access or scan the data even though another thread is concurrently
updating the data. RCU maintains multiple versions of the data while
updating, and the second mechanism handles that aspect. Therefore, the
readers will be either be accessing the older data or the new data.

42

void rcu_read_lock ()
{

disable_preemption () ;
l e v e l [cpu_id ()]++; // To h a n d l e n e s t i n g

}

void rcu_read_unlock ()
{

l e v e l [cpu_id ()]++; // To h a n d l e n e s t i n g
enable_preemption () ;

}

void synchronize_rcu ()
{

loop through a l l CPUs
check whether the threads have context −switched

}

Listing 2.7: Read-Copy-Update (RCU) pseudo-code

The third mechanism deals with the deletion of the data. Any thread
that wants to delete the data will have to ensure that all the existing read-
ers drain before the data can be safely deleted. As the readers may be ac-
cessing the older or newer data, there is no way to identify if any thread
is accessing the old data. Therefore, RCU delays the deletion of the old
data until all the threads are done with reading work.

RCU does not provide any specific ability to handle concurrent in-
sertions or deletions. Therefore, one must rely on other synchronization
mechanisms such as locking to ensure mutual exclusion amongst concur-
rent updaters.

RCU provides three basic primitives that kernel developers can use.
The first primitive deals with specifying the read-side critical sections. A
reader enters the read-side critical section by calling rcu_read_lock() and
exits the critical section by calling rcu_read_unlock(). The pseudo-code
of both the APIs is shown in Listing 2.7. rcu_read_lock() simply disabled
the preemption and rcu_read_unlock() enables preemption. RCU allows
nesting within the read-side critical section.

The second primitive is associated with the RCU synchronization and

43

is used to handle the deletions. To ensure synchronization between delet-
ing data and reading the data concurrently, a thread willing to delete data
must call synchronize_rcu(). The call will only return when all the RCU
read-side critical sections there were currently executing at the time of the
synchronize_rcu() completes. This way, RCU guarantees that no reader
is still accessing the older data, and hence it is safe to delete the data. Any
new thread that wants to enter the read-side critical section can do so as
RCU will ensure that it always accesses the newer data.

As preemption is disabled during the read-side critical section execu-
tion, synchronize_rcu() can check if all the CPUs have at least done one
context switch or not. Context switch will only happen after the threads
have called read_rcu_unlock(). Apart from the synchronous way of wait-
ing for all the read-side critical sections to be over, RCU also provides an
asynchronous way. Threads that do not want to wait can call call_rcu().
RCU will register a callback that a background thread will execute once
all the readers are done executing the read-side critical section.

Lastly, RCU provides two architecture-specific APIs for readers and
updaters to properly handle the memory orderings. Readers use
rcu_deference() to fetch a pointer for dereferencing purposes. Updaters
use rcu_assign_pointer() to modify the pointers within the critical sec-
tion.

2.4 Summary
In this chapter, we presented the background essential to under-
standing this dissertation. We discussed various nuances of concur-
rency, synchronization, and mutual exclusion. Then, we discussed
the lock properties, different locking algorithm categories, and the
waiting policies used to design locks. Finally, we discussed the de-
sign and implementation of commonly used synchronization primi-

44

tives. The source code of the common locks can be accessed at
https://research.cs.wisc.edu/adsl/Software/.

https://research.cs.wisc.edu/adsl/Software/

45

3
Lock Usage

Locks and their properties form an integral component of concurrent sys-
tems. Locks generally should have low overhead, enabling frequent us-
age without excessive overhead [50, 109]. Locks should also exhibit other
properties, such as starvation-avoidance [109, 150]. One critical property
is fairness. If two threads are competing for the same lock, and the lock
is granted more frequently to one thread, the other will receive a smaller
share of the desired lock, perhaps subverting system-wide goals.

Lock fairness is a well-studied problem; researchers have crafted
many solutions that provide certain fairness properties quite effec-
tively [45, 53, 73, 90, 102, 109, 139, 147, 150]. Consider a simple ticket
lock [109]; by granting a ticket number to each interested party, the lock
can ensure what we call acquisition fairness. In this case, under heavy com-
petition, each party will be ensured of a fair chance to enter the critical
section in question.

Consider a linked list supporting insert and find operations protected
by a lock as shown in Listing 3.1. The insert operation is simple, where
an entry is added at the head. On the other hand, the find operation has
to traverse through the linked list to find if an entry exists or not. If one
thread performs an insert operation, it will hold the lock for a shorter
time than another thread that performs a find operation as it will have
to traverse the entire list. Thus, the critical section size may vary for two
different operations trying to access the same data structure.

46

s t r u c t node {
i n t data ;
s t r u c t node ∗next ;

} ;

void i n s e r t (s t r u c t node ∗∗ l i s t , s t r u c t node ∗n) {
lock () ;
n−>next = ∗ l i s t ;
∗ l i s t = n ;
unlock () ;

}

s t r u c t node ∗ f ind (s t r u c t node ∗∗ l i s t , i n t data) {
lock () ;
s t r u c t node ∗n = ∗ l i s t ;

while (n) {
i f (n−>data == data) {

unlock () ;
return n ;

}

n = n−>next ;
}

unlock () ;
return NULL;

}
Listing 3.1: Simple linked list example

The difference between the critical section sizes may vary depending
on the state of the data structure. For example, the critical section size
will be longer when the linked list has millions of entries than a linked list
state with thousands of entries. As the data structure grows and shrinks
depending on the workload, there will be a difference in the critical sec-

47

tion size. Thus, one can observe that the critical section size dynamically
changes and is not a static property. In this chapter, we ask the question -
what is the impact on performance and fairness when a single lock pro-
tects critical sections that are variable-sized?

We have found that a critical lock property, which we call lock usage,
is missing from previous approaches. Consider two threads competing
(repeatedly) for the same lock. If one thread stays within the critical sec-
tion for a longer period and the other for a shorter period, the first thread
will dominate lock usage. If one thread dwells longer in the critical sec-
tion than other threads, the imbalance can lead to problems. Further ex-
panding, consider the lock is a ticket lock in the scenario above. Despite
guaranteeing lock acquisition fairness by alternating turns through the
critical section, the thread that stays within the critical section longer re-
ceives more usage of the resource. Thus, we observe that the existing locks
that guarantee lock acquisition fairness cannot address the lock usage im-
balance created due to the variable-sized critical sections.

As the first thread in the scenario spends more time in the critical sec-
tion, it will receive an equivalent CPU time. On the other hand, the second
thread will receive lesser CPU time. Thus, although the CPU scheduling
goals may have been to give each thread an equal share of CPU, the lock
usage imbalance will end up subverting the scheduling goals. We call this
new problem scheduler subversion. The scheduler subversion problem is
similar to priority inversion, where a high priority task is indirectly pre-
empted by a lower priority task, thereby inverting the priorities of the two
tasks [140].

When scheduler subversion arises, the lock usage pattern dictates the
share instead of the CPU scheduler determining the proportion of the
processor each competing entity obtains. When threads regularly com-
pete for the same lock, and there is the presence of variable-sized critical
sections; there is a likelihood of having the scheduler subversion problem.

48

As mentioned earlier, the data structure state can impact the critical
section size. Consider a thread that manages to expand a data structure
intentionally with malicious intent. Two problems can arise due to the
malicious activity of the thread.

First, after expanding the data structure, the malicious thread can de-
liberately access the expanded structure making the critical section even
longer. As a result, other threads competing to access the lock will have
to wait longer to acquire the lock leading to artificial lock contention. We
term this a synchronization attack.

Second, if other threads also access the expanded structure, they will
be forced to unnecessarily spend time in the critical section, thereby elon-
gating the critical section. Worse, other threads competing to access the
lock will have longer wait times. We term this a framing attack where a ma-
licious thread manages to make other threads unnecessarily spend time
accessing the expanded structure and also wait longer to acquire the lock.

In both synchronization and framing attacks, we observe the adver-
sarial aspects of lock usage where a malicious thread can monopolize the
lock usage and launch attacks simply by expanding the data structure
tremendously.

In a cooperative environment, where all the threads belong to a single
program, user, or organization, the lock usage concern is real. However,
the effects of scheduler subversion and adversarial synchronization can
be mitigated due to the cooperative nature of the entities involved. The
developer can orchestrate the lock usage as they see fit, either by rewriting
the program to reduce lock usage or using a different lock.

In a shared or competitive environment, such as servers, operating
systems, or hypervisors, programs from multiple tenants may run on the
same physical hardware. Such shared environments are commonly found
in data centers and cloud computing settings. As anyone can be a ten-
ant, including competitors or malicious actors, such installations place a

49

heavy burden on system software to isolate mutually distrusting tenants.
The shared environment can either be benign where the actors are com-
petitive but not malicious or hostile where the actors are competitive but
can be malicious. In both these settings, different techniques need to be
employed to enforce strong performance isolation.

In a benign setting, strong performance isolation can be guaranteed
by the scheduling of resources. As the intent of the tenants is not mali-
cious, one can safely assume that by careful allocation of resources, the
desired isolation can be achieved. In the first part of this chapter, for be-
nign settings, we show that the widespread presence of concurrent shared
environments can greatly inhibit a scheduler and prevent it from reach-
ing its goals. Infrastructure in such environments is commonly built with
classic locks [39, 163, 165] and thus is prone to the scheduler subversion
problem. As the data structure grows and shrinks during any workload
execution, the critical section size keeps changing, leading to the sched-
uler subversion problem.

In the latter half of this chapter, for hostile settings, we show that
the high degree of sharing across tenants through operating system data
structures creates an avenue for performance interference via adversar-
ial synchronization. We illustrate the performance interference on real-
world applications in containers, as used by Docker [113]. Containers
are highly efficient as they cost little more than an operating system pro-
cess but rely on a shared operating system kernel between tenants with
internally shared data structures. We show that even with an isolated en-
vironment provided by a container, malicious actors can access the shared
data structures in the kernel tremendously.

Apart from the performance impact due to the attack, tenants may also
suffer economically. Most of the cloud providers charge the users based
on CPU usage. With the synchronization attacks, as the tenants wait to
acquire the lock, they may spin if the lock is a spinlock. With longer wait

50

times, they may spin longer without doing any useful work and still be
charged for the CPU usage. With the framing attacks, as the tenants are
forced to access the expanded data structure, their CPU usage increases
too, and they will be charged for the extra CPU usage.

The rest of this chapter is organized as follows. In Section 3.1, us-
ing a real-world application for a benign setting, we show the problem
of scheduler subversion and discuss why scheduling subversion occurs
for applications that access locks. In Section 3.2, for a hostile setting, we
discuss the security aspects of synchronization and describe how exploit-
ing the synchronization mechanisms can lead to denial-of-service attacks.
Finally, we summarize in Section 3.3.

3.1 Scheduler Subversion
In this section, we discuss scheduler goals and expectations in a shared
environment. We describe how in a benign setting, locks can lead to
scheduler subversion in an existing application.

3.1.1 Imbalanced Scheduler Goals

Scheduling control is desired for complex multi-threaded applications
and shared services. Operating system schedulers are responsible for a
variety of goals, from utilizing hardware resources effectively to guaran-
teeing low latency for latency-sensitive applications [27, 59, 134, 159]. In
this thesis, our focus is on CPU scheduling only.

In an ideal system, the OS scheduler and its specific policies deter-
mine the share of CPU time each running thread obtains. Classic sched-
ulers, such as the multi-level feedback queue [21, 59], use numerous
heuristics to achieve performance goals such as interactivity and a good
batch throughput [134]. Other schedulers, ranging from lottery schedul-

51

F1 F2 F3 F4 I1 I2 I3 I4
Thread

0
5

10
15
20
25
30

CP
U
Ti
m
e(
se
co
nd

s)

11.7K

22.2K

Wait+Other
Lock Hold Time

Figure 3.1: Scheduler subversion with UpScaleDB. We use a modified
benchmarking tool ups_bench available with the source code of UpScaleDB to run
our experiments. Each thread executes either find or insert operations and runs
for 120 seconds. All threads are pinned on four CPUs and have default thread
priority. “F” denotes find threads while “I” denotes insert threads. “Hold” rep-
resents the critical section execution, i.e., when the lock is held; “Wait + Other”
represents the wait-times and non-critical section execution. The value presented
on the top of the dark bar is the throughput (operations/second).

ing [159] to Linux CFS [27], aim for proportional sharing, thereby allow-
ing some processes to use more CPU than others.

Unfortunately, current systems are not able to provide the desired con-
trol over scheduling. To illustrate this problem, we conduct an experi-
ment using UpScaleDB [155] while running a simple analytical workload.
We perform the experiment on a 2.4 GHz Intel Xeon E5-2630 v3 having
two sockets; each socket has eight physical cores with hyper-threading
enabled. The machine has 128 GB RAM and one 480 GB SAS SSD. The
machine runs Ubuntu 16.04 with kernel version 4.19.80, using the CFS

52

scheduler.
We design an experiment where threads repetitively try to acquire the

lock in a real-world application to confirm our hypothesis that lock us-
age imbalance can lead to scheduler subversion. Each thread executes
a particular type of operation so that two different threads are executing
variable-sized critical sections. If the usage of the locks leads to scheduler
subversion, the threads spending more time in the critical section will be
allocated more CPU than the other threads.

We use a modified built-in benchmarking tool ups_bench available
with the source code of UpScaleDB to generate the workload. The work-
load comprises eight threads, of which four threads execute insert oper-
ations while the remaining four threads execute find operations. We pin
all these eight threads on four CPUs and set the thread priority of each
thread to the default. We run the workload for 120 seconds. We mea-
sure the throughput, i.e., the number of operations completed by each
thread and the total CPU time allocated to each thread. Additionally, we
also measure the time spent by each thread in the critical section while
holding the global pthread mutex lock used by UpScaleDB to protect the
environment state.

Given that all the eight threads have default thread priority, the expec-
tation is that the CFS scheduler will allocate CPU equally to each thread.
Figure 3.1 shows the CPU time allocated to each thread, the amount of
time spent in the critical section by each thread, and its throughput. Con-
trary to our expectation, we observe that not all threads are allocated
an equal amount of CPU. Although the desired CPU allocation for each
thread is the same, the insert threads are allocated significantly (nearly
five to six times) more CPU than the find threads leading to an imbal-
ance in the set scheduling goals.

Another interesting observation to note in the figure is that the insert
threads hold the global Pthread mutex lock significantly longer than the

53

find threads. The majority of CPU time is spent executing critical sec-
tions as we observe that the global lock is utilized for 80% of the exper-
iment time, creating enough contention. When contention happens, the
waiting threads block until the lock is free. However, as the workload
continuously issues insert and find operations before the waiting thread
wakes up to acquire the lock, another thread acquires the lock forcing the
just woken thread to block again.

The global lock protects the B+tree data structure used by UpScaleDB.
As the B+tree grows during the experiment, the critical section size
varies. Therefore, the insert threads dominate the lock usage compared
to the find threads, thereby dominating the CPU allocation too, leading to
an imbalance in the CPU allocation. We call this imbalance the scheduler
subversion problem where instead of the CPU scheduler determining the
share of the CPU each thread obtains, the lock usage pattern dictates the
share.

3.1.2 Non-Preemptive Locks

The scheduler subversion we saw in UpScaleDB is largely due to how Up-
ScaleDB uses the global Pthread mutex lock. Locks are a key component
in the design of multi-threaded applications, ensuring correctness when
accessing shared data structures. With a traditional non-preemptive lock,
the thread that holds the lock is guaranteed access to read or modify the
shared data structure; any other thread that wants to acquire the lock
must wait until the lock is released. When multiple threads are waiting,
the order they are granted the lock varies depending on the lock type; for
example, test-and-set locks do not guarantee any particular acquisition
order, whereas ticket locks [109] ensure threads take turns acquiring the
given lock.

For our work, we assume the presence of such non-preemptive locks
to guard critical data structures. While great progress has been made

54

in wait-free data structures [75] and other high-performance alterna-
tives [52], classic locks are still commonly used in concurrent systems,
including the operating system itself.

3.1.3 Causes of Scheduler Subversion

Scheduler subversion problem arises in a concurrent system when:

• Condition SS1: Presence of a mutual exclusion lock that may block
and is protecting a data structure.

• Condition SS2: Critical sections are significantly different lengths.
We call this different critical-section lengths.

• Condition SS3: Time spend in the critical sections is high, and there
is significant lock contention. We call this majority locked run time.

Condition SS1 is common as the majority of the concurrent systems
still rely on mutual exclusion locks for synchronization [39, 70, 163, 165].
There are two reasons why scheduling subversion occurs for applications
that access locks. First, scheduler subversion may occur when critical sec-
tions are of significantly different lengths: when different threads acquire
a lock, they may hold the lock for varying amounts of time. We call this
property different critical-section lengths. Secondly, scheduler subversion
may occur when the time spend by the threads in the critical sections is
high leading to significant lock contention. We call this property majority
locked run time.

Condition SS2 of different critical-section lengths holds in many com-
mon use cases. For example, imagine two threads concurrently search-
ing from a sorted linked list. If the workload of one thread is biased to-
wards the front of the list, while the other thread reads from the entire list,
the second thread will hold the lock longer, even though the operation is
identical. Similarly, the cost of an insert into a concurrent data structure

55

Applications Workload Notes
Memcached
(Hashtable)

Get and Put operations are executed, having 10M entries in
the cache using the memaslap tool.

Leveldb
(LSM trees)

2 threads issuing Get, and 2 threads issuing Put operations
are executed on an empty database using the db_bench tool.

UpScaleDB
(B+ tree)

1 thread issuing Find and 1 thread issuing Insert operations
are executed on an empty database.

MongoDB
(Journal)

Write operations are executed on an empty collection. Write
concern w = 0, j = 1 used. Size of operations is 1K, 10K and
100K respectively.

Linux kernel
(Rename)

First rename is executed on an empty directory while the
second rename is executed on a directory having 1M empty
files; each filename is 36 characters long.

Linux kernel
(Hashtable)

Design similar to the futex table in the Linux kernel that al-
lows duplicate entries to be inserted and delete operation
deletes all the duplicate entries in the hashtable.

Table 3.1: Application & Workload details. The table shows the workload
details for various user-space applications and the Linux kernel that we use to
measure the critical section lengths.

is often higher than the cost of a read; thus, one thread performing in-
serts will spend more time inside the critical section than another thread
performing reads.

We measure how the length of the critical sections varies in real-world
applications by running experiments involving a variety of user-space ap-
plications like Memcached, Leveldb, UpScaleDB, MongoDB, and Linux
kernel that use different data structures.

We choose applications like Memcached, MongoDB as they can be
used as servers serving key-value data; LevelDB and UpScaleDB can be
used to build similar servers hosting key-value data; Linux kernel is used
in Cloud environments to run multiple VM’s and containers on a single
host. All of these are designed using different data structures, as shown
in Table 3.1 and support variety of operations having different sizes.

The Linux kernel rename system call operates on directories while

56

locking the entire filesystem to avoid deadlocks. A filesystem workload
may comprise of rename operations where the directory sizes may vary.
Similarly, the futex table in the Linux kernel is used for thread and pro-
cess synchronization in user-space. Multiple user-space applications may
use the same futex table leading to interference between the applications.

The workload involves executing different types of operations
(get/find or put/insert) and that have different sizes of operations. Ta-
ble 3.1 summarizes the workload details. As shown in Table 3.2 the
lengths of critical sections do vary in real-world applications.

We note two important points. First, the same operation within an
application can have significant performance variation depending on the
size of the operation (e.g., the size of writes in MongoDB) or the amount
of internal state (e.g., the size of a directory for renames inside the Linux
kernel). Second, the critical section times vary for different types of op-
erations within an application. For example, in leveldb, write operations
have a significantly longer critical section than find or get operations.

For condition SS3, there are many instances in research literature de-
tailing the high amount of time spent in critical sections; for example,
there are highly contended locks in Key-Value stores like UpScaleDB
(90%) [70], KyotoCabinet [55, 70], LevelDB [55], Memcached (45%)
[70, 98]; in databases like MySQL [70], Berkeley-DB (55%) [98]; in Object
stores like Ceph (53%) [117]; and in file systems [115] and the Linux ker-
nel [30, 162]. The % in the bracket indicates the total time of the runtime
spent in the critical section.

Unfortunately, different critical section lengths combined with spend-
ing a significant amount of time in critical sections directly subverts
scheduling goals. When most time is spent holding a lock, useful CPU
usage is determined by lock ownership rather than by scheduling policy:
the algorithm within the lock to pick the next owner determines CPU us-
age instead of the scheduler. Similarly, when locks are held for different

57

Applications Operation Type LHT Distributions (microseconds)
Min 25% 50% 90% 99%

memcached
(Hashtable)

Get 0.02 0.05 0.11 0.16 0.29
Put 0.02 0.04 0.10 0.14 0.28

leveldb
(LSM trees)

Get 0.01 0.01 0.01 0.01 0.02
Write 0.01 0.11 0.44 4,132.7 43,899.9

UpScaleDB
(B+ tree)

Find 0.01 0.01 0.03 0.24 0.66
Insert 0.36 0.87 1.11 4.37 9.55

MongoDB
(Journal)

Write-1K 230.3 266.7 296 497.2 627.5
Write-10K 381.6 508.2 561.6 632.8 670.3
Write-100K 674.2 849.3 867.8 902.4 938.9

Linux Kernel
(Rename)

Rename-empty 1 2 2 3 3
Rename-1M 10,126 10,154 10,370 10,403 10,462

Linux Kernel
(Hashtable)

Insert 0.03 0.04 0.04 0.05 0.13
Delete 0.06 1.15 1.61 9.27 18.07

Table 3.2: Lock hold time (LHT) distribution. The table shows LHT dis-
tribution of various operations for various user-space applications and the Linux
Kernel that use different data structures.

amounts of time, the thread that dwells longest in a critical section be-
comes the dominant user of the CPU.

For the UpScaleDB experiment discussed earlier, we see that these two
properties hold. First, insert operations hold the global lock for a longer
period than the find operations, as shown in Table 3.2. Second, the insert
and find threads spend around 80% of their time in critical sections. Thus,
under these conditions, the goals of the Linux scheduler are subverted,
and it cannot allocate each thread a fair share of the CPU.

3.2 Synchronization under Attack
This section shifts our focus to a hostile setting where malicious actors
can deliberately expand the data structures to launch synchronization
and framing attacks. Note that in the previous section, we discussed
how when the data structure grows naturally, there is a likelihood that

58

the critical section size will vary. We will now see how a malicious ac-
tor can deliberately expand the data structure to vary the critical section
size. Firstly, we discuss how shared infrastructure in data centers relies on
shared data structures protected by varied synchronization mechanisms.
Then, we show how a malicious actor can exploit the synchronization
mechanisms to launch denial-of-service attacks.

Container-based isolation is quickly picking up pace as one of the most
common tenants environment for shared infrastructure. With contain-
ers, an operating system kernel provides virtual software resources (files,
sockets, processes) to each container. Substantial effort has gone into iso-
lation so that the one container or VM cannot affect the performance of
others [47, 72, 81, 100, 112, 143, 158] and each container or VM obtains a
fair share of the resources. Our work focuses on container-based isolation,
as the higher-level interfaces create more opportunities for performance
interference.

An operating system should ideally execute containers in a perfectly
isolated environment. In reality, though, container isolation is based on a
combination of mechanisms. For preemptable resources, containers rely
on the CPU, disk, or network scheduler to fairly share the resource be-
tween containers and prevent monopolization. For memory, accounting
and allocation limits prevent containers from overusing memory. The op-
erating system provides private namespaces for each container that pre-
vents them from accessing resources of other containers, such as private
file system directory trees and private sets of process IDs.

However, these isolation controls are built atop shared kernel data
structures; in many cases, the kernel maintains global data structures
shared by all containers and relies on scheduling, accounting, and names-
paces to prevent any interference.

59

3.2.1 Synchronization and Framing Attacks

Container isolation mechanisms do not directly isolate access to the op-
erating system’s global data structures. Operating system kernels con-
tain hundreds of data structures global to the kernel and shared across
containers. These structures rely on synchronization primitives such as
mutual exclusion locks, read copy update (RCU), and reader-writer(RW)
locks to allow concurrent access. Multiple containers make unprivileged
system calls in a shared environment to access kernel data structures us-
ing these synchronization primitives. We primarily focus on the mutual
exclusion locks and RCU as they are heavily used in the kernel.

Synchronization primitives do not control how long one tenant can
spend in the critical section accessing the data structure. Locks are mutu-
ally exclusive such that once held, they prevent any other process trying
to acquire the lock from making progress. RCU allows multiple readers
to access the data structure, but updaters wanting to free objects must
wait until all prior read critical sections complete [108]. We call the time
to wait to either acquire the mutual exclusion locks or to let all the prior
read critical sections complete synchronization stalls.

Consider a linked list supporting insert and find operations protected
by a lock as shown in Listing 3.1. An attacker can cause simple lock con-
tention by repeatedly accessing the list. If the list is short, the synchro-
nization stalls will not be that long. However, if an attacker can cause
entries to be added to the list, the time spent in the find operations in-
creases; on adding a million entries to the list, traversing the list will take
a long time to complete, during which victims stall waiting to access the
list.

We term this attack a synchronization attack, in which an attacker man-
ages to increase the critical section size protected by synchronization
primitives to deny victims access to one or more shared data structures.
Such an attack occurs when:

60

• Condition S1: A shared kernel data structure is protected by a syn-
chronization primitives such as mutual exclusion locks or RCU that
may block.

• Condition S2: Unprivileged code can control the duration of the crit-
ical section by either

– S2_input: providing inputs that cause more work to happen
within the critical section
OR

– S2_weak: accessing a shared kernel data structure with weak
complexity guarantees e.g., linear.

AND

– S2_expand: expanding or accessing the shared kernel data
structure to trigger the worst-case performance.

We term the case when an attacker exploits condition S2_input by us-
ing large input parameters to increase the critical section size an input pa-
rameter attack. We will show in Chapter 4 how an attacker can execute a re-
name operation on a large directory, which holds a shared per-filesystem
lock while traversing the entire directory. Additionally, during our inves-
tigation, we find that Apparmor [19] holds a shared namespace root lock
while loading profiles, so loading a large profile can hold the lock for tens
of seconds.

Algorithmic complexity attacks are a class of denial-of-service attacks
that exploit the weak complexity guarantees of the data structures used
to build many common applications. Data structures such as hash tables
or unbalanced binary trees have better average-case performance than the
worst-case performance. However, with certain inputs, these data struc-
tures can exhibit worst-case performance when subjected to certain inputs
leading to poor performance and denial-of-service [46].

61

When the attacker launches an algorithmic complexity attack, they ex-
ploit the S2_weak and S2_expand conditions. For example, with both
locks and RCU, for the list in Listing 3.1, an attacker can first add millions
of entries and then switch to a workload that traverses the list. With RCU,
victims deleting from the list stall, waiting for the attacker to complete its
lengthy read-side critical section.

The synchronization attack is an active attack as the attacker needs to
participate in executing a long critical section. However, in some cases,
the attack can continue without the participation of the attacker. For ex-
ample, consider what can happen if other tenants traverse the elongated
list. After an attacker adds millions of entries to the list, other processes
will continue to traverse the longer list, leading to both more time travers-
ing the list and more time stalling on the lock.

We term this a framing attack because an inspection of who holds the
lock will incorrectly frame innocent victim threads rather than identify-
ing the attacker that expanded the data structure. This is similar to the
framing in crime where the perpetrator is trying to frame someone else for
their crime. This is a passive attack, as the attacker needs to do nothing to
continue the performance degradation. More precisely, a framing attack
is an extension and refinement on a synchronization attack and occurs
when:

• Condition S1+ S2_weak+ S2_expand: An attacker manages to ex-
pand a shared kernel data structure with weak complexity guaran-
tees, i.e., a synchronization attack is in progress or was launched
earlier.

• Condition F1: Victim tenants access the affected portion of the
shared data structure with worst-case behavior.

In framing attacks, for mutual exclusion locks, the excessive stalls are
attributed to other victims traversing the list rather than the attacker that

62

grew the list. RCU relies on the grace period to ensure that existing read-
ers accessing the item being deleted have since dropped their references
before a delete operation starts. For expanded data structures, the longer
read-side critical section will lead to a longer grace period leading to poor
performance. Thus, the victims continue to observe poor performance
due to the past actions of the attacker and may be blamed for poor per-
formance.

Framing and synchronization attacks can happen at the same time.
Consider a situation where a hash table uses the protected list to build
hash buckets. The attacker may target a single hash bucket by adding
many entries leading to a synchronization attack. The victims will have
to wait longer to acquire the lock. If one of these starved victims access
the target hash bucket, they will traverse the elongated list and hold the
lock longer, leading to a framing attack. Thus, synchronization attacks
make the victims stall longer, while the framing attacks make the victims
spend more time in the critical section.

Algorithmic Complexity Attacks vs. Adversarial Synchronization.
Even though synchronization and framing attacks look similar to algo-
rithmic complexity attacks, there is a fundamental difference between
both these attacks.

There have been numerous algorithmic complexity attacks on Web-
servers [1, 144], XML parsers [8, 9], PHPMailer [4], Samba [2], Zens PHP
engine [6], FTP [3], Red Hat directory server [7], DNS proxy servers [5]
that will eventually end up exhausting one or more CPUs in the system.
As the CPUs are exhausted; they cannot execute the regular user work-
load leading to denial-of-services.

However, for example, if a web server is running as a container where
only a few CPUs are allocated to the container, a regular expression
denial-of-service attack will only impact one container. As container iso-
lation can guarantee proper isolation of resources like CPU, memory, disk,

63

and network, algorithmic complexity attacks may not impact all the con-
tainers running on the host. As all these resources are not shared amongst
all the tenants, the impact of the attacks is restricted to the single tenant
only.

On the other hand, synchronization and framing attacks target the
synchronization primitives that are part of the shared kernel data struc-
tures. When a shared data structure is subject to either synchronization or
framing attack, more than one container that needs to access the shared
kernel data structures will observe longer stalls leading to poor perfor-
mance or denial-of-services.

While the algorithmic complexity attacks target preemptable re-
sources such as CPU, disk, or network, synchronization and framing at-
tacks target non-preemptable resources like mutual exclusion locks. Ex-
isting container isolation mechanisms can effectively handle preemptable
resources. However, the isolation mechanisms cannot handle the monop-
olization of the non-preemptive resources.

3.2.2 Threat Model

We now clearly define what the hostile environment is and present our
assumptions about the malicious actor. One or more containers run on
a single physical machine. All containers, including the one that plays
the role of an adversary, hereafter called an attacker, run arbitrary work-
loads that can access OS services via system calls. An attacker may have
thousands of users within a container. However, for the sake of simplic-
ity, we assume there is a 1-1 mapping between tenants to users and each
container is associated with a user. No container, including the attacker,
has special privileges. Due to random cloud scheduling, we assume a
single attacker is present, thereby removing the possibility of collusion.
We place no limit on the number of containers a single user can run on a
single physical machine.

64

The attacker’s goal is to target synchronization primitives within an
operating system such that other containers accessing the same primitives
starve, leading to poor performance or denial-of-service. The attacker can
use either a single container or multiple containers to launch one or more
attacks.

We now examine synchronization and framing attacks on the Linux
kernel when using containers for isolation and demonstrate three differ-
ent attacks on three kernel data structures accessed by common system
calls.

3.2.3 Synchronization and Framing Attacks on Linux
Kernel

We describe here three Linux kernel data structures that are vulnerable
to Algorithmic Complexity Attacks (ACAs) and can be used to launch
synchronization and framing attacks. While ACAs are not new, we show
how synchronization amplifies their effect. The summary of the attacks
is shown in Table 3.3.

In the table, one can see the diversity of the attacks. Remember that the
attacker is launching the attack without executing any privileged code.
We are targeting different types of data structures designed for differ-
ent purposes and use synchronization mechanisms differently. We also
show three different ways to launch synchronization and framing attacks.
There is no fixed way that the attacker has to use to launch attacks. We just
show three attacks in this thesis. The Linux kernel comprises hundreds
of different data structures, and hence there is a possibility that other data
structures can also be targeted to launch the attacks.

We perform our experiments on a 2.4 GHz Intel Xeon E5-2630 v3
having two sockets; each socket has eight physical cores with hyper-
threading enabled. The machine has 128 GB RAM and one 480 GB SAS
SSD. The machine runs Ubuntu 20.04 having kernel version 5.4.62. All the

65

Data
structure

Attack Type Synchronization
Primitive

Attack Strategy

Inode
cache

Synchronization
attack

Global spinlock Break the hash func-
tion then run dictio-
nary attack by creat-
ing thousands of files
in the targeted hash
bucket.

Futex
table

Framing attack Array of spin-
locks

Probe hash buckets to
identify one or more
target hash buckets.
Park thousands of
threads on the hash
bucket.

Dcache Synchronization
attack

RCU Either break the
hash function or
overwhelm the hash
buckets by randomly
creating dcache
entries.

Table 3.3: Summary of the attacks. Brief description of the three attacks on the
Linux kernel. While the inode cache and directory cache attacks are synchroniza-
tion attacks, the futex table attack is a framing attack. Note the different methods
that we use to launch the attacks.

66

applications and benchmarking tools used for the experiments are run as
separate Docker containers.

3.2.3.1 Synchronization Attack on Inode Cache

We now describe how an inode cache attack can be launched by first
breaking the inode hash function. Then the attacker can target one or
more hash buckets by creating thousands of files that map to the target
hash bucket. The inode cache attack is a synchronization attack where
the attacker actively participates in the lock acquisition process.

