Cooperative Data Protection

by

Yupu Zhang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN-MADISON

2014

Date of final oral examination: 02/10/14

Committee in charge:
Andrea C. Arpaci-Dusseau, Professor, Computer Sciences
Remzi H. Arpaci-Dusseau, Professor, Computer Sciences
Shan Lu, Assistant Professor, Computer Sciences
Michael M. Swift, Associate Professor, Computer Sciences
Peter Z.G. Qian, Associate Professor, Statistics

To my parents

Vi

Vii

Acknowledgements

First and foremost, | would like to express my deep gratittmleny advisors,
Andrea Arpaci-Dusseau and Remzi Arpaci-Dusseau, who duige through my
Ph.D. studies. There is an old saying in China: a teacher flayas a father for
a lifetime. | feel extremely lucky and thankful to have bothtteem as my Ph.D.
“parents”.

My initial interest in system research was born when | tooknRiess Advanced
Operating Systems class. When | just came here, operatstgnsg was definitely
not one of my favorites. However, Remzi's excellent teaghind deep knowledge
convinced me that building systems is such a fun and chatigmyocess that | can
definitely start a Ph.D. journey in systems. My last concemrésearch, writing
papers, was eased by Andrea’s meticulous guidance. Afkeling a paper draft,
she always provided me with a lot of feedback, ranging froamgnatical correc-
tions to organizational suggestions, which greatly imptbthe quality of my work.
She taught me crucial skills to convert a complicated systeitten in C into a nice
story with words and figures, which | could never have leatmgdnyself in such
a short time. Throughout my Ph.D. studies, not only did thise gne numerous
pieces of advices on how to be a good researcher, they alsgedhue how to be
a better person. | am extremely thankful for their patienoa support during my
ups and downs. Without their encouragement, | would nevee kampleted this
exceptional Ph.D. journey.

Next, |1 would like to thank my thesis-committee members, rSha, Peter
Qian, and Mike Swift, for their insights and suggestionsrfor research. | would
especially like to thank Mike for his detailed comments ahdllenging questions
during my preliminary exam and defense, which greatly hedpmimproving and
finishing my thesis.

| have benefited greatly from interning at NetApp. | wouldklito thank the
company as well as my mentor, Kiran Srinivasan, and my man&pankar Pasu-
pathy, for providing a terrific internship experience.

| am fortunate to have had the opportunity to work with smad hardwork-

viii

ing colleagues: Chris Dragga, Daniel Myers, Abhishek Rajte, Lanyue Lu,
Swaminathan Sundararaman, Sriram Subramaniam, HaryadivéuThanh Do,
and Samer Al-Kiswany. | also have enjoyed interacting witheo students: Nitin
Agrawal, Ishani Ahuja, Leo Arulraj, Vijay Chidambaram, &ylHarter, Jun He,
Asim Kadav, Ao Ma, Joe Meehean, Sankaralingam Panneenselaepak Rama-
murthi, Mohit Saxena, Laxman Visampalli, Zev Weiss, SulhiyaWei Zhang, and
Yiying Zhang.

I am lucky to have so many friends at Madison. To name a few:ry4€hung,
Guoliang Jin, Ji Liu, Jie Liu, Lanyue Lu, Ao Ma, Linhai Songh@hg Sun, Chong
Sun, Wenfei Wu, Wentao Wu, Wei Zhang, and Yiying Zhang. | widike to espe-
cially thank my roommates, Guoliang Jin and Jie Liu, for ampanying me during
these years. | also would also like to thank Yiying Zhang feinlg a wonderful
and helping officemate. Of course, | am also grateful for tngpsrt from other
friends who are not at Madison: Shaochen Huang, Qiang Li, ®iam, and Yuxi-
ang Zheng.

Finally, I would like to thank my family back in China, espalty my parents,
for their unconditional love and support. When | am struggylivith my research
and sometimes with my life, they have always been suppoaig encouraging.
When | have even the smallest success, they are so happyédyaalmost want
everyone in the world to know about it. Thank you, Baba and Mahdedicate
this dissertation to you!

Abstract

COOPERATIVE DATA PROTECTION
Yupu Zhang

Storage systems employ various techniques to protect aggfrodm hardware fail-
ures and software defects. These techniques, while efeictitheir own domains,

fail to provide comprehensive protection. In this dissista we identify the prob-

lem ofisolated protectionn both local storage systems and cloud storage services,
and propos&ooperative data protectioto address this problem.

In the first half of this dissertation (on local storage systg we present a study
of the effects of disk and memory corruption on ZFS, a modemroercial file
system with numerous reliability mechanisms. Throughfohend thorough fault
injection, we show that ZFS is robust to a wide range of diskt$a but because
of its isolated integrity checks that only cover on-diskajat is less resilient to
memory corruption, which can lead to corrupt data beingrnetdl to applications
or system crashes.

To solve this problem, we introduce flexible end-to-end diategrity, which
enables all components along the I/O path (e.g., page chilehgystem) to handle
checksums cooperatively. Each component is able to adtpratection scheme to
meet the performance and reliability demands of the systéfm.apply this new
concept to ZFS and build Zettabyte-Reliable ZF8RS). ZZFS provides dynami-
cal tradeoffs between performance and protection andsoffettabyte Reliability,
which is at most one undetected corruption per Zettabytat# tead. We develop
an analytical framework to evaluate reliability; the patien approaches in’FS
are built upon the foundations of the framework. For conymarj we implement
a straight-forward End-to-End ZFS{EFS) with the same protection scheme for
all components. Through analysis and experiment, we shawZtFS is able to
achieve better overall performance thazZES, while still offering Zettabyte Reli-
ability.

In the second half of this dissertation (on cloud storageices), we analyze

how reliable cloud-based synchronization services arbarfdce of local corrup-

tion and crashes. We perform fault injection experiments@reral popular syn-
chronization services and local file systems, and find thspitkethe excellent re-
liability that the cloud back-end provides, the loose cgpbf these services and
local file systems makes synchronized data more vulnerbble users might be-
lieve. Local corruption may be propagated to the cloud,ubiolty all copies on

other devices, and a crash or untimely shutdown may leadcansistency be-
tween a local file and its cloud copy. Even without these fay these services
cannot provide causal consistency.

To solve this problem, we present ViewBox, an integratedganization ser-
vice and local file system that provides freedom from datauguion and incon-
sistency. ViewBox detects these problems using ext4-cksumodified version of
ext4, and recovers from them using a user-level daemond d¢ielper, to fetch cor-
rect data from the cloud. To provide a stable basis for ragp¥ewBox employs
the view manager on top of ext4-cksum. The view manager eseatd exposes
views, consistent in-memory snapshots of the file systenighwihe synchroniza-
tion client then uploads. Our experiments show that ViewBetects and recovers
from both corruption and inconsistency, while incurringhimal overhead.

Contents

Acknowledgements Vi
Abstract iX
1 Introduction 1
1.1 Cooperative Data Protection in Local Storage 2
1.1.1 Data Protection Analysisof ZFS 3
1.1.2 ZFS: Zettabyte Reliability with Flexible End-to-end Data
Integrity 3
1.2 Cooperative Data Protection across Local and Cloudag¢or. . . 5
1.2.1 Data Protection Analysis of Cloud Storage Services ... 5
1.2.2 ViewBox: Integrating File Systems with Cloud Storage
SEerviCes 6
1.3 Summary of Contributions /Outline 7
2 Threats to Data Protection 9
21 DataCorruption e 9
2.1.1 DiskCorruption, 9
2.1.2 Memory Corruption 11
2.2 Datalnconsistency e 13
2.3 Summary ... e e e 14
3 Data Protection Analysis of Local File Systems 15
3.1 Background 16
311 ZFSOverview 16
3.1.2 ZFS On-disk Organization 17
3.1.3 ZFSIn-memory Structures 22
3.2 On-disk Data Integrity inZFS 24
3.21 Methodology, 24

Xii

3.2.2 Resultsand Observations 25
3.3 In-memory Data IntegrityinZFS 27
3.3.1 Methodology, 27
3.3.2 Resultsand Observations 29
3.4 Probability Analysis of Memory Corruption 34
3.41 Methodology 34
3.42 Calculation 35
343 Results 35
3.5 Summary e 37
Z?FS: Cooperative Data Protection in Local Storage 39
4.1 Reliability of Storage Systems with Data Corruption .. 40
4.1.1 OVEeIVIEBW v ot 40
4.1.2 Models for Devices and Checksums 41
4.1.3 Calculatin@Peys—ude - « « « « v v e e 44
414 Example:NCFS 45
42 FromZFStOZFS 47
42.1 ZFS:theOriginalZFS 47
4.2.2 BEZFS: ZFS with End-to-end Data Integrity 50
4.2.3 ZFS: ZFS with Flexible End-to-end Data Integrity 53
4.3 Discussion 59
43.1 ChecksumChaining 61
4.3.2 Integration with Existing Applications 65
433 ErrorHandling 66
44 Evaluation 67
441 Reliability. o 68
4.4.2 Overall Performance 71
4.4.3 Impact of Checksum Switching 74
444 TraceReplay 75
45 Summary e e e e 76
Data Protection Analysis of Cloud Storage Services 79
5.1 Background 80
5.1.1 Dropbox 80
512 Seafile. 82
5.2 Data Protection Failures, 83
5.2.1 DataCorruption 83
5.2.2 Crashlinconsistency 85
5.2.3 Causallnconsistency 86

5.3 DISCUSSION o o 87
5.3.1 Where Synchronization ServicesFail 87
5.3.2 Where Local File Systems Fail 88

54 Summary e 89

ViewBox: Cooperative Data Protection across Local and Clad Stor-

age 91

6.1 Design. 92
6.1.1 Goals 93
6.1.2 FaultDetection 93
6.1.3 View-based Synchronization 94
6.1.4 Cloud-aided Recovery 98

6.2 Implementation 98
6.2.1 Extd-cksum 98
6.2.2 ViewManager 101
6.2.3 CloudHelper 109

6.3 Evaluation 110
6.3.1 CloudHelper 110
6.3.2 Extd-cksum 111
6.3.3 ViewManager 112
6.3.4 ViewBox with Dropbox and Seafile 113

6.4 Summary 115

Related Work 117

7.1 Faultlnjection 117

7.2 Reliability Modeling 118

7.3 Techniques for Datalntegrity 911

7.4 Techniques for Data Consistency 012

Conclusion and Future Work 123

8.1 Summary e e 124
8.1.1 Cooperative Data Protection in Local Storage 124
8.1.2 Cooperative Data Protection across Local and Clooch§ 125

8.2 LessonslLearned 126

8.3 FutureWork 127
8.3.1 Characteristic Study of Data Corruption 271
8.3.2 Application-level Data Protection 812

8.3.3 Cooperative Data Protection in Networked StoragéeBys 129
8.4 ClosingWords. 129

Xiv

Chapter 1

Introduction

People are generating tremendous amount of data everydagorBe estimates,
there were 2.8 Zettabytes of data created in 2012, and therrgnod data is ex-
pected to double by 2015 [115]. Not only governments andaratfons, but also
regular persons have contributed to this data explosiostdyng musics, photos,
videos, and even email messages. Regardless of where gétadd, in a personal
computer, an enterprise server, or the cloud, the underlgtorage systems are
responsible for preserving data correctly for a long time.

Unfortunately, storage systems are built upon imperfexdware and software;
hardware errors, crash, and software bugs all can corrupt ddare events in
hard drives such as dropped writes or misdirected writasletale or corrupt data
on disk [3, 23, 89, 92]. Bits in memory get flipped due to chifedes [63, 71,
97] or radiation [75, 133]. Untimely crash, if not handlecdperly, can lead to
inconsistent data in the file system [37, 129]. Software lamg®lso a source of data
corruption, arising from low-level device drivers [111ystem kernels [38, 47], and
file systems [125, 126]. Even worse, design flaws are not unmemmand can lead
to serious data loss or corruption [69].

As storage systems have evolved over the years, designersieeeloped var-
ious mechanisms to handle some of the aforementioned pnsbleBesides the
built-in hardware ECC in hard drives, many modern file systeapport high-level
checksums to detect corruption [29, 91, 104], and some af theen provide repli-
cas inside the file system to facilitate recovery [29]. Unéeath the file system,
RAID is widely used to provide redundancy for recovery [88pwadays, backing
up data to the cloud is also an appealing solution to presiatae[67]. In case of
crash or power loss, file systems usually apply techniquets asijournaling [116],
soft updates [50], or copy-on-write [62], to provide metadar data consistency.

However, these protection techniques, while effectivebtgcting data in their
own domains, fail to provide comprehensive data protediornhe entire system.
As one example, many of the techniques are able to detectegosgiar from disk
corruption, but they cannot protect in-memory data [131F akother example,
cloud storage services usually protect its data using chee& and tend to store
multiple copies, but if the local file system exposes cordgit, corruption may be
propagated to the cloud, and thus pollute all the replicas]j1

All these failures occur due tigolated protectiorin storage systems, and we
proposecooperative data protectioto solve these problems. The goals of this dis-
sertation are two-fold: first, to examine the threats to gadéection in current stor-
age systems due to isolated protection; second, to devetbmigues that enable
components in storage systems to work cooperatively toigeeosomprehensive
data protection.

We address the goals of this dissertation in two aspectal &torage systems
and cloud storage services. For local storage systems, stafialyze the impact
of disk corruption and memory corruption on a modern fileeystZFS, and show
that memory corruption is largely ignored and poses greahtia data integrity
[131]. Then, we build ZFS, which embraces a new protection scheme called flex-
ible end-to-end data integrity and provides protectiondathbn-memory and on-
disk data without sacrificing much performance [130]. Foud storage services,
especially cloud-based file synchronization services, v &xamine how disk
corruption and system crashes could lead to the propagatibad data across all
synchronized devices [129]. Then we develop ViewBox, argrdted file sys-
tem and synchronization service that provides data irtegrash consistency, and
even causal consistency for both local and cloud data [I¥¥8.following sections
elaborate on each of these contributions of the dissentatio

1.1 Cooperative Data Protection in Local Storage

One of the primary challenges faced by storage systems itegb data despite
the presence of imperfect components in the storage stadkelfirst part of the
dissertation, we focus on data protection in local storagtess. Specifically,
we first use ZFS as an example and show that its isolated itytadreck does
not protect data in memory. Then, we propose and apply flexdbt-to-end data
integrity to ZFS to achieve cooperative data protection.

1.1.1 Data Protection Analysis of ZFS

File and storage systems have evolved various techniquiardle corruption.
Different types of checksums can be used to detect whenpt@ruoccurs [25,
29, 104, 109], and redundancy, likely in mirrored or pakigsed form [86], can be
applied to recover from corruption. While such techniquesrent foolproof [69],
they clearly have made file systems more robust to disk cthomp

Unfortunately, the effects afnemory corruptionon data integrity have been
largely ignored in file system design. Hardware-based mgmamruption occurs
as both transiensoft errorsand repeatabléard errorsdue to a variety of radia-
tion mechanisms [27, 75, 133], and recent studies have owaditheir presence in
modern systems [72, 84, 97]. Software can also cause memwoption; bugs can
lead to “wild writes” into random memory contents [34], thaslluting memory;
studies confirm the presence of software-induced memorygiions in operating
systems [2, 5, 14, 124].

To study how robust modern file systems are to disk and menwrymtion,
we analyze a state-of-the-art file system, ZFS [29], by pariiag fault injection
tests representative of realistic disk and memory cormoupti We choose ZFS for
our analysis because it is a modern and mature commerciaytem with nu-
merous robustness features, including end-to-end chexksilata replication, and
transactional updates; the result, according to the dessgis “provable data in-
tegrity” [29].

In our analysis, we find that ZFS is indeed robust to a wide easfglisk cor-
ruptions, thus partially confirming that many of its desigraly have been met.
However, we also find that ZFS often fails to maintain dategrity in the face of
memory corruption. In many cases, ZFS is either unable tecti¢he corruption,
returns bad data to the user, or simply crashes.

1.1.2 ZFS: Zettabyte Reliability with Flexible End-to-end Data In-
tegrity

A more comprehensive approach to data protection shouldambkhe “end to
end” philosophy [94]. In this approach, checksums are ggadrby an application
and percolate through the entire storage system. Whemgpddtia, the application
can check whether the calculated checksum matches thel stbezksum, thus
improving data integrity.

Unfortunately, the straight-forward end-to-end approhel two drawbacks.

The first isperformance depending on the cost of checksum calculation, perfor-

mance can suffer when repeatedly accessing data from tinenery page cache.

4

The second igimeliness if a data block is corrupted in memory before being
flushed to disk, the corruption can only be detected when later read by an
application, which is likely too late to recover from the gation.

To address these issues, we propose a concept ¢igitiole end-to-end data
integrity. We argue that it is not necessary for all components on @eath to use
the same checksum. By carefully choosing a different cheuokf®r each compo-
nent (and perhaps altering said checksum over time), theraysan deliver better
performance while still maintaining a high level of proieat By enabling all
components to handle checksums cooperatively, the systardatect and recover
from corruption in time.

To explore this flexible approach, we design and implementhile end-to-
end data integrity within ZFS, resulting in a new variant gthive call Zettabyte-
reliable ZFS (2FS). ZFS exposes checksums to the application, and passes check-
sums through the page cache down to the disk system, thurgnahd-to-end
verification. ZFS uses two techniques to provide flexible data protectitwe. fiFst
is checksum chainingvhich carefully orders the generation of new checksum and
the verification of old checksum such that there is no vulsiéta window for data
when it crosses domains (e.g., when moving from a strongelisinchecksum to
a weaker but more performant in-memory one). The secocdukisksum switching
which enables a component (e.g., memory) to switch the ekt is using dy-
namically, thus preserving a high level of reliability fdobks that remain resident
for extended periods of time. For comparison, we also devEled-to-End ZFS
(E2ZFS), which embraces the straight-forward end-to-endeptinin and uses only
one type of checksum for both the page cache and disk.

Underlying ZFS is an analytical framework that enables us to underselid r
ability of storage systems against data corruption. Thedéwork takes models of
devices and checksums used in a storage system as inputalantites the prob-
ability of undetected data corruption when reading a datakbirom the system as
a reliability metric. We defin&ettabyte Reliabilityone undetected corruption per
Zettabyte read, as a reliability goal of storage systemsidé€giuby the reliability
goal, we use the framework to provide rationale behind flexénd-to-end data
integrity.

Through fault injection experiments, we show thdF3 is able to detect and
recover from corruption that occurs to a block in memory befbis flushed to disk
in the write path. Using both controlled benchmarks as weleal-world traces,
we demonstrate that?ES is able to meet or exceed the performance 3#FS
while still providing Zettabyte reliability. Especiallyof workloads dominated by
warm reads, ZFS ourperforms EZFS by up to 17%.

5

1.2 Cooperative Data Protection across Local and Cloud
Storage

With the emergence of cloud storage, especially in the fofrolaud-based file
synchronization services, local file systems are now cdedeo the cloud, and
user data becomes synchronized and replicated on mulépleas. These services
are great additions to local file systems and provide bett#egption for user data,
but the loose coupling of these services and the file systatuslly puts data
in danger in various ways. In the second part of the dissemtatve focus on
new challenges to data protection across local and clowdgso We first conduct
an analysis of various file synchronization services andvdtmw they propagate
corrupt and inconsistent data to the cloud. Then, we buihWgiox, an integrated
synchronization service and file system in which the undsglyile system works
cooperatively with the file synchronization service to pdevcomprehensive data
protection.

1.2.1 Data Protection Analysis of Cloud Storage Services

File synchronization services occupy a unique design fEtween distributed file
systems, like NFS [95] or Coda [68], and file backup servitike, Mozy [8] or
Data Domain [132]. Like the former, file synchronization\dees provide a means
for users to access their files on any machine connected sethiee. Like the lat-
ter, however, file synchronization services propagatd kt@nges asynchronously,
and often provide a means to restore previous versions ef flarthermore, they
are only loosely integrated with the file system, allowingrthto be portable across
a wide range of devices.

While the automatic propagation of files as they are modifseoi doubt key
to these services’ success, the perceived reliability andistency they provide is
also instrumental to their appeal. The Dropbox tour goearaasfto state that “none
of your stuff will ever be lost” [44]. Unfortunately, the lse coupling of cloud
synchronization services with the underlying file systemegithe lie to this claim.
While the data stored remotely is generally robust, lodahtlsoftware is unable to
distinguish between deliberate modifications and uniieat errors, potentially
causing corruption to automatically propagate to all maehiassociated with a
user. Thus, despite the presence of multiple redundanespgiynchronization
destroys the user’s data.

To understand this “false sense of security”, we perfornit fajections exper-
iments on several popular cloud-based synchronizationces. We first examine
how these services can silently propagate data corrupdi@il synchronized de-

vices, and then show how these services cannot guaranteeatesistency with the
underlying file system after a crash. Furthermore, we shatvatstronger level of
inconsistency, causal inconsistency, may occur and thusecaven more harm to
both local and cloud data.

