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Abstract

We present our experience of turning a Linux clus-
ter into a high-performance parallel sorting system.
Our implementation, WIND-SORT, broke the Data-
mation record by roughly a factor of two, sorting
1 million 100-byte records in 0.48 seconds. We have
identified three keys to our success: developing a
fast remote execution service, configuring the clus-
ter properly, and avoiding the potential ill-effects of
occasionally faulty hardware.

1 Introduction

When Datamation [1] was introduced in 1985, sort-
ing 95 Mbyte of data was a time consuming en-
deavor. Advances in both computing power and
software algorithms have reduced the time of the
benchmark by three orders of magnitude (see Fig-
ure 1), considerably altering the nature of the Data-
mation sort. Whereas originally intended as an I/O-
and memory-intensive benchmark, Datamation is
now best considered a benchmark of interactive
I/O performance.

Although Datamation’s importance as a database
benchmark has diminished, we believe the bench-
mark remains relevant for three reasons. First,
Datamation stresses the importance of start-up
time. Start-up time has been noted as one of three
factors limiting performance of parallel systems [7],
and has been a problem for both clusters [2] as well
as SMPs [8]. Second, Datamation is an example of
an interactive parallel application. For parallelism
to become commonplace, interactive applications
must become a reality. Third, interactive parallel

∗This technical report describes work completed in the spring
of 2001.
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Figure 1: 15 years of Datamation.

jobs are particularly sensitive to performance fluc-
tuations that occur in large-scale systems [3]. Thus,
if the Datamation sort runs consistently well upon
a given platform, conclusions can be drawn on the
ability of the platform to avoid or tolerate the pres-
ence of such perturbations.

In tuning the sort for our Linux-based cluster-of-
PCs platform, we found that three elements were
crucial in achieving consistent high-performance.
First, we developed a lean parallel remote exe-
cution layer in order to minimize start-up time.
Second, we configured Linux properly, by en-
abling SCSI tagged command queueing, altering
an overly-pessimistic ARP caching scheme, and in-
creasing socket buffer sizes so as to avoid message-
buffer overflows. In all of these cases, the default
values were not desirable and led to performance
problems that were both unexpected and some-
times difficult to discover. Third, we altered the
communication layer to more aggresively resend
packets in order to overcome an occasionally faulty
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network switch module. These proactive re-sends
are particularly important for jobs that run for ex-
tremely short periods of time.

The remainder of the paper is organized as fol-
lows. In Section 2, we discuss our base sorting code
and in Section 3 the hardware and supporting soft-
ware. Our efforts to understand and optimize per-
formance for startup, disk I/O, and network I/O are
in Section 4. The integration of these efforts into a
record breaking sort occur in Section 5. Our con-
clusions are in Section 6.

2 Background

This section describes the sort algorithm we used.
The implementation is derived from NOW-Sort [2],
which assumes that the input records are evenly
distributed across P nodes, numbered 0 through
P − 1. The sorted output file is range-partitioned
across the node such that the lowest-valued keys
are on node 0 and highest-valued keys on node
P − 1; however, the number of records per node
will only be approximately equal and depends on
the exact distribution of key values within the input
files.

The algorithm consists of four steps. In the first
step, each of the nodes opens its input file and reads
from the file in fixed-sized buffers. After each buffer
is read, we copy each record into a send-buffer al-
located for each destination node. As in NOW-Sort,
the destination node is determined by the top so-
many bits of each key; this approach assumes that
the key values are uniformly distributed.

In the distribution phase, each node sends the
records it read to the node that will sort records
within its range-partition. At the receiver site, the
keys are separated from their records and placed in
one of B = 2

b buckets based on the next b high-
order bits of the key; a pointer is kept to the full 100-
byte record stored in memory. This step ends with
a synchronization across all nodes to ensure that all
records have been sent and received.

In the sort step, each node performs an in-core
sort on its records. A conventional quicksort algo-
rithm sorts the data.

In the final phase, each node follows the sorted
keys and pointers to gather the records into a con-
tiguous buffer. The sorted keys and accompanying
records are written to a local file. The concatenated
output files on all nodes represent the sorted ver-
sion of the concatenated input files.

