
Memory Efficient Systems for the Modern Data Processing Stack

by

Yifan Dai

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2025

Date of final oral examination: Augest 5, 2025

The dissertation is approved by the following members of the Final Oral Committee:

Andrea C. Arpaci-Dusseau, Professor, Computer Sciences

Remzi H. Arpaci-Dusseau, Professor, Computer Sciences

Michael M. Swift, Professor, Computer Sciences

Ming Liu, Assistant Professor, Computer Sciences

Jin-Yi Cai, Professor, Mathematics

© Copyright by Yifan Dai 2025

All Rights Reserved

i

To my family and friends.

ii

Acknowledgments

I thank many people for their help and guidance throughout my Ph.D. life.

First and foremost, I express mymost sincere gratitude to my advisors, Andrea and Remzi.

Remzi’s speech at the visiting day was so appealing and was one of the most important

reasons for me to join their lab. They have formed my values in systems research. They have

taught me to sit down and measure and explore the search space of a topic with patience,

and then pick a set of interesting problems to solve with a new system.

Remzi has been an excellent guide in the exploration phase. He can always point out

the details I missed and point to new directions. He encouraged me to be brave enough to

break existing systems during explorations and implementations. He gave this advice in my

first year and this advice led to one of the core mechanisms in my first project. I have never

stuck and felt lost in building systems since then, with the belief that as long as I explore

enough possibilities, I will always find a way.

Andrea is always organized and has helped us a lot to formulate the project after the

exploration phase. I could not appreciate more having Andrea as my advisor when I started

to write my paper on my own. She makes the project and the paper organized and gives

clear directions for improvements. I was (and am now) not good at writing and every talk

with her about writing and presentation improved me a bit. I feel that I still have so much

to learn in writing from Andrea.

What I appreciate the most is that my advisors have created a solid and self-consistent

environment for us. They recognize the efforts I have made. In this environment, I do not

need to rush for the number of publications and I feel assured that I will be fine as long as

I am making progress. I can sit down and try hard topics to improve myself and be less

anxious about paper rejection. My Ph.D. life has been a hard but enjoyable experience

because of Andrea and Remzi.

I am grateful to my committee members: Michael Swift, Ming Liu, and Jin-Yi Cai, for their

iii

willingness to serve on my committee. Mike was also on my preliminary committee and gave

valuable feedback on the proposal of my last project. Jin-Yi’s course on complexity theory

was inspiring and his lecture was so organized and detailed that even I, who struggled a lot

in undergraduate theory courses, could follow with ease. I thank Shivaram Venkataraman,

who was on my preliminary committee, for his feedback on my last project and his course

on big data systems from which I learned a lot about large-scale systems.

I thank Jing Liu, my friend and former lab mate who graduated from our group last

year. She helped a lot with the initial organization of the Symbiosis paper. We have had

wonderful collaborations on 3 projects and even on other projects, discussions with her are

always fruitful. She was a good partner in research to me because we are good at different

things and think in different aspects. It was fun that we could improve each other’s writing

but struggled with our own writing. She has given me valuable advice on writing and

presentation, second only to my advisors.

I thank Tyler Caraza-Harter for his advice in formulating the Kelvin project and his

help in writing. It has been a pleasant experience during my last project as his ideas on

many interesting engineering challenges fit me well. I thank Aishwarya Ganesan and Ram

Alagappan for putting the Bourbon project together. I was completely lost as a first-year

student then and learned a lot from them.

Apart from the above, I have had the privilege to work with outstanding lab mates and

collaborators: Yien Xu, Anthony Rebello, Kan Wu, Shawn Zhong, Suyan Qu, Guanzhou

Hu, Chenhao Ye, Kaiwei Tu, Vinay Banakar, Tingjia Cao, Brian Kroth, and many more.

Discussions with them on research have always been fruitful; chatting with them about

everyday life has been a great relief from the pressure of research. I remember the design of

the core of my Kelvin project came from a casual dinner gathering with my lab mates.

I thank Naomi Geyer, Steven Ridgely, and Junko Mori for their help in my pursuit of

Ph.D. Minor in Japanese, especially Professor Geyer’s accommodation for this unusual

case of mine. I had an interesting experience in Professor Ridgely’s course on translation

from Japanese to English as both are foreign languages to me, and I was surprised at how

different languages can be from the fundamental logic. Professor Mori’s course on Japanese

linguistics opens a new direction for thinking about Japanese as well as other languages.

I feel fortunate to have Runyu Zheng as my best friend. Japanese story games have been

my sole interest in leisure time and Runyu is the only one who can enjoy Japanese stories in

the original language with me and feel the subtle emotions that would be lost by translation.

iv

We share our feelings in the stories, and then in our own life. The conversations with her

and the games we played together have made my life more colorful.

Finally, I express my gratitude to my parents. I did not have much chance to go back to

China during my entire Ph.D. life due to COVID and visa issues, but they were with me for

a few months in my final year and helped me through the hard times of job hunting and

paper resubmission.

v

Contents

Acknowledgments ii

Contents v

List of Tables ix

List of Figures x

Abstract xvi

1 Introduction 1

1.1 A Learned Index for Log-Structured Merge Trees 3

1.2 Application and Kernel Cache Cooperation . 5

1.3 Towards Zero-Copy Data Pipelines . 6

1.4 Contributions and Highlights . 8

1.5 Overview . 9

2 From WiscKey to Bourbon: A Learned Index for Log-Structured Merge Trees11

2.1 Background . 12

2.1.1 LSM and LevelDB . 12

2.1.2 WiscKey . 14

2.1.3 Optimizing Lookups with Learned Indexes 15

2.2 Learned Indexes: a Good Match for LSMs? 15

2.2.1 Learned Indexes: Beneficial Regimes 16

vi

2.2.2 Learned Indexes with Writes . 17

2.3 Bourbon Design . 24

2.3.1 Learning the Data . 24

2.3.2 Supporting Variable-size Values . 25

2.3.3 Level vs. File Learning . 26

2.3.4 Cost vs. Benefit Analyzer . 27

2.3.5 Bourbon: Putting it All Together 29

2.4 Evaluation . 31

2.4.1 Which Portions does Bourbon Optimize? 33

2.4.2 Performance under No Writes . 33

2.4.3 Range Queries . 37

2.4.4 Efficacy of Cost-benefit Analyzer with Writes 38

2.4.5 Real Macrobenchmarks . 39

2.4.6 Performance on Fast Storage . 41

2.4.7 Performance with Limited Memory 42

2.4.8 Error Bound and Memory Consumption 42

2.5 Conclusion . 43

3 Symbiosis: The Art of Application and Kernel Cache Cooperation 44

3.1 Motivation and Framework . 45

3.1.1 The Application-Kernel Cache Structure 46

3.1.2 Challenge: Memory Partitioning . 47

3.1.3 Cache Coordination with Symbiosis 48

3.2 The Cache Partitioning Problem . 49

3.2.1 Influential Factors . 49

3.2.2 Analysis . 52

3.2.3 Discussion . 55

3.3 Design and Implementation of Symbiosis . 56

3.3.1 Design . 57

3.3.2 GhostSim Optimization Techniques 58

vii

3.3.3 Multiple Implementations . 62

3.4 Evaluation . 62

3.4.1 Static Workloads . 64

3.4.2 Dynamic Workloads . 69

3.4.3 Real World Workloads . 75

3.5 Conclusion . 76

4 Kelvin: Towards Zero Copying and Duplication in Data Pipelines 77

4.1 Background and Motivation . 78

4.1.1 Background: DAG-based Pipelines on a Single Machine 78

4.1.2 Background: Kernel Shared Memory 79

4.1.3 Background: User-Space Sharing 81

4.1.4 Requirements and Challenges . 82

4.2 Kelvin Design . 84

4.2.1 Shared-Memory Mechanisms . 84

4.2.2 Zero-Copy Communication . 86

4.2.3 Resource Management . 88

4.3 Implementation: Kelvin on Linux . 91

4.3.1 DeAnon Kernel Module . 91

4.3.2 SIPC Protocol . 92

4.3.3 Node Container . 93

4.3.4 DeCache: Shared Data Loading . 94

4.3.5 Resource Manager . 94

4.4 Evaluation . 95

4.4.1 DeAnon and SIPC . 96

4.4.2 DeCache: Input Data Deduplication 102

4.4.3 Eviction Mechanisms . 103

4.4.4 DABstep: Evaluation with Real DAGs 106

4.5 Conclusion . 107

5 Related Work 109

viii

5.1 Machine Learning for Indexing and Caching 109

5.2 LSM-tree Optimizations . 110

5.3 Cache Management . 111

5.4 Kernel Methods in Memory Management 112

5.5 Data Pipelines Techniques . 113

5.6 Hardware-Related Advancements for Memory Efficiency 114

6 Conclusions 116

6.1 Summary . 116

6.1.1 Bourbon . 116

6.1.2 Symbiosis . 117

6.1.3 Kelvin . 117

6.2 Lessons Learned . 118

6.3 Future Work . 121

6.4 Closing Words . 123

Bibliography 124

ix

List of Tables

2.1 File vs. Level Learning. The table compares the time to perform 10M opera-

tions in baseline WiscKey, file-learning, and level-learning. The numbers within

the parentheses show the improvements over baseline. The table also shows the

percentage of lookups that take the model path; remaining take the original path

because the models are not rebuilt yet. 26

2.2 Performance on Fast Storage. The table shows Bourbon’s lookup latencies

when the data is stored on an Optane SSD. 40

2.3 Performance with Limited Memory. The table shows Bourbon’s average

lookup latencies from the AR dataset on a machine with a SATA SSD and limited

memory. 42

3.1 Factors for Static Workload. Access patterns are generated by YCSB [33]. Zip-

fian has scattered hotspots over the key range to avoid space locality. Hotspot{30,20,10}

means that 70%, 80%, and 90% of requests access 30%, 20%, and 10% keys in a con-

tiguous range. 63

3.2 Tail Latency. Overhead is the comparison to StaticMa=8MB. (α= 0.22) 72

3.3 Space and Time Overhead and Convergence Time of Various Simulation

Settings. Operation overhead compares to baseline LevelDB. Sample rate is
1

64
. . 76

4.1 Solutions for Challenges. 91

4.2 Hardware for Evaluation. Note that the actual memory limit of each experi-

ment is enforced by cgroup, not the RAM size. Input parquet files reside on one

disk and the other is used as the swap device. SMT is disabled on CPUs. 95

4.3 Ecosystem Benchmark DAGs. 101

4.4 DABstep Workloads: Node Count by Type. 106

x

List of Figures

2.1 LevelDB and WiscKey. (a) shows how data is organized in LevelDB and how a

lookup is processed. The search in in-memory tables is not shown. The candidate

sstables are shown in bold boxes. (b) shows how keys and values are separated in

WiscKey. 13

2.2 Lookup Latency Breakdown. The figure shows the breakdown of lookup latency

in WiscKey. The first bar shows the case when data is cached in memory from the

beginning of the workload. The other three bars show the case where the dataset is

originally stored on different types of SSDs. We perform 10M random lookups on

the Amazon Reviews dataset [12]; the figure shows the breakdown of the average

latency (shown at the top of each bar). The indexing portions are shown in solid

colors; data access and other portions are shown in patterns. 16

2.3 SSTable Lifetimes. (a) shows the average lifetime of sstable files in levels L4 to

L0. (b) shows the distribution of lifetimes of sstables in L1 and L4 with 5% writes.

(c) shows the distribution of lifetimes of sstables for different write percentages in

L1 and L4. 18

2.4 Number of Internal Lookups Per File. (a)(i) shows the average internal

lookups per file at each level for a randomly loaded dataset. (b) shows the same

for sequentially loaded dataset. (a)(ii) and (a)(iii) show the negative and positive

internal lookups for the randomly loaded case. (a)(iv) shows the positive internal

lookups for the randomly loaded case when the workload distribution is Zipfian. . 19

2.5 Changes at Levels. (a) shows the timeline of file creations and deletions at

different levels. Note that #changes/#files is higher than 1 in L1 as there are more

creations and deletions than the number of files. (b) shows the time between bursts

for L4 for different write percentages. 23

xi

2.6 Bourbon Lookups. (a) shows that lookups can take two different paths: when

the model is available (shown at the top), and when the model is not learned yet

and so lookups take the baseline path (bottom); some steps are common to both

paths. (b) shows the detailed steps for a lookup via a model; we show the case

where models are built for files. 30

2.7 Datasets. The figure shows the cumulative distribution functions (CDF) of three

synthetic datasets (linear, segmented-10%, and normal) and one real-world dataset

(OpenStreetMaps). Each dataset is magnified around the 15% percentile to show a

detailed view of its distribution. 32

2.8 Latency Breakdown. The figure shows latency breakdown for WiscKey and

Bourbon. Search denotes SearchIB and SearchDB in WiscKey; the same denotes

ModelLookup and LocateKey in Bourbon. LoadData denotes LoadDB in WiscKey;

the same denotes LoadChunk in Bourbon. These two steps are optimized by

Bourbon and are shown in solid colors; the number next to a step shows the factor

by which it is made faster in Bourbon. 33

2.9 Datasets. (a) compares the average lookup latencies of Bourbon, Bourbon-level,

and WiscKey for different datasets; the numbers on the top show the improvements

of Bourbon over WiscKey. (b) shows the number of segments for different datasets

in Bourbon. 34

2.10 Load Orders. (a) shows the performance for AR and OSM datasets for sequential

(seq) and random (rand) load orders. (b) compares the speedup of positive and

negative internal lookups. 35

2.11 Request Distributions. The figure shows the average lookup latencies of different

request distributions from AR and OSM datasets. 36

2.12 Range Queries. The figure shows the normalized throughput of range queries

with different range lengths from AR and OSM datasets. 36

2.13 Mixed Workloads. (a) compares the foreground times of WiscKey, Bourbon-

offline (offline), Bourbon-always (always), and Bourbon-cba (cba); (b) and (c)

compare the learning time and total time, respectively; (d) shows the fraction of

internal lookups that take the baseline path. 37

2.14 Macrobenchmark-YCSB. The figure compares the throughput of Bourbon

against WiscKey for six YCSB workloads across three datasets. 38

xii

2.15 Macrobenchmark-SOSD. The figure compares lookup latencies from the SOSD

benchmark. The numbers on the top show Bourbon’s improvements over the baseline. 41

2.16 Mixed Workloads on Fast Storage. The figure compares the throughput of

Bourbon against WiscKey for four read-write mixed YCSB workloads. We use the

YCSB default dataset for this experiment. 41

2.17 Error-bound Tradeoffs and Space Overheads. (a) shows how the PLR er-

ror bound affects lookup latency and memory overheads; (b) shows the memory

consumptions for different datasets. 43

3.1 The Cache Architecture across the Storage Stack. Modern applications

commonly utilize storage engines (e.g., LevelDB) to manage on-disk data. A storage

engine keeps compressed data on disk, and usually has separate index structures

and an in-memory buffer for uncompressed data. The arrows depict the common

read path. 45

3.2 Storage Engine Performance Varying Data Set Size. Each bar depicts one

application cache size (8MB or 1GB); each pair of bars shows performance for

a given dataset size. Total available memory is 1 GB. The y-axis is the latency

normalized to the lowest value; numbers above are absolute latencies (us/op). . . 48

3.3 Overview of Symbiosis. This figure shows the main components of Symbiosis

and their interactions. 49

3.4 Simulation Results - Performance Varying One Factor. In each subplot, the

title indicates the varied factors across lines; the legend describes parameters of

the minimal and maximal value for a factor (the rest is omitted). The triangle

indicates the point of the global minima; the bold text depicts the controlled factors. 50

3.5 Simulation Results - Best Configurations. The title of each subplot means

the workload and miss cost. We use
M
Du

from 0.1 to 1.0 (x-axis) and two miss costs

Ca=10,50. 51

3.6 Simulated performance under a Mixed (Read+Scan) workload. The legend

describes parameters of the minimal and maximal value for the varying factor,

DataSetSize (i.e., Du). The triangle indicates the point of global minima. (Con-

trolled factors: Ca = 50,α= 0.2) . 54

xiii

3.7 Design of Symbiosis. Symbiosis is directly integrated into a storage engine.

The orange dashed lines are the stats collection paths that are always active; the

dashed red lines are the paths filling entries into the ghost cache, activated only in

Adapting State and empty in Stable State. The information inside the GhostSim

component illustrates how the ghost cache changes across the nine configurations

during one simulation round. The size of the application cache (i.e., light red portion

of a bar) is increased over time; the dark red portion represents the kernel cache. 56

3.8 KernelCache Simulation and Sampling. Kernel-nora and Kernel are the kernel

cache implementations with and without read-ahead, respectively. 60

3.9 Performance under Static Workloads (Part 1). X-axis is
M
Du

. Ma=8MB means

StaticMa=8MB, similarly for Ma=1GB. 65

3.9 Performance under Static Workloads (Part 2). X-axis is
M
Du

. Ma=8MB means

StaticMa=8MB, similarly for Ma=1GB. 66

3.10 Static Workload with 20% Overwrites. (a) X-axis is
M
Du

. Ma=8MB means

StaticMa=8MB, similarly for Ma=1GB. α= 0.22, Ca = 3, Ck = 16. (b) shows the

predicted application cache hit ratio of the Ma= 1GB configuration using cache

traces from configurationMa= 8MB andMa= 1GB, and the observed hit ratio

whenMa= 1GB, under different compaction rates. The workload is uniform with

20% overwrite andM=Du. 67

3.11 WiredTiger and RocksDB (Static Workload). X-axis is
M
Du

. Ma=8MB means

StaticMa=8MB, similarly for Ma=1GB. In (a), WT-orig-Ma=256MB is the orig-

inal WiredTiger, while Ma=256MB, Ma=1GB, and Symbiosis uses our modified

WiredTiger with LRU-like eviction policy. 68

3.12 Timeline of Latency under a Dynamic Workload (hotspot20:1.0-2.0). The

workload changes are aligned at ∼ 26sec, and we label state transfer of Symbiosis

by the gray vertical lines. Sim-off means we turn off the simulation and shows the

effect of only resetting the application cache size to default; its steady performance

is the same as StaticMa=1GB before the change, and the same as StaticMa=8MB

afterwards. (α= 0.22) . 69

xiv

3.13 Performance under Dynamic Workloads (α= 0.22). In the Latency subplot,

each group has three bars: StaticMa=8MB, StaticMa=1GB and Symbiosis. Each

adjacent bar group represents one workload1→workload2 change and the next

group reverses the workloads. The first two rows contains 12 workloads where Du

varies (shown in the x-axis labels). The third row contains 2 workloads varying

hotspot positions and 4 varying hotness and hotspot positions, each with a fixed

Du. For instance, 2g:Hot20 means a hotspot20 workload with Du = 2 GB and

2g:Hot20-T mirrors the hotspot to the tail. 2g:Hot20→2g:Hot20-T is summarized

as 2g:Mirror (hotspot change). The Conv. Time and Ma/M subplots only show the

behaviors of Symbiosis. 71

3.14 Timeline of Latency under a Dynamic Workload with Gradual Change.

The workload is uniform withDu = 2 GB in the first 10M operations,Du = 1 GB in

the last 10M operations, and a uniform gradual change during the 50M operations

in between. (α= 0.22) . 73

3.15 Overhead during Simulation (α= 0.22). The workloads are in the same order

as in Figure 3.13. The bars are the overhead with the reset policy; dashed ones

indicate no actual Ma change. Numbers in gray background are the overhead

percentages without the reset policy. 73

3.16 Request Latency versus the Request Sequence. The 4 phases are composed of

2 workloads generated from RocksDB’smix_graph benchmark. Two versions of

the first workload exhibit a decrease inDu, with Keymax = 50M andDu = 5 GB

in phase 1 and Keymax = 25M and Du = 2.5 GB in phase 2. Similarly, two

versions of the second workload exhibit a increase in Du s (phase 3: Du = 2.5 GB

and phase 4: Du = 5 GB). The four small bar charts around the top illustrates

the decision of Tracker; each chart is a simulation round. Each bar represents one

simulated cache size setting (S{0,...,8} from Ma = 8 MB to Ma = 1 GB), y-axis is

the Le (expected latency), and the gray horizontal line shows the real system Le at

the time of simulation end. Tracker adopts the first three size changes, but rejects

the last one; all four are good decisions. (α= 0.22) 74

4.1 A Minimal DAG on a Single Machine. 79

4.2 Sharing Challenges: Memory Management. 82

4.3 Sharing Challenges: Data Transformations. 83

xv

4.4 Kelvin Memory Management. 85

4.5 Shared Inter-Process Communication. 87

4.6 Resource Management. Finished nodes are gray. 89

4.7 CopyAvoidance.Throughput and swapping are showwith andwithoutDeAnon

for a single-node DAG. 97

4.8 Resharing: Time and Space Benefits. 99

4.9 Latency of Col_Add of Different Sizes. The x-axis is the number of column

adding function executed. The y-axis is the overall latency. 99

4.10 Resharing Dictionaries. The x-axis is the string size in bytes. Each unique

string appears 10 times in (a) and once in (b). Strings are dictionary encoded for

dashed lines. 100

4.11 Ecosystem Benchmark on SIPC. The x-axis is the DAG Length. 102

4.12 Performance of DAGs with the same Inputs. In (b), the y-axis is the number

of foreground swap-in events in million times. Baseline crashes at x>20 because

of OOM. 103

4.13 Matrix Mult on DeCache. 104

4.14 Performance of Different Eviction Methods. The x-axis is the amount of

computation in a single function. The y-axis is the throughput of the entire

workload. 104

4.15 Synthetic Benchmark on Eviction Mechanisms. The x-axis is DAG Length. 105

4.16 Sample DABstep DAG. Circles are parquet inputs. Boxes are functions. The

load phase contains 3 nodes loading 3 tables. The preprocess phase contains 3

nodes, appending data to and filtering the input tables. The final computation

phase involve tens of nodes in parallel. 106

4.17 Performance of DABstep DAGs. Except for All, the latency and the interme-

diate data size are distributed to the load, preprocess, and compute phase. . . . 107

xvi

Abstract

The world has witnessed exponential growth of data. People interact with data every day

through social media, e-commerce, and so on.

People have built software stacks to efficiently workwith data. Amodern data processing

stack includes layers that are responsible for ingesting, storing, transforming, and utilizing

data. With the data becoming larger, the data processing stack requires better memory

efficiency. There has been extensive study from the systems community to optimize each

layer of the stack, but communication between them is often overlooked, leading to hidden

overheads across layers.

In this thesis, we introduce three aspects of study on memory efficiency of the data

processing stack, both on optimizations within a single layer and those across layers. The

first part of the thesis introduces a learned index for Log-structured Merge (LSM) Trees. The

learned index is 0.5× to 0.75× smaller than the original index and improves the in-memory

workload performance by 1.5× on average.

In the second part, we focus on the caching problem between the layer of storage engines

and the layer of the underlying kernel. Both storage engines and the underlying kernel

use data caching and they share the same memory quota, implicitly forming a two-level

cache structure of which storage engines are often unaware. We introduce a framework

that automatically optimizes cache allocation of storage engines by online cache simulation

and dynamically adapts to different workloads. We incorporate our system into 3 popular

key-value storage systems and provide a 1.5× gain on average.

The third part focuses on removing data copying and duplication in data pipelines on a

single machine. Data communication between different nodes in a data pipeline currently

requires full copying even if they are located on the same machine due to limited kernel

support. We build a pipeline execution engine with co-design of new kernel mechanisms

and container runtime. Our new system provides a 2× gain for real-world data pipelines.

Abstract xvii

We design and implement our solutions into real systems and yield benefits on real data

processing workloads. We believe that our work will inspire the future development of the

data processing stack.

1

Chapter 1

Introduction

In the past 20 years, the world has seen exponential growth of data, flowing from data

storage such as data centers, data processing systems such as databases, to data consumers

such as social media and machine learning models. The total amount of data generated

worldwide is estimated to reach 200 zettabytes in 2025 [144], or 500 million TB daily.

While such a large scale was typically processed distributedly in the past [36, 130, 169],

a large amount of such work can be done on a single machine with access to emerging

single nodes with huge memories, in tens of terabytes [125, 141]. Processing data locally

has several advantages, such as saving the data communication overhead and reducing the

maintenance efforts of computing resources. How much work of the data processing stack

that can be done locally depends on how much we can use the memory efficiently.

The data processing stack is a collection of technologies and tools that ingests, organizes,

stores, and transforms data [124]. At the top of a typical modern data processing stack,

we have applications in various areas such as data analytics and machine learning. Below

that, we have databases and storage engines that are responsible for data storage, retrieval,

and transformation. At the bottom layer, filesystems and the kernel process requests from

databases and storage engines by communicating with the underlying hardware.

To improve the performance of the data processing stack, there has been extensive

study from the system community to optimize each layer of the stack. For example,people

have developed better algorithms for applications [168], new data structures for storage

engines [77], and new kernel mechanisms to remove the scalability bottleneck [116].

However, as each layer tends to be optimized independently, communication between

2

them is often overlooked, leading to hidden overheads across layers. A typical type of such

overhead is the inefficient use of memory. Caching, for example, is often built in every layer

of the stack to utilize data locality, but the lack of coordination between these caches could

result in sub-optimal policy choices and resource allocation [18, 159, 172]. Another example

is data passing across layers. Data communication between different protection domains

often requires copying, and this problem becomes more and more severe as the amount of

data increases.

Thus, there lies huge opportunities in improving memory efficiency across layers in

the modern data processing stack. We can optimize memory allocation mechanisms and

policies according to specific access patterns from the upstream, or specific behaviors in the

downstream. Moreover, co-design of the entire stack gives us a stronger ability to construct

a more efficient data flow throughout the stack.

In this thesis, we introduce three aspects of study on memory efficiency of the data

processing stack. In the first work, we focus on optimizing a single layer: the databases.

We build a learned index for Log-structured Merge (LSM) Trees [98, 113, 123] and study

the performance characteristics of a popular LSM-based storage engine (LevelDB [52]).

We study the lifetime of tables in LSMs under various workloads and summarize rules for

applying learning to LSMs. The learned index is much smaller than the original LSM-tree

index and significantly improves the performance of in-memory workloads.

In the second work, we focus on the caching problem between the layer of storage

engines and the layer of the underlying kernel. Both storage engines and the underlying

kernel use data caching and they share the same memory quota, implicitly forming a two-

level cache structure of which storage engines are often unaware. We introduce a framework

that automatically optimizes cache allocation of storage engines by online cache simulation

and dynamically adapts to different workloads.

The third work focuses on removing data copying and duplication in data pipelines on a

single machine. Data communication between different nodes in a data pipeline currently

requires a full copy of the communicated data even if the nodes are located on the same

machine due to limited kernel support. We build a pipeline execution engine with co-

design of the entire data processing stack, including new kernel mechanisms, new container

runtime, and new resource management mechanisms.

Our studies solve real-world problems on memory efficiency of the modern data pro-

cessing stack and build practical solutions. We believe that our work will inspire the future

3

development of components in the data processing stack.

1.1 A Learned Index for Log-Structured Merge Trees

Our first project focuses on improving in-memory workloads for databases. We build

a learned index [77] for Log-structured Merge (LSM) Trees [98, 113, 123] and study the

performance characteristics of a popular LSM-based storage engine (LevelDB [52]). Our

system, Bourbon, significantly improves the indexing performance, which is the bottleneck

for in-memory workloads, and reduces the index sizes by 0.5× to 0.75×.

Learned indexes apply machine learning to supplant the traditional index structure

found in database systems, namely the ubiquitous B-Tree [32]. To look up a key, the system

uses a learned function that predicts the location of the key (and value); when successful, this

approach can improve lookup performance, in some cases significantly, and also potentially

reduce space overhead. Since this pioneering work, numerous follow-ups [38, 50, 76] have

been proposed that use better models, better tree structures, and generally improve how

learning can reduce tree-based access times and overheads.

We now apply this new approach to the LSM trees. LSMs were introduced in the late ’90s,

gained popularity a decade later through work at Google on BigTable [27] and LevelDB [52],

and have become widely used in industry, including in Cassandra [81], RocksDB [46], and

many other systems [51, 106]. LSMs have many positive properties as compared to B-trees

and their cousins, including high insert performance [34, 98, 117].

A major challenge of applying learned indexes to LSMs is that while learned indexes

are primarily tailored for read-only settings, LSMs are optimized for writes. Writes cause

disruption to learned indexes because models learned over existing data must now be

updated to accommodate the changes; the system thus must re-learn the data repeatedly.

However, we find that LSMs are well-suited for learned indexes. For example, although

writes modify the LSM, most portions of the tree are immutable; thus, learning a function to

predict key/value locations can be done once, and used as long as the immutable data lives.

However, many challenges arise. For example, variable key or value sizes make learning a

function to predict locations more difficult, and performing model building too soon may

lead to significant resource waste.

Thus, we first study how an existing LSM system, WiscKey [98], functions in great

detail (§2.2). We focus on WiscKey because it is a state-of-the-art LSM implementation

4

that is significantly faster than LevelDB and RocksDB [98]. Our analysis leads to many

interesting insights from which we develop five learning guidelines: a set of rules that aid

an LSM system to successfully incorporate learned indexes. For example, while it is useful

to learn the stable, low levels in an LSM, learning higher levels can yield benefits as well

because lookups must always search the higher levels. Next, not all files are equal: some

files even in the lower levels are very short-lived; a system must avoid learning such files,

or resources can be wasted. Finally, workload- and data-awareness is important; based on

the workload and how the data is loaded, it may be more beneficial to learn some portions

of the tree than others.

We apply these learning guidelines to build Bourbon, a learned-index implementation

of WiscKey (§2.3). Bourbon uses piece-wise linear regression, a simple but effective model

that enables both fast training (i.e., learning) and inference (i.e., lookups) with little space

overhead. Bourbon employs file learning: models are built over files given that an LSM file,

once created, is never modified in-place. Bourbon implements a cost-benefit analyzer that

dynamically decides whether or not to learn a file, reducing unnecessary learning while

maximizing benefits. While most of the prior work on learned indexes [38, 50, 77] has

made strides in optimizing stand-alone data structures, Bourbon integrates learning into

a production-quality system that is already highly optimized. Bourbon’s implementation

adds around 5K LOC to WiscKey (which has ∼20K LOC).

We analyze the performance of Bourbon on a range of synthetic and real-world datasets

and workloads (§2.4). We find that Bourbon reduces the indexing costs of WiscKey sig-

nificantly and thus offers 1.23× – 1.78× faster lookups for various datasets. Even under

workloads with significant write load, Bourbon speeds up a large fraction of lookups and,

through cost-benefit, avoids unnecessary (early) model building. Thus, Bourbon matches

the performance of an aggressive-learning approach but performs model building more

judiciously. Finally, most of our analysis focuses on the case where fast lookups will make

the most difference, namely when the data resides in memory (i.e., in the file-system page

cache). However, we also experiment with Bourbon when data resides on a fast storage

device (an Optane SSD) or when data does not fit entirely in memory, and show that benefits

can still be realized.

5

1.2 Application and Kernel Cache Cooperation

We now dive into another crucial component in storage engines: caching. We design and

build Symbiosis that optimizes the cache sizes of the storage engine applications with the

knowledge of the underlying caching layer, the kernel page cache, and improves the overall

cache efficiency of the data processing stack.

Key-value storage engines, such as LevelDB [53], RocksDB [46], and WiredTiger [107],

are essential components in modern data-intensive applications. A crucial factor in the per-

formance of key-value storage systems is the effectiveness of in-memory caching. Unlike the

traditional database approach [136], in which raw devices or other “direct I/O” mechanisms

are employed to avoid file system caching, today’s key-value storage systems are often built

on top of the file system, and thus will cache by default compressed data in the file system

page cache. Furthermore, modern storage engines implement additional application-level

caching structures where data is cached in uncompressed form. The effectiveness of these

combined caches can dramatically affect overall performance; proper usage can improve

performance by an order of magnitude.

Unfortunately, this two-level structure with data compression greatly complicates per-

formance tuning. How large should the application cache for uncompressed data be? How

much memory should be dedicated to kernel-level caching for compressed data? The proper

answer to this question requires sophisticated knowledge of workload, machine configura-

tion, OS behavior, compression costs, and other relevant details; as workloads change over

time, the answer too may change.

We introduce Symbiosis, a system to coordinate application and kernel caches to max-

imize performance. The core component is an online approximate simulator used by a

key-value store directly to adapt the size of the user-level cache. The simulator uses a modi-

fied form of ghost caching [42] to predict how different sized application caches will perform;

Symbiosis uses these simulation results to periodically adjust the size of the application

cache, thus improving performance. The online simulation includes novel optimizations

to lower space overheads and handle nuanced kernel behaviors (such as prefetching), and

guardrails to protect against unmodeled corner-case behaviors.

We show the utility of Symbiosis by incorporating it into 3 different key-value storage

systems: LevelDB, WiredTiger, and RocksDB. Most of our work focuses on LevelDB [53];

through careful re-use of existing code (where appropriate), our modifications add roughly

6

1K lines to the code base. Across a range of read-heavy workloads, we show that Symbiosis

improves LevelDB performance significantly (greater than 5×) as compared to unmodified

LevelDB. We also show that our approach adapts effectively to workload changes and that

the overheads are low.

Our other two implementations (in WiredTiger [107] and RocksDB [46]) demonstrate

the generality of our approach. WiredTiger has a substantially different caching architecture

than LevelDB, and yet we readily integrated Symbiosis into it with minor code alterations. In

doing so, we also discovered a caching bug (acknowledged by the MongoDB team as major);

we both fix the bug and show that Symbiosis improves performance. Finally, RocksDB can

be configured to avoid the kernel cache; its two-level application-managed caching structure

consists of a compressed cache of data read from disk and an uncompressed cache to service

queries. We show Symbiosis works well when the application manages both caches directly,

again improving performance.

1.3 Towards Zero-Copy Data Pipelines

Our lastwork focuses on improvingmemory efficiency for data pipelines. We buildKelvin by

co-designing different layers of the data processing stack (user-space resource management,

container runtime, and kernel support for shared memory) to eliminate data copying and

duplication for data pipelines.

Data pipelines are a popular paradigm for data analysis and machine-learning workloads.

Data pipelines are frequently implemented as DAGs (Directed Acyclic Graphs), where each

node of a DAG describes a transformation to perform on the data [13, 132, 141, 169]. Edges

represent data passing between nodes. Given fine-grained nodes, efficient communication

along edges is critical for good performance [64, 127, 163]. Data passing along edges may

occur via network, disk, or memory [36, 99, 100, 115, 169]; the specific medium depends on

node placement and resource availability.

Recent workload and hardware trends [104, 140] demonstrate the feasibility of deploying

most data pipelines on a single machine with ample memory, with memory as the sole and

most efficient medium for data passing. Cloud virtual machines with 24 TB of RAM are

now available [125]; in contrast, the largest (p99.9) datasets for OLAP workloads occupy a

mere 0.25 TB [118]. Memory is increasingly affordable as well: from 2014 to 2023, cost has

dropped from $4K to $1K for 1 TB of RAM [112]. The ideal way to pass in-memory data

7

between nodes in a DAG is by reference: if downstream processes in a data pipeline can

virtually map upstream outputs into their virtual address spaces, copying and duplication

overheads can be avoided.

Many challenges arise in practice when using shared memory for passing data between

DAG nodes.

• Challenge 1 In-memory formats often rely on pointers to virtual memory, but these

pointers are only meaningful in the address space of a single process.

• Challenge 2 Many libraries allocate non-shared memory, and sharing requires copy-

ing to shared memory.

• Challenge 3 Node processes may be deployed in different containers, and accounting

rules for “charging” containers for shared memory consumption are complex.

• Challenge 4 Node output often extends node input, but copying is necessary if

communication protocols lack a means for outputs to reference inputs.

• Challenge 5 Sharing occurs at page granularity, but the commonality between inputs

and outputs is often at row granularity.

• Challenge 6 Data pipelines usually start by deserializing data from persistent storage

to memory; without coordination, different pipelines will have their own copies of

the same data in memory.

Simply using Linux shared memory and a zero-copy protocol such as Arrow [14, 147]

solves the first challenge (pointers), but unfortunately the other challenges remain.