1.2.2 ViewBox: Integrating File Systems with Cloud Storagéervices

The analysis reveals that the root cause of data proteditnds is the loose cou-
pling of synchronization services and local file systemgl ey take equal re-
sponsibilities for these failures. Therefore, we developwBox, a system that
integrates local file system and cloud-based synchronizegervices to provide
better data integrity, crash consistency, and recovétabil

ViewBox synchronizes data between the local machine andltugl through
views in-memory snapshots of the local synchronized folderwiex relies on
three primary components to guarantee the correctneswbyviext4-cksum, the
view manager, and the cloud helper. Ext4-cksum serves aedhéfile system,
which is able to detect corrupt and inconsistent data thralaga checksumming.
Atop ext4-cksum, we place the view manager, a file systermsiie that creates
views and exposes views to the synchronization client. Téwe manager provides
consistency throughbloud journalingby creating views at file-system epochs and
uploading views to the cloud. To reduce the overhead of ramimy views, the
view manager employscremental snapshottingy keeping only deltas (changed
data) in memory since the last view. Finally, in case of qoiinn or crash, View-
Box uses an independent user-space daemon, the cloud, eljpgeract with the
server-backend and utilize the views on the cloud to rest@raystem to a correct
State.

We build ViewBox with two file synchronization services: phmwx [44], one
of the most popular synchronization services to date, aradil&499], an open
source synchronization service based on GIT [52]. Throedalility experiments,
we demonstrate that ViewBox detects and recovers from ttatal corruption, thus
preventing the corruption’s propagation. We also showubpan a crash, ViewBox
successfully rolls back the local file system state to a presly uploaded view,
restoring it to a causally consistent image. By comparirga8ox to Dropbox or
Seafile running atop unmodified ext4, we find that ViewBox msciess than 5%
overhead across a set of workloads. In some cases, ViewBaximproves the
synchronization time by 30%.

1.3 Summary of Contributions / Outline

Below is a summary of the contributions of the dissertatiwhich also serves as
an outline for the rest of the dissertation:

e Threats to Data Protection: Chapter 2 provides background on various
threats to data protection in existing storage systemg&:adiguption, mem-
ory corruption, and crashes.

e Cooperative Data Protection in Local Storage:In Chapter 3, we present
an empirical analysis of the reliability of ZFS in the facedigk and memory
corruption. Then, in Chapter 4, we propose the concept abfkernd-to-end
data integrity, introduce an analytical framework to pdevihe rationale be-
hind the concept, and implementZS, which provides comprehensive data
protection (from both disk and memory corruption). The @ptc frame-
work, and techniques used in implementintFB, all together demonstrate
a holistic way to think about the performance-reliabilitpdeoff in storage
systems, which is the first major contribution of the disst@wh.

e Cooperative Data Protection across Local and Cloud StorageChapter 5
presents an analysis of data protection failures (focusimgdisk corruption
and crash) when file synchronization services are runnintpprf current
file systems. Chapter 6 describes our solution to the fouadi@ms, View-
Box, an integrated file system and synchronization serviwgsynchronizes
data based on file-system views. Both the analysis and thé®okerve as
the second major contribution of this dissertation.

e Related Work: Chapter 7 summarizes previous research efforts on protect-
ing data in storage systems.

e Conclusion and Future Work: Chapter 8 concludes this dissertation, first
summarizing our work and highlighting the lessons learrsed] then dis-
cussing various avenues for future work that arise from esearch.

Chapter 2

Threats to Data Protection

This chapter provides the motivation for the dissertatigndescribing various
threats to data protection in storage systems. Specifica#lyfocus on two types
of threats, data corruption and data inconsistency. Dataugtion occurs mostly
due to hardware failures and software bugs, and we deschiyetwmappens, how
frequently it occurs, and how systems try to deal with it ict®m 2.1. Data incon-
sistency, on the other hand, usually results from the fileegy's improper handling
during an untimely system crash or reboot. We discuss hovsyidéems provide
consistency and why data consistency is not always guairieSection 2.2.

2.1 Data Corruption

We now discuss data corruption in detail. Although it canunctt any place in a
storage system, we only focus on corruption on disk and in ongnbecause both
are the major media for long-term data storage and accesses.

2.1.1 Disk Corruption

We define disk corruption as a state when any data accessedlifsk does not have
the expected contents due to some problem in the storage Sthcs is different

from latent sector errors, not-ready-condition errors ewbvered errors [22] in
disk drives, where there is an explicit notification from tireve about the error
condition.

10

Why It Happens

Disk corruption happens due to many reasons originatingffateht layers of the
storage stack. Errors in the magnetic media lead to the gmobf “bit-rot” where
the magnetic properties of a single bit or few bits are dama@pikes in power,
erratic arm movements, and scratches in media can also catrsgtion in disk
blocks [19, 98, 113]. On-disk ECC catches many (but not dlthese corruption.

Errors are also induced due to bugs in complex drive firmwaiedern drives
contain hundreds of thousands of lines of firmware code [88pme reported
firmware problems include a misdirected write where the fiamevaccidentally
writes to the wrong location [118] or a lost write (or phantevrite) where the
disk reports a write as completed when in fact it never resthe disk [109]. Bus
controllers have also been found to incorrectly report desfuests as complete or
to corrupt data [55, 117].

Finally, software bugs in operating systems are also pialesturces of cor-
ruption. Buggy device drivers can issue disk requests watl parameters or
data [38, 47, 111]. Software bugs in the file system itself cause incorrect data
to be written to disk.

How Frequently It happens

Disk corruption are prevalent across a broad range of mattares. There is much
anecdotal evidence of corruption in hard disks [25, 109].1t82008, in a study

of 1.53 million disk drives over 41 months [23], Bairavasaraim et al. show that
more than 400,000 blocks had checksum mismatches, 8% ohwece discov-

ered during RAID reconstruction, creating the possibitfyreal data loss. They
also found that nearline disks develop checksum mismagesder of magnitude
more often than enterprise class disk drives.

How to Handle It

Systems use a number of techniques to handle disk corrupterdiscuss some of
the most widely used techniques along with their limitasion
Checksums Checksums are small pieces of data computed over datasblatix
a specific function and are used to verify data integrity. diodisk data integrity,
checksums are stored or updated on disk during write opesatind read back to
verify the block or sector contents during reads.

Many storage systems have used checksums for on-disk detgify, such as
Tandem NonStop [25] and NetApp Data ONTAP [109]. Similarai{seimming
techniques have also been used in file systems [29, 91].

11

However, Krioukov et al. show that checksumming, if not éalhg integrated
into the storage system, can fail to protect against comfalgxres such as lost
writes and misdirected writes [69]. Further, checksumnaiogs not protect against
corruption that happens due to bugs in software, typicalllaige code bases [38,
125].

Redundancy Redundancy in on-disk structures also helps to detectiarshme
cases, recover from disk corruption. For example, somedg-Tite systems such
as ReiserFS [30] store page-level information in eachmaigpage in the B-Tree.
Thus, a corrupt pointer that does not connect pages in atdjdeeels is caught
by checking this page-level information. Similarly, ex@] and ext3 [116] use
redundant copies of superblock and group descriptors tivezdrom corruption.

However, it has been shown that many of these file systemsatiletimes

fail to detect corruption, leading to greater problems [8Blirther, Gunawi et al.
show instances where ext2/ext3 file system checkers fagdéauailable redundant
information for recovery [57].
RAID : Another popular technique is to use a RAID storage systé&hy@derneath
the file system. However, RAID is designed to tolerate the &fs certain number
of disks or blocks (e.g., RAID-5 tolerates one, and RAID-@)and it may not
be possible with RAID alone to accurately identify the bldak a stripe) that is
corrupted. Secondly, some RAID systems have been showrveoflaavs where a
single block loss leads to data loss or silent corruption. [Bfhally, not all systems
incorporate multiple disks, which limits the applicalilbf RAID.

2.1.2 Memory Corruption

We define memory corruption as the state when the conteressad from the main
memory have one or more bits changed from the expected viabma & previous
store to the location). From the software perspective, iy mat be possible to
distinguish memory corruption from disk corruption on adefa disk block.

Why It Happens

Errors in the memory chip are one source of memory corruptdMamory errors
can be classified asoft errorswhich randomly flip bits in RAM without leaving
any permanent damage, anard errorswhich corrupt bits in a repeatable manner
due to physical damage.

Researchers have discovered radiation mechanisms theg¢ eators in semi-
conductor devices at terrestrial altitudes. Nearly thexmades ago, May and Woods
found that if an alpha particle penetrates the die surfdoegan cause a random,

12

single-bit error [75]. Zeigler and Lanford found that cosmays can also disrupt
electronic circuits [133]. More recent studies and meanergs confirm the effect
of atmospheric neutrons causing single event upsets (SEtdgmories [83, 84].

Memory corruption can also happen due to software bugs. $heotiunsafe
languages like C and C++ makes software vulnerable to bugs as dangling
pointers, buffer overflows and heap corruption [28], whieh cesult in seemingly
random memory corruption.

How Frequently It Happens

Early studies and measurements on memory errors provideerse of soft errors.
Data collected from a vast storehouse of data at IBM over geHs-period [84]
confirmed the presence of errors in RAM and that the upses atzease with
elevation, indicating atmospheric neutrons as the likalyse.

In 2009, a measurement-based study of memory errors in e flegt of com-
modity servers over a period of 2.5 years [97], Schroedek ebserve DRAM er-
ror rates that are orders of magnitude higher than prewaeslorted, with 25,000
to 70,000 FIT per Mbit (1 FIT equals 1 failure in 1@evice hours). They also
find that more than 8% of the DIMMSs they examined (from muéipgendors, with
varying capacities and technologies) were affected byrbirg each year. Finally,
they also provide strong evidence that memory errors areragdad by hard errors,
rather than soft errors.

Another study [72] of production systems including 300 maek for a multi-
month period found 2 cases of suspected soft errors and 9 cddward errors
suggesting the commonness of hard memory faults.

Besides hardware errors, software bugs that lead to menwryption are
widely extant. Reports from the Linux Kernel Bugzilla Dagak [5], USCERT Vul-
nerabilities Notes Database [14], CERT/CC advisoriesd&8]well as other anec-
dotal evidence [34] show cases of memory corruption hapmgedie to software
bugs.

How to Handle It

Systems use both hardware and software techniques to haedbery corruption.
Below, we discuss the most relevant hardware and softwehmigues.

ECC: Traditionally, memory systems have employed Error CaivacCodes [35]
to correct memory errors. Unfortunately, ECC is unable tdresks all soft-error
problems. Studies found that the most commonly-used ECGQritighs called
SEC/DED (Single Error Correct/Double Error Detect) carower from only 94%

13

of the errors in DRAMs [48]. Further, many consumer systemsot use ECC
protection in order to reduce cost [59].

More sophisticated techniques like Chipkill [64] have b@eoposed to with-
stand multi-bit failure in DRAMs. However, such techniguee expensive and
have been restricted to proprietary server systems, lgdkimproblem of memory
corruption open in commodity systems.

Programming models and tools Another approach to deal with memory errors
is to use recoverable programming models [80] at differemtls (firmware, op-
erating system, and applications). However, such teclesigequire support from
hardware to detect memory corruption. Further, a holistiange in software is
required to provide recovery solution at various levels.

Much effort has also gone into detecting software bugs thase memory cor-
ruption. Tools such as metal [58] and CSSV [42] apply statialgsis to detect
memory corruption. Others such as Purify [61] and SafeMed) (e dynamic
monitoring to detect memory corruption at runtime. Howewasrdiscussed previ-
ously, software-induced memory corruption still remainseblem.

2.2 Data Inconsistency

The problem of data inconsistency usually occurs due toytes failing to pro-
vide strong consistency guarantee upon a crash. File systeamtains various
metadata structures to organize data. Performing a sirlglsyfstem operation,
such as write(), usually involves changes to several miadauctures. For exam-
ple, appending a block to a file in ext3 requires at least thleeks to be written to
disk: a data bitmap block, an inode block, and the data blckrder to correctly
apply such an operation to the on-disk file system imageha#i¢ blocks must be
written to disk as a whole. However, when crash occurs, ibssible that some of
the changes do not make to the disk. For instance, if the diath 5 not written,
the file would point to garbage data, resultingdata inconsistency If the data
bitmap block is not written, the actual status of the datalblwsed by the inode)
does not match the bitmap (free), which leadsetadata inconsistency

File system developers have been using several techniquekitess the con-
sistency problem. One simple approach is to let the inctarssyg occur and then
use a tool, usually called file system checker (fsck) [76[ixdhe inconsistency.
This approach can fix metadata inconsistency in most cageg, dannot, for ex-
ample, detect the data inconsistency case mentioned abitvzefore, many file
systems have built-in mechanism to prevent inconsistemoyritime, and the most
common technique is journaling. Journaling, or write-ahlegging, provides con-

14

sistency by grouping multiple updates into transactionsiclvare first written to
a circular log and then later checkpointed to their fixed fiocain the file sys-
tem. Journaling is quite popular, seeing use in ext3 [1D8% £/3], XFS [110],

HFS+ [21], and NTFS [79]. Recording all data and metadatdénlég can pro-
vide data consistency, but doing so doubles all write traffithe system. Thus,
normally, these file systems only journal metadata, whichlead to inconsisten-
cies in file data upon recovery, even if the file system calsefuiders its data and
metadata writes (as in ext4’s ordered mode, for instance).

Data inconsistency can be avoided entirely using copy-otewbut it is an
infrequently used solution. Copy-on-write never overesidata or metadata in
place; thus, if a crash occurs mid-update, the originaéstall still exist on disk,
providing a consistent point for recovery. Implementingpy@n-write involves
substantial complexity, however, and only recent file-ays, like ZFS [29] and
btrfs [91], support it for personal use.

2.3 Summary

Modern storage systems are facing great challenges ingpirggedata. Disk errors,
memory bit flips, and software bugs can all corrupt data. Tdmhination of un-
timely crash and imperfect crash handling of file system neag ito data inconsis-
tency. We have presented some existing mechanisms to disath@se problems,
but unfortunately they are still separated techniques amtha provide compre-
hensive data protection. In the following chapters we vhibw why they fail to
protect data in local file systems as well as cloud storagecess; and explore new
cooperative techniques to maintain data integrity andistarsy.

15

Chapter 3

Data Protection Analysis of Local
File Systems

Disk corruption is one of the primary sources for unrelid@piln data storage. As
file systems have evolved over the years, designers haveddan this problem
and devised techniques to deal with it [29, 86, 104]. Unfaately, memory cor-
ruption has been ignored and poses a growing threat to datily. As discussed
in Section 2.1.2, recent studies measured increasing nyeenar rate due to hard-
ware faults, and various bug reports show the occurrencesofary corruption due
to software bugs.

The problem of memory corruption is critical for file systethat cache a great
deal of data in memory for performance. Almost all modern giystems use a
page cache or buffer cache to store copies of on-disk datanataldata in mem-
ory. Moreover, frequently-accessed data and importanaaatd may be cached
in memory for long periods of time, making them more sustdptto memory
corruption.

In this chapter, we ask: how robust are modern local file syst® disk and
memory corruptions? To answer this query, we perform a sefi¢ault injection
experiments on ZFS to study how it responds to disk and menwryptions. Be-
fore we go into details about the experiments, we first weigdeosome background
on ZFSin Section 3.1. Then, we present our analysis of datagiron in ZFS with
disk and memory corruptions in Section 3.2 and Section 8shectively. Finally,
Section 3.4 gives an analysis of the probabilities of déferfailure scenarios in
ZFS due to memory errors.

16

3.1 Background

ZFS is a state-of-the-art file system from Sun (now Oraclerkvtakes a unified

approach to data management. ZFS provides data integdtséctional consis-
tency, scalability, and a multitude of useful features sastsnapshots, copy-on-
write clones, and simple administration [29]. In this sewfiwe first present a
high-level overview of ZFS, focusing on the reliability ni@misms. Then, we dis-
cuss the disk layout of ZFS in detail and illustrate how ZF§aoizes metadata and
data through a on-disk walkthrough. Finally, we briefly dis€ in-memory data
structures.

3.1.1 ZFS Overview

ZFS claims to provide provable data integrity by using téghes like checksums,
replication, and transactional updates. Further, the tisgpooled storage in ZFS
lends it additional RAID-like reliability features. In theords of the designers,
ZFS is the “The Last Word in File Systems.” We now describerd¢fiability mech-
anisms in ZFS.

Checksums for data integrity checking ZFS maintains data integrity by using
checksums for on-disk blocks. The checksums are kept depficen the cor-
responding blocks by storing them in the parent blocks. ZFfiges for these
parental checksums of blocks by using a generic block pogttacture to address
all on-disk blocks.

The block pointer structure contains the checksum of thekbibreferences.
Before using a block, ZFS calculates its checksum and veitfeggainst the stored
checksum in the block pointer. The checksum hierarchy faanself-validating
Merkle tree [78]. With this mechanism, ZFS is able to detdehtdata corruption,
such as bit rot, phantom writes, and misdirected reads aiteswr
Replication for data recovery. Besides using RAID technigues (described below),
ZFS provides for recovery from disk corruption by keepinglieas of certain “im-
portant” on-disk blocks. Each block pointer contains paigtto up to three copies
of the block being referenced. By default ZFS stores mudtgupies for metadata
(three copies for pool metadata and two copies for file systetadata) and one
copy for data. Upon detecting a corruption due to checksusmaich, ZFS uses a
redundant copy with a correctly-matching checksum.

COW transactions for atomic updates ZFS maintains data consistency in the
event of system crashes by using a copy-on-write transeadtigodate model. ZFS
manages all metadata and data as objects. Updates to altobpe grouped to-
gether as a transaction group. To commit a transaction gdjsk, new copies

17

are created for all the modified blocks (in a Merkle tree). Tbet of this tree
(the uberblocR is updated atomically, thus maintaining an always-caestsdisk
image. In effect, the copy-on-write transactions alondweiock checksums (in a
Merkle tree) preclude the need for journaling [120], thoddts occasionally uses
a write-ahead log for performance reasons.

Storage pools for additional reliability: ZFS provides additional reliability by
enabling RAID-like configuration for devices using a comnsiarage pool for
all zfs instances. ZFS presents physical storage to filesysin the form of a
storage pool (calledpoo). A storage pool is made up efrtual devices(vdev).
A virtual device could be a physical device (e.g., disks) @gcal device (e.g., a
mirror that is constructed by two disks). This storage p@ol be used to provide
additional reliability by using devices as RAID arrays. Zp®vides automatic
repairs in mirrored configurations and provides a disk duingfacility to detect
latent sector errors.

3.1.2 ZFS On-disk Organization

ZFS organizes its metadata and data into a two level arthitecas shown in
Figure 3.1. The zfs level contains on-disk structures thatused to represent a
zfs instance, such as a file system, a snapshot, or a clonepdbklevel maintains
data structures that keep track of all file system instancddteeir relationship. We
now discuss some of these basic on-disk structures andusesge in ZFS.

Basic Structures

Block pointers: A block pointer is the basic structure in ZFS for addressing
block on disk and connecting different structures. It ptdeg a generic mechanism
to keep parental checksums and replicas of on-disk blockguré 3.2 shows the
block pointer used by ZFS. As shown, the block pointer costaip to three block
addresses, called DVAddta virtual addressgseach pointing to a different block
having the same contents. These are referred tites blocks The number of
DVAs varies depending on the importance of the block. Theerumpolicy in ZFS
is that there is one DVA for user data, two DVAs for file systeratadata, and
three DVAs for global metadata across all file system ingaime the pool [81]. As
discussed earlier, the block pointer also contains a sicayby of the checksum of
the block being pointed to.

Objects:. All blocks on disk are organized in objects. Physicallyolject is repre-
sented on disk by a structure calléabde _phys _t (hereafter referred to akods.

A dnode contains an array of up to three block pointers, eðach points to

18

LEGEND

E object set block

\:I dnode block

_

HRN

D indirect block

D data block

Figure 3.1:ZFS Two-level Layout The figure shows the two-level layout of ZFS on-
disk structures.

either a leaf block (e.g., a data block) or an indirect bldcl of block pointers).
These blocks pointed to by the dnode form a block tree. A dradsie contains a
bonus buffer at the end, which stores an object-specific statature for different
types of objects. For example, a dnode of a file object costaistructure called
znode _phys _t (znod# in the bonus buffer, which stores file attributes such as ac-
cess time, file mode and size of the file. The dnode then paradtock tree with
data blocks at the leaf level, as shown in Figure 3.1.

Object sets Object sets are used in ZFS to group related objects. An gbeam
of a object set is a file system, which contains file objects direttory objects
belonging to this file system. An object set is representea Isyructure called
objset _phys _t, which consists of a meta dnode and a ZIL (ZFS Intent Log)
header. The meta dnode points to a group of dnode blocks;ednagresenting
the objects in this object set are stored in these dnode $lodihe object de-

19

vdevl

offsetl | | DVA1— | ditto

vdev?2

block 1

vdev3

offset2 | DVA2
offset3 \ e

| DvAs3 block 2
ditto

block 3

checksum <

Figure 3.2:Block pointer The figure shows how the block pointer structure points to (up

to) three copies of a block (ditto blocks), and keeps a siolgézksum.

Level | Object Name

Simplified Explanation

MOS dnode

A dnode object that contains dnode blocks, which store dnode
representing pool-level objects.

zpool | Object directory

A ZAP object whose blocks contain name-value pairs referenc
ing further objects in the MOS object set.