Inodes are filesystem objects such as regular files, directories, etc.
They are stored in a filesystem, and on access are loaded in memory and
live there. The Virtual File System maintains the inode cache to speed up
file access by avoiding expensive disk accesses to read file metadata [13].
The inode cache is implemented as a hash table, and collisions are han-
dled by storing a linked list of inodes with the same hash value in a hash
bucket. A global lock inode_hash_lock protects the inode cache. The
number of buckets in the hash table is decided at boot time based on mem-
ory size.1

The inode cache hash function combines the inode number, unique
to each file, and the address of the filesystem superblock data structure
in memory. This address is set when a volume is mounted but varies
across systems and boots. While the inode number for a file is visible
to unprivileged users, the superblock address is not, and without that
address, it is hard to predict which hash bucket an inode will reside in.

We have found a way to break this function, which we describe in
detail elsewhere [121]. By creating files with specific inode numbers, we
determined that a user can probe for the superblock address, allowing
them to create files in a single hash bucket that grows long and slow to

1For a 128 GB memory system used for evaluation, the inode cache has 222 =
4, 194, 304 hash buckets.

67

traverse. Generally, users cannot specify the inode number for a file as the
file system chooses it. However, using a FUSE unprivileged file system in
user-space [156], we design a file system implementation with complete
control over inode numbers.

For Docker, mounting needs CAP_SYS_ADMIN which is privi-
leged [77]. Linux supports unprivileged FUSE mounts[94], although
Docker disables this by default.2 As a workaround, we use the idea of
Linux user namespaces [114] discussed by NetFlix to mount the FUSE
file system in an unprivileged environment [60]. A user also suggests a
similar workaround on the bug page that is filed to allow FUSE function-
ality by default. 2

Linux namespaces allow per-namespace mappings of the user and
group IDs. It enables a process’s user to have two different IDs inside the
user namespace and outside the namespace. Thus, a process will not be
allowed privileged operations outside the namespace but has root privi-
leges inside the namespace. We let the user within the container run with
root privileges within its namespace; however, the user within the con-
tainer cannot execute privileged operations outside the namespace from
the host’s perspective. This way, we mount FUSE filesystems without
compromising the host’s security measures.

After mounting the FUSE filesystem, a user can create files with ar-
bitrary inode numbers and create collisions in the inode hash, leading to
long lists in a hash bucket. Because of the large number of hash buckets,
it is difficult for the attacker to target a specific file for contention. Instead,
the attacker continues to access the same bucket, elongating critical sec-
tions while holding the global lock. As the lock is held for a longer du-
ration, any other user trying to acquire the global lock must wait longer,
leading to poor performance.

2A bug is already filed to allow FUSE functionality by default -
https://github.com/docker/for-linux/issues/321.

68

0 50 100 150 200 250 300

Time (seconds)

0

200

400

600

800

1000

1200

T
h
ro
u
g
h
p
u
t
(o
p
s)

Prepare for
attack

Attack started

Latency

Throughput

0

20

40

60

80

100

La
te
n
cy
 (
m
s)

Figure 3.2: Performance of Exim Mail Server under inode cache attack.
Throughput and Average Latency timeline of Exim Mail Server when under in-
ode cache attack. Prepare to attack means that the attacker starts to launch the
attack and initiates probing to break the hash function and identify the superblock
address. Upon identifying the superblock address, the attacker can target a hash
bucket and launch an attack.

In this attack, inode_cache_lock meets S1, hash table having lin-
ear worst-case complexity meets S2_weak, and FUSE filesystem meets
S2_expand condition. Given enough resources and time, an attacker can
turn this attack into a framing attack by identifying and targeting a hash
bucket that victims often access.

To show the impact on the victim’s performance, we run an Exim mail
server container as a victim and launch an inode cache attack from a sep-
arate container. We run MOSBENCH [29] scripts as the client from an-
other machine to send messages to the Exim server. To monitor the inter-
nal state of the inode cache, we track the lock hold times, wait times to
acquire the lock for the victim and the attacker at the start of each second.
Additionally, we also track the maximum number of entries for the victim

69

and the attacker in the buckets every 10 seconds.
Figure 3.2 shows the timeline of the throughput and average latency

for the duration of the attack. The attacker tries to identify the superblock
address during the prepare phase by carefully choosing the inode num-
bers. After identifying the superblock address, the attacker can target any
hash bucket and can start the attack. In the figure, around time 100, the
attacker finds the superblock address.

Once the attack starts, the performance reduces significantly as the
lock is held while adding entries to the targeted bucket, thereby starving
the Exim mail server, and reducing the throughput by 92% (around 12X)
and increasing the latency of the operations. As the attack progresses, the
attacker continues to add more entries to the hash bucket, increasing the
lock hold time further.

Internal state of the inode cache. Figure 3.3 shows the timeline of
the lock hold times, the wait times, and the maximum number of entries
for the victim and the attacker. In Figure 3.3a, we observe that once the
attack starts, the attacker can elongate the lock hold times by targeting
a single hash bucket and expanding it. As the victim is not accessing a
single hash bucket, the lock hold times always stay around a few hundred
nanoseconds.

Figure 3.3c corroborates the increase in the lock hold times as the num-
ber of entries keeps increasing as the attack progresses. As the victim’s
entries are spread across different hash buckets, the maximum number of
entries in any bucket remains around two entries during the experiment.

Figure 3.3b shows that the victim’s cumulative wait times continue
to grow as the attack progresses. Once the attacker starts dominating
the lock hold times, the victim threads must wait longer to acquire the
lock leading to poor performance. In Figure 3.3b, we observe that while
dominating the lock hold times, the attacker does not have a tremendous
increase in the cumulative wait times. This shows that the attacker is not

70

0 50 100 150 200 250 300
Time (seconds)

0
0.5
1

2

3

4

5

Lo
ck

 H
o
ld
 T
im

e
s

 p
e
r
se

co
n
d
 (
m
s)

Prepare for
attack
Attack started

Lock Hold Times - Victim

Lock Hold Times - Attacker

(a) Lock hold times of the victim and the attacker.

0 50 100 150 200 250 300
Time (seconds)

0

50

100

150

200

250

300

C
u
m
u
la
ti
v
e
 W

a
it
-T
im

e
s

 p
e
r
se
co

n
d
 (
se
co

n
d
s)

Prepare for
attack
Attack started

Cumulative Wait-Times - Victim

Cumulative Wait-Times - Attacker

(b) Cumulative wait times of the victim and the attacker.

71

0 50 100 150 200 250 300
Time (seconds)

0

10K

20K

30K

40K

50K

M
a
x
 e
n
tr
ie
s
in
 a
n
y
 b
u
ck
e
t

Prepare for attack

Attack started

Victim entries

Attacker entries

(c) Max number of entries of the victims and the attacker in any bucket.

Figure 3.3: Internal state of inode cache when under inode cache at-
tack. The graph present an overall picture of the inode cache when an attacker
is launching the attack. In particular, the timeline shows the lock hold times, the
cumulative wait times to acquire the inode cache lock, and the maximum number
of entries of the victim and the attacker in the inode cache. The victim is running
the Exim Mail Server.

impacted by the victim’s small lock hold times. It is only the victim that
is impacted by longer wait times.

Economic impact. For the inode cache attack, once the attack starts,
we observe that the victim threads’ cumulative wait-time is around 273
seconds which is roughly around 33% of the total CPU used by the victim
threads. Hence, the victim will have to pay 33% more for the CPU usage
even though they are not doing any useful work. We believe that with
a multi-threaded attacker, the performance and economic impact will be
higher as multiple attacker threads will further increase the wait times.

72

3.2.3.2 Framing Attack on Futex Table

We now describe a framing attack on the futex table where the attacker
probes the futex table hash buckets to find a target hash bucket. Upon
finding a target hash bucket used by victims, the attacker will create
thousands of threads and park them on the hash bucket by calling futex
syscall. After targeting the hash bucket, the attacker no longer partici-
pates in the lock acquisition process in this attack.

The Linux kernel supports futexes, a lightweight method to support
thread synchronization in user-space [63]. A futex provides the ability
to wait on a futex variable, which is any location in memory until another
thread signals the thread to wake up. Futexes are used to build synchro-
nization abstractions such as POSIX mutexes and condition variables. The
futex() syscall lets the user-space code wait and signal futex variables.

Rather than maintain a separate wait queue for each futex variable,
the kernel maintains a futex table, and each bucket in the table is a shared
wait queue. To identify the wait queue for a futex variable, the kernel
hashes the futex variable address. When a thread waits on a futex, the
kernel adds the thread to the wait queue dictated by the hash of the fu-
tex variable. Similarly, the kernel traverses the shared wait queue when
waking a thread, looking for threads waiting on that futex variable. As a
result, a single wait queue can be shared by several futex variables, either
belonging to the same or different applications. A separate lock protects
each hash bucket. Linux kernel allocates the futex table at boot time, and
the number of buckets is a multiple of the number of CPUs in the system.3

As the number of hash buckets is small, the attacker uses bucket prob-
ing to identify a target hash bucket instead of breaking the hash function.
The attack starts by allocating a few thousand futex variables to map them
to different wait queues. The attacker then probes the wait queues by call-

3For the 32 CPU system used for evaluation, the hash table comprises 256 ∗ 32 =
8, 192 hash buckets.

73

ing futex() to wake a thread for each while measuring the time it takes
to complete the system call. The syscall will take measurably longer to
complete if victim processes are already using a wait queue, allowing the
attacker to attack these wait queues.

After identifying the wait queue, the attacker spawns thousands of
threads that wait on the target futex variable, thereby adding them to its
wait queue. As the wait queue grows, any victims sharing it must walk
the elongated queue to wake up their threads. This leads to longer lock
hold times, longer stalls to acquire the lock, and poor performance.

Unlike the inode cache attack, in this scenario, the attacker becomes
passive and sits idle after creating the waiting threads, which demon-
strates a framing attack – there is lock contention, but the attacker is not
actively acquiring the lock. In this attack, the attacker meets the condi-
tion S1+ S2_weak+ S2_expand by parking thousands of threads on the
target hash bucket. When the victim accesses the target hash bucket, the
condition F1 is met.

We conduct an experiment by running UpscaleDB, an embedded key-
value database [155], within a container as a victim to show the perfor-
mance impact. We use the built-in benchmarking tool ups_bench to run
an in-memory insert-only workload. Figure 3.4 shows the throughput
and average latency timeline. Before the attack starts, UpscaleDB ob-
serves high throughput while the average latency remains constant.

During the first part of the attack, the attacker probes the futex table,
and around time 54 seconds, identifies a busy-wait queue and starts creat-
ing threads to lengthen the queue. Note that the wait queue found is the
one used by UpScaleDB to park the threads that are waiting to acquire the
global lock that UpScaleDB uses for synchronization. This leads to highly
variable performance for UpScaleDB, reducing throughput between 65 to
80%. Along with a drop in the throughput, we observe that the maximum
latency increases from around 10-15 milliseconds to 0.7-1.2 seconds – an

74

0 50 100 150 200 250 300

Time (seconds)

0

10K

20K

30K

40K

50K

60K
T
h
ro
u
g
h
p
u
t
(o
p
s)

Prepare for attack Attack started

Latency

Throughput

0

2

4

6

8

10

La
te
n
cy
 (
m
s)

Figure 3.4: Performance of UpScaleDB under futex table attack.
Throughput and Average Latency timeline of UpScaleDB when under futex table
attack. Prepare to attack means that the attacker starts to launch the attack and
initiates probing to identify the hash bucket that UpSCaleDB uses. After identi-
fying the hash bucket, the attack is launched by spawning thousands of threads
and parking them in the identified hash bucket.

increase of 45 to 100X.
Internal state of the futex table. Figure 3.5 shows the timeline of the

lock hold times, the wait times, and the maximum number of entries for
the victim and the attacker. As the futex table attack is a framing attack,
the attacker turns passive after launching the attack. In Figure 3.5a, we
observe that once the attack starts, after elongating the hash bucket and
parking thousands of threads in the wait queue, the lock hold times of the
victim increases. As the victim thread must perform more work due to the
attacker’s parked threads, the lock hold times increase from a few hun-
dred nanoseconds to tens of milliseconds. Being a framing attack, as the
attacker is not participating in the lock acquisition process, the attacker’s
lock hold time is 0.

75

0 50 100 150 200 250 300
Time (seconds)

0

1

2

3

4

5

6

Lo
ck

 H
o
ld
 T
im

e
s

 p
e
r
se

co
n
d
 (
m
s)

Prepare
for
attack

Attack
started

Lock Hold Times - Victim

Lock Hold Times - Attacker

(a) Lock hold times of the victim and the attacker.

0 50 100 150 200 250 300
Time (seconds)

0

150

300

450

600

750

C
u
m

u
la

ti
v
e
 W

a
it
-T

im
e
s

 p
e
r
se

co
n
d
 (
se

co
n
d
s)

Prepare for
attack

Attack started

Cumulative Wait-Times - Victim

Cumulative Wait-Times - Attacker

(b) Cumulative wait times of the victim and the attacker.

76

0 50 100 150 200 250 300
Time (seconds)

0

10K

20K

30K
M
a
x
 e
n
tr
ie
s
in
 a
n
y
 b
u
ck
e
t

Prepare for attack

Attack started

Victim entries

Attacker entries

(c) Max number of entries of the victims and the attacker in any bucket.

Figure 3.5: Internal state of futex table when under futex table attack.
The graphs present an overall picture of the futex table when an attacker is launch-
ing the attack. In particular, the timeline shows the lock hold times, the cumu-
lative wait times to acquire the hash bucket lock, and the maximum number of
entries of the victim and the attacker in the futex table. The victim is running
UpScaleDB.

Figure 3.5c corroborates the increase in the victim’s lock hold times
once the number of entries increases after the attack is launched. Even
though the victim’s total entries is tiny, the victim still pays the cost of the
elongated wait queue leading to a performance collapse.

Figure 3.5b shows that the victim’s cumulative wait times continue
to grow as the attack progresses. Being a framing attack, the attacker
manages to increase the lock hold times of the victims and increase the
cumulative wait times. As multiple victim threads participate in the lock
acquisition process, each thread must wait longer to acquire the lock lead-
ing to an increase in the cumulative wait times.

Economic impact. Once the futex table attack starts, we observe that

77

the total cumulative wait-time for the victim is 694 seconds. The total
cumulative wait time is roughly around 40% of the total CPU used by
all the victim threads. Hence, the victim will have to pay 40% more for
CPU usage due to the framing attack. The performance and the economic
impact will increase when many victim threads participate in the lock
acquisition process.

Framing attacks make the victims traverse the expanded hash bucket
and unnecessarily expand the critical section increasing the victim’s CPU
usage. We observe an increase in the victim’s total CPU usage by 2.3X
times compared to the case without an attack. Thus, the victim may end
up paying 2.3X times more for the extra CPU usage.

Even though UpScaleDB uses POSIX mutexes that are highly opti-
mized to avoid the futex system call as much as possible, there is still
a significant performance degradation. Note that by repeatedly parking
and waking threads, the above attack will turn into a synchronization at-
tack.

3.2.3.3 Synchronization Attack on Directory Cache

We now describe how a directory cache attack can be launched by break-
ing the hash function or simply creating millions of random dcache en-
tries overwhelming the hash table. This attack targets RCU instead of the
mutual exclusion locks and is a synchronization attack.

Lastly, we show a vulnerability that can be exploited by an attacker
that can break the dcache hash function. One of the most common filesys-
tem operations is a lookup, which maps a path string onto an inode re-
siding in a memory. A dentry structure maps a path to an in-memory
inode. The Linux directory cache (dcache) stores dentry structures to
support filename lookups [153]. The dcache is implemented as a hash ta-
ble where each bucket stores a linked list of dentries with the same hash
value. The hash function uses the parent dentry address and the filename

78

to calculate the hash value.
For efficiency, the dcache relies on RCU to allow concurrent read ac-

cess, but freeing entries must wait for all concurrent readers to leave the
read critical section. This wait, called a grace period, ensures that no reader
is holding a reference to the deleted object. RCU provides synchronous
(synchronize_rcu()) or asynchronous (call_rcu()) APIs for this pur-
pose. The synchronous API makes the user wait until the grace period is
over. On the other hand, the asynchronous API registers a call back that
the RCU subsystem executes after the grace period is over.

The dcache stores negative entries to record that no such on-disk file
exists for a particular filename. One reason to allow negative entries is to
support applications that issue lookups for a file on multiple paths spec-
ified by environment variables. Negative entries help avoid an expensive
filesystem call for files that do not exist.

The attack exploits the dcache’s support for negative entries. An at-
tacker can create millions of negative entries mapping to a single hash
bucket by breaking the hash function thereby meeting condition S1 +

S2_weak + S2_expand. There has been an instance in the past where
a customer observed performance degradation due to too many negative
entries created by genuine workloads [67].

Before creating a negative entry, the lookup operation first walks
through the hash bucket to check if the entry exists or not. The hash
bucket walk is part of the RCU read-side critical section. Walking an ex-
panded hash bucket increases the read-side critical section, thereby in-
creasing the grace period size too. As RCU is shared across the Linux
kernel, any increase in the grace period stalls the victims. Victims using
the synchronize_rcu() will stall until the grace period is over. In the case
of call_rcu(), freeing objects will be delayed, and more work will pile up
for the RCU background thread to execute the callbacks leading to lower
performance or out of memory conditions [104, 127, 128, 136].

79

0 50 100 150 200 250 300
Time (seconds)

0

200

400

600

800

1000

1200

T
h
ro
u
g
h
p
u
t
(o
p
s)

Attack started

Throughput

Figure 3.6: Performance of Exim Mail Server under directory cache at-
tack. Throughput timeline of Exim Mail Server when under directory cache
attack. There is no need to prepare for the attack with directory cache attack. The
attack starts immediately by creating millions of negative dentries.

To demonstrate the attack and the impact on the victim’s performance,
we run an Exim mail server container as a victim and launch the directory
cache attack from a separate container. We run the experiment by mod-
ifying the kernel to simulate an attacker that can target any hash bucket.
In the past, the dcache hash function has been compromised [33] using
birthday attack [68]. We can employ a similar methodology that we used
to break the inode cache hash function to break the dcache hash function.

Figure 3.6 shows the throughput for the duration of the attack. Once
the attack starts, as the hash bucket size increases, the read-critical section
size increases, increasing the grace period size. We observe that the grace
period increases from 30-40 milliseconds (no attack case) to around 1.7
seconds after the attacker runs for a few hours. The mail server workload
generates hundreds of thousands of callbacks every second, which over-

80

whelms the RCU background thread when the grace period increases.
Internal state of the dentry cache. Figure 3.7 shows the timeline of

the RCU read-side critical section times, the grace period duration, and
the maximum number of entries for the victim and the attacker. In Fig-
ure 3.7a, we observe the read-side critical section sizes increase for the at-
tacker’s operations over time as each thread spends more time traversing
the elongated hash bucket. On the other hand, the hash buckets accessed
by the victims are not too long. Therefore, the read-side critical section
size is tiny (a few hundred nanoseconds).

Figure 3.7c corroborates the increase in the attacker’s critical section
times once the number of entries increases after the attack is launched.
On the other hand, the maximum number of entries for the victim is just
two as all its entries are spread across the hash table.

Lastly, Figure 3.7b shows the impact of the longer read-side critical
sections on the duration of the grace period. With read-side critical sec-
tion sizes increasing, the grace period also increases and reaches up to
790 milliseconds.

For the current experiment, the Exim mail server workload does not
rely on synchronize_rcu(). However, it still initiates the call_rcu() calls to
wait for the grace period to be over. Hence, it is not possible to gauge the
economic impact of this workload. There may be other applications that
might call synchronize_rcu() and hence will have to wait for the grace
period to be over to make forward progress. There will be an economic
impact in those situations like we have seen for the earlier two attacks.
Moreover, as RCU is being shared across hundreds of subsystems in the
Linux kernel; longer grace periods will impact various workloads.

Alternate attack approach. An attacker can launch the same attack
without breaking the hash function. Instead of targeting a single hash
bucket, the attacker can randomly create hundreds of millions of nega-
tive entries stressing the hash table. We observe that by doing so, the

81

0 50 100 150 200 250 300
Time (seconds)

0

2.5

5

7.5

10

12.5

15

Lo
ck

 H
o
ld

 T
im

e
s

 p
e
r
se

co
n
d
 (
m

s)

Attack started

RCU Read Lock Hold Times - Victim

RCU Read Lock Hold Times - Attacker

(a) Read-side lock hold times of the victim and the attacker.

0 50 100 150 200 250 300
Time (seconds)

0

200

400

600

800

Ti
m
e
 t
o
 c
o
m
p
le
te

sy
n
ch

ro
n
iz
e
_r
cu

()
 (
m
s)

Attack started

(b) Time to complete the synchronize_rcu() call, i.e., the grace period time.

82

0 50 100 150 200 250 300
Time (seconds)

0

20K

40K

60K

80K

100K
M
a
x
 e
n
tr
ie
s
in
 a
n
y
 b
u
ck
e
t

Attack started

Victim entries

Attacker entries

(c) Max number of entries of the victims and the attacker in any bucket.

Figure 3.7: Internal state of dentry cache when under dentry cache at-
tack. The graphs present an overall picture of the dentry cache when an attacker
is launching the attack. In particular, the timeline shows the lock hold times for
the read-side critical section, the time taken to complete synchronize_rcu() call,
and the maximum number of the entries of the victim and attacker in the dentry
cache. The victim is running the Exim Mail Server.

grace period size increases to around 400 milliseconds within seconds of
starting the attack leading to a drop in the victim’s performance.

Through these three different attacks on three data structures, we
show how attackers can leverage synchronization primitives to increase
synchronization stalls, hurting the victim’s performance. We also show
that an attacker can use different methods to launch an attack – by break-
ing the hash bucket, by probing the hash tables when the number of hash
buckets is not large, and by stressing the hash tables by creating objects
randomly.

83

3.3 Summary & Conclusion
Locks are an important component of concurrent systems. In this chap-
ter, we introduced a new important property of locks – lock usage. Lock
usage deals with the amount of time spent in the critical section while
holding the lock. As multiple threads participate in the lock acquisition
process in a concurrent system, lock usage becomes crucial. Unfair lock
usage can lead to two problems – performance and security.

We introduced two new problems that deal with locks and lock us-
age. Firstly, we introduced the problem of scheduler subversion where
instead of the CPU scheduler determining which thread runs, the lock
usage patterns dictate the CPU share, thereby subverting the scheduling
goals. Due to scheduler subversion, the entire system may exhibit fairness
and starvation problems leading to poor performance.

Secondly, through adversarial synchronization, we showed the adver-
sarial aspects of lock usage and described two types of attacks – synchro-
nization and framing attacks. By carefully accessing the data structures
that the synchronization primitives protect, an adversary can control the
lock usage leading to poor performance and large denial-of-services. By
launching synchronization attacks, an adversary can make the victims
stall longer to acquire the lock. On the other hand, a framing attack is an
extension of a synchronization attack, where an adversary forces the vic-
tim to spend more time in the critical section while making other victims
stall longer to acquire the lock.

When locks are used inside of a traditional multi-threaded program,
the lock usage concern is real. But the effects of scheduler subversion
and adversarial synchronization can always be mitigated due to the coop-
erative nature of the entities involved, i.e., the threads are all part of the
same program. Thus, the burden of using locks correctly can be placed
on the application developer; any scheduling subversion or adversarial
synchronization hurts only the threads within that application.

84

However, when different clients in a competitive access locks environ-
ment (e.g., a server, the kernel, etc.), important locks maybe unintention-
ally or even maliciously held for significantly different amounts of time
by different clients; thus, the entire system may exhibit fairness and star-
vation problems or denial-of-service attacks. In these cases, lock design
must include mechanisms to handle the competitive nature of their us-
age.

85

4
Scheduler-Cooperative Locks

In the previous chapter, we discussed how using locks can lead to a new
problem called scheduler subversion. When subversion arises, instead
of the CPU scheduler determining the proportion of the processor each
competing entity obtains, the lock usage pattern dictates the share. Ir-
respective of the CPU scheduling goals, locks drive the CPU allocation
leading to performance issues. Today’s datacenters are designed around
concurrent shared infrastructure such as operating systems, hypervisors,
or servers. Such infrastructure is commonly built with classic locks; hence
can greatly inhibit a scheduler and prevent it from reaching its goal.

In this chapter, we now discuss how to address the problem of sched-
uler subversion by building locks that align with the scheduling goals.
To remedy this problem, we define the concept of usage fairness. Usage
fairness guarantees that each competing entity receives a time window in
which it can use the lock (once or many times); we call this lock opportu-
nity. By preventing other threads from entering the lock during that time,
lock opportunity ensures that no one thread can dominate the CPU time.

To study usage fairness, we first study how existing locks can lead
to the scheduler subversion problem. We then propose how lock usage
fairness can be guaranteed by Scheduler-Cooperative Locks (SCLs), a new
approach to lock construction. SCLs utilize three important techniques
to achieve their goals: tracking lock usage, penalizing threads that use
locks excessively, and guaranteeing exclusive lock access with lock slices.

86

By carefully choosing the size of the lock slice, either high throughput or
low latency can be achieved depending on scheduling goals.

Our work focuses on locks that cooperate with proportional-share
schedulers. We implement three different types of SCLs. The user-space
Scheduler-Cooperative Lock (u-SCL) is a replacement for a standard mu-
tex and the Reader-Writer Scheduler-Cooperative Lock (RW-SCL) im-
plements a reader-writer lock; these are both user-space locks and can
be readily deployed in concurrent applications or servers where sched-
uler subversion exists. The kernel Scheduler-Cooperative Lock (k-SCL)
is designed for usage within an OS kernel. Our implementations include
novel mechanisms to lower CPU utilization under load, including a next-
thread prefetch mechanism that ensures fast transition from the current-lock
holder to the next waiting thread while keeping most waiting threads
sleeping.

Using microbenchmarks, we show that in a variety of synthetic lock
usage scenarios, SCLs achieve the desired behavior of allocating CPU re-
sources proportionally. We also study the overheads of SCLs, showing
that they are low. We investigate SCLs at a small scale (a few CPUs) and
a larger scale (32 CPUs), showing that behavior actually improves under
higher load as compared to other traditional locks.

We also demonstrate the real-world utility of SCLs in three distinct
use cases. Experiments with UpScaleDB [155] show that SCLs can sig-
nificantly improve the performance of find and insert operations while
guaranteeing usage fairness. Similarly, experiments with KyotoCabi-
net [93] show that, unlike existing reader-writer locks, RW-SCL pro-
vides readers and writers a proportional lock allocation, thereby avoid-
ing reader or writer starvation. Lastly, we show how k-SCL can be used
in the Linux kernel by focusing upon the global filesystem rename lock,
s_vfs_rename_mutex. This lock, under certain workloads, can be held for
hundreds of seconds by a single process leading to an input parameter

87

attack we described in the previous chapter. Such an attack starves other
file-system-intensive processes. We show that k-SCL can be used to miti-
gate the lock usage imbalance and the input parameter attack.

The rest of this chapter is organized as follows. We first show in Sec-
tion 4.1 that existing locks do not ensure lock usage fairness. Then we
discuss the design and implementation of SCLs in Section 4.2 and eval-
uate the different implementations of SCLs in Section 4.3. We present
limitations and applicability of SCLs in Section 4.4 and summarize in Sec-
tion 4.5.

4.1 Lock Opportunity
In this section, we describe how existing locks do not guarantee lock usage
fairness and introduce lock opportunity – a new metric to measure lock
usage fairness.

4.1.1 Inability to Control CPU Allocation

Existing locks, such as mutex, spinlocks, and even ticket locks, do not en-
able schedulers to control the CPU allocation given to different threads
or processes. We illustrate this with a simple application that has two
threads and a single critical section. For one of the threads (T0), the criti-
cal section is long (10 seconds), while for the other (T1), it is short (1 sec-
ond); for both, the non-critical section time is negligible (0). We consider
three common lock implementations: a pthread mutex, a simple spinlock
that uses the test-and-set instruction and busy-waits, and a ticket lock that
uses the fetch-and-add instruction and busy-waits. The application runs for
20 seconds.

As shown in Figure 4.1, even though the scheduler is configured to
give equal shares of the CPU to each thread, all three existing lock imple-

88

other

hold

wait

other

hold

wait
T

1
T

0

(a) Mutex

other

hold

wait

other

hold

wait

T
1

T
0

(b) Spinlock

other

hold

wait

other

hold

wait

T
1

T
0

(c) Ticket lock

other

hold

wait

other

hold

wait

T
1

T
0

(d) Desired

Figure 4.1: Impact of Critical Section Size. The behavior of existing locks
when the critical section sizes of two threads differ. The CFS scheduler is used,
and each thread is pinned on a separate CPU. “wait” represents the time spent
waiting to acquire the lock; “hold” represents the critical section execution, i.e.,
the time the lock is held; “other” represents the non-critical section execution.

89

mentations enable the thread with the long critical section (T0) to obtain
much more CPU.

In the case of the mutex (Figure 4.1a), T0 dominates the lock and
starves T1. This behavior arises because the waiter (T1) sleeps until the
lock is released. After T1 is awoken, but before getting a chance to acquire
the lock, the current lock holder (T0) reacquires the mutex due to its short
non-critical section time. Thus, with a mutex, one thread can dominate
lock usage and hence CPU allocation.

The behavior of the spinlock (Figure 4.1b) is similar as the next lock
holder is decided by the cache coherence protocol. If the current lock
holder releases and reacquires the lock quickly (with a negligible non-
critical section time), it can readily dominate the lock. With spinlocks,
since the waiting thread busy-waits, CPU time is spent waiting without
making forward progress; thus, CPU utilization will be much higher than
with a mutex.

Finally, the ticket lock suffers from similar problems, even though it
ensures acquisition fairness. The ticket lock (Figure 4.1c) ensures acqui-
sition fairness by alternating which thread acquires the lock, but T0 still
dominates lock usage due to its much longer critical section. Lock acqui-
sition fairness guarantees that no thread can access a lock more than once
while other threads wait; however, with varying critical section sizes, lock
acquisition fairness alone cannot guarantee lock usage fairness.

This simple example shows the inability of existing locks to control
the CPU allocation. One thread can dominate lock usage such that it can
control CPU allocation. Additionally, for an interactive thread, when low
latency matters, lock usage domination can defeat the purpose of achiev-
ing low latency goals as the thread will have to wait to acquire the lock.
Thus, a new locking primitive is required, where lock usage (not just ac-
quisition) determines when a thread can acquire a lock. The key concept
of lock opportunity is our next focus.

90

Mutex Spinlock Ticketlock Desired

LOT Thread 0 20 20 20 10

LOT Thread 1 1 3 2 10

Fairness Index 0.54 0.64 0.59 1
Table 4.1: Lock Opportunity and Fairness. The table shows lock opportunity
and the Jain fairness index for the toy example across the range of different existing
locks, as well as the desired behavior of a lock.

4.1.2 Lock Opportunity

The non-preemptive nature of locks makes it difficult for schedulers to al-
locate resources when each thread may hold a lock for a different amount
of time. If, instead, each thread were given a proportional “opportunity”
to acquire each lock, then resources could be proportionally allocated
across threads.

Lock opportunity is defined as the amount of time a thread holds a
lock or could acquire the lock because the lock is available. Intuitively,
when a lock is held, no other thread can acquire the lock, and thus no
thread has the opportunity to acquire the lock; however, when a lock is
idle, any thread has the opportunity to acquire the lock. The lock opportu-
nity time (LOT) for thread i is formally defined as:

LOT(i) =
∑

Critical_Section(i) +
∑

Lock_Idle_Time (4.1)

For the toy example above, Table 4.1 shows the lock opportunity time
of threads T0 and T1. We see that thread T1 has a much lower lock oppor-
tunity time than thread T0; specifically, T1 does not have the opportunity
to acquire the lock while it is held by thread T0. Therefore, thread T1’s

91

LOT is small, reflecting this unfairness.
Using lock opportunity time for each thread, we quantify the fairness

using Jain’s fairness index [80]; the fairness index is bounded between
0 and 1 where a 0 or 1 indicates a completely unfair or fair scenario re-
spectively; and a score of 0.5 means the metric is fair for half of all the
involved entities. As seen in the table, all three existing locks achieve fair-
ness scores between 0.54 and 0.64, indicating that one thread dominates
lock usage and thereby CPU allocation as well. Note that even though the
ticket lock ensures acquisition fairness; it still has a low fairness index.

Thus, fair share allocation represents an equal opportunity to access
each lock. For the given toy example, the desired behavior for equal lock
opportunity is shown in Figure 4.1d. Once T0 acquires the lock and holds
it for 10 seconds, the lock should prevent thread T0 from acquiring the
lock until T1 has accumulated the same lock opportunity time. As T0 is
prevented from accessing the lock, T1 has ample opportunity to acquire
the lock multiple times and receive a fair allocation. Notice that at the
end of 20 seconds, both threads have the same lock opportunity time and
achieve a perfect fairness index of 1.

Building upon this idea, we introduce Scheduler-Cooperative Locks
(SCLs). As we will see, SCLs track lock usage and accordingly adjust
lock opportunity time to ensure lock usage fairness.