We build Kelvin, a data pipeline platform that avoids data copying and duplication for a

wide range of scenarios running unmodified user code. Kelvin includes several components

as solutions to the challenges above. The core component adds de-anonymization support

to the Linux kernel to convert anonymous (i.e., non-shared) memory to shared memory

without a copy, so that data produced by share-unaware code and libraries can be efficiently

passed to other processes (Challenge 2). Around that, we build a new container to achieve

both isolated execution and data sharing (Challenge 3), a shared IPC library to utilize the

new kernel support to generate shared data without copying (Challenge 4 & 5), a cache based

on shared memory to allow multiple pipelines to share a common input source (Challenge

8

6), a resource manager to manage the shared physical data, and a DAG executor built on

OpenLambda [110] to utilize the existing mechanisms for containerized execution and basic

resource accounting.

Kelvin’s techniques provide substantial performance gains in a variety of scenarios by

reducing both the time overhead of copying identical data and the memory overhead of

duplicating identical data; this memory reduction allows significantly more DAG nodes to

run in parallel. De-anonymization eliminates write-side copies, halving the latency of a

single node outputting Arrow data that was loaded from a Parquet file. For a large batch of

2-node DAGs loading data from the same source, shared deserialization improves throughput

by up to 38×. IPC inspection and resharing dramatically reduce physical output sizes for

a variety of transformations, in some cases to practically zero new data. In combination,

these features improve overall throughput by 1.2-28× for various complex mixes of DAGs.

1.4 Contributions and Highlights

A Learned Index for Log-Structured Merge Trees.

• We study the lifetime of LSM tables and the number of lookups they serve under

various different workloads.

• We summarize a set of learning guidelines on how to perform learning on LSM trees.

• We design and implement a learned index for LSMs and dynamically decide whether

to learn a new table according to the workload.

Application and Kernel Cache Cooperation.

• We identify the application-kernel two-level cache structure common for storage

engines and highlight the performance gain and difficulty of optimal memory parti-

tioning for the caches.

• We design and implement an offline cache simulator that accurately simulates the

application-kernel cache structure and detailed admission and eviction behaviors of

the kernel page cache.

9

• We design and implement Symbiosis to dynamically adjust cache sizes online accord-

ing to the workload. Symbiosis is integrated into LevelDB, RocksDB, and WiredTiger

and adds negligible overhead to the original systems.

Towards Zero-Copy Data Pipelines.

• We discover three different types of data copying and duplication in current data

pipeline executions and identify the challenges to eliminate such data copying while

achieving isolated execution and resource accounting.

• We add de-anonymization support to the Linux kernel to convert anonymous (i.e.,

non-shared) memory to shared memory without a copy so that data produced by

share-unaware code and libraries can be efficiently passed to other processes.

• We create a new container implementation based on SOCK [110] that supports passing

of shared Arrow data and leverages Linux cgroup accounting rules to expose control

over swapping and eviction of intermediate data.

• We modify the Arrow communication library (Arrow IPC) to detect overlap between

inputs and outputs, eliminate such overlap via references, and use new kernel support

to de-anonymize as needed.

• We create a cache based on shared memory, allowing pipelines that load data from a

common source to share a single in-memory copy of the data.

• We integrate all of the above into a new data pipeline platform, Kelvin, that avoids

copying and duplication for a wide range of scenarios.

1.5 Overview

We briefly describe the contents of the chapters of this dissertation.

• A Learned Index for Log-Structured Merge Trees. In Chapter 2, we study the

performance characteristics of LSM trees and present Bourbon, a learned index for

LSMs.

10

• Application andKernelCacheCooperation. In Chapter 3, we study the application-

kernel two-level cache structure and present Symbiosis to dynamically partition

memory for the caches according to the workload.

• Towards Zero-Copy Data Pipelines. In Chapter 4, we identify various data copying

and duplication in current data pipeline execution and build Kelvin to avoid them

with co-design of the application and the kernel.

• Related Work. In Chapter 5, we describe previous work on machine learning for

systems, LSM optimizations, cache management, and kernel methods in memory

management.

• Conclusions and Future Work. In Chapter 6, we summarize the thesis and the

lessons we learned during the work. We then discuss possible future directions to

which our work can be extended.

11

Chapter 2

FromWiscKey to Bourbon: A Learned

Index for Log-Structured Merge Trees

In this chapter, we build learned indexes for Log-structured Merge (LSM) Trees and study

the performance characteristics of a popular LSM-based storage engine (LevelDB [52]).

Our system, Bourbon, significantly improves the performance of in-memory workloads by

accelerating the bottleneck, indexing, and reduces the index sizes by 0.5× to 0.75×.

We first present how LSMs function internally and extract statistics that are critical for

learning (§2.2. With a suite of workloads with different access patterns and read/write rates,

we study the lifetime of LSM tables and how many lookups these tables serve. We then

formulate a set of guidelines on how to integrate learned indexes into an LSM with such

statistics).

We then present the design and implementation of Bourbon which incorporates learned

indexes into a real, highly optimized, production-quality LSM system (§2.3). We use piece-

wise linear regression (PLR) [7, 71] to replace the indexing structure in LSM tables. We

support variable-size values by incorporating key-value separation [98]. We apply a cost-

benefit analyzer to determine whether it is worthwhile to learn a new table during runtime.

Through a variety ofmicro- andmacro-benchmarks, we analyze Bourbon’s performance

in detail, demonstrating that Bourbon improves lookup performance by 1.23×-1.78× as

compared to state-of-the-art production LSMs.

12

2.1 Background

We first describe log-structured merge trees and explain how data is organized in LevelDB.

Next, we describe WiscKey, a modified version of LevelDB that we adopt as our baseline.

We then provide a brief background on learned indexes.

2.1.1 LSM and LevelDB

An LSM tree is a persistent data structure used in key-value stores to support efficient inserts

and updates [113]. Unlike B-trees that require many random writes to storage upon updates,

LSM trees perform writes sequentially, thus achieving high write throughput [113].

An LSM organizes data in multiple levels, with the size of each level increasing expo-

nentially. Inserts are initially buffered in an in-memory structure; once full, this structure

is merged with the first level of on-disk data. This procedure resembles merge-sort and is

referred to as compaction. Data from an on-disk level is also merged with the successive

level if the size of the level exceeds a limit. Note that updates do not modify existing records

in-place; they follow the same path as inserts. As a result, many versions of the same item

can be present in the tree at a time. We refer to the levels that contain the newer data as

higher levels and the older data as lower levels.

A lookup request must return the latest version of an item. Because higher levels contain

the newer versions, the search starts at the topmost level. First, the key is searched for in

the in-memory structure; if not found, it is searched for in the on-disk tree starting from

the highest level to the lowest one. The value is returned once the key is found at a level.

LevelDB [52] is a widely used key-value store built using LSM. Figure 2.1(a) shows

how data is organized in LevelDB. A new key-value pair is first written to the memtable;

when full, the memtable is converted into an immutable table which is then compacted

and written to disk sequentially as sstables. The sstables are organized in seven levels (L0

being the highest level and L6 the lowest) and each sstable corresponds to a file. LevelDB

ensures that key ranges of different sstables at a level are disjoint (two files will not contain

overlapping ranges of keys); L0 is an exception where the ranges can overlap across files.

The amount of data at each level increases by a factor of ten; for example, the size of L1 is

10MB, while L6 contains several 100s of GBs. If a level exceeds its size limit, one or more

sstables from that level are merged with the next level; this is repeated until all levels are

within their limits.

13

key2
key1

immutable
memtable

. . .

. . .

L6

ss
ta

bl
es

memtable

di
sk

m
em

or
y

. . .

(a) LevelDB

L2

L1

L0

1 FindFiles

index block

data-block 1
data-block 2

data-block n

. . .

filter block
candidate-1

candidate-2

3 SearchIB 7 ReadValue

sstable
value-log

. . .

. . .

(b) WiscKey

candidate-3

2 LoadIB+FB

5
 L

oa
dD

B

6 SearchDB
4 SearchFB

IB FB DB

. . .

Figure 2.1: LevelDB and WiscKey. (a) shows how data is organized in LevelDB and how a

lookup is processed. The search in in-memory tables is not shown. The candidate sstables are

shown in bold boxes. (b) shows how keys and values are separated in WiscKey.

Lookup steps. Figure 2.1(a) also shows how a lookup request for key k proceeds. 1

FindFiles: If the key is not found in the in-memory tables, LevelDB finds the set of candidate

sstable files that may contain k. A key in the worst case may be present in all L0 files

(because of overlapping ranges) and within one file at each successive level. 2 LoadIB+FB:

In each candidate sstable, an index block and a bloom-filter block are first loaded from the

disk. 3 SearchIB: The index block is binary searched to find the data block that may contain

k. 4 SearchFB: The filter is queried to check if k is present in the data block. 5 LoadDB: If

the filter indicates presence, the data block is loaded. 6 SearchDB: The data block is binary

searched. 7 ReadValue: If the key is found in the data block, the associated value is read and

the lookup ends. If the filter indicates absence or if the key is not found in the data block,

the search continues to the next candidate file. Note that blocks are not always loaded from

the disk; index and filter blocks, and frequently accessed data blocks are likely to be present

in memory (i.e., file-system cache).

14

We refer to these search steps at a level that occur as part of a single lookup as an internal

lookup. A single lookup thus consists of many internal lookups. A negative internal lookup

does not find the key, while a positive internal lookup finds the key and is thus the last step

of a lookup request.

We differentiate indexing steps from data-access steps; indexing steps such as FindFiles,

SearchIB, SearchFB, and SearchDB search through the files and blocks to find the desired

key, while data-access steps such as LoadIB+FB, LoadDB, and ReadValue read the data from

storage. Our goal is to reduce the time spent in indexing.

Update steps.An update request is recorded directly to the memtable in Figure 2.1(a). When

the memtable is full, it is converted to the immutable memtable. The previous immutable

memtable is flushed to the first on-disk level L0 and becomes an sstable. When each level

exceeds a pre-defined size limit, a set of sstables on that level is compacted and becomes

new sstables in the next level. An sstable’s lifetime starts with a compaction from the upper

level and ends with a compaction to the lower level. An sstable is immutable during its

lifetime.

2.1.2 WiscKey

In LevelDB, compaction results in large write amplification because both keys and values

are sorted and rewritten. Thus, LevelDB suffers from high compaction overheads, affecting

foreground workloads.

WiscKey [98] (and Badger [2]) reduces this overhead by storing the values separately;

the sstables contain only keys and pointers to the values as shown in Figure 2.1(b). With

this design, compaction sorts and writes only the keys, leaving the values undisturbed, thus

reducing I/O amplification and overheads. WiscKey thus performs significantly better than

other optimized LSM implementations such as LevelDB and RocksDB. Given these benefits,

we adopt WiscKey as the baseline for our design. Further, WiscKey’s key-value separation

enables our design to handle variable-size records; we describe how in more detail in §2.3.2.

The write path of WiscKey is similar to that of LevelDB except that values are written

to a value log. A lookup in WiscKey also involves searching at many levels and a final read

into the log once the target key is found. The size of WiscKey’s LSM tree is much smaller

than LevelDB because it does not contain the values; hence, it can be entirely cached in

memory [98]. Thus, a lookup request involves multiple searches in the in-memory tree, and

15

the ReadValue step performs one final read to retrieve the value.

2.1.3 Optimizing Lookups with Learned Indexes

Performing a lookup in LevelDB and WiscKey requires searching at multiple levels. Further,

within each sstable, many blocks are searched to find the target key. Given that LSMs form

the basis of many embedded key-value stores (e.g., LevelDB, RocksDB [46]) and distributed

storage systems (e.g., BigTable [27], Riak [106]), optimizing lookups in LSMs can have huge

benefits.

A recent body of work, starting with learned indexes [77], makes a case for replacing or

augmenting traditional index structures with machine-learning models. The key idea is to

train a model (such as linear regression or neural nets) on the input so that the model can

predict the position of a record in the sorted dataset. The model can have inaccuracies, and

thus the prediction has an associated error bound. During lookups, if the model-predicted

position of the key is correct, the record is returned; if it is wrong, a local search is performed

within the error bound. For example, if the predicted position is pos and the minimum and

maximum error bounds are δmin and δmax, then upon a wrong prediction, a local search is

performed between pos−δmin and pos+δmax.

Learned indexes can make lookups significantly faster. Intuitively, a learned index turns

a O(log-n) lookup of a B-tree into a O(1) operation. Empirically, learned indexes provide

1.5× – 3× faster lookups than B-trees [77]. Given these benefits, we ask the following

questions: can learned indexes for LSMs make lookups faster? If yes, under what scenarios?

Traditional learned indexes do not support updates because models learned over the

existing data would change with modifications [38, 50, 77]. However, LSMs are attractive

for their high performance in write-intensive workloads because they perform writes only

sequentially. Thus, we examine: how to realize the benefits of learned indexes while supporting

writes for which LSMs are optimized?We answer these two questions next.

2.2 Learned Indexes: a Good Match for LSMs?

In this section, we first analyze if learned indexes could be beneficial for LSMs and examine

under what scenarios they can improve lookup performance. We then provide our intuition

as to why learned indexes might be appropriate for LSMs even when allowing writes. We

16

 0

 20

 40

 60

 80

 100

InMemory SATA NVMe Optane

3 µs 13.1 µs 9.3 µs 3.8 µs

data
access

index
-ingP

er
ce

n
ta

g
e

(%
)

FindFiles
SearchIB+SearchDB

SearchFB

LoadIB+FB
LoadDB

ReadValue

Other

Figure 2.2: Lookup Latency Breakdown. The figure shows the breakdown of lookup

latency in WiscKey. The first bar shows the case when data is cached in memory from the

beginning of the workload. The other three bars show the case where the dataset is originally

stored on different types of SSDs. We perform 10M random lookups on the Amazon Reviews

dataset [12]; the figure shows the breakdown of the average latency (shown at the top of each

bar). The indexing portions are shown in solid colors; data access and other portions are shown

in patterns.

conduct an in-depth study based on measurements of how WiscKey functions internally

under different workloads to validate our intuition. From our analysis, we derive a set of

learning guidelines.

2.2.1 Learned Indexes: Beneficial Regimes

A lookup in LSM involves several indexing and data-access steps. Optimized indexes such

as learned indexes can reduce the overheads of indexing but cannot reduce data-access costs.

In WiscKey, learned indexes can thus potentially reduce the costs of indexing steps such

as FindFiles, SearchIB, and SearchDB, while data-access costs (e.g., ReadValue) cannot be

significantly reduced. As a result, learned indexes can improve overall lookup performance

if indexing contributes to a sizable portion of the total lookup latency. We identify scenarios

where this is the case.

First, when the dataset or a portion of it is cached in memory, data-access costs are

17

low, and so indexing costs become significant. Figure 2.2 shows the breakdown of lookup

latencies in WiscKey. The first bar shows the case when the dataset is cached in memory;

the second bar shows the case where the data is stored on a flash-based SATA SSD. With

caching, data-access and indexing costs contribute almost equally to the latency. Thus,

optimizing the indexing portion can reduce lookup latencies by about 2×. When the dataset

is not cached, data-access costs dominate and thus optimizing indexes may yield smaller

benefits (about 20%).

However, learned indexes are not limited to scenarios where data is cached in memory.

They offer benefit on fast storage devices that are currently prevalent and can do more

so on emerging faster devices. The last three bars in Figure 2.2 show the breakdown for

three kinds of devices: flash-based SSDs over SATA and NVMe, and an Optane SSD. As the

device gets faster, lookup latency (as shown at the top) decreases, but the fraction of time

spent on indexing increases. For example, with SATA SSDs, indexing takes about 17% of

the total time; in contrast, with Optane SSDs, indexing takes 44% and thus optimizing it

with learned indexes can potentially improve performance by 1.8×. More importantly, the

trend in storage performance favors the use of learned indexes. With storage performance

increasing rapidly and emerging technologies like 3D Xpoint memory providing very low

access latencies, indexing costs will dominate and thus learned indexes will yield increasing

benefits.

Summary. Learned indexes could be beneficial when the database or a portion of it is

cached in memory. With fast storage devices, regardless of caching, indexing contributes

to a significant fraction of the lookup time; thus, learned indexes can prove useful in such

cases. With storage devices getting faster, learned indexes will be even more beneficial.

2.2.2 Learned Indexes with Writes

Learned indexes provide higher lookup performance compared to traditional indexes for

read-only analytical workloads. However, a major drawback of learned indexes (as described

in [77]) is that they do not support modifications such as inserts and updates [38, 50]. The

main problem with modifications is that they alter the data distribution and so the models

must be re-learned; for write-heavy workloads, models must be rebuilt often, incurring high

overheads.

At first, it may seem like learned indexes are not a good match for write-heavy situations

18

10
0

10
1

10
2

10
3

10
4

 0.1 1 10 100A
v

er
ag

e
li

fe
ti

m
e

(s
)

Write percentage (%)

L4
L3

L2
L1

L0

(a) Average lifetimes with varying write %

 0

 20

 40

 60

 80

 100

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

Lifetime (s)

L4 L1

(b) Lifetime distribution with 5% writes

 0

 20

 40

 60

 80

 100

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

C
D

F

Lifetime (s)

1%
5%

10%
20%

50%

(i) Level 1

 0

 20

 40

 60

 80

 100

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

Lifetime (s)

1%
5%

10%
20%

50%

(ii) Level 4

(c) Lifetime distributions with varying write %

Figure 2.3: SSTable Lifetimes. (a) shows the average lifetime of sstable files in levels L4 to

L0. (b) shows the distribution of lifetimes of sstables in L1 and L4 with 5% writes. (c) shows the

distribution of lifetimes of sstables for different write percentages in L1 and L4.

for which LSMs are optimized. However, we observe that the design of LSMs fits well with

learned indexes. Our key realization is that although updates can change portions of the

LSM tree, a large part remains immutable. Specifically, newly modified items are buffered

in the in-memory structures or present in the higher levels of the tree, while stable data

resides at the lower levels. Given that a large fraction of the dataset resides in the stable,

lower levels, lookups to this fraction can be made faster with no or few re-learnings. In

contrast, learning in higher levels may be less beneficial: they change at a faster rate and

thus must be re-learned often.

We also realize that the immutable nature of sstable files makes them an ideal unit for

19

10
0

10
2

10
4

10
6

10
8

 0.1 1 10

A
v
g
.
in

te
rn

al
 l

o
o
k
u
p
s/

fi
le

Write percentage (%)

L4
L3

L2
L1

L0

(i) Total

10
0

10
2

10
4

10
6

10
8

 0.1 1 10

A
v
g
.
in

te
rn

al
 l

o
o
k
u
p
s/

fi
le

Write percentage (%)

L4
L3

L2
L1

L0

(ii) Negative

10
0

10
2

10
4

10
6

10
8

 0.1 1 10 100

A
v
g
.
p
o
si

ti
v
e

lo
o
k
u
p
s/

fi
le

Write percentage (%)

L4
L3

L2
L1

L0

(iii) Positive

10
0

10
2

10
4

10
6

10
8

 0.1 1 10

A
v
g
.
in

te
rn

al
 l

o
o
k
u
p
s/

fi
le

Write percentage (%)

L4
L3

L2
L1

L0

(iv) Positive (Zipfian)

(a) Randomly loaded dataset

10
0

10
2

10
4

10
6

10
8

 0.1 1 10 100

A
v
g
.
in

te
rn

al
 l

o
o
k
u
p
s/

fi
le

Write percentage (%)

L4 L3 L2

(b) Sequentially loaded dataset

Figure 2.4: Number of Internal Lookups Per File. (a)(i) shows the average internal

lookups per file at each level for a randomly loaded dataset. (b) shows the same for sequentially

loaded dataset. (a)(ii) and (a)(iii) show the negative and positive internal lookups for the

randomly loaded case. (a)(iv) shows the positive internal lookups for the randomly loaded case

when the workload distribution is Zipfian.

learning. Once learned, these files are never updated and thus a model can be useful until

the file is replaced. Further, the data within an sstable is sorted; such sorted data can be

20

learned using simple models. A level, which is a collection of many immutable files, can also

be learned as a whole using simple models. The data in a level is also sorted: the individual

sstables are sorted, and there are no overlapping key ranges across sstables.

We next conduct a series of in-depth measurements to validate our intuitions. Our

experiments confirm that while a part of our intuition is indeed true, there are some subtleties

(for example, in learning files at higher levels). Based on these experimental results, we

formulate a set of learning guidelines: a few simple rules that an LSM that applies learned

indexes should follow.

Experiments: goal and setup. The goal of our experiments is to determine how long a

model will be useful and how often it will be useful. A model built for a sstable file is useful

as long as the file exists; thus, we first measure and analyze sstable lifetimes. How often a

model will be used is determined by how many internal lookups it serves; thus, we next

measure the number of internal lookups to each file. Since models can also be built for entire

levels, we finally measure level lifetimes as well. To perform our analysis, we run workloads

with varying amounts of writes and reads, and measure the lifetimes and number of lookups.

We conduct our experiments on WiscKey, but we believe our results are applicable to most

LSM implementations. We first load the database with 256M key-value pairs. We then

run a workload with a single rate-limited client that performs 200M operations, a fraction

of which are writes. Our workload chooses keys uniformly at random. We have also run

experiments on skewed workloads, which makes a difference for the number of internal

lookups.

Lifetime of SSTables. To determine how long a model will be useful, we first measure and

analyze the lifetimes of sstables. To do so, we track the creation and deletion times of all

sstables. For files created during the load phase, we assign the workload-start time as their

creation time; for other files, we record the actual creation times. If the file is deleted during

the workload, then we calculate its exact lifetime. However, some files are not deleted by

the end of the workload and we must estimate their lifetimes. If the files are created during

load, we assign the workload duration as their lifetimes. If not, we estimate the lifetime of a

file based on its creation time (c) and the total workload time (w); the lifetime of the file is

at least w−c. We thus consider the lifetime distribution of other files at the same level that

have a lifetime of at least w−c. We then pick a random lifetime in this distribution and

assign it as this file’s lifetime.

Figure 2.3(a) shows the average lifetime of sstable files at different levels. We make three

21

main observations. First, the average lifetime of sstable files at lower levels is greater than

that of higher levels. Second, at lower percentages of writes, even files at higher levels have

a considerable lifetime; for example, at 5% writes, files at L0 live for about 2 minutes on an

average. Files at lower levels live much longer; files at L4 live about 150 minutes. Third,

although the average lifetime of files reduces with more writes, even with a high amount of

writes, files at lower levels live for a long period. For instance, with 50% writes, files at L4

live for about 60 minutes. In contrast, files at higher level live only for a few seconds; for

example, an L0 file lives only about 10 seconds.

We now take a closer look at the lifetime distribution. Figure 2.3(b) shows the distribu-

tions for L1 and L4 files with 5% writes. We first note that some files are very short-lived,

while some are long-lived. For example, in L1, the lifetime of about 50% of the files is only

about 2.5 seconds. If files cross this threshold, they tend to live for much longer times;

almost all of the remaining L1 files live over five minutes.

Surprisingly, even at L4, which has a higher average lifetime for files, a few files are

very short-lived. We observe that about 2% of L4 files live less than a second. We find that

there are two reasons why a few files live for a very short time. First, compaction of a Li

file creates a new file in Li+1 which is again immediately chosen for compaction to the

next level. Second, compaction of a Li file creates a new file in Li+1, which has overlapping

key ranges with the next file that is being compacted from Li. Figure 2.3(c) shows that this

pattern holds for other percentages of writes too. We observed that this holds for other

levels as well. From the above observations, we arrive at our first two learning guidelines.

Learning guideline - 1: Favor learning files at lower levels. Files at lower levels live for
a long period even for high write percentages; thus, models for these files can be used for a

long time and need not be rebuilt often.

Learning guideline - 2: Wait before learning a file. A few files are very short-lived, even

at lower levels. Thus, learning must be invoked only after a file has lived up to a threshold

lifetime after which it is highly likely to live for a long time.

Internal Lookups at Different Levels. To determine how many times a model will be

used, we analyze the number of lookups served by the sstable files. We run a workload and

measure the number of lookups served by files at each level and plot the average number

of lookups per file at each level. Figure 2.4(a) shows the result when the dataset is loaded

in an uniform random order. The number of internal lookups is higher for higher levels,

although a large fraction of data resides at lower levels. This is because, at higher levels,

22

many internal lookups are negative, as shown in Figure 2.4(a)(ii). The number of positive

internal lookups is as expected: higher in lower levels as shown in Figure 2.4(a)(iii). This

result shows that files at higher levels serve many negative lookups and thus are worth

optimizing. While bloom filters may already make these negative lookups faster, the index

block still needs to be searched (before the filter query).

We also conduct the same experiment with another workload where the access pattern

follows a zipfian distribution (most requests are to a small set of keys). Most of the results

exhibit the same trend as the random workload except for the number of positive internal

lookups, as shown in Figure 2.4(a)(iv). Under the zipfian workload, higher level files also

serve numerous positive lookups, because the workload accesses a small set of keys which

are often updated and thus stored in higher levels.

Figure 2.4(b) shows the result when the dataset is sequentially loaded, i.e., keys are

inserted in ascending order. In contrast to the randomly-loaded case, there are no negative

lookups because keys of different sstable files do not overlap even across levels; the FindFiles

step finds the one file that may contain the key. Thus, lower levels serve more lookups and

can have more benefits from learning. From these observations, we arrive at the next two

learning guidelines.

Learning guideline - 3: Do not neglect files at higher levels. Although files at lower

levels live longer and serve many lookups, files at higher levels can still serve many negative

lookups and in some cases, even many positive lookups. Thus, learning files at higher levels

can make both internal lookups faster.

Learning guideline - 4: Be workload- and data-aware. Although most data resides in

lower levels, if the workload does not lookup that data, learning those levels will yield

less benefit; learning thus must be aware of the workload. Further, the order in which the

data is loaded influences which levels receive a large fraction of internal lookups; thus, the

system must also be data-aware. The amount of internal lookups acts as a proxy for both

the workload and load order. Based on the amount of internal lookups, the system must

dynamically decide whether to learn a file or not.

Lifetime of Levels. Given that a level as a whole can also be learned, we now measure and

analyze the lifetimes of levels. Level learning cannot be applied at L0 because it is unsorted:

files in L0 can have overlapping key ranges. Once a level is learned, any change to the level

causes a re-learning. A level changes when new sstables are created at that level, or existing

ones are deleted. Thus, intuitively, a level would remain unchanged for an equal or shorter

23

 0

 0

 1 L-1

 0

 1 L-2

 0

 1 L-3

 0
 1

 0 500 1000 1500 2000

L-4burst interval = 330s#
ch

an
g
es

/#
fi

le
s

Time (s)

(a) Timeline of changes

10
0

10
1

10
2

10
3

 1 10 100

T
im

e
b
/w

 b
u
rs

ts
 (

s)

Write percentage (%)

(b) Time between bursts for L4

Figure 2.5: Changes at Levels. (a) shows the timeline of file creations and deletions at

different levels. Note that #changes/#files is higher than 1 in L1 as there are more creations and

deletions than the number of files. (b) shows the time between bursts for L4 for different write

percentages.

duration than the individual sstables. However, learning at the granularity of a level has

the benefit that the candidate sstables need not be found in a separate step; instead, upon a

lookup, the model just outputs the sstable and the offset within it.

We examine the changes to a level by plotting the timeline of file creations and deletions

at L1, L2, L3, and L4 in Figure 2.5(a) for a 5%-write workload; we do not show L0 for the

reason above. On the y-axis, we plot the number of changes divided by the total files present

at that level. A value of 0 means there are no changes to the level; a model learned for the

level can be used as long as the value remains 0. A value greater than 0 means that there

are changes in the level and thus the model has to re-learned. Higher values denote a larger

fraction of files changed.

First, as expected, we observe that the fraction of files that change reduces as we go

down the levels because lower levels hold a large volume of data in many files, confirming

our intuition. We also observe that changes to levels arrive in bursts. These bursts are

caused by compactions that cause many files at a level to be rewritten. Further, these bursts

occur at almost the same time across different levels. The reason behind this is that for the

dataset we use, levels L0 through L3 are full and thus any compaction at one layer results in

cascading compactions which finally settle at the non-full L4 level. The levels remain static

between these bursts. The duration for which the levels remain static is longer with a lower

amount of writes; for example, with 5% writes, as shown in the figure, this period is about

24

5 minutes. However, as the amount of writes increases, the lifetime of a level reduces as

shown in Figure 2.5(b); for instance, with 50% writes, the lifetime of L4 reduces to about 25

seconds. From these observations, we arrive at our final learning guideline.

Learning guideline - 5: Do not learn levels for write-heavy workloads. Learning a level

as a whole might be more appropriate when the amount of writes is very low or if the

workload is read-only. For write-heavy workloads, level lifetimes are very short and thus

will induce frequent re-learnings.

Summary. We analyzed how LSMs behave internally by measuring and analyzing the

lifetimes of sstable files and levels, and the amount of lookups served by files at different

levels. From our analysis, we derived five learning guidelines. We next describe how we

incorporate the learning guidelines in an LSM-based storage system.

2.3 Bourbon Design

We now describe Bourbon, an LSM-based store that uses learning to make indexing faster.

We first describe the model that Bourbon uses to learn the data (§2.3.1). Then, we discuss

how Bourbon supports variable-size values (§2.3.2) and its basic learning strategy (§2.3.3).

We finally explain Bourbon’s cost-benefit analyzer that dynamically makes learning deci-

sions to maximize benefit while reducing cost (§2.3.4).

2.3.1 Learning the Data

As we discussed, data can be learned at two granularities: individual sstables or levels. Both

these entities are sorted datasets. The goal of a model that tries to learn the data is to predict

the location of a key in such a sorted dataset. For example, if the model is constructed for a

sstable file, it would predict the file offset given a key. Similarly, a level model would output

the target sstable file and the offset within it.

Our requirements for a model is that it must have low overheads during learning and

during lookups. Further, we would like the space overheads of the model to be small. We

find that piecewise linear regression (PLR) [7, 71] satisfies these requirements well; thus,

Bourbon uses PLR to model the data. The intuition behind PLR is to represent a sorted

dataset with a number of line segments. PLR constructs a model with an error bound; that is,

each data point d, which turns into the key of a key-value pair in the database, is guaranteed

25

to lie within the range [dpos − δ, dpos + δ], where dpos is the predicted position of d in

the dataset and δ is the error bound specified beforehand.

To train the PLR model, Bourbon uses the Greedy-PLR algorithm [162]. Greedy-PLR

processes the data points one at a time; if a data point cannot be added to the current line

segment without violating the error bound, then a new line segment is created and the data

point is added to it. At the end, Greedy-PLR produces a set of line segments that represents

the data. Greedy-PLR runs in linear time with respect to the number of data points.

Once the model is learned, inference is quick: first, the correct line segment that contains

the key is found (using binary search); within that line segment, the position of the target

key is obtained by multiplying the key with the line’s slope and adding the intercept. If the

key is not present in the predicted position, a local search is done in the range determined

by the error bound. Thus, lookups take O(log-s) time, where s is the number of segments,

in addition to a constant time to do the local search. The space overheads of PLR are small:

a few tens of bytes for every line segment.

Other models or algorithms such as RMI [77], PGM-Index [48], or splines [73] may also

be suitable for LSMs and may offer more benefits than PLR. We leave their exploration

within LSMs for future work.

2.3.2 Supporting Variable-size Values

Learning a model that predicts the offset of a key-value pair is much easier if the key-value

pairs are the same size. The model then can multiply the predicted position of a key by the

size of the pair to produce the final offset. However, many systems allow keys and values to

be of arbitrary sizes.

Bourbon requires keys to be of a fixed size, while values can be of any size. We believe

this is a reasonable design choice because most datasets have fixed-size keys (e.g., user-

ids are usually 16 bytes), while value sizes vary significantly. Even if keys vary in size,

they can be padded to make all keys of the same size. Bourbon supports variable-size

values by borrowing the idea of key-value separation from WiscKey [98]. With key-value

separation, sstables in Bourbon just contain the keys and the pointer to the values; values

are maintained in the value log separately. With this, Bourbon obtains the offset of a

required key-value pair by getting the predicted position from the model and multiplying

it with the record size (which is keysize + pointersize.) The value pointer serves as the

26

Workload

Baseline

time (s)

File model Level model

Time(s) % model Time(s) % model

Mixed: Write-heavy 82.6 71.5 (1.16 ×) 74.2 95.1 (0.87 ×) 1.5

Mixed: Read-heavy 89.2 62.05 (1.44 ×) 99.8 74.3 (1.2 ×) 21.4

Read-only 48.4 27.2 (1.78 ×) 100 25.2 (1.92 ×) 100

Table 2.1: File vs. Level Learning. The table compares the time to perform 10M operations

in baseline WiscKey, file-learning, and level-learning. The numbers within the parentheses

show the improvements over baseline. The table also shows the percentage of lookups that take

the model path; remaining take the original path because the models are not rebuilt yet.

offset into the value log from which the value is finally read.

2.3.3 Level vs. File Learning

Bourbon can learn individual sstables files or entire levels. Our analysis in the previous

section showed that files live longer than levels under write-heavy workloads, hinting

that learning at the file granularity might be the best choice. We now closely examine this

tradeoff to design Bourbon’s basic learning strategy. To do so, we compare the performance

of file learning and level learning for different workloads. We initially load a dataset and

build the models. For the read-only workload, the models need not be re-learned. In the

mixed workloads, the models are re-learned as data changes. The results are shown in

Table 2.1.

For mixed workloads, level learning performs worse than file learning. For a write-heavy

(50%-write) workload, with level learning, only a small percentage of internal lookups are

able to use the model because with a steady stream of incoming writes, the system is unable

to learn the levels. Only a mere 1.5% of internal lookups take the model path; these lookups

are the ones performed just after loading the data and when the initial level models are

available. We observe that all the 66 attempted level learnings failed because the level

changed before the learning completed. Because of the additional cost of re-learnings, level

learning performs even worse than the baseline with 50% writes. On the other hand, with file

models, a large fraction of lookups benefit from the models and thus file learning performs

better than the baseline. For read-heavy mixed workload (5%), although level learning has

benefits over the baseline, it performs worse than file learning for the same reasons above.

Level learning can be beneficial for read-only settings: as shown in the table, level

learning provides 10% improvements over file learning. Thus, deployments that have only

27

read-only workloads can benefit from level learning. Given that Bourbon’s goal is to provide

faster lookups while supporting writes, levels are not an appropriate choice of granularity

for learning. Thus, Bourbon uses file learning by default. However, Bourbon supports

level learning as a configuration option that can be useful in read-only scenarios.

2.3.4 Cost vs. Benefit Analyzer

Before learning a file, Bourbon must ensure that the time spent in learning is worthwhile.

If a file is short-lived, then the time spent learning that file wastes resources. Such a file will

serve few lookups and thus the model would have little benefit. Thus, to decide whether or

not to learn a file, Bourbon implements an online cost vs. benefit analysis.

2.3.4.1 Wait Before Learning

As our analysis showed, even in the lower levels, many files are short-lived. To avoid the

cost of learning short-lived files, Bourbon waits for a time threshold, Twait, before learning

a file. The exact value of Twait presents a cost vs. performance tradeoff. A very low Twait

leads to some short-lived files still being learned, incurring overheads; a large value causes

many lookups to take the baseline path (because there is no model built yet), thus missing

opportunities to make lookups faster. Bourbon sets the value of Twait to the time it takes to

learn a file. Our approach is never more than a factor of two worse than the optimal solution,

where the optimal solution knows apriori the lifetime and decides to either immediately or

never learn the file (i.e., it is two-competitive [68]). Through measurements, we found that

the maximum time to learn a file (which is at most ∼4MB in size) is around 40 ms on our

experimental setup. We conservatively set Twait to be 50 ms in Bourbon’s implementation.

2.3.4.2 To Learn a File or Not

Bourbon waits for Twait before learning a file. However, learning a file even if it lives for

a long time may not be beneficial. For example, our analysis shows that although lower-

level files live longer, for some workloads and datasets, they serve relatively fewer lookups

than higher-level files; higher-level files, although short-lived, serve a large percentage of

negative internal lookups in some scenarios. Bourbon, thus, must consider the potential

benefits that a model can bring, in addition to considering the cost to build the model. It is

28

profitable to learn a file if the benefit of the model (Bmodel) outweighs the cost to build the

model (Cmodel).

EstimatingC
model

.Oneway to estimateCmodel is to assume that the learning is completely

performed in the background and will not affect the rest of the system; i.e., Cmodel is 0.

This is true if there are many idle cores which the learning threads can utilize and thus

do not interfere with the foreground tasks (e.g., the workload) or other background tasks

(e.g., compaction). However, Bourbon takes a conservative approach and assumes that the

learning threads will interfere and slow down the other parts of the system. As a result,

Bourbon assumes Cmodel to be equal to Tbuild. We define Tbuild as the time to train the

PLR model for a file. We find that this time is linearly proportional to the number of data

points in the file. We calculate Tbuild for a file by multiplying the average time to a train a

data point (measured offline) and the number of data points in the file.