Dataset

It represents an object set (e.g., a file system) and traxkeld-
tionships with other object sets (e.g., snapshots and sJone

Dataset directory

It maintains an active dataset object along with its chilchdats.
It has a reference to a dataset child map object. It also aiasit
properties such as quotas for all datasets in this datasetaoliy.

Dataset child map

A ZAP object whose blocks hold name-value pairs referencing
child dataset directories.

FS dnode

zfs

A dnode object that contains dnode blocks, which store dnode
representing filesystem-level objects.

Master node

A ZAP object whose blocks contain name-value pairs referenc
ing further objects in this file system.

File

An object whose blocks contain file data.

Directory

A ZAP object whose blocks contain name-value pairs referenc
ing files and directories inside this directory.

Table 3.1:Summary of ZFS objects visitedThe table presents a summary of all ZFS
objects visited in the walkthrough, along with a simplifieghlanation. Note that ZAP
stands for ZFS Attribute Processor. A ZAP object is usedai@ stame-value pairs.

scribed by the meta dnode is called “dnode object”. The Zladee points to a
list of blocks, which holds transaction records for ZFSgdmmg mechanism. The
objset _phys _t structure is stored in apbjset block

20

Datasets An object set is eventually encapsulated by a zpool-lebgat called
dataset. A dataset could be a file system, a clone, or a srtapgstiataset contains
statistics such as the space consumption of an object setraaks its relationship
with other related datasets. For example, a file system etatagintains the inter-
dependency between the file system and its snapshots aresclgh dataset is
represented by a dnode withdal _dataset _phys t structure in the bonus field.
The dnode itself does not point to the objset block; it isdble_dataset _phys _t
structure that contains a block pointer referencing theettjlock.

Uberblock: As shown in Figure 3.1, all zpool-level objects form anotbbject
set and the corresponding objset block is pointed to by abilwak pointer in an
uberblock An uberblock (similar to a superblock) is used to provideess to the
current pool data and verify its integrity. The uberbloclsétf-checksummed and
updated atomically.

Vdev label: Each physical vdev is labeled withvalev labelthat describes this
device and other related virtual devices. Four copies ofabel are stored in each
physical vdev to provide redundancy and a two-stage updathamism is used to
guarantee that there is always a valid vdev label in the de\if8]. Every vdev
label contains an array of uberblocks; updating an ubekbilowlves writing the
new uberblock to the next entry in the array (in a round robsihfon) and mark the
new entry the active uberblock. Therefore, if a crash ocdursg the update, ZFS
will always fall back to the previous uberblock, thus guaeaing consistency.

On-disk Layout

Next, we present more details on ZFS on-disk layout. Thiswie® will help
the reader to understand the range of our fault injectioreexyents presented in
later sections. A complete description of ZFS on-disk $tm&s can be found else-
where [108].

For the purpose of illustration, we demonstrate the stegtsARS takes to locate
a file system and to locate file data in it in a simple storagé. geigure 3.3 shows
the on-disk layout of the simplified pool with a sample fileteys called “myfs”,
along with the sequence of objects and blocks accessed by XB8mmary of
all visited objects is described in Table 3.1. Note that wip ske details of how
in-memory structures are set up and assume that data andataetae not cached
in memory to begin with.

LEGEND

L0 | L1 | Boot Available storage space 12 | 13 Block type Contents
_ object set block | objset_phys_t structure of an object set
- - T dnode block Array of dnodes of an object set
e vdev label 1 uberblock array — — -
= indirect block Array of block pointers
Blank | Boot Name/value ZAP block Data for ZFS Attribute Processor object
space | header pais data block Data for files
‘ dnode block
object set block Tl . _ - 9
5 e ~ - \ ;7N N N

7 N / [T : T T

) 3 7 N I N
2 MOSobjectiset /// Ob]ect Root Root / myfs myfs

[MOS dnode object = 7 dlrectory dataset dataset / dataset dataset
/ dlrectory child map i directory
! 7
!]
ZAP'block ZAP block /
4 ; 7
root dataset=2 myfs = 27
____dnode block
object set block indirect block 1? TN - 17
[[r
i 11 /| [Master Root ! File
myfs object set ’—P 13 » node directory !
10 myfs dnode object / §
1
! 1
14 !
— : 16| | 18
indirect block | ZAP block Y ZAP block Data block
Y.
T
12 > root =3 J file=4 ! J

Figure 3.3:ZFS On-disk Walk The figure illustrates a walkthrough of on-disk structur€ZBS to locate a data block in a file
system “myfs”. Zpool contains a sample file system namedsmyl data structures are shown by rounded boxes, and d@ok
shown by rectangular boxes. Solid arrows point to allocdiktks and dotted arrows represent references to objestderblocks.

The legend at the top shows the types of on-disk blocks aimactrgents.

TZ

22

As shown in the figure, four copies of vdev labels are locatdked locations
on the disk (two each at the start and end). The active ubskldofound in any
one of the labels (step 1). The uberblock points to a metacbbgt (MOS) (step
2), which is an object set holding pool-wide information &tascribing and man-
aging relationships between various file system instar8iese MOS is pool-wide
metadata, there are three copies of the block containing it.

A special object in MOS called the object directory is usedkeep track of
further zpool-level objects (step 3 and 4). The object dingccontains references
(object numbers) to various other objects in the object@at of these references
is the root dataset directory (step 5). A dataset directagapsulates a group of
related datasets and maintains their common propertieb, asiquota, block size,
checksum algorithm, etc. Every zfs in zpool has a correspgndbtaset directory.
A dataset directory always has a single “active datasetichvwepresents the active
zfs instance; other datasets are its snapshots, clone3 hetiefore, the root dataset
directory represents the root file system in the pool andused to access all child
dataset directories.

The root dataset directory points to a dataset child mapcobggep 6), which
contains references to all child dataset directoriesudling “myfs” (step 7). Fi-
nally, the dataset directory of “myfs” is found (step 8) ahd active dataset of the
directory points to the current “myfs” file system (step 9heTobject set pointed
to by this dataset contains further file-system specific dagtastructures (step 10).
Since the objset block is zfs-level metadata, ZFS keeps dpms of the block. The
“myfs” object set further points to several layers of indirblocks which eventually
lead to a large array of dnodes describing file system obfstap 11-13). Since all
these blocks are also file-system specific metadata, thersvarcopies of all the
indirect blocks as well as the dnode blocks at the leaf level.

There is a special object called master node for each filesystt contains
references to the root directory of a file system (step 14¢ robt directory is then
traversed to find further child directories and files in theyfgi file system (step
15-17). Finally, the file objects contain the block pointeygheir corresponding
data blocks (step 18).

3.1.3 ZFS In-memory Structures

ZFS in-memory structures can be classified into two categothose that exist in
the page cache and those that are in memory outside of thecpabe; for conve-
nience we call the lattan-heapstructures. Whenever a disk block is accessed, it
is loaded into memory. Disk blocks containing data and negtadre cached in the
ARC page cache [77], and stay there until evicted. Data Bleck stored only in

23

fistread | vulnerable memory | nextread | [write | 0306 | flush [<55] | vulnerable | evicted |
[<5ms] | [unbounded corruption | (bad data) | | [<1ms] | | | [unbounded ! !
PAGE | time] | [<1ms] | | time]

i o

NOT
protected

protected verify generate
checksum checksum
DISK clean dirty corrupt
block block block

Figure 3.4:Lifecycle of a block This figure illustrates one example of the lifecycle of
a block. The left half represents the read timeline and tigatrhalf represents the write
timeline. The black dotted line is a protection boundaryphewhich a block is protected
by the checksum, otherwise unprotected.

the page cache, while most metadata structures are stdvethithe page cache (as
copies of on-disk structures) and the heap. Note that bloakgrs inside indirect
blocks are also metadata, but they only reside in the padeecaddberblocks and
vdev labels, on the other hand, only stay in the heap.

To help the reader understand the vulnerability of ZFS to orgroorruptions
discussed in later sections, Figure 3.4 illustrates onenpla of the lifecycle of
a block (i.e., how a block is read from and written asynchustp to disk). To
simplify the explanation, we consider a pair of blocks in gththe target block to
be read or written is pointed to by a block pointer containethe parental block.
The target block could be a data block or a metadata block. pEnental block
could be an indirect block (full of block pointers), a dnodedk (array of dnodes,
each of which contains block pointers), or an object setlb{acdnode is embedded
in it). The user of the block could be a user-level applicatio ZFS itself. Note
that only the target block is shown in the figure.

At first, the target block is read from disk to memory. For retheére are two
scenarios, as shown in the left half of Figure 3.4. On ther@atl of a target block,
itis read from the disk and immediately verified against theoksum stored in the
block pointer in the parental block. Then the target blockeisirned to the user.
On a subsequent read of a block already in the page cacheatieaguest gets the
cached block from the page cache directly, without veriftine checksum.

In both cases, after the read, the target block stays in the pache until
evicted. The block remains in the page cache for an unboumdexal of time
depending on many factors such as the workload and the ceplaement policy.

After some time, the block is updated. The write timelindlissirated in the
right half of Figure 3.4. All updates are first done in the pegehe and then flushed
to disk. Thus before the updates occur, the target blockhigrein the page cache

24

already or just loaded to the page cache from disk. After theewthe updated
block stays in the page cache for at most 30 seconds and tisdftughed to disk.

During the flush, a new physical block is allocated and a neack$um is
generated for the dirty target block. The new disk addredscaecksum are then
written to the block pointer contained in the parental bjatkis making it dirty.
After the target block is written to the disk, the flush pragedcontinues to allocate
a new block and calculate a new checksum for the parentakblglaich in turn
dirties its subsequent parental block. Following the upsiaf block pointers along
the tree (solid arrows in Figure 3.3), it finally reaches therblock which is self-
checksummed. After the flush, the target block is kept in #gepcache until it is
evicted.

3.2 On-disk Data Integrity in ZFS

In this section, we analyze the robustness of ZFS agairistdisuptions. Our aim
is to find whether ZFS can maintain data integrity under aetqaof disk corruption
scenarios. Specifically, we wish to find if ZFS can detect audbver from all disk
corruptions in data and metadata and how ZFS reacts to heuttipck corruptions
at the same time. Through experiments, we find that ZFS istaldetect all and
recover from most disk corruptions.

3.2.1 Methodology

Now we present the methodology of our reliability analysisZz6S against disk
corruptions. We discuss our fault injection framework famstd then present our
test procedures and workloads.

Fault Injection Framework

Our experiments are performed on a 64-bit Solaris Expresanmity Edition
(build 108) virtual machine with 2GB memory. We use ZFS paaision 14 and
ZFS file system version 3. We run ZFS on top of a single disk fmraxperiments.

To emulate disk corruptions, we developed a fault injectramework consist-
ing of a pseudo-driver to perform fault injection on diskdke and an application
for controlling the experiments. The pseudo-driver is adéad Solaris layered
driver that interposes between the ZFS virtual device aadlibk driver beneath.
We analyze the behavior of ZFS by looking at return valuesckimg system logs,
and tracing system calls.

25

Test Procedure and Workloads

In our tests, we wanted to understand the behavior of ZFSstoabrruptions on
different types of blocks. We injected faults by flippingshéit random offsets in
disk blocks. Since we used the default setting in ZFS for gesgion (metadata
compressed and data uncompressed), our fault injectismdesupted compressed
metadata and uncompressed data blocks on disk. We injexittd 6n nine differ-
ent classes of ZFS on-disk blocks and for each class, wepteda single copy as
well as all copies of blocks.

In our fault injection experiments on pool-wide and file gystlevel metadata,
we used “mount” and “remount” operations as our workloade Thount” work-
load indicates that the target block is corrupted with thel gaxported and “myfs”
not mounted, and we subsequently mount it. This workloade®ZFS to use on-
disk copies of metadata. The “remount” workload indicated the target block is
corrupted with “myfs” mounted and we subsequently umout miount it. ZFS
uses in-memory copies of metadata in this workload.

For injecting faults in file and directory blocks in a file syist, we used two
simple operations as workloads: “create file” creates a nevinfia directory, and
“read file” reads a file’s contents.

3.2.2 Results and Observations

The results of our fault injection experiments are shownabld& 3.2. The table
reports the results of experiments on pool-wide metadaldinsystem metadata
and data. It also shows the results of corrupting a singlg espwvell as all copies
of blocks. We now explain the results in detail in terms of tlxservations we
made from our fault injection experiments.

Observation 1. ZFS detects all corruptions due to the use of checksums
our fault injection experiments on all metadata and datafoued that bad data
was never returned to the user because ZFS was able to diétmmtraptions due
to the use of checksums in block pointers. The parental clueck are used in ZFS
to verify the integrity of all the on-disk blocks accessecheTonly exception are
uberblocks, which do not have parent block pointers. Caoiwap to the uberblock
are detected by the use of checksums inside the uberblaik its

Observation 2: ZFS gracefully recovers from single metadata block corrup-
tions For pool-wide metadata and file system wide metadata, Z&&eeed from
disk corruptions by using the ditto blocks. ZFS keeps thiite 8locks for pool-
wide metadata and two for file system metadata. Hence, ofedihgck corruption
to metadata, ZFS was successfully able to detect the cmrugbd use other avail-

26

Single All
ditto ditto
Q Q
cFE o =0
£32F | £38%
JECR | 2EG®
Level Block ELGL | ELGY
vdev labet RR ER
uberblock RR ER
zpool .
MOS object set block RR ER
MOS dnode block RR ER
myfs object set block| RR ER
myfs indirect block RR ER
zfs myfs dnode block RR ER
dir ZAP block RR EE
file data block E E

! excluding the uberblocks contained in it.

Table 3.2: On-disk corruption analysis The table shows the results of on-disk ex-
periments. Each cell indicates whether ZFS was able to excivom the corruption (R),
whether ZFS reported an error (E), whether ZFS returned bathdo the user (B), or
whether the system crashed (C). Blank cells mean that thkleaat was not exercised for
the block.

able correct copies to recover from it; this is shown by tHis¢R) in the “Single
ditto” column for all metadata blocks.

Observation 3. ZFS does not recover from data block corruptiof®r data
blocks belonging to files, ZFS was not able to recover fromugiions. ZFS de-
tected the corruption and reported an error on reading tteeldack. Since ZFS
does not keep multiple copies of data blocks by default, blsavior is expected;
this is shown by the cells (E) for the file data block.

Observation 4: In-memory copies of metadata help ZFS to recover from se-
rious multiple block corruptionsin an active storage pool, ZFS caches metadata
in memory for performance. ZFS performs operations on tisasbed copies of
metadata and writes them to disk on transaction group canifiitese in-memory
copies of metadata, along with periodic transaction cos\ntielp ZFS recover
from multiple disk corruptions.

In the “remount” workload that corrupted all copies of ubed, ZFS recov-
ered from the corruptions because the in-memory copy of ttieeauberblock
remains as long as the pool exists. The in-memory copy isesuiesitly written
to a new disk block in a transaction group commit, making tidecorrupted copy

27

void. Similar results were obtained when corrupting othelpvide metadata and
file system metadata, and ZFS was able to recover from thekiplmblock cor-
ruptions (R).

Observation 5: ZFS cannot recover from multiple block corruptions affect-
ing all ditto blocks when no in-memory copy exigtsr file system metadata, like
directory ZAP blocks, ZFS does not always keep an in-memopy cinless the di-
rectory has been accessed. Thus, on corruptions to bovhbitiitks, ZFS reported
an error. This behavior is shown by the results (E) for doges indicating for
the “create file” and “read file” operations. Note that we perfed these corrup-
tions without first accessing the directory, so that thereevm® in-memory copies.
Similarly, in the “mount” workload, when the pool was inaeti(exported) and
thus no in-memory copies existed, ZFS was unable to recowar multiple disk
corruptions and responded with errors (E).

Observation 4 and 5 also lead to an interesting conclus@atratmactive storage
pool is likely to tolerate more serious disk corruptionsitlaa inactive one.

In summary, ZFS successfully detects all corruptions andvers from them
as long as one correct copy exists. The in-memory cachingarnadic flushing of
metadata on transaction commits help ZFS recover fromsedisk corruptions
affecting all copies of metadata. For user data, ZFS doeksasqt redundant copies
and is unable to recover from corruptions. ZFS, howeveedstthe corruptions
and reports an error to the user.

3.3 In-memory Data Integrity in ZFS

Although ZFS was not specifically designed to tolerate mgnooirruptions, we
still would like to know how ZFS reacts to memory corruptipns., whether ZFS
can detect and recover from a single bit flip in data and me&daolacks. In this
section, we perform a series of fault injection experimeatstudy the behavior of
ZFS in the presence of memory corruptions. We find that ZFShbasrecautions
for memory corruptions: bad data blocks are returned to $slee or written to disk,
file system operations fail, and many times the whole systashes.

3.3.1 Methodology

Now we discuss the fault injection framework and the testedore and work-
loads. The injection framework is similar to the one usedofodisk experiments.
The only difference is the pseudo-driver, which in this ¢casieracts with the ZFS
stack by calling internal functions to locate the in-memstryictures.

28

Test Procedure and Workloads

Object Data Structures Workload
MOS dnodet, dnodephyst
dnode zfs create,
Object dnodet, dnodephyst, zfs destroy,
directory mzapphyst, mzapentphyst zfs rename,
Dataset dnodet, dnodephyst, zfs list,
dslLdatasefphyst zfs mount,
Dataset dnodet, dnodephyst, zfs umount

directory dslLdir_physt
Dataset dnodet, dnodephyst,
child map | mzapphyst, mzapentphyst

FS dnode | dnodet, dnodephyst zfs umount,

Master dnodet, dnodephyst, path traversal

node mzapphyst, mzapentphyst

File dnodet, dnodephyst, open, close, Iseek, read,
znodephyst write, access, link, unlink,

Dir dnodet, dnodephyst, rename, truncate
znodephyst, (chdir, mkdir, rmdir)

mzapphyst, mzapentphyst

Table 3.3:Summary of Tested ObjectsThe table presents a summary of all ZFS ob-
jects corrupted in our in-memory analysis, along with thddta structures and the work-
loads exercised on them.

We wished to find out the behavior of ZFS in response to cawmaogtin differ-
ent in-memory objects. Since all data and metadata in meareryncompressed,
we performed a controlled fault injection in various obgedtor metadata, we ran-
domly flipped a bit in each individual field of the structur@arately; for data, we
randomly corrupted a bit in a data block of a file in memory. \&fgeated each fault
injection test five times. We performed fault injection sesh nine different types
of objects at two levels (zfs and zpool) and exercised diffeset of workloads as
listed in Table 3.3. Table 3.4 shows all data structureslenie objects and all the
fields we corrupted during the experiments.

For data blocks, we injected bit flips at an appropriate tisidescribed below.
For reads, we flipped a random bit in the data block after it waded to the page
cache; then we issued a subsequent read() on that block tbZeg returned the
corrupted block. In this case, the read() call fetched tbelbfrom the page cache.
For writes, we corrupted the block after the write() callshed but before the target
block was written to the disk.

Data Structure

29

Fields

dnodet

dn.nlevels,
dn.indblkshift,
dn_datablkszsec,
dn_.compress,
dn.checksum,
dn_type

dnbonustype,
dnnblkptr,
dmaxblkid,
drbonuslen,

dnodephyst

dn_nlevels,
dn.indblkshift,
dn.datablkszsec,
dn_.compress,
dn.checksum,

dn flags,

dnbonustype,
dnnblkptr,
dmaxblkid,
dibonuslen,

driype, dnused,

mzapphyst

mz_block type, mzsalt

mzapentphyst

mzevalue, mzename

znodephyst

zp_mode, zpsize, zplinks,
zp_flags, zpparent

dslLdir_physt

dd_headdataseibj,

dd_child_dir_zapobj,
dd_parentobj
ds.dir_obj

dslLdatasetphyst

Table 3.4:Summary of Tested Data structures and FieldsThe table lists all fields
we corrupted in the in-memory experimentsizap_phys .t and mzap_ent _phys _t are
metadata stored in ZAP blocks. The last three structuresoaject-specific structures
stored in the dnode bonus buffer.

For metadata, in our fault injection experiments, we cadesebroad range
of metadata structures (totally 16 core objects/strusjurdo reduce the sample
space for experiments to more interesting cases, we madehwioes. First, we
always injected faults to the in-memory structure afterdisvaccessed by the file
system, so that both the in-heap version and page cachewatseady exist in the
memory. Second, among the in-heap structures, we only meduthednode _t
structure (in-heap version afode _phys .t). The dnode structure is the most
widely used metadata structure in ZFS and every object inigF&presented by a
dnode. Hence, we anticipate that corrupting the in-heaplestructure will cover
many interesting cases.

3.3.2 Results and Observations

We present the results of our in-memory experiments in TaldeAs shown, ZFS
fails to catch data block corruptions due to memory errorgdth read and write

30

experiments. Single bit flips in metadata blocks not only areturning bad data
blocks, but also cause more serious problems like failugpefations and system
crashes. Note that Table 3.5 only shows cases with appareblems. In other

cases that are either indicated by a dot (.) in the resuk celhot shown at all in

Table 3.5, the corresponding operation either did not acttesscorrupted field or
completed successfully with the corrupted field. Howevesli cases, ZFS did not
correct the corrupted field.