4.2 Scheduler-Cooperative Locks
We, now describe the goals for Scheduler-Cooperative Locks, discuss
the design of SCL, and present the implementation of three types
of Scheduler-Cooperative Locks: a user-space Scheduler-Cooperative
Lock (u-SCL), a kernel version of u-SCL (k-SCL), and a Reader-Writer
Scheduler-Cooperative Lock (RW-SCL).

92

4.2.1 Goals

Four high-level goals guide our SCL design:

• Controlled lock usage allocation. SCLs should guarantee a speci-
fied amount of lock opportunity to competing entities irrespective
of their lock usage patterns. To support various scheduling goals, it
should be possible to allocate different amounts of lock opportunity
to different entities. Lock opportunity should be allocatable across
different types of schedulable entities (e.g., threads, processes, and
containers) or within an entity according to the type of work being
performed.

• High lock-acquisition fairness. Along with lock usage fairness,
SCLs should provide lock-acquisition fairness when arbitrating
across threads with equal lock opportunity. This secondary crite-
rion will help reduce wait-times and avoid starvation among active
threads.

• Minimum overhead and scalable performance. SCLs must track
the lock usage pattern of all threads that interact with a given lock,
which could be costly in time and space. SCLs should minimize this
overhead to provide high performance, especially with an increas-
ing number of threads.

• Easy to port to existing applications. For SCLs to be widely used,
incorporating SCLs into existing applications (including the OS)
should be straightforward.

In this work, our primary focus is on proportional allocation. In the
future, lock cooperation with other types of schedulers will be an inter-
esting avenue of work.

93

4.2.2 Design

To ensure lock usage fairness without compromising performance, the
design of SCL is comprised of three components.

1. Lock usage accounting. Each lock must track its usage across each
entity that the scheduler would like to control. Accounting and
classification can be performed across a wide range of entities [22].
For example, classification can be performed at a per-thread, per-
process, or per-container level, or according to the type of work be-
ing performed (e.g., reading or writing). For simplicity in our dis-
cussion, we often assume that accounting is performed at the thread
granularity. We believe that different types of locks can be built de-
pending on the classification. Similarly, each thread (or schedulable
entity) has a goal, or allotted, amount of lock opportunity time; this
goal amount can be set to match a proportional share of the total
time as desired by the CPU scheduler; for example, a default alloca-
tion would give each thread an equal fair share of lock opportunity,
but any ratio can be configured.

2. Penalizing threads depending on lock usage. SCLs force threads
that have used their lock usage quota to sleep when they prema-
turely try to reacquire a lock. Penalizing these threads allows other
threads to acquire the lock and thus ensures appropriate lock op-
portunity. The potential penalty is calculated whenever a thread re-
leases a lock and is imposed whenever a thread attempts to acquire
the lock. The penalty is only imposed when a thread has reached
its allotted lock usage ratio. Threads with a lower lock usage ratio
than the allotted ratio are not penalized.

3. Dedicated lock opportunity using lock slice. Accounting for lock
usage adds to lock overhead, especially for small critical sections

94

(lasting nanoseconds or microseconds). To avoid excessive locking
overhead, we introduce the idea of a lock slice, building on the idea
of Lock Cohorts [57]. A lock slice is similar to a time slice (or quan-
tum) used for CPU scheduling. A lock slice is the window of time
where a single thread can acquire or release the lock as often as it
would like. One can view the lock slice as a fixed size virtual criti-
cal section. Only the lock slice owner can acquire the lock during the
window. Once the lock slice expires, ownership is transferred to the
next waiting thread. Thus, a lock slice guarantees lock opportunity
to the thread owner; once lock ownership changes, lock opportu-
nity changes as well. Lock slices mitigate the cost of frequent lock
owner transfers and related accounting. Thus, lock slices enable us-
age fairness even for fine-grained acquisition patterns.

One can design many types of SCL. We now discuss the implemen-
tation of three types of SCL: u-SCL, k-SCL, and RW-SCL. While u-SCL
and k-SCL guarantee lock usage fairness at a per-thread level, RW-SCL
classifies threads based on the work they do (i.e., readers vs. writers).

4.2.3 u-SCL Implementation

The implementation of u-SCL is in C and is an extension of the K42 variant
of the MCS lock [20]. Threads holding or waiting for the lock are chained
together in a queue, guaranteeing lock acquisition. Like the K42 variant,
the u-SCL lock structure also uses two pointers: tail and next. While The
tail pointer points to the last waiting thread, the next pointer refers to the
first waiting thread if and when there is one.

For lock accounting in u-SCL, we classify each thread as a separate
class and track lock usage at a per-thread level. Per-thread tracking does
incur additional memory for every active u-SCL lock. u-SCL maintains
information such as lock usage, weight (which is used to determine lock

95

Figure 4.2: User-space Scheduler-Cooperative Locks. The lock is shown
as a dashed box, and each lock acquisition request is shown as a node (box). The
arrow represents the pointer to the next node that forms the queue. “R” indicates
running, and the lock is owned. “W” indicates waiting for the slice.
In (1), the lock is initialized and free. (2) A single thread A has acquired the
lock. The tail “T” pointer points to itself and the next “N” pointer points NULL.
(3) Thread B arrives to acquire the lock and is queued. As B is the next-in-line to
acquire the lock; it spins instead of parking itself. The tail and the next pointers
point to B. (4) Thread A releases the lock, but B will wait for its turn as the lock
slice has not expired. (5) Thread C also arrives to acquire the lock and is queued
after B. C parks itself as it is not the next-in-line to acquire the lock. The tail
now points to the C as it is the last one to request lock access. (6) Thread A again
acquires the lock as it is the owner of the lock slice. (7) Thread A releases the lock.
(8) A’s lock slice is over, and B is now the owner of the slice. C is woken up and
made to spin as it will acquire the lock next. The tail and the next pointers now
point to C. (9) A again tries to acquire the lock but is penalized and therefore will
wait for the penalty period to be over before it can be queued.

usage proportion), and penalty duration, using a per-thread structure al-
located through the pthread library. The first time a thread acquires a
lock, the data structure for that thread is allocated using a key associated
with the lock. u-SCL does not assume a static set of threads; any number
of threads can participate and can have varied lock usage patterns.

To achieve proportional allocations that match those of the CPU
scheduler, u-SCL tracks the total weight of all threads and updates this
information whenever a new thread requests access to a lock or the thread

96

exits. u-SCL identifies the nice value of the new thread and converts it to
weights using the same logic that the CFS scheduler uses. The mapped
weights are then added to the total weight to reflect the new proportions.

Consider two threads, T0 and T1, with nice values of 0 and -3. Based
on these nice values, the CFS scheduler sets the CPU allocation ratio to
approximately 1:2. u-SCL identifies the nice values and converts them to
weights using the same logic that the CFS scheduler uses (0 maps to 1024
and -3 maps to 1991). The sum of the weights (1024 + 1991) is assigned to
the total weight. To calculate each thread’s proportion, u-SCL uses each
thread’s weight and the total weight to calculate the proportion. For T0
and T1, the proportion is calculated as 0.34 and 0.66, respectively, making
the lock opportunity ratio approximately 1:2. This way, u-SCL guarantees
lock opportunity allocations that match those of the CPU scheduler.

The interfaces init() and destroy() are used to initialize and destroy
a lock respectively. The acquire() and release() routines are called by the
threads to acquire and release a lock respectively. Figure 4.2 shows the
operation of u-SCL. For simplicity, we just show the tail and next pointers
to explain the flow in the figure and no other fields of the lock.

The figure begins with lock initialization (Step 1). If a lock is free and
no thread owns the slice, a thread that tries to acquire the lock is granted
access and is marked as the slice owner (Step 2). Alternatively, if the lock
is actively held by a thread, any new thread that tries to acquire it will
wait for its turn by joining the wait queue (Steps 3 and 5). When a lock
is released (Step 4), the lock owner marks the lock as free, calculates its
lock usage, and checks if the slice has expired. If the lock slice has not
expired, the slice owner can acquire the lock as many times as needed
(Step 6). Since a lock slice guarantees dedicated lock opportunity to a
thread, within a lock slice, lock acquisition is fast-pathed, significantly
reducing lock overhead.

On the other hand, if the lock slice has expired, the current slice owner

97

sets the next waiting thread to be the slice owner (Steps 7 and 8). The cur-
rent slice owner also checks to see if it has exceeded the lock usage ratio
to determine an appropriate penalty. When acquiring the lock, another
check is performed by the requesting thread to see if it should be penal-
ized for overusing the lock earlier. A thread whose lock usage ratio is
above the desired ratio is banned until other active threads are given suf-
ficient lock opportunity. The thread is banned by forcing it to sleep (Step
9) and can try to acquire the lock after the penalty is imposed.

We have chosen two milliseconds as the slice duration for all experi-
ments unless otherwise stated. The two-millisecond duration optimizes
for throughput at the cost of longer tail latency. We will show the impact
of slice duration on throughput and latency in Section 4.3.4.
Optimizations. To make u-SCL efficient, we use the spin-and-park strat-
egy whenever the thread does not immediately acquire the lock; since
waiting threads sleep the majority of the time, the CPU time spent while
waiting is minimal.

Another optimization we implement is next-thread prefetch where the
waiting thread that will next acquire the lock is allowed to start spinning
(Steps 3 and 8); this mechanism improves performance by enabling a fast
switch when the current lock holder is finished with its slice. When this
optimization marks the next waiting thread as runnable, the scheduler
will allocate the CPU. However, as the thread has not acquired the lock, it
will spin, wasting the CPU. This behavior will be more visible when the
number of threads is greater than the number of cores available.
Limitations. We now discuss a few of the implementation limitations.
First, threads that sporadically acquire a lock continue to be counted in
the total weight of threads for that lock; hence, other active threads may
receive a smaller CPU allocation. This limitation is addressed in our ker-
nel implementation of k-SCL.

Next, our current implementation of u-SCL does not update lock

98

weights when the scheduler changes its goals (e.g., when an adminis-
trator changes the nice value of a process); this is not a fundamental lim-
itation. Finally, we have not yet explored u-SCL in multi-lock situations
(e.g., with data structures that require hierarchical locking or more com-
plex locking relationships). We anticipate that multiple locks can inter-
fere with the fairness goals of each lock leading to performance degrada-
tion. The interaction of multiple SCLs remains as future work.

Lastly, currently, SCLs incur high space overhead as they have to main-
tain the accounting information for each thread. With hundreds of SCLs
used in an application, the total space overhead will be significant and
may lead to performance implications.

4.2.4 k-SCL Implementation

k-SCL is the kernel implementation of u-SCL; it is a much simpler version
without any optimizations discussed above. As larger lock slice sizes in-
crease the wait-time to own the lock slice, we set the lock slice size to zero
while accessing kernel services. Unlike u-SCL, which uses a per-thread
structure to store the accounting information, k-SCL uses a hash table to
store and retrieve the accounting information for each thread.

k-SCL uses the idea of ticket locks to ensure lock acquisition fairness.
If a thread is acquiring the lock for the first time, it will register itself
for future lock acquisition. Otherwise, the thread will check if it needs
to be penalized for the previous lock acquisition or not. If it needs to
be penalized, then the thread waits until the penalty time expires. After
the penalty check, the thread acquires the next ticket and waits for its
turn to acquire the lock. Once the thread is ready to enter the critical
section, it simply notes the current time as the start of the critical section
for accounting purposes.

After the critical section is executed, while releasing the lock, the
thread calculates the critical section duration and then, based on it, cal-

99

culates the penalty. The thread remembers the time until when it cannot
acquire the lock again. Lastly, the thread increases the ticket by one to let
another waiting thread acquire the lock.
Check active interaction. The primary difference between k-SCL and u-
SCL is that k-SCL does track whether or not threads are actively interact-
ing with a kernel lock and accordingly removes them from the account-
ing. This check is performed by periodically walking through the list of
all thread data and freeing inactive threads data. Inactive threads are
threads that will either never acquire the lock again or will spend a long
time doing something else before acquiring the lock again (i.e., have a
high non-critical-section time). All other threads are considered active
by k-SCL.

It is challenging to accurately detect the inactive threads as k-SCL can-
not determine if the thread has exited or will not acquire the lock again in
the future. Therefore, k-SCL relies on heuristics to detect inactive threads.
To detect inactive threads, either a centralized or decentralized option is
present.

In the centralized option, a separate thread can periodically scan all
threads and tag the ones that did not request a lock acquisition in the
last period as inactive. However, we decide not to use this centralized
approach as a separate thread per lock is needed to monitor the inactive
threads. This approach would have trouble scaling as thousands of such
monitoring threads are needed for thousands of locks used by an appli-
cation or operating system.

Instead, we choose a decentralized approach, whereupon the lock re-
lease, the thread checks all the other threads that arrived before to find the
first active thread. All the threads in between are freed to reduce the total
thread count. Currently, we use a threshold to determine if a thread is
inactive or not. The threshold can either be set statically or can be learned
over time. In our implementation, we set the threshold value of one sec-

100

Figure 4.3: Reader-Writer Scheduler-Cooperative Locks. The dashed box
represents the lock. “N” represents the value of the counter. “READSLICE” and
“WRITESLICE” represents the read and write slice that the lock is currently in.
In (1) The lock is initialized and free. (2) A reader thread R1 acquires the lock
and continues its execution in the critical section. (3) Another reader thread,
R2, also joins in. (4) Reader R1 leaves the critical section. (5) A writer thread
W1 arrives and waits for the write slice to start. (6) Write slice is started, and
W1 waits for reader R2 to release the lock. (7) Reader R2 releases the lock and
the writer W1 acquires the lock. (8) Reader R1 now arrives again and waits for
the read slice to start. (9) W1 releases the lock, and the read slice starts allowing
the reader R1 to acquire the lock.

ond. A longer threshold can lead to stale accounting for a longer duration,
leading to performance issues. The drawback with such an approach is
that threads need to access other threads’ information.

4.2.5 RW-SCL Implementation

RW-SCL provides the flexibility to assign a lock usage ratio to readers
and writers, unlike the existing reader-writer locks that support reader
or writer preference. The implementation of RW-SCL is in C and is an
extension of the centralized reader-writer lock described by Scott [138].
Being centralized, RW-SCL tracks the number of readers and writers with
a single counter; the lowest bit of the counter indicates if a writer is active,

101

while the upper bits indicate the number of readers that are either active
or are waiting to acquire the lock. To avoid a performance collapse due
to heavy contention on the counter, we borrow the idea of splitting the
counter into multiple counters, one per NUMA node [34].

With RW-SCL, threads are classified based on the type of work each
executes; the threads that execute read-only operations belong to the
reader class, while the threads executing write operations belong to the
writer class. Since there are only two classes, RW-SCL does not use per-
thread storage and track each thread. Fairness guarantees are provided
across the set of reader threads and the set of writer threads. As with
other SCL locks, different proportional shares of the lock can be given to
readers versus writers. For the current implementation, we assume that
all the readers will have the same priority. Similarly, all writers will have
the same priority. Thus, a single thread cannot assume the role of a reader
and writer as the same nice value will be used, leading to a 50:50 usage
proportion, which might not be the desired proportion.

Figure 4.3 shows the operation of RW-SCL. The relevant RW-SCL rou-
tines include init(), destroy(), writer_lock(), reader_lock(), reader_unlock(),
and reader_unlock(). The lock begins in a read slice at initialization (Step
1). During a read slice, the readers that acquire the lock atomically in-
crements the counter by two (Step 2 and 3). On releasing the lock, the
counter is atomically decremented by two (Step 4). During the read slice,
all the writers that try to acquire the lock must wait for the write slice to
be active (Step 5). When readers release the lock, they will check if the
read slice has expired and may activate the write slice (Step 6).

While the write slice is active, writers try to acquire the lock by setting
the lowest bit of the counter to 1 using the compare-and-swap instruction
(Step 7). With multiple writers, only one writer can succeed, and other
writers must wait for the first writer to release the lock. If a reader tries
to acquire the lock while the write slice is active, it will wait for the read

102

slice to be active (Step 8). When a writer releases the lock, it will check if
the write slice has expired and activate the read slice (Step 9). Whenever
a read slice changes to a write slice or vice versa, the readers and writers
will wait for the other class of threads to drain before acquiring the lock.

As RW-SCL does not track per-thread lock usage, RW-SCL cannot
guarantee writer-writer fairness; however, RW-SCL can improve perfor-
mance for multiple writers. Within the write class, multiple writers can
contend for the lock, and thus while one writer is executing the non-
critical section, another writer can acquire the lock and execute. This be-
havior is contrary to the u-SCL behavior, where the lock remains unused
when the owner is executing the non-critical section code.

4.3 Evaluation
In this section, we evaluate the effectiveness of SCLs. Using microbench-
marks, we show that u-SCL provides both scalable performance and
scheduling control. We also show how SCLs can be used to solve real-
world problems by replacing the existing locks in UpScaleDB with u-SCL,
the Linux rename lock with k-SCL, and the existing reader-writer lock in
KyotoCabinet with RW-SCL.

We perform our experiments on a 2.4 GHz Intel Xeon E5-2630 v3.
It has two sockets; each socket has eight physical cores with hyper-
threading enabled. The machine has 128 GB RAM and one 480 GB SAS
SSD. The machine runs Ubuntu 16.04 with kernel version 4.19.80, using
the CFS scheduler.

We begin with a synthetic workload to stress different aspects of tradi-
tional locks as well as u-SCL. The workload consists of a multi-threaded
program; each thread executes a loop and runs for a specified amount
of time. Each loop iteration consists of two elements: time spent outside
a shared lock, i.e., non-critical section, and time spent with the lock ac-

103

quired, i.e., critical section. Both are specified as parameters at the start
of the program. Unless explicitly specified, the priority of all the threads
is the default, thereby ensuring each thread gets an equal share of the
CPU time according to the CFS default policy.

We use the following metrics to show our results:

1. Throughput: For synthetic workloads, throughput is the number
of times through each loop, whereas, for real workloads, it reflects
the number of operations completed (e.g., inserts or deletes). This
metric shows the bulk efficiency of the approach.

2. Lock Hold Time: This metric shows the time spent holding the
lock, broken down per thread. This shows whether the lock is being
shared fairly.

3. Lock Usage Fairness: This metric captures fair lock usage among
all threads. We use the method described in Section 4.1 to calculate
lock opportunity time.

4. CPU Utilization: This metric captures how much total CPU is uti-
lized by all the threads to execute the workload. CPU utilization
ranges from 0 to 1. A higher CPU utilization means that the threads
spin to acquire the lock, while a lower CPU utilization means the
lock may be more efficient due to blocking. Lower CPU utilization
is usually the desired goal.

4.3.1 Fairness and Performance

To gauge the fairness and performance of u-SCL compared to traditional
locks, we first run a simple synthetic workload with two threads. For this
30 second workload, the critical section sizes are 1 µs and 3 µs, and the
two threads are pinned on two different CPUs. In these experiments, the
desired result is that for fair scheduling, each thread will hold the lock

104

Mtx Spn Tkt SCL

0

10

20

30

40
Lo
ck
 H
ol
d
Ti
m
e
(s
ec
)

53.8M

93.5M

75.3M

92.0M

T0-1us
T1-3us

(a) LHT and Throughput

Lock Fairness CPU Utilization
MtxSpn Tkt SCL MtxSpn Tkt SCL

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

(b) Lock usage fairness and CPU utilization

Figure 4.4: Comparison on 2 CPUs. The graphs present a comparison of four
locks: mutex (Mtx), spinlock (Spn), ticket lock (Tkt), and u-SCL (SCL) for 2
(a and b) and 16 (c and d) threads, each has the same thread priority. For 2
threads, each thread has a different critical section size (1 µs vs. 3 µs). For 16
threads, half have shorter critical section sizes (1 µs) while others have a larger
critical section size (3 µs). “TG” stands for the thread group.

for the same amount of time, and for performance, they will complete as
many iterations as possible.

Figure 4.4a shows the amount of time each of the two threads holds
the lock (dark for the thread with a 1 µs critical section, light for 3 µs);
the top of each bar reports throughput. The mutex, spinlock, and ticket
lock each do not achieve equal lock hold times. For the mutex, the thread
with the longer (3 µs) critical section (light color) is almost always able
to grab the lock and then dominate usage. With the spinlock, behavior
varies from run to run, but often, as shown, the thread with the longer
critical section dominates. Finally, with the ticket lock, threads hold the
lock in direct proportion to lock usage times, and thus the (light color)
thread with the 3 µs critical section receives three-quarters of the lock

105

hold time. In contrast, u-SCL apportions lock hold time equally to each
thread. Thus, u-SCL achieves one of its most important goals. Figure 4.4b
summarizes these results with Jain’s fairness metric for lock hold time. As
expected, u-SCL’s lock usage fairness is 1 while that of other locks is less
than 1.

Figure 4.4a also shows overall throughput (the numbers along the
top). As one can see, u-SCL and the spinlock are the highest perform-
ing. The mutex is slowest, with only 53.8M iterations; the mutex often
blocks the waiting thread using futex calls, and the thread switches be-
tween user and kernel mode quite often, lowering performance. For CPU
utilization, the mutex performs better than others since the mutex lets the
waiters sleep by calling futex_wait(). On the other hand, the spinlock and
ticket lock spin to acquire the lock, and thus their utilization is high. u-
SCL’s high CPU utilization is attributed to the implementation decision
of letting the next thread (that is about to get the lock) spin. However,
with more threads, u-SCL is extremely efficient, as seen next.

We next show how u-SCL scales by running the same workload as
above with 16 threads on 16 cores. For this experiment, the critical sec-
tion size for half of the threads (8 total) is 1 µs, and another half (also
8) is 3 µs, respectively. From Figure 4.5a, we see again that the three tra-
ditional locks – mutex, spinlock, and ticket lock – are not fair in terms
of lock usage; not all threads have the same lock hold times. The threads
with larger critical section sizes (lighter color) dominate the threads with
shorter critical section sizes (darker). In contrast, u-SCL ensures that all
threads receive the same lock opportunity irrespective of critical section
size. The throughput with u-SCL is comparable to that of spinlock, and
we believe that further tuning could reduce this small gap.

However, the more important result is found in Figure 4.5b, which
shows CPU utilization. u-SCL’s CPU utilization is reduced significantly
compared to other spinning (spinlock and ticket lock) approaches. With

106

Mtx Spn Tkt SCL

0

10

20

30

40
Lo
ck
 H
ol
d
Ti
m
e
(s
ec
)

30.7M

67.7M

39.2M

61.6M

TG-1us
TG-3us

(a) LHT and Throughput

Lock Fairness CPU Utilization
MtxSpn Tkt SCL MtxSpn Tkt SCL

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

(b) Lock usage fairness and CPU utilization

Figure 4.5: Comparison on 16 CPUs. The graphs present a comparison of
four locks: mutex (Mtx), spinlock (Spn), ticket lock (Tkt), and u-SCL (SCL)
for 2 (a and b) and 16 (c and d) threads, each has the same thread priority. For
2 threads, each thread has a different critical section size (1 µs vs. 3 µs). For 16
threads, half have shorter critical section sizes (1 µs) while others have a larger
critical section size (3 µs). “TG” stands for the thread group.

u-SCL, out of 16 threads, only two are actively running at any instance,
while all other threads are blocked. u-SCL carefully orchestrates which
threads are awake and which are sleeping to minimize CPU utilization
while also achieving fairness. While a mutex conserves CPU cycles, it has
a much higher lock overhead, delivers much lower throughput, and does
not achieve fairness.

In summary, we show that u-SCL provides lock opportunity to all
threads and minimizes the effect of lock domination by a single thread
or a group of threads, thus helping to avoid the scheduler subversion
problem. While ensuring the fair-share scheduling goal, u-SCL also de-
livers high throughput and very low CPU utilization. u-SCL thus nearly
combines all the good qualities of the three traditional locks – the perfor-

107

3:1 2:1 1:1 1:2 1:3
MtxSpn Tk

t
SCL MtxSpn Tk

t
SCL MtxSpn Tk

t
SCL MtxSpn Tk

t
SCL MtxSpn Tk

t
SCL

0

10

20

30

Lo
ck
 H
ol
d
Ti
m
e
(s
ec

)

0.51

0.40

0.61

0.98

0.52

0.45

0.67

0.99

0.54

0.36

0.80

1.00

0.54

0.54

0.96

1.00

0.57

0.90

1.00

0.96

TG-1us TG-3us

Figure 4.6: Changing Thread Proportionality. Comparison of the four locks:
mutex (Mtx), spinlock (Spn), ticket lock (Tkt), and u-SCL (SCL) for four
threads running on two CPUs having different thread priorities (shown as ratios
along the bottom) and different critical section sizes. The number on the top of
each bar shows the lock usage fairness.

mance of spinlock, the acquisition fairness of the ticket lock, and the low
CPU utilization of the mutex.

4.3.2 Proportional Allocation

We next demonstrate that u-SCL enables schedulers to proportionately
schedule threads according to a desired ratio other than 50:50. Figure 4.6
shows the performance of all four locks when the desired CPU time al-
location is varied. We now consider four threads pinned to two CPUs,
while the other workload parameters remain the same (the critical sec-
tions for two threads are 1 µs, for the other two threads, they are 3 µs; the
workload runs for 30 seconds).

To achieve different CPU proportions for the thread groups, we vary
the CFS nice values. The leftmost group (3:1) indicates that shorter criti-
cal section threads (darker color) should receive three times the CPU of

108

longer critical section threads (lighter). The rightmost group shows the
inverse ratio, with the shorter critical section threads meant to receive one
third the CPU of the longer critical section threads.

Figure 4.6 shows that traditional locks subvert the target CPU allo-
cations of the CFS scheduler. Having a longer critical section leads to
threads holding onto the CPU for a longer duration. Note that the fair-
ness of ticket locks improves whenever the critical section ratio and the
thread priority matches.

In contrast, u-SCL performs exactly in alignment with CPU schedul-
ing goals and allocates the lock in the desired proportion to each thread.
To do so, u-SCL uses the same weight for the lock usage ratio as the
thread’s scheduling weight, thereby guaranteeing CPU and lock usage
fairness. Thus, by configuring u-SCL to align with scheduling goals, the
desired proportional-sharing goals are achieved.

4.3.3 Lock Overhead

Minimal overhead was one of our goals while designing u-SCL. To un-
derstand the overhead of u-SCL, we conduct two different experiments
as we increase the number of threads with very small critical sections.

For the first experiment, we set each critical section and non-critical
section size to 0. We then run the synthetic application varying the num-
ber of threads from 2 to 32, with each thread pinned to a CPU core.

Figure 4.7a (left) compares the throughput of the four lock types. For
spinlocks and ticket locks, throughput is generally low and decreases as
the number of threads increases; these locks generate a great deal of cache
coherence traffic since all threads spin while waiting. In contrast, the
mutex and u-SCL block while waiting to acquire a lock and hence per-
form better. While u-SCL significantly outperforms the other locks for
8 or fewer threads, u-SCL performance does drop for 16 and 32 threads
when the threads are running on different NUMA nodes; in this config-

109

2 4 8 16 32
Number of Threads

0

5

10

15

20

25

30
Th

ro
ug

hp
ut
 (M

OP
S)

u-SCL
Mutex
Spin
Ticket

(a)

2 4 8 16 32
Number of Threads

20

40

60

80

Th
ro
ug
hp
ut
 (M

OP
S) u-SCL

Mutex
Spin
Ticket

(b)

Figure 4.7: Lock Overhead Study. The figure presents two lock overhead
studies. On the left(a), the number of threads and CPU cores are increased, from
2 to 32, to study scaling properties of u-SCL and related locks. We pin each thread
on a separate CPU. On the right(b), the number of CPUs is fixed at two, but the
number of threads is increased from 2 to 32.

uration, there is an additional cost to maintain accounting information
due to cross-node cache coherency traffic. This indicates that u-SCL could
benefit from approximate accounting across cores in future work.

In the second experiment, we show performance when the number
of CPUs remains constant at two, but the number of threads increases.
For the experiment in Figure 4.7a (right), we vary the number of threads
from 2 to 32 but pin them to only two CPUs. The critical section size is 1
µs.

As expected, the performance of u-SCL and mutex is better than the
alternatives and remains almost constant as the number of threads in-
creases. With spinlock and ticket locks, the CPU must schedule all the
spin-waiting threads on two CPUs, even though threads cannot make
forward progress when they are not holding the lock. Moreover, as the
threads never yield the CPU until the CPU time slice expires, a great deal
of CPU time is wasted.

110

In contrast, with u-SCL and mutex, only two threads or one thread,
respectively, are running, which significantly reduces CPU scheduling.
u-SCL performs better than mutex since the next thread to acquire the
lock is effectively prefetched; the dedicated lock slice also helps u-SCL
achieve higher performance since lock overhead is minimal within a lock
slice. With a mutex lock, a waiting thread must often switch between user
and kernel mode, lowering performance.

4.3.4 Lock Slice Sizes vs. Performance

We next show the impact of lock slice size on throughput and latency
as a function of critical section size. In general, increasing lock slice size
increases throughput but harms latency. As we will show, the default
two-millisecond slice size optimizes for high throughput at the cost of
long-tail latency.

Throughput: For our first workload, we run four identical threads
pinned to two cores for 30 seconds, varying the size of each critical sec-
tion. Figure 4.8a shows throughput in a heatmap. The x-axis varies the
lock slice size while the y-axis varies the critical section size. Through-
put is calculated by summing the individual throughput of each thread.
For larger slice sizes, the throughput increases, while for very small slice
sizes, the throughput decreases significantly; the overhead of repeatedly
acquiring and releasing the lock causes a substantial decrease.

Latency: Figure 4.8b shows the wait-time distribution to acquire the
lock as a function of the slice size for a 10 µs critical section; we chose 10
µs to show the impact of having a slice size smaller, greater, or equal to
the critical section size. We omit 1 ms and 10 ms lock slices because those
results are similar to that of 2 ms. The figure shows that for lock slices
larger than the critical section, the wait-time of the majority of operations
is less than 100 ns; each thread enters the critical section numerous times
without any contention. However, when the thread does not own the lock

111

1u
s

10
us

10
0u
s

1m
s

2m
s
10
ms

10
0m
s

Slice size

10ms

1ms

100us

10us

1us

CS
 si
ze

58.0 60.0 61.7 60.0 65.3 58.7 96.3

59.7 59.7 59.7 59.7 62.3 63.0 94.3

55.3 55.3 55.7 58.7 61.0 62.3 93.3

46.0 44.7 55.3 57.3 60.3 60.3 93.7

10.3 38.7 52.3 54.0 56.0 55.7 89.7 20M
30M
40M
50M
60M
70M
80M
90M

Throughput

(a) Heatmap showing throughput performance.

10ns 100ns 1us 10us 100us 1ms 10ms 100ms 1s
Latency(log10 scale)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

100ms slice size
2ms slice size
100us slice size
10us slice size
1us slice size

(b) Latency wait-time distribution.

Figure 4.8: Impact of lock slice size on performance. The top figure (a)
shows the throughput across two dimensions: critical section and the slice size.
The bottom figure (b) shows the wait-time distribution when the lock slice varies,
and the critical section size is 10 µs.

slice; it must wait for its turn to enter the critical section; in these cases,
the wait time increases to a value that depends on the lock slice size and
the number of participating threads.

When the lock size is smaller than or equal to the size of the critical

112

section (i.e., 1 or 10 µs), lock ownership switches between threads after
each critical section, and each thread observes the same latency. We ob-
serve this same relationship when we vary the size of the critical section
(not shown).

To summarize, with larger lock slices, throughput increases but a
small portion of operations observe high latency, increasing tail latency.
On the other hand, with smaller lock slices, latency is relatively low,
but throughput decreases tremendously. Hence, latency-sensitive appli-
cations should opt for smaller lock slices, while applications that need
throughput should opt for larger lock slices.

Interactive jobs: We now show that u-SCL can deliver low latency to
interactive threads in the presence of batch threads. Batch threads usu-
ally run without user interaction and thus do not require low scheduling
latency [27]. On the other hand, interactive threads require low schedul-
ing latency; thus, the scheduler’s task is to reduce the wait-time for in-
teractive threads so they can complete tasks quickly. Both Linux’s CFS
and FreeBSD’s ULE schedulers identify interactive and batch threads and
schedule them accordingly [134]; for example, as the interactive threads
sleep more often without using their entire CPU slice, CFS schedules such
threads before others to minimize their latency.

To show that u-SCL can effectively handle both batch and interactive
threads, we examine a workload with one batch thread and three inter-
active threads. The batch thread repeatedly acquires the lock, executes a
100 µs critical section, and releases the lock; the three interactive threads
execute a 10 µs critical section, release the lock and then sleep for 100 µs.
The four threads are pinned on two CPUs. The desired result is that the
interactive threads should not need to wait to acquire the lock.

Figure 4.9 shows the CDF of the wait-time for one of the interactive
threads to acquire each of the four lock types: mutex, spinlock, ticket
lock, and u-SCL. For u-SCL, we show four lock slice sizes. The results

113

100ns 1us 10us 100us 1ms 10ms 100ms 1s
Latency (log10 scale)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F
u-SCL(2 ms)

u-SCL(1 us)
u-SCL(10 us)

u-SCL(100 us)

Ticket Mutex
Spin

Figure 4.9: Interactivity vs. Batching. The figure shows the comparison of
the wait-time to acquire the lock for mutex, spinlock, ticket lock and u-SCL.

of the other interactive threads are similar. The graph shows that for the
mutex and spinlock, wait-time is very high, usually between 10 ms and
1 second. Even though the goal of the scheduler is to reduce latency by
scheduling the interactive thread as soon as it is ready, lock ownership is
dominated by the batch thread, which leads to longer latency for the in-
teractive threads. The ticket lock reduces latency since lock ownership al-
ternates across threads; however, wait-time is still high because the inter-
active thread must always wait for the critical section of the batch thread
to complete (100 µs).

