
Scale and Performance
in a

Filesystem Semi-Microkernel
Jing Liu, Anthony Rebello, Yifan Dai, ChenhaoYe,

Sudarsun Kannan*, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin – Madison
Rutgers University*

HW is Fast – but SW Appears Slow

How to close the HW-SW performance gap in storage stack?

2

raw device

Latency
13us

6.5us

0

system call,
interrupt handling,

indirect cache pollution etc.

Barroso et. al, Attack of the Killer Microseconds, 2017

Existing Solutions

Libraries directly access the device
• E.g., Strata (SOSP-17), SplitFS (SOSP-19)
• Complicate the device access isolation and sharing

Move Filesystems to the device
• E.g., DevFS (FAST-18), CrossFS (OSDI-20)
• “Smarter-HW” assumption and unknown HW constraints

3

Device +

user space

FS

Device

kernel-FS

user space

kernel space

Lib-FS
App

Lib-FS
App

Lib
App

Lib
App

Existing Solutions

Libraries directly access the device
• E.g., Strata (SOSP-17), SplitFS (SOSP-19)
• Complicate the device access isolation and sharing

Move Filesystems to the device
• E.g., DevFS (FAST-18), CrossFS (OSDI-20)
• “Smarter-HW” assumption and unknown HW constraints

4

Centralized IO multiplexing; simpler isolation and sharing

Realistic Assumption: Ultra-fast Devices and NVMe protocol Device +

user space

FS

Device

kernel-FS

user space

kernel space

Lib-FS
App

Lib-FS
App

Lib
App

Lib
App

Our Approach: Filesystem Semi-Microkernel

5

What is a “Semi-Microkernel”?
• An OS subsystem that runs as a user-level process
• Works in tandem with the monolithic kernel

Device
FS

Other OS
Subsystems

kernel spaceuser space

Lib
App

Lib
App

Our Approach: Filesystem Semi-Microkernel

5

What is a “Semi-Microkernel”?
• An OS subsystem that runs as a user-level process
• Works in tandem with the monolithic kernel

Prior networking semi-microkernels
• Snap (SOSP-19), TAS (Eurosys-19)

Possible for storage now
• User-level device drivers

Device
FS

Other OS
Subsystems

kernel space

Lib
App

Lib
App

user space

Benefits of Filesystem Semi-Microkernels

Development and Deployment Velocity
• Developing tools and libraries for “application” code
• Rapidly adopt hardware and tailor for applications

Performance
• Optimize for device access (avoid the kernel SW overhead)
• Scale filesystem independently from applications

Simplify the sharing and permission
• Untrusted applications cannot access the device

6

Device
FS

Other OS
Subsystems

kernel space

Lib
App

Lib
App

user space

Challenges

Base Performance
• Inter-process communication
• Device access

7

Lib

App

Dev

FSRandom Read

Challenges

Base Performance
• Inter-process communication
• Device access

7

Lib

App

Dev

FSRandom Read

Challenges

Base Performance
• Inter-process communication
• Device access

7

Lib

App

Dev

FSRandom Read

Challenges

Base Performance
• Inter-process communication
• Device access

Scale up and down
• Dynamic and heterogeneous application demands
• Invest just-right amount of CPU

• Fully utilize the devices
• Keep up with the apps

8

Lib

App

Dev

FS

simultaneously

Random Read

Challenges

Base Performance
• Inter-process communication
• Device access

Scale up and down
• Dynamic and heterogeneous application demands
• Invest just-right amount of CPU

• Fully utilize the devices
• Keep up with the apps

8

Lib

App

Dev

FS

Lib

App

simultaneously

Random Read

Append

Challenges

Base Performance
• Inter-process communication
• Device access

Scale up and down
• Dynamic and heterogeneous application demands
• Invest just-right amount of CPU