Next we present our observations on ZFS behavior and usiesiresults.
The first five observations are about ZFS behavior and thévasbbservations are
about user-visible results of memory corruptions.

Observation 1. ZFS does not use the checksums in the page cache along
with the blocks to detect memory corruptionrShecksums are the first guard for
detecting data corruption in ZFS. However, when a block risaaly in the page
cache, ZFS implicitly assumes that it is protected agaiosugptions. In the case
of reads, the checksum is verified only when the block is bedagl from the disk.
Following that, as long as the block stays in the page cathg,never checked
against the checksum, despite the checksum also being ipathg cache (in the
block pointer contained in its parental block). The ressiithat ZFS returns bad
data to the user on reads.

For writes, the checksum is generated only when the blockiisgbwritten to
disk. Before that, the dirty block stays in the page cachb aitoutdated checksum
in the block pointer pointing to it. If the block is corruptadthe page cache before
it is flushed to disk, ZFS calculates a checksum for the backldad stores the new
checksum in the block pointer. Both the block and its patéstek containing the
block pointer are written to disk. On subsequent reads obtbek, it passes the
checksum verification and is returned to the user.

Moreover, since the detection mechanisms already fail tectlenemory cor-
ruptions, recovery mechanisms such as ditto blocks and ifered zpool are not
triggered to recover from the damage.

The results in Table 3.5 indicate that when a data block wasugted, the
application that issued a read() or write() request wagmetlibad data (B), as
shown in the last row. When metadata blocks were corrupté® accessed the
corrupted data structures and thus behaved wrongly, asshypwther cases in the
result table.

File Dir MOS dnode Dataset directory ?ﬁ:gsme;p Dataset
Structure Field ORWAUNT | OALUNTMCD | cdrimu cdrilmu|cdr|cdrim
dn.typelcccccc
dn_indblkshift .ec. . C..| . .EEE.E.E|
dn_nlevels c . . C ..cCcc.c.c|lcccecceccc CCcC| ccc. .
dnodet
dn.checksum B 2 © 2 O
dn.compress . C .. B
dn_maxblkid . .C .C|
dn_indblkshift C.. R L
dn.nlevels .ecC . C. . .C|C.| ...
dnodephyst dn_nblkptr . s .. .C.
dn_bonuslen . C .. R . C.C.
dn_maxblkid B .Cc.cC .C| C. .C.| .C.
zp.sizeE
ZnOdEphySt Zp_flags E. . E EE| EEEEEEEEE
dsLdir_physt dd_he_addz_itaselobj_ EEEE. .
- dd_child_dir_zapobj EC EC EC EC ECC
dslLdataseiphyst dsdir_obj .EE. .
data block B B]

Table 3.5: In-memory corruption results The table shows our memory corruption results. The opematiexercised are
O(open), R(read), W(write), A(access), L(link), U(un)imk(rename), T(truncate), M(mkdir), C(chdir), D(rmdig)izfs create), d(zfs
destroy), r(zfs rename), I(zfs list), m(zfs mount) andsu(afount). Each result cell indicates whether the systeshe@ (C), whether
the operation failed with wrong results or with a misleadmgssage (E), whether a bad data block was returned (B) orhehéte
operation completed (.). Large blanks mean that the opanatare not applicable.

T€

32

Observation 2: The window of vulnerability of blocks in the page cache is
unbounded.As Figure 3.4 shows, after a block is loaded into the pageecagh
first read, it stays there until evicted. During this intéyyfea corruption happens to
the block, any subsequent read will get the corrupted bledabse the checksum
is not verified. Therefore, as long as the block is in the paghe (unbounded), it
is susceptible to memory corruptions.

Observation 3: Since checksums are created when blocks are written to disk,
any corruption to blocks that are dirty (or will be dirtied$ written to disk per-
manently on a flushAs described in Section 3.1, dirty blocks in the page cache
are written to disk during a flush. During the flush, any dirtgdlk will further
cause updates of all its parental blocks; a new checksurerisahiculated for each
updated block and all of them are flushed to disk. If a memorgupdion happens
to any of those blocks before a flush (above the black dotteddefore G in Fig-
ure 3.4), the corrupted block is written to disk with a newaltseim. The checksum
is thus valid for the corrupted block, which makes the caianppermanent. Since
the window of vulnerability is long (30 seconds), and ther many blocks that
will be flushed to disk in each flush, we conjecture that thelillood of memory
corruption leading to permanent on-disk corruptions ishig

We did a block-based fault injection to verify this obseiwat We injected a
single bit flip to a dirty (or to-be-dirtied) block before adh; as long as the flipped
bit in the block was not overwritten by subsequent operatitime corrupted block
was written to disk permanently.

Observation 4: Dirtying blocks due to updating file access time increases th
possibility of making corruptions permanerBy default, access time updates are
enabled in ZFS; therefore, a read-only workload will updhteaccess time of any
file accessed. Consequently, when the structure containengccess time (znode)
goes inactive (or when there is another workload that ugdtte znode), ZFS
writes the block holding the znode to disk and updates antesvell its parental
blocks. Therefore, any corruption to these blocks will beegpermanent after the
flush caused by the access time update. Further, as mentaamkek, the time
interval when the corruption could happen is unbounded.

Observation 5: For most metadata blocks in the page cache, checksums are
not valid and thus useless in detecting memory corruptiByslefault, most meta-
data blocks such as indirect blocks and dnode blocks areremsgd on disk. Since
the checksums for these blocks are used to prevent diskptmms, they are only
valid for compressed blocks, which are calculated aftey #ve compressed dur-
ing writes and verified before they are decompressed dueads: When metadata
blocks are in the page cache, they are uncompressed. Tieertéfe checksums

33

contained in the corresponding block pointers are useless.

Observation 6: When metadata is corrupted, operations fail with wrong re-
sults, or give misleading error messages (Epr example, whenp _flags in
dnode _phys _t for a file object was corrupted, open() may return an errorecod
EACCES (permission denied). The case occurred when tfieoid bf zp _flags
was flipped from 0 to 1, which signifies that the file is quansadi by an anti-virus
software. Therefore, open() was incorrectly denied, gian error code EACCES.
The calls access(), rename() and truncate() also failethéosame reason.

Another example of a misleading error message happeneddudhiesad _dataset _obj
in dsl _dir _phys t for a dataset directory object was corrupted. In this cads, “
create” failed to create a new file system under the parersyfiiteem represented by
the corrupted object. ZFS gave a misleading error messagegsthat the parent
file system did not exist. ZFS gave similar error messagethier@cases (E) under
“Dataset directory” and “Dataset”.

Observation 7: Many corruptions lead to a system crash (Epr exam-
ple, whendn_nlevels (the height of the block tree pointed to by the dnode) in
dnode _phys _t for a file object was corrupted and the file was read, the system
crashed due to a NULL pointer dereference. In this case, €8 the wrong
value ofdn_nlevels to traverse the block tree of the file object and obtained an
invalid block pointer. Therefore, the block size obtaineohf the block pointer
was an arbitrary value, which was then used to index into exyarhose size was
much less than the value. As a result, the system crashed avhii_L pointer
was dereferenced.

Observation 8: The read() system call may return bad datas shown in
Table 3.5, for metadata corruptions, there were three calsere read() gave bad
data block to the user. In these cases, ZFS simply trustegatbe of the corrupted
field and used it to traverse the block tree pointed to by tleddnthus returning
bad blocks. For example, wheim_nlevels in dnode _phys t for a file object
was changed from 3 to 1, ZFS gave an incorrect block to thearsarread request
for the first block of the file. The bad block was returned beeaZiFS assumed that
the tree only had one level, and incorrectly returned arréatliblock to the user.
Such cases where wrong blocks are returned to the user alsdhepotential for
security vulnerabilities.

Observation 9: There is no recovery for corrupted metadatim the cases
where no apparent error happened (as indicated by a dot aghoetn) and the
operation was not meant to update the corrupted field, theigiion remained in
the metadata block in the page cache.

In summary, ZFS fails to detect and recover from memory qions. Check-

34

sums in the page cache are not used to protect the integhbtgaks. Therefore, bad
data blocks are returned to the user or written to disk. Maeaorrupted meta-
data blocks are accessed by ZFS and lead to operation faigrgystem crashes.

3.4 Probability Analysis of Memory Corruption

In this section, we present a preliminary analysis of thelillood of different fail-
ure scenarios due to memory errors in a system using ZFSifieply, given that
one random bit in memory is flipped, we compute the probasliof four scenar-
ios: reading corrupt data (R), writing corrupt data (W),striag/hanging (C) and
running successfully to completion (S). These probaedithelp us to understand
how severely file system data integrity is affected by menoaryuptions and how
much effort file system developers should make to add exgtgiion to maintain
data integrity.

3.4.1 Methodology

We apply fault-injection techniques to perform the analysConsidering one run
of a specific workload as a trial, we inject a fixed number nundieandom bit
flips to the memory and record how the system reacts. By doinlgpte trials,
we measure the number of trials where each scenario ocbuis gstimating the
probability of each scenario given that certain number t& are flipped. Then,
we calculate the probability of each scenario given the weoge of one single bit
flip.

We have extended our fault injection framework to conduet ékperiments.
We replaced the pseudo-driver with a user-level “injectotiich injects random
bit flips to the physical memory. We used filebench [107] toegate complex
workloads. We modified filebench such that it always writeglpfined data blocks
(e.g., full of 1s) to disk. Therefore, we can check every r@aeration to verify that
the returned data matches the predefined pattern. We caveaisathe data written
to disk by checking the contents of on-disk files.

We used the framework as follows. For a specific workload, amel00 trials.
For each trial, we used the injector to generate 16 randofftigstat the same time
when the workload has been running for 3 minutes. We then tkeptvorkload
running for 5 minutes. Any occurrence of reading corruptd&) was reported.
When the workload was done, we checked all on-disk files tafshere was any
corrupt data written to the disk (W). Since we only verify igroperations after each
run of a workload, some intermediate corrupt data might e overwritten and

35

thus the actual number of occurrence of writing corrupt datad be higher than
measured here. We also logged whether the system hung tedr&S) during
each trial, but we did not determine if it was due to corrupitid ZFS metadata or
other kernel data structures.

It is important to notice that we injected 16 bit flips in eadhltbecause it let
us observe a sufficient number of failure trials in 100 tridlewever, we apply the
following calculation to derive the probabilities of difemt failure scenarios given
that 1 bit is flipped.

3.4.2 Calculation

We useP;(X) to represent the probability of scenatigiven thatk random bits
are flipped, in which X could be R, W, C or S. Therefofg(X) =1 — P,(X) is
the probability of scenarid not happening given that bits are flipped. In order
to calculateP; (X), we first measuré’, (X) using the method described above and
then deriveP; (X) from Py(X), as explained below.

e Measure P (X) Given thatk random bit flips are injected in each trial, we
denote the total number of trials @6 and the number of trials in which
scenariaX occurs at least once aéx. Therefore,

Py(X) N

e Derive P;(X) Assumek bit flips are independent, then we have
Pu(X) = (P (X))*, whenX = R, W or C

Pu(X) = (P(X))*, whenX = §
=1

SubstitutingPy, (X) — P(X) into the equations above, we can get,

Pi(X)=1- (1 — Py(X))*, whenX = R, W or C
Pi(X) = (Py(X))*, whenX = S

3.4.3 Results

The analysis is performed on the same virtual machine asomecktin Section 3.2.1.
The machine is configured with 2GB memory and a single diskingnZFS. We
first ran some controlled micro-benchmarks (e.g., seqalamad) to verify that the

36

Workload P16(R) P16(W) Plﬁ(C) Plﬁ(S)
varmail 9%1[4, 17] 0%]0, 3] 5%][1,12] | 86%[77, 93]
oltp 26%][17,36] | 2%][0,8] | 16%][9,25] | 60%][49, 70]

webserver| 11%]5, 19] | 20%][12, 30] | 19%][11, 29] | 61%]50, 71]
fileserver | 69%]58, 78] | 44%[34, 55] | 23%[15, 33] | 28%][19, 38]

Workload Pi(R) P (W) P (C) P (S)
varmail [0.6%[0.2,1.2]] 0%]0, 0.2] |0.3%][0.1, 0.8]| 99.1%[98.4, 99.5]
oltp 1.9%][1.2, 2.8]| 0.1%]0, 0.5] | 1.1%]0.6, 1.8]| 96.9%[95.7, 97.8]

webserver| 0.7%]0.3, 1.3]| 1.4%]0.8, 2.2]| 1.3%]0.7, 2.1]| 97.0%[95.8, 97.9]
fileserver | 7.1%][5.4, 9.0]| 3.6%]2.5, 4.8]| 1.6%][1.0, 2.5]| 92.4%[90.2, 94.2]

Table 3.6:P14(X) and P, (X) The upper table presents percentage values of the prob-
abilities and 95% confidence intervals (in square brackefs)eading corrupt data (R),
writing corrupt data (W), crash/hang and everything beingef{S), given that 16 bits are
flipped, on a machine of 2GB memory. The lower table givesdheat! percentage values
given that 1 bit is corrupted. The working set size of eachkad is less than 2GB; the
average amount of page cache consumed by each workloadtadtéit flips are injected

is 31MB (varmail), 129MB (oltp), 441MB (webserver) and 9B {leserver).

methodology and the calculation is correct (the result tsshown due to limited
space). Then, we chose four workloads from filebench: vdrrolp, webserver
and fileserver, all of which were exercised with their defaarameters. A detailed
description of these workloads can be found elsewhere [107]

Table 3.6 provides the probabilities and confidence intergaren that 16 bits
are flipped and the derived values given that 1 bit is flippedteNhat for each
workload, the sum of’,(R), P,(W), P,(C) and P, (S) is not necessary equal to
1, because there are cases where multiple failure scertatos in one trial.

From the lower table in Table 3.6, we see that a single bitrilimeémory causes
a small but non-negligible percentage of runs to experiéaibere. For all work-
loads, the probability of reading corrupt data is greatanth.6% and the probabil-
ity of crashing or hanging is higher than 0.3%. The probabdi writing corrupt
data varies widely from 0 to 3.6%. Our results also show thahost cases, when
the working set size is less than the memory size, the more gaghe the workload
consumes, the more likely that a failure would occur if ortasbilipped.

In summary, when a single bit flip occurs, the chances ofraitcenarios hap-
pening can not be ignored. Therefore, efforts should be nmageeserve data
integrity in memory and prevent these failures from happgni

37

3.5 Summary

In this chapter, we analyzed a state-of-the-art file systéR§g, to study the im-
plications of disk and memory corruptions to data integritf/e used carefully
controlled fault injection experiments to simulate readislisk and memory errors
and presented our observations about ZFS behavior andiistreess.

While the reliability mechanisms in ZFS are able to provieasonable robust-
ness against disk corruptions, memory corruptions stiia® a serious problem
to data integrity. Our results for memory corruptions iaté cases where bad
data is returned to the user, operations silently fail, &edvwhole system crashes.
Our probability analysis shows that one single bit flip haslitsut non-negligible
chances to cause failures such as reading/writing cormafptahd system crashing.

We argue that file systems should be designed with comprisleetesta protec-
tion. File systems should not only provide protection agiitisk corruptions, but
also aim to protect data from memory corruptions, which negire cooperation
from the page cache and even user-level applications.

38

39

Chapter 4

Z°FS: Cooperative Data
Protection in Local Storage

Many features that storage systems provide require greatazad coordination
across the many layers of the system (e.g., performancejntegrity checks for

data protection generally remain isolated within indidtleomponents. For ex-
ample, as shown in Chapter 3, ZFS uses checksums to protalisioblock, but

fails to extend the checksums to protect in-memory dataj Haks have built-in

ECC for each sector [22], but the ECCs are rarely exposecetoppper-level sys-
tem; TCP uses Internet checksums to protect data payloddoitlonly during the

transmission. When data is transferred across comporgaiis,is not protected
and thus may become silently corrupted.

A comprehensive approach is to apply the straight-forwadite-end data pro-
tection [94], where high-level applications generate agfy checksums for their
data such that the checksums protect data throughout tire #@ stack. This
approach does provide better data protection, but it suttes performance and
timeliness problems, as discussed in Chapter 1.

To address both problems, we propose a new concept dédhalile end-to-
end data integrity With this concept, all components on the 1/O path are awhre o
the checksum, and different components can choose diffeypa of checksum,
depending on the reliability characteristics (e.g., f@luate) and performance re-
quirements (e.g., throughput) of the component. Then, weldp an analytical
framework to provide rationale for the new concept. Spadlificthe framework is
able to evaluate and compare the reliability of differeatage systems, and help to
choose proper checksums for different components. Fimgliigled by the frame-
work, we build Zettabyte-reliable ZFS tES) by applying flexible end-to-end data

40

protection to ZFS. ZFS is able to provide Zettabyte Reliability while performin
comparably to ZFS.

The rest of the chapter is organized as follows. In Sectitinwle introduce the
framework for evaluating reliability of storage systemse Wven present the design
of Z?FS in Section 4.2 and discuss some implementation issuesdtios 4.3.
Finally, we evaluate ZFS in Section 4.4.

4.1 Reliability of Storage Systems with Data Corruption

We now present a framework to analyze the reliability ofagersystems with data
corruption. The framework uses analytical models for eagte tof device and
checksum in a system to calculate a reliability metric imtziof the probability of
undetected data corruption.

41.1 Overview

The reliability of a storage system can be evaluated baséawriikely corruption
would occur. There are two types of corruption: detected amdketected (silent
data corruption, SDC). Detected corruption is the caseybiems is built to detect
and may recover from, but SDC is what the system is not prdgare SDC does
more harm in that it would be treated as correct data and nrétyeiupollute other
good data (e.g., RAID reconstruction with corrupted dat@erefore, we focus on
the probability of SDC in a storage system. To quantify hdwly a SDC would
occur, we use the probability of undetected data corrugiiela) when reading a
data block from the systetR;, ;4. as a reliability metric.

Py,s_vac for a storage system depends on various devices, each df wizig
experience corruptions caused by different factors. Eaelicd may employ dif-
ferent types of hardware protection and the upper-levekay®r application may
add extra protection mechanisms. Therefore, we proposangefvork that takes
a ground-up approach to derive the system-level relighitietric from underlying
devices.

The framework consists of models for devices and checkséthsnodels are
built around the basic storage unit, a data blocl difits. For a raw deviceD
(with its own hardware-level checksum), we are interestdubiv likely corruption
would occur to a block and escape from the detection of thécdsvchecksum
(P.(D)). To detect such corruption, high-level (software) chedks are usually
applied on top of a raw device (henceafter, we will use “claok’ to indicate the
high-level checksum). Each data block has a checksuinbis. For a checksum

41

C and deviceD, we focus on the device-level probability of undetectedgaiion
(Pudc(D, C)) when the checksum is used to protect a data block on theealevic

Devices with different checksums are connected in varioagsvio form the
whole system. A data block can pass through or stay in sedekates from the
time it is born to the time it is accessed. By considering agible corruption
scenarios during this time period, we calculate the overalbbability of undetected
data corruption when reading the data block from the sysfem (qc.)-

4.1.2 Models for Devices and Checksums

To demonstrate how to apply the framework, we present mddeldevices and
checksums that will be used throughout the chapter. We msdagotions (e.g.,
independence of bit errors) to simplify our models such tiratcan focus on rea-
soning about the reliability of storage systems within tlaerfework; discussion on
more complex and accurate models is beyond the scope ofthirer.

Device Model

We consider two types of devices, hard disksk) and memory{em) , and one
type of corruption: random bit flip. We assume the block siz32768 bits (4KB).

Hard Disks Hard disks are a long-term storage medium for data, and anerkn
to be unreliable. Hard disks can exhibit unusual behaviesabse of hardware
faults such as latent sector errors [22, 96]. These errorsisaally be detected by
disk ECC. The less-likely but more harmful silent data cptian may come from
hardware bit rot, buggy firmware, or mechanic faults (suctrapped writes and
misdirected writes [23, 92]), causing random bit flips amotklcorruption. These
errors are not detectable by disk ECC.

Bit error rate (BER) is often used to characterize the réitgtof a hard disk.
BER is defined as the number of bit errors divided by the taiatlper of bits trans-
ferred and often refers to detected bit error (by disk EC®}.d#lent corruption,
we are more interested in the undetected bit error rate (JB&Rich is the rate
of errors that have escaped from ECC. Assuming each bit erridata block is
independent and the number of bit errors follows a binomigttibution, the prob-
ability of an undetected bit flip is equal to UBER. Assumingrthis at most one
flip for each bit, the probability of bit flips in ab-bit block is:

b

P.(dsk,1) = (z) (UBER)'(1 — UBER)"™*

42

Therefore, the probability of corruption in a block is thersaf the probabilities of
all possible bit flips (from exactly 1 bit flip to exact b bit fip

b

Po(dsk) =Y <z;> (UBER)'(1 — UBER)"

1=1

While BER is often reported by disk manufactures, rangiognfi0—'4 to 1016,
there is no published data on UBER. Rozier et al. estimatatittie rate of un-
detected disk error caused by far-off track writes and hardvbit corruption is
betweenl0~'2 and10~!2 [92]. Although we do not know the percentage of errors
caused by either fault, we conservatively assume that rmedtiaerrors and thus
we pick 10~'2 as the UBER for current disks. In our study, we choose a wider
range for UBER, froml0~1° to 10~2°, to cover more reliability levels. To simplify
the presentation, we define ttisk reliability indexas—log;o(UBER).