Estimating B
model

. Estimating the potential benefit of learning a file, Bmodel, is more

involved. Intuitively, the benefit offered by the model for an internal lookup is given by

Tb−Tm, where Tb and Tm are the average times for the lookup in baseline and model paths,

respectively. If the file serves N lookups in its lifetime, the net benefit of the model is:

Bmodel = (Tb−Tm)∗N. We divide the internal lookups into negative and positive because

most negative lookups terminate at the filter, whereas positive ones do not; thus,

Bmodel = ((Tn.b−Tn.m)∗Nn)+((Tp.b−Tp.m)∗Np)

whereNn andNp are the number of negative and positive internal lookups, respectively. Tn.b

and Tp.b are the time in the baseline path for a negative and a positive lookup, respectively;

Tn.m and Tp.m are the model counterparts.

Bmodel for a file cannot be calculated without knowing the number of lookups that the

file will serve or how much time the lookups will take. The analyzer, to estimate these

quantities, maintains statistics of files that have lived their lifetime, i.e., files that were

created, served many lookups, and then were replaced. To estimate these quantities for a file

F, the analyzer uses the statistics of other files at the same level as F; we consider statistics

only at the same level because these statistics vary significantly across levels.

Recall that Bourbon waits before learning a file. During this time, the lookups are

served in the baseline path. Bourbon uses the time taken for these lookups to estimate

Tn.b and Tp.b. Next, Tn.m and Tp.m are estimated as the average negative and positive model

29

lookup times of other files at the same level. Finally, Nn and Np are estimated as follows.

The analyzer first takes the average negative and positive lookups for other files in that level;

then, it is scaled by a factor f= s/s̄l, where s if the size of the file and s̄l is the average file

size at this level. While estimating the above quantities, Bourbon filters out very short-lived

files.

While bootstrapping, the analyzer might not have enough statistics collected. Therefore,

initially, Bourbon runs in an always-learn mode (with Twait still in place.) Once enough

statistics are collected, the analyzer performs the cost vs. benefit analysis and chooses to

learn a file if Cmodel < Bmodel, i.e., benefit of a model outweighs the cost. If multiple files

are chosen to be learned at the same time, Bourbon puts them in a max priority queue

ordered by Bmodel−Cmodel, thus prioritizing files that would deliver the most benefit.

Our cost-benefit analyzer adopts a simple scheme of using average statistics of other

files at the same level. While this approach has worked well in our initial prototype, using

more sophisticated statistics and considering workload distributions (e.g., to account for

keys with different popularity) could be more beneficial. We leave such exploration for

future work.

2.3.5 Bourbon: Putting it All Together

We describe how the different pieces of Bourbon work together. Figure 2.6 shows the path

of lookups in Bourbon. As shown in (a), lookups can either be processed via the model (if

the target file is already learned), or in the baseline path (if the model is not built yet.) The

baseline path in Bourbon is similar to the one shown in Figure 2.1 for LevelDB, except that

Bourbon stores the values separately and so ReadValue reads the value from the log.

Once Bourbon learns a sstable file, lookups to that file will be processed via the learned

model as shown in Figure 2.6(b). 1 FindFiles: Bourbon finds the candidate sstables; this

step required because Bourbon uses file learning. 2 LoadIB+FB: Bourbon loads the index

and filter blocks; these blocks are likely to be already cached. 3 ModelLookup: Bourbon

performs a look up for the desired key k in the candidate sstable’s model. The model outputs

a predicted position of k within the file (pos) and the error bound (δ). From this, Bourbon

calculates the data block that contains records pos−δ through pos+δ.† 4 SearchFB: The

†
Sometimes, records pos−δ through pos+δ span multiple data blocks; in such cases, Bourbon consults

the index block (which specifies the maximum key in each data block) to find the data block for pos.

30

memtables
<pos, error>

7
 R

ea
dV

al
ue

2 LoadIB+FB

. . .

di
sk

m
em

or
y

. . .

1 FindFiles

IB

Model

3 ModelLookup

FB

5 LoadChunk

4 SearchFB

6 LocateKey

value-log

. . .

. .
.

k

→ <offset, len>

δ δ

Model
Lookup

Search
IB

Find
Files

Load
IB+FB

Search
FB

Load
Chunk

Locate
Key

Load
DB

Search
DB

Read
Value

(b) Lookup via model - detailed steps

(a) Lookup paths

model exists

no model
(baseline)

Figure 2.6: Bourbon Lookups. (a) shows that lookups can take two different paths: when

the model is available (shown at the top), and when the model is not learned yet and so lookups

take the baseline path (bottom); some steps are common to both paths. (b) shows the detailed

steps for a lookup via a model; we show the case where models are built for files.

filter for that block is queried to check if k is present. If present, Bourbon calculates the

range of bytes of the block that must be loaded; this is simple because keys and pointers to

values are of fixed size. 5 LoadChunk: The byte range is loaded. 6 LocateKey: The key is

located in the loaded chunk. The key will likely be present in the predicted position (the

midpoint of the loaded chunk); if not, Bourbon performs a binary search in the chunk. 7

ReadValue: The value is read from the value log using the pointer.

Possible improvements. Although Bourbon’s implementation is highly-optimized and

provides many features common to real systems, it lacks a few features. For example, in

the current implementation, we do not support string keys and key compression (although

31

we support value compression). For string keys, one approach we plan to explore is to

treat strings as base-64 integers and convert them into 64-bit integers, which could then

adopt the same learning approach described herein. While this approach may work well

for small keys, large keys may require larger integers (with more than 64 bits) and thus

efficient large-integer math is likely essential. Also, Bourbon does not support adaptive

switching between level and file models; it is a static configuration. We leave supporting

these features to future work.

2.4 Evaluation

To evaluate Bourbon, we answer the following questions to demonstrate Bourbonś con-

sistent benefit in various micro- and macro-benchmarks:

• Q: Which portions of lookup does Bourbon optimize?

A: SearchIB, SearchDB, and LoadData. (§2.4.1)

• Q: How does Bourbon perform with models available and no writes? How does

performance change with datasets, load orders, and request distributions?

A: Bourbon’s model consistently provides 1.6× gain on average for various read-only

workloads. (§2.4.2)

• Q: How does Bourbon perform with range queries?

A: Bourbon significantly accelerates the indexing performance, but has no effect on

the following scans. (§2.4.3)

• Q: In the presence of writes, how does Bourbon’s cost-benefit analyzer perform

compared to other approaches that always or never re-learn?

A: Bourbon provides benefits close to aggressive online learning with significantly

lower costs. (§2.4.4)

• Q: Does Bourbon perform well on real benchmarks?

A: Bourbon shows consistent gain for reads on real benchmarks and does not affect

writes. (§2.4.5)

32

Key
0.0

0.5

1.0
Po

sit
io

n

(a) Linear

Key
0.0

0.5

1.0

(b) Seg10%

Key
0.0

0.5

1.0

(c) Normal

Key
0.0

0.5

1.0

(d) OSM

Figure 2.7: Datasets. The figure shows the cumulative distribution functions (CDF) of three

synthetic datasets (linear, segmented-10%, and normal) and one real-world dataset (Open-

StreetMaps). Each dataset is magnified around the 15% percentile to show a detailed view of its

distribution.

• Q: Is Bourbon beneficial when data is on storage?

A: Bourbon offers an average gain of 1.15× with fast storage devices. (§2.4.6)

• Q: Is Bourbon beneficial with limited memory and no fast storage devices?

A: Bourbon is beneficial for skewed workloads with limited memory and no fast

storage devices. (§2.4.7)

• Q: What are the error and space tradeoffs of Bourbon?

A: The model’s memory consumption is higher if a lower guaranteed error bound is

selected. δ= 8 is optimal for our workloads. (§2.4.8)

Setup.We run our experiments on a 20-core Intel Xeon CPU E5-2660 machine with 160-GB

memory and a 480-GB SATA SSD. We use 16B integer keys and 64B values, and set the error

bound of Bourbon’s PLR as 8. Unless specified, our workloads perform 10M operations.

We use a variety of datasets. We construct four synthetic datasets: linear, segmented-1%,

segmented-10% , and normal, each with 64M key-value pairs. In the linear dataset, keys

are all consecutive. In the seg-1% dataset, there is a gap after a consecutive segment of

100 keys (i.e., every 1% causes a new segment). The segmented-10% dataset is similar, but

there is a gap after 10 consecutive keys. We generate the normal dataset by sampling 64M

unique values from the standard normal distribution N(0,1) and scale to integers. We also

use two real-world datasets: Amazon reviews (AR) [12] and New York OpenStreetMaps

(OSM) [4]. AR and OSM have 33.5M and 21.9M key-value pairs, respectively. These datasets

33

 0

 1

 2

 3

 4

WiscKey Bourbon WiscKey Bourbon

AR OSM

2.9x 2.4x

2.2x 2x

A
v
g
.

la
te

n
cy

 (
 µ

s)

FindFiles
LoadIB+FB

Search
SearchFB

LoadData
ReadValue

Other

Figure 2.8: Latency Breakdown. The figure shows latency breakdown for WiscKey and

Bourbon. Search denotes SearchIB and SearchDB in WiscKey; the same denotes ModelLookup

and LocateKey in Bourbon. LoadData denotes LoadDB in WiscKey; the same denotes Load-

Chunk in Bourbon. These two steps are optimized by Bourbon and are shown in solid colors;

the number next to a step shows the factor by which it is made faster in Bourbon.

vary widely in how the keys are distributed. Figure 2.7 shows the distribution for a few

datasets. The databases for these datasets vary from 2 GB to 5 GB according to the number

of key-value pairs in the datasets. Most of our experiments focus on the case where the data

resides in memory; however, we also analyze cases where data is present on storage.

2.4.1 Which Portions does Bourbon Optimize?

We first analyze which portions of the lookup Bourbon optimizes. We perform 10M random

lookups on the AR and OSM datasets and show the latency breakdown in Figure 2.8. As

expected, Bourbon reduces the time spent in indexing. The portion marked Search in

the figure corresponds to SearchIB and SearchDB in the baseline, versus ModelLookup and

LocateKey in Bourbon. The steps in Bourbon have lower latency than their baseline

counterparts. Interestingly, Bourbon reduces data-access costs too, because Bourbon

loads a smaller byte range than the entire block loaded by the baseline.

2.4.2 Performance under No Writes

We next analyze Bourbon’s performance when the models are already built and there are

no updates. For each experiment, we load a dataset and allow the system to build the models;

34

0

1

2

3

4

5

A
v
e
ra

g
e

 l
a
te

n
c
y
 (

u
s
)

Dataset

Linear Seg1% NormalSeg10% AR OSM

1.78x 1.43x 1.35x 1.23x 1.61x 1.61x

WiscKey Bourbon Bourbon-level

(a) Average lookup latency

Dataset #segs #segs/keys latency (µs)

Linear 900 <0.01% 2.72

Seg1% 640K 1.0% 3.11

Normal 705K 1.1% 3.3

Seg10% 6.4M 10% 3.64

AR 129K 0.20% 2.66

OSM 295K 0.46% 2.65

(b) Number of segments

Figure 2.9: Datasets. (a) compares the average lookup latencies of Bourbon, Bourbon-level,

and WiscKey for different datasets; the numbers on the top show the improvements of Bourbon

over WiscKey. (b) shows the number of segments for different datasets in Bourbon.

during the workload, we issue only lookups.

2.4.2.1 Datasets

To analyze how the performance is influenced by the dataset, we run the workload on all six

datasets and compare Bourbon’s lookup performance against WiscKey. Figure 2.9 show

the results. As shown in 2.9(a), Bourbon is faster than WiscKey for all datasets; depending

upon the dataset, the improvements vary (1.23× to 1.78×). Bourbon provides the most

benefit for the linear dataset because it has the smallest number of segments (one per model);

with fewer segments, fewer searches are needed to find the target line segment. From 2.9(b),

we observe that latencies increase with the number of segments (e.g., latency of seg-1% is

greater than that of linear). We cannot compare the number of segments in AR and OSM

with others because the size of these datasets is significantly different.

Level learning. Given that level learning is suitable for read-only scenarios, we configure

Bourbon to use level learning and analyze its performance. As shown in Figure 2.9(a),

Bourbon-level is 1.33× – 1.92× faster than the baseline. Bourbon-level offers more benefits

than Bourbon because a level-model lookup is faster than finding the candidate sstables

and then doing a file-model lookup. This confirms that Bourbon-level is an attractive

option for read-only scenarios. However, since level models only provide benefits for read-

only workloads and give at most 10% improvement compared to file models, we focus on

Bourbon with file learning for our remaining experiments.

35

0

2

4

6

A
v
e

ra
g

e
 l
a

te
n

c
y
 (

u
s
)

seq seqrand rand

AR OSM

1.61x 1.61x1.47x 1.50x

WiscKey Bourbon

(a) Average latency

Dataset

Positive Negative

Speedup # Speedup

AR 10M 2.15× 23M 1.83×
OSM 10M 1.99× 22M 1.82×

(b) Positive vs. negative internal lookups for

randomly loaded case

Figure 2.10: Load Orders. (a) shows the performance for AR and OSM datasets for sequential

(seq) and random (rand) load orders. (b) compares the speedup of positive and negative internal

lookups.

2.4.2.2 Load Orders

We now explore how the order in which the data is loaded affects performance. For this

experiment, we use the AR and OSM datasets and load them in two ways: sequential (keys

are inserted in ascending order) and random (keys are inserted in an uniformly random

order). With sequential loading, sstables do not have overlapping key ranges even across

levels; whereas, with random loading, sstables at one level can overlap with sstables at other

levels.

Figure 2.10 shows the result. First, regardless of the load order, Bourbon offers significant

benefit over baseline (1.47× – 1.61×). Second, the average lookup latencies increase in the

randomly-loaded case compared to the sequential case (e.g., 6µs vs. 4µs in WiscKey for the

AR dataset). This is because while there are no negative internal lookups in the sequential

case, there are many (23M) negative lookups in the random case (as shown in 2.10(b)). Thus,

with random load, the total number of internal lookups increases by 3×, increasing lookup

latencies.

Next, we note that the speedup over baseline in the random case is less than that of the

sequential case (e.g., 1.47× vs. 1.61× for AR). Although Bourbon optimizes both positive

and negative internal lookups, the gain for negative lookups is smaller (as shown in 2.10(b)).

This is because most negative lookups in the baseline and Bourbon end just after the filter

is queried (filter indicates absence); the data block is not loaded or searched. Given there

are more negative than positive lookups, Bourbon offers less speedup than the sequential

36

0

2

4

6

8

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

u
s
)

AR AR AR AR AR AROSM OSM OSM OSM OSM OSM

Sequential Zipfian HotSpot Exponential Uniform Latest

1.6x 1.5x 1.5x 1.7x 1.5x 1.6x1.6x 1.5x 1.6x 1.8x 1.6x 1.6x

WiscKey Bourbon

Figure 2.11: Request Distributions. The figure shows the average lookup latencies of

different request distributions from AR and OSM datasets.

0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

AR AR AR AR AR AROSM OSM OSM OSM OSM OSM

1 5 10 50 100 500

1.90x 1.53x 1.43x 1.18x 1.15x 1.10x1.93x 1.57x 1.39x 1.19x 1.14x 1.04x

WiscKey Bourbon

Figure 2.12: Range Queries. The figure shows the normalized throughput of range queries

with different range lengths from AR and OSM datasets.

case. However, this speedup is still significant (1.47×).

2.4.2.3 Request Distributions

Next, we analyze how request distributions affect Bourbon’s performance. We measure the

lookup latencies under six request distributions: sequential, zipfian, hotspot, exponential,

uniform, and latest. We first randomly load the AR and OSM datasets and then run the

workloads; thus, the data can be segmented and there can be many negative internal lookups.

As shown in Figure 2.11, Bourbon makes lookups faster by 1.54× – 1.76× than the baseline.

Overall, Bourbon reduces latencies regardless of request distributions.

Read-only performance summary.When the models are already built and when there

are no writes, Bourbon provides significant speedup over baseline for a variety of datasets,

load orders, and request distributions.

37

 0

 100

 200

 300

 400

 500

 1 10 100

T
im

e
(s

)

Write percentage (%)

WiscKey
offline

always
cba

(a) Foreground time

 0

 30

 60

 90

 120

 150

 1 10 100

T
im

e
(s

)

Write percentage (%)

WiscKey
offline

always
cba

(b) Learning time

 0

 200

 400

 600

 800

 1 10 100

T
im

e
(s

)

Write percentage (%)

WiscKey
offline

always
cba

(c) Total time

 0

 20

 40

 60

 80

 100

 1 10 100

%
 b

as
el

in
e

lo
o
k
u
p
s

Write percentage (%)

WiscKey
offline

always
cba

(d) Baseline-path internal lookups

Figure 2.13: Mixed Workloads. (a) compares the foreground times of WiscKey, Bourbon-

offline (offline), Bourbon-always (always), and Bourbon-cba (cba); (b) and (c) compare the

learning time and total time, respectively; (d) shows the fraction of internal lookups that take

the baseline path.

2.4.3 Range Queries

We next analyze how Bourbon performs on range queries. We perform 1M range queries

on the AR and OSM datasets with various range lengths. Figure 2.12 shows the throughput

of Bourbon normalized to that of WiscKey. With short ranges, where the indexing cost (i.e.,

the cost to locate the first key of the range) is dominant, Bourbon offers the most benefit.

For example, with a range length of 1 on the AR dataset, Bourbon is 1.90× faster than

WiscKey. The gains drop as the range length increases; for example, Bourbon is only 1.15×

38

0
100
200
300
400

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

e
c
)

default default defaultAR AR AROSM OSM OSM

A:write-heavy B:read-heavy C:read-only

1.06x 1.38x 1.64x1.08x 1.31x 1.62x1.11x 1.24x 1.61x

WiscKey Bourbon

0
100
200
300
400

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

e
c
)

default defaultAR AROSM OSM

D:read-heavy F:write-heavy

1.34x 1.18x1.44x 1.1x1.33x 1.11x

WiscKey Bourbon

0
10
20
30
40

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

e
c
)

default AR OSM

E:range-heavy

1.17x 1.16x 1.19x

Figure 2.14: Macrobenchmark-YCSB. The figure compares the throughput of Bourbon

against WiscKey for six YCSB workloads across three datasets.

faster with queries that return 100 items. This is because, while Bourbon can accelerate

the indexing portion, it follows a similar path as WiscKey to scan subsequent keys. Thus,

with large range lengths, indexing accounts for less of the total performance, resulting in

lower gains.

2.4.4 Efficacy of Cost-benefit Analyzer with Writes

We next analyze how Bourbon performs in the presence of writes. Writes modify the

data and so the models must be re-learned. In such cases, the efficacy of Bourbon’s cost-

benefit analyzer (cba) is critical. We thus compare Bourbon’s cba against two strategies:

Bourbon-offline and Bourbon-always. Bourbon-offline performs no learning as writes

happen; models exist only for the initially loaded data. Bourbon-always re-learns the data

as writes happen; it always decides to learn a file without considering cost. Bourbon-cba

re-learns as well, but it uses the cost-benefit analysis to decide whether or not to learn a file.

We run a workload that issues 50M operations with varying percentages of writes on

the AR dataset. To calculate the total amount of work performed for each workload, we

39

sum together the time spent on the foreground lookups and inserts (Figure 2.13(a)), the time

spent learning (2.13(b)), and the time spent on compaction (not shown); the total amount of

work is shown in Figure 2.13(c). The figure also shows the fraction of internal lookups that

take the baseline path (2.13(d)).

First, as shown in 2.13(a), all Bourbon variants reduce the workload time compared to

WiscKey. The gains are lower with more writes because Bourbon has fewer lookups to

optimize. Next, Bourbon-offline performs worse than Bourbon-always and Bourbon-cba.

Even with just 1% writes, a significant fraction of internal lookups take the baseline path in

Bourbon-offline as shown in 2.13(d); this shows re-learning as data changes is crucial.

Bourbon-always learns aggressively and thus almost no lookups take the baseline path

even for 50% writes. As a result, Bourbon-always has the lowest foreground time. However,

this comes at the cost of increased learning time; for example, with 50% writes, Bourbon-

always spends about 134 seconds learning. Thus, the total time spent increases with more

writes for Bourbon-always and is even higher than baseline WiscKey as shown in 2.13(c).

Thus, aggressively learning is not ideal.

Given a low percentage of writes, Bourbon-cba decides to learn almost all the files,

and thus matches the characteristics of Bourbon-always: both have a similar fraction of

lookups taking the baseline path, both require the same time learning, and both perform

the same amount of work. With a high percentage of writes, Bourbon-cba chooses not

to learn many files, reducing learning time; for example, with 50% writes, Bourbon-cba

spends only 13.9 seconds in learning (10× lower than Bourbon-always). Consequently,

many lookups take the baseline path. Bourbon-cba takes this action because there is less

benefit to learning as the data is changing rapidly and there are fewer lookups. Thus, it

almost matches the foreground time of Bourbon-always. But, by avoiding learning, the

total work done by Bourbon-cba is significantly lower.

Summary. Aggressive learning offers fast lookups but with high costs; no re-learning

provides little speedup. Neither is ideal. In contrast, Bourbon provides high benefits similar

to aggressive learning while lowering total cost significantly.

2.4.5 Real Macrobenchmarks

We next analyze how Bourbon performs under two real benchmarks: YCSB [33] and

SOSD [72].

40

Dataset

WiscKey

latency (µs)

Bourbon

Latency(µs) Speedup

Amazon Reviews (AR) 3.53 2.75 1.28×
NewYork OpenStreetMaps (OSM) 3.14 2.51 1.25×

Table 2.2: Performance on Fast Storage. The table shows Bourbon’s lookup latencies

when the data is stored on an Optane SSD.

2.4.5.1 YCSB

We use six workloads that have different read-write ratios and access patterns: A (w:50%,

r:50%), B (w:5%, r:95%), C (read-only), D (read latest, w:5%, r:95%), E (range-heavy, w:5%,

range:95%), F (read-modify-write:50%, r:50%). We use three datasets: YCSB’s default dataset

(created using ycsb-load [5]), AR, and OSM, and load them in a random order. Figure 2.14

shows the results.

For the read-only workload (YCSB-C), all operations benefit and Bourbon offers the

most gains (about 1.6×). For read-heavy workloads (YCSB-B and D), most operations benefit,

while writes are not improved and thus Bourbon is 1.24× – 1.44× faster than the baseline.

For write-heavy workloads (YCSB-A and F), Bourbon improves performance only a little

(1.06× – 1.18×). First, a large fraction of operations are writes; second, the number of the

internal lookups taking the model path decreases (by about 30% compared to the read-heavy

workload because Bourbon chooses not to learn some files). YCSB-E consists of range

queries (range lengths varying from 1 to 100) and 5%writes. Bourbon reaches 1.16× – 1.19×
gain. In summary, as expected, Bourbon improves the performance of read operations; at

the same time, Bourbon does not affect the performance of writes.

2.4.5.2 SOSD

We next measure Bourbon’s performance on the SOSD benchmark designed for learned

indexes [72]. We use the following six datasets: book sale popularity (amzn32), Facebook

user ids (face32), lognormally (logn32) and normally (norm32) distributed datasets, uniformly

distributed dense (uden32) and sparse (uspr32) integers. Figure 2.15 shows the average

lookup latency. As shown, Bourbon is about 1.48× – 1.74× faster than the baseline for all

datasets.

41

0

2

4

6

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

u
s
)

Dataset

amzn32 face32 logn32 norm32 uden32 uspr32

1.48x 1.62x 1.68x 1.66x 1.74x 1.55x

WiscKey Bourbon

Figure 2.15: Macrobenchmark-SOSD. The figure compares lookup latencies from the

SOSD benchmark. The numbers on the top show Bourbon’s improvements over the baseline.

0
100
200
300
400

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

e
c
)

Workload

A:write-heavy B:read-heavy D:read-heavy F:write-heavy

1.05x 1.19x 1.16x 1.06x
WiscKey Bourbon

Figure 2.16: Mixed Workloads on Fast Storage. The figure compares the throughput

of Bourbon against WiscKey for four read-write mixed YCSB workloads. We use the YCSB

default dataset for this experiment.

2.4.6 Performance on Fast Storage

Our analyses so far focused on the case where the data resides in memory. We now analyze

if Bourbon will offer benefit when the data resides on a fast storage device. We run a

read-only workload on sequentially loaded AR and OSM datasets on an Intel Optane SSD,

with a read latency of about 10µs. Table 2.2 shows the result. Even when the data is present

on a storage device, Bourbon offers benefit (1.25× – 1.28× faster lookups than WiscKey).

Figure 2.16 shows the result for read-write mixed YCSB workloads on the same device

with the default YCSB datasest. As expected, while Bourbon’s benefits are marginal for

write-heavy workloads (YCSB-A and YCSB-F), it offers considerable speedup (1.16× – 1.19×)

for read-heavy workloads (YCSB-B and YCSB-D). With the emerging storage technologies

(e.g., 3D XPoint memory), Bourbon will offer even more benefits.

42

Workload

WiscKey

latency (µs)

Bourbon

Latency(µs) Speedup

Uniform 98.6 94.4 1.04×
Zipfian 18.8 15.1 1.25×

Table 2.3: Performance with Limited Memory. The table shows Bourbon’s average

lookup latencies from the AR dataset on a machine with a SATA SSD and limited memory.

2.4.7 Performance with Limited Memory

We further show that, even with no fast storage and limited available memory, Bourbon can

still offer benefit with skewed workloads, such as zipfian. We experiment on a machine with

a SATA SSD, with a read latency of over 100µs, and memory that only holds about 25% of

the database. We run a uniform random workload, and a zipfian workload with consecutive

hotspots where 80% of the requests access about 25% of the database. Table 2.3 shows the

result. With the uniform workload, Bourbon is only 1.04× faster because most of the time

is spent loading the data into the memory. With the zipfian workload, in contrast, indexing

time instead of data-access time dominates because a large number of requests access the

small portion of data that is already cached in memory. Bourbon is able to reduce this

significant indexing time and thus offers 1.25× lower latencies.

2.4.8 Error Bound and Memory Consumption

We finally discuss the characteristics of Bourbon’s ML model, specifically its error bound

(δ) and memory consumption. Figure 2.17(a) plots the error bound (δ) against the average

lookup latency (left y-axis) for the AR dataset. As δ increases, fewer line segments are

created, leading to fewer searches, thus reducing latency. However, beyond δ= 8, although

the time to find the segment reduces, the time to search within a segment increases, thus

increasing latency. We find that Bourbon’s choice of δ= 8 is optimal for other datasets too.

Figure 2.17(a) also shows how memory consumption (right y-axis, compared to the size of

the entire database) varies with δ. As δ increases, fewer line segments are created, leading

to low memory consumption. Table 2.17(b) shows the memory consumptions for different

datasets. As shown, for most of the datasets, the memory consumption compared to the

total dataset size is little (less than 0.25%), which is 0.5× to 0.75× smaller than the original

index.

43

 2.65

 2.7

 2.75

 2.8

 2.85

 2.9

 2 4 8 16 32
 0

 5

 10

 15

 20

 25

 30

A
v

er
ag

e
la

te
n

cy
 (

u
s)

M
em

o
ry

 o
v

er
h

ea
d

 (
M

B
)

Error Bound (δ)

latency
Space (MB)

(a) Error-bound tradeoff

Dataset

Memory Consumption

MB %

Linear 0.02 0.0

Seg1% 15.38 0.21

Seg10% 153.6 2.05

Normal 16.94 0.23

AR 3.09 0.08

OSM 7.08 0.26

(b) Memory consumption

Figure 2.17: Error-bound Tradeoffs and Space Overheads. (a) shows how the PLR error

bound affects lookup latency and memory overheads; (b) shows the memory consumptions for

different datasets.

2.5 Conclusion

In this chapter, we examine if learned indexes are suitable for write-optimized log-structured

merge (LSM) trees. Through in-depth measurements and analysis, we derive a set of

guidelines to integrate learned indexes into LSMs. Using these guidelines, we design and

build Bourbon, a learned-index implementation for a highly-optimized LSM system. We

experimentally demonstrate that Bourbon offers significantly faster lookups for a range of

in-memory workloads and datasets, and largely reduces the size of the indexes.

Bourbon is an initial work on integrating learned indexes into an LSM-based storage

system. More detailed studies, such as more sophisticated cost-benefit analysis, general

string support, and different model choices, could be promising for future work. In addition,

we believe that Bourbon’s learning approach may work well in other write-optimized data

structures such as the Bϵ
-tree [22] and could be an interesting avenue for future work.

While our work takes initial steps towards integrating learning into production-quality

systems, more studies and experience are needed to understand the true utility of learning

approaches.

44

Chapter 3

Symbiosis: The Art of Application and

Kernel Cache Cooperation

In this chapter, we design and build Symbiosis to solve the cache partitioning problem for

the common application-kernel two-level cache structure. Symbiosis optimizes the cache

sizes of storage engines with the knowledge of the underlying layer, the kernel page cache,

and improves the overall cache efficiency across the data processing stack.

We first introduce the cache partitioning problem and show its significance (§3.1). With

a simple experiment, we show that configuring the right cache sizes can provide huge

performance gains, but it is not trivial to get the right sizes for workloads with various

access patterns.

We then conduct a simulation study of the general two-level cache partitioning problem

to guide the design, approximations, and optimizations of Symbiosis (§3.2). We find that

the optimal partitioning depends on a wide range of environment- and workload-related

factors and it is hard to achieve a static solution.

We thus design and implement Symbiosis to dynamically adjust cache sizes online

according to the workloads (§3.3). Symbiosis detects workload changes by monitoring

cache performance and performs online cache simulations to determine the best cache

configuration for the current workload. We apply a range of optimization techniques to

achieve both high accuracy and low overhead (only about 1% time overhead and 0.1% space

overhead) in online cache simulation. We integrate Symbiosis into LevelDB, RocksDB, and

WiredTiger, each within 1K LOC.

45

Storage Engine
(e.g., LSM Tree, B-Tree, etc.)

Page Cache

User space Kernel space

App

DeviceFile

copy,
decompress,
deserialize, …

ext4_read_blk()

Memory Capacity

[p]read()/

mmap

Indexes
Data Cache

File

Device access

kernel overhead

Compressed

Compressed

Figure 3.1: The Cache Architecture across the Storage Stack. Modern applications

commonly utilize storage engines (e.g., LevelDB) to manage on-disk data. A storage engine

keeps compressed data on disk, and usually has separate index structures and an in-memory

buffer for uncompressed data. The arrows depict the common read path.

Finally, we perform an evaluation of our system (§3.4) using both synthetic and real

workloads. We show that our approach improves performance, in some cases by an order of

magnitude. We also show the costs of online simulation are not high and various optimiza-

tions work well. Overall, we show that Symbiosis is an effective approach to cache-size

configuration for modern key-value storage systems.

3.1 Motivation and Framework

Databases and key-value stores utilize similar caching architectures (Figure 3.1). Irrespective

of the underlying data structure organization (log-structure-merge trees [46, 53] or B-

trees [107, 133]), these systems use both a custom application-level cache and the underlying

file system page cache, forming an application-kernel two-layer cache structure.

To access a key-value pair, a request first queries an index-like structure, and, if successful,

searches for the value in the user-level application cache. If the value is not present in the

application cache, a file system read request is issued to fetch the data. This read request

may be served by the kernel page cache, which holds a compressed version of the data. If the

46

file is not present in the kernel cache, the file system issues necessary I/Os to complete the

request, and then caches the (compressed) data. In data-intensive workloads, memory used

by the application and kernel caches constitutes a majority of the storage engine’s memory

usage [28, 63].

Most mainstream storage engines prefer the kernel page cache for buffering on-disk

data, to utilize its robust performance under various workloads and to avoid the labor of

implementing a sophisticated user-level device-friendly caching and prefetching approach.

Thus, we focus our study on this application-kernel cache structure. However, some storage

engines can be configured to manage their own second-level cache for compressed on-disk

data (e.g., RocksDB). As we will see later, our techniques also work well on this (simpler)

user/user configuration.

3.1.1 The Application-Kernel Cache Structure

This two-layer cache structure has several main properties. In the first layer, storage engines

keep decompressed and deserialized data. These application caches store ready-to-use data

to serve requests efficiently.

For example, LevelDB [53], the main storage engine we study, is an LSM-based key-value

storage engine with a block-based application cache. Data blocks are variable-sized and

not aligned. When a thread inserts an item and overflows the cache, it is responsible for

performing evictions using LRU replacement. In contrast, WiredTiger [107], the underlying

storage engine of the popular database MongoDB, is a B-Tree-based engine and has a

significantly different caching mechanism. Instead of a unified cache structure, WiredTiger

constructs an in-memory B-Tree representation and allows each B-Tree node to dynamically

allocate memory to cache data. When the total amount of cached data reaches the limit,

background threads are initiated to traverse the tree and perform evictions. Each node

records last-access recency to approximate LRU replacement.

The second layer of this cache structure is a compressed cache that commonly utilizes

the underlying OS kernel’s page cache. Storage engines compress on-disk data to reduce

device bandwidth and save space on disk; furthermore, by using the kernel page cache, one

can leverage years of performance tuning that is present therein.

In Linux, the eviction algorithm is 2Q with a clock algorithm for each queue and involves

sophisticated heuristics for promotion, demotion, and size partitioning among the queues.

47

In addition, Linux performs read-ahead to ensure high bandwidth utilization. The current

read-ahead approach uses heuristics to determine which pages/when to prefetch (including

basing its decisions on the cache presence of pages neighboring the target page), which can

significantly affect the hit ratio in some scenarios.

To summarize, this two-level cache structure has several important characteristics. First,

the application and kernel caches form a two-level caching scheme that shares the same

memory quota (i.e., if one cache grows, the other must shrink). The kernel cache often

stores compressed data, making it more efficient in terms of memory usage, while the

application cache provides lower latency as its data is ready to be used, saving the cost of

decompression and kernel crossing. Second, with data compression, the two caches store

data in different forms, units, and alignments. One block in the application cache may

correspond to several pages in the kernel page cache due to misalignment, which further

complicates the management of the two caches and the optimization of overall performance.

3.1.2 Challenge: Memory Partitioning

Given the two-level caching architecture, a natural question arises: how should memory be

allocated between the two caches, in order to maximize performance? To illustrate some

of the complexities of this issue, we present the following motivating experiment. Here,

we study the performance of different cache configurations in two representative storage

engines, LSM-based LevelDB [53] and B-tree-based WiredTiger [107]. We run uniform

random workloads with 1 GB of available memory. We use small data sets here to speed

our analysis; as we will show later, results are nearly identical when data sets are scaled up.

We compare two extremes: one which devotes all available memory to the application

cache, and the other which devotes all memory to the kernel cache. We show how perfor-

mance varies across two different data set sizes (Du), 1 GB and 2 GB (uncompressed); the

compression ratio is 0.5. Figure 3.2 presents our results.

We see similar trends from both storage engines. When the data set size is 1 GB (and

hence fits, uncompressed, into the application cache), devoting as much memory as possible

to the application cache outperforms the kernel cache by 2.5× to 3×. In contrast, when the

data set size is 2 GB (and hence fits compressed into the kernel cache, but is too large for

the uncompressed application cache), the kernel cache outperforms the application cache,

by up to 7×.

48

1

3

5

7
N

o
rm

a
liz

e
d

 L
a

te
n

c
y

(a) LevelDB

7.8

8.83.1

62.68MB
1GB

Du=1GB Du=2GB

1

2

3

4

(b) WiredTiger

89.1

11830.2
166

8MB
1GB

Du=1GB Du=2GB

Figure 3.2: Storage Engine Performance Varying Data Set Size. Each bar depicts one

application cache size (8MB or 1GB); each pair of bars shows performance for a given dataset

size. Total available memory is 1 GB. The y-axis is the latency normalized to the lowest value;

numbers above are absolute latencies (us/op).

The experiment demonstrates that cache configuration impacts performance signifi-

cantly; no single configuration performs well across different workloads and settings. A

deeper understanding of the performance characteristics of this two-level structure is re-

quired; a systematic approach that can coordinate the two caches to maximize performance

is needed.

3.1.3 Cache Coordination with Symbiosis

To address this problem, we propose Symbiosis, a system to coordinate application and kernel

caches to maximize performance across differing workloads and system configurations.