• Fully utilize the devices
• Keep up with the apps

8

Lib

App

Dev

FS

Lib

App

simultaneously

Lib

App

Random Read

Append

Scan

Challenges

Base Performance
• Inter-process communication
• Device access

Scale up and down
• Dynamic and heterogeneous application demands
• Invest just-right amount of CPU

• Fully utilize the devices
• Keep up with the apps

8

Lib

App

Dev

FS

Lib

App

simultaneously

Lib

App

Random Read

Append

Scan

Challenges

Base Performance
• Inter-process communication
• Device access

Scale up and down
• Dynamic and heterogeneous application demands
• Invest just-right amount of CPU

• Fully utilize the devices
• Keep up with the apps

8

Lib

App

Dev

FS

Lib

App

simultaneously

Lib

App

Random Read

Append

Burst Hotkeys
Lib

App

Scan

Challenges

Base Performance
• Inter-process communication
• Device access

Scale up and down
• Dynamic and heterogeneous application demands
• Invest just-right amount of CPU

• Fully utilize the devices
• Keep up with the apps

8

Lib

App

Dev

FS

Lib

App

simultaneously

Lib

App

Random Read

Append

Burst Hotkeys
Lib

App

Scan

Challenges

Base Performance
• Inter-process communication
• Device access

Scale up and down
• Dynamic and heterogeneous application demands
• Invest just-right amount of CPU

• Fully utilize the devices
• Keep up with the apps

8

Lib

App

Dev

FS

Lib

App

simultaneously

Lib

App

Random Read

Append

Scan

Challenges

Base Performance
• Inter-process communication
• Device access

Scale up and down
• Dynamic and heterogeneous application demands
• Invest just-right amount of CPU

• Fully utilize the devices
• Keep up with the apps

8

Lib

App

Dev

FS

Lib

App

simultaneously

Lib

App

Random Read

Append

Scan

uFS: A Filesystem Semi-microkernel

Build for performance and scalability from scratch
• Fully functional with crash consistency guaranteed by journaling
• Ensure lock-free access for main data structures
• Dynamically partition inodes to filesystem threads
• Adapt # of uFS cores according to filesystem demands
• Implemented by C++ (~35K LoC)

uFS offers good base performance and excellent scalability
• 1.2X-4.6X throughput compared to ext4 when running 10 LevelDB instances

9

Outline

Introduction
uFS Architecture
Design
Evaluation
Conclusion

10

The OS kernel only involves for initial
authentication (fs_init)
uLib uServer

• shared-mem message passingetc.

11

FH f1 f2 f3 … …

Qpair

File Cache

worker

App-2

Shared Mem

App-Wi MsgRing

Pinned Mem Devices

App-1

uServer

Fd 1 2 3 4 5

thread1 thread2

uLib

OS Kernel

init() exit()

8 9 vFd

uFS Architecture

uServer
• Directly accesses the device via NVMe commands
• Non-blocking: polling the device
• Manage pinned memory as block buffer cache

The OS kernel only involves for initial
authentication (fs_init)
uLib uServer

• shared-mem message passingetc.

11

FH f1 f2 f3 … …

Qpair

File Cache

worker

App-2

Shared Mem

App-Wi MsgRing

Pinned Mem Devices

App-1

uServer

Fd 1 2 3 4 5

thread1 thread2

uLib

OS Kernel

init() exit()

8 9 vFd

uFS Architecture

uServer
• Directly accesses the device via NVMe commands
• Non-blocking: polling the device
• Manage pinned memory as block buffer cache

uLib
• POSIX-API
• App-integrated file cache (lease-based)
• Open-lease management (vFd)

The OS kernel only involves for initial
authentication (fs_init)
uLib uServer

• shared-mem message passingetc.