The graph shows that for u-SCL, the length of the slice size has a large
impact on wait-time. When the slice size is smaller than or equal to the
interactive thread’s critical section (e.g., 1 or 10 µs), the interactive thread
often has a relatively short wait time and never waits longer than the crit-
ical section of the batch thread (100 µs). When the slice size is relatively
large (e.g., 2 ms), the interactive thread often acquires the lock with no
waiting, but the wait-time distribution has a long tail. Finally, the 100

114

µs slice performs the worst of the u-SCL variants because the interactive
threads sleep after releasing the lock, wasting the majority of the lock slice
and not allowing other waiting threads to acquire the lock.

In summary, to deliver low latency, the slice size in u-SCL should al-
ways be less than or equal to the smallest critical section size. Our initial
results with the ULE scheduler are similar, but a complete analysis re-
mains as future work.

4.3.5 Real-world Workloads

We conclude our investigation by demonstrating how SCLs can be used to
solve real-world scheduling subversion problems. We concentrate on two
applications, UpScaleDB and KyotoCabinet, and a shared lock within the
Linux kernel. The user-space applications show how SCLs can avoid the
scheduler subversion problem within a single process. With the kernel
example, we illustrate a competitive environment scenario where multi-
ple applications running as different processes (or containers) can con-
tend for a lock within a kernel, thus leading to cross-process scheduler
subversion.

4.3.5.1 UpScaleDB

As part of the original motivation for u-SCL, we saw in Figure 3.1 that
UpScaleDB was unable to deliver a fair share of the CPU to threads per-
forming different operations. For easy comparison, Figure 4.10a shows
the same graph. We now show that u-SCL easily solves this problem;
the existing locks in UpScaleDB can simply be converted to u-SCL locks
and then the unmodified Linux CFS scheduler can effectively schedule
UpScaleDB’s threads independent of their locking behavior.

We repeat the experiment shown in Figure 3.1, but with u-SCL locks.

115

F1 F2 F3 F4 I1 I2 I3 I4
Thread

0
5

10
15
20
25
30

CP
U
Ti
m
e(
se
co
nd

s)

11.7K

22.2K

Wait+Other
Lock Hold Time

(a) Mutex

F1 F2 F3 F4 I1 I2 I3 I4
Thread

0
5
10
15
20
25
30

CP
U
Ti
m
e(
se
co
nd
s)

Max Lock Hold Time

695K

35K

Wait+Other
Lock Hold Time

(b) u-SCL

Figure 4.10: Mutex and u-SCL performance with UpScaleDB. The same
workload is used as Section 3.1.1. The same CFS scheduler is used for the exper-
iments. “F” denotes find threads while “I” denotes insert threads. The expected
maximum lock hold time is shown using the dashed line. “Hold” represents the
critical section execution, i.e., the time until the lock is held; “Wait + Other”
represents the wait-times and non-critical section execution. The number on top
of the dark bar represents the throughput (operations/second). The left figure
(a) shows the same graph as shown in Section 3.1.1. The right figure (b) shows
the performance of u-SCL.

UpScaleDB is configured to run a standard benchmark.1 We again con-
sider four threads performing find operations and four threads perform-
ing inserts pinned to four CPUs. Figure 4.10b shows how much CPU time
each thread is allocated by the CFS scheduler.

As desired, with u-SCL, the CPU time allocated to each type of thread
(i.e., threads performing find or insert operations) corresponds to a fair
share of the CPU resources. With u-SCL, all threads, regardless of the op-
eration they perform (or the duration of their critical section), are sched-

1ups_bench –use-fsync –distribution=random –keysize-fixed –journal-
compression=none –stop-seconds=120 –num-threads=N

116

uled for approximately the same amount of time: 30 seconds. In contrast,
with mutexes, UpScaleDB allocated approximately only 2 CPU seconds
to the find threads and 24 CPU seconds to the insert threads (with four
CPUs). With a fair amount of CPU scheduling time, the lock hold times
become fairer as well; note that it is not expected that each thread will
hold the lock for the same amount of time since each thread spends a dif-
ferent amount of time in critical section versus non-critical section code
for its 30 seconds.

The graph also shows that the overall throughput of find and insert
threads is greatly improved with u-SCL compared to mutexes. On four
CPUs, the throughput of find threads increases from only about 12K op-
s/sec to nearly 700K ops/sec; the throughput of insert threads also in-
creases from 22K ops/sec to 35K ops/sec. The throughput of find opera-
tions increases dramatically because find threads are now provided more
CPU time and lock opportunity. Even the throughput of inserts improves
since u-SCL provides a dedicated lock slice where a thread can acquire the
lock as many times possible; thus, lock overhead is greatly reduced.

Finally, when we sum up the total lock utilization across the u-SCL
and mutex versions, we find that the lock is utilized for roughly 59% of the
total experiment duration for u-SCL but nearly 83% for mutexes. Given
that the overall lock utilization decreases with increased throughput, we
believe that u-SCL can help scale applications. Therefore, instead of re-
designing the applications to scale by minimizing critical section length,
a more scalable lock can be used.

4.3.5.2 KyotoCabinet

KyotoCabinet [93] is an embedded key-value storage engine that relies
on reader-writer locks. Given that locks are held for significant periods
of time and critical sections are of different lengths, it also suffers from
scheduler subversion; specifically, writers can be easily starved. We show

117

W0 W0R1 R1R2 R2R3 R3R4 R4R5 R5R6 R6R7 R7
Vanilla RW-SCL

0
5

10
15
20
25
30

Ti
m

e
(s

ec
on

ds
)

<10 53.3K

1.67M
1.60M

Lock Hold Time Unused Lock Oppportunity

Figure 4.11: Comparison of RW-SCL and KyotoCabinet The dark bar
shows the lock hold time for each individual thread and the light bar shows the lock
opportunity not being unused. The values on top of the bar shows the aggregated
throughput (operations/sec) for the writer and reader threads.

that our implementation of RW-SCL allows KyotoCabinet and the default
CFS Linux scheduler to control the amount of CPU resources given to
readers and writers, while still delivering high throughput; specifically,
RW-SCL removes the problem of writers being starved.

To setup this workload, we use KyotoCabinet’s built-in benchmarking
tool kccachetest in wicked mode on an in-memory hash-based database.
We modified the tool to let the thread either issue read-only (reader)
or write (writer) operations and run the workload for 30 seconds. The
database contains ten million entries that are accessed at random. We
pin threads to cores for all the experiments. We assign a ratio of 9:1 to
the reader and writer threads. The original version of KyotoCabinet uses
pthread reader-writer locks.

To begin, we construct a workload with one writer thread and seven
reader threads. In Figure 4.11, we present the write throughput and the
aggregated read throughput, the average lock hold time, and the lock

118

opportunity for readers and writers. The default KyotoCabinet using
pthread reader-writer lock gives strict priority to readers, the writer is
starved, and less than ten write operations are performed over the entire
experiment. In other experiments (not shown), we find that the writer
starves irrespective of the number of readers.

On the other hand, RW-SCL ensures that the writer thread obtains 10%
of the lock opportunity compared to 90% for the readers (since readers
can share the reader lock, their lock opportunity time is precisely shared).
Since the writer thread is presented with more lock opportunity with RW-
SCL, the write throughput increases significantly compared to the vanilla
version. As expected, RW-SCL read throughput decreases slightly be-
cause the reader threads now execute for only 90% of the time, and writes
lead to many cache invalidations. Nevertheless, the overall aggregated
throughput of readers and writers for eight threads with RW-SCL is com-
parable to other reader-writer locks with KyotoCabinet [55].

We run similar experiments by varying the number of readers and
show the result in Figure 4.12a. KyotoCabinet scales well until 8 threads
(7 readers + 1 writer). The throughput drops once the number of threads
crosses a single NUMA node. We believe that this performance drop is
due to the excessive data sharing of KyotoCabinet data structure across
the sockets. Another point to note here is that irrespective of the number
of readers, RW-SCL continues to stick to the 9:1 ratio that we specified.

When there is only one writer thread with RW-SCL, the writer cannot
utilize its entire write slice since the lock is unused when the writer is
executing non-critical section code. To show how multiple writers can
utilize the write slice effectively; we conduct another experiment with
only one reader while varying the number of writers. As seen in Fig-
ure 4.12b, when the number of writers increases from one to two, the
lock opportunity time becomes completely used as lock hold time (as de-
sired); when one writer thread is executing the non-critical section code,

119

W W W WR R R R
 1 Reader 3 Readers 7 Readers 15 Readers

0
5

10
15
20
25
30

Ti
m
e
(s
ec
on

ds
)

123K 88.1K 53.3K 47.7K

904K 1.37M 1.60M 855K
Lock Hold Time Unused Lock Opportunity

(a) Reader Scaling

W W W WR R R R
1 Writer 2 writers 3 Writers 4 Writers

0
5

10
15
20
25
30

Ti
m

e
(s

ec
on

ds
)

116K 131K 132K 99.6K

782K 740K 700K 696K
Lock Hold Time Unused Lock Opportunity

(b) Writer Scaling

Figure 4.12: Performance of RW-SCL with reader and writer scaling.
For reader scaling, only one writer is used while for writer scaling, only one
reader is used. The number of readers and writers vary for reader scaling and
writer scaling experiments. The dark bar shows the lock hold time while the light
bar shows the unused lock opportunity. The values on top of the bar shows the
throughput of the writers and readers.

the other writer thread can acquire the lock, thereby fully utilizing the
write slice. Increasing the number of writers past two cannot further in-
crease write lock hold time or therefore improve throughput; continuing
to increase the number of writers past three simply increases the amount
of cache coherence traffic.

120

10us 100us 1ms 10ms
Rename Latency

0

0.2

0.4

0.6

0.8

1
CD

F

20ms

Short CS, k-SCL
Short CS, Mutex
Long CS, k-SCL
Long CS, Mutex

Figure 4.13: Rename Latency. The graph shows the latency CDFs for SCL and
the mutex lock under the rename operation. The dark lines show the distributions
for the long rename operation (the bully), whereas lighter lines represent the
short rename operation costs (the victim). Dashed lines show standard mutex
performance, whereas solid lines show k-SCL performance.

4.3.5.3 Linux Rename Lock

A cross-directory rename in Linux is a complicated operation that re-
quires holding a global mutex to avoid a deadlock. When accessed by
competing entities, such a global lock can lead to performance problems
since all threads needing to perform a rename must wait to acquire it.
Using a bully and victim process, we describe an input parameter at-
tack. Then, we show that k-SCL can prevent a bully process that holds
the global lock for long periods of time from starving out other processes
that must also acquire the global lock.

Our specific experiment to recreate a bully and a victim process is as
follows. We use Linux version 4.9.128 and the ext4 file system; we have
disabled dir_index using tune2fs [35] since that optimization leads to
problems [157] which force administrators to disable it. We run a simple

121

program2 that repeatedly performs cross-directory renames. We create
three directories, where one directory contains one million empty files,
and the other directories are empty; each file name is 36 characters. A
bully process executes the rename program with dst set to the large direc-
tory (potentially holding the rename lock for a long time). In contrast, a
victim process executes the same program with two empty directories as
arguments (thus only needing the lock for a short while).

We use the ftrace kernel utility to record cross-directory rename la-
tency, which is plotted in Figure 4.13 as a CDF. The dimmed and the bold
lines represent the victim and bully, respectively. The dotted lines show
the behavior with the default Linux locks. The bully has an expected
high rename latency of 10 ms. About 60% of victim’s rename calls are
performed when the bully is not holding the global lock and thus have a
latency of less than 10 µs. However, about 40% of the victim’s calls have a
latency similar to that of the bully due to lock contention. If more bullies
are added to the system, the victim has even less chance to acquire the
lock and can be starved (not shown).

The root cause of this problem is the lack of lock opportunity fairness.
To fix this problem, we modified the global rename lock to use the k-SCL
implementation. The solid lines in Figure 4.13 show the new results. With
k-SCL, almost all of the victim’s rename calls have less than 10 µs latency
and even its worst-case latency is lower, at roughly 10 ms. Both results
arise because the bully is banned for about 10 ms after it releases the lock,
giving the victim enough lock opportunity to make progress. If more
bullies are added, the effect on the victim remains minimal. We believe
this behavior is desired because all tenants on a shared system should
have an equal opportunity to utilize the lock.

Figure 4.14 shows the breakdown of the bully and the victim process’s
lock behavior. We can see that for the mutex, the bully process dominates

2while True: touch(src/file); rename(src/file, dst/file); unlink(dst/file);

122

Mutex k-SCL

0.0

0.5

1.0

1.5

2.0

Lo
ck
 H
ol
d
Ti
m
e
(s
ec
)

503

191

49.7K

98

(a) LHT and Throughput

Lock Fairness
Mutex k-SCL

0.00

0.25

0.50

0.75

1.00

Co
ef
fic

ie
nt

(b) Lock usage fairness

Figure 4.14: Rename lock performance comparison. The figure presents a
comparison of two locks – mutex and k-SCL for 2 threads on two CPUs; each has
the same thread priority, and one thread is performing rename operations on a
directory that is empty while another thread is performing rename on a directory
having a million empty files.

lock usage, and the fairness coefficient is very low. k-SCL penalizes the
bully process by providing enough opportunity to the victim process to
acquire the lock. Therefore, the victim thread can easily perform around
49.7K rename operations compared to 503 with the mutex version. As the
critical section size of the victim program is very small, the non-critical
section involving touch and unlink operation dominates the lock oppor-
tunity time presented to the victim. Thus, the victim’s lock hold time is
not quite equal to that of the bully process.

We conduct another experiment using the same rename program to
study our approach to inactive thread detection. The bully program runs
for the whole duration, while two victims start at 10sec and 20sec, and
both exit at 30sec. Figure 4.15 shows the rename latency of the bully dur-
ing the experiment. After the first victim joins and participates in the lock
acquisition process, the bully’s latency doubles immediately as there are
two threads participating, increasing the penalty time. When the second
victim joins, the bully’s latency increases further.

123

0 5 10 15 20 25 30 35 40
Time (sec)

0

5

10

15

20

25

30
Re

na
m
e
La

te
nc

y
(m

s)

Program 1 joins

Program 2 joins

Both leave Inactive
detected

Figure 4.15: k-SCL inactive thread detection. Timeline showing inactive
threads detection and how the latency of the bully program varies depending on
the number of active threads.

Once the two victims leave, after 1 second, k-SCL detects that two
threads have not participated in the lock acquisition process, initiating
the cleanup of those two threads. Once the cleanup completes, as only
the bully is actively participating in the lock acquisition process, the la-
tency drops back. Thus, k-SCL can continuously check for active threads,
thereby improving the performance of the active threads and increasing
the lock utilization. Without this continuous check, the bully would con-
tinue to observe a higher latency even though the two victims are not
participating.

124

4.4 Limitations and Applicability
In this section, we discuss the limitations and applicability of SCLs. We
start by discussing limitations and their impact on performance. The
current design of SCL is non-work-conserving relative to locks. That is,
within a lock slice, whenever the lock slice owner is executing non-critical
section code, the lock will be unused, even if other threads are waiting to
acquire the lock. Since the lock remains unused, performance could be
impacted. Threads that have larger non-critical section sizes compared to
critical section sizes are more likely to see this effect. One way to alleviate
the performance problem is to reduce the size of the lock slice, but at the
cost of throughput as shown earlier.

To design a work-conserving lock, one can assign multiple threads to
the same class such that multiple threads can acquire the lock within a
single lock slice. While one thread is executing the non-critical section,
another thread can enter the critical section thereby ensuring high per-
formance. However, it is hard to classify multiple threads statically to
one class and hence the lock should have the capability to dynamically
classify the threads and create classes. Exploring dynamic classification
remains an interesting avenue for future work.

To support a variety of scheduling goals, the implementation of SCL
needs to be accordingly adjusted. For example, our current implemen-
tation of SCL does not support priority scheduling. To support priority
scheduling, the lock should also contain queues and grant lock access de-
pending on the priority.

Scheduler subversion happens when the time spent in critical sec-
tions is high and locks are held for varying amounts of time by differ-
ent threads. As these two conditions can lead to lock usage imbalance,
the likelihood of the scheduler subversion problem increases. If there is
not much lock contention or all threads hold locks for similar amounts
of time, then it might be better to use other simpler locks that have less

125

overhead. We believe that shared infrastructure represents a competitive
environment where multiple applications can be hosted having varied
locking requirements. SCLs will play a vital role in such an environment
where one application or user can unintentionally or maliciously control
the CPU allocation via lock usage imbalance.

SCLs can be used to build fair-access concurrent data structures. A fair-
access concurrent data structure guarantees fair or proportional access
to all the users. We believe that by tracking the lock usage that protects
the data structures, one can gauge the data structure usage too. Exist-
ing locks can only guarantee correctness in the presence of concurrent
operations. However, as they cannot track the lock usage, they are not
capable to guarantee fair or proportional access to all the users. On the
other hand, as SCLs can track the lock usage, they can guarantee propor-
tional lock usage. Therefore, the data structures built by using SCLs can
guarantee fair or proportional access making them fair-access concurrent
data structures. These fair-access concurrent data structures can then be
used to design kernel and user-space applications.

Even though the focus so far has been on shared infrastructure only,
SCLs can be used to design server-like applications that are shared by
multiple clients. For example, consider a single instance of MongoDB
hosting data belonging to multiple clients having varied requirements.
Due to the varied requirement, one or more clients may end up dominat-
ing a lock within MongoDB depending on the type or size of the opera-
tions. The ability to track lock usage enables SCLs to address the varied
requirements while making sure that no single client can dominate the
lock usage leading to performance issues.

126

4.5 Summary & Conclusion
In this chapter, we introduced the concept of lock usage fairness and lock
opportunity. Using lock opportunity as a metric to measure lock usage
fairness, we studied how traditional locks are unfair in terms of fair us-
age, as they mostly prioritized lock utilization and (perhaps) delivered
lock acquisition fairness. To remedy the problem of scheduler subversion,
we introduced Scheduler-Cooperative Locks (SCLs) that track lock usage
and can align with the scheduler to achieve system-wide goals. We pre-
sented three different types of SCLs that showcase their versatility, work-
ing in both user-level and kernel environments.

Our evaluation showed that SCLs ensure lock usage fairness even with
extreme lock usage patterns and scale well. We also showed that SCLs can
solve the real-world problem of scheduler subversion imposed by locks
within applications and the Linux kernel. We believe that any type of
schedulable entity (e.g., threads, processes, and containers) can be sup-
ported by SCLs and look forward to testing this hypothesis in the fu-
ture. The source code for SCL is open-sourced and can be accessed at
https://research.cs.wisc.edu/adsl/Software/.

So far, locks have been viewed as a cooperative entity; the threads are
all part of the same program, and the developer can orchestrate lock us-
age as they see fit. However, with the rapid adoption of shared infras-
tructure and varied requirements across users, locks should be viewed
as a competitive resource where the locks are accessed by many diverse
applications without any isolation or fairness guarantees.

https://research.cs.wisc.edu/adsl/Software/

127

5
Taming Adversarial Synchronization

Attacks using Trātr.

In Chapter 3, we discussed the adversarial aspects of synchronization and
introduced two types of attacks – synchronization and framing attacks.
By carefully accessing the shared data structures in concurrent infrastruc-
tures such as an operating system, hypervisor, or a server, an attacker can
launch these two attacks leading to denial-of-services. Synchronization
attacks make the victims stall longer, while framing attacks make the vic-
tims spend more time in the critical section also.

We also demonstrated several kernel data structures accessed by com-
mon system calls – the inode cache and directory cache used by file sys-
tems and the futex hash table used for synchronization – are vulnerable
to synchronization and framing attacks and demonstrate how an unpriv-
ileged attacker can cause throughput reduction of 65-92% to real-world
applications in a container-based environment. While the inode cache
and directory cache attacks are active attacks i.e. synchronization attacks;
the futex table attack is a passive attack, i.e., a framing attack.

Even though all these attacks have the same goal of targeting a syn-
chronization mechanism in the kernel, the way the attacks are launched
is entirely different. For the inode cache attack, the attacker breaks the
hash function and then runs a simple dictionary attack to expand a tar-
get hash bucket by creating thousands of entries such that all the entries

128

end up in the targeted hash bucket. As the hash bucket expands, the time
to traverse the hash bucket increases leading to longer synchronization
stalls.

For the futex table, unlike the inode cache attack, the attacker does
not target the hash bucket. Instead, the attacker probes all the hash buck-
ets in the futex table to identify a target hash bucket. On identifying the
target hash bucket, the attacker creates thousands of threads and parks
them in the targeted hash bucket. Thus, any victim that needs to traverse
the hash bucket will have to spend more time traversing thousands of en-
tries leading to longer critical section sizes. One should note here that
the futex table attack is a framing attack where the attacker turns passive
immediately after parking thousands of threads.

The directory cache attack does not attack the mutual exclusion locks
but instead attacks the RCU mechanism. An attacker can launch an attack
by breaking the dcache hash function or randomly creating millions of
entries overwhelming the hash table. In doing so, the RCU read critical
section sizes will increase, leading to a more extended grace period. Any
thread or process waiting for the grace period to be over will have to wait
longer, leading to poor performance.

In this chapter, based on our experience with these attacks, we develop
Trātr., a Linux extension to defend against synchronization and framing
attacks. As the problem is distributed across many kernel data structures,
Trātr. provides a general framework for addressing these attacks using
four stages:

• Tracking: Trātr. tracks the contribution to data structure size by each
tenant and attaches the user-id information in each object to identify
who allocated the objects. This information helps in detecting an
attack and perform recovery.

• Detection: Trātr. periodically monitors the synchronization stalls to

129

detect whether they are longer than expected. If so, using the track-
ing information, Trātr. identifies the attacker and initiates steps to
mitigate the attack.

• Prevention: On detecting an attack, Trātr. immediately prevents the
attack from worsening by blocking attackers from extending target
data structures with more elements.

• Recovery: With the help of tracking information, Trātr. takes data
structure specific actions to recover baseline performance by isolat-
ing or removing the attacker’s elements in the shared structure.

We demonstrate the effectiveness of Trātr. on three such attacks, one
each on the file system inode cache, the futex table, and the dentry cache.
We show Trātr.’s ability to detect when an attack occurs, prevent it from
worsening, and recover performance to baseline (no attack) levels. At
steady state, Trātr. causes only a 0-4% tracking overhead for a variety of
applications, and in the absence of an attack, the other stages have less
than 1.5% impact on the performance. We also show how Trātr. can de-
tect and mitigate multiple attacks simultaneously without impacting the
performance of the victims.

The rest of this chapter is organized as follows. In Section 5.1, we first
discuss how existing solutions are unable to address the adversarial syn-
chronization problem. Then we discuss the design and implementation
of Trātr. in Section 5.2 and evaluate Trātr. in Section 5.3. We present the
limitations of Trātr. in Section 5.4 and summarize in Section 5.5.

5.1 Mitigating Adversarial Synchronization
Before we start discussing how one can address the problem of adver-
sarial synchronization, let us first recall the synchronization and framing
attacks. To launch a synchronization attack, two conditions are necessary:

130

• Condition S1: A shared kernel data structure is protected by a syn-
chronization primitives such as mutual exclusion locks or RCU that
may block.

• Condition S2: Unprivileged code can control the duration of the crit-
ical section by either

– S2_input: providing inputs that cause more work to happen
within the critical section
OR

– S2_weak: accessing a shared kernel data structure with weak
complexity guarantees e.g., linear).

AND

– S2_expand: expanding or accessing the shared kernel data
structure to trigger the worst-case performance.

In this chapter, we will not focus on the input parameter attacks
(S2_input). We will deal with attacks that can be launched on data struc-
tures having weak complexity guarantees only.

As a framing attack is an extension and refinement on a synchroniza-
tion attack, the following conditions are necessary to launch a framing
attack:

• Condition S1+ S2_weak+ S2_expand: An attacker manages to ex-
pand a shared kernel data structure with weak complexity guaran-
tees, i.e., a synchronization attack is in progress or was launched
earlier.

• Condition F1: Victim tenants access the affected portion of the
shared data structure with worst-case behavior.

By launching a synchronization attack, an attacker actively partici-
pates in the attack, and makes the victims stall longer to acquire the lock.

131

While with the framing attack, an attacker need not participate in the at-
tack but still manages to make the victims spend more time in the critical
section while still making other victims stall longer to acquire the lock.

5.1.1 Existing Solutions

Attacks on synchronization primitives can be addressed by interrupting
one of the criteria necessary for an attack by the following:

• Breaking condition S1 by using wait-free or partitioned data struc-
tures.

• Breaking condition S2_weak and S2_expand by using avoidance
techniques such as universal hashing, balanced trees, or random-
ized data structures [46].

One may think that by using wait-free data structures, the prob-
lem of adversarial synchronization can be solved. Often atomic op-
erations like compare-and-swap (CAS), test-and-set (TAS), fetch-and-
increment (FAI), and swap (SWAP) are used to design wait-free data
structures [138]. However, for multi-sockets platforms, the performance
of these atomic operations is dictated by the cache-coherence latencies
leading to poor performance [50]. Moreover, no formal study has been
done to understand how wait-free data structures ensure fairness; hence,
predicting their behavior in a competitive environment will be hard.

Partitioning is another traditional approach used to design data struc-
tures to ensure isolation [122]. However, it is not easy to partition all the
data structures. Consider the example of a cache-like data structure that
is being shared across all the users. One easy way to partitioning the data
is based on who owns or creates the data. Other users who need to ac-
cess the data can do so by looking at the partition of the user who owns
or created the data. However, an attacker can expand his data structure

132

first and then force another user to load the targeted hash bucket entries.
Therefore, not all types of data structures can be partitioned.

Using balanced trees such as red-black trees, AVL trees, and treaps
that do not have weak complexity guarantees (S2_weak) is a viable
option. However, rewriting the kernel to use balanced trees is te-
dious [43, 125] and slower than randomized data structures in common
cases. Lastly, randomized data structures are also vulnerable to algorith-
mic complexity attacks [23].

It is not easy to convince developers to use secure hash functions such
as SipHash due to performance concerns [44]. We observe around 5-6%
performance reduction when we replace the existing hash function in the
inode cache with SipHash while running a single-threaded, simple file
create workload confirming developers’ concerns. Moreover, as we have
shown in Section 3.2.3, instead of trying to break a hash function, an at-
tacker can employ other methods like probing each hash bucket to launch
an attack. Therefore, relying on strong hash functions alone is not enough
to avoid an attack.

To handle framing attacks and prevent victims from accessing ex-
panded data structure (condition F1), rehashing all the entries into a new
hash table is possible. However, doing so is invasive to the code and may
cause long delays during rehashing leading to varying performance.

5.1.2 Scheduler-Cooperative Locks

Scheduler-Cooperative Locks (SCLs) can mitigate the attacks as they can
guarantee lock usage fairness to all the participating users. During a syn-
chronization attack, the attacker aims to dominate the lock usage and pre-
vent victims from acquiring the lock. Thus, SCLs can be useful to break
the lock usage domination by the attacker and prevent synchronization
attacks.

133

SCLs are flexible to support any type of schedulable entity such as
threads, processes, containers. For these entities, SCLs can track the lock
usage and hence can guarantee fair lock usage. To understand the be-
havior of SCLs when subject to a synchronization attack, we first replace
the existing global spinlock inode_hash_lock in the Linux kernel’s inode
cache with k-SCL. Then we run the IC benchmark described in Section 5.3
as a victim and launch an inode cache attack from a separate container.
Finally, we use the same experimental setup as described in Section 5.3.

With k-SCL, we observe that an attacker cannot identify the su-
perblock address needed to target a random hash bucket in the inode
cache during the prepare phase. During the prepare phase, the attacker
relies on measuring latencies to identify the superblock address. How-
ever, to guarantee fair lock usage, as k-SCL penalizes the attacker, the
attacker cannot measure latencies accurately, leading to a failure in iden-
tifying the superblock address and not being able to launch an attack.

To study how k-SCL behaves when the attacker can identify the su-
perblock address using other methods, we run the IC benchmark with-
out the prepare phase and directly launch the attack. Figure 5.1 shows the
timeline of the throughput of the IC benchmark for the duration of the at-
tack. For comparison purposes, we show the timeline for the Vanilla ker-
nel, i.e., the standard Linux kernel 5.6.42 with and without attack, along
with the performance of the k-SCL based kernel.

We observe that k-SCL performs better than the Vanilla kernel when
under attack. As the k-SCL rate limits the attacker to guarantee lock us-
age fairness, the victim’s performance improves. However, the perfor-
mance is around 60% of the Vanilla kernel without an attack. Although
k-SCL penalizes the attacker, it cannot break the condition S2_expand,
and the hash bucket continues to grow at a slower pace. As the hash
bucket grows, the victim must wait longer to acquire the lock leading to
performance degradation.

134

0 50 100 150 200

Time (seconds)

0

1

2

3

4

5
T
h
ro

u
g
h
p
u
t
(K

o
p
s)

Attack started

Vanilla

Vanilla+Attack

SCL+Attack

Figure 5.1: IC benchmark performance comparison for spinlock and k-
SCL in Linux kernel. Timeline of the throughput showing the impact due to
the attack for the Vanilla kernel having spinlock and kernel having k-SCL under
the inode cache attack.

k-SCL will be more effective and ensure better performance when
there are more victim threads than attacker threads. As k-SCL penalizes
the dominant threads depending on the number of participating threads,
the penalty will be higher when there are more victim threads. How-
ever, when no victim is present and participating in the lock acquisition
process, as k-SCL will remove all inactive threads from the penalty cal-
culation, the attacker will be able to expand the hash bucket without any
trouble. Thus, SCLs may not be effective in tackling synchronization at-
tacks.

SCLs will fail to handle the framing attack, too, as they are not aware
of the cause of the longer lock hold times. In such a situation, as the at-
tacker is not actively participating, SCLs may treat the victims like the
one dominating the lock usage and penalize the victims instead of the

135

attacker.
As one may have noticed, addressing the framing attacks requires ad-

ditional steps to repair the shared data structures even after the attacker
stops executing to ensure that condition F1 is not met. Merely prevent-
ing the continuation of an attack does not stop victims from accessing the
affected portion of the data structure.

5.1.3 Summary

While we demonstrated these problems on three data structures, the
problem may be widespread as there are hundreds of kernel data struc-
tures that may meet the conditions for the attack. We analyze 5429 critical
sections protected by 617 locks, a small subsection of the total critical sec-
tions in the Linux kernel. We find that 1039 contain loops (19%) and 112
instances (2%) that call synchronize_rcu() in the critical section respec-
tively that an attacker can exploit. A more detailed study is needed to
understand which characteristics of the critical section can be exploited
by an attacker.

Therefore, we take a multi-pronged approach to addressing these at-
tacks. We seek (1) lightweight mechanisms to detect an in-progress at-
tack, followed by (2) a combination of prevention strategies for active at-
tacks to block a malicious actor from continuing an attack, and (3) recov-
ery strategies that seek to restore the data structure to its normal access
cost.

5.2 Trātr.
We now introduce Trātr.– an extension to the Linux kernel that provides
a framework to detect and mitigate synchronization and framing attacks.
First, we present the goals for our design and then an overview of Trātr.
design followed by implementing Trātr. with two recovery solutions.

136

5.2.1 Goals

We have four high-level goals to guide our design:

• Automatic response and recovery. We seek an automated solution
to synchronization and framing attacks to reduce administrator ef-
fort. While preventing an attacker from further activity may be suffi-
cient for synchronization attacks, framing attacks require a recovery
mechanism to restore data structure performance properties.

• Low false positives and negatives. As there is a thin line between
heavy resource usage and denial-of-service, it can be difficult to de-
termine when an attack occurs. Furthermore, prevention and re-
covery mechanisms hurt the performance of the attacker by design.
Therefore, we seek detection mechanisms relying on multiple sig-
nals to avoid false positives and negatives.

• Easy/flexible to support multiple data structures. Data structures
may require specialized recovery solutions, so a single generic so-
lution is not possible. Hence, it should be easy for the developers to
incrementally add protection to targeted data structures as attacks
are identified.

• Minimal changes to kernel design and data structures. Much ef-
fort has been put into selecting and designing kernel data structures
such as linked lists, hash tables, and radix trees [116]. Therefore,
we want to avoid extensive changes to the kernel design or modifi-
cations to hash functions that could lead to performance issues.

5.2.2 Overview

The first step in using Trātr. is to identify vulnerable data structures used
in attacks. We performed this task manually, but it could also be deter-

137

mined using static analysis or as part of an attack postmortem. After find-
ing such a data structure, our general approach is to track resource usage
in a steady-state and detect anomalous resource usage as a sign of attack.
On detecting an attack, Trātr. acts to prevent the attack from continuing
and recover from the attack’s effects.

For detection, we observe two detection conditions common to all three
attacks that indicate an attack is in progress:

• Condition LCS: Long critical section. Expansion of the data structure
causes more work for both victims and the attacker, making the crit-
ical section longer.

• Condition HSUA: High single-user allocations. A single user has cre-
ated many entries associated with the data structure.