There are two main differences from NOW-Sort
that are both fall-outs of our emphasis on the Data-

mation sort. First, NOW-Sort and other sorts pre-
viously used overlap between the read and distri-
bution phases. We discovered that due to the small
amount of data per node there is no benefit to over-
lapping these two steps of the algorithm – the cost
of starting the extra threads render this technique
undesirable for small amounts of data. Second, we
utilize a quicksort instead of a highly specialized
partial radix/bubble sort hybrid. The differences
among these algorithms at small data sizes is negli-
gable, and therefore we chose to use the conceptu-
ally simpler approach.

3 Environment

3.1 Hardware

WIND-SORT runs on a 32 node Linux cluster. Each
node contains two Intel 550 MHz Pentium III pro-
cessors with 896 Mbyte of available memory and
five 8.5 GB IBM 9LZX disks. The disks are config-
ured on two Ultra II SCSI buses, rated at 80 Mbyte/s
each. Three disks, including the operating system
root disk, are on one bus. The remaining two are
connected to the other bus. WIND-SORT’s data files
reside on the four non-root disks.

The nodes are networked by 100 Mbit and gigabit
Ethernet. The gigabit Ethernet is a private network
for the cluster. The 100 Mbit network provides job
launching from an external system and a link to the
departmental network. The gigabit Ethernet cards
are Intel PRO/1000 F Server Adapters. A 32-port In-
tel NetStructure 6000 Gigabit Ethernet switch con-
nects all of the gigabit NICs.

3.2 System software

Our cluster’s system software is primarily
commodity-based, with a few additions from
the research community, as well as the develop-
ment of our own job launching software. Each
node in our cluster runs Linux 2.2.19 and uses the
ext2 file system and Linux RAID software. Jobs
are started in parallel using our own software,
�����

, described in more detail in the next section.
Our sorting code also depends on two pieces
of research software: Split-C and a UDP-based
implementation of Active Messages. Split-C [6] is
a parallel extension to C that supports efficient
access to a global address space on distributed
memory machines. For communication, Split-C
uses Active Messages [9], a restricted, lightweight
version of remote procedure calls. Since Active
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Messages in our cluster is layered upon UDP [4],
the implementation is not as efficient as previous
highly-tuned timplementations.

4 From 0.996 to 0.48

4.1 Startup cost

The launch time of a parallel program on a clus-
ter can add considerable overhead to the program
run time. We found that the currently available job
launch packages impose considerable overhead.
REXEC and SSH are two common packages which
we initially considered. Launching a null job, which
exits immediately, on a remote node took 180 ms
for REXEC and 920 ms for SSH. In measurements
not shown here, we found that REXEC and SSH do
not scale well as more jobs are launched. These
numbers reveal the need for a high performance
launcher. For our sort, we developed a special
launcher called ice (Interactive Cluster Execution).

An ice daemon runs on each node of the clus-
ter, and is responsible for receiving messages
from clients and spawning jobs in response. To
launch a parallel job, a user can simply type:

� ���

������� �	� ��
��� ������� ��� ������� ����� ������� � � ��
��
. The ice

command contacts ice daemon on the specified
node or nodes requesting the launch of a job. The
request includes the environment variables of the
ice command. In response to a request, each ice
daemon creates, by default, connections back to
the requesting ice command to redirect program
output and to control the program. After creating
the connections, each ice daemon forks a new pro-
cess and waits for the completion of the job. At
completion the exit status of the remote job is sent
back to the spawning node.

In addition to the basic operation described, ice
allows for several optimizations. First, the pro-
gram output connection can be turned off. The cre-
ation of this connection can be expensive as TCP is
used. WIND-SORT only used this optimization af-
ter debugging was completed. Second, the con-
trol connection can use UDP instead of the default
of TCP. Finally, the ice daemon can cache environ-
ment variables and hostname to IP translations.
This caching scheme works well for our static envi-
ronment. The results of each of these optimizations
is shown in Figure 2. ice with optimizations min-
imizes the launch time of WIND-SORT to less than
80 ms on a 32 node cluster.
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Figure 2: Ice scaling comparison. This graph plots

the start-up performance of the ice remote execution layer.

Each line has the following four parameters: control pro-

tocol (TCP or UDP), data protocol (TCP or off) for pro-

gram output, hostname cache (off or on), and environ-

ment cache (off or on). The numbers in parentheses spec-

ify the parameters of a best-fit line through the data points

(the b and a of y = ax + b).