Figure 3.3 presents an overview of the system architecture. A key element of Symbiosis is an

online cache simulator thatmonitors performance levels given the current application/kernel

configuration and determines necessary adaptations to improve performance. The simulator

selectively applies ghost caching [42] to determine whether a different application cache size

would be beneficial; if so, it changes the size of the application cache (and thus implicitly

makes more or less memory available for the kernel cache).

Detailed online simulation can be prohibitively slow. Therefore, Symbiosis uses a

simplified representation of the actual caching approaches used by real systems. The core

challenge thus lies in determining how to abstract the essence of the cache sizing problem

and adopt the right level of simplification, aiming for a balance between overhead and

49

Read Path
 (~us scale) Simulation Path

(~<min scale)

Symbiosis

App

Cache
Kernel

Cache

User Workloads

App

Adapt

Size

Kernel

File
IO

Fill

Potential
Perf
Gain

RunSim

Device

Model
Cache

Compressed

Cache

Fill

Figure 3.3: Overview of Symbiosis. This figure shows the main components of Symbiosis

and their interactions.

accuracy. We show how to strike this balance later (§3.3).

3.2 The Cache Partitioning Problem

Through offline simulations, we show the factors that influence how memory should be

divided between the application and kernel caches. Our simulations demonstrate that the

division ofmemory between application and kernel caches has a large impact on performance

(e.g., up to 9×), and that the best division is highly dependent on a wide variety of factors,

some of which are specific to the environment (e.g., application and kernel miss costs) and

some of which can vary depending upon workload (e.g., the size of the data set, compression

ratio, and application/kernel cache hit rates).

3.2.1 Influential Factors

We define a number of system and workload parameters that impact the best division of

memory.

50

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

Kernel Cache Size (GB)

T
o

ta
l
L

a
te

n
c
y
 (

s
e

c
) C_a: 10

C_a: 100

(a) Miss Cost. α= 0.5,
M
Du

= 0.7,

uniform workload

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

Kernel Cache Size (GB)

T
o

ta
l
L

a
te

n
c
y
 (

s
e

c
)

alpha: 0.10

alpha: 1.00

(b) Compression Ratio. Ca = 50,
M
Du

= 0.5,

uniform workload

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

Kernel Cache Size (GB)

T
o

ta
l
L

a
te

n
c
y
 (

s
e

c
)

D_u: 10G

D_u: 1G

(c) Data Set Size. Ca = 50, α= 0.3,

uniform workload

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

Kernel Cache Size (GB)

T
o

ta
l
L

a
te

n
c
y
 (

s
e

c
)

D_u: 10G

D_u: 1G

(d) Data Set Size. Ca = 50, α= 0.3,

skewed workload

Figure 3.4: Simulation Results - Performance Varying One Factor. In each subplot, the

title indicates the varied factors across lines; the legend describes parameters of the minimal

and maximal value for a factor (the rest is omitted). The triangle indicates the point of the

global minima; the bold text depicts the controlled factors.

Memory Cache Sizes: M depicts the total amount of memory that can be used for the

application cache (Ma) and kernel cache (Mk); Ma+Mk =M. M can represent the total

physical memory on a single machine, a container’ resource limit [78, 155], or enforcement

by other mechanisms [154, 164]. We arbitrarily fix M to 1 GB in the simulations, since only

the relative size of memory to the data size matters, and not its absolute size.

Data Size: The amount of compressed data that is stored on disk by an application is

Dc; the corresponding uncompressed data size is Du. We simulate 1GB ⩽ Du ⩽ 10 GB.

51

0.0

0.2

0.4

0.6

0.8

1.0

B
e

s
t

M
k
 (

G
B

)

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Uniform(Ca=10)

0.0

0.2

0.4

0.6

0.8

1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Uniform(Ca=50)

0.0

0.2

0.4

0.6

0.8

1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Skew(Ca=10)

0.0

0.2

0.4

0.6

0.8

1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Skew(Ca=50)
alfa=0.1
alfa=0.3
alfa=0.5
alfa=0.7
alfa=0.9

M/Du

(a) Best kernel cache size across all the factors.

1

2
3

5

9

N
o

rm
a

liz
e

d
 L

a
te

n
c
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Uniform(Ca=10)

1

2
3

5

9

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Uniform(Ca=50)

1

2
3

5

9

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Skew(Ca=10)

1

2
3

5

9

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Skew(Ca=50)

alfa=0.1
alfa=0.3
alfa=0.5
alfa=0.7
alfa=0.9

dash:
 Ma=0

M/Du

(b) Performance gain. Two baselines: Mk=0 (solid) andMa=0 (dashed).

Figure 3.5: Simulation Results - Best Configurations. The title of each subplot means

the workload and miss cost. We use
M
Du

from 0.1 to 1.0 (x-axis) and two miss costs Ca=10,50.

Compression Ratio: (α, 0 < α⩽ 1): The ratio of compressed data to decompressed

data is α (i.e., α = Dc
Du

). α is affected by the compressibility of the data and the specific

compression algorithm [157]; for instance, in WiredTiger, we found that compressing a

data set of Du = 1 GB using four different compression algorithms (zstd, zlib, snappy, and

lz4) takes between 9µs and 204µs and results in compression ratios between 0.36 to 0.51.

We simulate values of α between 0.22 (observed in production [26]) and 0.5 (the default for

RocksDB’s db_bench [39]).

Retaining Data Size: (Dmem): We find the notion of a retaining data size useful: the

size of cached data in both caches when it is all decompressed. The minimumDmem occurs

when all of M is devoted to the uncompressed application cache; that is, Dmin
mem =M. The

maximum Dmem occurs when all of M is devoted to the compressed kernel cache (i.e.,

Dmax
mem = M

α). A higher Dmem reduces device accesses.

52

Hit Rates: The hit rate of the application cache is Ha and the kernel cache is Hk.

Hit rates are functions not only of the cache sizes, but also of access patterns and cache

replacement policies. We examine uniform random, skewed, and mixed access patterns.

Our simulations focus on LRU; note that improvements in replacement policies [21] are

complementary to our approach as we aim to better use available memory regardless of the

policy.

Miss Cost: Application miss cost is Ca and kernel cache miss cost is Ck. Ca is highly

application dependent; empirically, we foundCa varied between 40µs and 250µs depending

on the compression algorithm in WiredTiger and is < 10µs in LevelDB; thus, the simulation

varies Ca from 10 to 100. The main factor influencing Ck is device performance; we set

Ck to 100µs for common devices. Again, the ratio of miss costs (
Ca
Ck

) matters and not their

absolute values.

3.2.2 Analysis

Our goal is to find the value of Mk that optimizes performance given the other system and

workload parameters; our offline simulations do this by sweeping through the full range

of valid values of Mk. To quantify the performance of the cache structure, we use average

latency: Le = (1−Ha)∗ (Ca+(1−Hk)∗Ck), omitting constant hit costs for both caches.

Generally, as Mk increases, Hk increases, but Ha decreases; thus, the ideal hit rates for Hk

and Ha depend on the relative values of Ck and Ca.

3.2.2.1 UniformWorkload

We begin simulations with a uniform workload as it leads to the most intuitive results. With

a uniform workload and LRU replacement, the hit rate of a given cache is simply its size

divided by the data size; specifically, Ha = M−Mk
Du

where 0 ⩽Mk ⩽M, and Hk =
Mk

α∗Du

where 0⩽Mk ⩽ α∗Du. Le can be calculated as a quadratic function ofMk with a negative

quadratic term coefficient; thus, the two boundary points of the domain (Mk = 0 and

min(M,α∗Du)) are two local minima, but which of the two is the global minimum depends

on all factors, as we illustrate.

Miss Cost (Ca vs. Ck): We begin by showing the best kernel cache size as a function of

miss costs. In our two-layer caching architecture, the ratio
Ca
Ck

determines how much each

53

miss rate contributes to overall performance. While this ratio does not impact the cache

configurations of the two local minima, it does influence which is the global minimum.

Figure 3.4a shows latency as a function of Mk, varying Ca from 10 to 100 (interval=10)

and fixing Du = 1.43 GB (i.e.,
M
Du

= 0.7) and α= 0.5. For all values of Ca, the local minima

are at Mk = 0 and Mk = α∗Du, and the global minimum changes from 0 to α∗Du as Ca

decreases (i.e., when Ca < 60). In general, when 0<Mk < α∗Du, Le is larger than at both

extremes because both caches are non-zero and contain duplicates; whenMk grows beyond

α∗Du, Le increases because the kernel cache already holds all compressed data. Additional

Mk causes more application cache misses. With a higher Ca, the global minimum of Mk is

smaller, as application cache misses are penalized more.

Figure 3.5a summarizes the best kernel cache size for different parameters, illustrating

that different systems and workloads benefit from very different cache configurations,

with best values of Mk from 0 to M and all points between. More specifically, the first

two subplots show uniform workloads; comparing points across these first two subplots

confirms that a higher value of Ca (i.e., Ca = 50 vs. Ca = 10) makes the best kernel cache

size smaller. Figure 3.5b shows how much latency is improved when the cache system is

configured correctly; specifically, the graphs compare latency with the best cache partition

to two reasonable default cache configurations: Ma = 0 (dashed lines) andMk = 0 (solid

lines). For example, with a smaller Ca, latency can be nine times larger with a poor choice

cache configuration (i.e.,Mk = 0) than with the best choice.

Compression Ratio (α): Figure 3.4b shows the impact of α on the best kernel cache size,

by varying α from 0.1 to 1 with an interval of 0.05 and settingDu = 2 GB and Ca = 50; Du

is set larger thanM so that it is not possible to cache all uncompressed data in memory.

Given a lower α (for a fixed Du), a larger kernel cache tends to be better as it is more

efficient with compressed data; with a low α, the kernel cache provides larger Dmem,

avoiding more device accesses than the application cache. Specifically, with a very low α

(i.e., the bottom line withα= 0.1), latency drops sharply fromMk = 0 toMk =α∗Du = 0.2.

Generally, while the latency at Mk = 0 remains the same, the latency at Mk =min(M,α∗
Du) decreases with smaller values of α; as a result, the global minimum changes from

Mk = 0 toMk =min(M,α∗Du) when α < 0.65.

Figure 3.5a confirms that larger kernel caches are more beneficial with smaller values of

α and Figure 3.5b shows that the performance improvement is more dramatic with smaller

α; the potential benefit of the kernel cache is high.

54

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

Kernel Cache Size (GB)

T
o
ta

l
L
a
te

n
c
y
 (

s
e
c
)

D_u: 10G

D_u: 1G

Figure 3.6: Simulated performance under a Mixed (Read+Scan) workload. The legend

describes parameters of the minimal and maximal value for the varying factor, DataSetSize (i.e.,

Du). The triangle indicates the point of global minima. (Controlled factors: Ca = 50,α= 0.2)

Data Size (Du) vs. Memory Capacity (M): Figure 3.4c shows the impact of varying Du

from 1 GB to 10 GB (i.e., varying
M
Du

from 0.1 to 1.0) while α = 0.3 and Ca = 50. While

the two local minima for Mk (0 and min(M,α∗Du)) follow the studied trends of Le, we

make three specific observations. First, when Du is very small, the application cache can

fit all of the data uncompressed, so all memory should be devoted to the application cache

(Mk = 0). Second, whenDu is much higher thanM (e.g., whenDu = 10 GB), the impact of

different values ofMk is smaller since most accesses miss both caches. Finally, asDu grows

larger than 2 GB, the global minimum changes from Mk = 0 to Mk =min(M,α∗Du); for

these values of Du, the larger Mk is better because it leads to a larger Dmem at the cost of

a lower Ha. In summary, the bestMk tends to be 0 for a very large or very small Du, and

min(M,α∗Du) for a medium Du.

In Figure 3.5a, the α = 0.7 line in the first graph shows this trend best. As shown in

Figure 3.5b, with a mediumDu, the performance gain overMk = 0 is large and with a small

Du the gain overMa = 0 is generally larger; with a very large Du, the gain is small as all

cache configurations perform similarly.

55

3.2.2.2 Non-UniformWorkload

While the hit rates (and thus the best values ofMk) can be precisely calculated for uniformly-

random workloads, in practice, most real-world workloads are more complex [26, 33]. We

simulate a skewed workload containing a hotspot with locality as suggested by production

RocksDB [26] in which 20% of the key space serves 80% of requests. Figure 3.4d shows

that this skewed workload exhibits a significantly different performance curve from a

uniform workload (Figure 3.4c). The trend observed for a uniform workload, in which

the bestMk grows with increasing Du, does not hold for skewed workloads and the best

Mk becomes highly unpredictable. Generally, for a skewed workload, a larger application

cache is preferred since more accesses occur within a smaller hotspot and the same size of

application cache provides a higher hit rate; this effect can be roughly viewed as effectively

reducing Du. Figure 3.5a shows this preference to the application cache, comparing the

right half of graphs to the left half; Figure 3.5b confirms that the performance gain over

Mk = 0 is smaller than for uniform workloads and that overMa = 0 is larger.

Our second non-uniform workload contains a mix of read and scan operations, as

commonly found in real deployments [26, 33]. We use the YCSB benchmark [33] to generate

90% reads and 10% scans with an 80/20 hotspot and a scan length uniformly distributed

between 0 and 100 KB. The results in Figure 3.6 show that the trends are even more

irregular: although the best Mk increases with decreasing
M
Du

(i.e., increasing Du), the best

Mk decreases significantly when
M
Du

decreases from 0.45 to 0.4, and never at the extreme

points (i.e., 0 and M) when
M
Du

< 0.9. In summary, the best cache configuration for a

non-uniform workload is more difficult to predict with an offline simulation or model.

3.2.3 Discussion

Our simulations have shown that the best cache configuration is highly sensitive to factors

such as memory capacity, compression ratio, and miss cost, which depend on data and

hardware; non-uniform workloads further exacerbate the complexity. The performance gain

curves in Figure 3.5b show that improvements compared to a default cache configuration can

be significant, but that the best kernel cache size varies significantly. Statically determining

the best configuration is impractical due to the dynamic nature of workloads, directing us to

a runtime adaptive approach. Fortunately, although the amount of gain is difficult to predict,

the curves are relatively smooth without abrupt changes, indicating that some inaccuracy

56

Audit

Start Sim?

Choose Size
Heatup

Wall Time

1 2 3 4 5 6 7 80
S S S S S S S S S

Page Cache

read(ino, size, off)

Indexes
Data Cache

Tracker Sim

HitRate

HitRate

Compressed

Compressed

Increase Ma in S_i

Stable

GhostCache

AppCacheKey KernelCache(off+size)

Figure 3.7: Design of Symbiosis. Symbiosis is directly integrated into a storage engine. The

orange dashed lines are the stats collection paths that are always active; the dashed red lines

are the paths filling entries into the ghost cache, activated only in Adapting State and empty in

Stable State. The information inside the GhostSim component illustrates how the ghost cache

changes across the nine configurations during one simulation round. The size of the application

cache (i.e., light red portion of a bar) is increased over time; the dark red portion represents the

kernel cache.

in online simulation can be tolerated.

3.3 Design and Implementation of Symbiosis

We present our design and implementation of Symbiosis, which performs online cache

simulation to dynamically and adaptively configure two levels of cache for high performance.

The key challenge is to achieve simulation accuracy and configuration coverage while

maintaining high performance to minimize the impact on the foreground workload.

57

3.3.1 Design

Symbiosis is an add-on module built into a storage engine that automatically adjusts the

application cache size (Ma), implicitly changing the kernel cache size (Mk). Figure 3.7

illustrates how Symbiosis integrates into existing storage engines. Symbiosis contains two

main components: Tracker and GhostSim. Tracker continuously audits application and

kernel cache accesses to collect performance statistics; Tracker decides when to activate

GhostSim to find a better <Ma,Mk> and which specific candidate to adopt. GhostSim uses

efficient online cache simulation to predict the performance of candidates.

We design Symbiosis to achieve several goals. First, low overhead: incur negligible

overhead for the in-memory read path, taking less than a few microseconds if a request

hits in the caches. Second, memory efficient: minimize memory to reduce interference

with the memory-constrained storage engine. Finally, robust performance: deliver supe-

rior performance in most cases, while guaranteeing baseline performance for arbitrary

workloads.

To minimize the overhead of configuration exploration and changes, GhostSim is acti-

vated only when necessary. To lower our overhead and memory consumption, we maximize

ghost cache reuse with a pipelined simulation of <Ma,Mk> configurations in the order

of increasing Ma. To reduce memory consumption and maintain high accuracy, we use

sampling specifically tailored to our cache structure, accounting for misalignment and read-

ahead in the kernel cache. Finally, to guarantee performance improvements, we apply a

policy to guard against (uncommon) inaccurate simulation results.

3.3.1.1 Auditing by Tracker: Metric and States

Symbiosis alternates between two states: Stable and Adapting. In the initial stable state,

Tracker detects workload changes using the expected latency, calculated as Le = (1−Ha)∗
(Ca+(1−Hk)∗Ck)). Le focuses on two major factors: Ha and Hc (and consequently the

relative cache sizes) and the relative impact of each type of miss. Specifically, Tracker contin-

uously audits the hit/miss result of each cache and calculates Le with statically configured

miss costs by offline measurement. Tracker periodically compares the current calculated Le

to the initial Le for this round; if the difference is larger than a fixed threshold (currently

10%), Tracker considers it a workload change and enters the adapting state that starts a

simulation round. Thus, GhostSim is activated only when necessary.

58

3.3.1.2 Simulating with GhostSim: Lifetime of a Round

The basic idea of the adapting state is to systematically generate several <Ma,Mk> candi-

dates, run simulations to predict their Le’s, and determine if the best of them has sufficient

performance gain to be applied to the real system. GhostSim is responsible for efficiently

predicting the performance of different cache configurations for the current workload. To

simulate live workloads and predict their expected latency, GhostSim maintains a ghost

cache [42, 49, 109, 159], filled with the same indices as in the embedded storage engine,

but without the actual data. To minimize memory consumption and performance over-

head, GhostSim simulates only one instance of ghost cache at a time, adopting a pipelined

simulation of candidates in the order of increasing Ma to maximize ghost cache reuse.

After collecting the Le of each candidate <Ma,Mk> through simulation, Tracker derives

the potential gain of the best candidate configuration and applies it to the real system if

the gain surpasses a certain threshold. The ghost cache entries are then discarded to save

memory. Symbiosis waits for the real caches to warm up and generate a stable initial Le as

the reference point in the next period.

We strictly bound the ghost cache’s space and time overhead with a collection of tech-

niques (described below), as a naive full simulation incurs unacceptable memory consump-

tion (> 5%) and performance overhead (> 30%).

3.3.2 GhostSim Optimization Techniques

We introduce four techniques to achieve sufficient simulation accuracy, memory efficiency,

performance, and robustness; overall, we identify and solve new challenges for sampled

ghost cache simulation raised by the unique interaction pattern of the two-level cache

structure. First, we reset to a cache configuration during simulation that will perform

reasonably for the current workload; second, we simulate a pipelined sequence of candidate

configurations to achieve high coverage and efficiency; third, we use sampling to achieve

accurate simulation with reduced memory; fourth, we guard against (uncommon) flawed

simulation results that could occur due to not modeling all kernel caching features.

3.3.2.1 Initialization: Reset Policy

During Adapting State, GhostSim must use a cache configuration that performs reasonably

for the live foreground workload; GhostSim either continues using the current cache config-

59

uration, or if Le has increased (likely from an increase inDu), it resets to the minimal default

Ma used by the original storage engine (which increases Dmem). We show the benefits of

this reset policy in Section §3.4.2.4.

3.3.2.2 Incremental reuse of a single Ghost Cache

We extend the idea of storing cache access metadata with a ghost cache [42, 49, 109, 159] to

efficiently handle two-levels of caches while minimizing the memory footprint. Multiple

first-level cache sizes can be simulated simultaneously with only the amount of memory

required for the largest cache if the first-level cache follows the stack property [103] (e.g.,

LRU). However, the second-level cache sees different access patterns depending on the size

of the first level, and thus has different contents when sized differently. Thus, simultaneous

simulations of all second-level size candidates within one ghost cache instance is infeasible.

To efficiently simulate memory configurations with ghost caches, Figure 3.7 illustrates

our choices of <Ma,Mk> candidates. Our simulation results (Figure 3.5a) indicated that the

best memory configuration could be anywhere within the search space; therefore, GhostSim

forms the candidate set by dividing the search space into a fixed number of equal ranges

(currently 8) without skipping candidates or stopping early; this provides relatively high

coverage of the search space with reasonable convergence time. Since warming up each

candidate ghost cache is a significant source of overhead, Symbiosis simulates each in the

order of increasing Ma to maximize the reuse of ghost cache contents. Specifically, we

keep the application ghost cache at its full size and simulate different Ma’s using the stack

property, so that whenMa is increased for the next candidate, the contents of the increased

portion are already known. A short warm up for the kernel ghost cache afterMk is decreased

is required to let its contents approach those of the next candidate’s configuration.

3.3.2.3 Sampling with Misalignment and Read-ahead

Even with reuse, the memory consumed by a ghost cache is significant (e.g., 50 MB for 1 GB

data). To reduce memory consumption, we incorporate a key-space sampling technique by

hashing the indices so that one slot represents several keys [151, 152]. A sample ratio (R) of

0.01-0.001 minimizes memory usage while preserving accuracy.

Approximating Hk with sampling poses new challenges. An important difference be-

tween Symbiosis and other two-layer cache structures is that the kernel caches at the page

60

0 0.2 0.4

0.2

0.4

0.6

0.8

1.0

(a)

H
it
 R

a
te

LRU+Misalign
SimpleLRU
Kernel-nora

Mk
0 0.2 0.4

0.2

0.4

0.6

0.8

1.0

(b)

M-aware Sample
Spatial Sample
Kernel-nora

Mk
0 0.2 0.4

0.2

0.4

0.6

0.8

1.0

(c)

M-aware Sample
Kernel
GhostSim

Mk

Figure 3.8: KernelCache Simulation and Sampling. Kernel-nora and Kernel are the

kernel cache implementations with and without read-ahead, respectively.

level while the application caches in application-defined blocks that misalign with pages; as

a result, the independent reference model [10] does not hold, as each request may access

different targets in each layer and multiple contiguous targets in the kernel cache. Moreover,

read-ahead strongly affects Hk, but a full simulation would be too costly.

We introduce different hashing approaches that accurately model these real-system

effects. Figure 3.8 shows the hit rate curves for various kernel cache implementations

and sampling approaches. Figure 3.8(a) shows a SimpleLRU simulator that caches in the

unit of blocks instead of pages and thus does not take misalignment into account, deviates

significantly from a kernel implementation that has read-ahead disabled (Kernel-nora). The

LRU+Misalign simulation, which caches in the unit of pages and accounts for misalignment

just as the kernel does, approximates the Kernel-nora line well. However, Figure 3.8(b) shows

that spatial sampling (R= 1

2
) is not effective in the presence of misalignment, deviating from

the Kernel-nora line. With misalignment, accessing a block across pages will read both pages

into the cache, hitting neighboring blocks; spatial sampling’s hashing scheme loses locality

and cannot capture such behavior. We introduce misalignment-aware sampling that groups

contiguous G application blocks before hashing to preserve locality; the M-aware Sampling

line (R= 1

2
and G= 32) approximates the Kernel-nora line well. Finally, to compensate for

read-ahead, we adopt a heuristic that slightly increases the size of our modeled kernel cache.

Figure 3.8(c) shows that this final version (GhostSim) approximates the Kernel better than

M-aware Sampling.

61

Our sampling method produces similar hit rate curves with R⩾ 1

256
; we choose R= 1

64

due to the acceptable variance and sufficiency to realize a low-overhead online simulation.

We confirm that our method broadly works well.

3.3.2.4 Guard against Unmodeled Cases and Fall Back

Although we have modeled misalignment between caches, GhostSim may be inaccurate

in some workloads due to unmodeled kernel features such as read-ahead. Thus, Symbiosis

only performs cache size adjustment if the predicted result improves latency by a threshold

amount; we do not adapt away from settings that already works well. To understand why

this approach is robust, consider a workload that performs strided access of one key per

page. The kernel cache sees a linear access, triggers read-ahead, and thus achieves a high

Hk, while GhostSim without read-ahead produces a low Hk. However, Symbiosis observes

that the predicted Le for all the candidate cache sizes is larger than the measured current

Le, and therefore rejects all simulation results.

3.3.2.5 Limitation and Discussion

We assume that workloads change infrequently. If the workload changes before a simulation

round ends, Symbiosis detects the change, discards the current results, and starts over. If

the workload changes repeatedly during simulation, Symbiosis stops the simulation as it is

unable to finish and yield benefits. In our experimental environment, Symbiosis takes at

most 45 seconds to detect and simulate new workloads.

Symbiosis generally offers larger and more robust benefits to existing storage engines

in read-heavy workloads, which are observed as dominant in various studies [26, 33]. The

idea of simulation-based cache size adaption can work with write-heavy workloads, yet will

require additional research to realize in robust form. For example, LSM-based engines often

schedule asynchronous background compaction in the write path; thus, speed differences in

the foreground workload caused by different cache size configurations can lead to varying

tree structures and thus different cache access traces. Further, write performance itself is

less stable than read performance [19], which is more challenging for prediction.

62

3.3.3 Multiple Implementations

Wehave integrated Symbiosis into three different storage engines: LevelDB [53],WiredTiger [107],

and RocksDB [46]. Modifying LevelDB to leverage Symbiosis required adding fewer than

1000 LoC to the 30000-LoC codebase. First, the required keys for the ghost cache are collected

during the original processing of each request. Second, hit/miss statistics are recorded when

accessing the application cache and inferred from timing when accessing the kernel cache.

Third, LevelDB’s LRUCache is modified to build the ghost cache utilizing the stack property,

greatly reducing the amount of new code. Finally, a generic interface is added to the appli-

cation cache to dynamically resize it toMa and allow the kernel cache to automatically use

the rest of the memory (M−Ma).

We have also ported Symbiosis to WiredTiger and RocksDB to demonstrate its general-

izability. Despite the fact that WiredTiger’s B-Tree-based engine has a completely different

caching mechanism than LevelDB, the modifications required are similar to the four outlined

above; the basic port added fewer than 100 LoC to WiredTiger and Symbiosis. Interest-

ingly, as part of this porting process, we uncovered a bug in WiredTiger’s cache eviction

mechanism. Despite its claimed LRU-like behavior, the bug makes it evict data regardless

of recency and its cache performance becomes extremely poor and unpredictable. This

bug has been reported to MongoDB which recognized it as a major bug; we have added a

workaround to restore the intended LRU policy, which significantly improves performance

and enables Symbiosis to correctly simulate its cache behavior.

RocksDB is based on LevelDB and has a similar cachingmechanism. To study Symbiosis’s

capability to handle an application-managed compressed data cache, we enable RocksDB’s

option to use its built-in compressed data cache and direct I/O. Whenever the application

cache size is changed, we explicitly set the size of the compressed data cache to be all

memory not used by the application cache (i.e.,M−Ma). Due to RocksDB’s similarity to

LevelDB, the port required minimal effort.

3.4 Evaluation

To evaluate Symbiosis, we answer the following questions to demonstrate Symbiosisś

capability to adapt cache size configurations for a wide range of workloads with negligible

overhead:

63

Factors Presented Space

Workloads

Data Set Size

(GB)

5, 2.5, 1.67, 1.25, 1

(M :Du= 0.2, 0.4, 0.6, 0.8, 1)

Access Pattern uniform, zipfian, hotspot{30,20,10}

Software

Compression Lib snappy (default), zstd

Storage Engine LevelDB (default), RocksDB, WiredTiger

Hardware

CPU

Freq.

HW1: Xeon 5128R (2.9 GHZ)

HW2 [119]: Xeon D-1548 (2.0 GHz)

Device

Latency

HW1: OptaneSSD 900P (∼ 10µs)

HW2: Toshiba NVMe flash (∼ 70µs)

Table 3.1: Factors for StaticWorkload. Access patterns are generated by YCSB [33]. Zipfian

has scattered hotspots over the key range to avoid space locality. Hotspot{30,20,10} means that

70%, 80%, and 90% of requests access 30%, 20%, and 10% keys in a contiguous range.

• Q: How much better does Symbiosis perform than reasonable static cache size config-

urations (<Ma,Mk>) for different data set sizes (Du), compression ratios (α), miss

costs (Ca and Ck), and access patterns for different storage engines such as LevelDB,

WiredTiger, and RocksDB?

A: Symbiosis achieves as high of performance as the best static configuration and sig-

nificantly outperforms other static configurations in all read workloads with different

parameters and storage engines. Symbiosis also shows benefit for workloads with

moderate writes. (§3.4.1)

• Q: How quickly does Symbiosis react to workload changes and how much overhead

does Symbiosis incur for simulation and changing cache sizes?

A: Symbiosis adapts to workload changes in 15.4 seconds in average and incurs

negligible space and time overhead during online cache simulation. (§3.4.2)

• Q: How well does Symbiosis handle real-world workloads?

A: Symbiosis’s gain holds consistently for real-world workloads. (§3.4.3)

Setup. We use HW1 in Table 3.1 unless otherwise noted; the available memoryM is fixed

at 1 GB by cgroup. We evaluate Symbiosis by comparing it with two static configurations:

64

Ma = 8 MB (LevelDB’s default) and Ma =1 GB (Mk ≈ 0), referred to as StaticMa=8MB

and StaticMa=1GB, respectively.

3.4.1 Static Workloads

We first evaluate Symbiosis under various static workloads, demonstrating that Symbiosis

finds a better <Ma,Mk> for different data set sizes (Du), compression ratios (α), miss costs

(Ca and Ck), and access patterns. Table 3.1 shows the full range of factors. To vary α,

Ca, and Ck, we use a secondary compression library (zstd) and hardware (HW2). We also

evaluate its performance in WiredTiger and RocksDB to demonstrate its generalizability to

different storage engines.

3.4.1.1 LevelDB Performance

Figure 3.9 compares the performance for LevelDB with Symbiosis to the two static baselines

as a function of
M
Du

for five access patterns on five different settings.

Large datasets and memory (a): To evaluate Symbiosis in the context of modern data

center machines with large amounts of memory, we begin with M= 10GB and a range of

large data sets (Du=50, 25, 16.7, 12.5, 10 GB); we use the basic setting of HW1 and LevelDB’s

default compression (α = 0.5). In all cases, Symbiosis matches the performance of the

better baseline. StaticMa=8MB tends to perform better when the data set is very large,

and StaticMa=1GB when the data set size is small; the only exception is hotspot10, where

the highly skewed accesses to the small hotspot should always reside in the application

cache (StaticMa=1GB). Again, Symbiosis dynamically sizes the two caches to obtain the

best observed performance.

Basic Setting (b): The setting is the same as (a), except to reduce the running time of our

experiments, we use 1/10-th the data set sizes andM= 1GB. As desired, the full range of

results are extremely similar to that of (a); thus, for efficiency, we use the smaller data set

sizes andM= 1GB in the remainder of our experiments.

Different Compression Ratio (c): We change the compression ratio from α= 0.5 in (b) to

0.22 in (c). With a smaller α, the performance gap between the two baselines increases, as

noted in our offline simulations (§3.2). Thus, with better compression, Symbiosis achieves

a larger performance increase over the worse baseline (commonly > 1.2×) and some im-

65

0

5

10

15

20

25

L
a
te

n
c
y
 (

u
s
)

0
.2

0
.4

0
.6

0
.8

1
.0

uniform

0
.2

0
.4

0
.6

0
.8

1
.0

zipfian

0
.2

0
.4

0
.6

0
.8

1
.0

hotspot30

0
.2

0
.4

0
.6

0
.8

1
.0

hotspot20

0
.2

0
.4

0
.6

0
.8

1
.0

hotspot10
Ma=8MB Ma=10GB Symbiosis

(a) Larger dataset and memory. α= 0.5, Ca = 3, Ck = 16.

0

5

10

15

20

25

L
a
te

n
c
y
 (

u
s
)

0
.2

0
.4

0
.6

0
.8

1
.0

uniform

0
.2

0
.4

0
.6

0
.8

1
.0

zipfian

0
.2

0
.4

0
.6

0
.8

1
.0

hotspot30

0
.2

0
.4

0
.6

0
.8

1
.0

hotspot20

0
.2

0
.4

0
.6

0
.8

1
.0

hotspot10
Ma=8MB Ma=1GB Symbiosis

(b) Basic setting. α= 0.5, Ca = 3, Ck = 16.

0

5

10

15

20

L
a
te

n
c
y
 (

u
s
)

0
.2

0
.4

0
.6

0
.8

1
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c) Different compression ratio. α= 0.22, Ca = 3, Ck = 16.

Figure 3.9: Performance under StaticWorkloads (Part 1). X-axis is
M
Du

. Ma=8MB means

StaticMa=8MB, similarly for Ma=1GB.

provement over the best baseline (11.1% on average), especially when M : Du is within

[0.4,0.8].

Different Compression Algorithm (d): We change the compression algorithm to alter

α from 0.5 to 0.43 and Ca from 3 to 9. Now, StaticMa=1GB usually performs better than

StaticMa=8MB because
Ca
Ck

is large (0.56) and StaticMa=8MB incurs the cost of the higher

Ca. Symbiosis again always matches the performance of the better baseline, properly

66

0

10

20

30
L
a
te

n
c
y
 (

u
s
)

0
.2

0
.4

0
.6

0
.8

1
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) Different compression algo. α= 0.43, Ca = 9, Ck = 16.

0

30

60

90

L
a
te

n
c
y
 (

u
s
)

0
.2

0
.4

0
.6

0
.8

1
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(e) Different hardware (HW2). α= 0.5, Ca = 5, Ck = 80.

Figure 3.9: Performance under StaticWorkloads (Part 2). X-axis is
M
Du

. Ma=8MB means

StaticMa=8MB, similarly for Ma=1GB.

devoting most space to Ma, while correctly identifying the exceptions (e.g., the leftmost

points in uniform and hotspot30).

Different hardware platform (e): We switch to HW2 so that device access is far slower

than decompression (
Ca
Ck

= 0.0625). Now, StaticMa=8MB usually performs better than

StaticMa=1GB because it avoids costly disk accesses, except for the hotspot10 workload

where the cost of frequent application cache misses on the hotspot outweighs the benefit of

reduced disk accesses. In several cases (e.g.,
M
Du

= 0.8), Symbiosis performs significantly

better than both baselines by properly balancing application cache misses and disk accesses,

with an average gain of 6.9% over the better baseline.

Summary: In our LevelDB experiments, Symbiosis achieves as high of performance as the

better baseline and outperforms the other baseline by up to 5.77×. In some cases, Symbiosis

performs significantly better than both baselines (up to 1.32×), demonstrating the benefit

of a fully flexible configuration of <Ma,Mk>.

67

0

5

10

15

20

L
a

te
n

c
y
 (

u
s
)

0
.2

0
.4

0
.6

0
.8

1
.0

uniform

0
.2

0
.4

0
.6

0
.8

1
.0

hotspot30

0
.2

0
.4

0
.6

0
.8

1
.0

hotspot10
Ma=8MB Ma=1GB Symbiosis(a) (b)

predicted (at Ma=8MB)
predicted (at Ma=1GB)
observed (at Ma=1GB)

0.5

0.6

0.7

0.8

H
it
 R

a
te

20 30 40
Compaction Tp. (MB/sec)

Figure 3.10: Static Workload with 20% Overwrites. (a) X-axis is
M
Du

. Ma=8MB means

StaticMa=8MB, similarly for Ma=1GB. α= 0.22, Ca = 3, Ck = 16. (b) shows the predicted

application cache hit ratio of the Ma = 1GB configuration using cache traces from config-

uration Ma = 8MB and Ma = 1GB, and the observed hit ratio when Ma = 1GB, under

different compaction rates. The workload is uniform with 20% overwrite andM=Du.

3.4.1.2 Workload with Writes in LevelDB

During simulations, Symbiosis uses cache access traces from the real system with a certain

cache configuration, which deviates from the true cache access traces for other cache

configurations when compaction exists. Figure 3.10(b) shows that Symbiosis’s prediction is

affected by such deviations under a large compaction rate. By limiting the compaction rate,

the inaccuracy can be significantly reduced.

Figure 3.10(a) shows Symbiosis’s performance with 20% overwrites. Compared to its

read-only counterpart (Figure 3.9(c)), StaticMa=1GB performs worse than StaticMa=8MB

even when
M
Du

= 1 due to the immutable nature of LSM-tree that causes duplication with

overwrites and makes the actual database size larger. Similarly, Symbiosis offers lower

benefits, but still outperforms StaticMa=8MB when the workload is very skewed and Du

is small.