Memory Memory (DRAM) is mainly used to cache data for performancé. B
flips are the main corruption type, probably due to chip faltexternal radiation
[75, 133]. Earlier studies show that memaory errors can oatarrate of 10 to 360
errors/year/GB [83, 84, 100] and suspect that most errers@it errors, which are
transient. However, recent studies show that memory eomrsr more frequently
[63, 71, 97] and are probably dominated by hard errors (&diace defects). If a
memory module has ECC or more complex codes such as chif&ill fhen both
soft errors and hard errors within the capability of the codan be detected or
corrected. However, corruption caused by software bugg][afe not detectable
by these hardware codes.

For memory, the error rate is usually measured as failuréeme (FIT) per
Mbit. Assuming each failure is a bit flip, 1 FIT/Mbit means thés one bit flip
in one billion hours per Mbit. Assuming each bit flip is indaedent and the same
bit can only experience one flip, we model the number of bisfiipab-bit block
during a time period as a Poisson distribution with a constant failure rater-
rors/second/bit. Therefore, the probability:diit flips in ab-bit block during time
tis:

—bAt i
P.(mem,i,t) = 61&

Summing up the probabilities of all possible bit corrupipwe have:

b bt
e b)\t
mem t Z
i=1

43

Previous studies reported FIT/Mbit as low as 0.56 [72] ankigis as 167,066 [63].
Converting to errors/second/bit gives the rangeXdirom 1.48 x 10719 (i) t0
4.42 x 107 (A\jnae)- In this chapter, we choogk62 x 1071° (\,,;4) as the error
rate of non-ECC memory; it is derived from 25,000 FIT/Mbithiah is the lower
bound of the DRAM error rate measured in a recent study [97¢ pigk \,.in
as the error rate of ECC memory, because most errors woulsl een detected
by ECC. We use-logip(A\) as thememory reliability index The corresponding
indices for\,in, Amid, and,,q. are 18.8, 14.2, and 13.4.

Checksum Model

The effectiveness of a checksum is measured by the pralyatifilundetected cor-
ruption given an error rate. It is usually difficult, somet¢isnimpossible, to have
an accurate model for the probability, because of the coxitplef errors and the
data-dependency property of some checksums. Thereforepplg an analytic
approach to evaluate checksums for random bit flips.

We focus on two types of checksum: xor (64-bit) and FletcBé&6{bit). Ex-
clusive or checksums (xor) are calculated by XORing eachifsized chunk of a
data block. For example, a 64-bit xor checksum over a 4KB bhtek is com-
puted by XORing every 64-bit of data in the block. The xor dtsean is very fast
to calculate, but it can only detect one bit error. On the oltaad, Flecther check-
sum is more complex, which involves calculating two cheoksiat a time. For
instance, to compute a 256-bit Fletcher checksum from a 4ikBkbthe block is
first divided into an array of 128-bit data chunks (d», ..., d2s¢), and two 128-bit
checksumsd; andss) are initialized with 0. Then for every data chudk(i from
1 to 256),s; and s, are calculated using one’s complement addition as follows:
51 = (s1 4 d;) mod 2'?8 andsy = (s5 + 51) mod 2'?8. Finally, the two checksums
are concatenated to form the Fletcher checksum of the blBlgtcher checksum
is slower to compute than xor, but it can detect all 1-bit exeind 2-bit errors in a
4KB block.

Our approach to model both checksums is similar to the oné unsa recent
study on checksums for embedded control networks [74]. @ka is based on
Hamming Distance (HD). A checksudi with HD=n can detect all bit errors up
ton — 1 bits, but there is at least one casendbit flips that is undetectable by the
checksum. We usg(C) to represent the fraction afbit flips that are undetectable
by checksumC'. Then, the probability of undetectablebit flips is P.(D,n) x
F(C), in which P.(D,n) is the probability ofn bit flips on deviceD. The actual
P,q. is the sum of the probabilities of undetectable bit flips frero b (the size of
the block isb bits). Since the occurrence of more thabit flips is highly unlikely,

44

Reliability Score | Reliability Goal Pyys_udc
8.4 Terabyte 3.73 x 1079
11.4 Petabyte 3.64 x 10712
14.4 Exabyte 3.55 x 1071°
17.5 Zettabyte 3.46 x 10718

Table 4.1:Reliability ScoresThis table lists a mapping from reliability scores to differ
ent reliablity goals.

the probability of undetected bit flips dominatesP, 4. [74]. Therefore, we have
the approximation of,;.(D,C) = P.(D,n) x F(C).

The value of P.(D,n) can be easily calculated based on the model of each
device, so the key parameter i§C'). Assuming the block size is bits and the
checksum size ig bits, there is an analytical formula for xor [74F (zor) =
%. Since the HD for xor is 2, we have?,.(D, xor) = P.(D,2) x %

But for Fletcher (HD=3), we can only get an approximation]{18(Fletcher) =
4.16 x 10720, Therefore,P,q.(D, Fletcher) = P.(D,3) x (4.16 x 10~2Y),

4.1.3 Calculating Psys—_yqc

Based on previous models, given the configuration of a stosygtem, we can
calculateP;, ;4. by summing up the probabilities of every silent corruptice-s
nario during the time from the data being generated to itdhedad. We define
the reliability scorefor a system as-logio(Psys—udc); igher scores mean better
reliability.

Finding all scenarios that lead to a silent corruption iskiyi In reality, it is
possible that multiple devices corrupt the same data whisririansferred through
or stored on them. In this chapter, we assume that in eaclaisogthere is only
one corruption from when a data block is born to when it is rieawch the system.
One reason is that data corruption is rare - multiple cormuptto the same data
block are unlikely. Another reason is that with this assuamtwe do not have to
reason about complex interactions of corruption from mpldtdevices, which may
require more advanced modeling techniques.

Determining whether a value @,;_q. is good enough for a storage system
is not easy. Ideally, the best value &f,,_.q4. is O, but this is impossible. In
reality, P,,s_yqc IS a tradeoff between reliability and performance; it skobé

45

Cfg Cfg Index
Num Name | Mem | Dsk | Description
1 low-end | 13.4 | 10 | worst mem & dsk
2 consumer| 14.2 | 12 | non-ECC mem & regular dsk
3 enterprise| 18.8 | 12 | ECC mem & regular dsk
4 server 18.8 | 20 | ECC mem & best dsk

Table 4.2:Sample System Configurationsrhis table shows four configurations of a
local file system that we will study throughout the dissétat

low enough such that SDC is extremely rare, but at the same itishould not
hinder the system'’s performance. In this chapter, wedgdtabyte Reliabilityas a
reliability goal of storage systems. Zettabyte reliapifiteans that there is at most
one SDC when reading one Zettabyte data from a storage syéféimour models,
assuming the block size and the 10 size is 4KB, this goal lad&s toF;, ;4. =
Pyoar = 3.46 x 107'®, which in terms of a reliability score is 17.5. Intuitively,
we can map other reliability scores to similar reliabilitgtrics, as shown in Table
4.1. Note that the numerical value of the reliability goalyndiffer depending
on the accuracy of the assumptions and models, and it mayenptdzise; our
purpose is to use it as a way to demonstrate how to make preeroffs between
performance and protection in a storage system.

4.1.4 Example: NCFS

To illustrate how to apply the framework to evaluate theatglity of a storage
system, we use a local file system with no checksum (NCFS) asxample. We
focus on four configurations of the system, as listed in Talf?e Within the range
for each index, we use the minimum value to represent thetwuemory or disks
which may be faulty or prone to corrupting data. We use theimam disk index
to represent disks that are much more reliable than regidks.d

The timeline of a data block from being generated to beingss®d is shown
in Figure 4.1. A writer application generates the blockgat The block stays in
memory untilt; when it is flushed to disk. The block is then read into memory
att, and finally accessed by a reader applicationsafThe residency time of the
block in writer's memory and reader's memorytis— to andts — to respectively.
To simplify the model and also because most file systems flughtdocks to disk

46

writer | storage | reader
| |
i mem (none) | dsk (none) | mem (none) T
. . >
t, t, t t
. Checksum Checksum
¢ Write T Read Generation Verification

Figure 4.1:Timeline of a Data Block in NCFSThis figure shows timeline of a block
from being generated by the writetyf to being read by the readety) in NCFS. The
timeline consists of three parts: writer in memory, storédisk), and reader in memory.
The name of the checksum used to protect data during eachptmed is listed in the
parentheses on the right of the device name.

at regular time intervals (usually 30 seconds), we asstymet, to be 30 seconds
for all blocks in this chapter.

Based on the “one corruption” assumption, there are threeasms that will
lead to silent data corruption: corruption that occurs mrisader’s memory, disk,
or the writer's memory. Therefore},,_, 4. for NCFS is approximately the sum
of the probabilities of corruption in each device:

PNCFS—udc :Pc(mema tresident) + Pc(dSk)
+ P.(mem, 30)

wheret,.qqent = t3 — to iS the residency time (in seconds) of the block in the
reader’s memory and 30 is the residency time of it in the wsitBemory. Py 4.

is a function of three variables: the reliability indicesrmémory and disk in the
system, and the residency timeg;gen:-

The reliability score of NCFStf.sident = 1) is shown in Figure 4.2, with the
four configurations marked as<®. We choosé,..s;qent = 1 because it represents
a best case (approximately) for reliability and we will diss the sensitivity of
reliability score tot, cs;gen: iN Section 4.2.3.

As one can see from the figure, when either the disk or the merebability
index is low, corruption on that device dominates the rdiigiscore. For example,
when the disk reliability index is 12, the reliability scavéthe system almost does
not change when the memory reliability index varies; bothfigp2 (consumer)
and config 3 (enterprise) have a score of 7.4 (even worse thaiifie reliability).
But when the disk is more reliable, memory corruption stevtdominate and the

47

N
o

=
(o]

[N
(o))

I
5

Disk Reliability Index

=
N

114 15 16 17 18
Memory Reliability Index

Figure 4.2:NCFS Reliability Score ¢,.cs;gent = 1) This figure illustrates a contour
plot of the reliability score of NCFS. Darker color means &wvgcore - worse reliability.
Four points marked with a %" represent the four sample configurations: low-end (1),
consumer (2), enterprise (3), server (4).

reliability score increases as the memory reliability xdecreases. When both
reliability indices are high, NCFS with config 4 (server) hhe best reliability

score of 12.8 (a little better than Petabyte), still lessttiee Zettabyte reliability

goal (17.5).

4.2 From ZFS to Z2FS

To explore end-to-end concepts in a file system, we now prégenvariants of
ZFS: BZFS, which takes the straight-forward end-to-end approackl ZFS,
which employs flexible end-to-end data integrity. Spedifjcave show how ZFS,
a modern file system with strong protection against diskugiion, can be further
hardened with end-to-end data integrity to protect daténalivay from application
to disk, achieving Zettabyte reliability with better perftance.

4.2.1 ZFS:the Original ZFS

ZFS is a state-of-the-art open source file system originaigated by Sun Mi-
crosystems with many reliability features. ZFS providetadategrity by using

48

reader

writer storage

dsk (Fletcher)

i mem (none) mem (none) T

| |

| |

| |
t t, t, t
@ Fletcher (V) Fletcher

3

. Checksum Checksum
¢ Write ¢ Read Generation Verification

Figure 4.3:Timeline of a Data Block in ZFS This figure shows timeline of a block
in ZFS. The name of the checksum used to protect data durofgteae period is listed in
the parentheses on the right of the device name. None meartgenksum is used.

checksums, data recovery with replicas, and consisterttyariopy-on-write trans-
actional model [29]. In addition, other mechanisms suchamdgal storage, inline
deduplication, snapshots, and clones, provide efficietat mi@nagement.

Problem

One important feature that distinguishes ZFS from mostrditeesystems is that
ZFS provides protection from disk corruption by using clerks. ZFS maintains
adisk checksunFletcher, by default) for each disk block and keeps the khao
in a block pointer structure. As shown in Figure 4.3, when ZiFtes a block to
disk attq, it generates a Fletcher checksum. When ZFS reads the béudk
verifies the checksum and places it in the page cache. In umen, ZFS is able
to detect many kinds of corruption caused by disk faultshsghbit rot, phantom
writes, and misdirected reads and writes [29].

However, Chapter 3, as well as some anecdotal evidence,[271,6hows that
ZFS is vulnerable to memory corruption. The checksum in ZF&ly verified and
generated at the boundary of memory and disk; once a bloachsed in memory,
the checksum is never verified again. Applications couldl fead data from the
page cache without knowing that it is corrupted. Even wafse dirty data page
is corrupted before the new checksum is generated, the ladnilhget to disk
permanently with a matching checksum and later reads wilbeacable to detect
the corruption.

N
o

4

. 18

()]

e}

=

> 16

E

=

S 14

4

2]

Q1) ¥,
10

114 15 16 17 18
Memory Reliability Index

Figure 4.4.ZFS Reliability Score (t,siqent = 1) This figure illustrates a contour plot
of the reliability score of ZFS. Darker color means lower ice worse reliability. Four
points marked with a %" represent the four sample configurations: low-end (1), somer
(2), enterprise (3), server (4).

Reliability Analysis

We apply the framework introduced in Section 4.1 to caleuthe reliability score
for ZFS. Similar to NCFS, there are three scenarios thatecSIxC:

PZFS—udc =P, (mem, tresident)
+ Pyyc(dsk, Fletcher)
+ P.(mem, 30)

Because ZFS has on-disk blocks protected by Fletcher, adlgtected corruption
contributes taPzes_yde.-

Figure 4.4 depicts the reliability score of ZFS. With Fletcprotecting data on
disk, the reliability score is now dominated by memory cption. However, the
reliability score is not improved much, due to the lack oftpotion of in-memory
data. Both config 3 (enterprise) and config (server) 4 havéitgest reliability
score of 12.8 (above Petabyte reliability), but they ark Isélow the Zettabyte
reliability goal (17.5). It is interesting to see that coigserver) in ZFS has the
same best reliability score as itself in NCFS, which indisathat when both the
disk and memory reliability indices are the highest, memmyruption is more

50

severe than disk corruption. Therefore, we need to protgetid memory.

4.2.2 PZFS: ZFS with End-to-end Data Integrity

To improve the reliability of ZFS, data both in memory and askdnust be pro-
tected. One way to achieve this is to apply the straight-fodiend-to-end concept.
In common practice, the writer generates an applicativatiehecksum for the data
block and sends both the checksum and data to the file systeoauBe the page
cache and the file system are not aware of the checksum, ttex wsually uses a
portion of the data block to store the checksum. When theereghds back the
block, it can verify the checksum portion to ensure the intg@f the data portion.
The checksum protects the data block all the way from theewtat the reader.

Because ZFS already maintains a checksum for each on-disk iol the block
pointer, we do not have to append the application checksutopaf ZFS'’s check-
sum. Instead, we can simply store the application checksutinei block pointer,
replacing the original disk checksum. Therefore, we oniyetta expose the check-
sum to the reader and writer, and make sure the page cachbkeafild system are
oblivious to the checksum.

Implementation

To achieve the straight-forward end-to-end data integvity make the following
changes to ZFS, transforming it int@ &S.

First, we attach checksums to all buffers along the I/O pa#er buffer, data
page and disk block. Since ZFS already providésk checksunfor each disk
block, we addmemory checksuito the user buffer and the data page. It enables
the system to pass checksums between the application and Slisce only one
checksum algorithm is used throughout the system, the meah@cksum and the
disk checksum are the same as the application-generateistime, assuming the
user buffers are always aligned to data pages. We will dssthesalignment issue
in Section 4.3. BEZFS currently supports both xor and Fletcher, but only one ca
be used at a time.

Second, we enhance the existing read/write system caltsanitew argument
to transfer checksums between user and kernel space. Trergement is a buffer
containing all checksums corresponding to the blocks inutteg buffer. On reads,
the application receives both data and checksum, and thalésto verify the
integrity of data. On writes, the application must geneathecksum for each
data block, and send both the data block and checksum thrineghew system
call.

51

writer ; storage ; reader
imem (Fletcher/xor) : dsk(FIetcher/xor): mem (FIetcher/xor)T
: : >
t, t, t, t,
@ Fletcher/xor () Fletcher/xor
. Checksum Checksum
¢ Write ¢ Read Generation Verification

Figure 4.5:Timeline of a Data Block in E2ZFS This figure shows timeline of a block
in E2ZFS. BZFS uses the same checksum (either xor or Fletcher) all tlyethvaugh.

Finally, we modify the checksum handling at the boundary efimory and disk
such that the checksum is always passed through this boundtout any extra
processing. EZFS simply stores both data and checksum on disk and does not
generate or verify the checksum. In this way, only the apfibms (reader and
writes) are responsible of verifying and generating theckbems, thus providing
the straight-forward end-to-end data integrity.

Reliability Analysis

The timeline of a data block from writer to reader is shown igufe 4.5. EZFS
uses one type of checksum (xor or Fletcher) all the way throlitpe writer gener-
ates the checksum for the data block@tand passes both the checksum and data
block to the file system. Both are then written to disk;aand read back at. The
reader receives them &t and verifies the checksum.

In E2ZFS, only undetected corruption during each time periodesa SDC;
detected corruption would be caught by the checksum veiditgperformed by
the reader. The probability of undetected data corrupson i

Pe2zes vie =Pudc(mem, Fletcher/zor, tresident)
+ Pyu4c(dsk, Fletcher /xor)
+ Pugc(mem, Fletcher /xor, 30)

The reliability scores of EZFS (xor) and BZFS (Fletcher) are shown in Figure
4.6(a) and Figure 4.6(b). Overall2EFS (Fletcher) has the best reliability, with
all scores above the reliability goal. ?EFS (xor) can meet the goal only when

52

20
« « 18
[()
he] ke
£ £
2 216
3 i
g s
2 214
X x
%) v
a) a5 .
—407
10
114 15 16 17 18 114 15 16 17 18
Memory Reliability Index Memory Reliability Index
(a) E2ZFS (xor) (b) E’ZFS (Fletcher)

Figure 4.6:E2ZFS Reliability Score (¢,csiqent = 1) These figures illustrate contour
plots of the reliability score of &2FS (xor) and BEZFS (Fletcher). Four points marked with
a“ x” represent the four sample configurations: low-end (1), s@mer (2), enterprise (3),
server (4).

System TP (MB/s) | Normalized TP
ZFS 656.67 100%
E2ZFS (Fletcher)| 558.22 85%
E2ZFS (xor) 639.89 97%

Table 4.3: Overhead of Checksum CalculationThis table shows the through-
put of sequentially reading a 1GB file from the page cache i8,ZEZFS (xor), and
E2ZFS(Fletcher).

both disk and memory are more reliable. Config 4 (server) hssoee of 27.8
while both config 2 (consumer) and config 3 (enterprise) haseoee of 17.1 (just
short of Zettabyte reliability). Comparing both figures, emhthe disk corruption
dominates (with an index below 12)2EFS (Fletcher) is much better thadZFS
(xor), showing that Fletcher is clearly a better checksunpfotecting blocks on
disk.

53

Performance Issues

E2ZFS (xor) is less reliable thar’EFS (Fletcher), but it offers better performance,
especially when the reader is reading data from memory. eTal8 shows the
throughput of reading a 1GB file from the page cache. As oneseanZFS has
the best throughput because there is no checksum caleuliatiolved. EZFS
with Fletcher suffers a throughput drop of 15%. In contrBSEZFS (xor) is able to
achieve a throughput just 3% less than ZFS, with the checl@ueopy optimiza-
tion [39], which calculates the xor checksum while data igied between kernel
space and user space. The checksum-on-copy technique eppliex easily and
efficiently due to the simplicity of xor checksum, but may beta good option for
stronger and more complex checksums such as Fletcher.

4.2.3 Z°FS: ZFS with Flexible End-to-end Data Integrity

There are two drawbacks with the straight-forward endrg-approach. Besides
the performance problem as shown above, it also suffers fnatimely recovery:
neither the page cache nor the file system is able to verifghleeksum to detect
corruption in time. To handle both problems, we buitF3 on top of the changes
we have made in &ZFS by further applying the concept of flexible end-to-enthda
integrity. For the timeliness problem, a simple fix is to addextra verification
when the data is being flushed to disk and when the data is beawfrom disk.
For the performance problem, however, more analysis ammigees are required.
We will focus on the performance problem in this section asduks the timeliness
problem in Section 4.3.

In this section, we will introduce two operation modes #F3: static mode, in
which checksums are changed only across components (ei\gedn memory and
disk), and dynamic mode, where checksums are even changetihe,

Static Mode with Checksum Chaining

Looking at the reliability score and performance figures 2IES, a natural ques-
tion one may ask is: can we combinéZES (xor) and EZFS (Fletcher) to make

a system with better performance while still meeting thébdlity goal? To an-
swer this question, we introduce the static mode T, ZFS (static), a hybrid

of E2ZFS (xor) and BZFS (Fletcher) that uses xor as the memory checksum and
Fletcher as the disk checksum. In static modd&;Zmust perform a checksum con-
version at the cache-disk boundary. To handle the convecsiorectly, we develop

a technique calle€hecksum Chainingvhich carefully changes the checksum to
avoid any vulnerable window.