Neither condition on its own is sufficient to indicate an attack as there
may be other reasons for abnormal high allocations or long critical sec-
tion times, such as interrupt handling. In combination, though, these
two conditions can precisely identify attacks. Hence, Trātr. first checks
critical section size and if it is too large, then check if one of the users has
a majority of the object allocations to detect an attack. We choose this or-
der because we believe that checking for long critical sections is easier and
less intrusive to other users’ workloads than checking for high allocations
and traversing the data structure.

Once an attack is detected, Trātr. responds quickly by preventing the
attack from worsening. The system stops the attacker from extending the
data structure for a period. Even if the attacker is stopped from allocat-
ing more objects, the attacker can access the expanded data structure and
continue with the synchronization attack, or the victim can access the ex-
panded data structure in a framing attack.

138

Figure 5.2: High-level design of Trātr.. Design showing the four mechanisms
of Trātr. . The Tracking and Prevention mechanisms are part of slab-cache man-
agement. Layer 1 Detection measures the synchronization stalls to indirectly
measure long critical sections. On finding longer stalls, Trātr. triggers layer two
checks if a user has a majority of object allocations. On finding one, Trātr. iden-
tifies that user as an attacker and initiates prevention and recovery mechanisms.
The prevention mechanism prevents the attacker from allocating more entries.
Depending on the type of data structure, an appropriate recovery is initiated.
The upper box shows the common code, while the lower box shows data structure-
specific code.

The final step is recovery, where Trātr. repairs the data structure to re-
store its original performance. Here, Trātr. relies on the type and purpose
of the data structure to find an appropriate recovery mechanism.

5.2.3 Design & Implementation

A high-level design of Trātr. is shown in Figure 5.2. We discuss the design
for two data structures — the inode cache and futex table initially and
later discuss the directory cache to explain the steps needed to add a new

139

data structure to Trātr.. We implement Trātr. in Linux kernel version 5.4.62.

5.2.3.1 Tracking

The main purpose of having the tracking mechanism is to support the de-
tection and recovery mechanisms. Trātr. records the allocation and freeing
of objects associated with a vulnerable data structure. While allocating an
object, Trātr. (i) tracks the total number of objects currently allocated by
the current user, and (ii) stores the user ID in every allocated object. The
total number of objects allocated by the current user helps to identify the
HSUA condition.

The user ID information is used by recovery mechanism to identify
which objects are allocated by the attacker. To attach the information of
which user created the object, Trātr. increases the size of the object by 4
bytes during the slab cache initialization and then stores the current pro-
cess’s user ID at the end of each allocated object.

Linux associates a slab-cache with a data structure to manage object
allocation and freeing [66, 129]. The Linux slab allocator maintains all
the slab-caches and allows the kernel to efficiently manage the objects.
In the Linux kernel, the SLUB allocator is the default slab allocator. A
slab-cache is a collection of continuous pages into slabs. As slabs are used
for object allocation and freeing, the kernel does not need to explicitly
allocate and release memory for every object allocation.

Instead of writing a separate tracking mechanism for each object, we
use the Linux kernel slab-cache infrastructure to track the objects. We
modify the common slab-cache management code to selectively record
the relevant information for slab caches associated with the vulnerable
data structures. The total objects allocated per user for each slab-cache
is stored in a global hash table, updated during allocation and free op-
erations. For our prototype, Trātr. tracks four objects associated with the
inode cache, the futex table, and the directory cache and summarized in

140

Data Structure Tracking Detection RecoverySlab-cache Object Primitives probed

Inode cache ext4_inode_cachep ext4_inode_info inode_hash_lock Evictfuse_inode_cachep fuse_inode

Futex table task_struct_cachep task_struct futex_hash_bucket.lock Isolate

Dentry cache dentry_cache dentry RCU Evict

Table 5.1: Implementation summary of Trātr.. Implementation details of the
four slab-caches and three data structures that Trātr. defends against the synchro-
nization and framing attacks.

Table 5.1.
Tracking is part of the critical path for object allocation and freeing,

adding a few more instructions. However, as we show later, this overhead
is minimal. Also, Trātr. increases memory consumption through space in
each object for the user ID and the array to track per-user allocations.

One should note here that accounting can be performed across a wide
range of entities. For example, accounting can be performed at a fine-
grained level such as per-thread, per-process, or a coarse-grained level,
such as per-user or per-container level. For our work, we choose per-user
accounting to tag all the processes and threads as an attacker and avoid
situations where an attacker can deploy a multi-threaded attack. How-
ever, with simple code changes, any level of accounting is possible.

5.2.3.2 Detection

The primary objective of the detection mechanism is to check whether de-
tection conditions (LCS & HSUA) meet. When they meet, Trātr. flags an
attack and initiates prevention and recovery. For effective detection, Trātr.
adopts a two-layered approach. The first layer checks for the LCS condi-
tion, while the second layer checks for the HSUA condition and identifies
the attacker. A separate kernel thread performs the layered checks and
performs recovery (discussed later) for each slab cache. Figure 5.3 shows

141

Tratr initiates Create data structure specific thread

Detection Window Starts

Start prevention

window

Perform recovery

Probe locks

If sync stall >

threshold?

Dynamically

increase

detection

window size

If limit crossed

^v_��]u��M

Is detection

window over?

Aggressive == 0?

Yes

Yes

Attack detected.

Detect attacker.

No

No

Yes

No

Yes

No

Aggressive=1

Aggressive=0

Aggressive == 1?

Sleep

between

1ms to

5ms

No
Yes

Sleep between

5ms to 20ms Stall >

Hardlimit?

Yes

No

Aggressive=0

Figure 5.3: Flowchart of the kernel thread associated with a data struc-
ture. The kernel thread that is associated with a data structure performs the de-
tection and recovery mechanism. As part of the detection mechanism, the thread
probes the synchronization primitives. If a synchronization stall is more than the
threshold, appropriate action is initiated. Upon detecting an attack, the thread
executes the TCA check to identify the attacker and initiate prevention window.
Lastly, the thread initiates the recovery of the data structure.

the flowchart of the kernel thread that performs the detection and recov-
ery for each slab cache.

The first layer, the Critical Section Probing (CSP) check, detects if the
critical section associated with the data structure is long by probing the
locks or RCU grace period size. The check periodically tries to acquire
the synchronization primitive and measures the synchronization stalls.
If under attack, the stalls will be longer than expected, determined by a
threshold. Table 5.1 shows the locks that Trātr. probes to detect the inode
cache and futex table attacks.

Trātr. uses a 100 microseconds threshold to probe the inode cache and
futex table locks. We calculate this value by assuming an even distribu-

142

tion of the objects in the hash table and all CPUs participating in the lock
acquisition process. One must note that the threshold limits may differ
depending on the critical section sizes for other locks. Neither the inode
cache nor the futex table use RCU. From here on, we will use only locks
for our discussion for simplicity. However, the same design applies to
the RCU mechanism. We note here that as Trātr. uses threshold limits to
determine if a synchronization primitive is under an attack, badly config-
ured applications or stress testing scenarios may be falsely detected as an
attack (false positives).

By probing the lock several times, Trātr. confirms that the lock is held
for long-time multiple times and not just once during the probing period.
This reduces the chances of wrongly detecting an attack. We call this
probing period as probing window when the lock is probed multiple times
to detect an attack. If Trātr. finds that the synchronization stalls are more
than the threshold period several times, an attack is flagged, which will
initiate the second layer check. Thus, the probing window provides a
boundary within which Trātr. decides if a synchronization primitive is
under an attack.

The CSP check interacts with the synchronization primitive, thereby
interfering with the normal user operations that want to also acquire the
lock. While probing the lock, Trātr. just acquires the lock and then imme-
diately releases it to minimize the impact of the interference. Addition-
ally, instead of continuously probing, Trātr. probes the synchronization
primitive after a time gap. This time gap is between five and twenty mil-
liseconds and is randomly chosen. The kernel thread sleeps between the
probes to let the user-application threads run and do not interfere with
the applications. The size of the probing window is randomly calculated
and varies between 1 second and 5.3 seconds under normal conditions.
Figure 5.4 shows how Trātr. probes the lock within the probing window.

While probing, if Trātr. detects that the synchronization stall is more

143

Figure 5.4: Probing window behavior under normal conditions. Under
normal conditions without an attack, during the probing window, after probing
a lock once, the kernel threads sleep for 5 to 20 milliseconds. Note that the size of
the probing window is randomly chosen.

than the threshold, it dynamically expands the probing window size. The
new expanded probing window size is anywhere between 8 to 13.3 sec-
onds. It does so to increase the likelihood of detecting an attack during
the same probing window itself. Additionally, Trātr. also increases the
probing frequency to ensure that an attack is detected. So, instead of the
regular time gap of five to twenty milliseconds, Trātr. changes the time gap
to anywhere between one millisecond and five milliseconds. Figure 5.5
shows how Trātr. behaves within a probing window when the synchro-
nization stall is more than the threshold. The idea of aggressively probing
is to probe the lock multiple times within a single time slice compared to
just probing the lock once within a single time slice when not under an
attack.

As the size of the probing window and the time gap between prob-
ing is randomized, Trātr. makes it difficult for a defense-aware attacker to
launch an attack. A defense-aware attacker may not know when to launch
an attack and when to stop to remain undetected. To remain undetected,

144

Figure 5.5: Probing window behavior when under attack. When an attack
is ongoing, during the probing window, upon identifying that one synchroniza-
tion stall is more than the threshold limit, Trātr. dynamically increases the probing
window size and aggressively probes the synchronization primitive to detect an
attack early.

the attacker will have to ensure that it cannot hold the lock beyond the
threshold and cannot repeat it multiple times within the same probing
period. This significantly slows down the attacker and foils the plan to
launch an attack.

Even if an attacker very slowly manages to expand the data structure,
Trātr. has a hard limit set for the synchronization stalls, beyond which an
attack will be detected immediately. This hard limit check signifies that
under no circumstances a given lock will be held for a very long duration.
On breaching the hard limit, an attack is flagged.

Trātr. initiates the second layer, the Traverse & Check Allocations (TCA)
check whenever the first layer flags an attack. In this layer, Trātr. first tra-
verses the data structure associated with the synchronization primitive
and uses the 4-byte user ID embedded in each object to determine each
user’s total number of allocations. If a particular user has allocated the
majority of the entries, Trātr. flags that user as an attacker and passes the

145

attacker’s identity to the prevention and recovery mechanisms. Flagging
the users holding the lock longer is insufficient to determine the attacker,
as it may end up tagging the victim of a framing attack. Thus, the embed-
ded user ID information helps Trātr. in identifying the attacker accurately.
For the inode cache and futex table, Trātr. selects the bucket with the most
entries for traversal.

5.2.3.3 Prevention

We identify two approaches to mitigating attacks. First, attackers can be
rate limited by stalling them when they try to allocate memory to expand
the vulnerable data structure (stopping condition S2_expand). Second,
the system can terminate or suspend an attacker’s container, also stopping
condition S2_expand. For some data structures, killing the container may
trigger clean-up, which stops condition F1 as well. However, we believe
killing the container is not appropriate as it may lead to application-level
corruption when a user is wrongly identified as an attacker. Suspending
the attacker is not appropriate as the attacker may hold locks that are part
of the user-space libraries and can impact the victims. Therefore, we opt
for the first approach to rate-limit the attacker while allocating memory.
We believe that badly configured applications or stress tests [11] may be
detected as attackers even though their intention is otherwise.

The prevention mechanism uses the existing slab-cache infrastructure
to prevent the attacker from expanding the existing attack or launching
future attacks. After identifying the attacker, Trātr. blocks the attacker
from allocating more objects from the slab cache for a specific period,
called the prevention window. Threads from the attacker are put to sleep
until the window expires. This means attackers cannot create new in-
memory inodes for the inode cache, blocking them from opening/cre-
ating files. For the futex table, this means attackers cannot create new
threads. Note that Trātr. does not fail or stop allocation requests with the

146

ATOMIC flag, as the flag denotes that the process cannot be blocked.
However, we find this flag is rarely used with vulnerable kernel data
structures.

Trātr. maintains a prevention window size for each user separately.
Trātr. initializes the window size to 1 second and then increases the win-
dow size depending on how frequently Trātr. detects the user as an at-
tacker. Trātr. calculates the growth of the prevention window size by look-
ing at when was the last time the user was marked as an attacker. For an
attacker who continuously tries to launch an attack, the growth factor
will be high as the attack will be frequent. On the other hand, if a victim
is wrongly identified as an attacker a few times, the prevention window
size will not grow rapidly as the victim is not aggressively engaging; the
victim will resume work without getting stalled for too long.

5.2.3.4 Recovery

With only prevention in place, victims of a framing attack continue to ob-
serve poor performance as the expanded data structure still exists. More-
over, attackers can continue to access the expanded data structure and
hold the lock. Therefore, recovery is necessary to restore the performance
to normal. Trātr. offers two solutions to design recovery solutions that can
support different data structures.

One solution deals with cache-like data structures where the presence
or absence of an entry does not impact correctness. For such caches, like
the inode cache, Trātr. evicts all the entries belonging to the attacker. Thus,
victims do not lose much performance from the eviction of the attacker’s
entries, as they typically do not reference those entries. Furthermore, this
approach breaks condition F1 as victims no longer traverse the attacker’s
entries. Implementing eviction for inode cache is straightforward as we
reuse existing code. Trātr. iterates through the file systems in use (cur-
rently it supports fuse and ext4) to enumerate all inodes and drop those

147

allocated by the attacker.
The other solution deals with non-cache data structures where cor-

rectness is important. For example, for the futex table, threads must be
present on the waitlist to correctly implement synchronization. As each
entry in the waitlist is a waiting thread, dropping any entry may leave the
threads waiting, leading to problems. Thus, evicting the entries does not
work for futex table like data structures.

With these data structures, we observe that in many instances, the data
structure is used as a convenient mechanism to manage and group data
from all processes, but a single container only accesses that data. For ex-
ample, for the futex table, even though the waitlist is shared across pro-
cesses, the processes only access entries that belong to their futex vari-
ables.

For such data structures, Trātr. partitions the entries so that victims and
attackers use separate, parallel structures, and victims do not have to tra-
verse the attacker’s entries. This isolation breaks the condition F1. Trātr.
walks the data structure, identifies entries allocated by the attacker, and
moves those entries out of the primary structure to a new shadow structure.

On subsequent access, victims only access the original primary struc-
ture, while attackers only access the shadow structure. This ensures the
number of attacker’s entries cannot impact the victims. Trātr. dissolves the
shadow structure once the prevention window ends. We note that par-
titioning may not work with cache-like data structures, as it could create
multiple copies of entries allocated by both victim and attacker and lead
to inconsistencies.

Apart from ensuring that the attacker cannot expand the data struc-
ture, using a preventing window also helps with the timely recovery
without the attacker’s interference. The attacker can continue with the
synchronization attacks by accessing the expanded data structure even
though the attacker cannot allocate more objects. This poses a challenge

148

to the recovery mechanism, which may need to acquire the synchroniza-
tion primitive. Thus, Trātr. prevents the attacker from acquiring the syn-
chronization primitive until the recovery completes. For nested synchro-
nization, Trātr. needs to prevent the acquisition of the highest-level primi-
tive. If the attack is launched again, Trātr. will detect the attack and follow
the prevention and recovery mechanisms to mitigate the attack.

5.2.3.5 Adding a New Data Structure

Analyzing all existing data structures to check for vulnerabilities is a long
process. Therefore, it is important to add more structures to Trātr. incre-
mentally on finding a new vulnerability. Adding a new data structure is
a two-step process.

In the first step, the developer must pass a flag to the memory manage-
ment system when creating the associated slab-cache at boot time. Then,
whenever the slab-cache is initialized, the flag will enable tracking of the
objects and start maintaining the accounting information for each user.
One should note here that enabling the tracking alone is not enough to
detect and mitigate the attacks. However, by enabling the tracking, one
can use the accounting information to understand each user’s object us-
age.

The second step is to implement the CSP checks, TCA checks, and the
recovery procedure for the added data structure. As mentioned earlier,
the threshold limits used during CSP checks will have to be identified by
figuring out the size of critical sections that the synchronization primitive
protects. Then depending on the number of CPUs available in the system,
which is not constant for all the systems, the developer can calculate the
maximum synchronization stalls due to contention; and use it to arrive at
the threshold limits.

TCA and recovery procedures can be implemented depending on the
type of the data structure and is straightforward compared to the CSP

149

checks. In Section 5.3.5, using the example of dcache, we show the effort
needed to add a new data structure.

5.3 Evaluation
In this section, we evaluate the effectiveness, performance characteristics,
and responsiveness of Trātr.. We show that Trātr. incurs low overhead
and can quickly detect and mitigate the attack using microbenchmarks,
benchmark suites, and real-world applications. We also illustrate how
Trātr. works in the real world by running multiple containers hosting dif-
ferent applications and launching the earlier discussed attacks.

We perform our experiments on a 2.4 GHz Intel Xeon E5-2630 v3
having two sockets; each socket has eight physical cores with hyper-
threading enabled. The machine has 128 GB RAM and one 480 GB SAS
SSD. The machine runs Ubuntu 20.04 with Trātr. built on kernel version
5.4.62. All the applications and benchmarking tools used for the experi-
ments are run as separate Docker containers.

We use two different kernels to evaluate Trātr.. We label the standard
Linux kernel 5.6.42 as Vanilla. The kernel having Trātr. with all the four
mechanisms enabled is Trātr. . Additionally, to understand various as-
pects of Trātr., we use multiple configurations within Trātr.. Trātr. with just
tracking feature enabled is Trātr. -T, and with only tracking, detection, and
prevention enabled is Trātr. -TDP. For the overhead experiments, Trātr.-T
tracks all the slab-caches. For any experiment that involves an attack, we
add the suffix +Attack to note that a kernel is under attack.

5.3.1 Overall Performance

An attacker can employ complexity attacks to turn synchronization prim-
itives adversarial, leading to poor performance. In this section, we use
microbenchmarks to show how Trātr. resists attacks and the impact on

150

Throughput (ops)
Vanilla Vanilla + Attack Trātr. + Attack

IC Benchmark 4,982 202 4,884
FT Benchmark 48.95M 0.97M 48.22M

Table 5.2: Performance of two benchmarks. Observed Throughput at the
end of the experiment of the IC and FT benchmarks for Vanilla kernel without an
attack, with an attack for Vanilla & Trātr. .

the victim’s performance with or without Trātr.. We run two microbench-
marks – one each for the inode cache and the futex table, respectively,
that we call the victims. We run the experiment for 300 seconds on both
Vanilla and Trātr. kernels to compare the performance with and without
an attack. We allot 8 CPUs and 8 GB of memory to the victim and the
attacker container.

Recall that the attacker launches an inode cache attack by first identi-
fying the superblock pointer; then target a hash bucket by creating files
whose inode number maps to the targeted hash bucket. On the other
hand, while launching a futex table attack, the attacker targets the futex
table by allocating thousands of futex variables and then probes the hash
buckets to identify a busy bucket. Once found, the attacker parks thou-
sands of threads on that hash bucket. As the attack is a framing attack,
the attacker turns passive after parking the threads.

The IC benchmark associated with the inode cache creates an empty file
every 100 microseconds. We measure the throughput (number of inodes
created per second), and the latency of each file create operation.

The FT benchmark associated with the futex table creates 64 threads
that run in a loop, where each thread acquires a lock, increments a shared
counter for 100 microseconds, and then releases the lock. We read the
counter value every second to calculate the throughout and measure the
latency to release the lock using systemtap in a separate experiment.

151

Table 5.2 shows the performance comparison of both the IC and FT
benchmark respectively for three experiments run on the Vanilla and Trātr.
kernel. We use the performance of the Vanilla kernel without an attack as
the baseline performance. When the Vanilla kernel is under an attack, at
the end of the experiment, the throughput of both the IC and FT bench-
marks drops by 95.95% and 98.06% respectively, leading to a large denial-
of-services. With Trātr., there is no significant performance degradation
compared to the baseline.

5.3.1.1 Inode Cache Attack

Figure 5.6 shows the throughput and average latency timeline of the IC
benchmark. When the attacker is probing the hash buckets to identify the
superblock pointer during the prepare phase, the Vanilla kernel perfor-
mance drops and varies. After identifying the superblock pointer, as the
attack starts, the throughput drops significantly and stays the same until
the end of the experiment. As the attacker holds the global inode cache
lock for a long duration, the IC benchmark must wait longer to acquire
the lock. As more and more entries get added to the hash bucket, the
wait-time increases, thereby increasing the latency of the operations.

On the other hand, Trātr. detects the attack while the attacker is still
preparing for the attack. As Trātr. prevents the attacker from allocat-
ing more objects, it cannot expand the hash bucket breaking condition
S2_expand. As part of the recovery, Trātr. removes all the entries from the
hash bucket. As the attacker relies on the latency measurement to identify
the superblock address, due to the prevention and recovery mechanisms,
Trātr. foils the attack while the attacker is still preparing for the attack. As
the attack is never started, there is no change in the throughput for the IC
benchmark.

During the experiment, as the inode cache attack is ongoing, immedi-
ately after the prevention window ends, the attacker again tries to create

152

0 50 100 150 200 250 300
Time (seconds)

0

1

2

3

4

5
Th
ro
ug

hp
ut
 (K

op
s)

Prepare for attack
Attack started

Vanilla
Vanilla+Attack
Tratr+Attack

(a) Throughput

0 50 100 150 200 250 300
Time (seconds)

10us

50us
100us

500us
1ms

5ms
10ms

La
te
nc

y

Prepare for attack
Attack started

Vanilla
Vanilla+Attack
Tratr+Attack

(b) Latency

Figure 5.6: IC benchmark performance without attack, with attack and
with Trātr.. (a) Timeline of the throughput showing the impact on the through-
put due to the attack for the Vanilla and Trātr. kernel. With Trātr. , the attacker is
not able to launch an attack. (b) Timeline of the average latency observed every
second while creating the files.

153

0 50 100 150 200 250 300
Time (seconds)

0
0.5
1

2

3

4

5

Lo
ck

 H
ol
d
Ti
m
es

 p
er
 se

co
nd

 (m
s)

Prepare for attack
Attack started

Vanilla+Attack
Tratr+Attack

(a) Lock hold times of the attacker for Vanilla and Trātr. kernel.

0 50 100 150 200 250 300
Time (seconds)

0

50

100

150

Cu
m
ul
at
iv
e
W
ai
t-T

im
es

 p
er
 se

co
nd

 (s
ec
on

ds
)

Prepare for attack

Attack started

Vanilla
Vanilla+Attack
Tratr+Attack

(b) Cumulative wait times of the victim for Vanilla and Trātr. kernel.

154

0 25 50 75 100 125 150 175 200 225 250 275 300
Time (seconds)

0

10K

20K

30K

40K

50K
M

ax
 e

nt
rie

s i
n

an
y

bu
ck

et

Prepare for attack

Attack started

Vanilla+Attack
Tratr+Attack

(c) Maximum number of attacker entries in any bucket for Vanilla and Trātr. ker-
nel.

Figure 5.7: Internal state of inode cache when under inode cache at-
tack. The graphs present an overall picture of the inode cache when an attacker
is launching the attack. In particular, the timeline shows the lock hold times of
the attacker, the cumulative wait times to acquire the inode cache lock, and the
maximum number of entries of the attacker for the Vanilla kernel and Trātr. . The
victim is running the IC benchmark.

entries during the prepare phase of the attack. Therefore, there are a few
drops in the performance periodically. However, the moment the thresh-
old limit is crossed while probing for the inode cache lock, Trātr. will flag
the attack and immediately initiate preventive and recovery mechanisms.
Another point to note is that the attack can turn into a framing attack if
the victims access the targeted hash bucket.
Internal state of the inode cache. Figure 5.7 shows the internal state of
the inode cache while the attack is going on. Figure 5.7a shows the lock
hold times of the attacker for Vanilla and Trātr. when under attack. We
observe that as the attacker continues to expand the targeted hash bucket

155

for the Vanilla kernel, the lock hold times also continue to increase. We
do not show the victim’s lock hold times as they are very small compared
to the attacker’s lock hold times.

On the other hand, Trātr. can detect and mitigate the attack and there-
fore manage to keep the attacker’s lock hold times under the threshold
limits. As a result, we only observe a slight increase in the lock hold times
when the attack is started. At this point, the attack is still in the prepare
phase. However, as the preventive and recovery measures kick in once the
attack is detected, the attacker cannot impact the victim’s performance.

Figure 5.7c shows the maximum number of attacker’s entries in any
bucket in the inode cache. This result corroborates how the preventive
and recovery mechanisms never allow the attacker to expand the targeted
hash bucket. Whenever the attacker is able to expand the targeted hash
bucket, as the synchronization stalls cross the threshold limits, the recov-
ery mechanism evicts all the attacker’s entries. On the other hand, for
the Vanilla kernel, the number of entries in the targeted hash bucket in-
creases, leading to a denial-of-service attack.

Figure 5.7b shows the victim’s cumulative wait times to acquire the
inode cache lock. We observe that without an attack, as there is no com-
petition to acquire the inode cache lock, the cumulative wait time is neg-
ligible. On the other hand, when under attack, the victim’s wait times
continue to grow as the attack progresses. As the attacker starts to dom-
inate the lock usage, the victim thread has to wait longer to acquire the
lock leading to poor performance.

However, as Trātr. can quickly detect and mitigate the inode cache at-
tack, there is no increase in the victim’s wait times as the attacker cannot
dominate the lock usage by targeting a hash bucket. The preventive and
recovery mechanisms help in foiling the attacker’s plans.
Economic impact. For the Vanilla kernel, without an attack, the victims
have to wait for roughly 1% of the total runtime to acquire the inode cache

156

lock. On the other hand, when under attack, as the inode cache attack is a
synchronization attack, the victims will observe very high wait times. As
the inode cache lock uses spin-waiting, the victims will be spending the
CPU cycles for which the Cloud vendors will be charging the victims. We
observe that the victim spends 85% of the total runtime waiting to acquire
the inode cache lock. So, the victim ends up paying more without doing
any useful work. For the victim, a synchronization attack impacts the
performance and makes the victim suffer economically.

With Trātr., due to early attack detection, the victim’s have to wait for
around 5% of the total runtime. This increase in the wait time compared
to the baseline is because Trātr. needs to probe the locks periodically and
perform recovery and hence has to acquire the lock to clean up the inode
cache.

5.3.1.2 Futex Table Attack

Figure 5.8 shows the throughput and average latency timeline for the FT
benchmark. As the futex table attack increases the time a thread spends
while releasing the lock, we show the latency of releasing the lock in the
latency timeline by conducting another similar experiment and using Sys-
temtap to measure the time to release the lock. Once the attack starts, the
throughput of the FT benchmark drops significantly and continues to stay
the same. At the same time, the latency of releasing the lock increases by
1200 times from 3-4 µs to 4.8 ms.

On the other hand, Trātr. detects the attack quickly and mitigates the
attack by isolating the entries of the attacker breaking condition F1. As
the FT benchmark does not access the entries allocated by the attacker, the
throughput returns to the baseline level once the recovery happens. Over-
all, the FT benchmark sees around a 1.5% drop in the throughput. This
negligible throughput drop shows the effectiveness of Trātr. and shows
how quickly the attack is detected and mitigated.

157

0 50 100 150 200 250 300
Time (seconds)

0

10

20

30

40

50

60
Th

ro
ug

hp
ut

 (M
op

s)

Prepare for attack
Attack started

Vanilla
Vanilla+Attack
Tratr+Attack

(a) Throughput

0 50 100 150 200 250 300
Time (seconds)

10us

50us
100us

500us
1ms

5ms
10ms

La
te
nc

y

Prepare for
attack
Attack started

Vanilla
Vanilla+Attack
Tratr+Attack

(b) Latency

Figure 5.8: FT benchmark performance without attack, with attack and
with Trātr.. (a) Timeline of the throughput showing the impact on the through-
put due to the attack for the Vanilla and Trātr. kernel. (b) Timeline of the average
latency for another experiment of the time to release the lock.

158

0 50 100 150 200 250 300
Time (seconds)

0
0.5
1

2

3

4

5

Lo
ck

 H
ol
d
Ti
m
es

 p
er
 se

co
nd

 (m
s)

Prepare for attack
Attack started

Vanilla
Vanilla+Attack
Tratr+Attack

(a) Lock hold times of the victim for Vanilla and Trātr. kernel.

0 50 100 150 200 250 300
Time (seconds)

0

50

100

150

Cu
m
ul
at
iv
e
W
ai
t-T

im
es

 p
er
 se

co
nd

 (s
ec
on

ds
)

Prepare for attack

Attack started

Vanilla
Vanilla+Attack
Tratr+Attack

(b) Cumulative wait times of the victim for Vanilla and Trātr. kernel.

159

0 25 50 75 100 125 150 175 200 225 250 275 300
Time (seconds)

0

10K

20K

30K
M
ax
 e
nt
rie

s i
n
an
y
bu

ck
et

Prepare for attack
Attack started

Vanilla+Attack
Tratr+Attack

(c) Max number of entries of the attacker in any bucket for Vanilla and Trātr.
kernel.

Figure 5.9: Internal state of futex table when under futex table attack.
The graphs present an overall picture of the futex table when an attacker is launch-
ing the attack. In particular, the timeline shows the lock hold times of the victim,
the cumulative wait times to acquire the hash bucket lock, and the maximum
number of entries of the attacker. The victim is running FT benchmark.

Internal state of the futex table. Figure 5.9 shows the internal state of the
futex table while the attack is going on. As the futex table attack is a fram-
ing attack, the attacker remains passive after expanding the targeted hash
bucket. Figure 5.9a shows the lock hold times of the victim for Vanilla and
Trātr. with and without an attack. For the Vanilla kernel, once the attack
is launched, the lock hold times of the victim increase 25000X times from
hundreds of nanoseconds to 5 milliseconds.

On the other hand, Trātr. can detect and mitigate the futex table attack
by moving the attacker’s entries to a shadow bucket. Furthermore, by
isolating the attacker and the victim, Trātr. manages to keep the lock hold
times of the victim similar to the baseline level.

160

Figure 5.9c shows the maximum number of attacker’s entries in any
bucket in the futex table. For Trātr., once an attack is detected, the recov-
ery mechanism kicks in and moves all the attacker’s entries to the shadow
bucket. However, for the Vanilla kernel, as part of the attack, the attacker
parks thousands of threads on the targeted hash bucket, increasing the to-
tal number of entries to 30000. As the attacker turns passive, the number
of entries stays the same until the end of the experiment.

Figure 5.7b shows the cumulative wait times to acquire the futex table
hash bucket lock. Under the framing attack, the victim’s wait times con-
tinue to grow as the attack progresses. This is because multiple victim
threads wait to acquire the lock longer, which another victim thread is
holding on to for a long time. On the other hand, due to the quick detec-
tion and recovery, the victim hardly sees any substantial increase in the
wait times for Trātr.. Thus, the victim’s wait times for Trātr. is similar to
the baseline level.
Economic impact. Framing attacks not only make the victims wait longer
to acquire the lock but also make them spend more time in the critical
section also. We observe that when under attack, the victim’s CPU usage
shoots up by 2.44X times more than the baseline case. As the victim has to
traverse the expanded hash bucket every time it accesses the hash bucket,
the critical section size increases, leading to more CPU usage. For Trātr.,
the total runtime is around 1.2% more than the baseline level. By detect-
ing the futex table attack quickly, Trātr. can reduce the increase in the total
runtime. Without Trātr., the victim will end up paying 2.44 more for the
extra CPU usage and also observe about 98.06% drop in the performance.

We also observe that the victim spends around 17.8% of the total run-
time waiting while acquiring the lock. On the other hand, for the baseline
case, the victim spends less than 0.01% of the total runtime waiting to ac-
quire the lock. Similarly, with Trātr. too, the total time spent waiting is
less than 0.01%. As Trātr. quickly detects and performs recovery, there is

161

minimal impact on the total wait time.

5.3.2 Performance of Trātr. Components

We evaluate the responsiveness of Trātr. in detecting attacks and how the
prevention and recovery mechanisms help to mitigate the attack. We re-
run the IC benchmark without the preparation phase. We use the same
data from the previous experiment for the FT benchmark but present a
zoomed version for better understanding.

5.3.2.1 Detection

Early detection of an attack is important to reduce the impact on the vic-
tim’s performance. As Trātr. probes the synchronization primitives sev-
eral times during the probing window, it can immediately identify that an
attack is ongoing and take punitive actions to prevent the damage caused
by the attack. We present the timeline of the throughput of the IC and FT
benchmark in Figure 5.10.

For the FT benchmark shown in Figure 5.10a, while the attacker is
probing the hash buckets, it does not disturb the lock hold times signifi-
cantly and stays within the threshold limits. Trātr. views this behavior as
normal and does not flag it as an attack. Only when the attacker parks
thousands of threads on the hash bucket, both the LCS and HSUA condi-
tions meet, and Trātr. flags it as an attack. Due to the aggressive probing
used by Trātr., the attack is detected immediately within 1 second of when
the attack starts when the synchronization stalls cross the threshold lim-
its.