3.4.1.3 WiredTiger Performance

Figure 3.11(a) shows the performance benefits of incorporating Symbiosis into WiredTiger.

As mentioned in §3.3.3, we began by modifying WiredTiger to correctly implement its

claimed LRU-like behavior for its application cache; our modified version performs the same

or better than the original version (WT-orig Ma=256MB) for all static workloads and is used

in our baselines (Ma=256MB andMa=1GB). WiredTiger has a significantly larger application

cache miss penalty (
Ca
Ck

= 1.25) than LevelDB, so even with a very small compression ratio

68

0

10

20

30

L
a
te

n
c
y
 (

u
s
)

0
.2

0
.4

0
.6

0
.8

1
.0

uniform

0
.2

0
.4

0
.6

0
.8

1
.0

zipfian

0
.2

0
.4

0
.6

0
.8

1
.0

hotspot30

0
.2

0
.4

0
.6

0
.8

1
.0

hotspot20

0
.2

0
.4

0
.6

0
.8

1
.0

hotspot10
Ma=256MB Ma=1GB Symbiosis WT-orig-Ma=256MB

(a) WiredTiger. α= 0.2, Ca = 20, Ck = 16.

0

5

10

15

20

L
a
te

n
c
y
 (

u
s
)

0
.2

0
.4

0
.6

0
.8

1
.0

uniform

0
.2

0
.4

0
.6

0
.8

1
.0

zipfian

0
.2

0
.4

0
.6

0
.8

1
.0

hotspot30

0
.2

0
.4

0
.6

0
.8

1
.0

hotspot20

0
.2

0
.4

0
.6

0
.8

1
.0

hotspot10
Ma=8MB Ma=1GB Symbiosis

(b) RocksDB. α= 0.5, Ca = 3, Ck = 16.

Figure 3.11: WiredTiger and RocksDB (Static Workload). X-axis is
M
Du

. Ma=8MB

means StaticMa=8MB, similarly for Ma=1GB. In (a), WT-orig-Ma=256MB is the original

WiredTiger, while Ma=256MB, Ma=1GB, and Symbiosis uses our modified WiredTiger with

LRU-like eviction policy.

(α= 0.2), the baseline with a larger application cache (Ma=1GB) performs better than the

other baseline for almost all workloads. Since WiredTiger’s performance drops significantly

when its cache size is less than its 256 MB default, Symbiosis searches for application cache

sizes between 256 MB and 1 GB and outperforms or matches the better baseline, showing

its capability on a completely different storage engine.

3.4.1.4 RocksDB Performance

Figure 3.11(b) shows the performance improvement when RocksDB uses Symbiosis to

manage the sizes of its own decompressed and the compressed data cache. Making Symbiosis

workwith high accuracy is easier in this setting since we do not need to approximate complex

kernel cache behavior. These results show a similar trend to that in Figure 3.9(a) where

Symbiosis outperforms or matches the performance of the better baseline, demonstrating

69

0

5

10

15
L
a
te

n
c
y
 (

u
s
) Ma=1GB

Ma=8MB

10 20 30 40 50 60 70
Time (sec)

0

5

10

15

20

L
a
te

n
c
y
 (

u
s
) Stable Simulation Done Stable

[conv. time]
Sim-off
Symbiosis

Figure 3.12: Timeline of Latency under a DynamicWorkload (hotspot20:1.0-2.0). The

workload changes are aligned at ∼ 26sec, and we label state transfer of Symbiosis by the gray

vertical lines. Sim-off means we turn off the simulation and shows the effect of only resetting

the application cache size to default; its steady performance is the same as StaticMa=1GB

before the change, and the same as StaticMa=8MB afterwards. (α= 0.22)

its capability to handle application-managed compressed data caches.

3.4.2 Dynamic Workloads

We demonstrate that Symbiosis adapts to workload changes with a reasonable convergence

time and negligible overhead.

3.4.2.1 Example: LevelDB Behavior over Time

We begin by illustrating how Symbiosis within LevelDB behaves over time for a dynamic

workload. Figure 3.12 presents the performance of Symbiosis (the bottom) and the two

baselines (the top) for a workload with two phases; the access pattern in both phases is

hotspot20 and α= 0.22, but Du varies from 1 GB to 2 GB.

The StaticMa=8MB baseline quickly obtains stable (but relatively poor) performance

in the first phase, since the kernel cache can hold all the compressed data. When Du

increases, the latency increases while the kernel cache is warmed with the larger data set,

70

but eventually returns to its previous performance since the kernel cache can still hold all

compressed data (Mk ≈M>α∗Du and Hk = 1).

The StaticMa=1GB baseline takes longer to warm the application cache in the first

phase, but then achieves better performance since the application cache can hold all the

decompressed data. WhenDu increases, the latency increases because the application cache

cannot contain all the data (Ma <Du) and disk accesses are necessary.

Symbiosis is able to obtain as good of performance as StaticMa=1GB in the first phase

and better than both in the second. Symbiosis starts with a default value forMa = 8 MB

while simulating cache configurations for ∼ 5sec; after determining that Ma =M delivers

the best performance, it increases the application cache and matches the performance of

StaticMa=1GB after the application cache is warmed at ∼ 12sec. After Symbiosis detects

the significant increase in Le at ∼ 28sec, Symbiosis defaults back toMa = 8 MB and re-starts

the simulations; the large initial overhead is due primarily to warming up the kernel cache

(as shown by the Sim-off line which undergoes the same changes in cache configurations

without simulation). Once the kernel cache is warmed, the simulation itself incurs negligible

overhead (compared to StaticMa=8MB) and finishes at ∼ 42sec, at which point Symbiosis

changes to Ma = 0.5M, warms up the cache ∼ 2 seconds, and then achieves the lowest

latency.

3.4.2.2 Performance Gain and Dynamic Adaptation

To quantify the benefits, convergence time, and resulting cache configurations for a wide

range of workloads with two phases, we construct a suite of 18 experiments varying Du,

access patterns, and α (0.22 and 0.5). We present the results with α = 0.22 in Figure 3.13

(α= 0.5 omitted for brevity) but consider both αs when discussing extremes and averages.

We use the example above to explain the metrics in Figure 3.13, which corresponds

to hotspot20:1g→2g (the fifth bar group in the second row). Adjacent bars in the figure

represent the two phases in an experiment. Latency is reported when performance is stable

(e.g., in the example workload, latency is about 2.5µs for Symbiosis and StaticMa=1GB

for the first phase, and 5µs for StaticMa=8MB; it is about 3.7µs for Symbiosis and 5µs for

StaticMa=8MB and StaticMa=1GB in the second phase). Convergence time represents the

time to finish simulation (e.g., ∼ 12 and 13 seconds for phase 1 and 2, respectively, shown

by the time between the bars labeled as Simulation and Done in Figure 3.12). Finally, the

71

2
.5

5
.0

5
.0

2
.5

2
.5

5
.0

5
.0

2
.5

2
.5

5
.0

5
.0

2
.5

0

5

10

15

20

Latency (us)

2
.5

-5
.0

5
.0

-2
.5

2
.5

-5
.0

5
.0

-2
.5

2
.5

-5
.0

5
.0

-2
.5

0
5

10
15
20
25

Conv. Time (sec)

2
.5

-5
.0

5
.0

-2
.5

2
.5

-5
.0

5
.0

-2
.5

2
.5

-5
.0

5
.0

-2
.5

0

0.5

1

Ma/M
1
.0

2
.0

2
.0

1
.0

1
.0

2
.0

2
.0

1
.0

1
.0

2
.0

2
.0

1
.0

0

5

10

15

1
.0

-2
.0

2
.0

-1
.0

1
.0

-2
.0

2
.0

-1
.0

1
.0

-2
.0

2
.0

-1
.0

0

5

10

15

1
.0

-2
.0

2
.0

-1
.0

1
.0

-2
.0

2
.0

-1
.0

1
.0

-2
.0

2
.0

-1
.0

0

0.5

1

2
g
:h

o
t2

0
2
g
:h

o
t2

0
T

5
g
:h

o
t2

0
5
g
:h

o
t2

0
T

2
g
:h

o
t1

0
2
g
:h

o
t3

0
T

2
g
:h

o
t3

0
T

2
g
:h

o
t1

0

5
g
:h

o
t1

0
5
g
:h

o
t3

0
T

5
g
:h

o
t3

0
T

5
g
:h

o
t1

0

0

5

10

15

2
g
:M

ir
ro

r
5
g
:M

ir
ro

r

2
g
:H

o
t1

0
->

2
g
:H

o
t3

0
T

->

5
g
:H

o
t1

0
->

5
g
:H

o
t3

0
T

->0

10

20

30

40

2
g
:M

ir
ro

r
5
g
:M

ir
ro

r

2
g
:H

o
t1

0
->

2
g
:H

o
t3

0
T

->

5
g
:H

o
t1

0
->

5
g
:H

o
t3

0
T

->0

0.5

1

uniform zipfian hotspot20

uniform zipfian hotspot20

Ma=8MB Ma=1GB Symbiosis Phase1 Phase2

Figure 3.13: Performance under Dynamic Workloads (α= 0.22). In the Latency subplot,

each group has three bars: StaticMa=8MB, StaticMa=1GB and Symbiosis. Each adjacent bar

group represents one workload1→workload2 change and the next group reverses the workloads.

The first two rows contains 12 workloads whereDu varies (shown in the x-axis labels). The third

row contains 2 workloads varying hotspot positions and 4 varying hotness and hotspot positions,

each with a fixedDu. For instance, 2g:Hot20 means a hotspot20 workload withDu = 2 GB and

2g:Hot20-T mirrors the hotspot to the tail. 2g:Hot20→2g:Hot20-T is summarized as 2g:Mirror

(hotspot change). The Conv. Time and Ma/M subplots only show the behaviors of Symbiosis.

Ma/M subplot shows the best application cache size found by Symbiosis (e.g., 1 and 0.5

for the example workload).

Figure 3.13 shows that Symbiosis delivers good latency in all cases, at least as good as the

72

p-95 Latency

Median

p-95 Latency

Max

p-99 Latency

Median

p-99 Latency

Max

Overhead (%) 8.6 14.5 15.3 52.0

Case - zipfian:1g→2g - uniform:1g→2g

Table 3.2: Tail Latency. Overhead is the comparison to StaticMa=8MB. (α= 0.22)

best baseline and sometimes better, with an average gain of 24% over StaticMa=8MB, 42%

overStaticMa=1GB, and a best case of 42% over the better of the two (i.e., hotspot20:1.0→2.0).

The average convergence time is 15.4 seconds with a worst case of 40 seconds; generally,

more convergence time is required for larger Du and Dc, and for less skewed workloads.

During simulation, the worst overhead of Symbiosis is 15.1%, but this contains two portions:

the larger is the overhead of possibly resettingMa to the default and warming up the kernel

cache; the smaller is the actual simulation overhead, which averages only 0.9% with a worst

case of 3.4%. Finally, Symbiosis chooses different Ma values, typically scaling up Ma with

a decrease in Du and increase in skewness (and vice versa).

Adapting the size online and potential latency spike symptoms raises concerns of tail

latency. As shown in Table 3.2, Symbiosis incurs reasonable tail latency overhead, with

a 8.6% higher median p-95 latency and a 15.3% higher median p-99 latency compared to

StaticMa=8MB. Out of the 18 cases, 13 have less than 25% overhead for p-99 latency. The

highest p-99 latency overhead is 52% in uniform:1g→2g. Extra device accesses due to cache

size change cause the higher tail latency. Tail latency would be minimally impacted in

workloads with a longer steady state or more device accesses.

3.4.2.3 Gradual Change

We show that Symbiosis also performs well in workloads with more gradual changes (Fig-

ure 3.14). During the workload, StaticMa=8MB holds all the data in the kernel cache;

StaticMa=1GB cannot hold all the data in the application cache when Du = 2 GB and

performs worse, but then benefits from the shrink ofDu and finally eliminates device access

when Du = 1 GB and performs better than StaticMa=8MB.

Symbiosis matches the performance of StaticMa=8MB at the beginning. Three simula-

tions are triggered when the difference of Le reaches the threshold for workload change

detection, Ma is gradually increased according to the workload when simulations occur,

73

10M 20M 30M 40M 50M 60M
Number of Requests

0

5

10

15

20
L
a
te

n
c
y
 (

u
s
) S

im
.

D
o
n
e

S
tb

.

S
im

.
D

o
n
e

S
tb

.

S
im

.
D

o
n
e

S
tb

.

S
im

.
D

o
n
e

S
tb

.

Ma=1GB

Ma=8MB

Symbiosis

Figure 3.14: Timeline of Latency under a Dynamic Workload with Gradual Change.

The workload is uniform withDu = 2 GB in the first 10M operations,Du = 1 GB in the last 10M

operations, and a uniform gradual change during the 50M operations in between. (α= 0.22)

N
o
R

e
s
e
t

1
2
1
.2

-1
9
.8

6
8
.2

0
.5

7
0
.9

-2
5
.1

4
8
.3

1
.0

-6
.4

-4
3
.6

1
9
.5

0
.3

-3
2
.2

0
.8

-1
4
.0

-4
7
.3

1
0
1
.4

1
.0

1.
0-

2.
0

2.
0-

1.
0

2.
5-

5.
0

5.
0-

2.
5

1.
0-

2.
0

2.
0-

1.
0

2.
5-

5.
0

5.
0-

2.
5

1.
0-

2.
0

2.
0-

1.
0

2.
5-

5.
0

5.
0-

2.
5

2g
:M

irr
or

5g
:M

irr
or

2g
:H

ot
10

->

2G
:H

ot
30

T->

5g
:H

ot
10

->

5g
:H

ot
30

T->

11.1

4.7

11.2

4.4

9.2

1.8 0.3
2.3

5.7

-19.1

1.2

-24.3

0.6

-45.4

0.7 0.3

-47.8

1.4

0

5%

10%

15%

O
v
e
rh

e
a
d

uniform zipfian hotspot20 uniform zipfian hotspot20

Reset=Y
Reset=N

Figure 3.15: Overhead during Simulation (α= 0.22). The workloads are in the same order

as in Figure 3.13. The bars are the overhead with the reset policy; dashed ones indicate no

actual Ma change. Numbers in gray background are the overhead percentages without the

reset policy.

and the latency drops along with the shrink of Du. Finally,Ma =M is chosen when Du

approaches 1 GB and the performance of StaticMa=1GB is matched.

A gradual change of Le is necessary for Symbiosis to match the change speed of work-

load. For workloads with faster changes beyond Symbiosis’s threshold during simulation,

simulations are halted until the workload stabilizes.

3.4.2.4 Effect of Optimization Techniques

We quantify the benefits of our techniques by comparing to a simplified version without

the corresponding technique.

74

0 50M 100M 150M 200M 250M 300M 350M 400M# of req

0

5

10

15

20

L
a
te

n
c
y
 (

u
s
)

Sim. DoneStable Sim. Done Stable Sim. DoneStable Sim.DoneStable

[conv. time: 13.6s] [conv. time: 14.9s] [conv. time: 16.4s] [conv. time: 18.5s]
0

4

0

4

0

5

0

11

Ma=8MB

Ma=1GB

Symbiosis

Figure 3.16: Request Latency versus the Request Sequence. The 4 phases are composed

of 2 workloads generated from RocksDB’smix_graph benchmark. Two versions of the first

workload exhibit a decrease in Du, with Keymax = 50M and Du = 5 GB in phase 1 and

Keymax = 25M and Du = 2.5 GB in phase 2. Similarly, two versions of the second workload

exhibit a increase in Du s (phase 3: Du = 2.5 GB and phase 4: Du = 5 GB). The four small

bar charts around the top illustrates the decision of Tracker; each chart is a simulation round.

Each bar represents one simulated cache size setting (S{0,...,8} from Ma = 8 MB to Ma = 1 GB),

y-axis is the Le (expected latency), and the gray horizontal line shows the real system Le at the

time of simulation end. Tracker adopts the first three size changes, but rejects the last one; all

four are good decisions. (α= 0.22)

Reset Policy: The reset policy (§3.3.2.1) aims for a cache size that performs reasonably

while simulating, despite an arbitrary new workload. The overhead of Symbiosis compared

to the StaticMa=8MB baseline during simulation is shown in Figure 3.15; large negative

values occur when Symbiosis does not reset Ma to default due to a decrease in Le and

thus Symbiosis performs better than the baseline (e.g., the uniform:2g→1g experiment). As

shown by the overhead numbers in gray background in Figure 3.15, Symbiosis without the

reset policy performs poorly in many cases (e.g., up to 100×); therefore, the reset policy is

better on average and beneficial for more stable performance.

Sampling: Sampling is essential for low overheads. The first and third row in Table 3.3

shows the memory consumption and operation overhead of Symbiosis with and without

sampling. Without sampling, simulation consumes 51 MB of memory and adds 42% of

overhead to every operation. Sampling significantly reduces the costs, consuming only

460 KB of memory and incurring only ∼90ns per operation. Furthermore, sampling only

adds the overhead over the 16.7 second simulation round – a negligible duration.

Incremental reuse of ghost cache: By comparing rows two and three in Table 3.3, we see

that incremental reuse reduces both memory and time overhead by > 3×, but at the cost of

75

a longer convergence time, compared to a design that simply uses one ghost cache instance

for each candidate <Ma,Mk>. Thus, the incremental reuse design has the lowest impact on

foreground workload and is most suitable.

3.4.3 Real World Workloads

We conclude by demonstrating that Symbiosis handles complex and realistic workloads:

performance is robust since only a size change that is predicted to sufficiently improve

performance is adopted.

Two workloads generated from RocksDB’smix_graph benchmark [26] are used, the

firstwith the supplied parameters in the last example in paper [26], and the secondmimicking

an interesting two hot key-range symptom in the paper, observed by Meta’s ZippyDB Get

workload. The benchmarkmodels key-space localities and closely approaches real workloads

in terms of storage I/O statistics.

Figure 3.16 shows the performance of LevelDB on four consecutive traces based on the

two workloads. StaticMa=8MB maintains relatively constant performance through the four

phases withHk ≈ 1, as the kernel cache holds most of the compressed data across all phases.

StaticMa=1GB outperforms StaticMa=8MB in the first and the second phase because the

workload is very skewed (over 70% of requests access 1/30 of the data), and the gain of

hitting in the application cache for most accesses outweighs the additional disk accesses for

the data that does not fit; however, in the third and fourth phases, StaticMa=1GB performs

worse than StaticMa=8MB as the workload becomes less skewed, with 80% of requests

accessing 40% of the data, lowering Ha.

Symbiosis finds a <Ma,Mk> as good as (and often better than) the better static configu-

ration in every phase of the complex production workload. To illustrate why Symbiosis is

robust, the small bar charts show the predicted Le of <Ma,Mk> candidates fromMa ≈ 0 to

Ma =M and the real Le (gray line) during each simulation. For each simulation, Symbiosis

resets Ma = 8 MB. In the first three phases, the best candidate is Ma = 3

8
M and its Le is

much lower than the real Le, so Symbiosis applies it to the real system and outperforms both

two baselines. In the last phase, the best candidate isMa = 8 MB which is the default value

that Symbiosis currently takes, so it keeps the default Ma and matches the performance of

the better baseline StaticMa=8MB.

76

Case

Memory

Overhead (MB)

Operation

Overhead (us/op)

Convergence

Time (s)

Reuse & No Sampling 51 2.8 (42%) 22.9

No Reuse & Sampling 1.5 0.32 (4.8%) 7.35

Reuse & Sampling 0.46 0.09 (1.3%) 16.7

Table 3.3: Space and Time Overhead and Convergence Time of Various Simulation

Settings. Operation overhead compares to baseline LevelDB. Sample rate is
1

64
.

3.5 Conclusion

We have introduced Symbiosis, a framework to enable robust cache adaptation for key-value

storage systems. With the knowledge of the underlying kernel cache, Symbiosis optimizes

the cache sizes of storage engine applications to improve the overall cache efficiency. With

careful study of the performance space, we develop an online simulator which enables a live

key-value storage system to adapt its application cache size and achieve high performance.

Across a wide range of workloads and settings, we demonstrate the overall benefits of

our approach, as shown through implementations in three production key-value storage

systems: LevelDB, WiredTiger, and RocksDB. We open source our framework, workloads

traces, modified systems, and utilities to facilitate further investigation [6].

77

Chapter 4

Kelvin: Towards Zero Copying and

Duplication in Data Pipelines

In this chapter, we introduce Kelvin, a true zero-copy data pipeline execution engine that

avoids data copying and duplication to the best of our knowledge. Kelvin co-designs

different layers of the data processing stack (user-space resource management, container

runtime, and kernel support for shared memory) to improve memory efficiency for data

pipelines.

We first give background regarding DAG-based data pipelines, shared memory, zero-

copy communication, and related challenges (§4.1). We identify three types of data copying

and duplication caused by data origination, inline message data, and data deserialization,

and related challenges such as resource accounting and isolated execution.

We then design Kelvin (§4.2) to solve these challenges and implement it on Linux (§4.3).

The core component of Kelvin is a kernel module called DeAnon that zero-copy converts

anonymous memory to shared memory by only modifying the metadata of relevant kernel

data structures. Around the core, we build several components, including a shared IPC

protocol that utilizes DeAnon to generate shared IPC data without copying and a resource

manager that manages the physical data in a sharing environment. Our DAG executor is

built upon OpenLambda [110] which provides the basic building blocks for containerized

execution and resource management.

We evaluate Kelvin’s performance with various micro- and macro-benchmarks. We

demonstrate the benefit of Kelvin’s components with micro-benchmarks and show that the

78

benefit remains with the ecosystem benchmark that runs end-to-end DAGs with various

popular toolchains. Moreover, we use the Data Agent Benchmark for Multi-step Reasoning

(DABstep) [8, 9] to show that Kelvin provides 1.2× to 2.3× performance gain on real,

complex DAGs.

4.1 Background and Motivation

In this section, we first describe what DAG-based data pipelines are and how they fit in single

machine (§4.1.1). We describe existing kernel support for shared memory (§4.1.2), on which

user-space zero-copy techniques (§4.1.3) are based. In principle, these techniques should

enable very efficient data passing. Unfortunately, the unique requirements of container-

based DAG pipelines result in many scenarios involving copying or duplication (§4.1.4).

4.1.1 Background: DAG-based Pipelines on a Single Machine

Data pipelines are a popular paradigm for data analysis and machine-learning workloads.

Data pipelines are frequently implemented as DAGs (Directed Acyclic Graphs), where each

node of a DAG describes a transformation to perform on the data [13, 132, 141, 169]. Edges

represent data passing between nodes. Given fine-grained nodes, efficient communication

along edges is critical for good performance [64, 127, 163]. Data passing along edges may

occur via network, disk, or memory [36, 99, 100, 115, 169]; the specific medium depends on

node placement and resource availability.

Recent workload and hardware trends [104, 140] demonstrate the feasibility of deploying

most data pipelines on a single machine with ample memory, with memory as the sole and

most efficient medium for data passing. Cloud virtual machines with 24 TB of RAM are

now available [125]; in contrast, the largest (p99.9) datasets for OLAP workloads occupy

a mere 0.25 TB [118]. Memory is increasingly affordable as well: from 2014 to 2023, cost

has dropped from $4K to $1K for 1 TB of RAM [112]. Processing data locally has several

advantages, such as saving the data communication overhead and reducing the maintenance

efforts of computing resources.

However, running multiple nodes locally calls for isolation between them. A strong

isolation between nodes can provide better resource accounting and failure recovery and

allow different nodes to have different library dependencies. Containers [20, 110] are widely

79

 Local Machine

d2

Intermediate Data:
In-Memory FS Node 2:

Child Address Space
Node 1:

Parent Address Space

d1input.table

Permanent Device

d3

Figure 4.1: A Minimal DAG on a Single Machine.

used to provide lightweight isolation with kernel support. Different nodes have separated

address spaces in containerized execution.

Figure 4.1 illustrates a minimal DAG on a single machine. The DAG contains two nodes.

The parent node loads a table from a permanent device (could be remote) and generates the

in-memory form (d1) of the table. The parent node then passes the data to shared memory

(d2) so that the data is accessible by other nodes. The child node then puts the data in its

own address space (d3) and continues processing the data. Note that the address spaces of

the two nodes and the shared memory are on the same physical memory of a single machine.

Simply passing data by value would result in 3 local copies of the same data.

The ideal way to pass in-memory data between nodes in a DAG is by reference: if

downstream processes in a data pipeline can virtually map upstream outputs into their

virtual address spaces, copying and duplication overheads can be avoided.

4.1.2 Background: Kernel Shared Memory

Operating systems have implemented shared memory in a variety of ways. Implementations

often interact with other systems, such as in-memory file systems, containers, and swap.

Understanding these interactions is key to building systems that leverage shared memory

for efficient data passing. In order to give specific examples, we describe Linux’s support

for shared memory.

Like most kernels, Linux gives every process its own virtual address space, internally

implemented with (1) a page table that maps virtual pages (usually 4 KB) to physical memory

80

and (2) metadata describing features of different address ranges (e.g., permissions, and

whether a range is mapped from a file). Memory sharing occurs when distinct processes

have virtual pages mapping to the same physical pages.

Common sharing scenarios include bidirectional communication via writable pages

and fast process fork via copy-on-write pages. These are not directly applicable to data

pipelines, as DAG communication is unidirectional and nodes may have multiple parents (in

contrast to process trees). DAG-specific use cases for shared memory include (1) avoiding

unnecessary memory consumption that occurs when different processes have their own

copies of the same data in physical memory, and (2) passing data faster by passing references

instead of copying bytes of data.

Linux supports multiple memory-sharing APIs. The newer POSIX API integrates with

an in-memory file system, tmpfs. Shared objects are represented as files in a tmpfs instance,

typically mounted at /dev/shm. Sharing is achieved when multiple processes call mmap (or

similar) to create file-backed virtual-memory areas (VMAs) referring to the same in-memory

file. Generally, each process mapping the same physical data will do so at different virtual

addresses; this has implications for pointer-based data structures.

Memory sharing also has implications for container accounting. Operating systems

measure per-container memory consumption in order to take kill or swap actions when

memory limits (if configured) are exceeded. An operating system must decide which con-

tainer(s) to charge for physical data shared across containers. Seemingly obvious approaches

lead to anomalies; for example, charging evenly across all containers means that when one

container exits, consumption for other containers will spike, with a potential cascade of

container kills and further consumption spikes.

On Linux specifically, containers and KVM-based micro-VMs rely on cgroups (control

groups) to apply limits for memory and other resources to groups of processes. Linux’s

accounting rules for file-backed pages depend on the file system type. For tmpfs (which

backs shared memory) a cgroup “owns” the file data written by processes in the cgroup, so

those file bytes will count toward a container’s memory consumption. If a cgroup is deleted,

the charge is reassigned to the parent cgroup (cgroups are hierarchical).

Linux cgroups are tightly integrated with swap. Each cgroup has its own set of LRU

queues for different types of pages, and under memory pressure, physical pages at the start

of the queues are evicted from memory. Thus, cgroup limits will influence which in-memory

files will be swapped to disk under memory pressure.

81

4.1.3 Background: User-Space Sharing

Kernel sharing support provides the building blocks necessary to construct share-friendly

formats and protocols in user space. Different processes mapping the same data often do so

at different addresses, so sharing usually requires data formats that avoid pointers, which

are only valid in a particular address space. In this section, we describe a specific zero-copy

(i.e., share-friendly) format optimized for analytics workloads: Arrow. The Apache Arrow

project encompasses many related efforts, including: (1) a specification of a column-oriented

tabular format, (2) a collection of implementations of the format, and (3) a communication

protocol.

Tabular Format:Arrow uses indexes and null bitmaps to represent column data without

pointers; tabular data is represented as a collection of columns. Indexing over contiguous

arrays of fixed-length elements (e.g., float64s) is straightforward. Variable-length values

such as strings, binary values, and lists are also stored contiguously in a value buffer (i.e., the

first byte of a string at index N+1 immediately follows the last byte of a string at index N).

A contiguous array of offsets is stored separately to provide indexing over these variable-

length values. A null bitmap can indicate values at certain indexes should be considered

null, regardless of the actual value stored. Sometimes, long strings or byte sequences may

appear repeatedly in a column; Arrow supports an optional dictionary encoding where

each unique value is stored once in a dictionary, and an array of numeric codes is used to

reference specific values. Arrow data is uncompressed, immutable, and formatted such that

computation can be performed on data in-place, often with SIMD instructions.

Implementations: The Apache Arrow project includes over 10 language-specific li-

braries; tools in the Arrow ecosystem may rely on these or directly implement the Arrow

format. Cross-language calls mean that libraries and Arrow implementations need not

match languages. For example, Polars, PyArrow, and DuckDB are Python packages that

respectively depend on (1) an Apache Arrow implementation in Rust, (2) an Apache Arrow

implementation in C++, and (3) an independent Arrow implementation in C++.

Communication: Arrow IPC (Inter-Process Communication) specifies a protocol for

sending data between processes, perhaps over a network. The protocol defines several

message types: a schema defines columns, a dictionary message assigns numeric codes to

values, and a record batch contains inline data in the Arrow format. Using the regular Arrow

format for record batches helps Arrow IPC avoid copies: once Arrow IPC messages are read

82

A

Node 1:
Parent Address Space

Node 2:
Child Address Space

Intermediate Data:
In-Memory FS

B

C

D

serialize deserialize

cgroup 1 cgroup 2

parent cgroup

anon mem returned
by 3rd party library

Figure 4.2: Sharing Challenges: Memory Management.

to memory, a tabular view may be constructed over the Arrow-formatted messages, in place.

4.1.4 Requirements and Challenges

In this work, our goal is to build a data pipeline platform based on one overarching principle:

share memory whenever possible to avoid copying and duplication. We additionally impose

three requirements: (1) developers may write arbitrary code for nodes, (2) that code may

use any library in the broad Arrow ecosystem, without modification, and (3) code for each

node must execute in its own container to limit resource consumption and provide isolation.

We build upon Linux shared memory and Arrow’s zero-copy protocols, but many obstacles

to sharing must still be overcome.

Challenge 1: Pointers. Computational formats are often based on pointers, which do

not work when shared data is mapped to different virtual addresses. Figure 4.2A shows a

common scenario: frequent copying between between wire and computational formats and

across mediums. Arrow avoids serialization by using the same format for wire data and

83

Node 1 Node 2 In-Mem FS

file 1

Node 3In-Mem FS

filter rows

add column file 2

file 3

load

load

Figure 4.3: Sharing Challenges: Data Transformations.

computational data (Figure 4.2B). Even better, if the data is in an in-memory file system,

readers can directly map the data to their address spaces (Figure 4.2C). Simply using Arrow

and Linux mmap resolves the pointer challenge.

Challenge 2: Data Origination. Ideally, we would like a node producing data to

directly populate shared memory (Figure 4.2D). Libraries that generate Arrow data may

either (1) accept a reference to memory and populate it or (2) allocate memory and return

a reference to it. The first case is amenable to sharing (the platform can allocate shared

memory and pass a reference), but the latter is more common, perhaps because a library

can better calculate the allocation size needed. Libraries that allocate memory for Arrow

data typically do so via malloc (or similar), which allocates from anonymous memory (i.e.,

memory not backed by a file). Linux shared memory is backed by tmpfs files, so Arrow data

in anonymous memory is not shareable without a copy.

Challenge 3: Containerization. Regardless of whether we achieve Figure 4.2C or

Figure 4.2D (preferred), the intermediate tmpfs data will be charged to the container/cgroup

of node 1. If the node 1 container exits, the charge will pass to the parent cgroup, making it

difficult to track the overall memory consumption of the DAG or control swap.

Challenge 4: Inline Message Data. Node 2 in the top DAG of Figure 4.3 is adding

a third column to a table that is calculated based on the values in the first two columns.

Node 2 directly maps the outputs from node 1 into its own address space as input. Node 2

also directly populates shared memory with its outputs (this assumes the Data Origination

problem has been addressed). Unfortunately, the message format (in this case, Arrow

IPC) includes data inline rather than referencing data elsewhere; thus, Node 2 must copy

two columns from the input to output, even though both are in shared memory. Adding

a column is one example where overlap between inputs and outputs takes place; other

84

examples include slicing and concatenating.

Challenge 5: Data Granularity. Node 2 in the bottom DAG of Figure 4.3 is filtering

input rows according to some condition to produce output rows. Although there is overlap

between inputs and outputs, rows may be smaller than pages (often 4 KB), so shared memory

cannot readily be used to create filtered and unfiltered views over the same physical rows

without duplicating those rows.

Challenge 6: Deserialization. Copying is not the only way to end up with two copies

of the same data in physical memory; duplicates also occur when multiple copies are

created independently based on a common source. Figure 4.3 shows one common case: two

independent DAGs each start by deserializing data from persistent storage (e.g., a Parquet

file in a cloud bucket) to Arrow.

There are many challenges to using shared memory for data pipelines, and unfortunately

using Linux support for sharing and a zero-copy format only solves the first problem,

pointers. In this work, we explore techniques for addressing the remaining challenges.

4.2 Kelvin Design

We now introduce Kelvin, a new data pipeline platform that uses shared Arrow data to

efficiently pass intermediate data between containerized DAG nodes with minimal copying

and duplication. Using Arrow solves Challenge 1 (Pointers) because Arrow data can be

mapped to different virtual addresses without problems. Kelvin uses a mix of existing

and novel techniques to overcome the five remaining obstacles to sharing (§4.1.4). We

first describe how we build new kernel support for de-anonymizing data generated by

unmodified libraries so that it can be efficiently shared across containers (§4.2.1). Next, we

build zero-copy communication based on Arrow IPC that (a) leverages de-anonymization

support to avoid copies to shared memory and (b) uses IPC inspection and dictionary sharing

to avoid copying between inputs and outputs (§4.2.2). Finally, we describe how memory

consumption is tracked and managed in a cohesive way across containers, source data, and

intermediate data (§4.2.3).

4.2.1 Shared-Memory Mechanisms

We allow developers to write arbitrary code and use unmodified libraries in the Arrow

ecosystem. This leads to Challenge 2 (Data Origination). Libraries often allocate from

85

Node 1 Container (Writer)

DeAnonRAM

file backed

user code
Kelvin Wrapper

P addr space
range range

library

Node 2 Container (Reader)

in-memory
file system

anonanon

malloc

Kelvin Wrapper

Q addr space
range

1

2

3

4

DISK

swap?

user code

library

malloc

Figure 4.4: Kelvin Memory Management.

anonymous memory regions (via malloc); we want to avoid copying that anonymous data

to shared memory.

Thus, we implement new kernel support for de-anonymizing memory in place. Specifi-

cally, aDeAnon kernel module converts anonymousmemory to file-backedmemory. DeAnon

allocates new in-memory files and updates metadata in a process’s address space to indicate

that the specified range corresponds to a region of the new file. DeAnon transfers ownership

of previously anonymous memory to the new files. This transfer does not involve copying

actual data, and afterwards both the process’s address space and the in-memory file will

point to the same physical memory. DeAnon returns identifiers for the new files and offsets

corresponding to the de-anonymized ranges.

Figure 4.4 shows how Kelvin uses DeAnon to pass data between two containerized

processes without a copy. Both containers mount the same in-memory file system, in which

files will be created via the de-anonymization process. In Kelvin, containers always start

by executing Kelvin wrapper code, which assists with data passing and invokes the custom

user-defined code. The user code is expected to return output back to the wrapper. The

output typically references data in anonymous memory.

86

The write path proceeds as follows: (1) the wrapper invokes DeAnon, which (2) transfers

ownership of the relevant anonymous memory to an in-memory file and updates the region

so that it is file backed. DeAnon returns information for referencing the newly anonymized

data, and (3) the wrapper includes that information in the container’s output, which becomes

the input for downstream nodes. In this case, process Q in Node 2 will use the received

information to (4) map the in-memory file into its address space.

4.2.1.1 Resource Accounting for Containers

Regardless of which processes eventually map the in-memory file, space in the file is charged

against the memory limit of the container that produced the file, as illustrated in Figure 4.4

by the placement of the file within both the file system and container boundaries. This

leads to Challenge 3 (Containerization): how can we track and control the consumption of

in-memory files produced by containers?

In order to retain control over intermediate data after a node finishes running, we allow

the process in the container to exit upon node completion, but retain the container itself

until the whole DAG completes. We also borrow a technique, limit dropping, from an early

version of Senpai [156]. With this approach, a container’s memory limit is dropped to trigger

swap. This allows us to select specific intermediate outputs (which still count toward the

container’s memory limit) that should be swapped to disk, if system memory runs low. Prior

to running downstream nodes, the limit for an upstream container is raised again so that

the data can be swapped back in as needed without triggering corresponding swap outs.