54

writer storage reader

i mem (xor) dsk (Fletcher)
t t t t

1 3

0 2
(© xor @ Fletcher © xor (V) xor
(V) xor (V) Fletcher

. Checksum Checksum
¢ Write f Read Generation Verification

| |
: : mem (xor) T

A
>

Figure 4.7: Timeline of a Data Block in Z2FS with Checksum Chaining This
figure shows timeline of a block irfES with checksum chaining, which is appliedtat
andts.

Z?FS (static) converts the checksum from xor to Fletcher wheting data
to disk. With checksum chaining, it must generate the Fetamecksunbefore
verifying the xor checksum. In this way, the creation of tkeevrFletcher checksum
occurs before the last use (verification) of the old xor ckaak the coverage of
the new and old checksums overlaps. It is as if the two chesksare chained
to each other. A successful verification of the xor checksndicates that with
high probability, the Fletcher checksum was generated thescorrect data and
thus Fletcher checksum is correct. If the order of genegdletcher and verifying
Xor is reversed, there is a vulnerable window in betweenhdfdata is corrupted
in the window, the new Fletcher checksum will be calculatedrdhe corrupted
data, resulting in silent corruption, because the checkactmally “matches” the
bad data.

The timeline of a data block in2FS with checksum chaining is shown in Fig-
ure 4.7. On the write path, the writer generates an xor cluecks first. When the
block is being written to disk, ZFS generates a Fletcher checksum using check-
sum chaining and sends the Fletcher checksum and data toQtisthe read path,
Z?FS generates an xor checksum using checksum chaining whdimgethe data
block from disk, and then passes it to the reader along wihdtita block. The
reader finally verifies the xor checksum. As a side effect @fckbum chaining,
the xor checksum is verified at the cache-disk boundary omtite path and the
Fletcher checksum is verified on the read path, which helpatith any detectable
corruption in time.

With checksum chaining, S has to generate an xor checksum for each data

55

writer storage reader

|
: dsk (xor, Fletcher), mem (xor) T

¢ mem (xor)

|
|
I
t t, t, t,

0
(© xor @ Fletcher () Fletcher (V)xor
(V) xor

. Checksum Checksum
¢ Write f Read Generation Verification

Figure 4.8:Timeline of a Data Block in Z2FS (static) This figure shows timeline of a

block in ZFS (static). When there are two checksums during a time g@gtfi@ underlined
checksum is the primary checksum, as defined in Section 4.2.3

block when reading it from disk, which may affect the perfamoe. In fact, the
same xor checksum already existed when the data block wasvfiteen by the
application. Instead of regenerating the xor checksum eryaead, 2FS simply
stores both the xor checksum and the Fletcher checksum kmwtiisn writing a
data block, and then when reading it, both checksums artabieai The Fletcher
checksum is called therimary checksupbecause it is the required disk checksum.
By grouping both checksums and storing them on diglEZ skips the generation
of xor checksum on the read path, thus improving the perfoo@aNote that ZFS
still need to verify the primary checksum (Fletcher) wheadiag a block from
disk.

Reliability Analysis of Static Mode

Figure 4.8 shows an updated timeline fGiFB (static) with this optimization. The
probability of undetected corruption foPES (static) is:

PZQFS—udc = udc(mem> xor, tresident)
+ Pugc(dsk, zor& Fletcher)

+ Pygc.(mem, zor, 30)

Note that the corruption on disk must be undetectable by kothand Fletcher.
Since the block will be checked against the Fletcher cheunlkatit, and against the
xor checksum ats, if either checksum catches the corruption, there will rotb
silent data corruption.

56

= = =)
~ o fe9) o

Disk Reliability Index

[EEN
N

10
14 15 16 17 18

Memory Reliability Index

Figure 4.9: Reliability Score (t,esigent = 1) Of Z2FS (static) This graph is a
contour plot of the reliability score of2FS (static). Darker color means lower score -
worse reliability. Four points marked with aX” represent the four sample configurations:
low-end (1), consumer (2), enterprise (3), server (4).

The reliability score of ZFS (static) at,.sqent = 1 is shown in Figure 4.9.
Since on-disk blocks are protected by Fletcher, memoryuption dominates.
When memory corruption is severe with an index less than, 1B& reliability
score is below the goal. As the memory reliability index @ases, the reliability
score increases and becomes above the goal. Howewgt,as,; increases, the
reliability score will decrease and at some point it is polesto drop below the
goal.

To find out when we should us€ES (static), we focus on memory reliability
andt,.s;qent- We take a close look at three cases based on the memonyilitgliab
index: 13.4 Qe = 1.99x10714),14.2 (\,i0 = 6.62x1071%), and 18.8 §,in =
1.48 x 10~1). Since Figure 4.9 shows that memory corruption dominates,
value of the disk reliability index in each case does notciffiee reliability score.
Therefore, we fix the disk reliability index at 10 for the fitsise, and at 12 for
second and third case; the three cases now correspond tg dordfiand 3 (low-
end, consumer, and enterprise). Figure 4.10(a), Figul#).,land Figure 4.10(c)
illustrate the reliability score of ZS (static) versus residency time in all three
cases.

In Figure 4.10(c) where the memory reliable index is maximtira reliability

57

30 30
25 25
S 20f S 20f
O O
I e]
215 215
o Qo
g 8
8 10t & 10t
5f —7%Fs 51 —Z7%Fs
---Goal ---Goal
O0 50 100 150 200 250 300 00 50 100 150 200 250 300
Residency Time (s) Residency Time (s)
(@) Mnaz (index = 13.4, config 1, low-end) (b) Amia (index = 14.2, config 2, consumer)
301 301
25 25
S 20 2 20t
o o T
[I L I
215 £ 15/
o Qo
g 8
8 10t & 10t
5f —7%Fs 51 —Z7%Fs
---Goal ---Goal
O0 50 100 150 200 250 300 00 50 100 150 200 250 300
Residency Time (s) Residency Time (s)

() Amin (index = 18.8, config 3, enterprise) (d) Aia (index = 14.2, config 2, consumer)

Figure 4.10:Reliability Score vSt,cgidens in Z2FS These figures show the relation-

ship between reliability score and residency time #fF3. The first three are for the static
mode, and the last for the dynamic mode, in which the checksiitohing occurs at 92
seconds.

score is above the goal and they will intersect after abowgrsereeks (not shown).
It indicates that xor is probably strong enough for data inmuoey; Z2FS (static)
fits right into this case.

In contrast, when the index is minimum as shown in Figure @)1@he whole
line of Z2FS is below the goal. It shows that xor is not strong enoughdtept data
in memory. To handle this extreme caséF3 (static) skips checksum chaining and
uses Fletcher all the way through, but keeps the extra \aitit at the boundary of
memory and disk. In this way,2ES (static) can provide the same level of reliability
as BZFS (Fletcher).

The most interesting case is shown in Figure 4.10(b) with enamg reliability

58

writer storage | reader

l mem (Xor) : dsk (xor, Fletcher) : mem (xor, FIetcher)T | mem (xor, FIetcher)T

N
>

t0 t1 t2 t3 tswitch t3
© xor © Fletcher (Y) Fletcher (V) xor () Fletcher
() xor
. Checksum Checksum
¢ Write T Read Generation Verification

Figure 4.11:Timeline of a Data Block in Z2FS (dynamic) This figure shows time-

line of a block in 2FS (dynamic). The memory checksum is switched from xor toHée
at t,witch.

index of 14.2. When the residency time is less than 92 sec@R#S is able to keep
the reliability score above the goal. However, after thendtore drops below the
goal and slowly converges to’EFS (xor). In this case, in order to make sure the
reliability score is always above the goalZS may need to change to a stronger
checksum at some point when data stays longer in memory.

Dynamic Mode with Checksum Switching

To prevent the reliability score from dropping below the Igmmthe residency time
increases, we apply a technique cal@decksum Switchinp Z?FS (static). The
idea behind checksum switching is simple. On the read phtretare already
two checksums on disk: xor and Fletche?FB can simply read both checksums
into memory; for the first,,.., sSeconds, ZFS uses xor as thaeaker memory
checksunand then switch to Fletcher as thiigonger memory checksuaftert .,;ch
seconds. ltis just a simple change of checksum and theredgtremoverhead. We
call this mode 2FS (dynamic).

Reliability Analysis of Dynamic Mode

Figure 4.11 shows the timeline of a block ifZS (dynamic mode). The static
mode is essentially a special case of dynamic mode with areelly large value of
tswiten, SUCH thats is always in betweet, andt . itch -

59

Calculating P,ys_.qc Depending on whethetfs is before or aftert,iicn, we
have:

PZQFS—udc = udc(mem> zxor, tresident)
+ Puyc(dsk, zor& Fletcher)

+ Pygc.(mem, zor, 30)
wherets = to + tresident 1S DEtWEEN S andt gy, iten, and:

Prors vie =Pudc(mem, Fletcher, tresident)
+ Pygc(dsk, Fletcher)
+ Py4.(mem, zor, 30)

wherets = to + tresidens IS greater thamg,;ichn.

Determining tgicn, BY replacingt,.cgiqgen: in the first formula witht g, ;:00, We
can solve fort .., from the equation below:

Props i = P goal

With the Zettabyte reliability goaP,.,, = 3.46 x 107® and \,,;4, we have
tewiteh = 92. Figure 4.10(d) shows the reliability score offZS in dynamic mode.
As we can see from the figure, checksum switching occurs ae@@nsls so that
the score afterwards is still above the goal.

By varying both the disk and memory reliability index, we bavigure 4.12
showing the values of,,,;;., that are required to meet the goal of Zettabyte reli-
ability. When the memory reliability index is high (= \,.;», €.9., config 3 and
4), tewiten IS about seven weeks; in this caséF3 (static) is strong enough, which
also offers the best performance. When the memory religliiidex is extremely
low (e.g., config 1), ZFS (static) keeps using Fletcher as both disk and memory
checksum to provide the best reliability. When the memolialdity index is in
between (e.g., config 2),2ES (dynamic) strikes a nice balance between reliability
and performance by switching the checksum,at;.1.

4.3 Discussion

We now discuss three technical issues when implementif@Zchecksum chain-
ing, application integration, and error handling.

60

N
o

4
. 18
[}
e}
=
> 16
E
s
S 14
4
2}
Q10 A,
10

114 15 16 17 18
Memory Reliability Index

Figure 4.12: ., Of Z2FS (dynamic) This figure shows a contour plot of the required
switching time to provide Zettabyte reliability if ZS (dynamic), with respect to different
disk and memory reliability index. The z axis is the base @@rithm oft ..., In SECONdS.
Four points marked with a %" represent the four sample configurations: low-end (1),
consumer (2), enterprise (3), server (4).

Symbol Description

X a data object, could @ RG or DST
X.data the data of the objecX

X.cksum the checksum of object

X.size the size ofX.data

X.alg the checksum algorithm foX.cksum
S size of moved data

m(X) moved data inX

o(X) overwritten data inX

r(X) remaining data in\
g(cksum,alg,data) | generatecksum usingalg overdata
v(cksum,alg, data) | verify cksum usingalg overdata

Table 4.4:Model Notation for Checksum Chaining The table depicts all notations
used to describe the model for checksum chaining.

61

ORG.cksum «——] /\ > DST.cksum

g 1 T 4
r(ORG) m(ORG) .
i ORG.size o(DST) r(DST)
[l .

ORG DST

Figure 4.13:An Example of the NotationsThis figure shows some of the notations
in a data movement example. Small squares and trianglegsept checksums. Differ-
ent shapes of checksum symbol indicates the algorithm ovahe of the checksum are
different. Each big rectangle represents a data object avieich a checksum is calcu-
lated. Heavy-shaded squares represent the moved datagiteslhaded squared represent
overwritten data.

4.3.1 Checksum Chaining

So far, we have assumed the user buffer is always alignedge giae. In fact,
checksum chaining does support generic requests withrampibffset and size,
which is implemented in ZFS through checksum-ware interfaces. Before we talk
about the new interfaces, we first we propose a simple modethaoacterize all
scenarios where checksum chaining could apply when datavedracross buffers.

Notations In the model, data is always protected by a checksum. We uataa d
object to represent a piece of data and a corresponding stn@clkData in different
data objects can be of different sizes and the checksumithligsr can also differ.
Therefore, a data object has four propertiésta, cksum, size andalg.

Data movement is defined here as a piece of data moved fronritie data
objectO RG to destination data objed?ST. The moved data fror® RG is repre-
sented bym(ORG), and the overwritten data i ST is represented by(DST).
The moved and overwritten data is of siZeln some casesy may not be the same
asORG.size or DST.size; some portion of data i RG is not moved and some
portion of data inDST is not overwritten. The remaining data is represented by
r(ORG) or r(DST). All notations are explained in Figure 4.4 and illustrated i
Figure 4.13.

62

During the data movement(ORG) is copied fromORG to DST and the
checksum ofDST is updated. Checksum chaining is thus defined as follows: as-
sumingD is the data stored ilv ST after the data movement, the nénsT".cksum
is calculated oveD beforethe integrity of D is verified usingO RG.cksum and
the old DST.cksum. A special case of checksum chaining is wheRG and
DST are of the same size, adRG and D.ST use the same checksum algorithm.
In this caseQ RG.cksum is copied toD ST'.cksum directly when the moved data,
without any recalculation. We call this special case checkforwarding.

Checksum forwarding is straightforward and has no overlegadpt the copy-
ing of the checksum, but it has strict requirements for tignatent and checksum
algorithms of the moved dat&) RG and DST'. In contrast, checksum chaining
can be applied in any scenario, but it has the overhead of bn@ope checksum
calculations.

In checksum chaining, the order of new checksum generatidnold check-
sum verification must not be reversed.IMST.cksum is calculated AFTERD is
verified, there is a vulnerable window in between. If the dateorrupted in this
time window, the newD ST'.cksum will be calculated using corrupt data. This
is a type of silent corruption which is undetectable using tlew checksum be-
cause the checksum actually “matches” the corrupted daith. tkié correct order,
a successful verification indicates thatS'T.cksum is generated over the correct
data and thus can be trusted. Because the creatidhSaf.cksum occurs before
the last use o) RG.cksum and oldDST.cksum, the coverage of new and old
checksums overlaps; it is as if two checksums are chaineddo @ther.

Five Cases of Checksum Chaining Data movement is not just a simple data
copy operation. Transferring a piece of data from its ihiiggin to its final desti-
nation usually involves multiple copies through differéayers of the system. The
alignment and size of the moved data, as well as the size awkstim algorithm

of ORG and DST in all layers are important factors. Depending on fheand
alg andsize of bothO RG and DST objects, data movement can be classified into
the following five cases, as shown in Figure 4.14. For each,aas first give the
condition these properties must satisfy and then descrit@nand how checksum
forwarding or chaining is applied in detalil.

Case 1:Aligned Data Movement (Same Checksum Algorithms)

ORG.alg == DST.alg and
S == ORG.size == DST.size

One example of Case 1 is transferring data blocks betweepetipe cache and
disk when both components use the same checksum. The sizdavh page is

63

O O O O O A
Vv GV
ORG DST ORG DST ORG DST
Case 1 Case 1’ Case 2
O A O A O A
GV GOVIV GOVIV
ORG DST ORG DST ORG DST
Case 3 Case 4 Case 5
O G) checksum generation
moved data overwritten data checksum
A V) checksum verification

Figure 4.14.Cases of Checksum Chaininghis figure shows five typical cases of data
movement. In Case 1} &nd 2, the moved data is aligned withRG and DST. In Case 3,

4 and 5, the moved data is not aligned wittRGG, DST or both, respectively. The size of
moved data could be the same$T.size as in Case 1, 2 and 3, or different as in Case
4 and 5. The sequence of checksum chaining is shown as G aretatiops in each case.
The number of these operations is used as an estimate of ¢nlesad.

usually the same as a disk block, and data is always moved inefuveen them.
In this case, all data i@ RG is copied toD ST'. Since the checksum algorithms
are the same for both objects, one can apply checksum foingard

(1) DST.data < ORG.data
(2) DST.cksum + ORG.cksum

Before moving forward to Case 2, we introduce Cdsa inore reliable version
of Case 1 with an extra verification, as shown in Figure 4.1dcdaise checksum
forwarding does not detect any corruption, doing such digation provides an
opportunity of early detection and in-time recovery. Ottise, if the data is al-
ready corrupted, it will not be detected until the next tihe tata is accessed and
verification is performed. In fact, this is a tradeoff betweeliability and perfor-
mance. With the overhead of one extra verification, possibkeuptions can be
detected early and repaired in time.

64

Note that Case 1 has the lowest overhead, because therehecicsam calcu-
lation involved. For Case’las well as the next four cases, one can estimate the
overhead by counting the number of checksum operatione(géon and verifi-
cation) needed in each case. Each of these operations ave sh&igure 4.14 as
a circled G or V, respectively. To accurately measure thehmax, one needs to
consider the size of data as well as the speed of the checHgonittam.

Case 2:Aligned Data Movement (Different Checksum Algorithms)

ORG.alg #+ DST.alg and

S == ORG.size == DST.size
In this case, since the checksum algorithms are differBft{".cksum must be
calculated usind)ST.alg. Checksum chaining should be applied:

(1) g(DST.cksum, DST.alg, ORG.data)
(2) v(ORG.cksum, ORG.alg, ORG.data)
(3) DST.data <+ ORG.data

Case 3Unaligned Data Movement (Partial-to-Full)

ORG.buf # DST.buf and
ORG.size > DST.size and
S == ORG.size
A good example of Case 3 is an application reading data frenp#ige cache
into a user buffer, with an offset not aligned to the bloclegjpage size). In this
example,ORG is a data page anBS7T is a user buffer. The moved data is just a
portion of the full block stored in the page.
In this case D ST .data is overwritten by a partial amount 6 RG.data. Irre-
spective of the checksum algorithms used i G and D ST, checksum chaining
must be applied. A correct order is:

(1) g(DST.cksum, DST.alg,m(DST))

(2) v(ORG.cksum, ORG.alg, ORG.data)

(3) DST.data <+ m(ORG)
Note that in (1) the checksum is calculated only over the dalaga inO RG, while
in (2) the verification is performed using all dataRG, because&) RG.cksum
covers all its data and there is no checksum for the moved d@&erefore, for the
sames, the overhead of this case is actually higher than Case 2.

All cases introduced so far have one commonality: the csigitata inDST
is overwritten by the new data copied frofhRG, so there is no need to verify
DST.cksum. The next two cases, however, have partlfiT.data overwritten
by new data. Therefore, an extra verification is needed tcersake the portion of
data inDST that is not modified is correct.

Case 4Unaligned Data Movement (Full-to-Partial)

65

ORG.size < DST.size and
S = ORG.size

Case 4 happens when an application writes data to the fileraysith an offset
not aligned to the block size; the user bufferR(G) is thus not aligned to the data
page OST), because only part of the data page is overwritten.

In this case,ORG.data overwrites a part ofDST.data. The net effect is
that the newDST.data containsORG.data and the remaining portion of old
DST.data is not overwritten. The new ST'.data is represented b§ RG.data +
r(DST). Therefore, the newD ST.cksum must be calculated ov€? RG.data +
r(DST') before the data movement, agifRG.data were already copied t® ST
To make sure botlD RG.data andr(DST) are good whileDST.cksum is be-
ing calculated, they have to be verified. Therefore, theembrorder of checksum
chaining is:

(1) g(tmpcksum, DST.alg, ORG.data + r(DST))
(2) v(ORG.cksum, ORG.alg, ORG.data)

(3) v(DST.cksum, DST.alg, DST.data)

(4) DST.cksum < tmpcksum

(5) o(DST.data) <+ ORG.data

Unlike the previous cases, Case 4 requires two verifications overO RG.data
and the other oveD ST'.data.
Case 5Unaligned Data Movement (Partial-to-Partial)

S # ORG.size andS # DST.size

This is the general case of unaligned data movement: p&iriF.data is copied
to DST and overwrites part ab.ST.data. The method of implementing checksum
chaining is similar to Case 4, with a slight change to stem@() step (5):

(1) g(tmpcksum, DST.alg, m(ORG) + r(DST))
(2) v(ORG.cksum, ORG.alg, ORG.data)

(3) v(DST.cksum, DST.alg, DST.data)

(4) DST.cksum < tmpcksum

(5) o(DST.data) < m(ORG.data)

Although this case does not occur IS, we include Case 5 for the sake of
completeness.
4.3.2 Integration with Existing Applications

First, Z2FS supports generic requests with arbitrary offset andsineigh checksum-
aware interfaces. These interfaces differ from the trawliti read/write interfaces

66

O O O
o — 0O o —>» A
O O O
Data Page User Buffer Data Page User Buffer
Aligned Read Unaligned Read

Figure 4.15:Example of Aligned and Unaligned ReadsThis figure illustrates how
Z2FS handles aligned and unaligned reads. Small squares septgage checksums and
small triangles represent user checksums. The dark araasepts the requested data.

in that both data and it associated checksums are trargfba®veen the user
space and the kernel space. For example, Figure 4.15atasthow 2FS handles
aligned and generic read requests respectively. In theealigase, ZFS simply re-
turns all three checksums to the application. But when dgaliith the unaligned
reads, 2ZFS calculates a new checksum that covers the requested rahteads
it to the application. The order of checksum generation andigation conforms
with checksum chaining (see Case 3 and Case 4 above): getieeatser check-
sum first and then verify all three page checksums. Note higsapplications must
be modified to use the new interfaces. We believe such chamgaewecessary, be-
cause the exposed checksums can be further utilized bycapphs to protect data
at the user level.