For the IC benchmark shown in Figure 5.10b, Trātr. detects an attack
within 1 second of when the attack starts. The probing window size
expands dynamically whenever Trātr. identifies that the synchronization

162

50 55 60 65 70 75 80
Time (seconds)

10

20

30

40

50
Th

ro
ug

hp
ut
 (M

op
s)

Attack started

Tratr+Attack
Tratr-TDP+Attack

(a) Futex table attack

0 50 100 150 200 250 300
Time (seconds)

0

1

2

3

4

5

6

Th
ro
ug

hp
ut
 (K

op
s)

Attack started Tratr+Attack
Tratr-TDP+Attack

(b) Inode cache attack

Figure 5.10: Performance of Trātr. components. Throughput timeline for
the futex and inode cache attacks explaining the importance of detection, preven-
tion and recovery. We also show the timeline for Trātr. -TDP. Trātr. -TDP denotes
the kernel version that has the tracking, detection and prevention mechanisms
enabled. (a) For Trātr. -TDP, as there is no recovery mechanism enabled, the FT
benchmark observes a significant drop in the performance. (b) However, for IC
benchmark, the prevention mechanism prevents the attacker from expanding the
hash bucket leading to similar performance as Trātr. .

163

stalls are beyond the threshold limit. Therefore, within the same probing
window itself, the attack is flagged.

On flagging an attack, Trātr. quickly identifies the attacker by travers-
ing the hash bucket, checking the user information stamped on the ob-
jects, and passing on the attacker’s information to the prevention and re-
covery mechanisms. One thing to note here is that the attacker continues
with the attack once the prevention window ends. Once the attacker tries
to expand the hash bucket, Trātr. will detect the attack and initiate pre-
vention and recovery mechanisms.

5.3.2.2 Prevention

We now discuss how the prevention mechanism helps in preventing fu-
ture attacks and throttle an ongoing attack. Trātr. rate limits the attacker
by stalling new object allocation until the prevention window expires.
Trātr. adjusts the prevention window size depending on how frequently
a user is flagged as an attacker to slow down the attacker.

As seen in Figure 5.6, Trātr. detects the inode cache attack early in the
prepare phase of the attack, restricting the attacker’s capability to extract
the superblock. This helps to prevent future attacks as without knowing
the superblock address, it is hard to launch a synchronization attack.

When the attacker already knows the superblock address, Fig-
ure 5.10b shows the timeline of the victim’s throughput. As the inode
cache attack is ongoing, the attacker can launch an attack immediately
after the prevention window is over. The regular spikes in the through-
put timeline indicate the attacks. Trātr. learns the attacker’s behavior and
grows the prevention window accordingly to ensure that the attacker is
further slowed down to prevent any impact on the victim’s performance.
The time gap between throughput drops roughly doubles every time, and
at the end of the experiment, the prevention window size has grown to
216 seconds. Thus, Trātr. can help in limiting an ongoing attack.

164

To understand the importance of prevention and recovery and their
dependence on each other, we conduct another experiment where we dis-
able the recovery mechanism and run the FT and IC benchmark (Trātr.-
TDP). Figure 5.10a shows the result for the FT benchmark. For Trātr.-TDP,
the victim’s performance stays poor as the victims continue to traverse the
entries allocated by the attacker in the hash bucket. Even though the at-
tacker has turned passive, the expanded data structure continues to stay.
Thus, for framing attacks, relying on the prevention mechanism alone is
not enough. Recovery is needed to restore the data structure to a pre-
attack state and recover baseline performance.

On the other hand, for Trātr.-TDP, the IC benchmark observes similar
performance to Trātr.. The reason for such performance is that Trātr. keeps
growing the prevention window size. Moreover, as the victim does not
access the targeted hash bucket frequently, there is minimal performance
impact. However, as the hash bucket in the inode cache still has the entries
allocated by the attacker, whenever the attacker again tries to add a few
entries to the hash bucket, Trātr. detects the attack and again initiates the
prevention mechanism.

5.3.2.3 Recovery

Recovery is important to restore performance after an attack. Even
though both the inode cache and futex table are hash tables, their recovery
is different as they are designed for different purposes. We show that for
different recovery solutions, Trātr. can bring performance back to normal
by quickly recovering after an attack.

For the inode cache, the recovery evicts all the entries belonging to the
attacker. In Figure 5.10b, we observe that post-recovery, the performance
goes back to baseline levels. With the preventive measures in place, the
recovery completes quickly. For our experiments, the time to perform
recovery remains around 4-5 milliseconds. Furthermore, the amount of

165

work done to recover is fixed as the attacker can only inflict damage from
the start of the attack to when an attack is detected.

For the futex table attack, Trātr. recovers by isolating the attacker from
the victims. We consistently see that the recovery procedure of isolating
the attacker completes within 50-70 milliseconds. Furthermore, as the
attack is detected immediately after it is launched, the attacker cannot
expand the hash bucket extensively, helping the recovery complete faster.

Without the prevention measures, the attacker can continue to expand
the data structure holding the synchronization primitive. Under such cir-
cumstances, as the recovery procedures also acquires the synchronization
primitives, longer lock hold times will stall the recovery making the re-
covery mechanism a victim. Thus, preventive measures are necessary for
faster recovery.
Results summary. To summarize the results, we show that Trātr. is effec-
tive, efficient, and responsive to detect and mitigate an attack. As Trātr.
can mitigate the attack immediately, the performance impact of the attack
on the victim is negligible for both the recovery solutions.

5.3.3 Overhead

We now show the impact due to the overhead introduced by Trātr.. We
will be discussing two aspects of overhead – the performance overhead
and the memory overhead.

5.3.3.1 Performance Overhead

Within the performance overhead, there are two aspects to look for - one
due to the tracking mechanism and another due to the introduction of
kernel threads that execute the detection, prevention, and recovery mech-
anisms.

166

Application Description

CouchDB CouchDB is a NoSQL database with support to repli-
cate data across distributed servers for redundancy. It
is a type of document database, stores data in JSON
format.

Cassandra Cassandra is a NoSQL database designed to run on
"commodity" servers. It is a type of wide-column
database.

LevelDB LevelDB is a simple key-value NoSQL database with
persistence storage.

RocksDB RocksDB is a key-value NoSQL database, built on top
of LevelDB. It is designed to take advantage of fast IO
devices such as Flash drives.

InfluxDB InfluxDB is a time-series database.

SQLite SQLite is a weakly typed RDBMS system.

Darktable It is an open-source photography software to manage
RAW photos. The benchmark exploits its compute re-
quirement to stress the system.

Kripke Kripke is an Sn particle transport code; it is used to
study the impact of various factors such as data lay-
out, programming paradigm, and architecture on the
performance of Sn transport

RAR RAR is a file compression/archive utility.

MNN Mobile Neural Network, developed by Alibaba, is a
lightweight and efficient neural network framework.

NCNN NCNN, developed by Tencent, is an optimized neural
network framework.

Table 5.3: Applications used for studying overhead. List of the applica-
tions that are part of the Phoronix test suite that we use to understand the over-
head in Trātr. .

167

Benchmark Description

Apache
Benchmark It is one of the standard benchmarks to test the perfor-

mance of HTTP web servers.

Blogbench Blogbench re-creates file server load by stressing the
underlying filesystem. This benchmark imitates load
generated on a blogging site while adding, modifying,
or reading content.

Apache Siege Siege is a tool to perform a load test on HTTP servers
by making concurrent connections. We are spawning
500 connections to imitate a real-world scenario.

Dbench The benchmark stresses the filesystem by spawning
concurrent clients generating IO workload.

IOR IOR is a parallel IO benchmark, with a particular focus
on HPC workload. It depends on MPI for synchroniza-
tion.

OSBench OSbench is a set of micro-benchmarks designed to
measure OS performance by creating files, threads,
processes, and memory allocations.

Intel MPI
Benchmark It is a collection of MPI benchmarks.

Neatbench Neatbench benchmark measures the system perfor-
mance by executing the Neat video render program.

FinanceBench Finance benchmark tests the system performance by
running different financial applications.

Table 5.4: Benchmarks used for studying overhead. List of the benchmarks
that are part of the Phoronix test suite that we use to understand the overhead in
Trātr. .

168

Tracking mechanism overhead. The tracking mechanism is the only code
that is executed in the critical path. The other three mechanisms – de-
tection, prevention, and recovery, happen in the background by kernel
threads. Therefore, it is important to understand the overhead Trātr. in-
troduces to track the objects.

To understand the impact of tracking, we use the Phoronix test suite
– a free and open-source benchmark suite that supports more than 400
tests [126]. The test suite allows to execute tests and report the results in
an automated manner. For our experiments, we run the Docker container
that is provided by the Phoronix test suite.

We run the experiments on a variety of applications and benchmarks
provided by the Phoronix test suite. Table 5.3 shows the list of all the
applications and the description of the applications that we use for ex-
perimentation. Table 5.4 shows the list of all the benchmarks and the de-
scription of the benchmarks.

We choose these applications and benchmarks as they stress the un-
derlying kernel. As they interact with the kernel, they will have to al-
locate the kernel objects, stressing the tracking mechanism. We run the
container with unrestricted CPU access as multiple objects will be created
concurrently on all CPUs stressing the tracking mechanism’s parallelism.
For the majority of the listed applications and benchmarks, the test suites
run tests three times. We use the average of these three tests or more for
the comparison.

As Trātr. updates its accounts on object allocation and freeing, the per-
formance overhead is paid only at the time of allocation or freeing. While
accessing objects, there is no overhead. We used a special version of
Trātr. called Trātr.-T that enables tracking for all the slab-caches to measure
this performance difference. We compare Trātr.-T’s performance with the
Vanilla kernel’s performance.

Table 5.5 shows the performance of Trātr. kernel compared to the

169

Application Test Detail Relative Trātr.
Performance

CouchDB Insertions 1.20%
Cassandra Mixed: Write and Reads 0.92%
LevelDB Random Read 5.32%

Fill Sync -3.46%
Overwrite -2.96%
Seek Random 0.85%
Sequential Fill -2.49%

RocksDB Sequential Fill -4.16%
Random Fill Sync -1.53%
Read While Writing 0.41%

InfluxDB Concurrent write -0.25%
SQLite Insertions -3.33%
Darktable "Boat" test using CPU only -3.05%
Kripke Equation solver -1.90%
RAR Compress Linux kernel -2.64%
Mobile Neural Network Inference on inception-v3

model
-0.11%

NCNN Inference on regnety_400m
model

-1.31%

Table 5.5: Performance overhead study for applications. Comparison of
performance for the various applications for the Vanilla kernel and Trātr. -T with
just tracking enabled for all the slab-caches relative to Vanilla kernel.

170

Benchmark Test Detail Relative Trātr.
Performance

Apache Benchmark Static Web Page Serving -0.58%
Blogbench Read -0.13%

Write -9.67%
Apache Siege Concurrent connection on

web server
-2.26%

Dbench Concurrent clients doing I/O -0.44%
IOR Parallel I/O tests with 1024

block size
-1.23%

OSBench Create Files -7.22%
Create Threads -2.25%
Launch Programs -6.14%
Create Processes -9.54%
Memory Allocations 0.31%

Intel MPI Benchmark PingPong Test -0.03%
Neatbench Neat Video render using CPU 5.88%
FinanceBench Bonds OpenMP Application -1.19%

Table 5.6: Performance overhead study for benchmarks. Comparison of
performance for the various benchmarks for the Vanilla kernel and Trātr. -T with
just tracking enabled for all the slab-caches.

171

Vanilla kernel for the applications used for experimentation. The last col-
umn in the table shows the difference in the performance. For the major-
ity of the applications, Trātr.’s performance is between 0-4% less than the
Vanilla kernel’s performance. The NUMA-aware hash table used to store
the user’s accounting information helps keep the performance difference
minimal. We also do observe a slight improvement in the performance
of a few applications. However, we do not have a specific reason for an
increase in the performance compared to the Vanilla kernel.

Table 5.6 shows the performance of Trātr. kernel compared to the
Vanilla kernel for the benchmarks used for experimentation. For the ma-
jority of the benchmarks, the performance difference is between 0-5% less
than the Vanilla kernel’s performance. However, for a few benchmarks,
the decrease in the performance is slightly higher. This is because these
benchmarks try to create hundreds of kernel objects in a short period,
overwhelming the hash table used to track each user’s accounting infor-
mation. For example, the OSBench benchmark creates threads and pro-
cesses in a loop stressing the tracking mechanism. However, we believe
that very few real-world applications create thousands of threads or pro-
cesses in such a short period.
Kernel threads overhead. The kernel threads probe the synchroniza-
tion primitive to detect an attack. On detecting an attack, these threads
will initiate the prevention and recovery mechanisms. Even though these
threads run in the background, there is still a possibility that these kernel
threads may interfere with the application’s threads and compete for the
CPU.

To understand the impact of these kernel threads, we use the same
Phoronix test suite for experimentation. We use three test applications
described in Table 5.7 to measure the impact of the kernel threads.

We run four containers where the same test application is executed,
and each container is allocated 8 CPUs. By running the same test in all

172

Application Description

N-Queens This OpenMP version solves the N-queens
problem of placing N chess queens on an N×N
chessboard so that no two queens attack each
other. The board problem size is 18.

CP2K Molecular
Dynamics

CP2K is an open-source molecular dynamics
software package focused on quantum chem-
istry and solid-state physics used for perform-
ing atomistic simulations of solid-state, liquid,
molecular, and biological systems.

Primesieve Primesieve generates prime numbers using a
highly optimized sieve of Eratosthenes imple-
mentation. Primesieve benchmarks the CPU’s
L1/L2 cache performance.

Table 5.7: Applications used to study kernel threads overhead. List of
the applications that are part of the Phoronix test suite used for measuring the
impact of kernel threads.

four containers, we can easily measure the variation in the performance
caused by the kernel threads. Additionally, different tests run for a differ-
ent time duration, and hence it will be hard to find tests that run for the
same amount of time necessary for our experiments. Moreover, the test
suite does not allow running the tests for a specific time duration.

For all the three test applications, we find that the performance dif-
ference between maximum runtime for Trātr. and minimum runtime for
Vanilla kernel to be somewhere around 1-1.5%. This performance differ-
ence corroborates with the design strategy discussed in Section 5.2.3.2.
On average, the kernel threads will probe the synchronization primitives
every 12.5 milliseconds. It takes about 120 microseconds to complete one
probing. Therefore, within one second, the total CPU time used by the
kernel threads is roughly ten milliseconds which is 1% of 1 second.

173

Application
Active Slab
Size in Vanilla
(in MB)

Active Slab
Size in Trātr.
(in MB)

Slab Overhead
in Trātr. (%)

CouchDB 350.05 360.19 2.9 %
Cassandra 210 230 9.52%
LevelDB 66 71 7.58%
RocksDB 91.52 95 3.8 %
InfluxDB 62.96 74.33 18.06%
SQLite 92.49 101.27 9.49%
Darktable 115.06 116.77 1.49%
Kripke 46.49 50 7.55%
RAR 77.16 80.26 4.02%
MNN 102.87 110.81 7.72%
NCNN 94.71 102.59 8.32%

Table 5.8: Memory overhead study for the applications.Comparison of the
memory overhead for various applications for the Vanilla kernel and Trātr. -T with
just tracking enabled for all the slab-caches. The numbers in the bracket in the last
column show the % increase in the total memory allocated to all the slab caches.

5.3.3.2 Memory Overhead

Trātr. uses a hash table with 32 buckets per NUMA node to track the mem-
ory allocations per user for a slab cache. Our machine has two NUMA
nodes; adding the hash table to the slab-cache structure increases its size
by 544 bytes. Therefore, to support thousands of slab-caches, the total
memory overhead is less than 1 MB. With more NUMA nodes, the total
memory overhead may be higher.

Trātr. also adds 4 bytes of extra memory allocated per object to stamp
the user-id. As the Linux kernel uses slabs for object allocation, increasing
the object’s size by 4 bytes will reduce the total objects allocated per slab.
Using slabtop command [40], for an idle system having 150 slab-caches
initialized, 3.8% more memory is allocated to slab caches for Trātr.-T (219
MB) than the Vanilla kernel (211 MB).

174

Benchmark
Active Slab
Size in Vanilla
(in MB)

Active Slab
Size in Trātr.
(in MB)

Slab Overhead
in Trātr. (%)

Apache Benchmark 73.6 78.7 6.93%
Blogbench 264.85 284.51 7.42%
Apache Siege 38 39.4 3.68%
Dbench 170.03 189.96 11.72%
IOR 62.89 74.33 18.19%
OSBench 87.17 98.86 13.41%
Intel MPI Benchmark 54.69 58.9 7.7 %
Neatbench 28.71 31.94 11.25%
FinanceBench 72.61 77.09 6.17%

Table 5.9: Memory overhead study for the benchmarks.Comparison of the
memory overhead for various benchmarks for the Vanilla kernel and Trātr. -T with
just tracking enabled for all the slab-caches. The numbers in the bracket in the
last column shows the % increase in the total memory allocated to all the slab
caches.

We also monitor the slab cache usage for the 20 tests to understand the
tracking mechanism’s overhead. Using slabtop command, we measure
and compare the total memory allocated to all the slab caches for Trātr.
and Vanilla. Table 5.8 and Table 5.9 shows the memory overhead caused
due to the addition of 4 bytes of extra memory to each object.

We notice that the applications and benchmarks that regularly creates
object are more likely to observe a higher memory overhead. On the other
hand, applications and benchmarks that create few objects and use the
same objects several times amortize the cost of the object tracking leading
to lower memory overhead. We believe that given the amount of main
memory available today, a few MB of extra memory used by slab-caches
may not hurt performance.

175

Application Workload

DBENCH 32 threads executing client loadfile workload
UpScaleDB ups_bench –inmemorydb –num-threads=64
Exim Mosbench workload using 8 clients

Table 5.10: Real-world scenarios study with three real-world applica-
tions. List of the real-world applications and their workloads used for under-
standing how Trātr. performs in real-world scenarios.

Container
Scenario 1 & 2 Scenario 3

Futex table & Inode cache attack Multiple attacks
CPU Memory CPU Memory

Exim 8 16 GB 8 16 GB
DBENCH 8 16 GB 8 16 GB

UpscaleDB 8 64 GB 8 64 GB
Attacker 1 8 GB 4 8 GB

Table 5.11: Real-world scenario description. List of three real-world sce-
nario summary and resource allocation to each container in each of the scenario.

5.3.4 Real-World Scenarios

We now demonstrate how using Trātr. in real-world scenarios can prevent
synchronization primitives from turning adversarial. We focus on three
different applications – the Exim mail server, UpScaleDB, and DBENCH
benchmark. Using three different scenarios, we explain the importance
of Trātr.. Table 5.11 summarizes each scenario. We run the workload as
described in Table 5.10 for 300 seconds.

Scenarios 1 and 2 deals with the futex table and inode cache attack
and are an extension of the attacks discussed in Section 3.2.3. Instead of
running a single victim, we run more victims to illustrate the real-world
scenario where multiple containers run on a single physical machine.

The performance comparison of Vanilla and Trātr. with and without
futex table attack is shown in Figure 5.11a. We use the throughput of the

176

Vanilla kernel as the baseline to calculate the normalized throughput. As
UpScaleDB relies on Pthread mutex lock [123]; the futex table attack im-
pacts its performance. Figure 5.11b shows the performance comparison
for the inode cache attack. As Exim and DBENCH use inode cache for file
creation and deletion, the attack impacts their performance with Vanilla
kernel. For both the scenarios, Trātr. can detect and mitigate the attack
with minimal impact.

In Scenario 3, an attacker launches both the futex table and inode
cache attack simultaneously. This experiment shows how Trātr. can han-
dle simultaneous attacks without impacting victims’ performance. Fig-
ure 5.11c shows that all three victims observe poor performance in Vanilla
kernel. On the other hand, Trātr. detects both attacks and employs dif-
ferent recovery solutions to mitigate both attacks without impacting the
victim’s performance. Thus, Trātr. is not limited to just detecting and mit-
igating a single attack from an attacker. Trātr. can tame the attackers that
try to turn the synchronization primitives adversarial.
Cost of the attack. For Scenario 1 & 2, we use 1 CPU, and for Scenario 3,
we use 2 CPUs to launch attacks to run two attacks. Even with 1 CPU, the
attacker can generate synchronization interference leading to poor per-
formance. Thus, to launch either synchronization or framing attacks, the
cost associated with the attacks is minimal. One should note here that
with more resources, a more severe attack can be launched.
Economic impact. We already discussed earlier the economic impact on
the victims due to the synchronization and framing attack. For scenario1
and scenario3, for the victim (UpScaleDB) of the futex table attack, we
observe that the victim endup up increasing the CPU usage by around
2.25 to 2.4X compared to the baseline. On the other hand, for Trātr., there
is an increase in the total CPU usage by 0.5% only.

For the inode cache attack in Scenario 2 and 3, while the Exim Mail
Server spends around 31-32.45% of the total runtime, DBENCH spends

177

Exim DBENCH UpScaleDB
0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Th
ro
ug
hp
ut

Vanilla
Vanilla+Attack

Tratr+Attack

(a) Scenario 1 - Futex table attack

Exim DBENCH UpScaleDB
0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Th
ro
ug
hp
ut

Vanilla
Vanilla+Attack

Tratr+Attack

(b) Scenario 2 - Inode cache attack

Exim DBENCH UpScaleDB
0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Th
ro
ug
hp
ut

Vanilla
Vanilla+Attack

Tratr+Attack

(c) Scenario 3 - Multiple attacks

Figure 5.11: Performance comparison of the various applications across
different scenarios. Performance comparison of Vanilla and Trātr. with and
without attack when subjected to different attacks. (a) & (b) shows the perfor-
mance when multiple applications run within a single machine for futex table
and inode cache attack. (c) shows the ability of Trātr. to handle simultaneous
attacks.

178

0 50 100 150 200 250 300

Time (seconds)

0

200

400

600

800

1000

1200

1400
T
h
ro
u
g
h
p
u
t
(K
o
p
s)

Attack started

Vanilla

Vanilla+Attack

Tratr+Attack

Figure 5.12: Performance comparison of the Exim mail server when un-
der dcache attack. Performance comparison of Vanilla and Trātr. with and with-
out attack when subjected to directory cache attack. Timeline of the throughput
showing the impact on the throughput due to the attack for the Vanilla and Trātr.
kernel.

around 45-46.73% of the total runtime waiting to acquire the inode cache
lock. This shows that all the victims will not only suffer due to poor per-
formance, but they will end up having an economic impact too.

5.3.5 Adding Directory Cache to Trātr.
One of our goals is to ease the process of adding a new data structure to
Trātr.. We choose the dcache to understand the effort needed to implement
the CSP & TCA checks and recovery. We first set the tracking flag for the
dcache slab-cache to enable tracking. Dcache uses RCU and bit-based
spinlocks to support concurrent access. We focus on the RCU because
the spinlock’s critical section is small and will be hard to turn adversarial.

179

CSP checks involve probing the grace period size by measuring the
time to complete the synchronize_rcu() call until the probing window
expires. The probing threshold is set to 15 milliseconds which is twice the
size of the CPU time slice. The TCA check walks the hash bucket having
the most entries. As the dcache is used for performance purposes, the
recovery procedure evicts all the attacker’s entries. We re-use existing
code to evict all the attacker’s entries from all superblocks. In total, we
write 120 lines of new code to add the dcache to Trātr..

To test the new code changes, we run the same directory cache at-
tack described in Section 3.2.3. The simulated attack targets a single hash
bucket and creates thousands of negative entries to increase the RCU
grace period . Figure 5.12 shows the result for the Vanilla and Trātr. kernel
with an attack. We also show the performance of the Vanilla kernel with
an attack from Figure 3.6. We observe that Trātr. can detect and mitigate
the attack quickly. With a small prevention window initially, the attacker
can launch new attacks immediately after the prevention window expires.
As time passes, Trātr. increases the prevention window size, reducing the
number of throughout drops.

One point to note is that many subsystems use the RCU subsystem
within the kernel; it is possible to launch the same attack by targeting
another data structure like dcache. So even though Trātr. can detect and
mitigate the directory cache attack, there is still a possibility that an RCU
attack can be launched by targeting another data structure.

5.3.6 False Positives

One of our design goals is to have low false positives so that Trātr. does not
detect the victims as an attacker and unnecessarily penalize them by pre-
venting them from creating more objects and initiating recovery leading
to poor performance. As Trātr. relies on threshold limits to detect if a syn-
chronization primitive is under an attack, badly configured applications

180

or stress testing scenarios may be detected as an attack.
We conduct a false positives study to identify how many times Trātr.

flags a victim as an attacker. We use the same 20 applications and bench-
marks used in Table 5.3 and Table 5.4 and club five applications onto a
single container to run random workloads. In total, we create four con-
tainers using these 20 applications and benchmarks. We allocate 8 CPUs
to each container and then randomly run the Phoronix test suite’s stress
tests to stress the system. As the stress tests stress the system, we believe
there may be scenarios where the threshold limits may be crossed, mak-
ing Trātr. to flag such scenes as an attack. We continue to run the stress
tests for 24 hours duration.

During the 24 hour duration, we did not find any situation where Trātr.
flags the victims(the applications and the benchmarks) as an attacker. As
discussed in Section 5.2.3.2, the threshold limits are carefully calculated,
keeping in mind the heavy-contention criteria and the number of CPUs in
the machine. For a different machine configuration, the threshold limits
might change. Automatically choosing the threshold values is an inter-
esting avenue to explore for future work. Thus, stressing the system still
is not able to breach the threshold limits.

During our internal testing, we deliberately configured the experi-
ment badly to see if we can make the filebench-webserver [149] workload
flag as an attack. As expected, we observe that Trātr. wrongly identifies
the workload as a futex table attack a few times during the span of the
experiment. As the workload is not aggressively accessing the futex ta-
ble, the prevention window size never grows quickly. More so, during
the prevention window, the workload does not create more threads, so it
does not have to stall, leading to negligible performance reduction (less
than 1%).

181

5.3.7 False Negatives

Along with reducing the false positive rate, our goal is to detect as many
attacks as possible, reducing the false-negative rate. As Trātr. relies on
threshold limits to detect an attack, any attack that stays within the thresh-
old limits is likely to be not detected as an attack. As seen in Figure 5.3,
a defense-aware attacker knowing the threshold limits is highly likely to
start an attack such that Trātr. cannot detect an attack. While probing the
locks, Trātr. will never find any probe exceeding the threshold limit and
hence will not flag an attack.

We now describe two scenarios – one for the inode cache attack and
another for futex table attack where Trātr. cannot detect an attack. We also
discuss the performance implications when Trātr. is not able to detect the
attack.
Defense-aware inode cache attack. In this attack, the strategy of the at-
tacker is to expand the hash bucket in such a way that inserting or ac-
cessing the entries in the hash table does not exceed the threshold limits.
Therefore, the attacker first creates thousands of entries which will in-
crease the critical section size impacting the victims. When the attacker
reaches the threshold limits, it stops expanding the hash bucket and then
deletes those entries. The attacker continuously creates and deletes the
entries in a loop. More so, the attacker also needs to care about the de-
tection window size. Trātr. moves into an aggressive mode while probing
if it finds that the synchronization stall is more than the threshold even
once.

To illustrate the scenario, we again use the same IC benchmark used
earlier as the victim. Figure 5.13 shows the victim’s throughput time-
line for the attack. For comparison purposes, we show the victim’s per-
formance on the Vanilla kernel with and without a full-fledged attack to
highlight the performance impact that a defense-aware attacker can make.
We use the results of the experiments conducted in Section 5.3.1.1.

182

0 50 100 150 200 250 300

Time (seconds)

0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t
(K

o
p
s)

Vanilla

Vanilla+Attack

Defense-aware
Tratr+Attack

(a) Throughput timeline for the inode cache attack highlighting
the victim’s performance

0 5 10 15 20 25 30
Time (seconds)

0

20

40

60

80

100

Lo
ck
 H
o
ld
 T
im

e
s

 p
e
r
se
co
n
d
 (
m
s)

Victim Vanilla

Victim Tratr+Attack

Attacker Tratr+Attack

Threshold limit

(b) Lock hold times for the inode cache attack.

Figure 5.13: Performance comparison of victim when a defense aware
attacker launches inode cache attack. (a) Timeline of the throughput show-
ing the impact on the throughput due to the defense-aware attacker. (b) Lock hold
times comparison to highlight how the defense-aware attacker remains under the
threshold limits to evade detection.

183

While running the experiment, we also measure the lock hold times
every second. Figure 5.13b shows the maximum lock hold times by the
attacker. We observe that the lock hold times are always less than the
threshold limits showing how a defense-aware attacker can dodge Trātr.
and remain undetected.

However, we observe that a defense-aware attacker is not able to cause
much damage to the victim. As the attacker cannot acquire the lock for
more than threshold limits to avoid detection, the victims do not have to
wait longer to acquire the inode cache lock. Moreover, due to the random
probing window size and frequency, the attacker cannot continuously
create and delete files within a single probing window. If the attacker
does breach the threshold limits several times within a probing window,
Trātr. will detect the attack. Thus, the victim will not observe poor perfor-
mance or denial-of-services when a defense-aware attacker will launch
the inode cache attack.
Defense-aware futex table attack. In this attack, we launch a synchro-
nization attack on the futex table where the attacker’s strategy is to ac-
tively participate in the lock acquisition process leading to lock con-
tention. The attacker does so by identifying the target bucket and then
creating tens of threads that will continuously call futex syscalls to tra-
verse the hash bucket. To remain undetected, the attacker does not add
entries to the target hash bucket so that even if the threshold limit is
crossed, a victim may be falsely implicated as an attacker when Trātr. tra-
verses the hash bucket while performing the TCA check.

We use the FT benchmark used earlier as the victim. On launching
the defense-aware attack, we are unable to force Trātr. to flag the victim
as an attacker wrongly. As the hash bucket is not that long enough, even
with 24 attacker threads, there is not enough contention that Trātr. while
probing the hash table lock observes that the synchronization stall is more
than the threshold limit. Furthermore, as the attacker is not aware of the

184

0 50 100 150 200 250 300

Time (seconds)

0

10

20

30

40

50

60

T
h
ro
u
g
h
p
u
t
(M

o
p
s)

Vanilla

Vanilla+Attack

Defense-aware
Tratr+Attack

Figure 5.14: Performance comparison of victim when a defense aware
attacker launches futex table attack. Timeline of the throughput showing
the impact on the throughput due to the defense-aware attacker.

total entries of the victim in the hash table, the attacker cannot expand the
hash table bucket such that the victim’s total number of entries is more
than that of the attacker’s and still manages to cross the threshold limits.

Even though the attacker cannot falsely implicate the victim as an at-
tacker, we observe that the attacker can still reduce the victim’s perfor-
mance by around 20%. Figure 5.14 shows the throughput timeline of the
victim. We also observe that with lesser threads, the impact of the attack
reduces. Hence, the impact of such a defense-aware attack will depend
on the resources that the attacker has. With more CPUs, the attack’s im-
pact will be higher compared to fewer CPUs. For comparison purposes,
we also show the performance of the FT benchmark on the Vanilla ker-
nel with and without a fill-fledged futex table attack described earlier in
Section 5.3.1.2.

Even though the impact of the defense-aware attack is not as severe
as the full-fledged attack, we believe that Trātr. should be able to detect
such scenarios and flag them as an attack. One possible way to reduce

185

the performance impact is to use Scheduler-Cooperative Locks(SCLs) in-
stead of the traditional locks. As SCLs guarantee lock usage fairness, the
attacker, in this case, will be penalized heavily for dominating the lock
usage allowing the victim enough opportunity to acquire the lock.

5.4 Limitations
We now discuss two limitations of Trātr.. Firstly, as there is no distinct
boundary defining a particular behavior as a minor performance inconve-
nience or a significant performance problem, Trātr. uses probing thresh-
olds to detect an attack. A defense-aware attacker may be able to stay
within these threshold boundaries and remain undetected. Under such
a condition, the victim may continue to observe minor performance is-
sues where the attacker can elongate the critical section size to threshold
values.

By lowering the threshold boundaries, Trātr. can push the attack
boundary lower. However, by doing so, Trātr. may end up increasing the
false positive rate. Our goal is to avoid false-positive cases as much as pos-
sible. By replacing the existing mutual exclusion locks with SCLs, minor
performance inconvenience can be avoided by guaranteeing lock usage
fairness.

Secondly, an attacker can use other services available in the operat-
ing system to expand a data structure making the service accountable for
its size. For example, the attacker can ask the print spooler to load files
whose hash values map to a single bucket for printing. Trātr. will treat the
print spooler as the one who created the inodes. In the worst case, Trātr.
might tag the print spooler as the attacker.

186

5.5 Summary & Conclusion
A majority of the enterprises are moving to the shared infrastructure pro-
vided by cloud platforms for efficiency purposes. Ideally, we would like
to consider processes as running in their own isolated and perfectly vir-
tualized environment in such an environment. However, the reality is
that modern applications and services run atop a concurrent shared in-
frastructure. In this shared infrastructure, without strong performance
isolation, the behavior of one tenant can harm the performance of other
tenants. As we showed, an attacker can monopolize the synchronization
primitives used to build the data structures within the shared infrastruc-
ture leading to poor performance and denial-of-services attacks.

One might think that mitigating adversarial synchronization can be
solved through code refactoring or avoidance techniques like universal
hashing or balanced trees. Unfortunately, doing so is not always straight-
forward; shared infrastructure systems are often highly complex, and
rewriting them is no simple matter. For example, the Linux kernel com-
prises hundreds of data structures protected by thousands of synchro-
nization primitives. As a result, identifying and replacing vulnerable data
structures is not an easy task.