4.2.2 Zero-Copy Communication

The de-anonymization and container management techniques described (§4.2.1) provide a

foundation on which to implement share-based communication protocols. For this purpose,

Kelvin uses Arrow IPC, with modification. Using a protocol such as Arrow IPC leads to

Challenge 4 (Inline Message Data): including record batch data in IPC streams is a sensible

approach for network-based communication, but on a local machine where shared memory

is available, it results in writer-side copies from the data to the output stream, even if the

data is in shared memory. Thus, we extend the Arrow IPC protocol, creating SIPC (Shared

IPC), which can reference a range of an in-memory file.

87

memory FS

SIPC (R)

range range

A

1

SIPC (W)
sc

he
m

a
re

co
rd

ba

tc
h

re
f

re
f

range range range

B C
(dict)

C
(key)

sc
he

m
a

di
ct re
f

re
co

rd

ba
tc

h
re

f
re

f
re

f

user code

library

DeAnon

2

53

4 6

7

Figure 4.5: Shared Inter-Process Communication.

Figure 4.5 illustrates the read (R) and write (W) behavior of SIPC, when used by a

function that is transforming inputs to produce outputs. Both inputs and outputs reside in

an in-memory file system. Calls to SIPC are performed by the Kelvin Wrapper (Figure 4.4),

not shown here for simplicity.

The transformation proceeds as follows: (1) a SIPC file is passed to the SIPC reader,

which maps the file into the reader’s address space. This file tends to be small because it

references data in other files (instead of including data inline). The reader also (2) maps the

referenced files into the address space and finally returns a tabular view over all the mapped

data, which is (3) passed to the user code. The user code may perform arbitrary actions. In

this example, the user code is concatenating two columns of input strings to create a third,

dictionary-encoded column; the output includes three columns (two original and one new).

The Kelvin Wrapper receives the Arrow output data, which it (5) shares via SIPC. Given

Kelvin’s support for arbitrary user code, there is not an explicit data lineage that allows SIPC

to identify the overlap between input and output. Instead, SIPC performs IPC inspection,

comparing the memory addresses of buffers being written with the address ranges of

previously mapped inputs. SIPC is able to then reshare those references, writing them to

the output file. In this case, it references the entire A and B files, but overlaps could be

partial (e.g., after slicing or other transformations). Other buffers passed for writing refer

to anonymous memory; SIPC will (6) use DeAnon to de-anonymize these into in-memory

files, then (7) write references to the new files in the output. In this case, the new column is

88

dictionary encoded, so the dictionary and record batch messages will both refer to newly

shared data.

4.2.2.1 Dictionary Sharing

Some transformations (e.g., adding a column, slicing rows, concatenating tables) lead to

coarse-grained overlap between inputs and outputs. Others (e.g., filtering or sorting rows)

may lead to row-level overlap, leading to Challenge 5 (Data Granularity). For regular

encodings, Kelvin will unfortunately need to copy the data. For dictionary encodings,

where values of a column are replaced by indexes into a dictionary of all distinct values,

SIPC uses a dictionary sharing technique instead; references to input dictionaries are written

to outputs, and only columns of dictionary lookup codes must be copied. Consequently,

dictionary encoding will often be useful for Kelvin even if there are no repeated strings in

a column (the traditional use case for dictionary encoding).

4.2.3 Resource Management

Source data, intermediate data, and running containers all consume memory, and Kelvin

must take care to limit overall consumption to avoid excessive swapping and process kills.

Memory consumption is especially hard to track when many containers share the same

physical data. The Resource Manager (RM) is the subsystem of Kelvin that is responsible

for tracking and limiting overall resource consumption.

4.2.3.1 Caching Deserialized Source Data

Copying creates multiple physical copies of the same data, but copies also occur when

identical transformations in different jobs operate on the same source data. Specifically,

how can we address Challenge 6 (Deserialization)? Independent DAGs will often start by

deserializing the same source data (e.g., Parquet files in persistent storage) to Arrow data.

Kelvin’s approach is to recognize such DAGs and restructure them so that different DAGs

start from the same loader nodes. Different DAGs using the same data may not be launched

at the same time, so we implement this common loading service as a deserialization cache

(DeCache).

Figure 4.6 illustrates the DeCache. The cache consists of a special set of loader containers

responsible for loading Parquet data from storage. These loaders use SIPC to efficiently share

89

Data Lake

taxi.parquet
shows.parquet

…

DeCache

A

Ad

A

A A
A

A
A

A

A

A

DAG 1

DAG 2

DAG 3

DAG 4
RM:alloc

RM:uncache
A

A

RM:rollback

RM:limitdrop

Figure 4.6: Resource Management. Finished nodes are gray.

deserialized data, the same way regular DAG nodes share. Unlike regular nodes, loaders are

not deleted upon DAG completion because they may benefit other DAGs soon.

Different DAGs may wish to deserialize the same data with or without dictionary en-

coding on certain columns. In this case, different loader nodes will be used to create each

representation (e.g., shows.parquet is deserialized with and without dictionary encoding in

Figure 4.6).

4.2.3.2 Measurement and Mechanisms

The RM tracks dependency information with the help of SIPC. With resharing, intermediate

data is represented as virtual Arrow tables referencing physical memory. Reference details

are very relevant to eviction decisions (e.g., it may be necessary to delete outputs from

multiple sandboxes to free physical memory with multiple references). SIPC inspects

outgoing Arrow data and collects sharing information on behalf of the RM. This allows the

RM to make informed decisions regarding eviction and garbage collection.

Figure 4.6 shows four actions (labeled with the “RM:” prefix) that the RM may perform

to control overall memory consumption. First, the RM acts as an admission controller,

deciding when to allocate memory to run new sandboxes (RM:alloc). Second, the RM can

perform three types of eviction (RM:uncache, RM:rollback, and RM:limitdrop) to free memory

as needed. Uncaching DeCache entries and rolling back DAG progress both involve deleting

90

completed containers and their Arrow outputs. In the latter case, the node will need to

be re-executed later so that the DAG can eventually complete. Limit dropping involves

reducing the container memory limit on a container to trigger swapout of the in-memory

intermediate files produced by that node, as described earlier (§4.2.1). This is preferable to

default swap behavior, which could swap out intermediate data needed by a downstream

node that is about to be scheduled.

4.2.3.3 Admission and Eviction Policy

The RM allows new sandboxes to be created when the available memory (not reserved by

running sandboxes nor consumed by intermediate data) can satisfy thememory requirements

of a node. When multiple nodes are waiting for memory allocations, the RM assigns priority

in depth-first order (i.e., the closest to finishing a DAG), as completing DAGs that are nearly

finished enables deletion of all intermediate data for that DAG, freeing resources for other

DAGs.

Admission control has the potential to cause deadlock if intermediate data has exhausted

system memory and all DAGs are waiting for more memory to progress. Furthermore, too

much intermediate data in memory could reduce the opportunity for more parallelism in

DAG execution. Thus, the RM performs evictions using the knowledge of sharing details to

free up memory as necessary. The RM chooses between memory-freeing actions as follows.

First, the RM uncaches DeCache entries with no active references, if any. Then, the RM

evicts the outputs of nodes with the lowest priority (as described based on depth). Outputs

are evicted one by one until the available memory is larger than the memory requirement

of the node scheduled to run next.

The RM has two mechanisms for evicting a non-cache node’s output: rollback and limit

dropping. The cost of rollback depends on how long it would take to recompute that output,

and the cost of swapping depends on the output size. Thus, the RM adopts adaptive eviction,

which either deletes or swaps the outputs of a function based on the ratio of its latency to

the output sizes. The threshold should be tuned offline depending on the throughput of the

swap device.

91

Challenges Solutions

Data Origination De-anonymization

Containerization Container retainment & Limit dropping

Inline Message Data Shared IPC

Data Granularity IPC inspection & Dictionary sharing

Deserialization DeCache

Table 4.1: Solutions for Challenges.

4.2.3.4 Design Summary

In this section, we describe our solutions to the 5 challenges from Section 4.1.4 in detail

except for Challenge 1, which is solved by simply using Arrow and Linux mmap. The solutions
are summarized in Table 4.1. In addition, we design mechanisms for resource management,

which are building blocks for our solutions. We also design scheduling primitives for

admission and eviction to utilize memory more efficiently for more parallelism.

4.3 Implementation: Kelvin on Linux

We now describe the implementation of five Kelvin subsystems on Linux: DeAnon (§4.3.1),

SIPC (§4.3.2), Node Container (§4.3.3), DeCache (§4.3.4), and Resource Manager (§4.3.5).

4.3.1 DeAnon Kernel Module

We implement the DeAnon (de-anonymizer) subsystem as a new Linux module, written in

C. DeAnon exposes two interfaces: new_file() allocates a tmpfs file to receive anonymous

memory in the future, and deanon(file_id, addr, len) moves the anonymous memory

in [addr, addr+len) to the end of the indicated tmpfs file (the operation resembles an

append, without a copy).

A deanon call traverses the page table to identify pages in the specified range. For each

page, DeAnon modifies the metadata of the page, the tmpfs file, and the virtual-memory

area (VMA) to which the page belongs, such that the page appears to belong to the tmpfs

file and the VMA appears to be backed by the tmpfs file. After the call, the calling process

can access the data in this region normally, and other processes can map the tmpfs file into

their address spaces via mmap. A deanon call commonly refers to a subset of a VMA; in this

case, DeAnon splits the VMA as necessary.

92

Page tables require page-granular sharing, but DeAnon supports calls with offsets and

lengths at byte granularity. If partial pages occur at the beginning or end of a shared range,

DeAnon simply copies the partial pages to newly allocated pages in the in-memory files.

When a working set is larger than the available memory, Linux may swap out pages to

a swapfile residing on a disk-backed file system. Both page tables and tmpfs files have an

array of entries pointing to physical pages; when a page is swapped out, the corresponding

entry is replaced by a swap entry. DeAnon may encounter swap entries when walking a

page table for pages that have been swapped out. We optimize DeAnon for this situation.

A simple approach is to swap in the pages first to avoid the issue entirely. Our optimized

approach, called direct swap, directly inserts a swap entry into the tmpfs file, then modifies

the metadata of the swap space and the original page table entry accordingly.

Prior to de-anonymization, memory ranges often correspond to malloc allocations from

memory regions with write access enabled. Given these regions now map to physical

memory that other processes will soon be able to access, it is important that any process

exposing data with DeAnon does not take any action that would modify the data (e.g., if

the process using de-anonymization were to free the corresponding memory, subsequent

malloc uses could corrupt the data that was supposed to be shared). On the writer side, we

do not share Arrow data until user code has returned; on the reader side, we map Arrow

data with read-only access (Arrow data is meant to be immutable anyway).

4.3.2 SIPC Protocol

SIPC extends the Apache Arrow IPC implementation (v12.0.1) to use DeAnon and avoid

copies. SIPC, like Arrow IPC, is responsible for writing three message types to a sink:

Schema, RecordBatch, and DictionaryBatch. SIPC writes the schema to a sink (for us, a small

in-memory file) by copying the data; schemas are usually small relative to data, so avoiding

a copy would provide minimal benefit. Records and dictionaries, in contrast, may be large,

growing with the number of rows and unique string values, respectively.

SIPC creates a single tmpfs file (with the help of DeAnon) for each column in the table,

plus one more for all dictionaries (if any). For each RecordBatch (the data in one column),

SIPC de-anonymizes the memory backing each partial column in the batch, transferring

ownership to the appropriate file. Using different in-memory files for each column creates

opportunities later to garbage collect some output columns that are not in use even while

93

other columns of the same table are still needed. Finer granularity would be possible (e.g.,

a new tmpfs file for every combination of batch and column), but we wish to avoid the

overhead of creating too many small files.

Instead of copying the de-anonymized data to the sink, SIPC simply writes a tuple of

three integers: (1) file identifier, (2) offset into file, (3) length of file range. On the read side,

SIPC uses this information to make appropriate mmap calls and reconstruct a view of the

table without copying. During read, SIPC also records the address ranges returned from

mmap. Upon later writes, SIPC implements resharing by identifying output data that overlaps

with the input ranges by IPC inspection. In this case, the output SIPC file references

the same tmpfs files referenced by the input SIPC file; there is no need to de-anonymize a

second time.

4.3.3 Node Container

For our container implementation, we use SOCK [110] with some modifications. SOCK

allows each container to have its own set of dependencies, butwhen package versions happen

to be the same, installations are efficiently shared between different containers. SOCK

containers support zygote provisioning and reusing containers for multiple invocations,

but these features provide minimal value for our use case, so we disable them to simplify

memory accounting.

We modify SOCK to bind mount the /dev/shm tmpfs into every container instance to

facilitate sharing (like Nightcore [64]). SOCK already uses cgroups to specify memory limits,

but we expose this so Kelvin can implement limit dropping to swap out specific data. Given

tmpfs memory for a file is charged to the cgroup of the process creating the file, we modify

SOCK so that cgroups are retained after the process in a container exits.

We modify SOCK to provide Arrow-oriented entry points (instead of HTTP entry points).

In particular, Kelvin communicates with a wrapper inside each container via sendmsg and

recvmsg system calls over UNIX file sockets. These allow the passing of references to SIPC

Arrow data (in tmpfs) in both directions. The wrapper is responsible for all interactions

with SIPC, such that user code is only responsible for accepting and returning Arrow data.

94

4.3.4 DeCache: Shared Data Loading

We implement the DeCache in Go, leveraging existing components. When a DAG spec-

ifies that a node should load a specific Parquet file, we run a Node Container (§4.3.3)

where the “user code” is actually a standard function we provide that uses PyArrow’s

parquet.read_table function to load the Parquet file to Arrow. The function accepts a

read_dictionary argument specifying which columns should be deserialized using dictio-

nary encoding (we construct this argument based on DAG configuration). Although Parquet

loading is a special case, where it would be reasonable to implement a version that directly

populates shared memory with Arrow data, for simplicity we use the parquet.read_table
unmodified to produce Arrow data in anonymous memory, then use SIPC (§4.3.2) and

DeAnon (§4.3.1) to efficiently expose it.

Due to resharing, DeCache outputs may be in use, even when there are currently no

nodes directly consuming the data. Tracking such references and making eviction decisions

are responsibilities of the resource manager (§4.3.5).

4.3.5 Resource Manager

The Resource Manager (RM) is implemented in Go and interacts with other subsystems to

gather information and perform memory-management actions.

SIPC (§4.3.2) records references to tmpfs files that it has written to output, and it exposes

this information to the share wrapper inside a node sandbox (§4.3.3), which in turn passes

reference metadata back to the RM. The RM can thus associate Arrow outputs with sets

of tmpfs files. Due to resharing and de-anonymization at column granularity, this is a

many-to-many correspondence. Visibility into these relationships allows the RM to perform

reference counting on tmpfs files and garbage collect a tmpfs file backing a column of data

when there are no more unrun children that will use intermediate data referencing that

column. DeCache outputs are handled differently: columns of loaded Parquet data are not

immediately garbage collected upon a zero reference count because future DAGs may use

the data. Data is garbage collected with a simple deletion of the relevant tmpfs file.

95

CPU Two Intel Xeon Silver 4314 16-core CPU

RAM 256GB ECC DDR4-3200 Memory

DISK Two 960GB Samsung PCIe4 x4 NVMe SSD

OS Ubuntu 22.04, kernel version 5.15

Table 4.2: Hardware forEvaluation. Note that the actualmemory limit of each experiment

is enforced by cgroup, not the RAM size. Input parquet files reside on one disk and the other

is used as the swap device. SMT is disabled on CPUs.

4.4 Evaluation

To evaluate Kelvin, we answer the following questions to demonstrate that Kelvin’s com-

ponents function as expected in various micro-benchmarks and Kelvin provides consistent

benefit in end-to-end benchmarks and real-world data pipelines.

• Q: How much faster can data be passed if copies are avoided?

A: The gain of copy avoidance is at least 2× under different memory limits. (§4.4.1.1)

• Q: Does resharing reduce memory consumption for deep DAGs?

A: Resharing significantly reduces memory consumption and latency for applicable op-

erations such as coarse-grained data appending/removal and certain other operations

with dictionary-encoding. (§4.4.1.2)

• Q: Does the DeCache reduce memory consumption of functions, allowing more

concurrent execution?

A: DeCache largely reduces memory consumption and allows more parallelism when

different DAGs share the same inputs. (§4.4.2)

• Q: Which admission and eviction techniques perform best for different scenarios?

A: Adaptive eviction that selectively triggers rollback and limit dropping performs the

best for various different workloads. (§4.4.3)

• Q: How does Kelvin perform on real workloads?

A: Kelvin provides 1.2× to 2.3× gain on real data pipelines. (§4.4.4)

Table 4.2 describes our experimental setup. Unless otherwise stated, the memory limit

for the system is 50 GB. The baseline we use is Kelvin with all our novel features disabled.

96

The baseline uses regular Arrow IPC and read-side memory maps for data passing (as

in Figure 4.2C), so some would even describe our baseline as “zero-copy”, despite some

overlooked copies. The baseline Resource Manager (RM) only uses admission control, data

passing, and reference counting, without the DeCache or advanced eviction.

We first evaluate each of Kelvin’s subsystems with a targeted microbenchmark, then

with a complex ecosystem benchmark with different libraries and memory usage patterns,

described in Table 4.3. For all experiments, we load input Parquet files from local storage to

avoid the noisy performance often associated with cloud storage (e.g., AWS S3).

4.4.1 DeAnon and SIPC

SIPC is the primary user of the DeAnon kernel module, so we evaluate these components in

combination. We first perform experiments focused on the benefits of de-anonymization

(§4.4.1.1), then explore SIPC’s other capabilities related to resharing transformed data

(§4.4.1.2). Finally, we run more complicated DAGs that use different packages in the Arrow

ecosystem (§4.4.1.3).

4.4.1.1 DeAnon: Intermediate Data Copy Avoidance

When a parent node produces anonymous Arrow output for children to consume, Kelvin

avoids write-side copying by de-anonymizing with DeAnon and using the SIPC to facilitate

sharing. To quantify the resulting speedup, we run a single-function DAG that uses PyArrow

to deserialize a 0.5 GB Parquet file (compressed) to about 4.0 GB of Arrow data (uncom-

pressed), which is used for the output data. Additional memory is temporarily required

during processing, such that peak memory during load is 5.8 GB.

Figure 4.7a shows the results with varying memory limits: DeAnon is 1.8× faster than

the baseline for high memory limits (i.e., 10 GB) and 2.2× faster for low limits (i.e., 1 GB).

Although loading from a Parquet file is more work than doing a copy, the former operation

is parallelized over 24 threads, whereas writes to an IPC file are serialized.

For high memory limits, performance gains result from copy avoidance; for low limits,

Figure 4.7b shows that the benefits result from reduced swapping. Without DeAnon, copying

output temporarily duplicates the data in memory, surpassing cgroup memory limits sooner.

Our direct swap technique (DeAnon line) can directly copy swap entries from a page table to

97

5 10
Memory Limit (GB)

0

20

40

To
ta

l L
at

en
cy

 (s
)

(a) performance

5 10
Memory Limit (GB)

0

200

400

Bl
oc

ki
ng

 S
wa

ps
 (K

 ti
m

es
) (b) swap

Baseline DeAnon Swapin DeAnon

Figure 4.7: Copy Avoidance. Throughput and swapping are show with and without

DeAnon for a single-node DAG.

a tmpfs file. When this critical optimization is disabled (“DeAnon swapin” line), we cannot

significantly outperform the baseline under tight memory constraints.

4.4.1.2 Resharing: Internal Copy Avoidance

When SIPC reads input data, it records the address ranges where it maps specific tmpfs

files that were generated by upstream nodes. During subsequent writes, SIPC is able to

reshare data by reusing references to the inputs, without copying or making additional calls

to DeAnon. In this section, we explore the impact resharing has on performance and the

size of intermediate data for a variety of operations.

We run a variety of two-node DAGs, where the first node loads data, and the second

performs a data transformation that produces an output that overlaps with its input. The

first 4 transformations (add_col, concat, rm_col, and slice) use tables with 10 1-GB integer

columns as inputs; the other DAGs use tables of 10 1-GB string columns of 100-byte strings

with no repetition. In this subsection, baseline’s copy of intermediate data does not count

towards its output size.

Figure 4.8 shows the results. For subtractive cases (i.e., removing columns or slicing

98

to obtain a consecutive subset of rows), SIPC spends almost no time and produces almost

no new physical data. For additive cases (i.e., adding columns or concatenating additional

rows), time and space costs only apply to the new data, not reshared data.

The above cases constitute coarse-grained overlap (i.e., similarities between inputs and

outputs consist of large ranges of identical consecutive bytes). In contrast, filtering and

sorting are examples of fine-grained overlap: many of the input rows may appear as output

rows, but with regular Arrow encodings there are not large contiguous ranges of overlap.

However, when dictionary encoding is used (“dic” suffix on the filter and sort bars), SIPC

allows us to reshare dictionaries themselves, even if resharing is not possible for the buffers

of numeric codes referring to dictionary entries. We see with dictionary encoding (filter_dic

and sort_dic), output sizes are negligible (because the dictionaries dominate the total size

in our dataset), but there are no savings (relative to baseline) for regular encodings (filter

and sort). The biggest performance gains are most pronounced for the dictionary encoding

cases as well; though filter and sort are still somewhat better than baseline (sharing is faster

than copying, even if it is slower than resharing).

In the upper operation, all strings in a column are converted to upper case. Unfortunately,

no resharing is possible here, though it might intuitively seem possible. Arrow string arrays

have both a value buffer (containing actual characters) and an offset buffer (indicating the

starting offset of each string). If every string remained the same length after being converted

to upper case, it would be possible to reshare the offset buffer, though not the value buffer;

for short strings, resharing the offset buffer would be useful. Unfortunately, Arrow arrays

use UTF-8 encoding, and a few characters have different byte lengths depending on case

(e.g., “ß” is 2 bytes, but the upper case equivalent is 3). This example shows some character

encodings are more reshare-friendly than others (e.g., the upper case optimization could be

optimized to reshare offset buffers for UTF-16 strings).

We now explore the benefits of resharing for add_col with deeper pipelines. We run

10 experiments with 1 to 10 column-adding functions following one load function. Each

column-adding function generates a column based on computations on two randomly chosen

existing columns from the previous function. The input of the workload is a 2 GB table of 2

columns, and each new column contains 1 GB column of data. Each function outputs N+1

columns: N input columns and 1 new column.

Figure 4.9 shows the result. The cumulative output size for SIPC scales linearly because

each added column is only sent to tmpfs once; latency also scales linearly. In contrast, in the

99

ad
d_
co
l

co
nc
at

rm
_c
ol

sli
ce

fil
te
r

fil
te
r_
di
c

so
rt

so
rt_

di
c

up
pe

r0

20

La
te
nc
y

(s
)

(a) performance

ad
d_

co
l

co
nc

at
rm

_c
ol

sli
ce

fil
te

r
fil

te
r_

di
c

so
rt

so
rt_

di
c

up
pe

r0

5

10

Si
ze

 o
f O

ut
pu

t (
GB

) (b) output size
Baseline SIPC

Figure 4.8: Resharing: Time and Space Benefits.

5 10
Added Size (GB)

0

20

40

To
ta
l L

at
en

cy
 (s

)

(a) performance

5 10
Added Size (GB)

0

20

40

60

Si
ze

 o
f O

ut
pu

t (
GB

) (b) output size
Baseline SIPC

Figure 4.9: Latency of Col_Add of Different Sizes. The x-axis is the number of column

adding function executed. The y-axis is the overall latency.

baseline (without resharing), the output from any node is rewritten in every downstream

node, such that intermediate sizes continue to grow throughout the pipeline. Thus, cumula-

100

50 1000.0

2.5

5.0

La
te

nc
y

(s
) performance

50 1000

2

4

Si
ze

 (G
B)

output size
Baseline Baseline Dic

(a) Repeats

50 1000.0

2.5

5.0

La
te
nc

y
(s
) performance

50 1000

4

8

Si
ze

 (G
B)

output size
SIPC SIPC Dic

(b) No Repeats

Figure 4.10: Resharing Dictionaries. The x-axis is the string size in bytes. Each unique

string appears 10 times in (a) and once in (b). Strings are dictionary encoded for dashed

lines.

tive size (and time) scales superlinearly. Slicing exhibits the same scaling pattern as well

(not shown).

We now explore the interactions between dictionary encoding and resharing in more

detail. We generate a 10M-row dataset containing one column of int32 values and 10

columns of strings of a given size. Each unique string value occurs 10 times in a column.

After the Parquet data is loaded to Arrow (with or without dictionary encoding), a node runs

a filter operation that will match half the rows, and outputs the results. Figure 4.10a shows

the results. Without dictionary encoding, neither SIPC nor the baseline has the opportunity

to reshare, so they produce output of identical size (SIPC does do this faster, though, because

it can simply de-anonymize its Arrow data to produce the output). The Baseline and SIPC

versions both benefit significantly (in terms of time and space) from dictionary encoding

because each string can be recorded once instead of 10 times.

We perform the experiment again (Figure 4.10b), but this time generate the data such

that each unique string occurs only once in a column. Now, for the Baseline, the output size

is actually larger with dictionary encoding: not only is there no repetition to remove, but

lookup codes (into a separate table) have increased the size. The Baseline performance still

benefits from dictionary encoding, but only marginally.

In contrast, we observe that SIPC is able to reshare input dictionaries, producing interme-

diate outputs of negligible size extremely quickly. Kelvin’s approach creates a compelling

new reason to use dictionary encoding (besides removing redundancy in the data): support-

ing fine-grained resharing of values for operations such as filter and sort.

101

Name Library Memory Usage

Matrix Mult Numpy changing

Linear Regr Scikit decreasing

Col Append 1 PyArrow increasing (w/ resharing)

Col Append 2 DuckDB increasing

Table 4.3: Ecosystem Benchmark DAGs.

4.4.1.3 Ecosystem Benchmark

Our ecosystem benchmark contains 4 types of DAGs with different libraries and memory

usage patterns, as shown in Table 4.3. All the DAGs are sequential chains (no branches),

and the code is randomly generated for each node as follows. Matrix Mult: numpy is used to

multiply the input table by a matrix to produce an output with the same number of rows and

N columns (selected randomly between 1 and 10). Some numpy data (including this case)

can be converted to Arrow data without a copy given both represent numbers consecutively

in memory. Linear Regr : scikit-learn is used to perform a linear regression on the input data.

We randomly choose half the columns as features and one other column as the label. The

node splits the table into even-sized train/test sets. A linear regression model is trained on

the training data, then used to add a prediction column to the test data, which is then used as

the node’s output. Col Append 1: PyArrow computes 4 new columns via simple operations

over existing columns, horizontally concatenates the new columns to the input table, and

returns the result. This naturally leads to resharing opportunities. Col Append 2: this is

similar to the Col Append 1 pattern, but the projection adding the columns is implemented

via a SQL query executed by DuckDB. Though DuckDB reads Arrow data without copying,

a copy is required to transform a DuckDB table to an Arrow table to produce the output, so

this workload type does not present resharing opportunities.

We evaluate SIPC with the ecosystem benchmark in Table 4.3, varying DAG length from

2 to 10. The latencies are shown in Figure 4.11a and the total amounts of intermediate data

generated are shown in Figure 4.11b. SIPC has a steady performance improvement of 1.4×
for the Matrix Mult DAG and generates half the intermediate data compared to baseline by

eliminating intermediate data sharing. For Col Append (PyArrow), resharing takes effect

so SIPC generates further less intermediate data than baseline by utilizing input-output

sharing. SIPC has a latency proportional to DAG length because it only needs to generate

data for newly added columns, while baseline shows superlinear latency growth as the data

102

2 4 6 8 100

15

30

La
te
nc
y
(s
)

Matrix Mult
(Numpy)

2 4 6 8 100

20

40

Linear Regr
(Scikit)

2 4 6 8 100
30
60

Col Append
(PyArrow)

2 4 6 8 100
60

120

Col Append
(DuckDB)

Baseline Kelvin (SIPC)

(a) performance

2 4 6 8 100
15
30

Si
ze

 (G
B)

Matrix Mult
(Numpy)

2 4 6 8 100
5

10

Linear Regr
(Scikit)

2 4 6 8 100
50

100

Col Append
(PyArrow)

2 4 6 8 100
50

100

Col Append
(DuckDB)

(b) intermediate data size

Figure 4.11: Ecosystem Benchmark on SIPC. The x-axis is the DAG Length.

size becomes larger when DAGs are longer and baseline needs to copy the entire data.

For Col Append (DuckDB), resharing does not take effect and copying the entire data

is costly. For Linear Regr, a large amount of time is spent in model training in user code

(shared memory does not make help for this). Thus, SIPC’s gains in these two DAGs are

lower, at around 1.1×.

4.4.2 DeCache: Input Data Deduplication

We evaluate how the DeCache improves performance by reducing duplicate loads of the

same Parquet file.

When multiple DAGs running in parallel share inputs, DeCache could save significant

memory consumption and largely increase parallelism. Figure 4.12 runs a load function

loading 1.5 GB data into memory, followed by a function that filters the table by rows.

Multiple such DAGs (1 to 25) run in parallel and all the load functions load the same Parquet

file. There is no admission control or eviction policy in this experiment. SIPC w/ DeCache

detects the duplicated loads to the same input, runs the load only once, and caches the

result to be used by all the following computation functions. Thus, there are no concurrent

103

0 5 10 15 20 25
Parallel DAGs

0

2

4

6

Th
ro
ug

hp
ut
 (F
un
c/
s)

(a) performance

0 5 10 15 20 25
Parallel DAGs

0

5

10

Bl
oc
ki
ng

 S
wa

ps
(M
 ti
m
es
)

(b) swap
Baseline Kelvin w/o DeCache Kelvin w/ DeCache

Figure 4.12: Performance of DAGs with the same Inputs. In (b), the y-axis is the

number of foreground swap-in events in million times. Baseline crashes at x>20 because of

OOM.

load steps eating up the memory and the performance is significantly improved when the

number of parallel DAGs is larger, up to 38×.

DeCache also works when DAGs sharing inputs run sequentially. We benchmark

DeCache with the ecosystem benchmark in Table 4.3, varying DAG length from 2 to 10 and

running 5 DAGs back-to-back. From the second DAG, Kelvin with DeCache uses cached

intermediate data directly. The result of Matrix Mult is shown in Figure 4.13. For any DAG

length, DeCache provides a constant gain by saving the subsequent load functions. The

results are similar for other DAGs in the ecosystem benchmark.

4.4.3 Eviction Mechanisms

We evaluate the mechanisms for eviction that are used by the Resource Manager: rollback,

limit dropping, and adaptive eviction. The Node Container exposes the limit dropping option

to the Resource Manager. We use cumulative DAGs with large depth, which have increasing

memory requirements during the workload and stress eviction most.

Figure 4.14a runs a workload containing 15 cumulative sequential-chain DAGs, each

containing 10 functions with the first function loading one 2 GB table and the remaining 9

104

2 4 6 8 10
DAG Length

0

75

150

La
te
nc
y
(s
)

(a) performance

2 4 6 8 10
DAG Length

0

75

150

Si
ze
 (G

B)

(b) intermediate data size
Baseline Kelvin w/o DeCache Kelvin w/ DeCache

Figure 4.13: Matrix Mult on DeCache.

1 10 20 30 40 50
Amount of Computation

0

1

2

3

Th
ro
ug

hp
ut
 (F

un
c/
s)

(a) chain

1 10 20 30 40 50
Amount of Computation

0

2

4

Th
ro
ug

hp
ut
 (F

un
c/
s)

(b) branch
Kswap Rollback Limit Dropping Adaptive Eviction

Figure 4.14: Performance of Different Eviction Methods. The x-axis is the amount of

computation in a single function. The y-axis is the throughput of the entire workload.

appending 1 GB data to the output of the previous function based on computations of the

existing data. The x-axis is the amount of computation in a single function, with unit of

1 being one simple addition of two 1 GB columns. The y-axis is the latency of finishing

105

1 3 5 7 90.0
0.6
1.2

TP
 (F

un
c/

s)

Matrix Mult
(Numpy)

1 3 5 7 90.0
0.5
1.0

Linear Regr
(Scikit)

1 3 5 7 90.0
0.5
1.0

Col Append
(PyArrow)

1 3 5 7 90.00
0.05
0.10

Col Append
(DuckDB)

Baseline Kelvin w/o Eviction Kelvin w/ Eviction

Figure 4.15: Synthetic Benchmark on EvictionMechanisms. The x-axis is DAG Length.

the entire workload. Kswap is the baseline that only does admission control and resolves

deadlocks with default kernel swapping behavior.

The rollback strategy performs 2.0-2.2× better than the Kswap baseline. Sometimes limit

dropping (orange) outperforms rollback (red). When functions perform little computation

(left side of the graph), rollback performs up to 1.3× better as re-running is cheap. For

compute-intensive functions (right side), it is faster to temporarily swap out data rather

than repeat a slow computation again in the future. Adaptive eviction (blue) chooses the

better eviction method and achieves the best performance in all scenarios.

Figure 4.14b uses different cumulative DAGs, where each DAG branches out. Each

preceding function has two succeeding functions and the total depth is 4; thus, one DAG

contains a total of 15 functions. 15 DAGs are contained in one workload. We see similar

trends as Figure 4.14a, that rollback performs 1.3-1.8× better than kswap, and that adaptive

eviction performs the best under various conditions.

We now run the ecosystem benchmark on Kelvin, without and with eviction enabled

(adaptive policy). We use DAGs of length 10, running 1 to 9 in parallel. Figure 4.15 shows

the results. When many DAGs are running concurrently and intermediate data grows with

each step (the “Col Append” workloads), enabling eviction improves throughput up to 4×
(over Kelvin without eviction) or 28× (over baseline). The two implementations without

eviction rely on generic kernel swapping. For workloads for which memory consumption

does not steadily grow (Matrix Mult and Linear Regr), eviction is not important; simply

running more nodes will free up memory as upstream outputs become no longer needed.

106

DAG 1 DAG 2 DAG 3 DAG 4 DAG 5

Load 3 3 3 3 3

Preproc. 3 7 2 3 2

Compute 24 10 12 24 12

Total 30 20 15 30 17

Table 4.4: DABstep Workloads: Node Count by Type.

preprocess 1 preprocess 2

preprocess 3
compute 1

compute n

load parquet

load parquet

load parquet

payments

fees

merchants

Figure 4.16: Sample DABstep DAG. Circles are parquet inputs. Boxes are functions.

The load phase contains 3 nodes loading 3 tables. The preprocess phase contains 3 nodes,

appending data to and filtering the input tables. The final computation phase involve tens

of nodes in parallel.

4.4.4 DABstep: Evaluation with Real DAGs

We use the Data Agent Benchmark for Multi-step Reasoning (DABstep) [8, 9] to evaluate

Kelvin’s performance on real, complex DAGs. DABstep is built by Adyen [1] and Hugging

Face [3] and contains analysis questions extracted from Adyen’s real workloads related to

payments and transactions. For example, a DAG may compute the expected change between

fees F a merchant is paying in scenario A vs. a new scenario B, or list all the fees that apply

to a certain scenario.

We were provided solutions to 5 hard questions sampled from the question list [8], and

adapted these solutions to run as Kelvin DAGs. Table 4.4 shows the size of each DAG,

and how many nodes are responsible for loading data, preprocessing, or computing results.

Figure 4.16 shows a representative graph structure: all DAGs load the same 3 source tables

in Parquet: a 5 GB payments table, a 20 MB fees table, and a 5 MB merchants table. We

were asked not to reveal the correspondence between DAG solutions and specific DABstep

questions, so as not to contaminate online sources used to train LLMs (Large Language

Models) that specialize in writing data pipelines.

107

D
AG

 1

D
AG

 2

D
AG

 3

D
AG

 4

D
AG

 5

All

0

50

100

150

200

250 Baseline

load

preprocess

compute

Kelvin

load

preprocess

compute

L
a
t
e

n
c
y
 (

s
)

1.4x

1.2x

1.6x

1.3x
1.3x

2.3x

(a) performance

D
AG

 1

D
AG

 2

D
AG

 3

D
AG

 4

D
AG

 5

All

0

50

100

150

200
Baseline

load

preprocess

compute

Kelvin

load

preprocess

compute

S
iz

e
 (

G
B

)

0.34x

0.39x

0.34x
0.38x

0.36x

0.19x

(b) intermediate data size

Figure 4.17: Performance of DABstep DAGs. Except for All, the latency and the inter-

mediate data size are distributed to the load, preprocess, and compute phase.