11

FH f1 f2 f3 … …

Qpair

File Cache

worker

App-2

Shared Mem

App-Wi MsgRing

Pinned Mem Devices

App-1

uServer

Fd 1 2 3 4 5

thread1 thread2

uLib

OS Kernel

init() exit()

8 9 vFd

uFS Architecture

uServer
• Directly accesses the device via NVMe commands
• Non-blocking: polling the device
• Manage pinned memory as block buffer cache

uLib
• POSIX-API
• App-integrated file cache (lease-based)
• Open-lease management (vFd)

The OS kernel only involves for initial
authentication (fs_init)

12

FH f1 f2 f3 … …

Qpair

File Cache

worker

App-2

Shared Mem

App-Wi MsgRing

Pinned Mem Devices

App-1

uServer

Fd 1 2 3 4 5

thread1 thread2

uLib

OS Kernel

init() exit()

8 9 vFd

uFS Architecture

uServer
• Directly accesses the device via NVMe commands
• Non-blocking: polling the device
• Manage pinned memory as block buffer cache

uLib
• POSIX-API
• App-integrated file cache (lease-based)
• Open-lease management (vFd)

The OS kernel only involves for initial
authentication (fs_init)

uLib uServer
• Control: shared-mem IPC (cache-line-size message)

12

FH f1 f2 f3 … …

Qpair

File Cache

worker

App-2

Shared Mem

App-Wi MsgRing

Pinned Mem Devices

App-1

uServer

Fd 1 2 3 4 5

thread1 thread2

uLib

OS Kernel

init() exit()

8 9 vFd

uFS Architecture

uServer
• Directly accesses the device via NVMe commands
• Non-blocking: polling the device
• Manage pinned memory as block buffer cache

uLib
• POSIX-API
• App-integrated file cache (lease-based)
• Open-lease management (vFd)

The OS kernel only involves for initial
authentication (fs_init)

uLib uServer
• Control: shared-mem IPC (cache-line-size message)
• Data: customized malloc in uLib

• uLib shares pages with uServer 12

FH f1 f2 f3 … …

Qpair

File Cache

worker

App-2

Shared Mem

App-Wi MsgRing

Pinned Mem Devices

App-1

uServer

Fd 1 2 3 4 5

thread1 thread2

uLib

OS Kernel

init() exit()

8 9 vFd

uFS Architecture

FH f1 f2 f3 … …

Qpair

File Cache

W0 W1 W2

App-2

Shared Mem

App-Wi MsgRing

Pinned Mem Devices

App-1

uServer

Fd 1 2 3 4 5

thread1 thread2

uLib

OS Kernel

init() exit()

8 9 vFd

uFS Architecture
uServer: single worker is not enough
• More computing power to saturate device
• In-mem op capacity limited by one core

uServer – multiple workers
• Scalable by design: avoid sharing

13

FH f1 f2 f3 … …

Qpair

File Cache

W0 W1 W2

App-2

Shared Mem

App-Wi MsgRing

Pinned Mem Devices

App-1

uServer

Fd 1 2 3 4 5

thread1 thread2

uLib

OS Kernel

init() exit()

8 9 vFd

uFS Architecture
uServer: single worker is not enough
• More computing power to saturate device
• In-mem op capacity limited by one core

uServer – multiple workers
• Scalable by design: avoid sharing
• Each worker has several private data

structures
• [in-mem] block buffer cache
• [in-mem] data bitmaps
• HW qpair to submit device requests

13

private
data

private
data

private
data

FH f1 f2 f3 … …

Qpair

File Cache

W0 W1 W2

App-2

Shared Mem

App-Wi MsgRing

Pinned Mem Devices

App-1

uServer

Fd 1 2 3 4 5

thread1 thread2

uLib

OS Kernel

init() exit()

8 9 vFd

uFS Architecture
uServer: single worker is not enough
• More computing power to saturate device
• In-mem op capacity limited by one core

uServer – multiple workers
• Scalable by design: avoid sharing
• Each worker has several private data

structures
• [in-mem] block buffer cache
• [in-mem] data bitmaps
• HW qpair to submit device requests