In this chapter, to remedy adversarial synchronization, we intro-
duced Trātr.– a Linux kernel extension to defend against adversarial
synchronization. Trātr. can detect attacks within seconds and instan-
taneously recover from the attack, bringing the victims’ performance
to baseline levels. In addition, Trātr. is light-weight, imposes mini-
mal overhead for tracking, and adding new data structures to Trātr.
is easy and flexible. The source code for Trātr., the attack scripts,
and the experimental setup is open-sourced and can be accessed at
https://research.cs.wisc.edu/adsl/Software/.

We strongly believe that the data structures and the synchronization
primitives protecting these data structures that are part of the shared in-

https://research.cs.wisc.edu/adsl/Software/

187

frastructure should be considered resources. In doing so, we can isolate
the shared infrastructure properly to avoid fairness and starvation-related
problems. By discussing the design and evaluation of Trātr., we showed
that the fairness and starvation problems can be solved.

188

6
Related Work

In this chapter, we discuss other pieces of work that are related to this
dissertation. We start by discussing how locks are different than other
resources and explain the importance of lock usage fairness compared
to lock acquisition fairness in Section 6.1. We then describe other prob-
lems that are related to the scheduler subversion problem and how prior
work acknowledges the interaction between schedulers and locks in Sec-
tion 6.2. We compare the adversarial synchronization problem and algo-
rithmic complexity attacks and their solutions in Section 6.3. We describe
how Scheduler-Cooperative Locks fit in the five locking algorithms and
compare them with the existing state-of-the-art in Section 6.4. Lastly, we
compare the design of Trātr. with other existing solutions that detect and
prevent algorithmic complexity attacks in Section 6.5.

6.1 Lock Usage Fairness
Researchers and practitioners have developed many techniques to ensure
resource isolation and fairness guarantees. The majority of previous work
has focused on CPU [47, 72, 112], memory [112, 158], storage [100, 143],
and network isolation [81]. However, to the best of our knowledge, there
has not yet been work ensuring lock usage fairness. One important dif-
ference between locks and other resources is preemptability. Once the

189

lock is acquired, ownership cannot be revoked until the lock is voluntar-
ily released; our work presumes the continued importance of such locks
in concurrent systems. Therefore, the solutions proposed for other re-
sources cannot apply to non-preemptive resources like locks. We believe
that there are other non-preemptive resources like GPU [24] that can also
benefit by applying the idea of opportunity-based fairness.

Some existing locks, like ticket lock, MCS, offer fairness by ensuring
that no process can access a lock twice while other processes are kept wait-
ing [138]. This type of fairness guarantees that locks are acquired fairly,
thereby not starving any waiting thread. However, the lock acquisition
fairness does not consider the critical section time and is more likely to
create an imbalance when critical section time varies. Therefore, we are
adding a new dimension to the existing fairness property of the locks by
introducing lock usage fairness and lock opportunity.

6.2 Scheduler subversion
Many studies have been done to understand and improve the perfor-
mance and fairness characteristics of locks [36, 50, 70]. However, the au-
thors do not consider lock usage fairness as we propose herein. Guerraoui
et al. [70] do acknowledge that interaction between locks and schedulers
is important. This thesis shows how locks can subvert the scheduling
goals; SCLs and schedulers can align with each other.

The closest problem related to the scheduler subversion problem is the
priority inversion problem [140] where a lower priority process blocks
a higher priority process. The scheduler subversion problem can occur
with any priority thread, and as we have shown, it can also happen when
all the threads have the same priority. We believe that to prevent priority
inversion, priority inheritance [140] should be combined with SCL locks.

Another interesting study compares various coarse-grained locks,

190

fine-grained locks, and lock-free methods to understand the throughput
and fairness [36]. The authors define fairness by comparing a thread’s
minimum number of operations with the average number of operations
across all threads. However, the authors do not consider lock usage fair-
ness as we propose herein.

6.3 Adversarial Synchronization
At first glance, the problem of adversarial synchronization looks similar
to algorithmic complexity attacks [46] as both of these deal with denial-
of-services. The algorithmic complexity attacks so far focus on exhausting
one or more CPUs in the system [1–9, 144]. However, when applications
are run in a containerized environment where each container is allocated
its own CPUs, there is less chance that algorithmic complexity attacks
may impact other containers too. The isolation guarantees provided by
the containers limit the impact of the algorithmic complexity attack to a
single target container only.

On the other hand, adversarial synchronization targets the shared in-
frastructure like the underlying operating systems on which the contain-
ers run. Therefore, all the containers that interact with the operating sys-
tems will be impacted. When an attacker launches synchronization or
framing attacks and targets the synchronization primitives, the attacker
will force all the victims to either wait longer to access the synchroniza-
tion primitives or force them to expand their critical section leading to
poor performance or denial-of-services.

Algorithmic complexity attacks target the preemptive resources such
as CPU, disk, or network; adversarial synchronization targets the non-
preemptive resources like synchronization primitives. There have been
multiple solutions proposed to either avoid or detect and prevent the al-
gorithmic complexity attacks [41, 44, 46, 122, 138]. However, as we have

191

shown in Chapter 5, none of these solutions can solve the problem of ad-
versarial synchronization.

6.4 Scheduler-Cooperative Locks
Locks have been split into five categories based on their approaches [71]:
(i) flat, such as pthread mutexes [92], spinlocks [138], and many other
simple locks [16, 48] (ii) queue, such as ticket locks [45, 102, 109, 109],
(iii) hierarchical [37, 38, 56, 101, 131], (iv) load-control [53, 73], and (v)
delegation-based [62, 74, 99, 119].

Our work borrows from much of the existing literature. For example,
queue-based approaches are needed to control fairness, and hierarchical
locks contain certain performance optimizations useful on multiproces-
sors. For example, we use the existing K42 lock implementation [138] to
implement the u-SCL lock. By doing so, we were able to not only pre-
serve the existing properties of K42 locks, but also able to add lock usage
fairness.

Our approach shows that it is easy to expand the existing locking al-
gorithms to add lock usage fairness. By adding the three components –
lock usage accounting, penalizing threads depending on lock usage, and
dedicated lock opportunity using lock slice, existing locks can be made to
guarantee lock usage fairness. Additionally, the applications that use the
locks will not have to be modified extensively.

Reader-writer locks have been studied extensively for the past several
decades [32, 34, 54, 90, 95, 110, 111] to support fairness, scaling, and per-
formance requirements. We also borrow the idea of splitting the counter
into per-NUMA node counter to avoid a performance collapse across
NUMA nodes [34].

Brandenburg et al. [32] present a phase fair reader-writer lock that al-
ways alternates the read and write phase, thereby ensuring that no starva-

192

tion occurs. Our approach for RW-SCL and the phase fair reader-writer
lock does have certain properties in common. Like the phase fair lock,
RW-SCL will ensure that read and write slices alternate. Furthermore,
RW-SCL is flexible enough to assign a lock usage ratio to readers and writ-
ers depending on the workload. Again, by reusing existing reader-writer
lock implementation, we show how lock usage fairness can be added by
extending the current implementation.

We borrow the idea of lock cohorting to introduce the idea of lock
slice [57]. To avoid excessive lock ownership migrations across NUMA
nodes, cohort locks take turns to allow threads within a single NUMA
node to acquire the lock. Thus, a lock slice is similar to taking turns.
However, the lock slice is only allocated to a thread by considering the
lock usage across all the participating threads.

The idea of a lock slice is also similar to the time slice used for CPU
scheduling. A time slice is a short time that gets assigned to a process
or thread for CPU execution. Similarly, a lock slice is a short time that
gets assigned to a schedulable entity. A lock slice virtualizes the critical
section to make the thread believe that it has the lock ownership to itself
the way time slices virtualize the CPU and makes each thread believe that
it has the CPU to itself. With lock slice and dedicated lock opportunity,
even if the lock is free, other waiters will not be able to acquire the lock.
This makes SCLs non-work-conserving compared to the traditional lock
that are designed to be work-conservative.

Although less related, even delegation-based locks could benefit
from considering usage fairness, perhaps through a more sophisticated
scheduling mechanism of delegated requests. There is a possibility that
the CPU scheduler may not be aware of a low-priority thread being dele-
gated by high-priority threads. Such a scenario can also lead to the sched-
uler subversion problem, where the low priority thread is allocated more
CPU than high priority threads.

193

Recently, Park et al. introduced the idea of Contextual Concurrency
Control where the developers can tune the kernel synchronization mech-
anisms from userspace on the fly [120]. In addition, they illustrate that
the scheduling subversion problem can be solved by allowing applica-
tion developers to inject fairness-related code only when needed instead
of enforcing it always. Although still a work in progress, it is an interest-
ing approach where the injected code can adhere to the underlying CPU
scheduling policy.

6.5 Trātr.
Detection and prevention is another approach to tackle algorithmic com-
plexity attacks. Khan et al. propose an alternative to randomization
through regression analysis based model to prevent attacks [89].

Qie et al. propose an approach where they show that annotating ap-
plication code can help detect resource abuse and initiate rate-limiting or
dropping of the attackers [130]. Similarly, FINELAME also uses annota-
tion and probing to detect attacks [51]. DDOS-Shield assigns continuous
scores to user sessions, checks these scores to identify suspicious users,
and prevents them from overwhelming the resources [132]. Trātr. too
looks for anomalous resource allocations by checking LCS and HSUA.
Moreover, prevention is not enough to address framing attacks. No other
approach considers synchronization as a resource, unlike Trātr..

Radmin learns and executes Probabilistic Finite Automatas offline
of the target process of all the monitored resources and then performs
anomaly detection by making sure that the target programs stay within
the learned limits [58]. It will be an interesting avenue to explore building
lock usage models and use them to detect attacks in Trātr..

A continuous effort is being made to reduce the security concerns
posed by the use of containers [97, 103, 142, 145]. The majority of these

194

studies focus on the fact that containers should not access privileged ser-
vices. However, as we show in this paper, an attacker can launch attacks
by executing simple and unprivileged code. Therefore, approaches that
propose to scan the layers of the container to detect vulnerabilities may
not detect the attackers that can launch synchronization and framing at-
tacks [78].

An effort is also being made to provide lightweight isolation platforms
such Google gVisor [79] and AWS Firecracker [15] by moving the func-
tionality out of the host kernel and into the guest environment. The ex-
pectation is that by relying less on the host kernel, the attack surface will
reduce, thereby addressing the security concerns, including the adver-
sarial synchronization problem. However, a recent study shows that de-
spite moving much of the host kernel functionality into the guest environ-
ment, both Firecracker and gVisor execute more kernel code than native
Linux [17].

195

7
Conclusions & Future Work

Synchronization primitives play a vital role in concurrent systems.
Amongst all the synchronization primitives, mutual exclusion locks are
the most widely used primitives as they provide an intuitive abstraction
to guarantee correctness. Locks exhibit specific properties crucial to guar-
anteeing any concurrent system’s correctness, fairness, and performance
requirements.

In the first part of the dissertation, we introduced and studied a new
property - lock usage. We showed how with varying critical section sizes
in a shared environment, unfair lock usage could lead to performance and
security problems. In a shared environment, unfair lock usage can hap-
pen naturally in benign settings when a data structure grows while exe-
cuting a workload. Conversely, in a hostile setting, a malicious actor can
exploit the vulnerable data structures to dominate the lock usage leading
to poor performance and denial-of-service.

In a benign setting, we introduced a new problem of scheduler sub-
version where a dominant thread spending more time in the critical sec-
tion determines the proportion of the CPU each thread obtains instead of
the CPU scheduler. In the hostile setting, we introduced a new class of
performance attacks - synchronization and framing attacks where a ma-
licious actor can artificially introduce lock contention leading to longer
wait times and force victims to spend more time in the critical section.

196

In the second and third parts of the dissertation, we presented so-
lutions to address the scheduler subversion and adversarial synchro-
nization problems. To handle scheduler subversion, we introduced a
new metric – lock opportunity to measure lock usage fairness and de-
signed Scheduler-Cooperative Locks that can guarantee lock usage fair-
ness while aligning to the CPU scheduling goals. To tackle the adversarial
synchronization problem, we introduced Trātr., a Linux extension that can
effectively detect and mitigate synchronization and framing attacks.

In this chapter, we first summarize each part of this dissertation in Sec-
tion 7.1 and present the various lessons we learned through the course
of this dissertation work in Section 7.2. We discuss some directions for
future work in Section 7.3 and lastly conclude with closing words in Sec-
tion 7.4.

7.1 Summary
We now provide a summary of the three parts of this dissertation.

7.1.1 Lock Usage

One of the most crucial properties locks exhibit is fairness, as it guaran-
tees a static bound before a thread can acquire a lock and make forward
progress. The static bound is defined by the order in which the threads ac-
quire the locks, thereby not allowing one thread to acquire the lock again
until other waiting threads are given a chance to acquire the lock.

In the first part of the dissertation, we showed that another crucial
property that we call lock usage is missing in the previous approaches.
Lock usage is the amount of time spent in the critical section while hold-
ing the lock.

In a shared environment where multiple tenants can compete to ac-
quire the shared synchronization primitives while trying to access the

197

shared data structures that are part of the shared infrastructure, we have
shown that an unfair lock usage can lead to two problems. While sched-
uler subversion problem deals with poor performance, adversarial syn-
chronization deals with poor performance and denial-of-service.

Scheduler subversion is an imbalance in the CPU allocation that arises
when the lock usage pattern dictates the CPU allocation instead of the
CPU scheduler. When scheduler subversion occurs, the thread that
dwells longer in the critical section becomes the dominant user of the
CPU. Using a real-world application, we demonstrated the problem of
scheduler subversion. There are two reasons why scheduling subversion
occurs for applications that access locks. First, scheduler subversion may
occur when the critical sections are of significantly different lengths. Sec-
ond, scheduler subversion may occur when threads spend the majority
of their runtime in the critical section.

To explain the idea of adversarial synchronization, we introduced a
new class of attacks – synchronization and framing attacks that can ex-
ploit synchronization primitives to harm applications’ performance in a
shared environment. An unprivileged malicious actor can control the du-
ration of the critical sections to stall victims trying to access the shared
synchronization primitives. Furthermore, in framing attacks, even after
the malicious actor quiesces, the victims observed poor performance as
they continue to access the expanded data structure.

We illustrated three different attacks on the Linux kernel data struc-
tures using containers and showed how a malicious actor could employ
different methods to launch synchronization and framing attacks.

Thus, in the first part of the dissertation, we showed how lock usage
is an important property. We showed how an imbalance in the lock us-
age could lead to two problems – performance and security. While in a
cooperative environment, the effects of unfair lock usage can be ignored
as the effect is only seen within the application, for shared environments,

198

where multiple tenants access the shared infrastructure; it becomes cru-
cial to avoid and handle unfair lock usage.

7.1.2 Scheduler-Cooperative Locks

In the second part of the dissertation, we focused on the scheduler sub-
version problem and defined the idea of lock usage fairness. Lock usage
fairness guarantees that each competing entity receives a window of op-
portunity to use the lock one or more times.

We started by studying lock usage fairness and understanding how
existing locks can lead to scheduler subversion. Based on that study, we
showed that the non-preemptive nature of the locks makes it difficult for
schedulers to allocate resources when each thread may hold a lock for a
different amount of time.

We then introduced a new metric – lock opportunity to measure lock
usage fairness. Lock opportunity is defined as the amount of time a
thread holds a lock or could acquire the lock when the lock is free. Using
the idea of lock opportunity, we then introduced Scheduler-Cooperative
Locks (SCLs), which can track lock usage and adjust the lock opportunity
time to ensure proportional lock usage fairness and align with the CPU
scheduling goals.

There are three crucial components to design SCLs – tracking and ac-
counting for the lock usage, penalizing the threads depending on the lock
usage, and providing dedicated lock opportunity using lock slice. Us-
ing these three components, we discussed the design and implementa-
tion of three different types of SCLs – a user-level mutex lock (u-SCL),
a reader-writer lock (RW-SCL), and a simple kernel implementation (k-
SCL). While u-SCL and k-SCL guarantee lock usage fairness at a thread
level, RW-SCL guarantees lock usage fairness based on the thread’s work
(i.e., readers and writers).

199

Using microbenchmarks, we showed that SCLs are efficient, scale well,
and can achieve high performance with minimal overhead under extreme
workloads while still guaranteeing lock usage fairness under a variety of
synthetic lock usage scenarios.

Lastly, to show the effectiveness of SCLs, we ported the SCLs in two
user-space applications – UpScaleDB and KyotoCabinet, and the Linux
kernel. In all the three cases, regardless of the lock usage patterns,
SCLs ensured that each thread receives proportional lock allocations that
match those of the CPU schedulers.

7.1.3 Taming Adversarial Synchronization Attacks using
Trātr.

In the last part of the dissertation, we switched the focus to the security
issues arising from unfair lock usage. First, we discussed how existing
techniques used to address algorithmic complexity attacks such as uni-
versal hashing, randomized algorithms, partitioning, etc., are insufficient
to address the synchronization and framing attacks. Even though con-
tainers can guarantee better isolation, the existing isolation techniques
are inadequate to ensure strong performance isolation.

Based on the experience with the synchronization and framing at-
tacks, we designed and implemented Trātr., a Linux extension, to defend
against the synchronization and framing attacks. Unlike existing solu-
tions, Trātr. provides a common framework to tackle the problem of ad-
versarial synchronization.

Trātr. comprised of four mechanisms – tracking, detecting, preventing,
and recovery. The tracking mechanism tracks the kernel objects allocation
per user and how each user contributes to the data structure size. The
detection mechanism periodically probes the synchronization primitives
associated with vulnerable data structures and monitors the synchroniza-

200

tion stalls. If the stalls are longer than a particular threshold, an attack is
detected, and Trātr. uses the tracking information to identify the attacker.

The last two mechanisms dealt with the mitigation of the attack. On
determining the attacker, the prevention mechanism kicks in to prevent
the attack from worsening by stopping the attacker from allocating more
objects. The recovery mechanism then cleans up the data structure to
pre-attack state so that the performance can be restored to baseline per-
formance.

Using microbenchmarks, a benchmarking suite, and real-world appli-
cations, we showed that Trātr. can quickly detect an attack and effectively
prevent the attack from worsening and perform recovery instantaneously.
Furthermore, the performance impact on the victim in the presence of
Trātr. is minimal, showing the coordination of the four mechanisms. We
also performed an extensive overhead study and showed that there is
only 0-4% tracking overhead incurred while there is less than 1.5% impact
on the performance due to the other three mechanisms in the absence of
an attack. Lastly, we showed how Trātr. can detect simultaneous attacks
without impacting the victims’ performance.

7.2 Lessons Learned
In this section, we present a list of general lessons we learned while work-
ing on this dissertation.
Existing “strongest” guarantees are not the strongest. Lock acquisition
fairness is considered the strongest variant to guarantee that any given
thread can never be prevented from making forward progress. By bound-
ing the wait times to acquire the locks, each thread will be guaranteed for-
ward progress. While bounding the wait times, the assumption is that the
critical sections will be similarly sized, and hence, all the waiting times to
acquire the lock for all the threads will be similar.

201

However, in this dissertation, we showed that critical section sizes are
not similar. As the data structure grows and shrinks, the critical section
sizes vary significantly. In a shared environment with varying critical
section sizes, applications will face performance and security problems
such as scheduler subversion or adversarial synchronization. When one
thread starts dominating the lock usage, the wait times of the victims will
differ by six to seven orders of magnitude, and it continues to increase as
the attack continues.

We view such a higher order of magnitude difference in the wait times
as not the strongest variant to guarantee that any given thread can never
be prevented from progressing. Therefore, a better, stronger variant is
needed to keep the wait times bounded even with varying critical sec-
tions. This dissertation takes the initial but essential step in this direction
by considering lock usage fairness as a critical lock property.
For more robust performance isolation, data structures and their syn-
chronization primitives need to be considered as a resource. So far, the
researchers and practitioners believed that by controlling the usage of the
four primary resources – the CPU, the memory, the disk, and the network,
one could guarantee strong performance isolation [47, 72, 81, 100, 112,
143, 158]. There has been a plethora of research work that continues to
improve tenant-wide performance isolation and fairness guarantees.

Through this dissertation, we showed that in a shared environment,
the high degree of sharing across tenants through the shared infrastruc-
ture creates an avenue for performance interference. When the tenants
access the shared data structures and synchronization primitives, due to
the variation in the workloads and the data structures state tenants can
observe poor performance and denial-of-service.

This dissertation suggests that the data structures and the associated
synchronization primitives should be considered resources along with
the four primary resources. Furthermore, fair usage of the data struc-

202

tures and the synchronization primitives must be considered to guaran-
tee strong performance isolation. Thus, this work is the first step towards
more stronger performance isolation.
Linux Kernel’s attack surface is wide and needs a common approach to
handling adversarial synchronization. In this dissertation, we showed
three different attacks on three different data structures by using different
methods. As the Linux kernel comprises hundreds of data structures, the
attack surface of the Linux kernel is wide. Therefore, there can be many
different ways to exploit the data structures.

Adversarial synchronization is similar to algorithmic complexity at-
tacks. Like algorithmic complexity attacks, there can be numerous solu-
tions to address adversarial synchronization. Or rather, it is possible to
opt for solutions that address algorithmic complexity attacks to avoid ad-
versarial synchronization. However, as discussed earlier, all the solutions
cannot handle the large attack surface and the different ways an attack
can be launched.

Therefore, there is a need to have a common solution to address ad-
versarial synchronization. We build a common solution through this the-
sis by understanding the key aspects of the attacks and formalizing the
attacks. The solution can be easily expanded to include more vulnera-
ble data structures whenever a new attack or a vulnerability is identified
through various means.

7.3 Future Work
We now outline directions in which this work could be extended in the
future.

203

7.3.1 Expand SCLs to Support Other Schedulers and
Locks

In this dissertation, while designing the Scheduler-Cooperative Locks,
the focus has been on the Linux kernel’s CFS scheduler only. However,
for other operating systems such as FreeBSD that use the ULE scheduler,
we need to understand the impact of lock slice sizes. Moreover, other
schedulers might observe scheduler subversion too. Therefore, we find it
imperative to study the impact of the scheduler subversion problem and
SCLs with other available schedulers.

To support a variety of scheduling goals, the implementation of SCLs
needs to be accordingly adjusted. We would like to extend SCLs to sup-
port other schedulers, such as priority scheduling. The SCLs should con-
tain multiple queues to support priorities and grant lock access depend-
ing on the priority to support priority scheduling.

The design of SCLs comprises three components – tracking and ac-
counting lock usage, penalizing threads depending on the lock usage,
and providing dedicated lock opportunity using lock slice. Using these
three components, we showed how existing locks (K42 and reader-writer
locks) could be converted to guarantee lock usage and lock acquisition
fairness across different schedulable entities. Similarly, conducting an-
other exercise to convert other existing locks to support lock usage fair-
ness while preserving their other existing properties is possible.

7.3.2 SCLs in Multiple Locks Situation

So far, the focus in this dissertation has been around using SCLs within a
single lock situation. Currently, when a thread has used up its lock usage
quota, SCLs will force the threads to sleep so that other threads can get
an opportunity to acquire the lock.

However, penalizing threads in a hierarchical locking scenario may

204

not work well as the thread may be holding on to a higher level lock while
it is penalized for a lower level lock. In doing so, the critical section of
the higher-level lock will increase, leading to performance degradation.
More so, it is entirely possible that after acquiring the higher-level lock,
preemption may be disabled, leading to problems when the lower level
SCL forces a thread to sleep.

There can be similar other situations arising where the fairness goals
of one of the lock may interfere with the fairness goals of another lock
leading to performance degradation. As most complex concurrent sys-
tems use multiple locks, it will be interesting to understand the interac-
tion of multiple SCLs in such a setting. In particular, the use of machine
learning to learn the lock usage patterns may be useful in a hierarchical
locking scenario so that all the SCLs can coordinate amongst themselves
to ensure that no thread is penalized while holding higher-level locks.

7.3.3 Work Conserving Nature of SCLs

One of the crucial components to ensure lock usage fairness is to provide
a dedicated window of opportunity to all the threads using lock slice.
However, in doing so, SCLs are non-work-conserving relative to locks.
There can be scenarios where a thread will not acquire the lock again
during a lock slice, keeping the lock-free even though other threads are
waiting to acquire the lock.

To ensure that the window of opportunity is used effectively by all the
threads, we believe there are a couple of options. The first option is to ob-
serve the lock usage patterns and club one or more threads into a single
lock slice. In doing so, these threads will take turns to acquire the lock
within a lock slice. Even if one thread may not acquire the lock immedi-
ately, other threads may acquire the lock shortly, thereby not wasting the
opportunity granted to all these threads. One of the goals should be to
ensure that two threads having diverging lock usage patterns should be

205

clubbed to complement and cooperate within the lock slice.
The second option is to provide additional APIs such that the threads

can give advice or directions to the SCLs about its lock usage behavior.
This idea is similar to the madvise idea where the threads can inform the
kernel about address range to improve the performance [87]. For exam-
ple, if a thread is not going to utilize the entire lock slice, it can inform the
SCL about it while unlocking so that the lock slice may be prematurely
transferred to other waiting threads.

7.3.4 Scheduler-driven fairness

So far, we have discussed the design of SCLs that can guarantee lock us-
age fairness in various lock usage scenarios. Additionally, we showed
how SCLs can allocate the lock usage that aligns with the CPU schedul-
ing goals, thereby avoiding the scheduler subversion problem. However,
we view that SCLs are one way of solving the scheduling subversion prob-
lem by designing a lock that guarantees lock usage fairness. We believe
that another alternative way of solving the subversion problem involves
the CPU scheduler itself.

Locks are an extension of the CPU scheduler as they also schedule the
threads depending on which thread will acquire the lock next and which
threads will wait for their turn. Depending on the type of the lock, either
the threads spin or block to acquire the lock. The CPU scheduler can
arbitrarily schedule threads that are not in sync with the locking strategy
as the scheduler is unaware of the locks and how the threads access the
locks.

There are other performance-related problems associated with the
locks and scheduler, such as the Lock Holder Preemption problem [154]
and Lock Waiter problem [151]. Several solutions have been proposed to
avoid the LHP, and LWP [12, 83, 118, 151, 152, 161]. However, all these

206

solutions tolerate the LHP and LWP by limiting the side effects of the LHP
and LWP and degrade overall performance.

To mitigate the fairness and performance problems, we believe that
scheduler-driven fairness can be an interesting avenue for future work
where the scheduler treats locks as a resource and effectively allocates
the resource to all the threads fairly. As the locks invoke the scheduler
when acquiring and releasing the lock, the scheduler can track the lock
usage pattern of each thread for all the locks in the system and penalize
the threads by not scheduling the threads. Moreover, the locks do not
have to support various scheduling algorithms. The scheduler can take
care of adjusting the penalty depending on the scheduling algorithm.

Scheduler-driven fairness can also be used to address LHP and LWP
problems. To avoid LHP, the scheduler will not be allowed to preempt the
thread until the lock is released by extending the time slice of the running
thread. To avoid LWP, the scheduler will keep track of the next thread and
ensure that it gets immediately scheduled after the current owner releases
the lock.

We anticipate several challenges while implementing scheduler-
driven fairness. First, the scheduler has to be aware of all the locks within
the system. Getting all the locks information must be either done at com-
pilation time or dynamically at run time. Sometimes, it is impossible to
get all the information at compile time as many locks might be initialized
dynamically. So the desired approach needs to incorporate both methods
to capture all the information.

Another problem we expect is the interaction between the kernel and
userspace. The locks might be acquired in user space while the sched-
uler runs in kernel space. One will have to devise a way to exchange the
information between the kernel and userspace.

The scheduler is supposed to be lightweight. With all the informa-
tion needed to guarantee fairness, the scheduler will be over-burdened,

207

and we need to design new data structures to let the scheduler seek all
information without slowing down.

There can also be problems concerning hierarchical locking or nested
locking. For example, consider a situation where the thread has acquired
the outer lock but cannot acquire the inner lock due to some reason. As
the thread cannot be preempted as it holds the outer lock, there can still
be problems like LHP or LWP.

The scheduler-driven fairness approach offers multiple advantages
over the lock-driven fairness approach. The scheduler monitors the lock
usage independent of the lock type, and thus any type of lock can be ac-
commodated to support lock usage fairness. Additionally, one does not
have to worry about supporting different scheduling policies as we do for
SCLs. Lock-based fairness needs to constantly update the status of the
threads and scheduling goals. With scheduler-driven fairness, the sched-
uler is already aware of the threads’ status and priorities; it will be easier
to adapt to the dynamic nature of the workloads.

7.3.5 Analyzing Linux Kernel to find Vulnerable Data
Structures

The Linux kernel comprises hundreds of kernel data structures that are
being protected by thousands of synchronization primitives. In this dis-
sertation, we showed the problems on three data structures only. How-
ever, the problem may be widespread, given that there are numerous in-
stances of synchronization primitives.

An attacker can always target the critical sections where there is a pos-
sibility to elongate the critical section size. For example, if a critical section
contains a loop whose termination criteria depends on the data struc-
ture’s state, the attacker can exploit this fact to build the data structure
state such that the loop is executed for thousands or tens of thousands of
iterations, making the critical section size longer.

208

We find it imperative to study the critical sections protected by these
thousands of synchronization primitives. Furthermore, it is crucial to un-
derstand all the properties of the critical sections to identify how an at-
tacker can exploit certain critical section properties.

We believe that through static analysis of the Linux kernel source code,
one can identify vulnerable data structures and the associated critical sec-
tions that can be targeted. However, it will be very hard to identify vul-
nerable data structures at runtime as not all code paths get executed while
running workloads. It will need a humongous effort to identify and exe-
cute all the workloads that will cover all the code paths.

However, static analysis on the Linux kernel’s source code will not
be easy as there exist varied coding patterns, debug code, etc. We antici-
pate many challenges, such as identifying function pointers, etc., through
static analysis. But, the reward of such an exercise is enormous. One can
use the critical section and synchronization primitives analysis to identify
potential vulnerable data structures that an attacker can target. The same
analysis can identify the bottlenecks to guarantee strong performance iso-
lation in the Linux kernel. Therefore, we believe it will be an interesting
avenue of future work to analyze the Linux kernel.

7.3.6 Combining SCLs and Trātr.
Currently, Trātr. relies on probing to identify if a synchronization primi-
tive is being under an attack. If the synchronization stalls while probing
exceed the set threshold values, Trātr. flags an attack. Once an attack is
detected, Trātr. has to walk through the data structure to identify the at-
tacker. However, it is possible that a victim may be falsely flagged as an
attacker and may be penalized for no reason.

On the other hand, SCLs have to track the lock usage and account for
all the lock usage so that it can correctly identify who the dominant users
are and then accordingly penalize such dominant users. Other than SCLs,

209

no other locks track such usage and hence Trātr. has to rely on probing and
traversing the data structure to detect an attack and identify an attacker.

For both the synchronization and framing attacks, SCLs will treat ei-
ther the attacker or the victims holding the synchronization primitives
for a longer duration as dominant users. We strongly believe that com-
bining SCLs and Trātr., Trātr. can use the information that SCLs collect
about the lock usage to detect an attack. Once Trātr. knows that an attack
is underway, it can traverse the data structure to identify who is respon-
sible for expanding the data structure and appropriately flag that user
as an attacker. By doing so, Trātr. can avoid probing the synchronization
primitives and reduce the impact of participating in the lock acquisition
process.

We feel there is another advantage of combining SCLs and Trātr.. As
seen in Section 5.3.7, a defense-aware attacker can easily remain unde-
tected by limiting the critical section sizes below the threshold limits. If
SCLs are used instead of the existing locks, in such situations, SCLs will
be able to identify that the attacker is a dominant user and accordingly pe-
nalize the attacker. Therefore, the interference created by a defense-aware
attacker will be further diminished, helping the victims. We believe that
Trātr. can easily help convert a synchronization or framing attack into a
minor performance inconvenience. With SCLs, the minor performance
inconvenience can be further reduced, leading to stronger performance
isolation guarantees.

7.3.7 Attacks on Concurrency Control Mechanisms

In this dissertation, we only show how synchronization primitives can
be targeted to launch attacks leading to poor performance and denial-
of-services. Locks and other mutual exclusion primitives are a form of
pessimistic concurrency control mechanism.

However, it is entirely possible that other forms of concurrency control

210

mechanisms can be targeted too. For example, the optimistic concurrency
control mechanism allows to continue with the operation until its end
without blocking the operations and then aborting the operation if any
other operation interferes. Upon aborting the operation, the operation is
restarted, hoping that no other operation will interfere.

We believe that there is scope for an attack with optimistic concurrency
control mechanisms where an attacker continuously interferes with other
concurrent operations by always committing the operation with minimal
changes. It will be interesting to study the adversarial aspects of opti-
mistic concurrency control in a shared environment.

7.3.8 Opportunity-based fairness for other
non-preemptive resources

We have shown that solutions proposed for preemptive resources such
as CPU, disk, memory, and network cannot apply to non-preemptive
resources like locks. In this dissertation, we show how opportunity-
based fairness can be used to guarantee lock usage fairness. Other non-
preemptive resources such as GPU can also benefit by applying the idea
of opportunity-based fairness.

Currently, GPU commands are non-preemptive and hence subject to
priority inversions. Moreover, it is hard to perform schedulability anal-
ysis due to the non-preemptive nature [24]. Like locks, GPUs can also
be subjected to unfair usage in a shared environment, leading to perfor-
mance and security problems. Thus, we believe that it is possible to ex-
tend the idea of opportunity-based fairness to other non-preemptive re-
sources and guarantee that such resources are shared fairly in a shared
environment.