Figure 4.17 shows the performance and the intermediate data size of running the 5 DAGs

individually, plus one workload running all 5 simultaneously. The load and preprocess

phases take a large portion of the total latency, and the compute phase is fast due to high

parallelism.

For the 5 individual DAGs, in the load phase, Kelvin performs 1.4× faster and generates

0.5× intermediate data compared to the baseline because of removing intermediate data

copying by de-anonymization. In the preprocess phase, Kelvin performs 1.5× faster and

generates 0.2× intermediate data because of removing input-output copying and intermedi-

ate data copying when one preprocess node appends data to the original payments table.

Kelvin does not optimize the compute phase as few output is produced.

Overall, Kelvin performs 1.2× to 1.6× faster for the 5 individual DAGs and generates

only about 0.3× intermediate data. For the workload running all 5 together, Kelvin performs

2.3× faster because the load phase among the 5 DAGs runs only once thanks to the DeCache,

saving computation time as well as memory for more parallelism.

4.5 Conclusion

Zero degrees Celsius is not the coldest theoretical temperature, and the term “zero-copy”,

as commonly used, does not actually mean no copying. In this work, we consider often-

overlooked occurrences of copying and duplication in data pipelines, and pursue an “absolute

108

zero” ideal. Towards this end, we introduced Kelvin, a new data pipeline execution tool

that co-designs the user-space resource management, container runtime for containerized

execution, and kernel support for sharedmemory. Kelvin improves thememory efficiency of

data pipelines by avoiding write-side copies (from nodes) and input-to-output copies (within

nodes). Kelvin further avoids duplication between different DAGs using the same inputs.

Although some copying and duplication remain unavoidable, Kelvin’s efficient handling of

intermediate data improves overall throughput by 1.2-28× in complex workloads.

109

Chapter 5

Related Work

In this chapter, we discuss prior works related to Bourbon, Symbiosis, and Kelvin. We

categorize them into machine learning for indexing and caching (§5.1), LSM-tree opti-

mizations (§5.2), cache management (§5.3), kernel methods in memory management (§5.4),

data pipeline techniques (§5.5), and other advancements for memory efficiency related to

hardware (§5.6).

5.1 Machine Learning for Indexing and Caching

Learned indexes. The core idea of Bourbon, replacing indexing structures withMLmodels,

is inspired by the pioneering work on learned indexes [77]. However, learned indexes do

not support updates, an essential operation that a storage-system index must support.

Recent research tries to address this limitation. For instance, XIndex [142], FITing-Tree [50],

and AIDEL [88] support writes using an additional array (delta index) and periodic re-

training, whereas Alex [38] uses a gapped array at the leaf nodes of a B-tree to support

writes. APEX [96] further optimizes Alex for persistent memory. LISA [89] replaces R-tree

for spatial data with sharded local models which support writes by periodic re-training.

LeaFTL [139] applies learned indexes to Flash Translation Layer on SSDs to reduce its

storage cost and handles updates by a Log-Structured Mapping Table which resembles the

behavior of LSM trees.

Most prior efforts optimize B-tree variants, while Bourbon is the first to deeply focus

on LSMs. Further, while most prior efforts implement learned indexes to stand-alone data

110

structures, Bourbon is the first to show how learning can be integrated and implemented

into an existing, optimized, production-quality system. While SageDB [76] is a full database

system that uses learned components, it is built from scratch with learning in mind. Our

work, in contrast, shows how learning can be integrated into an existing, practical system.

Finally, instead of “fixing” new read-optimized learned index structures to handle writes (like

previous work), we incorporate learning into an already write-optimized, production-quality

LSM.

Model choices for learned indexes. Duvignau et al. [41] compare a variety of piecewise

linear regression algorithms. Greedy-PLR, which we utilize, is a good choice to realize

fast lookups, low learning time, and small memory overheads. Neural networks are also

widely used to approximate data distributions, especially datasets with complex non-linear

structures [82]. However, theoretical analysis [94] and experiments [128] show that training

a complex neural network can be prohibitively expensive. Similar to Greedy-PLR, recent

work proposes a one-pass learning algorithm based on splines [73] and identifies that such

an algorithm could be useful for learning sorted data in LSMs; we leave their exploration

within LSMs for future work.

Learning-based cache replacement policies. The Glider [129] cache replacement policy

improves cache hit rate by insights from its offline LSTM-based variant. Cacheus [120]

utilizes a combination of experts and chooses the best fit with reinforcement learning.

LRB [131] brings learned replacement algorithms to CDN cache. Cache replacement policies

are orthogonal to Symbiosis because Symbiosis tunes sizes of caches and doesn’t affect

policies.

5.2 LSM-tree Optimizations

Prior work has built many LSM optimizations. Monkey [34] carefully adjusts the bloom

filter allocations for better filter hit rates and memory utilization. Dostoevsky [35], Hyper-

LevelDB [45], and bLSM [123] develop optimized compaction policies to achieve lower write

amplification and latency. cLSM [56] and RocksDB [46] use non-blocking synchronization

to increase parallelism. SpanDB [29] optimizes RocksDB on hybrid storage by parallel log

writes to fast storage devices. MatrixKV [167] reduces write stalls caused by compactions by

managing lower level tables on fast storage devices.Bourbon take a different yet complemen-

tary approach to LSM optimization by incorporating models as auxiliary index structures to

111

improve lookup latency, but each of the others is orthogonal and compatible with Bourbonś

core design.

5.3 Cache Management

Dynamic cache adaptation. As caching performance hinges on workload access patterns,

prior work has explored how to dynamically adapt various aspects of cache management.

Symbiosis, sharing a similar motivation to effectively adapt to online workload changes,

benefits from relevant innovations and operates within a more complex application-kernel

cache structure.

In the scenario of a single-level cache where no cooperation is explicitly introduced,

such efforts centered around dynamic replacement policies [16, 120, 153], cache allocation

and partitioning [44, 60, 74, 79, 105, 111, 126, 138, 143, 171], and online cache performance

approximation [75, 93, 121, 151, 152, 158]. For instance, SOPA [153] simulates different cache

replacement policies to dynamically decide the best policy. ACME [16] simultaneously runs

multiple cache replacement policies and updates their weights by the instant effectiveness.

Recently, machine learning techniques were also explored [120, 129].

Caching strategies designed for the properties of a given layer are necessary, such as for

flash endurance [31, 58, 61, 109]. Our work, instead, considers compression, as it is widely

used in modern key-value storage engines. Recent research also incorporates compression

in storage systems [86, 101, 161, 170], underscoring its importance.

Hierarchical cache management. Earlier works have distilled and tackled several major

problems introduced by hierarchical cache management [165]: weak temporal locality in

the second layer [172] due to the first layer’s filtering effect, duplication of data that wastes

capacity [18, 30, 159], and a lack of information in the second layer for decision making [18].

“Exclusiveness” is one of the main challenges. Either API changes for cooperation are

required [55, 159] or some sort of hints from the upper layer need to be propagated or

derived [18, 90, 165, 166]. For instance, with DEMOTE [159], the lower level deletes a

block from its cache when it is read by the upper level. Achieving exclusiveness in the

application-kernel cache structure with one compressed layer would be an interesting future

work.

Evolving storage devices (e.g., NVM) [31, 65, 84, 85, 87, 160] and use cases (e.g., S3)

[57, 70, 91, 135] have led to new techniques to manage storage hierarchies and cache

112

cooperation. For example, EDT [57] decides and adapts data placement between tiers of SSDs

and HDDs according to workload, aiming to minimize power consumption. AutoNUMA [91]

is the kernel mechanism to monitor data access by inserting artificial page faults and move

hot data pages to higher tiers of the cache hierarchy. D3N [70] also adapts sizes for multi-

level caching with a ghost cache, but aims to alleviate network imbalance. A whole-stack

programmable caching scheme is proposed [135] with APIs for size allocation of caches in

layers within multi-tenant data centers. The adaptation space of Symbiosis, which accounts

for computation (compression), capacity, and IO, is enlarged by modern fast block devices.

Symbiosis only tunes the sizes of caches and is optimized for the application-kernel cache

structure, without altering their interaction. Notably, it does not require modifications to

the OS kernel. These advanced communication techniques and policies are complementary.

5.4 Kernel Methods in Memory Management

Kernel cache and application coordination. Deep understanding of kernel caching is

crucial to performance optimization across the storage stack. The performance impact

of kernel cache replacement policies and directory cache has been studied [24, 66, 149].

Butt et al. [25] builds a simulator studying kernel prefetching. Tricache [47] replaces the

kernel page cache for performance and also emphasizes transparent cache management for

applications. Lee et al. [83] enables application-specific kernel caching. Symbiosis, instead,

utilizes simulation integrated into applications in a live system to adapt cache configuration.

Zero-copy I/O stacks. PASTE [59] and Fastmove [137] use DMA to avoid copying. Ar-

rakis [116] redesigns the kernel as a control plane so that I/O data may reside solely in user

space. zIO [134] deduplicates buffers for I/O transparently, with a key observation that

applications often modify only small parts of the data.

Zero-copy IPC. The kernel page cache naturally serves as an inter-process shared-memory

buffer for data on the filesystems, and DISCO [23] uses a similar mechanism to share data

on filesystems across virtual machines. Data needs to reside on the filesystems to be shared

through the page cache. Manipulating page tables is a well-known approach to avoid

copying. Fbufs [40] uses this approach for IPC, but programs must identify what data to

share in advance (in contrast to de-anonymization). IO-Lite [114] extends Fbufs, adding a

buffer aggregate abstraction that (like resharing) allows some outputs to reference inputs.

Kelvin applies resharing in the context of Arrow, where additional techniques are possible

113

(e.g., dictionary sharing and IPC inspection). X-kernel [62] assigns a dedicated process per

message, or data flow, to perform operations on data within the kernel, but requires the data

representation to match the data structure in the kernel or a transformation is required at

the user/kernel boundary. RMMap [97] utilizes RDMA to provide an mmap-like abstraction

that works for processes on different machines. RMMap further solves the pointer problem

via address space planning (i.e., making sure the same physical data is mapped to the

same virtual addresses). Such planning is an alternative to using a zero-copy format (e.g.,

Arrow). Nightcore [64], like Kelvin, mounts a tmpfs into multiple containers to facilitate

communication. Nightcore focuses on low-latency RPCs between microservices; Kelvin is

optimized for DAG workloads where children consume the large outputs of multiple parents.

Arrow’s experimental Dissociated IPC Protocol [15] proposes tags to indicate how message

bodies should be interpreted; this could provide a standardized way to implement Kelvin’s

SIPC, where contents would be interpreted as references to tmpfs files.

Zero-copy kernel mechanisms. The Linux kernel has several existing and proposed

features related to our work. KSM [37] scans physical memory and modifies page tables to

deduplicate redundant pages it discovers (DeCache avoids duplication from the start). Sen-

pai [156] introduced the limit-dropping idea for controlling swap, though Senpai’s developers

eventually abandoned the approach because the system could not respond quickly enough

to surging memory needs. Limit dropping better suits Kelvin, where it is only used to swap

out intermediate data produced by completed processes. A new process_vm_mmap [146] API

has been proposed for Linux that would allow different processes to share VMAs (including

anonymous ones). A Kelvin-like system could be built around such a primitive, though

being able to directly access another address space would naturally be a privileged operation

(a file-oriented approach such as de-anonymization supports better control over visibility).

Another proposed API (msharefs [17]) would allow different processes to share page table

entries (not just pages). We expect that Kelvin’s SIPC could be slightly faster using such a

feature.

5.5 Data Pipelines Techniques

Data pipeline platforms.Many classic data-processing platforms (e.g., MapReduce [36,

130] and Spark [169]) impose both a computational model and intermediate data format.

These restrictions are conducive to optimization, but the need for flexibility has created use

114

cases for other data pipeline orchestration tools, including Apache Airflow [13], Luigi [132],

and Metaflow [141]. These tools allow arbitrary code and data passing strategies, but copy

avoidance is difficult for arbitrary data passing strategies. Kelvin takes a balanced approach,

allowing arbitrary node code, but requiring Arrow for data passing. Kelvin is designed to

serve the same workloads as an existing commercial product, Bauplan [80], which is also

based on containers and Arrow. Kelvin’s use of DeAnon and SIPC allows it to avoid some

copying and duplication that are necessary in the original implementation, which relies on

a generic Linux kernel and Arrow IPC.

Storage-based communication. Many data processing platforms leverage distributed file

systems (e.g., HDFS) or cloud storage (e.g., S3) for intermediate data, but experience has

shown that it is difficult to achieve fast and reliable performance this way [115]. SONIC [100]

and SAND [11] use a hybrid method of remote storage and local file system based on online

profiling and function placement. Fortunately, hardware improvements are catching up

to workload sizes [118] such that most workloads can run on a single machine and take

advantage of faster mediums [104, 140, 145].

5.6 Hardware-Related Advancements for Memory

Efficiency

Processing in Memory. Processing-in-Memory (PIM) has been extensively examined in

recent years, transitioning from theoretical concepts to practical products. PIM eliminates

the data copying andmovement frommemory to the computing unit, significantly improving

memory utilization and computation latencies.

Modern PIM approaches are divide into two categories: processing-using-memory ex-

ploiting DRAM operational principles for parallel operations, and processing-near-memory

exploiting logic layers on modern memory chips [69, 108].

On the production side, Samsung’s HBM-PIM technology [122] integrates Programmable

Computing Units (PCU) directly into HBM. UPMEM [150] proposes a general-purpose

PIM architecture applicable for different software implementations. On the software side,

PIM-STM [95] introduces software transactional memory to address the synchronization

challenges in PIM. Syncron [54] tackled the problem of coordinating computation across

distributed PIM units.

115

Hardware Memory Compression. Hardware-based memory compression letmemory

controller in the CPU transparently compresses and decompresses memory to increase the

logical memory capacity of the system.

Many aspects of hardware memory compression systems have been studied. The seminal

work, Pinnacle [148], established the architecture of hardware memory compression, with

an static address translation table between uncompressed memory and compressed memory.

Laghari et al. designs amemory allocator for compressedmemory to improve its performance

and stability. CRAM [168] proposes implicit-metadata mechanism that eliminates metadata

access during compression.

116

Chapter 6

Conclusions

In this chapter, we summarize each part of this thesis (§6.1), discuss lessons learned while

working on this thesis (§6.2), discuss future directions (§6.3), and conclude (§6.4).

6.1 Summary

This thesis consists of three projects, Bourbon, Symbiosis, and Kelvin, that improve the

memory efficiency of the data processing stack from different angles.

6.1.1 Bourbon

Bourbon is a learned index for LSM-trees. Bourbon improves the performance of in-

memory workloads for the database layer and provides a smaller index by careful study of

LSM characteristics.

Through in-depth measurements and analysis, we derive a set of guidelines to integrate

learned indexes into LSM-trees. We have found that learning is more beneficial to lower-

level tables as they live longer, but it can also be beneficial to higher-level tables because

they may serve more lookups under certain workloads. Being workload- and data-aware is

the key to performance improvements.

We adopt the piecewise linear regression model because its one-pass learning phase

and logarithmic inference time meet our requirements for low overheads. We support

variable-size values by borrowing the idea of key-value separation fromWiscKey. We deploy

117

a cost-benefit analyzer that uses past statistics of tables on the same level to determine

whether to learn a model for a new table during runtime.

We build Bourbon upon WiscKey. With various microbenchmarks and macrobench-

marks, we show that Bourbon significantly improves the performance of in-memory work-

load by accelerating indexing and Bourbon’s model is 0.5× to 0.75× smaller thanWiscKey’s

indexes. Through microbenchmarks, we show that Bourbon consistently yields benefits for

read workloads with different data distributions and request distributions while incurring

no overhead to writes. For macrobenchmarks, Bourbon performs 1.06× to 1.64× faster on

YCSB and 1.48× to 1.74× faster on SOSD.

6.1.2 Symbiosis

Symbiosis is a framework for robust cache size adaptation to different workloads for key-

value storage systems. Symbiosis optimizes the cache sizes of storage engines with the

knowledge of the underlying layer, the kernel page cache, and improves the overall cache

efficiency across the data processing stack.

We first study the factors that affect the cache partitioning problem by extracting key

statistics from the application cache and the kernel page cache. Our simulation shows that

the best cache configuration is highly sensitive to factors such as memory capacity, data

compression ratio, and miss cost, which vary significantly in different workloads.

We thus build Symbiosis to dynamically configure cache sizes according to the current

workload by online cache simulation. Guided by our offline simulator, we develop opti-

mization techniques such as incremental reuse of ghost caches and misalignment-aware

sampling to achieve both high accuracy and low overhead in online cache simulation.

We demonstrate Symbiosisś benefit by various static and dynamic workloads. In static

workloads, Symbiosis finds the best cache size configuration in differentworkloads, software,

and hardware environments and yields an average of 1.5× gain over static configurations

in read-heavy workloads. In dynamic workloads, Symbiosis is able to adapt to workload

changes in all cases and incurs negligible space and time overhead in online cache simulation.

6.1.3 Kelvin

Kelvin is a new pipeline execution engine that avoids all kinds of data copying and duplica-

tion in data pipeline execution to the best of our knowledge. Kelvin co-designs different

118

layers of the data processing stack (user-space resource management, container runtime,

and kernel support for shared memory) to improve memory efficiency for data pipelines.

We first identify three types of data copying and duplication common in current data

pipeline systems: data copying from anonymous memory to shared memory for data

communication, data copying from the inputs of a node to its outputs, and duplicated

deserialized data when multiple DAGs share the same inputs.

To eliminate them in a containerized environment, we build several subsystems of

Kelvin. DeAnon is a kernel module that converts anonymous memory to shared memory

without copying data. SIPC is a container runtime that communicates data between nodes

with shared memory and removes the copying between inputs and outputs within a node.

DeCache caches the deserialized data form of input sources and directs DAGs with the same

inputs to utilize the cache. In addition, the resource manager in Kelvin performs reference

tracking and resource accounting of the underlying shared physical data.

Each of Kelvin’s subsystems is evaluated with benchmarks consisting of different appli-

cations and memory usage patterns and is shown to achieve the design goal of eliminating

the corresponding data copying and duplication. Kelvin is further evaluated with real-world

data pipelines from the DABstep benchmark and shows 1.2× to 2.3× performance gain.

6.2 Lessons Learned

We list several methodologies for systems research learned from the works in this thesis.

Memory efficiency is critical to performance, even if there is enoughmemory.When

memory is not enough, it sounds trivial that using the limited resources efficiently will

certainly be helpful for performance. In this case, Symbiosis automatically gives more

memory to the cache for compressed data so that we effectively cache more data in memory

and reduce device I/O. In Kelvin, eliminating the extra data copies reduces swaps caused by

memory overflow.

But people often overlook the effect of saving computation and being friendly to the hard-

ware CPU cache when we improve memory efficiency given enough memory. Even in data

processing workloads and machine learning workloads, which are considered computation-

bounded, reducing the copies in producing the output data with Kelvin could provide 1.2×
gain solely by saving the computation of copying. When optimizing the online simulator in

Symbiosis, we also noticed that, though the simulator takes only up to 2% of the available

119

memory, reducing its memory consumption by optimizing the data structures and carefully

reclaiming the memory used by the simulator after simulation can largely reduce the cost

of online simulation. This is because a process with a smaller memory footprint generally

utilizes the small hardware CPU cache better. Engineering details such as fragmentation in

memory pages and the kernel’s page reclamation policy could also affect the actual memory

footprint of user-space caching. As a developer of low-level systems such as operating sys-

tems and the kernel, we should pay close attention to memory efficiency in both high-level

design and low-level implementation.

Optimize software with knowledge across layers. There are huge opportunities in

performance optimization across different layers in the modern data processing stack,

as modern software is often developed independently, well-optimized on its own, and

lacks communication in between. For example, though popular storage engines embed

sophisticated caching within themselves, they are either unaware of the underlying kernel

page cache [133], or only recommend static configurations [53, 107] such as 25/75 or 50/50

partitions (which turn out to be sub-optimal in most workloads we’ve tested). Symbiosisś

performance gain thus comes from the knowledge of the underlying page cache and the

dynamic nature of the two-layer cache partitioning problem.

Kelvin, on the other hand, optimizes the underlying kernel with the knowledge of the

applications’ needs. Kelvin builds necessary kernel mechanisms to support efficient execu-

tion of popular DAG-style applications for data processing and co-designs the applications to

utilize the new mechanisms. As software evolves much faster than the underlying systems

nowadays, there are huge potentials in application-kernel co-design that build specialized

systems for new applications.

Measure carefully first. Good systems research often starts with detailed measurements

of existing systems, discovering problems in existing systems and guiding the initial design

of improvements. In Bourbon, a large-scale analysis of table lifetime in WiscKey leads to

the precious learning guidelines that lay the foundation of learning policies under write

workloads. In Symbiosis, we conducted a study on various types of storage engines and

identified the universal problem of cache partitioning by collecting cache statistics from

both the application and the kernel cache. Detailed measurements into the kernel cache also

lead to the high accuracy of our offline simulator, which guides the design and optimization

of the final online simulator.

Reuse existing systems. There are two advantages in reusing existing systems and only

120

building add-ons that implement the core design of a systems research project. First, this

enables a more fair comparison, that we can use the original systems as the baseline and

compare them to our modified system to highlight the benefits of the changes we have made.

In Bourbon, we keep the database write path of WiscKey intact and only make changes to

the indexing part of the read path to show that we add no overhead to writes. In Symbiosis,

we reuse the original cache-related policies in LevelDB and only change the sizing.

The second advantage is that reusing saves enormous amounts of engineering efforts

and allows us to only focus on the core functionalities of a research project. Bourbon

and Symbiosis adds about 5K and < 1K LOC to the original Wisckey and LevelDB code

base (around 20K LOC), respectively. Especially for Symbiosis, we have also ported it to

RocksDB and WiredTiger for additional evaluation within only two weeks. Kelvin is built

upon OpenLambda, reusing all the existing logic for basic containerized execution and only

focusing on the logic of DAG scheduling and resource accounting.

But, be brave to break the systems for performance.When we were building Bourbon,

the original planwas to change only the SearchDB phase inWisckey (explained in Figure 2.6),

but we soon found out that after the model size grows as the data set gets more complicated,

the performance benefit of replacing the binary search with model inference becomes

marginal. We thus come up with the final design that completely replaces the logic to find

tables in the database and the indexing into a single table.

It is critical to identify the correct scope of changes we want to make to the original

systems. The previous example shows that breaking the systems too little could result

in insufficient return, but changing the systems too much would unexpectedly break the

assumptions of other parts of the systems. In Bourbon, we end up giving up level models

upon workloads with writes, because level models treat all tables on one level as a unit,

which is not true in write workloads as compactions frequently change small parts (tables)

of each level. In Kelvin, the original design of DeAnon was to let the data sharer record the

anonymous pages it would like to share and then create another mapping in the sharee’s

page table to these pages. This creates multiple mappings from unrelated processes to

the same anonymous page, which breaks the assumption of the swap subsystem in Linux,

makes these shared pages unswappable, and downgrades the performance with limited

memory. To avoid touching the much more complicated swap subsystem, we come to the

design that changes the anonymous mapping in the sharer process to shared memory-based

file mapping, where both the states before and after sharing are legal in vanilla Linux and

121

support swapping natively. The state transition breaks assumptions of the underlying data

structures in Linux, but is carefully guarded by locks from being visible to other processes.

Moreover, the sharee can map to the shared data using the original mmap system call instead

of another modified interface. This way, we precisely restrict our intrusion into the kernel

to achieve our design goal while minimizing the chances for bugs.

6.3 Future Work

In this section, we discuss how we can extend the projects in this thesis and the directions

our research points to.

Optimize write workloads in application-kernel caching. Symbiosis optimizes the

partitioning of memory between the application cache and the kernel page cache, which are

the caches for read workloads. Though Symbiosis can handle read-write mixed workloads

with moderate amounts of writes, Symbiosis only optimizes the read requests in such

cases and does not affect writes. For write workloads, newly written data and other data

structures come in to compete for memory. Solving the problem of partitioning memory

among these data structures to optimize write requests would pave the way for Symbiosisś

idea to real-world deployment.

One potential challenge would be the variety of ways of handling writes in different

storage engines. For read requests, storage engines with different data structures, such as

WiredTiger (B-tree) and RocksDB (LSM-tree), share a similar logic: use indexing structures

to find the target data pages and load and search on them. Caching is only involved in

loading data pages and thus Symbiosis can be ported to these storage engines with minimal

effort. But they differ largely in handling writes, and Symbiosis would need to be customized

differently to match each storage engine’s write path. For example, for RocksDB, writes

are first buffered in memory and read requests need to query such memory buffers first.

Thus, the memory buffers, the application cache, and the kernel cache form a three-layer

cache structure and share the same memory quota, largely complicating Symbiosisś online

simulation. Moreover, LSM-trees may prefer pinning certain lower-level tables in memory

to accelerate lookups and compactions when there are write requests. A more sophisticated

design is required to take such policy choices into account.

More study on implicit kernel policies. Symbiosis tunes the size of the kernel page

cache in user space by changing the memory used by the application. A hidden policy is

122

demonstrated here that the kernel page cache would implicitly use up all the memory left by

the application. There are plenty of other hidden policies in the kernel, with a high potential

to significantly affect performance, for us to discover, study, and optimize. For example, the

kernel page cache utilizes a variation of 2Q [67, 92] as its eviction policy. The admission

policy of the page cache, on the other hand, is coupled with the readahead algorithms for

each filesystem. A large number of parameters and policies are hard-coded here, such as

the trigger of 2Q balancing, the activation policy of 2Q, and the trigger and the window size

of readahead.

It is very likely that the one set of hard-coded numbers and policies does not fit the

needs of different kinds of applications. We first need to expose them to be tunable. Unlike

the size of the page cache that can be implicitly tuned in the user space, explicit access to the

kernel data structures may be necessary. Fortunately, with modern tools like eBPF [43], this

can be achieved with little intrusion into the kernel code. We can then further dynamically

tune such parameters and policies according to the workload of applications.

A unified kernel interface for memory sharing between trusted processes. DeAnon

in Kelvin utilizes the existing POSIX shared memory mechanism to share anonymous

memory of a process. DeAnon can be viewed as a workaround to the kernel’s enforced

isolation between processes’ address spaces. Such isolation is necessary for security reasons,

but in the big data era, we may need to revisit this fundamental policy for efficient movement

of data across different (trusted) application processes.

A possible solution could be letting the processes of a new type of (trusted) user share

each other’s address spaces and manually control the lifetime of their generated data in

memory. This allows seamless sharing of data between these processes and application-

controlled lifetime management with more knowledge of data dependencies in the user

space.

A unified user-space protocol for sharing memory buffers between processes with

Arrow. Kelvin needs to modify the Arrow IPC protocol to pass data on POSIX shared

memory generated by DeAnon without copying, because vanilla Arrow always copies data

when generating IPC data regardless of where the data resides. A more generic protocol

that zero-copy passes data, which resides not only on shared memory but also on GPU and

other new memory media such as remote memory, would be beneficial for modern data

processing applications utilizing new types of memory resources. Arrow’s experimental

Dissociated IPC Protocol [15] is a starting point on this direction.

123

More sophisticated learning algorithms for learned indexes. Bourbon only supports

numerical keys with fixed length. Current studies on learned index only focus on numerical

keys. One way towards general string keys may be treating them as base-64 integers.

Potential problemswould be the efficiency ofmodel training and inference on large numerical

values. In Bourbon, the numerical values are treated as 32-bit integers, and we have seen

large overhead when using 64-bit integers, also seen in a later study of learned indexes [102].

But 32-bit integers could only represent ASCII strings of length 8, and those of length more

than 16 would even need 128-bit or larger integers. Efficient large-integer math is likely

required for efficient training and inference in such cases.

6.4 Closing Words

Data is everywhere in our everyday life. People have built a software stack to process data

and with the amount of data increasing, memory efficiency of the data processing stack

becomes more and more critical.

In this thesis, we have introduced three aspects of study on memory efficiency of the data

processing stack, especially on optimizations across layers of the stack. We first studied the

performance characteristics of a popular LSM-based storage engine and built a learned index

for LSMs, reducing the index sizes and improving the performance of in-memory workloads.

We then focused on the caching problem between the layer of storage engines and the layer

of the underlying kernel, and built an add-on module to storage engines that automatically

optimizes cache allocation by online cache simulation. Last, we applied kernel methods to

remove data copying and duplication in data pipelines and co-designed a pipeline execution

engine with new user-space runtimes and kernel-space mechanisms.

Our studies have built practical solutions to real-world problems of the data processing

stack. We hope that our work will inspire the future development of the stack, such as

designing a coherent cache structure throughout the stack, or a unified user-space and

kernel-space interface for memory sharing across processes.

124

Bibliography

[1] Adyen. https://www.adyen.com/.

[2] BadgerDB. https://github.com/dgraph-io/badger.

[3] Huggingface. https://huggingface.co/.

[4] Open Street Maps. https://www.openstreetmap.org/#map=4/38.01/-95.84.

[5] Running a Workload. https://github.com/brianfrankcooper/YCSB/wiki/Ru
nning-a-Workload.

[6] Symbiosis Repository. https://github.com/daiyifandanny/Symbiosis, 2023.

[7] Jayadev Acharya, Ilias Diakonikolas, Jerry Li, and Ludwig Schmidt. Fast Algorithms

for Segmented Regression. arXiv preprint arXiv:1607.03990, 2016.

[8] Adyen and Hugging Face. Dabstep. https://huggingface.co/datasets/adyen/
DABstep.

[9] Adyen and Hugging Face. Data agent benchmark for multi-step reasoning. https:
//medium.com/adyen/data-agent-benchmark-for-multi-step-reasoning
-dabstep-70e913c339dc.

[10] Alfred V. Aho, Peter J. Denning, and Jeffrey D. Ullman. Principles of Optimal Page

Replacement. J. ACM, 18(1):80–93, January 1971.

[11] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke, Andre

Beck, Paarijaat Aditya, andVolkerHilt. SAND: Towards High-Performance Serverless

Computing. In Proceedings of the USENIX Annual Technical Conference (USENIX ’18),

Boston, MA, July 2018.

https://www.adyen.com/
https://github.com/dgraph-io/badger
https://huggingface.co/
https://www.openstreetmap.org/#map=4/38.01/-95.84
https://github.com/brianfrankcooper/YCSB/wiki/Running-a-Workload
https://github.com/brianfrankcooper/YCSB/wiki/Running-a-Workload
https://github.com/daiyifandanny/Symbiosis
https://huggingface.co/datasets/adyen/DABstep
https://huggingface.co/datasets/adyen/DABstep
https://medium.com/adyen/data-agent-benchmark-for-multi-step-reasoning-dabstep-70e913c339dc
https://medium.com/adyen/data-agent-benchmark-for-multi-step-reasoning-dabstep-70e913c339dc
https://medium.com/adyen/data-agent-benchmark-for-multi-step-reasoning-dabstep-70e913c339dc

Bibliography 125

[12] Amazon. Amazon Customer Reviews Dataset. https://registry.opendata.aw
s/amazon-reviews/.

[13] Apache. Apache Airflow. https://airflow.apache.org/.

[14] Apache. Arrow. https://github.com/apache/arrow.

[15] Apache. Dissociated ipc protocol. https://arrow.apache.org/docs/format/D
issociatedIPC.html.

[16] Ismail Ari, AhmedAmer, Robert Gramacy, Ethan L. Miller, Scott A. Brandt, andDarrell

D. E. Long. ACME: Adaptive Caching Using Multiple Experts. In In Proceedings in

Informatics, pages 143–158, 2002.

[17] Khalid Aziz. memshare. https://lore.kernel.org/lkml/a1d6a3de-502e-411
4-a603-01710e30428e@oracle.com/T/.

[18] Lakshmi N. Bairavasundaram, M. Sivathanu, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. X-RAY: A Non-Invasive Exclusive Caching Mechanism for RAIDs.

In Proceedings of the 31st Annual International Symposium on Computer Architecture

(ISCA ’04), Munich, Germany, June 2004.

[19] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravishankar Chandhi-

ramoorthi, and Diego Didona. SILK: Preventing Latency Spikes in Log-Structured

Merge Key-Value Stores. In Proceedings of the USENIX Annual Technical Conference

(USENIX ’19), Renton, WA, July 2019.

[20] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource containers: a new

facility for resource management in server systems. In Proceedings of the 3rd Sym-

posium on Operating Systems Design and Implementation (OSDI ’99), New Orleans,

Louisiana, February 1999.

[21] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. LHD: Improving Cache Hit

Rate by Maximizing Hit Density. In Proceedings of the 15th Symposium on Networked

Systems Design and Implementation (NSDI ’18), Renton, WA, April 2018.

[22] Michael A. Bender, Martin Farach-Colton, William Jannen, Rob Johnson, Bradley C.

Kuszmaul, Donald E. Porter, Jun Yuan, and Yang Zhan. An introduction to bϵ-trees

and write-optimization. ;login: Operating Systems and Sysadmin, (5):23–28, Oct 2015.

[23] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum. Disco:

running commodity operating systems on scalable multiprocessors. ACM Trans.

Comput. Syst., page 412–447, November 1997.

https://registry.opendata.aws/amazon-reviews/
https://registry.opendata.aws/amazon-reviews/
https://airflow.apache.org/
https://github.com/apache/arrow
https://arrow.apache.org/docs/format/DissociatedIPC.html
https://arrow.apache.org/docs/format/DissociatedIPC.html
https://lore.kernel.org/lkml/a1d6a3de-502e-4114-a603-01710e30428e@oracle.com/T/
https://lore.kernel.org/lkml/a1d6a3de-502e-4114-a603-01710e30428e@oracle.com/T/

Bibliography 126

[24] Nathan C. Burnett, John Bent, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. Exploiting Gray-Box Knowledge of Buffer-Cache Management. In Proceed-

ings of the USENIX Annual Technical Conference (USENIX ’02), Monterey, CA, June

2002.

[25] Ali R. Butt, Chris Gniady, and Y. Charlie Hu. The Performance Impact of Kernel

Prefetching on Buffer Cache Replacement Algorithms. In Proceedings of the 2005

ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems

(SIGMETRICS ’05), Banff, Canada, June 2005.

[26] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. Characterizing, Mod-

eling, and Benchmarking RocksDB Key-Value Workloads at Facebook. In Proceedings

of the 18th USENIX Conference on File and Storage Technologies (FAST ’20), Virtual

Conference, February 2020.

[27] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert Gruber. Bigtable: A

Distributed Storage System for Structured Data. In Proceedings of the 7th Symposium

on Operating Systems Design and Implementation (OSDI ’06), pages 205–218, Seattle,

WA, November 2006.

[28] Subarna Chatterjee, Meena Jagadeesan, Wilson Qin, and Stratos Idreos. Cosine: a

Cloud-cost Optimized Self-designing Key-value Storage Engine. Proceedings of the

VLDB Endowment, 15(1):112–126, 2021.

[29] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and Yinlong Xu. SpanDB: A fast,

Cost-Effective LSM-tree based KV store on hybrid storage. In 19th USENIX Conference

on File and Storage Technologies (FAST 21), February 2021.

[30] Zhifeng Chen, Yuanyuan Zhou, and Kai Li. Eviction-based Cache Placement for

Storage Caches. In Proceedings of the USENIX Annual Technical Conference (USENIX

’03), San Antonio, Texas, June 2003.

[31] Wonil Choi, Bhuvan Urgaonkar, Mahmut Kandemir, Myoungsoo Jung, and David

Evans. Fair Write Attribution and Allocation for Consolidated Flash Cache. In Pro-

ceedings of the 25th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’20), Virtual Event, March 2020.

[32] Douglas Comer. The Ubiquitous B-Tree. ACM Computing Surveys, 11(2), June 1979.

[33] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of the ACM

Symposium on Cloud Computing (SOCC ’10), Indianapolis, IA, June 2010.

Bibliography 127

[34] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. Monkey: Optimal Navigable

Key-value Store. In Proceedings of the 2017 ACM SIGMOD International Conference on

Management of Data (SIGMOD ’17), Chicago, IL, May 2017.

[35] Niv Dayan and Stratos Idreos. Dostoevsky: Better Space-time Trade-offs for LSM-tree

based Key-value Stores via Adaptive removal of Superfluous Merging. In Proceedings

of the 2018 International Conference on Management of Data, pages 505–520, 2018.