• Each App-W_{i} has separate message ring
• Threads in one app will share the ring

13

private
data

private
data

private
data

App-1 uServer App-2 uServer

async messaging

Design Overview

14

Design Overview
Data parallelism for scalability
• Shared-nothing architecture
• Divide filesystem states and data into threads

14

Design Overview
Data parallelism for scalability
• Shared-nothing architecture
• Divide filesystem states and data into threads

14

Runtime Inode Ownership

Design Overview
Data parallelism for scalability
• Shared-nothing architecture
• Divide filesystem states and data into threads

The dynamic nature of filesystem workloads
• Data partitioning must be dynamic
• Decides number of cores uFS needs

14

Runtime Inode Ownership

Design Overview
Data parallelism for scalability
• Shared-nothing architecture
• Divide filesystem states and data into threads

The dynamic nature of filesystem workloads
• Data partitioning must be dynamic
• Decides number of cores uFS needs

14

Runtime Inode Ownership

Dynamic Load Management
• Load balancing
• Core allocation

Design Overview
Data parallelism for scalability
• Shared-nothing architecture
• Divide filesystem states and data into threads

The dynamic nature of filesystem workloads
• Data partitioning must be dynamic
• Decides number of cores uFS needs

Designs for essential filesystem features
• Performance and scalability in a holistic solution

• Dentry cache, permission checking, etc.
• Scalable journaling for crash consistency

14

Runtime Inode Ownership

Dynamic Load Management
• Load balancing
• Core allocation

Design Overview
Data parallelism for scalability
• Shared-nothing architecture
• Divide filesystem states and data into threads

The dynamic nature of filesystem workloads
• Data partitioning must be dynamic
• Decides number of cores uFS needs

Designs for essential filesystem features
• Performance and scalability in a holistic solution

• Dentry cache, permission checking, etc.
• Scalable journaling for crash consistency

14

Runtime Inode Ownership

Dynamic Load Management
• Load balancing
• Core allocation

Non-blocking Shared Structures

Each group of inodes is exclusively accessed by one worker
• No need for synchronization

Decouple the namespace and the ownership
• Inodes in one directory can be owned by two workers

Asymmetric Workers
• A primary worker (W0)

• Owns all the directory inodes: handle all the directory ops
• Default owner of all the file inodes
• Coordinates the inode reassignment protocol through message passing

• Secondary workers: file ops

Runtime Inode Ownership

15

Directory Inode
File Inode

W0 W1 W2 W3

Each group of inodes is exclusively accessed by one worker
• No need for synchronization

Decouple the namespace and the ownership
• Inodes in one directory can be owned by two workers

Asymmetric Workers
• A primary worker (W0)

• Owns all the directory inodes: handle all the directory ops
• Default owner of all the file inodes
• Coordinates the inode reassignment protocol through message passing

• Secondary workers: file ops

Runtime Inode Ownership

15

Directory Inode
File Inode

W0 W1 W2 W3

Each group of inodes is exclusively accessed by one worker
• No need for synchronization

Decouple the namespace and the ownership
• Inodes in one directory can be owned by two workers

Asymmetric Workers
• A primary worker (W0)

• Owns all the directory inodes: handle all the directory ops
• Default owner of all the file inodes
• Coordinates the inode reassignment protocol through message passing

• Secondary workers: file ops

Runtime Inode Ownership

15

Directory Inode
File Inode

W0 W1 W2 W3

Each group of inodes is exclusively accessed by one worker
• No need for synchronization

Decouple the namespace and the ownership
• Inodes in one directory can be owned by two workers

Asymmetric Workers
• A primary worker (W0)

• Owns all the directory inodes: handle all the directory ops
• Default owner of all the file inodes
• Coordinates the inode reassignment protocol through message passing

