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HW is Fast – but SW Appears Slow

How to close the HW-SW performance gap in storage stack?
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Existing Solutions

Libraries directly access the device
• E.g., Strata (SOSP-17), SplitFS (SOSP-19)
• Complicate the device access isolation and sharing

Move Filesystems to the device
• E.g., DevFS (FAST-18), CrossFS (OSDI-20)
• “Smarter-HW” assumption and unknown HW constraints
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Our Approach: Filesystem Semi-Microkernel
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What is a “Semi-Microkernel”?
• An OS subsystem that runs as a user-level process
• Works in tandem with the monolithic kernel
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Our Approach: Filesystem Semi-Microkernel

5

What is a “Semi-Microkernel”?
• An OS subsystem that runs as a user-level process
• Works in tandem with the monolithic kernel

Prior networking semi-microkernels
• Snap (SOSP-19), TAS (Eurosys-19)

Possible for storage now
• User-level device drivers
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Benefits of Filesystem Semi-Microkernels

Development and Deployment Velocity
• Developing tools and libraries for “application” code
• Rapidly adopt hardware and tailor for applications

Performance
• Optimize for device access (avoid the kernel SW overhead)
• Scale filesystem independently from applications

Simplify the sharing and permission
• Untrusted applications cannot access the device
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Challenges 

Base Performance
• Inter-process communication
• Device access

7

Lib

App

Dev

FSRandom Read



Challenges 

Base Performance
• Inter-process communication
• Device access

7

Lib

App

Dev

FSRandom Read



Challenges 

Base Performance
• Inter-process communication
• Device access

7

Lib

App

Dev

FSRandom Read



Challenges 

Base Performance
• Inter-process communication
• Device access

Scale up and down
• Dynamic and heterogeneous application demands
• Invest just-right amount of CPU

• Fully utilize the devices
• Keep up with the apps
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uFS: A Filesystem Semi-microkernel

Build for performance and scalability from scratch
• Fully functional with crash consistency guaranteed by journaling
• Ensure lock-free access for main data structures
• Dynamically partition inodes to filesystem threads
• Adapt # of uFS cores according to filesystem demands
• Implemented by C++ (~35K LoC)

uFS offers good base performance and excellent scalability
• 1.2X-4.6X throughput compared to ext4 when running 10 LevelDB instances
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Outline

Introduction
uFS Architecture
Design
Evaluation
Conclusion
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The OS kernel only involves for initial 
authentication (fs_init)
uLib uServer

• shared-mem message passingetc.
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The OS kernel only involves for initial 
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uFS Architecture
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uServer – multiple workers
• Scalable by design: avoid sharing
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structures
• [in-mem] block buffer cache
• [in-mem] data bitmaps
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uServer: single worker is not enough
• More computing power to saturate device
• In-mem op capacity limited by one core

uServer – multiple workers
• Scalable by design: avoid sharing
• Each worker has several private data 

structures
• [in-mem] block buffer cache
• [in-mem] data bitmaps
• HW qpair to submit device requests

• Each App-W_{i} has separate message ring
• Threads in one app will share the ring
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Design Overview
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Design Overview
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Each group of inodes is exclusively accessed by one worker
• No need for synchronization

Decouple the namespace and the ownership
• Inodes in one directory can be owned by two workers

Asymmetric Workers
• A primary worker (W0)

• Owns all the directory inodes: handle all the directory ops
• Default owner of all the file inodes
• Coordinates the inode reassignment protocol through message passing 

• Secondary workers: file ops

Runtime Inode Ownership
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W0 W1 W2 W3 W4
Primary Core

Active Core

Unactive Core

Directory Inode
File InodeLoadMng

Dynamic Load Management
Separate load managing thread (LoadMng)

• Periodically gathers load stats from each worker (a monitoring window)
• Decides per-worker [load goal]       Informs each worker the desired goal to achieve
• Decides number of cores       (De)activates cores

Worker invokes inode reassignment
• Tracks per-inode stats
• Given [load goal], decides which groups of inodes to be re-assigned
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Dynamic Load Management: Algorithms
Load balancing

• Towards minimizing congestion on each core

Core allocation
• Meets a per-core CPU utilization goal
• Answer the “what if” questions by algorithmically emulating the load balancing results

• Load balancing as a black-box
• What if [add one core | no change | remove one core]
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Employ Non-blocking Shared Structures Judiciously

Dentry Cache and Permission Checking
• Recursive HashMap
• Only the primary worker can update and all can read
• Leverage industrial-quality lock-free data structures

18
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Employ Non-blocking Shared Structures Judiciously

Dentry Cache and Permission Checking
• Recursive HashMap
• Only the primary worker can update and all can read
• Leverage industrial-quality lock-free data structures

Global Logic Journal that allows maximal parallelism
• Each worker can initialize journal transactions independently for owned inodes
• Negligible overhead added

• Recording logic modification is lightweight
• Minimal critical section when reserving journal blocks
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Evaluation
uFS offers good single-threaded base performance
uFS performs well as a multi-threaded microkernel
uFS dynamically scales to match demand
• Load Balancing Experiments
• Core Allocation Experiments

uFS performs and scales well with real applications
• LevelDB and YCSB workloads

Platform
• Intel Optane 905P SSD; Intel(R) Xeon(R) Gold 5218R CPU
• Linux 5.4, SPDK 18.04
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Core Allocation Experiments

8 workloads: each changes one factor by N steps along the time
• Factor example: think-time, data screw degree, request size
• uFS delivers between 91% to 98% throughput of Max
• uFS controls number of cores as needed
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LevelDB: uFS Performs and Scales Well with Real Apps
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uFS can scale much better than ext4

uFS will allocate different number of cores for various workloads

Giving more cores (>10) to ext4 does not help much for performance
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Conclusion

uFS: a filesystem semi-microkernel
• Designs for modern storage device performance delivery and scalability

• Outperforms ext4 under LevelDB workloads by 1.22x to 4.6x

• Scales independently from the applications and dynamically matches demand

Filesystem Semi-Microkernel Approach
• Performs and scales well under various workloads
• Has all the benefits of user-level development

Available at: https://research.cs.wisc.edu/adsl/Software/uFS/
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Thank you!
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