Second, 2FS also provides a compatibility library that preservesthditional
interfaces. The library performs checksum generation anification on behalf of
the application. The tradeoff is that applications do natehaccess to the check-
sums, thus losing some data protection at the user level.

4.3.3 Error Handling

Both E2ZFS and ZFS use checksums to verify data integrity. Whenever a mis-
match happens, it is reasonable to think the data is codupisat the checksum,
because the checksum is usually much smaller than the datatéicts and has a
lower chance of becoming corrupted. In the unusual caseeatherchecksum is

67

corrupted, good data would be considered corrupted. Tlsis fesitive about data
corruption does not hurt data integrity; in fact, any cheoksnismatch indicates
that the data cannot be trusted, either because the ddfastserrupted, or be-
cause the checksum cannot prove the data is correct. Therbfath systems must
handle verification failures properly.

In E2ZFS, there is only one verification, which occurs when theleeaeads
a data block. If the verification fails, the reader will rexdethe same block from
the file system. If the corruption happens in the page cadeaér's memory),
E2ZFS can get the correct data from disk and return it to theereadowever, if
the corruption occurs before the block is written to disk loa Write path, it is too
late to recover from the corruption. This is the timelinessbem of the straight-
forward end-to-end approach.

As we mentioned in Section 4.2.3, to solve the probleAf;Zhas extra check-
sum verifications at the boundary of memory and disk. On theevpath, the
verification is part of the checksum chaining. If it fails’F%S aborts the write im-
mediately and inform the application, thus preventing wpirrdata going to disk.
The application then can re-write the block. On the read,patRS verifies the
primary checksum (Fletcher) after getting a data block faisk and will re-read
it if the verification fails.

Note that informing the application about the failed wrieguite challenging.
It is easy for synchronous writes; because the verificatmruis before the write
system call returns, the application can just check themetalue of the system
call. However, for asynchronous writes, the verificatiopésformed by the back-
ground flushing thread. To properly return the error infaiorato the application,
our solution in ZFS is to use a modified fsync system callF5 creates an error
table for each opened file to record which data page fails ¢nigication. When-
everfsyncis called, it checks the error table of the correspondingatfild returns
all block numbers found in the table. Because at that timeeaifications of dirty
pages belonging to the file have already finishisginccan give the most up-to-
date error information. Therefore, by callifgyncperiodically, the application can
know the latest status of the blocks it wrote and perform s&egy recovery in time.

4.4 Evaluation

We now evaluate and comparéZES and 2FS along two axes: reliability and
performance. Specifically, we want to answer the followingsjions:

e How do they handle various data corruption?

68

ZFS E2ZFS | Z%FS
Timing | act res| act res| act res

to~t | — X |dsr e |dir
ti~ty | dor e |dsr e | dor e
to~ts | — X | dsr /| dsr

Table 4.5:Fault Injection Results The columns (from left to right) show the time period
when the fault was injected (Timing), how the system andehdar reacts (act) and the
result of the read request from the reader (res). Under thtecatumn, “d;r” means the
corruption is detected at; and a retry is performed. Under the res columng™means

silent data corruption, ¢” means the corruption is detected but can not be recovered
(assuming there Is only one copy of the data on disk), agfdrheans the reader gets good
data.

e What is the the overall performance of both systems?
e What is the impact of checksum switching on performance?
e What is the performance of both systems on real-world waids@

We perform all experiments on a machine with a single-ca2&plz AMD Opteron
processor, 2GB memory, and a 1TB Hitachi Deskstar hard .dkiVe use Solaris
Express Community Edition (build 108), ZFS pool version hd ZFS file system
version 3.

4.4.1 Reliability

The analyses in Section 4.2 showed theoretically hé&SZcan achieve Zettabyte
Reliability with different reliability levels of disk and emory. In practice, how-
ever, it is difficult to experimentally measure the relidiibf a system, especially
since we have no knowledge of the actual failure rate of tek dnd memory in
use. Therefore, we focus on demonstrating the advantagexibl# end-to-end
data integrity in detecting and recovering from corruptittmough a series of fault
injection experiments.

We inject a single bit flip to a data block during each time @&iin Figure 4.3,
and record how each system reacts and whether the readestozorigect data. We
perform the same set of experiments on all three systems,ZZ%S, and 2FS.

Table 4.5 summarizes the fault injection results. For thdt fajected before
the block goes to disk ~ t;), only Z>FS is able to detect it beforg and ask the
writer to retry, thus preventing corrupt data getting tckdihe reader in EZFS

69

Read Syscall
Read IO (original)
B Read 10 (retry due to corruption)
6000 —
m
=
O
£
|_
o)
2
I
8 5000 —
7
Q
o
4000 I

I
No Corruption Corruption

Figure 4.16:Corruption in the Read Path (Cold) This graph shows the time break-
down of a read system call irfES when a block is correct or found corrupted in the page

cache. The y-axis is in micro seconds. Since the cache istb@dblock is first read from
disk.

can also detect the fault &, but it is too late to recover the data. When data on
disk is corruptedt ~ t), neither EZFS nor ZFS is able to recover. For the fault
injected after the block leaves disk on the read path~{ ¢3), the reader in both
Z?FS and BZFS can detect it and re-read the block from disk. Since ZFglas
protection for on-disk blocks, it can only catch corrupttbat occurs on disk.

To show that 2FS behaves as expected during the fault injection expetsnen
we measure the time cost of read and write system calls, assvide I/O time of
each disk read and write. Figure 4.16, 4.17, and 4.18 prélseriime breakdown

of a read or a write system call in three cases: cold read, weawohand write with
fsync.

70

300 —
Read Syscall

B Read |0 (retry due to corruption)
250 —

200 —

150 —

Response Time (us)

100 —

0
I

No Corruption Corruption

Figure 4.17.Corruption in the Read Path (Warm) This graph shows the time break-
down of a read system call irfES when a block is correct or found corrupted in the page

cache. The y-axis is in micro seconds. Since the cache is vienblock can be returned
directly from the page cache.

Read (cold): In this case, the reader reads a 4KB block frofF3 and the block
is not present in the page cache. We clear the disk cache heguening of our
experiment so that the first read always gets the block frak divhen no fault is
injected, there is only one 1/O, which takes about 5000 méer@onds, as shown in
Figure 4.16. When a fault is injected while the block is in page cache, FS is
able to detect the corruption and re-read the block from. d#sce the second read
I/0 hits disk cache, the actual I/O time is small, only abduiicro seconds.

71

Read (warm): As shown in Figure 4.17, the result is similar to the previcase,
except that there is no huge first-time 1/O cost, becausedtpested block is al-
ready cached.

Write with fsync: In this case, the writer writes a 4KB block tdS and calls
fsync immediately. When there is no corruption, the writetegn call returns in-
stantly (the short white bar above the x-axis in Figure 4.b8rause the write is
asynchronous. The following fsync flushes the data blocksloahd logs the write
operation in a log block (totally two 1/0s). Because bothd/gd to the disk cache,
the 1/0O time is only about 120 micro seconds. Then, the filéesgdssues a cache
flush to the disk so that all blocks cached by the disk cachéared to disk. The
wait time for flush to finish is long, which dominates the rasgmtime of fsync.
When the block is corrupted in the page cach#; S is able to detect the corrup-
tion before writing it out to disk. The writer gets an errodedrom fsync and calls
write and fsync again to re-do the write, which are shown as#tond set of bars
on top of the previous failed fsync. Note that there is onlg amite 1/0 (log block)
during the failed fsync, because the data block write istablor

4.4.2 Overall Performance

We use a series of micro and macro benchmarks to evaluateetf@rmance of
E2ZFS and ZFS. All benchmarks are compiled with the compatibility &by.

Micro Benchmark Figure 4.19 shows the results of our micro benchmark ex-
periments. Sequential write/read is writing/reading a 1ii8in 4KB requests.
Random write/read is writing/reading 100MB of a 1GB file inBlKequests. To
avoid the effect of checksum switching?/ZS is in static mode. From Figure 4.19,
one can see that under random write and random read (coépettiormance of
Z?FS and BZFS is close to ZFS. Because both workloads are dominatedsky d
seeks, the overhead of checksum calculation is small. Inakes where the cache
is warm, since no physical 1/Os are involved, the calcutatsd checksums dom-
inates the processing time.2ZS (Fletcher) is about 15-17% slower than ZFS,
while both EZFS (xor) and 2FS only have a 3% throughput drop. In sequential
write and sequential read (cold), the performance’#Sis comparable toZFS
(Fletcher).

Macro Benchmark We use filebench [107] as our macro benchmark. We choose
webserver, fileserver and varmail to evaluate the overaliedion performance on

72

30000 —
] write Syscall
Fsync Syscall
B write 10 (log block)

25000 — B write 10 (data block)
___ 20000 —
0
=
@
£
l_ [—
o 15000 —
%)
c
o
Q
0
o}
o

10000 —

5000 —

0 [
No Corruption Corruption

Figure 4.18:Corruption in the Write Path This graph shows the time breakdown of

a write system call followed by a fsync iAZS when a block is correct or found corrupted
in the page cache. The y-axis is in micro seconds.

E?ZFS and ZFS. Figure 4.20 depicts the throughput of these workloads.
Webserver is a multi-threaded read-intensive workloacdbrisists of 100 threads,

each of which performs a series of open-read-close opagatin multiple files and

then appends to a log file. After reaching a steady stateecatls are satisfied by

73

m ZFS m EZFS (xor) E2ZFS (Fletcher) Z2FS (static)
%0, B g g @95 8888 83 g3
~ o 9Rw®n S 5 ~Nee N cococo P
~OR o SR A R AN ™~ Brag
1 4 ~ 0w © N © - oyl
| ® © o] - o
a 09 — [3 3
% 08 |
E 0.7 —
5 0.6 —
N 05 —
g 04 -
2 03
0.2
0.1 —
0
Seq Write Seq Read Seq Read Random Write Random Read Random Read
Cold Warm Cold Warm

Figure 4.19:Micro Benchmark This graph shows the results of several micro bench-
marks on ZFS, EZFS, and ZFS (static). The bars are normalized to the throughput of
ZFS. The absolute values in MB/s are shown on top.

data in the page cache. Therefore, the throughput is magtigrmhined by the
overhead of checksum calculation. As shown in Figure 4.2@FS (xor) and
Z?FS (static) has the closest performance to ZFS, becauseahivays calculate
the xor checksum. &ZFS (Fletcher) is about 15% percent slower than ZFS, which
matches our previous micro benchmark result. #¥Z (dynamic), the memory
checksum is changed from xor to Fletcher when a block stagseimory for more
than 92 seconds, so the overall throughput is in betwegisZstatic) and EZFS
(Fletcher).

Fileserver is configured with 50 threads performing crealetetes, appends,
whole-file writes and whole-file reads. It's write-intersiwith a 1:2 read/write
ratio. In this case, the throughput of&ZS is comparable to%&ZFS (Fletcher) and
E2ZFS (xor).

Varmail emulates a multi-threaded mail server. Each thpeatbrms a set of
create-append-sync, read-append-sync, read, and deletations. It has about
half reads and half writes and is dominated by random I/Osgrd&fbre, the overall
throughput of 2FS and BZFS is no different than ZFS.

74

m ZFS] EZZFS(xor) E22FS(FIetcher) ZZFS(static) s (dynamic)
fF\lf [™ S W 0 N~ © % % § ':q 2
5 '\.% gjr.oqoqm agdcﬁd
Agegr SR EER ==
1 N ¢ N © A R
WO— N N
§_0.9 — N
§>0.8 —
I'E 0.7 —
3 0.6 —
NO05 —
£04
203 -
0.2 —
0.1 —
0 \ \ \
webserver fileserver varmail

Figure 4.20:Macro Benchmark This figure shows the throughput of our macro bench-
marks on ZFS, EZFS, ZFS (static), and ZFS (dynamic). Each workload runs for 720
seconds. ZFS (dynamic) has,,i.., = 92 seconds.

4.4.3 Impact of Checksum Switching

One key parameter in%ES istsyiwch, Which is the maximum residency time of a
data block in reader's memory before checksum switchingieccThe value of
tswiteh, iINdicates a tradeoff between reliability and performar@wen a reliability
goal, longert,i;., means worse reliability score (still above the goal), butdre
performance because the weaker memory checksum can beouseldfiger time.

To understand the impact of checksum switching, we run tHeserwer work-
load on ZFS (dynamic) and vary.,i..,. Figure 4.21 illustrates the relationship
between the throughput of the workload ang;;.n. AS tswiten iINCreases, the per-
formance of 2FS (dynamic) gets closer to’ES (static), because more and more
warm reads are verifying the xor checksum. Whgp,.,, is the same as or longer
than the runtime, ZFS (dynamic) matches the performance &3 (static). Even
whent ,ien iS short (e.g., 30 seconds)?EZS (dynamic) still outperfoms ZFS
(Fletcher).

75

290
280 —
K
m
2
3 270 —
S
§ """" E2ZFS (Fletcher)
= 260 - - ZFs (static)
O Z%Fs (dynamic)
250 \ \ \ \ \ \ \ \ \

0 100 200 300 400 500 600 700 800 900
Switching Time (s)

Figure 4.21:Webserver Throughput with Different ¢, This figure illustrates
the throughput changes of webserver gs;;., increases. The dashed line and dotted line

represent the throughput of webserver 3 (static) and EZFS (Fletcher) respectively.
The runtime of the webserver workload is 720 seconds.

Trace | Read Cache | Before After
Num | Count | Hit Rate | tewiteh tswitch
1 14343 | 98.0% | 34.5% 65.5%
2 35209 | 96.9% | 58.9% 41.1%
3 61437 | 98.8% | 83.7% 16.3%

Table 4.6:Trace Characteristics Read count is the total number of 4KB-read in each
trace. Hit rate is the cache hit rate for data reads. BefofedAt ;.1 iS the percentage of
warm reads that access a data block with a residency timégesster thant,iicn, = 92
seconds.

4.4.4 Trace Replay

So far we have shown the performance benefit‘@Z using artificially generated
workloads. Now, we evaluate’ES by replaying real-world traces. We use the

76

Total Read Time (s)
Trace E2ZFS Z°FS Z’FS
Num | (Fletcher) (static) (dynamic)
1 1.00 0.91 (9.0%) 0.95 (5.0%)
2 4.34 3.73 (14.1%) 3.82(12.0%)
3 6.58 5.46 (17.0%) 5.47 (16.9%)

Table 4.7:Trace Replay Result The table shows the total time spent on read system
calls for each trace on each system. The percentage in thengiases is the speedup of
Z2FS with respect to &FS (Fletcher).

LASR system-call traces [6] collected between 2000 and 2@®ich cover thir-
teen machines used for software development and reseanetist The traces are
not I/O intensive, but they contain realistic access pasténat are hard to emulate
with controlled benchmarks. We build a single-threadeden&player to sequen-
tially replay the system calls at the same speed as they weneded. All unaligned
read and write requests are converted into aligned onestlsattve can replay the
trace on BZFS, which only supports aligned requests.

We choose three one-hour long traces from the collectionrepidy them on
E2ZFS (Fletcher), ZFS (static), and ZFS (dynamictsyiwcr, = 92). The charac-
teristics of the traces are listed in Table 4.6 and the resu# shown in Table 4.7.
As one can see from the tables, overallF® has better performance thatZES
(Fletcher). In trace 3, most of the warm reads (83.7%) aresstieg data blocks
with a residency time less than 92 seconds, and thus thema@ne calculations
of xor checksum than Fletcher ofEZS (dynamic), which makes its performance
closer to ZFS (static). In contrast, 65.5% of the warms reads in traceeIof
blocks that have stayed in memory for more than 92 secondkesperformance
of Z?FS (dynamic) is closer to®ZFS (Fletcher). Therefore, workloads dominated
by warm reads can benefit most froMFS (dynamic) if most read accesses to a
block occur during the first,,,;;c, Seconds of that block in memory.

4.5 Summary

The straight-forward approach of end-to-end data intggmibvides great protec-
tion against corruption, but the requirement of using oneng high-level check-
sum for all components along the 1/O path leads to lower apptin performance

e

and untimely detection and recovery.

To address these issues, we present a new concept: flexim-emd data
integrity. A system with flexible end-to-end data integritges different check-
sum algorithms for different component, and thus can dynaltyi make tradeoffs
between performance and reliability. Such a system al$iaadiextra checksum
verification below the application to provide in-time ddies and recovery. In this
way, all components in the I/O path provide strong data ptme in a coopera-
tive manner; every component is aware of the checksums affiohips necessary
checksum operations, such as generation, verificationglswg or passing, to pre-
vent silent data corruption.

To apply the concept to a system, we first develop an analyteaework to
provide rational behind flexible end-to-end data integrithen, we build EZFS
and ZFS, to study both end-to-end concepts and demonstrate rappty flexible
end-to-end data integrity to ZFS. Through reliability ais&d and various experi-
ments, we show that?£S is able to provide Zettabyte reliability with comparable
or better performance tharf EFS. Our analysis framework provides a holistic way
to reason about the tradeoff between performance andifityiad storage systems.

78

79

Chapter 5

Data Protection Analysis of Cloud
Storage Services

Cloud-based file synchronization services, such as Dropb8x SkyDrive [122],
and Google Drive [53], provide a convenient means both talsyomize data across
a user’s devices and to back up data in the cloud. While autosynchronization
of files is a key feature of these services, the reliable cltodage they offer is
fundamental to their success. Generally, the cloud backéhdhecksum and
replicate its data to provide integrity [18] and will retaatd versions of files to
offer recovery from mistakes or inadvertent deletion [4Bhe robustness of these
data protection features, along with the inherent repboathat synchronization
provides, can give the user with a strong sense of data safety

Unfortunately, this is merely a sense, not a reality; theséocoupling of these
services and the local file system endangers data even a&sdéesces strive to
protect it. While the data stored remotely is generally stplocal client software
is unable to distinguish between deliberate modificatiord wnintentional errors,
potentially causing corrupt or inconsistent data to autarably propagate to all
machines associated with a user. Thus, despite the presénudtiple redundant
copies, synchronization destroys the user’s data.

In this chapter, we demonstrate these problems throughifgettion experi-
ments. We first present some background on file synchroaizatrvices in Sec-
tion 5.1. Then, in Section 5.2 we explore several case stwdierein synchroniza-
tion services propagate corruption and spread inconsigtdrinally, we analyze
how the limitations of file synchronization services and $jstems directly cause
these problems in Section 5.3.

80

5.1 Background

In order to understand the causes of the incorrect behatrile synchronization
services, it is necessary to first understand how they amer@ile synchroniza-
tion services are aptly named; they do their best to ensatdhhbir users’ files are
synchronized across all of their devices, as well as thedcldhile their design
space has some variety in it, ranging from Apple’s iCloudcéyonizing specific
application data [20] to Wuala’s use of a user-space fileegydtl23], the basic
functionality of these services is relatively homogeneoWe find that there are
two popular ways of implementing such a service, based omtigerlying syn-
chronization protocol. Services such as Dropbox and ownClely on a spe-
cific file synchronization protocol, rsync [93] and csync][4dspectively. On the
other hand, many open-source synchronization servicelsidimg Seafile [99] and
sparkleshare [103], are built on top of distributed verssontrol systems such as
GIT [52]. Thus, we provide a brief case study of Dropbox andftBeto cover both
types of services; while the details are application-dfed¢he overall architecture
applies to a variety of services.

5.1.1 Dropbox

Dropbox consists of two main components: a client-side aeeamd a cloud back-
end. The daemon monitors changes in the local file system@odds them to the
cloud. The cloud software, in turn, stores these files and finepagates them to
the user’s other devices. As the cloud component runs réyn@e can only in-
fer its characteristics through interacting with it via thetwork and through what
Dropbox has published about it. As Drago et al. [43] haveaalyeexamined many
of these details elsewhere, we focus primarily on the clieatir discussion. While
the client is closed source, since it runs locally, we caaally observe its behavior.
In the following discussion, we concentrate on two aspefictisi® behavior: how it
manages its internal metadata and its procedures for symizhng files.

Data Management

The Dropbox client operates as a userspace daemon, regaoidirect operating
system support or kernel modules, and observes a singlerfadsuring that its
contents are synchronized with the cloud. To track locdkstait uses several
SQLite databases, most of which are encrypted. These damlstore metadata
related to the user’s files, such as the most recent time elgclvds modified,
as well as hashes of each file used to identify their conteDtepbox uses this

81

information to coordinate its synchronization with thewzdo

Dropbox’s view of the user’s file namespace is much more @rtign that of
the file system. It identifies files by their full pathnames awogs not represent
directories in its database. If the user performs a renanaditd, it deletes the file
from the cloud and re-uploads the renamed version; simil#rthe user deletes
a directory, the client deletes all children of that diregtand re-uploads them,
identified by their new full pathname.