• Secondary workers: file ops

Runtime Inode Ownership

15

Directory Inode
File Inode

W0 W1 W2 W3

W0 W1 W2 W3 W4
Primary Core

Active Core

Unactive Core

Directory Inode
File InodeLoadMng

Dynamic Load Management
Separate load managing thread (LoadMng)

• Periodically gathers load stats from each worker (a monitoring window)
• Decides per-worker [load goal] Informs each worker the desired goal to achieve
• Decides number of cores (De)activates cores

Worker invokes inode reassignment
• Tracks per-inode stats
• Given [load goal], decides which groups of inodes to be re-assigned

16

+/- core
Rebalance

W0 W1 W2 W3 W4
Primary Core

Active Core

Unactive Core

Directory Inode
File InodeLoadMng

Dynamic Load Management
Separate load managing thread (LoadMng)

• Periodically gathers load stats from each worker (a monitoring window)
• Decides per-worker [load goal] Informs each worker the desired goal to achieve
• Decides number of cores (De)activates cores

Worker invokes inode reassignment
• Tracks per-inode stats
• Given [load goal], decides which groups of inodes to be re-assigned

16

+/- core
Rebalance

W0 W1 W2 W3 W4
Primary Core

Active Core

Unactive Core

Directory Inode
File InodeLoadMng

Dynamic Load Management
Separate load managing thread (LoadMng)

• Periodically gathers load stats from each worker (a monitoring window)
• Decides per-worker [load goal] Informs each worker the desired goal to achieve
• Decides number of cores (De)activates cores

Worker invokes inode reassignment
• Tracks per-inode stats
• Given [load goal], decides which groups of inodes to be re-assigned

16

+/- core
Rebalance

W0 W1 W2 W3 W4
Primary Core

Active Core

Unactive Core

Directory Inode
File InodeLoadMng

Dynamic Load Management
Separate load managing thread (LoadMng)

• Periodically gathers load stats from each worker (a monitoring window)
• Decides per-worker [load goal] Informs each worker the desired goal to achieve
• Decides number of cores (De)activates cores

Worker invokes inode reassignment
• Tracks per-inode stats
• Given [load goal], decides which groups of inodes to be re-assigned

16

+/- core
Rebalance

which inodes
to migrate?

Dynamic Load Management: Algorithms
Load balancing

• Towards minimizing congestion on each core

Core allocation
• Meets a per-core CPU utilization goal
• Answer the “what if” questions by algorithmically emulating the load balancing results

• Load balancing as a black-box
• What if [add one core | no change | remove one core]

17

W0 W1 W2 W3 W4
Primary Core

Active Core

Unactive Core

Directory Inode
File Inode

+/- core
Rebalance

LoadMng

which inodes
to migrate?

Employ Non-blocking Shared Structures Judiciously

Dentry Cache and Permission Checking
• Recursive HashMap
• Only the primary worker can update and all can read
• Leverage industrial-quality lock-free data structures

18

hashmap

File

Employ Non-blocking Shared Structures Judiciously

Dentry Cache and Permission Checking
• Recursive HashMap
• Only the primary worker can update and all can read
• Leverage industrial-quality lock-free data structures

Global Logic Journal that allows maximal parallelism
• Each worker can initialize journal transactions independently for owned inodes
• Negligible overhead added

• Recording logic modification is lightweight
• Minimal critical section when reserving journal blocks

18

atomically allocate journal blocks

hashmap

Circular Buffer

Tail (insert)

Head (extract)

File

Evaluation
uFS offers good single-threaded base performance
uFS performs well as a multi-threaded microkernel
uFS dynamically scales to match demand
• Load Balancing Experiments
• Core Allocation Experiments

uFS performs and scales well with real applications
• LevelDB and YCSB workloads

Platform
• Intel Optane 905P SSD; Intel(R) Xeon(R) Gold 5218R CPU
• Linux 5.4, SPDK 18.04