4.2 Disk I/O

To understand disk I/O in our cluster, we gathered
disk performance data over a range of file sizes. All
data was gathered using software RAID 0 with 8 KB
stripes and four disks. Reads were performed in
3600 byte chunks, while writes were performed in
40,000 byte increments. These sizes were chosen
for coding convience after determining Linux 2.2.19
is relatively insensitive to I/O chunk sizes. The file
system caches were flushed before each measure-
ment. These results are shown in Figure 3 for reads
and Figure 4 for writes. The figures only show the
data for less than 10 Mbyte of data, which is the area
of interest for Datamation on a 32 node cluster.

We made four observations from the data we
collected. Read bandwidth across the four disks
nearly reaches the aggregate rated performance of
77.6 Mbyte/s. The small amount of transfered data
in Figure 3 does not show this due to software and
hardware overheads. In other measurements, not
shown here, we found that read bandwidth peaks at
74.4 Mbyte/s when the amount of data being read
exceeds 90 Mbyte. We also observed the addition of
more disks increases performance. With the small
amount of data transfered during WIND-SORT (ap-
proximately 3 Mbyte per node) we were concerned
that adding more disks might actually reduce per-
formance. Performance can decrease due to the
overhead of striping, due to variations in perfor-
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Figure 3: Disk read performance scaling. This graph

shows how disk performance scales for data transfered

and number of disk used. Read performance scales well.

Each point represents the average of 30 trials.

mance characteristics between the disks or even
due to such a seemingly minor factor as the loca-
tion of the disk arm when the read begins. This
was not the case in WIND-SORT but is seen in very
small transfers in Figures 3 and 4 when the amount
of data transfered is less than 0.5 Mbyte.

In terms of writes, we found write performance
for four disks was much lower than expected. The
manufacturer rates the disks at 19.4 Mbyte/s for
sustained transfers from the outer tracks [5], yet the
disks originally delivered only 6 Mbyte/s of band-
width.

Several attempts were made to improve this per-
formance. One of these was enabling SCSI tagged
command queuing in the SCSI driver. Tagged com-
mand queuing allows more than one outstanding
SCSI request per device for better request schedul-
ing. Performance increased for a single disk from
6 Mbyte/s to 18 Mbyte/s. (Figure 4 has tagged
command queuing enabled.) However, even with
tagged command queuing enabled, write perfor-
mance does not scale as disks are added; write
bandwidth for four disks is less than 40 Mbyte/s.
Using user-level striping did not show significant
differences in performance from the kernel-level
RAID software. Additionally, efforts to determine
if the disk write limitation was due to the kernel’s
structure and policies revealed little1.

Unlike NOW-Sort, our disk I/O performance was

1Running NetBSD on a cluster node produced the same re-
sults. The only common components when NetBSD and Linux
when run on our cluster are the core of the SCSI driver and the
hardware. It is therefore our suspicion that the limitation is due
to one of these two components.
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Figure 4: Disk write performance scaling. Write perfor-

mance with SCSI tagged command queuing enabled, as

shown in this graph, scales to less than half the expected

bandwidth of 80 Mbyte/s. Each point represents the aver-

age of 30 trials.

not improved by the use of implicit I/O. WIND-SORT

used explicit I/O using the
� ��� �����

and �
� � � � ���

sys-
tem calls rather than performing implicit I/O using
��� � �����

. Through measurement, we found that ag-
gregate read performance using

��� � �����
sustained

about half of the bandwidth seen using
� ��� �����

. The
Linux 2.2 implementation of

��� � �����
is not as well-

tuned as other Unix implementations; for example,
it lacks

� � ��� ��
�� ���
which is used in other systems to

provide hints to the virtual memory system that can
trigger page prefetching.

4.3 Network

The distribution time was the largest component
of our sort times. In the ideal case of a node-
to-node transfer using UDP, our network delivered
37.5 Mbyte/s as shown in Figure 5. When all-to-
all communication occurs in a UDPAM-based per-
formance test, the network delivered roughly half
of that rate per-node. Unfortunately, both node-
to-node and all-to-all are much less than the theo-
retically possible 125 Mbyte/s peak bandwidth. We
discovered that the bottleneck is receiver overhead;
the receiver utilizes one processor completely while
the sending processors are mostly idle2.