Dropbox provides a revision history for each file that it kscallowing a user
to revert a file to any of its previously uploaded states, witdertain time limits
depending on the level of the user’'s subscription. Whilduls®ropbox’s con-
strained view of the file system limits the extent of this > In particular,
renamed files cannot explicitly be reverted to prior versibefore they were re-
named. Instead, the user must restore the file of the origizale and delete the
renamed file.

File Synchronization

Upon booting, the Dropbox client registers with the cloud ahecks whether any
files have changed or been added remotely. If so, it downltieaa into a staging
area and renames them into the local directory once completaat the user never
sees an incomplete update. At the same time, it also scalectialirectory to de-
tect whether any modifications have occurred while it wasnafflcomparing stats
such as timestamps and size of each file with the versiondstoiiés databases. If
these differ, it infers that the file was changed and runsasymipload the changes
to the cloud; to save bandwidth, it divides files into chunkd anly sends those
chunks not already owned by the user. In the event that ittseseconflict between
two versions of a file, it performs no resolution; insteakeieps both versions of
the file and renames one to indicate that it is in conflict.

Once running, the Dropbox client continues to actively $yonize its folder.
When remote changes occur, the server sends it a notificaaoising the client to
immediately download the new data in the same manner as itte upload. To
detect local changes, the client employs a notificationiserguch as Linux’s ino-
tify, that informs it of events in the local file system. Thigdarmation is generally
vague—inotify, for instance, reports little more than tie fiame and the type of
event, such as a create, write, or unlink, that occurredsubiffices to allow Drop-
box to maintain synchrony. Again, the client uses rsync toagbonly the changes
in each file and performs deduplication.

82

5.1.2 Seafile

Similar to Dropbox, Seafile also has a client-side daemoraasaver backend. Un-
like Dropbox, which interacts with files in the file systematditly, Seafile maintains
a GIT-like repository (repo) to manage a synchronized fiolddocal synchronized

folder is called a working tree. Seafile tracks and storesigsdof the folder in lo-

cal and remote repositories. The remote repo on the serids tiee master branch,
acting as a backend to store all data and version histories.IoCal repo contains
the local branch, representing the current state of theefollhe synchronization
is then performed between the master branch and the locattora

Data Management

Unlike Dropbox, which only records file metadata in a locabtbase, Seafile uses
repos to track both data and metadata. A repo is essentialbpjct store. Files
and directories in the folder are all stored as objects instioee, identified by
SHA-1 hashes. A file’s data is divided into chunks with valéalength. A file
is represented by a Seafile Object which stores a list of Baghdata chunks. A
directory is represented by a SeafDir Object containingtaol directory entries,
each of which points to a Seafile Object or a SeafDir Objece Adsh of the root
directory in the folder is called a commit ID, which uniquebpresents a state of
the entire folder. Therefore, the history of changes to@eiois recorded as a series
of commit IDs. Similarly, the revision history of each filetisicked by a series of
hash values of its Seafile objects.

The remote repo maintains the complete version historyyfoclsronized files,
including all the previously used but unreferenced datankbuThe client reposi-
tory, on the other hand, only keeps a short history of chandeased data chunks
are garbage collected at the beginning of each run of thé $eafile client dae-
mon. At any time, the master branch points to a remote conibndn the server
and the local branch points to the latest local commit ID endient.

File Synchronization

A Seafile client daemon runs on the client and monitors bathdbal folder and
server for updates. When there are local changes, the clentnits the changes
to the local branch and then synchronizes the local brandheerver. When
there are remote changes, the client first downloads theembsinch from the
server, then commits local changes, and finally merges tisembaranch into the
local branch. The client performs conflict handling durihg tnerge, in which
a conflicting copy from the master branch is renamed and themritted to the

83

local branch. After the merge, the client uploads the locahbh to the server,
including all the regular local changes and changes duenflicts. Finally, the
master branch is updated to point to the state just uploaded.

Seafile client detects offline changes in a way similar to Doop After every
commit, it records in a local index file various stats of evéhy in the folder,
including modification time and file size. When the clienttstait performs a local
scan to find out if there are offline changes. This procesdviesacchecking every
file in the folder and comparing timestamps against the amése index file.

When the client is running, it monitors both the local folded the server for
updates. For local changes, Seafile client relies on indiify it only uses inotify
as an indicator. It still depends on a scan to find out what file$ directories
were modified. In comparison, Dropbox makes fully use ofifpdb detect local
changes. The client detects remote updates by polling thrersevery 30 seconds.
The client checks if the commit ID of the local branch diffén@m the commit ID
of the master branch. If they differ, it means that there ameate changes. Since
there is no remote scan, the polling process is fast andesftici

5.2 Data Protection Failures

We now present three case studies to show different faitaesed by the semantic
gap between local file systems and synchronization servidesfirst two of these
failures, the propagation of corruption and inconsistemegult from the client’s
inability to distinguish between legitimate changes anldifes of the file system.
While these problems can be warded off by using more advafileesly/stems, the
third, causal inconsistency, is a fundamental result afenirfile-system semantics.

5.2.1 Data Corruption

Data corruption is not uncommon and can result from a vaoétiauses, ranging
from disk faults to operating system bugs [23, 38, 47, 89)r@ution can be disas-
trous, and one might hope that the automatic backups thaheymization services
provide would offer some protection from it. These backummsyever, make them
likely to propagate this corruption; as clients cannot deterruption, they simply
spread it to all of a user’s copies, potentially leading tevocable data loss.

To investigate what might cause disk corruption to propagathe cloud, we
first inject a disk corruption to a block in a file synchronizeith the cloud (by
flipping bits through the device file of the underlying disWe then manipulate the
file in several different ways, and observe which modifigaioause the corruption

84

Data Metadata
FS Service write | mtime ctime atime
extd Dropbox LG LG LG L
(Linux) ownC_IIoud LG LG L L
Seafile LG LG LG LG
Dropbox L L L L
(in:j() ownC_IIoud L L L L
Seafile L L L L
Dropbox LG LG L L
HFS+ ownCloud LG LG L L
(Mac GoogleDrive| LG LG L L
OS X) SugarSync LG L L L
Syncplicity LG LG L L

Table 5.1:Data Corruption Results “ L": corruption remains local. “G”: corruption
is propagated (global).

to be uploaded. We repeat this experiment for Dropbox, owuad;l and Seafile
atop ext4 (both ordered and data journaling modes) and Z5]3riLinux (kernel
3.6.11) and Dropbox, ownCloud, Google Drive, SugarSynd, &yncplicity atop
HFS+in Mac OS X (10.5 Lion).

We execute both data operations and metadata-only opesatio the corrupt
file. Data operations consist of both appends and in-pladatep at varying dis-
tances from the corrupt block, updating both the modificaaad access times;
these operations never overwrite the corruption. Metadpéations change only
the timestamps of the file. We usauch -ato set the access timguch -mto set
the modification time, andhownandchmodto set the attribute-change time.

Table 5.1 displays our results for each combination of fikteays and services.
Since ZFS is able to detect local corruption, none of the lssonization clients
propagate corruption. However, on ext4 and HFS+, all dignbpagate corruption
to the cloud whenever they detect a change to file data and doosd when the
modification time is changed, even if the file is otherwise adified. In both cases,
clients interpret the corrupted block as a legitimate cleazagd upload it. Seafile
uploads the corruption whenever any of the timestamps @sman&ugarSync is
the only service that does not propagate corruption whemtbeification time
changes, doing so only once it explicitly observes a writiéofile or it restarts.

85

Upload Download OOS
FS Service local ver. cloud ver.
oxtd Dropbox vV X vV
(ordered) ownCloud vV v/ vV
Seafile N/A N/A N/A
oxtd Dropbox Vv X X
(data) ownCloud vV v/ X
Seafile Vv X X
Dropbox Vv X X
ZFS ownCloud vV v/ X
Seafile Vv X X

Table 5.2:Crash Consistency ResultsThere are three outcomes: uploading the local
(possibly inconsistent) version to cloud, downloadingdloeid version, and OOS (out-of-
sync), in which the local version and the cloud version dbffe are not synchronized.x”
means the outcome does not occur aRd’ ‘means the outcome occurs. Because in some
cases the Seafile client fails to run after the crash, itsltesre labeled “N/A”.

5.2.2 Crash Inconsistency

The inability of synchronization services to identify legiate changes also leads
them to propagate inconsistent data after the crash recoVerdemonstrate this
behavior, we initialize a synchronized file on disk and in¢loeid at versionyy. We
then write a new version;;, and inject a crash which may result in an inconsistent
versionvy/ on disk, with mixed data fromy and v, but the metadata remains
vg. We observe the client’s behavior as the system recovers.pétferm this
experiment with Dropbox, ownCloud, and Seafile on ZFS and.ext

Table 5.2 shows our results. Running the synchronizatioviceeon top of
ext4 with ordered journaling produces erratic and incdesisbehavior for both
Dropbox and ownCloud. Dropbox may either upload the localpnsistent version
of the file or simply fail to synchronize it, depending on whimtit had noticed and
recorded the update in its internal structures before thghcrin addition to these
outcomes, ownCloud may also download the version of thetbled in the cloud if
it successfully synchronized the file prior to the crash.figearguably exhibits the
best behavior. After recovering from the crash, the cliefuses to run, as it detects
that its internal metadata is corrupted. Manually cleativgclient’'s metadata and
resynchronizing the folder allows the client to run againthés point, it detects a
conflict between the local file and the cloud version.

86

All three services behave correctly on ZFS and ext4 with pgataaling. Since
the local file system provides strong crash consistencgr aflash recovery, the
local version of the file is always consistent (eithgror v;). Regardless of the
version of the local file, both Dropbox and Seafile always aglthe local version
to the cloud when it differs from the cloud version. OwnClotimwever, will
download the cloud version if the local versionuigand the cloud version is;.
This behavior is correct for crash consistency, but it majate causal consistency,
as we will discuss.

5.2.3 Causal Inconsistency

The previous problems occur primarily because the file sy$ads to ensure a key
property—either data integrity or consistency—and dodsrpose this failure to
the file synchronization client. In contrast, causal inistesicy derives not from a
specific failing on the file system'’s part, but from a direaisequence of traditional
file system semantics. Because the client is unable to obtaimified view of the
file system at a single point in time, the client has to uplobes fas they change
in piecemeal fashion, and the order in which it uploads filesy mot correspond
to the order in which they were changed. Thus, file synchedita services can
only guarantee eventual consistency: given time, the insgesd in the cloud
will match the disk image. However, if the client is interteg—for instance, by a
crash, or even a deliberate powerdown—the image storede®ymay not capture
the causal ordering between writes in the file system endfobgeprimitives like
POSIX'ssync andfsync , resulting in a state that could not occur during normal
operations.

To investigate this problem, we run a simple experiment inctvia series of
files are written to a synchronization folder in a specifiedeoi(enforced by fsync).
During multiple runs, we vary the size of each file, as wellrestime between file
writes, and check if these files are uploaded to the clouddrcthrect order. We
perform this experiment with Dropbox, ownCloud, and Seafileext4 and ZFS,
and find that for all setups, there are always cases in whighltud state does not
preserve the causal ordering of file writes.

While causal inconsistency is unlikely to directly caustadass, it may lead to
unexpected application behavior or failure. For instasoppose the user employs
a file synchronization service to store the library of a pkedding suite that stores
photos as both full images and thumbnails, using separateféit each. When the
user edits a photo, and thus, the corresponding thumbnailetis it is entirely
possible that the synchronization service will upload thealter thumbnail file
first. If a fatal crash, such as a hard-drive failure, occwefolte the client can

87

finish uploading the photo, then the service will still raetéihe thumbnail in its
cloud storage, along with the original version of the phaitag will propagate this
thumbnail to the other devices linked to the account. The, @ws®Eessing one of
these devices and browsing through their thumbnail gatieyetermine whether
their data was preserved, is likely to see the new thumbndibasume that the file
was safely backed up before the crash. The resultant mibmalidikely lead to
confusion when the user fully reopens the file later.

5.3 Discussion

Our experiments demonstrate genuine problems with filetspmization services;
in many cases, they not only fail to prevent corruption armbisistency, but ac-
tively spread them. Responsibility for preventing corroptand inconsistency
hardly rests with synchronization services alone; muctefiiame can be placed
on local file systems, as well. In this section, we analyzdithiations in synchro-
nization services and local file systems and show how thay/tedata protection
failures.

5.3.1 Where Synchronization Services Fall

Most synchronization services monitor its synchronizafwlder for changes using
a file-system notification service, such as Linux’s inotifyMac OS X's Events
API. While these services inform the synchronization d¢keof both hamespace
changes and changes to file content, they provide this irg#bom at a fairly coarse
granularity—per file, for inotify, and per directory for tl&vents API, for instance.
In the event that these services fail, the machine crashése elient itself fails or
is closed for a time, then the client detects changes in fidealby examining their
statistics, including size and modification timestamps.

Given this behavior, the causes of synchronization sesvinability to handle
corruption and inconsistency become apparent. As fileegysiotification services
provide no information on what file contents have changed,synchronization
client must assume that any changes that it detects reeuitl&gitimate user ac-
tion; it has no means of distinguishing unintentional clemdike corruption and
inconsistent crash recovery.

Inconsistent crash recovery is further complicated by tiemts internal meta-
data tracking. For example, with Dropbox, if the system leegasduring an upload
and restores the file to an inconsistent state, the cliehr&dgbgnize that it needs
to resume uploading the file, but it cannot detect that thaers are no longer

88

FS Corruption Crash Causal
ext4 (ordered) X X X
ext4 (data) X Vv X
ZFS v/ V X

Table 5.3:Summary of File System Capabilities This table shows the synchroniza-
tion failures each file system is able to handle correctlyer€rare three types of failures:

Corruption (data corruption), Crash (crash inconsistepjand Causal (causal inconsis-

tency). “,/” means the failure does not occur anck” means the failure may occur.

consistent. Conversely, if Dropbox had finished uploading @pdated its internal
timestamps, but the crash recovery reverted the file’s ra&ad an older version,
Dropbox must upload the file, since the differing timestaropld potentially indi-
cate a legitimate change.

5.3.2 Where Local File Systems Fail

File systems frequently fail to take the preventative messunecessary to avoid
data protection failures and, in addition, fail to exposeqate interfaces to allow
synchronization services to deal with them. As summarinefiable 5.3, neither
a traditional file system, ext4, nor a modern file system, 46 able to avoid all
failures.

File systems primarily prevent corruption via checksum$ieWwwriting a data
or metadata item to disk, the file system stores a checksumtlowdétem as well.
Then, when it reads that item back in, it reads the checksuhuses that to validate
the item’s contents. While this technique correctly detextrruption, file system
support for it is limited. ZFS and btrfs are some of the few elydavailable file
systems that employ checksums over the whole file syster;usds checksums,
but only over metadata [40]. Even with checksums, howebher fite system can
only detect corruption, requiring other mechanisms toirépa

Recovering from crashes without exposing inconsistendiéaiser is a prob-
lem that has dogged file systems since their earliest dagshas been addressed
with a variety of solutions, such as journaling and copywaite. However, as dis-
cussed in Chapter 2, the most popular file systems, includig, ext4, HFS+,
and NTFS, usually only perform metadata journaling, saindj data consistency
for performance. As a result, the inconsistencies upon shctause the erratic
behavior observed in Section 5.2.2.

Finally, avoiding causal inconsistency requires accesstatae views of the file

89

system at specific points in time. File-system snapshots$) as those provided by
ZFS or Linux's LVM [7], are currently the only means of obti#ig such views.
However, snapshot support is relatively uncommon, and vilefemented, tends
not to be designed for the fine granularity at which synclration services capture
changes.

5.4 Summary

As our observations have shown, the sense of safety prolgdegnchronization
services is largely illusory. The limited interface betweasients and the file sys-
tem, as well as the failure of many file systems to implementf&atures, can lead
to corruption and flawed crash recovery polluting all av@#acopies, and causal
inconsistency may cause bizarre or unexpected behaviars, Tlaively assuming
that these services will provide complete data protectim lead instead to data
loss, especially on some of the most commonly-used file syste

Even for file systems capable of detecting errors and pragetiteir propaga-
tion, such as ZFS and btrfs, the separation of synchronizatérvices and the file
system incurs an opportunity cost. Despite the presencercéat copies of data
in the cloud, the file system has no means to employ them ttitéaeirecovery.
Tighter integration between the service and the file systamremedy this, al-
lowing the file system to automatically repair damaged filéswever, this makes
avoiding causal inconsistency even more important, aseraishniques, such as
simply restoring the most recent version of each damagedfidikely to directly
cause it.

90

91

Chapter 6

ViewBox: Cooperative Data
Protection across Local and
Cloud Storage

Both cloud-based file synchronization services and fileesgstgo to extensive ef-
forts to preserve user data. However, our analysis in Ch&pteveals that both
systems fail to protect user data in several scenarios. UBecthe client has no
means of determining whether file changes are intentiondieoresult of corrup-
tion, it may send both to the cloud, ultimately spreadingwotrr data to all of a
user’s devices. Crashes compound this problem; the cliagtupload inconsistent
data to the cloud, download potentially inconsistent filesf the cloud, or fail to
synchronize changed files. Finally, even in the absencelaféathe client cannot
normally preserve causal dependencies between files, ifaeks stable point-
in-time images of files as it uploads them. This can lead tanaarisistent cloud
image, which may in turn lead to unexpected application ieha

In this chapter, we present ViewBox, a system in which lodaldystem and
cloud-based synchronization services are integrated arklesmoperatively to solve
the problems above. Instead of synchronizing individuakfiiewBox synchro-
nizes views, in-memory snapshots of the local synchrorfizieier that provide data
integrity, crash consistency, and causal consistency.|dds file system exposes
views to the synchronization client such that the clienyarploads updates from
the views. Since the client only updates views in their engjrViewBox guar-
antees the correctness and consistency of the cloud imddeh W then uses to
correctly recover from local failures. Furthermore, by ingkthe server aware of
views, ViewBox can synchronize views across clients angeng handle conflicts

92

without losing data.

The rest of the chapter is organized as follows. We first pitetbe high-level
design of ViewBox in Section 6.1. We then describe the imgetation of View-
Box in detail in 6.2. Finally, we evaluate our prototype VBox system in Section
6.3.

6.1 Design

To remedy the problems outlined in the previous section, vepgse ViewBox,

an integrated solution in which the local file system and g§rmelronization ser-
vice cooperate to detect and recover from these issueseathstf a clean-slate
design, we structure ViewBox around ext4 (ordered joungalnode), Dropbox,

and Seafile, in the hope of solving these problems with as femges to existing
systems as possible.

Ext4 provides a stable, open-source, and widely-usedisnlah which to base
our framework. While both btrfs and ZFS already provide sofitbe functionality
we desire, they lack the broad deployment of ext4. Additignas it is a journaling
file system, ext4 also bears some resemblance to NTFS and, HifrSWindows
and Mac OS X file systems; thus, many of our solutions may bcaiybe in these
domains as well.

Similarly, we employ Dropbox because of its reputation as ohthe most
popular, as well as one of the most robust and reliable, sgnétation services.
Unlike ext4, it is entirely closed source, making it impddsito modify directly.
Despite this limitation, we are still able to make significamprovements to the
consistency and integrity guarantees that both Dropboxexil provide. How-
ever, certain functionalities are unattainable withoudifying the synchronization
service. Therefore, we take advantage of an open sourcérsyrization service,
Seafile, to show the capabilities that a fully integrateddiletem and synchroniza-
tion service can provide. Although we only implement ViewBawith Dropbox
and Seafile, we believe that the techniques we introducey apgpierally to other
synchronization services.

In this section, we first outline the fundamental goals dgvViewBox. We
then provide a high-level overview of the architecture withich we hope to
achieve these goals. Our architecture performs three prifuaactions: detection,
synchronization, and recovery; we discuss each of thesgrnn t

93

6.1.1 Goals

In designing ViewBox, we focus on four primary goals, basadioth resolving
the problems we have identified and on maintaining the feattlrat make users
appreciate file-synchronization services in the first place

Integrity: Most importantly, ViewBox must be able to detect local cption and
prevent its propagation to the rest of the system. Usersiémity depend on
the synchronization service to back up and preserve th&; tzus, the file
system should never pass faulty data along to the cloud.

Consistency: When there is a single client, ViewBox should maintain chosa-
sistency between the client’s local file system and the cknaiprevent the
synchronization service from uploading inconsistent ddtarthermore, if
the synchronization service provides the necessary fumality, ViewBox
must provide multi-client consistency: file-system stagesnultiple clients
should be synchronized properly with well-defined conflegaiution.

Recoverability: While the previous properties focus on containing faulistain-
ment is most useful if the user can subsequently repair thesfaviewBox
should be able to use the previous versions of the files onltha ¢o re-
cover automatically. At the same time, it should maintainszé consistency
when necessary, ideally restoring the file system to an irtteagepreviously
existed.

Performance: Improvements in data protection cannot come at the expédipsz-0
formance. ViewBox must perform competitively with curraaiutions even
when running on the low-end systems employed by many of tbesuf file
synchronization services. Thus, naive solutions, likechyonous replica-
tion [65], are not acceptable.

6.1.2 Fault Detection

The ability to detect faults is essential to prevent themrmffropagating and, ulti-
mately, to recover from them as well. In p