19

Evaluation
uFS offers good single-threaded base performance
uFS performs well as a multi-threaded microkernel
uFS dynamically scales to match demand
• Load Balancing Experiments
• Core Allocation Experiments

uFS performs and scales well with real applications
• LevelDB and YCSB workloads

Platform
• Intel Optane 905P SSD; Intel(R) Xeon(R) Gold 5218R CPU
• Linux 5.4, SPDK 18.04

20

More detailed results in our paper

21

Determining Number of uServer Cores

Time (second)

App Start

App Lower Load

App Stop

W
or

ke
r E

ffe
ct

iv
e

CP
U

Ut
ili

za
tio

n

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU
Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

Each worker’s effective
CPU utilization reflects

an app’s filesystem
demand

22

Determining Number of uServer Cores
App Start

App Lower Load

App Stop

W
or

ke
r E

ffe
ct

iv
e

CP
U

Ut
ili

za
tio

n

Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU
Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

Each worker’s effective
CPU utilization reflects

an app’s filesystem
demand

23

Determining Number of uServer Cores
App Start

App Lower Load

App Stop

W
or

ke
r E

ffe
ct

iv
e

CP
U

Ut
ili

za
tio

n

Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU
Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

Each worker’s effective
CPU utilization reflects

an app’s filesystem
demand

24

Determining Number of uServer Cores
App Start

App Lower Load

App Stop

W
or

ke
r E

ffe
ct

iv
e

CP
U

Ut
ili

za
tio

n

Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU
Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

Each worker’s effective
CPU utilization reflects

an app’s filesystem
demand

25

Determining Number of uServer Cores
App Start

App Lower Load

App Stop

W
or

ke
r E

ffe
ct

iv
e

CP
U

Ut
ili

za
tio

n

Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU
Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

Each worker’s effective
CPU utilization reflects

an app’s filesystem
demand

26

Determining Number of uServer Cores
App Start

App Lower Load

App Stop

W
or

ke
r E

ffe
ct

iv
e

CP
U

Ut
ili

za
tio

n

Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU
Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

Each worker’s effective
CPU utilization reflects

an app’s filesystem
demand

27

Determining Number of uServer Cores
App Start

App Lower Load

App Stop

W
or

ke
r E

ffe
ct

iv
e

CP
U

Ut
ili

za
tio

n

Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU
Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

Each worker’s effective
CPU utilization reflects

an app’s filesystem
demand

28

Determining Number of uServer Cores
App Start

App Lower Load

App Stop

W
or

ke
r E

ffe
ct

iv
e

CP
U

Ut
ili

za
tio

n

Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU
Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

Each worker’s effective
CPU utilization reflects

an app’s filesystem
demand

29

Determining Number of uServer Cores
App Start

App Lower Load

App Stop

W
or

ke
r E

ffe
ct

iv
e

CP
U

Ut
ili

za
tio

n

Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU
Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

Each worker’s effective
CPU utilization reflects

an app’s filesystem
demand

30

Determining Number of uServer Cores
App Start

App Lower Load

App Stop

W
or

ke
r E

ffe
ct

iv
e

CP
U

Ut
ili

za
tio

n

Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU
Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

Each worker’s effective
CPU utilization reflects

an app’s filesystem
demand

31

Determining Number of uServer Cores
App Start

App Lower Load

App Stop

W
or

ke
r E

ffe
ct

iv
e

CP
U

Ut
ili

za
tio

n

Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU
Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

Each worker’s effective
CPU utilization reflects

an app’s filesystem
demand

32

W
or

ke
r E

ffe
ct

iv
e

CP
U

Ut
ili

za
tio

n
Determining Number of uServer Cores

App Start

App Lower Load

App Stop

Time (second)

Each worker’s effective
CPU utilization reflects

an app’s filesystem
demand

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU
Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

W
or

ke
r E

ffe
ct

iv
e

CP
U

Ut
ili

za
tio

n

33

Determining Number of uServer Cores
App Start

App Lower Load

App Stop

use up to 6 cores
88% throughput of Max

uS
er

ve
r#

 o
f c

or
es

(sec)
one worker per app dynamic core allocation

Time (second)