[36] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on

large clusters. In Proceedings of the 6th Symposium on Operating Systems Design and

Implementation (OSDI ’04), San Francisco, CA, December 2004.

[37] Linux Kernel Developer. Kernel sampage merging. https://www.kernel.org/d
oc/html/latest/admin-guide/mm/ksm.html.

[38] Jialin Ding, Umar Farooq Minhas, Hantian Zhang, Yinan Li, Chi Wang, Badrish

Chandramouli, Johannes Gehrke, Donald Kossmann, and David Lomet. ALEX: An

Updatable Adaptive Learned Index. arXiv preprint arXiv:1905.08898, 2019.

[39] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. Evolution of Devel-

opment Priorities in Key-value Stores Serving Large-scale Applications: The RocksDB

Experience. In Proceedings of the 19th USENIX Conference on File and Storage Tech-

nologies (FAST ’21), Virtual Conference, February 2021.

[40] Peter Druschel and Larry L. Peterson. Fbufs: a high-bandwidth cross-domain transfer

facility. In Proceedings of the 14th ACM Symposium on Operating Systems Principles

(SOSP ’93), December 1993.

[41] Romaric Duvignau, Vincenzo Gulisano, Marina Papatriantafilou, and Vladimir Savic.

Piecewise linear approximation in data streaming: Algorithmic implementations and

experimental analysis. arXiv preprint arXiv:1808.08877, 2018.

[42] Maria R. Ebling, Lily B. Mummert, and David C. Steere. Overcoming the Network

Bottleneck in Mobile Computing. In 1994 FirstWorkshop on Mobile Computing Systems

and Applications, pages 34–36, 1994.

[43] The eBPF community. Dynamically program the kernel for efficient networking,

observability, tracing, and security. https://ebpf.io/.

[44] Nosayba El-Sayed, Anurag Mukkara, Po-An Tsai, Harshad Kasture, Xiaosong Ma,

and Daniel Sanchez. KPart: A Hybrid Cache Partitioning-Sharing Technique for

Commodity Multicores. In Proceedings of the 24th International Symposium on High

Performance Computer Architecture (HPCA-18), Vienna, Austria, February 2018.

https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://ebpf.io/

Bibliography 128

[45] Robert Escriva, Sanjay Ghemawat, David Grogan, Jeremy Fitzhardinge, and Chris

Mumford. HyperLevelDB. https://github.com/rescrv/HyperLevelDB, 2013.

[46] Facebook. RocksDB. http://rocksdb.org/.

[47] Guanyu Feng, Huanqi Cao, Xiaowei Zhu, Bowen Yu, Yuanwei Wang, Zixuan Ma,

Shengqi Chen, and Wenguang Chen. TriCache: A User-Transparent Block Cache

Enabling High-Performance Out-of-Core Processing with In-Memory Programs. In

Proceedings of the 16th USENIX Conference on Operating Systems Design and Imple-

mentation (OSDI ’22), Carlsbad, CA, July 2022.

[48] Paolo Ferragina and Giorgio Vinciguerra. The pgm-index. Proceedings of the VLDB

Endowment, 13(10):1162–1175, Jun 2020.

[49] Michael R. Frasca and Ramya Prabhakar. SRC: Virtual i/o Caching: Dynamic

Storage Cache Management for Concurrent Workloads. In International Conference

on Supercomputing (ICS ’11), Tucson, Arizona, May 2011.

[50] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim

Kraska. FITing-Tree: A Data-Aware Index Structure. In Proceedings of the 2019 ACM

SIGMOD International Conference on Management of Data (SIGMOD ’19), Amsterdam,

Netherlands, June 2019.

[51] Lars George. HBase: The Definitive Guide: Random Access to Your Planet-size Data.

O’Reilly Media, Inc., 2011.

[52] Sanjay Ghemawhat, Jeff Dean, Chris Mumford, David Grogan, and Victor Costan.

LevelDB. https://github.com/google/leveldb, 2011.

[53] Sanjay Ghemawhat, Jeff Dean, Chris Mumford, David Grogan, and Victor Costan.

LevelDB. https://github.com/google/leveldb, 2011.

[54] Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas,

Ivan Fernandez, Juan Gómez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas,

and OnurMutlu. Syncron: Efficient synchronization support for near-data-processing

architectures. In 2021 IEEE International Symposium on High-Performance Computer

Architecture (HPCA), pages 263–276. IEEE, 2021.

[55] Binny S. Gill. On Multi-level Exclusive Caching: Offline Optimality and Why

Promotions Are Better Than Demotions. In Proceedings of the 6th USENIX Symposium

on File and Storage Technologies (FAST ’08), San Jose, CA, February 2008.

[56] Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, and Idit Keidar. Scaling concur-

rent log-structured data stores. In Proceedings of the Tenth European Conference on

Computer Systems, pages 1–14, 2015.

http://rocksdb.org/

Bibliography 129

[57] Jorge Guerra, Himabindu Pucha, Joseph Glider, Wendy Belluomini, and Raju Ran-

gaswami. Cost Effective Storage using Extent Based Dynamic Tiering. In Proceedings

of the 9th USENIX Symposium on File and Storage Technologies (FAST ’11), San Jose,

CA, February 2011.

[58] David A. Holland, Elaine Angelino, GideonWald, and Margo I. Seltzer. Flash Caching

on the Storage Client. In Proceedings of the 11th USENIX Symposium on File and

Storage Technologies (FAST ’13), San Jose, CA, February 2013.

[59] Michio Honda, Giuseppe Lettieri, Lars Eggert, and Douglas Santry. PASTE: A

Network Programming Interface for Non-Volatile Main Memory. In Proceedings of the

15th Symposium on Networked Systems Design and Implementation (NSDI ’18), Renton,

WA, April 2018.

[60] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Yingwei Luo, Chen Ding, Song

Jiang, and Zhenlin Wang. LAMA: Optimized Locality-aware Memory Allocation for

Key-value Cache. In Proceedings of the USENIX Annual Technical Conference (USENIX

’15), Santa Clara, CA, July 2015.

[61] Sai Huang, Qingsong Wei, Dan Feng, Jianxi Chen, and Cheng Chen. Improving

Flash-Based Disk Cache with Lazy Adaptive Replacement. ACM Trans. Storage, 12(2),

2016.

[62] Norman C. Hutchinson, Larry L. Peterson, and Herman Rao. X-kernel: An open

operating system design. In Proc Second Workshop Workstation Oper Sys WWOS II,

1989.

[63] Stratos Idreos and Mark Callaghan. Key-Value Storage Engines. In Proceedings of the

2020 ACM SIGMOD International Conference on Management of Data (SIGMOD ’20),

Portland, OR, June 2020.

[64] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient and scalable serverless com-

puting for latency-sensitive, interactive microservices. In Proceedings of the 26th

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’21), Virtual Event, April 2021.

[65] Dejun Jiang, Yukun Che, Jin Xiong, and Xiaosong Ma. uCache: A Utility-Aware

Multilevel SSD Cache Management Policy. In 2013 IEEE 10th International Confer-

ence on High Performance Computing and Communications & 2013 IEEE International

Conference on Embedded and Ubiquitous Computing, pages 391–398, 2013.

[66] Song Jiang, Xiaoning Ding, Feng Chen, Enhua Tan, and Xiaodong Zhang. DULO: An

Effective Buffer Cache Management Scheme to Exploit Both Temporal and Spatial

Localities. In Proceedings of the 4thUSENIX Symposium on File and Storage Technologies

(FAST ’05), San Francisco, CA, December 2005.

Bibliography 130

[67] Theodore Johnson and Dennis Shasha. 2q: A low overhead high performance

buffer management replacement algorithm. In Proceedings of the 20th International

Conference on Very Large Data Bases, VLDB ’94, page 439–450, San Francisco, CA,

USA, 1994. Morgan Kaufmann Publishers Inc.

[68] Anna R Karlin, Kai Li, Mark S Manasse, and Susan Owicki. Empirical Studies of

Competitve Spinning for a Shared-memory Multiprocessor. ACM SIGOPS Operating

Systems Review, 25(5):41–55, 1991.

[69] R Kaur, A Asad, and F Mohammadi. A comprehensive review of processing-in-

memory architectures for deep neural networks. Computers, 13(7):174, 2024.

[70] Emine Ugur Kaynar, Mania Abdi, Mohammad Hossein Hajkazemi, Ata Turk, Raja R.

Sambasivan, David Cohen, Larry Rudolph, Peter Desnoyers, and Orran Krieger. D3N:

A multi-layer cache for the rest of us. In 2019 IEEE International Conference on Big

Data (Big Data), pages 327–338, 2019.

[71] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. An Online Algorithm

for Segmenting Time Series. In Proceedings 2001 IEEE international conference on data

mining, 2001.

[72] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,

Tim Kraska, and Thomas Neumann. SOSD: A Benchmark for Learned Indexes, 2019.

[73] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim

Kraska, and Thomas Neumann. RadixSpline: A Single-Pass Learned Index. arXiv

preprint arXiv:2004.14541, may 2020.

[74] Ricardo Koller, Ali José Mashtizadeh, and Raju Rangaswami. Centaur: Host-Side SSD

Caching for Storage Performance Control. In 2015 IEEE International Conference on

Autonomic Computing (ICAC ’15), Grenoble, France, July 2015.

[75] Ricardo Koller, Akshat Verma, and Raju Rangaswami. Estimating Application Cache

Requirement for Provisioning Caches in Virtualized Systems. In Proceedings of the

19th Annual Meeting of the IEEE International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems (MASCOTS), Washington,

DC, July 2011.

[76] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani Kristo, Guillaume

Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. SageDB: A Learned

Database System. In Proceedings of 9th Biennial Conference on Innovative Data Systems

Research, Asilomar, CA, January 2019.

Bibliography 131

[77] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The Case

for Learned Index Structures. In Proceedings of the 2018 ACM SIGMOD International

Conference on Management of Data (SIGMOD ’18), Houston, TX, June 2018.

[78] Kubernetes.io. What is cgroup v2. https://kubernetes.io/docs/concepts/ar
chitecture/cgroups/#cgroup-v2.

[79] Jaewon Kwak, Eunji Hwang, Tae-Kyung Yoo, Beomseok Nam, and Young-Ri Choi.

In-Memory Caching Orchestration for Hadoop. In 2016 16th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages 94–97, 2016.

[80] Bauplan Lab. Bauplan. https://www.bauplanlabs.com/.

[81] Avinash Lakshman and Prashant Malik. Cassandra – A Decentralized Structured

Storage System. In The 3rd ACM SIGOPS International Workshop on Large Scale

Distributed Systems and Middleware, Big Sky Resort, Montana, Oct 2009.

[82] Stéphane Lathuilière, Pablo Mesejo, Xavier Alameda-Pineda, and Radu Horaud. A

comprehensive analysis of deep regression. IEEE transactions on pattern analysis and

machine intelligence, 2019.

[83] Dusol Lee, Inhyuk Choi, Chanyoung Lee, Sungjin Lee, and Jihong Kim. P2Cache:

An Application-Directed Page Cache for Improving Performance of Data-Intensive

Applications. In 15th USENIX Workshop on Hot Topics in Storage and File Systems

(HotStorage ’20), Boston, MA, July 2023.

[84] Eunji Lee and Hyokyung Bahn. Caching Strategies for High-Performance Storage

Media. ACM Trans. Storage, 10(3), 2014.

[85] Eunji Lee, Hyojung Kang, Hyokyung Bahn, and Kang G. Shin. Eliminating Periodic

Flush Overhead of File I/O with Non-Volatile Buffer Cache. IEEE Transactions on

Computers, 65(4):1145–1157, 2016.

[86] Cheng Li, Philip Shilane, Fred Douglis, Hyong Shim, Stephen Smaldone, and Grant

Wallace. Nitro: A Capacity-Optimized SSD Cache for Primary Storage. In Proceedings

of the USENIX Annual Technical Conference (USENIX ’14), Philadelphia, PA, June 2014.

[87] Chu Li, Dan Feng, Yu Hua, and Fang Wang. Improving RAID Performance Using an

Endurable SSD Cache. In 2016 45th International Conference on Parallel Processing

(ICPP), pages 396–405, 2016.

[88] Pengfei Li, Yu Hua, Pengfei Zuo, and Jingnan Jia. A Scalable Learned Index Scheme

in Storage Systems. arXiv preprint arXiv:1905.06256, 2019.

https://kubernetes.io/docs/concepts/architecture/cgroups/#cgroup-v2
https://kubernetes.io/docs/concepts/architecture/cgroups/#cgroup-v2
https://www.bauplanlabs.com/

Bibliography 132

[89] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. Lisa: A learned index

structure for spatial data. In Proceedings of the 2020 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’20, page 2119–2133, New York, NY,

USA, 2020.

[90] Xuhui Li, Ashraf Aboulnaga, Kenneth Salem, Aamer Sachedina, and Shaobo Gao.

Second-Tier Cache Management Using Write Hints. In Proceedings of the 4th USENIX

Symposium on File and Storage Technologies (FAST ’05), San Francisco, CA, December

2005.

[91] Linux Kernel Organization. Autonuma. https://git.kernel.org/pub/scm/lin
ux/kernel/git/vishal/tiering.git?h=tiering-0.8/.

[92] Inc. Linux Kernel Organization. Linux Page Replacement Policy. https://www.ke
rnel.org/doc/gorman/html/understand/understand013.html.

[93] Zhang Liu, Hee Won Lee, Yu Xiang, Dirk Grunwald, and Sangtae Ha. eMRC: Efficient

Miss Ratio Approximation for Multi-Tier Caching. In Proceedings of the 19th USENIX

Conference on File and Storage Technologies (FAST ’21), Virtual Conference, February

2021.

[94] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency

of training neural networks. In Advances in Neural Information Processing Systems

(NIPS ’14’), pages 855–863, 2014.

[95] André Lopes, Daniel Castro, and Paolo Romano. Pim-stm: Software transactional

memory for processing-in-memory systems. In Proceedings of the 29th ACM Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems, Volume 2, ASPLOS ’24, 2024.

[96] Baotong Lu, Jialin Ding, Eric Lo, Umar Farooq Minhas, and Tianzheng Wang. Apex:

a high-performance learned index on persistent memory. Proceedings of the VLDB

Endowment, 15(3):597–610, November 2021.

[97] Fangming Lu, Xingda Wei, Zhuobin Huang, Rong Chen, Minyu Wu, and Haibo Chen.

Serialization/deserialization-free state transfer in serverless workflows. In Proceedings

of the EuroSys Conference (EuroSys ’24), Anthens, Greece, April 2024.

[98] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. WiscKey: Separating Keys from Values in SSD-conscious

Storage. In Proceedings of the 14th USENIX Conference on File and Storage Technologies

(FAST ’16), Santa Clara, CA, February 2016.

https://git.kernel.org/pub/scm/linux/kernel/git/vishal/tiering.git?h=tiering-0.8/
https://git.kernel.org/pub/scm/linux/kernel/git/vishal/tiering.git?h=tiering-0.8/
https://www.kernel.org/doc/gorman/html/understand/understand013.html
https://www.kernel.org/doc/gorman/html/understand/understand013.html

Bibliography 133

[99] Frank Sifei Luan, Stephanie Wang, Samyukta Yagati, Sean Kim, Kenneth Lien, Isaac

Ong, Tony Hong, Sangbin Cho, Eric Liang, and Ion Stoica. Exoshuffle: An Extensible

Shuffle Architecture. In Proceedings of the ACM SIGCOMM 2023 Conference, ACM

SIGCOMM ’23, page 564–577, 2023.

[100] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic, Somali Chaterji,

and Saurabh Bagchi. SONIC: Application-aware Data Passing for Chained Serverless

Applications. In Proceedings of the USENIX Annual Technical Conference (USENIX ’21),

Virtual Conference, July 2021.

[101] ThanosMakatos, Yannis Klonatos, Manolis Marazakis, Michail D. Flouris, andAngelos

Bilas. Using Transparent Compression to Improve SSD-Based I/O Caches. In

Proceedings of the 5th European Conference on Computer Systems (EuroSys ’10), Paris,

France, April 2010.

[102] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,

Alfons Kemper, Thomas Neumann, and Tim Kraska. Benchmarking learned indexes.

Proc. VLDB Endow., 14(1):1–13, September 2020.

[103] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger. Evaluation

Techniques for Storage Hierarchies. IBM Systems Journal, 9, 1970.

[104] Frank McSherry, Michael Isard, and Derek Gordon Murray. Scalability! but at what

cost? In USENIX Workshop on Hot Topics in Operating Systems, 2015.

[105] Fei Meng, Li Zhou, Xiaosong Ma, Sandeep Uttamchandani, and Deng Liu. vCache-

Share: Automated Server Flash Cache Space Management in a Virtualization Envi-

ronment. In Proceedings of the USENIX Annual Technical Conference (USENIX ’14),

Philadelphia, PA, June 2014.

[106] Mathias Meyer. The Riak Handbook, 2012.

[107] MongoDB. MongoDB WiredTiger. https://docs.mongodb.org/manual/core
/wiredtiger/.

[108] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Rachata. A modern

primer on processing in memory. arXiv preprint arXiv:2012.03112, 2020. Updated

January 2025.

[109] Yuanjiang Ni, Ji Jiang, Dejun Jiang, Xiaosong Ma, Jin Xiong, and Yuangang Wang.

S-RAC: SSD Friendly Caching for Data Center Workloads. In Proceedings of the 9th

ACM International on Systems and Storage Conference (SYSTOR ’16), Haifa, Israel, June

2016.

https://docs.mongodb.org/manual/core/wiredtiger/
https://docs.mongodb.org/manual/core/wiredtiger/

Bibliography 134

[110] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. SOCK: Rapid task provisioning

with Serverless-Optimized containers. In 2018 USENIX Annual Technical Conference

(USENIX ATC 18), July 2018.

[111] Yongseok Oh, Jongmoo Choi, Donghee Lee, and Sam H. Noh. Caching Less for

Better Performance: Balancing Cache Size and Update Cost of Flash Memory Cache

in Hybrid Storage Systems. In Proceedings of the 10th USENIX Symposium on File and

Storage Technologies (FAST ’12), San Jose, CA, February 2012.

[112] Our World in Data. Historical price of computer memory and storage. https:
//ourworldindata.org/grapher/historical-cost-of-computer-memory-a
nd-storage?time=2010..latest&facet=metric, 2024.

[113] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The Log-

Structured Merge-Tree (LSM-Tree). Acta Informatica, 33(4), 1996.

[114] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. IO-Lite: A unified I/O buffering

and caching system. In Proceedings of the 3rd Symposium on Operating Systems Design

and Implementation (OSDI ’99), New Orleans, Louisiana, February 1999.

[115] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel Madden. Starling:

A scalable query engine on cloud functions. In Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data (SIGMOD ’20), Portland, OR, June

2020.

[116] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishna-

murthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The operating system is

the control plane. In Proceedings of the 11th Symposium on Operating Systems Design

and Implementation (OSDI ’14), Broomfield, CO, October 2014.

[117] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. PebblesDB:

Building Key-Value Stores using Fragmented Log-Structured Merge Trees. In Proceed-

ings of the 26th ACM Symposium on Operating Systems Principles (SOSP ’17), Shangai,

China, October 2017.

[118] Alexander Van Renen, Dominik Horn, Pascal Pfeil, Kapil Vaidya, Wenjian Dong,

Murali Narayanaswamy, Zhengchun Liu, Gaurav Saxena, Andreas Kipf, and Tim

Kraska. Why TPC Is Not Enough: An Analysis of the Amazon Redshift Fleet. In

Proceedings of the 50th International Conference on Very Large Databases (VLDB 50),

Guangzhou, China, August 2024.

[119] Robert Ricci, Eric Eide, and CloudLab Team. Introducing CloudLab: Scientific infras-

tructure for advancing cloud architectures and applications. USENIX ;login:, 39(6),

2014.

https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage?time=2010..latest&facet=metric
https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage?time=2010..latest&facet=metric
https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage?time=2010..latest&facet=metric

Bibliography 135

[120] Liana V. Rodriguez, Farzana Yusuf, Steven Lyons, Eysler Paz, Raju Rangaswami, Jason

Liu, Ming Zhao, and Giri Narasimhan. Learning Cache Replacement with CACHEUS.

In Proceedings of the 19th USENIX Conference on File and Storage Technologies (FAST

’21), Virtual Conference, February 2021.

[121] Trausti Saemundsson, Hjortur Bjornsson, Gregory Chockler, and Ymir Vigfusson. Dy-

namic Performance Profiling of Cloud Caches. In Proceedings of the ACM Symposium

on Cloud Computing (SOCC ’14), Seattle, WA, November 2014.

[122] Samsung Semiconductor. PIM: Processing-In-Memory Technology. https://semi
conductor.samsung.com/technologies/memory/pim/, 2023.

[123] Russell Sears and Raghu Ramakrishnan. bLSM: A General Purpose Log Structured

Merge tree. In Proceedings of the 2012 ACM SIGMOD International Conference on

Management of Data (SIGMOD ’12), Scottsdale, AZ, May 2012.

[124] Amazon Web Service. Aws data pipeline documentation. https://docs.aws.ama
zon.com/data-pipeline/.

[125] Amazon Web Services. Ec2 high memory instances with 18tib and 24tib of memory

are now available with on-demand and savings plan purchase options. https:
//aws.amazon.com/about-aws/whats-new/2022/10/ec2-high-memory-ins
tances-18tib-24tib-memory-available-on-demand-savings-plan-purch
ase-options/, 2022.

[126] Peter Shah and Keith Smith. Method for using service level objec-

tives to dynamically allocate cache resources among competing workloads.

https://patents.google.com/patent/US9836407B2/en, 2017.

[127] Shreya Shankar, Rolando Garcia, Joseph M. Hellerstein, and Aditya G. Parameswaran.

Operationalizing machine learning: An interview study. arXiv, 2022.

[128] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. Benchmarking state-of-

the-art deep learning software tools. In 2016 7th International Conference on Cloud

Computing and Big Data (CCBD), pages 99–104. IEEE, 2016.

[129] Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. Applying deep learning

to the cache replacement problem. In Proceedings of the 52nd Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO ’52, page 413–425, New York,

NY, USA, 2019. Association for Computing Machinery.

[130] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

hadoop distributed file system. In Proceedings of the 26th IEEE Symposium on Mass

Storage Systems and Technologies (MSST ’10), Incline Village, Nevada, May 2010.

https://semiconductor.samsung.com/technologies/memory/pim/
https://semiconductor.samsung.com/technologies/memory/pim/
https://docs.aws.amazon.com/data-pipeline/
https://docs.aws.amazon.com/data-pipeline/
https://aws.amazon.com/about-aws/whats-new/2022/10/ec2-high-memory-instances-18tib-24tib-memory-available-on-demand-savings-plan-purchase-options/
https://aws.amazon.com/about-aws/whats-new/2022/10/ec2-high-memory-instances-18tib-24tib-memory-available-on-demand-savings-plan-purchase-options/
https://aws.amazon.com/about-aws/whats-new/2022/10/ec2-high-memory-instances-18tib-24tib-memory-available-on-demand-savings-plan-purchase-options/
https://aws.amazon.com/about-aws/whats-new/2022/10/ec2-high-memory-instances-18tib-24tib-memory-available-on-demand-savings-plan-purchase-options/

Bibliography 136

[131] Zhenyu Song, Daniel S. Berger, Kai Li, and Wyatt Lloyd. Learning relaxed belady

for content distribution network caching. In 17th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 20), February 2020.

[132] Spotify. Luigi. https://github.com/spotify/luigi.

[133] SQLite. SQLite transactional SQL database engine. http://www.sqlite.org/.

[134] Timothy Stamler, Deukyeon Hwang, Amanda Raybuck, Wei Zhang, and Simon Pe-

ter. zIO: Accelerating IO-Intensive applications with transparent Zero-Copy IO. In

Proceedings of the 16th USENIX Conference on Operating Systems Design and Imple-

mentation (OSDI ’22), Carlsbad, CA, July 2022.

[135] Ioan Stefanovici, Eno Thereska, Greg O’Shea, Bianca Schroeder, Hitesh Ballani,

Thomas Karagiannis, Antony Rowstron, and Tom Talpey. Software-Defined Caching:

Managing Caches in Multi-Tenant Data Centers. In Proceedings of the ACM Sympo-

sium on Cloud Computing (SOCC ’15), Kohala Coast, HI, August 2015.

[136] Michael Stonebraker. Operating System Support for Database Management. Com-

mun. ACM, 24(7), 1981.

[137] Jingbo Su, Jiahao Li, Luofan Chen, Cheng Li, Kai Zhang, Liang Yang, and Yinlong Xu.

Revitalizing the forgotten On-Chip DMA to expedite data movement in NVM-based

storage systems. In Proceedings of the 21th USENIX Conference on File and Storage

Technologies (FAST ’23), Santa Clara, CA, February 2023.

[138] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic Partitioning of Shared Cache

Memory. J. Supercomput., 28(1), 2004.

[139] Jinghan Sun, Shaobo Li, Yunxin Sun, Chao Sun, Dejan Vucinic, and Jian Huang.

Leaftl: A learning-based flash translation layer for solid-state drives. In Proceedings

of the 28th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, Volume 2, ASPLOS 2023, 2023.

[140] Jacopo Tagliabue. You do not need a bigger boat: Recommendations at reason-

able scale in a (mostly) serverless and open stack. In Fifteenth ACM Conference on

Recommender Systems, RecSys ’21, page 598–600, 2021.

[141] Jacopo Tagliabue, Hugo Bowne-Anderson, Ville Tuulos, Savin Goyal, Romain Cledat,

and David Berg. Reasonable scale machine learning with open-source metaflow.

ArXiv, abs/2303.11761, 2023.

[142] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo Wang, Minjie

Wang, and Haibo Chen. XIndex: A Scalable Learned Index for Multicore Data Storage.

In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, pages 308–320, 2020.

https://github.com/spotify/luigi
http://www.sqlite.org/

Bibliography 137

[143] Dan Tang, Yungang Bao, Weiwu Hu, and Mingyu Chen. DMA cache: Using on-

chip storage to architecturally separate I/O data from CPU data for improving I/O

performance. In Proceedings of the 16th International Symposium on High Performance

Computer Architecture (HPCA-10), Bangalore, India, January 2010.

[144] Petroc Taylor. Volume of data/information created, captured, copied, and consumed

worldwide from 2010 to 2023, with forecasts from 2024 to 2028. https://www.stat
ista.com/statistics/871513/worldwide-data-created/.

[145] Jordan Tigani. Big data is dead. https://motherduck.com/blog/big-data-i
s-dead/, 2023.

[146] Kirill Tkhai. process_vm_mmap. https://lore.kernel.org/linux-mm/155836
082337.2441.15115541609966690918.stgit@localhost.localdomain/T/.

[147] Matthew Topol. In-Memory Analytics with Apache Arrow: Perform fast and efficient

data analytics on both flat and hierarchical structured data. 2022.

[148] R.B. Tremaine, T.B. Smith, M. Wazlowski, D. Har, Kwok-Ken Mak, and S. Arramreddy.

Pinnacle: Ibm mxt in a memory controller chip. IEEE Micro, 21(2):56–68, 2001.

[149] Chia-Che Tsai, Yang Zhan, Jayashree Reddy, Yizheng Jiao, Tao Zhang, and Donald E.

Porter. How to GetMore Value from Your File SystemDirectory Cache. In Proceedings

of the 25th ACM Symposium on Operating Systems Principles (SOSP ’15), Monterey,

California, October 2015.

[150] UPMEM. UPMEM: True Processing-In-Memory Acceleration Solution. https:
//www.upmem.com/.

[151] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad, and Nohhyun Park. Cache

Modeling andOptimization usingMiniature Simulations. In Proceedings of the USENIX

Annual Technical Conference (USENIX ’17), Santa Clara, CA, July 2017.

[152] Carl A. Waldspurger, Nohhyun Park, Alexander Garthwaite, and Irfan Ahmad. Effi-

cient MRC Construction with SHARDS. In Proceedings of the 12th USENIX Symposium

on File and Storage Technologies (FAST ’15), Santa Clara, CA, February 2015.

[153] Yang Wang, Jiwu Shu, Guangyan Zhang, Wei Xue, and Weimin Zheng. SOPA:

Selecting the Optimal Caching Policy Adaptively. ACM Trans. Storage, 6(2), 2010.

[154] Johannes Weiner. PSI - Pressure Stall Information. https://www.kernel.org/doc
/html/latest/accounting/psi.html, April 2018.

https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://motherduck.com/blog/big-data-is-dead/
https://motherduck.com/blog/big-data-is-dead/
https://lore.kernel.org/linux-mm/155836082337.2441.15115541609966690918.stgit@localhost.localdomain/T/
https://lore.kernel.org/linux-mm/155836082337.2441.15115541609966690918.stgit@localhost.localdomain/T/
https://www.upmem.com/
https://www.upmem.com/
https://www.kernel.org/doc/html/latest/accounting/psi.html
https://www.kernel.org/doc/html/latest/accounting/psi.html

Bibliography 138

[155] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao Wang, Blaise

Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain, Chunqiang Tang, and Dimitrios

Skarlatos. TMO: Transparent Memory Offloading in Datacenters. In Proceedings of

the 27th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS ’22), Lausanne, Switzerland, February 2022.

[156] JohannesWeiner andDan Schatzberg. Transparentmemory offloading: morememory

at a fraction of the cost and power. https://engineering.fb.com/2022/06/2
0/data-infrastructure/transparent-memory-offloading-more-memory-a
t-a-fraction-of-the-cost-and-power/.

[157] Wikipedia. Data compression. https://en.wikipedia.org/wiki/Data_compr
ession.

[158] Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas J. A. Harvey, and Andrew

Warfield. Characterizing Storage Workloads with Counter Stacks. In Proceedings

of the 11th Symposium on Operating Systems Design and Implementation (OSDI ’14),

Broomfield, CO, October 2014.

[159] Theodore Wong and John Wilkes. My Cache or Yours? Making Storage More

Exclusive. In Proceedings of the USENIX Annual Technical Conference (USENIX ’02),

Monterey, CA, June 2002.

[160] Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan Alagappan, Rathijit

Sen, Kwanghyun Park, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

The Storage Hierarchy is Not a Hierarchy: Optimizing Caching on Modern Storage

Devices with Orthus. In Proceedings of the 19th USENIX Conference on File and Storage

Technologies (FAST ’21), Virtual Conference, February 2021.

[161] Xingbo Wu, Li Zhang, Yandong Wang, Yufei Ren, Michel Hack, and Song Jiang.

ZExpander: A Key-Value Cache with Both High Performance and Fewer Misses. In

Proceedings of the EuroSys Conference (EuroSys ’15), Bordeaux, France, April 2015.

[162] Qing Xie, Chaoyi Pang, Xiaofang Zhou, Xiangliang Zhang, and Ke Deng. Maximum

Error-bounded Piecewise Linear Representation for Online Stream Approximation.

The VLDB journal, 23(6), 2014.

[163] Doris Xin, Litian Ma, Shuchen Song, and Aditya G. Parameswaran. How developers

iterate on machine learning workflows - a survey of the applied machine learning

literature. ArXiv, abs/1803.10311, 2018.

[164] Tim Xu. Quality of Service for Memory Resources. https://kubernetes.io/bl
og/2021/11/26/qos-memory-resources/, 2021.

https://engineering.fb.com/2022/06/20/data-infrastructure/transparent-memory-offloading-more-memory-at-a-fraction-of-the-cost-and-power/
https://engineering.fb.com/2022/06/20/data-infrastructure/transparent-memory-offloading-more-memory-at-a-fraction-of-the-cost-and-power/
https://engineering.fb.com/2022/06/20/data-infrastructure/transparent-memory-offloading-more-memory-at-a-fraction-of-the-cost-and-power/
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Data_compression
https://kubernetes.io/blog/2021/11/26/qos-memory-resources/
https://kubernetes.io/blog/2021/11/26/qos-memory-resources/

Bibliography 139

[165] Gala Yadgar, Michael Factor, Kai Li, and Assaf Schuster. Management of Multilevel,

Multiclient Cache Hierarchies with Application Hints. ACM Trans. Comput. Syst.,

29(2), 2011.

[166] Gala Yadgar, Michael Factor, and Assaf Schuster. Karma: Know-it-All Replacement

for a Multilevel Cache. In Proceedings of the 5th USENIX Symposium on File and

Storage Technologies (FAST ’07), San Jose, CA, February 2007.

[167] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu Tang, Hong Jiang, Changsheng

Xie, and Xubin He. MatrixKV: Reducing write stalls and write amplification in

LSM-tree based KV stores with matrix container in NVM. In 2020 USENIX Annual

Technical Conference (USENIX ATC 20), July 2020.

[168] Vinson Young, Sanjay Kariyappa, and Moinuddin K. Qureshi. Cram: Efficient

hardware-based memory compression for bandwidth enhancement. arXiv, 2018.

[169] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy

McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed

datasets: A Fault-Tolerant abstraction for In-Memory cluster computing. In Proceed-

ings of the 9th Symposium on Networked Systems Design and Implementation (NSDI

’12), San Jose, CA, April 2012.

[170] Feng Zhang, Weitao Wan, Chenyang Zhang, Jidong Zhai, Yunpeng Chai, Haixiang

Li, and Xiaoyong Du. CompressDB: Enabling Efficient Compressed Data Direct Pro-

cessing for Various Databases. In Proceedings of the 2022 ACM SIGMOD International

Conference on Management of Data (SIGMOD ’22), Philadelphia, PA, USA, June 2022.

[171] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards Practical Page Coloring-

Based Multicore Cache Management. In Proceedings of the EuroSys Conference (Eu-

roSys ’09), Nuremburg, Germany, April 2009.

[172] Yuanyuan Zhou, Zhifeng Chen, and Kai Li. Second-level buffer cache management.

IEEE Transactions on parallel and distributed systems, 15(6):505–519, 2004.

	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	A Learned Index for Log-Structured Merge Trees
	Application and Kernel Cache Cooperation
	Towards Zero-Copy Data Pipelines
	Contributions and Highlights
	Overview

	From WiscKey to Bourbon: A Learned Index for Log-Structured Merge Trees
	Background
	LSM and LevelDB
	WiscKey
	Optimizing Lookups with Learned Indexes

	Learned Indexes: a Good Match for LSMs?
	Learned Indexes: Beneficial Regimes
	Learned Indexes with Writes

	Bourbon Design
	Learning the Data
	Supporting Variable-size Values
	Level vs. File Learning
	Cost vs. Benefit Analyzer
	Bourbon: Putting it All Together

	Evaluation
	Which Portions does Bourbon Optimize?
	Performance under No Writes
	Range Queries
	Efficacy of Cost-benefit Analyzer with Writes
	Real Macrobenchmarks
	Performance on Fast Storage
	Performance with Limited Memory
	Error Bound and Memory Consumption

	Conclusion

	Symbiosis: The Art of Application and Kernel Cache Cooperation
	Motivation and Framework
	The Application-Kernel Cache Structure
	Challenge: Memory Partitioning
	Cache Coordination with Symbiosis

	The Cache Partitioning Problem
	Influential Factors
	Analysis
	Discussion

	Design and Implementation of Symbiosis
	Design
	GhostSim Optimization Techniques
	Multiple Implementations

	Evaluation
	Static Workloads
	Dynamic Workloads
	Real World Workloads

	Conclusion

	Kelvin: Towards Zero Copying and Duplication in Data Pipelines
	Background and Motivation
	Background: DAG-based Pipelines on a Single Machine
	Background: Kernel Shared Memory
	Background: User-Space Sharing
	Requirements and Challenges

	Kelvin Design
	Shared-Memory Mechanisms
	Zero-Copy Communication
	Resource Management

	Implementation: Kelvin on Linux
	DeAnon Kernel Module
	SIPC Protocol
	Node Container
	DeCache: Shared Data Loading
	Resource Manager

	Evaluation
	DeAnon and SIPC
	DeCache: Input Data Deduplication
	Eviction Mechanisms
	DABstep: Evaluation with Real DAGs

	Conclusion

	Related Work
	Machine Learning for Indexing and Caching
	LSM-tree Optimizations
	Cache Management
	Kernel Methods in Memory Management
	Data Pipelines Techniques
	Hardware-Related Advancements for Memory Efficiency

	Conclusions
	Summary
	Bourbon
	Symbiosis
	Kelvin

	Lessons Learned
	Future Work
	Closing Words

	Bibliography