211

7.4 Closing Words
Locks and other synchronization primitives that ensure atomicity and or-
dering guarantees in concurrent systems have been considered coopera-
tive so far. This assumption worked so far in a cooperative environment
where the effects and the impact of synchronization can be largely ig-
nored or refactored in solely by the application developers.

With the rapid adoption of shared environments where multiple ten-
ants execute their programs or requests on shared infrastructure, the role
of synchronization primitives need to be viewed differently. In such envi-
ronments, locks and other synchronization primitives should be viewed
from a competitive perspective so that every tenant gets an equal oppor-
tunity to access the shared synchronization primitives. This equal oppor-
tunity can be guaranteed by ensuring lock usage fairness.

Lock usage fairness is an extension of the existing fairness property
to provide even stronger guarantees where all the threads can make for-
ward progress with or without the presence of malicious actors. By view-
ing locks as competitive and guaranteeing fair lock usage, one can move
closer to more stronger performance isolation. This dissertation is a step
towards guaranteeing a stronger variant of fairness and ensuring strong
performance isolation.

212

Bibliography

[1] CVE-2003-0718. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2003-0718.

[2] CVE-2004-0930. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2004-0930.

[3] CVE-2005-0256. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2005-0256.

[4] CVE-2005-1807. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2005-1807.

[5] CVE-2005-2316. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2005-2316.

[6] CVE-2007-1285. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2007-1285.

[7] CVE-2008-2930. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2008-2930.

[8] CVE-2008-3281. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2008-3281.

[9] CVE-2011-1755. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2011-1755.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0718
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0718
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0930
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0930
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0256
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0256
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1807
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1807
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2316
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2316
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1285
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1285
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2930
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2930
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3281
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3281
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1755
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1755

213

[10] Jose L Abell, Juan Fern, Manuel E Acacio, et al. Glocks: Efficient
support for highly-contended locks in many-core cmps. In 2011
IEEE International Parallel & Distributed Processing Symposium, pages
893–905. IEEE, 2011.

[11] Nitin Agrawal, Leo Arulraj, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Emulating goliath storage systems with
david. ACM Transactions on Storage (TOS), 7(4):1–21, 2012.

[12] Jeongseob Ahn, Chang Hyun Park, and Jaehyuk Huh. Micro-sliced
virtual processors to hide the effect of discontinuous cpu avail-
ability for consolidated systems. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-
47, pages 394–405, 2014.

[13] Tigran Aivazian. Inode Caches and Interaction with Dcache.
https://tldp.org/LDP/lki/lki-3.html.

[14] Mohammad Mejbah Ul Alam, Tongping Liu, Guangming Zeng,
and Abdullah Muzahid. Syncperf: Categorizing, detecting, and
diagnosing synchronization performance bugs. In Proceedings of
the Twelfth European Conference on Computer Systems, pages 298–313,
2017.

[15] Inc. Amazon Web Services. Firecracker. https://firecracker-
microvm.github.io/.

[16] T. E. Anderson. The performance of spin lock alternatives for
shared-memory multiprocessors. IEEE Trans. Parallel Distrib. Syst.,
1(1):6–16, January 1990.

[17] Anjali, Tyler Caraza-Harter, and Michael M. Swift. Blending con-
tainers and virtual machines: A study of firecracker and gvisor. In

https://tldp.org/LDP/lki/lki-3.html
https://firecracker-microvm.github.io/
https://firecracker-microvm.github.io/

214

Proceedings of the 16th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments, page 101–113, 2020.

[18] Jelena Antić, Georgios Chatzopoulos, Rachid Guerraoui, and
Vasileios Trigonakis. Locking made easy. In Proceedings of the 17th
International Middleware Conference, page 20, 2016.

[19] AppArmor. AppArmor Documentation. https://gitlab.com/
apparmor/apparmor/-/wikis/Documentation.

[20] Jonathan Appavoo, Marc Auslander, Maria Butrico, Dilma M
Da Silva, Orran Krieger, Mark F Mergen, Michal Ostrowski, Bryan
Rosenburg, Robert W Wisniewski, and Jimi Xenidis. Experience
with K42, an open-source, Linux-compatible, scalable operating-
system kernel. IBM Systems Journal, 44(2):427–440, 2005.

[21] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operat-
ing Systems: Three Easy Pieces. Arpaci-Dusseau Books, 1.00 edition,
August 2018.

[22] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource con-
tainers: A new facility for resource management in server systems.
In Proceedings of the Third Symposium on Operating Systems Design
and Implementation, OSDI ’99, pages 45–58.

[23] Noa Bar-Yosef and Avishai Wool. Remote algorithmic complex-
ity attacks against randomized hash tables. In International Confer-
ence on E-Business and Telecommunications, pages 162–174. Springer,
2007.

[24] Can Basaran and Kyoung-Don Kang. Supporting preemptive task
executions and memory copies in gpgpus. In 2012 24th Euromicro
Conference on Real-Time Systems, pages 287–296, 2012.

https://gitlab.com/apparmor/apparmor/-/wikis/Documentation
https://gitlab.com/apparmor/apparmor/-/wikis/Documentation

215

[25] Andrew D Birrell. Implementing condition variables with
semaphores. In Computer Systems, pages 29–37. Springer, 2004.

[26] Leonid Boguslavsky, Karim Harzallah, A Kreinen, K Sevcik, and
Alexander Vainshtein. Optimal strategies for spinning and block-
ing. Journal of Parallel and Distributed Computing, 21(2):246–254,
1994.

[27] J. Bouron, S. Chevalley, B. Lepers, W. Zwaenepoel, R. Gouicem,
J. Lawall, G. Muller, and J. Sopena. USENIX ATC ’18, 2018.

[28] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans
Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu,
Yuehua Dai, Yang Zhang, and Zheng Zhang. Corey: An Operating
System for Many Cores. In OSDI ’08, December 2008.

[29] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey
Pesterev, M. Frans Kaashoek, Robert Morris, and Nickolai Zel-
dovich. An analysis of linux scalability to many cores. OSDI’10,
page 1–16, 2010.

[30] Silas Boyd-Wickizer, M Frans Kaashoek, Robert Morris, and Nick-
olai Zeldovich. Non-scalable locks are dangerous. In Proceedings of
the Linux Symposium, pages 119–130, 2012.

[31] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating malicious
device drivers in linux. USENIX ATC’10.

[32] Björn B. Brandenburg and James H. Anderson. Spin-Based Reader-
Writer Synchronization for Multiprocessor Real-Time Systems.
Real-Time Systems, 46:25–87, 2010.

[33] Xiang Cai, Yuwei Gui, and Rob Johnson. Exploiting unix file-
system races via algorithmic complexity attacks. In 2009 30th IEEE
Symposium on Security and Privacy, pages 27–41, 2009.

216

[34] Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco, Virendra J
Marathe, and Nir Shavit. NUMA-aware reader-writer locks. In
SIGPLAN, pages 157–166, 2013.

[35] Remy Card. tune2fs(8) - linux man page. https://linux.die.
net/man/8/tune2fs, 2018.

[36] Daniel Cederman, Bapi Chatterjee, Nhan Nguyen, Yiannis Niko-
lakopoulos, Marina Papatriantafilou, and Philippas Tsigas. A
Study of the Behavior of Synchronization Methods in Commonly
Used Languages and Systems. In 27th International Symposium on
Parallel and Distributed Processing, pages 1309–1320, 2013.

[37] Milind Chabbi, Michael Fagan, and John Mellor-Crummey. High
performance locks for multi-level numa systems. PPoPP 2015,
pages 215–226, 2015.

[38] Milind Chabbi and John Mellor-Crummey. Contention-conscious,
locality-preserving locks. SIGPLAN Not., 51(8):22:1–22:14, 2016.

[39] Shuang Chen, Shay GalOn, Christina Delimitrou, Srilatha Manne,
and Jose F Martinez. Workload Characterization of Interactive
Cloud Services on Big and Small Server Platforms. In IISWC, pages
125–134, 2017.

[40] Chris Rivera and Robert Love. slabtop(1) - Linux manual page.
https://man7.org/linux/man-pages/man1/slabtop.1.html.

[41] David Clayton, Christopher Patton, and Thomas Shrimpton. Prob-
abilistic data structures in adversarial environments. In SIGSAC,
pages 1317–1334, 2019.

[42] Edward G Coffman, Melanie Elphick, and Arie Shoshani. System
deadlocks. ACM Computing Surveys (CSUR), 3(2):67–78, 1971.

https://linux.die.net/man/8/tune2fs
https://linux.die.net/man/8/tune2fs
https://man7.org/linux/man-pages/man1/slabtop.1.html

217

[43] Jonathan Corbet. How to get rid of mmap_sem. https://lwn.
net/Articles/787629/.

[44] Jonathan Corbet. SipHash in the kernel. https://lwn.net/
Articles/711167/.

[45] TravisS. Craig. Building fifo and priority-queuing spin locks from
atomic swap. Technical report, 1993.

[46] Scott A. Crosby and Dan S. Wallach. Denial of service via algo-
rithmic complexity attacks. In USENIX Security Symposium, pages
29–44, 2003.

[47] Sudipto Das, Vivek R. Narasayya, Feng Li, and Manoj Syamala.
Cpu sharing techniques for performance isolation in multi-tenant
relational database-as-a-service. Proc. VLDB Endow., 7(1):37–48,
September 2013.

[48] Dice David. Brief announcement: a partitioned ticket lock.. 309-
310., 2011.

[49] Florian David, Gael Thomas, Julia Lawall, and Gilles Muller. Con-
tinuously measuring critical section pressure with the free-lunch
profiler. ACM SIGPLAN Notices, 49(10):291–307, 2014.

[50] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Every-
thing you always wanted to know about synchronization but were
afraid to ask. SOSP ’13, pages 33–48.

[51] Henri Maxime Demoulin, Isaac Pedisich, Nikos Vasilakis, Vin-
cent Liu, Boon Thau Loo, and Linh Thi Xuan Phan. Detect-
ing asymmetric application-layer denial-of-service attacks in-flight
with finelame. In USENIX ATC’19, pages 693–708.

https://lwn.net/Articles/787629/
https://lwn.net/Articles/787629/
https://lwn.net/Articles/711167/
https://lwn.net/Articles/711167/

218

[52] Mathieu Desnoyers, Michel R. Dagenais, Jonathan Walpole, Paul E.
McKenney, and Alan S. Stern. User-Level Implementations of
Read-Copy Update. IEEE Transactions on Parallel & Distributed
Systems, February 2012.

[53] Dave Dice. Malthusian locks. CoRR, abs/1511.06035, 2015.

[54] Dave Dice and Alex Kogan. BRAVO: Biased Locking for Reader-
Writer Locks. USENIX ATC ’19, page 315–328.

[55] Dave Dice and Alex Kogan. Compact NUMA-Aware Locks. Eu-
roSys ’19.

[56] Dave Dice, Virendra J. Marathe, and Nir Shavit. Flat-combining
numa locks. SPAA ’11, pages 65–74.

[57] David Dice, Virendra J. Marathe, and Nir Shavit. Lock Cohorting:
A General Technique for Designing NUMA Locks. ACM Trans. Par-
allel Comput., 1(2), February 2015.

[58] Mohamed Elsabagh, Daniel Barbará, Dan Fleck, and Angelos
Stavrou. Radmin: early detection of application-level resource ex-
haustion and starvation attacks. In International Symposium on Re-
cent Advances in Intrusion Detection, pages 515–537. Springer, 2015.

[59] D.H.J. Epema. An analysis of decay-usage scheduling in multipro-
cessors. SIGMETRICS ’95, 1995.

[60] Fabio Kung, Sargun Dhillon, Andrew Spyker, Kyle Ander-
son, Rob Gulewich, Nabil Schear, Andrew Leung, Daniel
Muinom and Manas Alekar. Evolving Container Security
with Linux User Namespaces. https://netflixtechblog.com/
evolving-container-security-with-linux-user-namespaces-
afbe3308c082.

https://netflixtechblog.com/evolving-container-security-with-linux-user-namespaces-afbe3308c082
https://netflixtechblog.com/evolving-container-security-with-linux-user-namespaces-afbe3308c082
https://netflixtechblog.com/evolving-container-security-with-linux-user-namespaces-afbe3308c082

219

[61] Babak Falsafi, Rachid Guerraoui, Javier Picorel, and Vasileios Trig-
onakis. Unlocking energy. USENIX ATC ’16, pages 393–406.

[62] Panagiota Fatourou and Nikolaos D. Kallimanis. Revisiting the
combining synchronization technique. SIGPLAN Not., 47(8):257–
266, February 2012.

[63] Hubertus Franke, Rusty Russell, and Matthew Kirkwood. Fuss,
futexes and furwocks: Fast userlevel locking in linux. In AUUG
Conference Proceedings, volume 85, 2002.

[64] Benjamin Gamsa, Orran Krieger, Jonathan Appavoo, and Michael
Stumm. Tornado: Maximizing locality and concurrency in a shared
memory multiprocessor operating system. In OSDI’ 99, pages 87–
100.

[65] David Geer. Chip makers turn to multicore processors. Computer,
38(5):11–13, 2005.

[66] Amir Reza Ghods. A study of linux perf and slab allocation sub-
systems. Master’s thesis, University of Waterloo, 2016.

[67] Gianluca Borello. Container isolation gone wrong. https://
sysdig.com/blog/container-isolation-gone-wrong/.

[68] Marc Girault, Robert Cohen, and Mireille Campana. A general-
ized birthday attack. In Workshop on the Theory and Application of of
Cryptographic Techniques, pages 129–156. Springer, 1988.

[69] Vincent Gramoli. More than you ever wanted to know about syn-
chronization: Synchrobench, measuring the impact of the synchro-
nization on concurrent algorithms. SIGPLAN Not., 50(8):1–10, Jan-
uary 2015.

https://sysdig.com/blog/container-isolation-gone-wrong/
https://sysdig.com/blog/container-isolation-gone-wrong/

220

[70] Rachid Guerraoui, Hugo Guiroux, Renaud Lachaize, Vivien
Quéma, and Vasileios Trigonakis. Lock–Unlock: Is That All? A
Pragmatic Analysis of Locking in Software Systems. ACM Trans.
Comput. Syst., 36(1), March 2019.

[71] Hugo Guiroux, Renaud Lachaize, and Vivien Quéma. Multicore
locks: The case is not closed yet. In USENIX ATC ’16, pages 649–
662.

[72] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and Amin
Vahdat. Enforcing performance isolation across virtual machines
in xen. Middleware ’06, pages 342–362.

[73] Bijun He, William N. Scherer, and Michael L. Scott. Preemption
adaptivity in time-published queue-based spin locks. HiPC’05,
pages 7–18.

[74] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat
combining and the synchronization-parallelism tradeoff. SPAA ’10,
pages 355–364.

[75] Maurice Herlihy. Wait-Free Synchronization. Transactions on Pro-
gramming Languages, 11(1), January 1991.

[76] Wen-mei Hwu, Kurt Keutzer, and Timothy G Mattson. The concur-
rency challenge. IEEE Design & Test of Computers, 25(4):312–320,
2008.

[77] Docker Inc. Docker Engine managed plugin system. https://
docs.docker.com/engine/extend/.

[78] Docker Inc. Vulnerability scanning for Docker local images.
https://docs.docker.com/engine/scan/.

[79] Google Inc. gVisor. https://gvisor.dev/.

https://docs.docker.com/engine/extend/
https://docs.docker.com/engine/extend/
https://docs.docker.com/engine/scan/
https://gvisor.dev/

221

[80] Raj Jain, Dah-Ming Chiu, and W. Hawe. A quantitative measure of
fairness and discrimination for resource allocation in shared com-
puter systems. CoRR, cs.NI/9809099, 1998.

[81] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières,
Balaji Prabhakar, and Changhoon Kim. Eyeq: Practical network
performance isolation for the multi-tenant cloud. HotCloud’12.

[82] F Ryan Johnson, Radu Stoica, Anastasia Ailamaki, and Todd C
Mowry. Decoupling contention management from scheduling. AS-
PLOS XV, pages 117–128, 2010.

[83] J. Fitzharding K. Raghavendra. Paravirtualized ticket spinlocks .
https://lwn.net/Articles/552696/.

[84] Anna R Karlin, Kai Li, Mark S Manasse, and Susan Owicki. Em-
pirical studies of competitve spinning for a shared-memory mul-
tiprocessor. ACM SIGOPS Operating Systems Review, 25(5):41–55,
1991.

[85] Sanidhya Kashyap, Irina Calciu, Xiaohe Cheng, Changwoo Min,
and Taesoo Kim. Scalable and practical locking with shuffling.
SOSP ’19, pages 586–599.

[86] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. Scalable
numa-aware blocking synchronization primitives. USENIX ATC
’17, pages 603–615.

[87] Michael Kerrisk. madvise(2) — Linux manual page. https://
man7.org/linux/man-pages/man2/madvise.2.html.

[88] Michael Kerrisk. pthread_spin_lock. https://man7.org/linux/
man-pages/man3/pthread_spin_lock.3.html.

https://lwn.net/Articles/552696/
https://man7.org/linux/man-pages/man2/madvise.2.html
https://man7.org/linux/man-pages/man2/madvise.2.html
https://man7.org/linux/man-pages/man3/pthread_spin_lock.3.html
https://man7.org/linux/man-pages/man3/pthread_spin_lock.3.html

222

[89] Suraiya Khan and Issa Traore. A prevention model for algorithmic
complexity attacks. In International Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment, pages 160–173.
Springer, 2005.

[90] Orran Krieger, Michael Stumm, Ron Unrau, and Jonathan Hanna.
A fair fast scalable reader-writer lock. ICPP ’93, pages 201–204.

[91] Kaz Kylheku. What is PTHREAD_MUTEX_ADAPTIVE_NP?
https://stackoverflow.com/questions/19863734/what-is-
pthread-mutex-adaptive-np.

[92] Lawrence Livermore National Laboratory. Mutex variables.
https://computing.llnl.gov/tutorials/pthreads, 2017.

[93] FAL Labs. KyotoCabinet. https://fallabs.com/kyotocabinet/.

[94] Michael Larabel. FUSE Gets User Namespace Support With Linux
4.18. https://www.phoronix.com/scan.php?page=news_item&
px=Linux-4.18-FUSE.

[95] Yossi Lev, Victor Luchangco, and Marek Olszewski. Scalable
Reader-Writer Locks. SPAA ’09, page 101–110.

[96] Beng-Hong Lim and Anant Agarwal. Reactive synchronization al-
gorithms for multiprocessors. ACM SIGOPS Operating Systems Re-
view, 28(5):25–35, 1994.

[97] Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and
Quan Zhou. A measurement study on linux container security:
Attacks and countermeasures. ACSAC ’18, pages 418–429.

[98] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia Lawall, and
Gilles Muller. Remote Core Locking: Migrating Critical-Section

https://stackoverflow.com/questions/19863734/what-is-pthread-mutex-adaptive-np
https://stackoverflow.com/questions/19863734/what-is-pthread-mutex-adaptive-np
https://computing.llnl.gov/tutorials/pthreads
https://fallabs.com/kyotocabinet/
https://www.phoronix.com/scan.php?page=news_item&px=Linux-4.18-FUSE
https://www.phoronix.com/scan.php?page=news_item&px=Linux-4.18-FUSE

223

Execution to Improve the Performance of Multithreaded Applica-
tions. USENIX ATC’12.

[99] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia Lawall, and
Gilles Muller. Fast and portable locking for multicore architectures.
ACM Trans. Comput. Syst., 33(4):13:1–13:62, 2016.

[100] Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Physical disen-
tanglement in a container-based file system. OSDI’14, pages 81–96.

[101] Victor Luchangco, Dan Nussbaum, and Nir Shavit. A hierarchical
clh queue lock. Euro-Par’06, pages 801–810.

[102] Peter S. Magnusson, Anders Landin, and Erik Hagersten. Queue
locks on cache coherent multiprocessors. ISPP ’94, pages 165–171.

[103] A Martin, S Raponi, T Combe, and R Di Pietro. Docker ecosystem–
vulnerability analysis. Computer Communications, 122:30–43, June
2018.

[104] Paul E. McKenney. The new visibility of RCU processing. https:
//lwn.net/Articles/518953/.

[105] Paul E. McKenney. What is RCU, Fundamentally? https://lwn.
net/Articles/262464/.

[106] Paul E. McKenney. Selecting Locking Designs for Parallel Programs,
page 501–531. 1996.

[107] Paul E McKenney. Is parallel programming hard, and, if so, what
can you do about it? arXiv preprint arXiv:1701.00854, 2017.

[108] Paul E. McKenney and Jonathan Walpole. What is rcu, fundamen-
tally? Linux Weekly News (LWN. net), 2007.

https://lwn.net/Articles/518953/
https://lwn.net/Articles/518953/
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/

224

[109] John M. Mellor-Crummey and Michael L. Scott. Algorithms
for scalable synchronization on shared-memory multiprocessors.
ACM Trans. Comput. Syst., 9(1):21–65, February 1991.

[110] John M. Mellor-Crummey and Michael L. Scott. Scalable Reader-
Writer Synchronization for Shared-Memory Multiprocessors. SIG-
PLAN Not., 26(7):106–113, April 1991.

[111] John M. Mellor-Crummey and Michael L. Scott. Synchro-
nization without Contention. SIGARCH Comput. Archit. News,
19(2):269–278, April 1991.

[112] Paul Menage. CGroup documentation. https://www.kernel.org/
doc/Documentation/cgroup-v1/cgroups.txt, 2018.

[113] Dirk Merkel. Docker: lightweight linux containers for consistent
development and deployment. Linux journal, 2014(239):2, 2014.

[114] Michael Kerrisk. Namespaces in operation, part 5: User names-
paces. https://lwn.net/Articles/772885/.

[115] Changwoo Min, Sanidhya Kashyap, Steffen Maass, Woonhak
Kang, and Taesoo Kim. Understanding Manycore Scalability of File
Systems. USENIX ATC ’16, page 71–85.

[116] Neil Brown. Linux kernel design patterns - part 2. https://lwn.
net/Articles/336255/.

[117] M. Oh, J. Eom, J. Yoon, J. Y. Yun, S. Kim, and H. Y. Yeom. Perfor-
mance Optimization for All Flash Scale-Out Storage. In 2016 IEEE
International Conference on Cluster Computing (CLUSTER), pages
316–325, Sep. 2016.

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://lwn.net/Articles/772885/
https://lwn.net/Articles/336255/
https://lwn.net/Articles/336255/

225

[118] Jiannan Ouyang and John R. Lange. Preemptable ticket spinlocks:
Improving consolidated performance in the cloud. SIGPLAN Not.,
48(7):191–200, March 2013.

[119] Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. Execut-
ing parallel programs with synchronization bottlenecks efficiently.
PDSIA ’99.

[120] Sujin Park, Irina Calciu, Taesoo Kim, and Sanidhya Kashyap. Con-
textual concurrency control. HotOS ’21, pages 167–174.

[121] Yuvraj Patel, Ye Chenhao, Akshat Sinha, Abigail Matthews,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Michael M. Swift. Using Trātr. to tame adversarial synchronization.
In Submission.

[122] Yuvraj Patel, Mohit Verma, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Revisiting concurrency in high-
performance nosql databases. HotStorage ’18.

[123] Yuvraj Patel, Leon Yang, Leo Arulraj, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Michael M. Swift. Avoiding sched-
uler subversion using scheduler-cooperative locks. EuroSys ’20.

[124] David Patterson. The trouble with multi-core. IEEE Spectrum,
47(7):28–32, 2010.

[125] Ben Pfaff. Performance analysis of bsts in system software. ACM
SIGMETRICS Performance Evaluation Review, 32(1):410–411, 2004.

[126] Phoronix Media. Phoronix Test Suite - Linux Testing and Bench-
marking Platform, Automated Testing, Open-Source Benchmark-
ing. https://www.phoronix-test-suite.com.

https://www.phoronix-test-suite.com

226

[127] Aravinda Prasad and K. Gopinath. Prudent memory reclama-
tion in procrastination-based synchronization. ASPLOS ’16, page
99–112.

[128] Aravinda Prasad, K. Gopinath, and Paul E. McKenney. The rcu-
reader preemption problem in vms. USENIX ATC ’17, pages 265–
270.

[129] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and
M. Polychronakis. xmp: Selective memory protection for kernel
and user space. In 2020 IEEE Symposium on Security and Privacy,
pages 563–577, 2020.

[130] Xiaohu Qie, Ruoming Pang, and Larry Peterson. Defensive pro-
gramming: Using an annotation toolkit to build dos-resistant soft-
ware. ACM SIGOPS Operating Systems Review, 36(SI):45–60, 2002.

[131] Zoran Radovic and Erik Hagersten. Hierarchical backoff locks for
nonuniform communication architectures. HPCA ’03.

[132] Supranamaya Ranjan, Ram Swaminathan, Mustafa Uysal, Antonio
Nucci, and Edward Knightly. Ddos-shield: Ddos-resilient schedul-
ing to counter application layer attacks. IEEE/ACM Transactions on
networking, 17(1):26–39, 2008.

[133] David P Reed and Rajendra K Kanodia. Synchronization
with eventcounts and sequencers. Communications of the ACM,
22(2):115–123, 1979.

[134] Jeff Roberson. ULE: A Modern Scheduler for FreeBSD. In BSDCon,
2003.

[135] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu. Ffwd:
Delegation is (much) faster than you think. SOSP ’17, pages 342–
358.

227

[136] Dipankar Sarma and Paul E. McKenney. Making rcu safe for deep
sub-millisecond response realtime applications. USENIX ATC ’04,
pages 182–191.

[137] Bryan Schauer. Multicore processors–a necessity. ProQuest discov-
ery guides, pages 1–14, 2008.

[138] Michael L. Scott. Shared-Memory Synchronization. Morgan & Clay-
pool Publishers, 2013.

[139] Michael L. Scott and William N. Scherer. Scalable queue-based spin
locks with timeout. PPoPP ’01, pages 44–52.

[140] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Proto-
cols: an Approach to Real-Time Synchronization. IEEE Transactions
on Computers, 39(9):1175–1185, Sep. 1990.

[141] Jianchen Shan, Xiaoning Ding, and Narain Gehani. Apples: Ef-
ficiently handling spin-lock synchronization on virtualized plat-
forms. IEEE Transactions on Parallel and Distributed Systems,
28(7):1811–1824, 2016.

[142] Rui Shu, Xiaohui Gu, and William Enck. A study of security vul-
nerabilities on docker hub. CODASPY ’17, page 269–280.

[143] David Shue, Michael J. Freedman, and Anees Shaikh. Performance
isolation and fairness for multi-tenant cloud storage. OSDI’12,
pages 349–362.

[144] Cristian-Alexandru Staicu and Michael Pradel. Freezing the web:
A study of redos vulnerabilities in javascript-based web servers.
USENIX Security 18, pages 361–376.

228

[145] Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou. Container secu-
rity: Issues, challenges, and the road ahead. IEEE Access, 7:52976–
52996, 2019.

[146] Herb Sutter and James Larus. Software and the concurrency revo-
lution: Leveraging the full power of multicore processors demands
new tools and new thinking from the software industry. Queue,
3(7):54–62, 2005.

[147] Sriram Swaminathan, J. Stultz, J. F. Vogel, and Paul McKenney. Ab-
stract fairlocks- a high performance fair locking scheme. 2003.

[148] Nathan R Tallent, John M Mellor-Crummey, and Allan Porterfield.
Analyzing lock contention in multithreaded applications. SIG-
PLAN ’10, pages 269–280.

[149] Vasily Tarasov, Erez Zadok, and Spencer Shepler. Filebench: A
flexible framework for file system benchmarking. USENIX; login,
41(1):6–12, 2016.

[150] Gadi Taubenfeld. Fair synchronization. J. Parallel Distrib. Comput.,
97:1–10, 2016.

[151] Boris Teabe, Vlad Nitu, Alain Tchana, and Daniel Hagimont. The
lock holder and the lock waiter pre-emption problems: Nip them in
the bud using informed spinlocks (i-spinlock). EuroSys ’17, pages
286–297.

[152] Boris Teabe, Alain Tchana, and Daniel Hagimont. Application-
specific quantum for multi-core platform scheduler. EuroSys ’16,
pages 3:1–3:14.

[153] Chia-Che Tsai, Yang Zhan, Jayashree Reddy, Yizheng Jiao, Tao
Zhang, and Donald E Porter. How to get more value from your
file system directory cache. SOSP ’15, pages 441–456.

229

[154] Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund, and Uwe Dan-
nowski. Towards scalable multiprocessor virtual machines. VM’04.

[155] UpScaleDB Inc. UpScaleDB. https://upscaledb.com/.

[156] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok.
To fuse or not to fuse: Performance of user-space file systems. FAST
’17, pages 59–72.

[157] Axel Wagner. ext4: Mysterious “No space left on device”-errors.
https://blog.merovius.de/2013/10/20/ext4-mysterious-no-
space-left-on.html, 2018.

[158] Carl A. Waldspurger. Memory Resource Management in VMware
ESX Server. OSDI ’02.

[159] Carl A. Waldspurger and William E. Weihl. Lottery scheduling:
Flexible proportional-share resource management. OSDI ’94.

[160] Jons-Tobias Wamhoff, Stephan Diestelhorst, Christof Fetzer, Patrick
Marlier, Pascal Felber, and Dave Dice. The TURBO diaries:
Application-controlled frequency scaling explained. USENIX ATC
’14.

[161] Philip M. Wells, Koushik Chakraborty, and Gurindar S. Sohi. Hard-
ware support for spin management in overcommitted virtual ma-
chines. PACT ’06, pages 124–133.

[162] David Wentzlaff and Anant Agarwal. Factored Operating Systems
(fos): The Case for a Scalable Operating System for Multicores.
SIGOPS Oper. Syst. Rev., 43(2):76–85, April 2009.

[163] David Wentzlaff, Charles Gruenwald, Nathan Beckmann, Kevin
Modzelewski, Adam Belay, Lamia Youseff, Jason Miller, and Anant

https://upscaledb.com/
https://blog.merovius.de/2013/10/20/ext4-mysterious-no-space-left-on.html
https://blog.merovius.de/2013/10/20/ext4-mysterious-no-space-left-on.html

230

Agarwal. An Operating System for Multicore and Clouds: Mech-
anisms and Implementation. SoCC ’10, page 3–14.

[164] Mingzhe Zhang, Haibo Chen, Luwei Cheng, Francis CM Lau, and
Cho-Li Wang. Scalable adaptive numa-aware lock. IEEE Transac-
tions on Parallel and Distributed Systems, 28(6):1754–1769, 2016.

[165] A. Zhong, H. Jin, S. Wu, X. Shi, and W. Gen. Optimizing Xen Hyper-
visor by Using Lock-Aware Scheduling. In 2012 Second International
Conference on Cloud and Green Computing, pages 31–38, Nov 2012.

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

28720045

2021

	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Lock Usage
	Scheduler-Cooperative Locks
	Taming Adversarial Synchronization Attacks using Tratr
	Contributions
	Overview

	Background
	Concurrency, Synchronization & Mutual Exclusion
	Locks
	Crucial Lock Properties
	Categorizing Lock Algorithms
	Waiting Policy

	Common Synchronization Primitives Implementation
	Pthread Spinlock
	Pthread Mutex
	Ticket Lock
	MCS & K42 variant
	Linux Kernel's Queued Spinlock
	Reader-Writer Lock
	Read-Copy Update

	Summary

	Lock Usage
	Scheduler Subversion
	Imbalanced Scheduler Goals
	Non-Preemptive Locks
	Causes of Scheduler Subversion

	Synchronization under Attack
	Synchronization and Framing Attacks
	Threat Model
	Synchronization and Framing Attacks on Linux Kernel

	Summary & Conclusion

	Scheduler-Cooperative Locks
	Lock Opportunity
	Inability to Control CPU Allocation
	Lock Opportunity

	Scheduler-Cooperative Locks
	Goals
	Design
	u-SCL Implementation
	k-SCL Implementation
	RW-SCL Implementation

	Evaluation
	Fairness and Performance
	Proportional Allocation
	Lock Overhead
	Lock Slice Sizes vs. Performance
	Real-world Workloads

	Limitations and Applicability
	Summary & Conclusion

	Taming Adversarial Synchronization Attacks using Tratr
	Mitigating Adversarial Synchronization
	Existing Solutions
	Scheduler-Cooperative Locks
	Summary

	Tratr
	Goals
	Overview
	Design & Implementation

	Evaluation
	Overall Performance
	Performance of Tratr Components
	Overhead
	Real-World Scenarios
	Adding Directory Cache to Tratr
	False Positives
	False Negatives

	Limitations
	Summary & Conclusion

	Related Work
	Lock Usage Fairness
	Scheduler subversion
	Adversarial Synchronization
	Scheduler-Cooperative Locks
	Tratr

	Conclusions & Future Work
	Summary
	Lock Usage
	Scheduler-Cooperative Locks
	Taming Adversarial Synchronization Attacks using Tratr

	Lessons Learned
	Future Work
	Expand SCLs to Support Other Schedulers and Locks
	SCLs in Multiple Locks Situation
	Work Conserving Nature of SCLs
	Scheduler-driven fairness
	Analyzing Linux Kernel to find Vulnerable Data Structures
	Combining SCLs and Tratr
	Attacks on Concurrency Control Mechanisms
	Opportunity-based fairness for other non-preemptive resources

	Closing Words

	Bibliography