Figure 7 shows the scaling of the sort’s all-to-all
distribution phase. The lowest of 30 trials at each
point is shown in the figure. This figure shows

2The cluster’s gigabit Ethernet NICs do not support jumbo
frames. Jumbo frames may improve the performance of the clus-
ter’s network.
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a margin of dimishing returns as the number of
utilized nodes grows beyond 20; as the amount
of data transferred decreases, the fixed overhead
dominates.

The distribution time was influenced by several
factors. One of these was that the gigabit switch had
a faulty module, which was observed to drop pack-
ets ocassionally under heavy load. To overcome this
problem we used proactive retransmits.

Our transport protocol, UDPAM, insures reliable
delivery through the use of a timeout thread which
resends any dropped packets. This thread checks at
regular time intervals whether there are any pack-
ets not yet acknowledged by the receiver and re-
sends these packets. Although reliable, we found
that waiting for timeouts is not aggressive enough
to provide a good distribution time.

For this reason, we added a function to the UD-
PAM library which allows us to resend immedi-
ately all unacknowledged packets. This allows us
to retransmit packets proactively as soon as the dis-
tribute phase of the sort is complete. Figure 6 shows
the difference between proactive retransmits and
the default UDPAM reactive technique, which uses
timeouts. Proactive sends reduced the average sort
time as the sort scales to one-eight of the reactive
time at 30 nodes.

Another factor that originally had an adverse af-
fect on communication time was the ARP (Address
Resolution Protocol) traffic. The default ARP time-
out values caused ARP traffic to occasionally flood
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the network in order to renew their cached entries.
We found that even such a seemingly minor dis-
ruption could have a significant impact on our sort
performance; this was especially so due to the sen-
sitivity of our switch as described above. Given
the static nature of our environment, such frequent
ARP traffic is unnecessary and was turned off re-
sulting in less performance variation and a tighter
distribution of our sort times.

Finally, to avoid dropped packets because of lack
of buffer space in the kernel, we increased the size
of the kernel network receive buffer to accommo-
date the amount of data that can be received by
each node.

5 Putting it all together

By developing a fast remote execution layer, con-
figuring the cluster properly for disk and net-
work performance, and developing simple mech-
anisms to deal with occasionally faulty hardware,
we were able to transform the cluster into a high-
performance parallel sorting system. Even though
the rate of scale decreases as nodes are added, we
were able to post minimal gains to the limits of our
cluster’s capacity (32 nodes). Eventually, by care-
fully tuning the disks and the networks (and with
some patience) we were able to set a new record of
0.48 seconds for the Datamation challenge.

Figure 7 shows how each phase of the sort scales
as more nodes are utilized3. This graph under-
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scores as well the disproportionate amount of time
the sort program spends in the distribution phase
of its operation.

5.1 Validation

To validate the correctness of our sort, we devel-
oped some additional tools. We noticed addition-
ally that there are three aspects of correctness: size,
sequencing and validity. A correct sort is one which
has sorted correctly every key without corrupting
any values.

To verify this, our check program uses

�
��

to col-
lect both the distributed input and outfile files onto
one machine. It then concatenates the files to-
gether and verifies both validity and size by doing a
checksum of each 100-byte record in each file. Se-
quencing is checked by ensuring that each key fol-
lows the previous in the concatenated output file.

We would like to stress the importance of reg-
ularly checking all three factors when writing sort
programs. We found that the likliest opportunity
for bugs to enter our code was when we had dis-
abled the validation phase of our sort.

3The sort results as presented here are inflated because of the
overhead incurred by gathering the timing data for the different
sort phases. Timing each of the phases added an extra global
communication to compute the maximum time spent in a spe-
cific phase over all the nodes.

6 Conclusion

We have presented our experiences in tuning a
cluster to optimize its performance on the Data-
mation benchmark. Even though the Datama-
tion benchmark has changed quite a bit over time,
its value as a tool for measuring and understand-
ing system performance has not diminished, as
it stresses different aspects of systems than other
sorting benchmarks. Through careful engineering
of a remote execution layer, proper configuration,
and simple techniques to overcome hardware mis-
behaviors that may be commonplace in large-scale
clusters, we have demonstrated that Linux-based
PC clusters have the potential to become the basis
for interactive parallelism in the years to come.
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