Problem: Apps’ filesystem demands change over time, one worker per app wastes CPU
Complication: To OS scheduler, 8 cores appear to be 100% utilized due to polling

Core Allocation Experiments

8 workloads: each changes one factor by N steps along the time
• Factor example: think-time, data screw degree, request size
• uFS delivers between 91% to 98% throughput of Max
• uFS controls number of cores as needed

34
Av

er
ag

e

of
 C

or
es

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t t

o
M

ax

90%

Max: allocate one worker per app

Each workload contains 6 clients

Max: uses 6 cores

LevelDB: uFS Performs and Scales Well with Real Apps

0

13M

1 2 3 4 5 6 7 8 910

fillseq

0

4M

1 2 3 4 5 6 7 8 910

fillrand

0

1M

1 2 3 4 5 6 7 8 910

ycsb-a

0

1M

1 2 3 4 5 6 7 8 910

ycsb-b

0

1M

1 2 3 4 5 6 7 8 910

ycsb-c

0

2M

1 2 3 4 5 6 7 8 910

ycsb-d

0

500K

1 2 3 4 5 6 7 8 910

ycsb-e

0

1M

1 2 3 4 5 6 7 8 910

ycsb-f

uFS can scale much better than ext4

uFS will allocate different number of cores for various workloads

Giving more cores (>10) to ext4 does not help much for performance

35

Th
ro
ug

hp
ut

write-heavy read-heavy read-only read-latest range-heavy read-modify-write
uFS ext4

write-only write-only

#apps

LevelDB: uFS Performs and Scales Well with Real Apps

uFS can scale much better than ext4

uFS will allocate different number of cores for various workloads

Giving more cores (>10) to ext4 does not help much for performance

36

#apps

Th
ro
ug

hp
ut

write-heavy read-heavy read-only read-latest range-heavy read-modify-writewrite-only write-only
uFS ext4

0

13M

1 2 3 4 5 6 7 8 910

fillseq

0

4M

1 2 3 4 5 6 7 8 910

fillrand

0

1M

1 2 3 4 5 6 7 8 910

ycsb-a

0

1M

1 2 3 4 5 6 7 8 910

ycsb-b

0

1M

1 2 3 4 5 6 7 8 910

ycsb-c

0

2M

1 2 3 4 5 6 7 8 910

ycsb-d

0

500K

1 2 3 4 5 6 7 8 910

ycsb-e

0

1M

1 2 3 4 5 6 7 8 910

ycsb-f

4.6x 1.88x

LevelDB: uFS Performs and Scales Well with Real Apps

uFS can scale much better than ext4

uFS will allocate different number of cores for various workloads

Giving more cores (>10) to ext4 does not help much for performance

37

Number of cores (when #app=10)#

4 7 4 8 7 6 5 5

Th
ro
ug

hp
ut

write-heavy read-heavy read-latest read-modify-writewrite-only write-only
uFS ext4

read-only range-heavy

0

13M

1 2 3 4 5 6 7 8 910

fillseq

0

4M

1 2 3 4 5 6 7 8 910

fillrand

0

1M

1 2 3 4 5 6 7 8 910

ycsb-a

0

1M

1 2 3 4 5 6 7 8 910

ycsb-b

0

1M

1 2 3 4 5 6 7 8 910

ycsb-c

0

2M

1 2 3 4 5 6 7 8 910

ycsb-d

0

500K

1 2 3 4 5 6 7 8 910

ycsb-e

0

1M

1 2 3 4 5 6 7 8 910

ycsb-f

#apps

1.88x4.6x

Conclusion

uFS: a filesystem semi-microkernel
• Designs for modern storage device performance delivery and scalability

• Outperforms ext4 under LevelDB workloads by 1.22x to 4.6x

• Scales independently from the applications and dynamically matches demand

Filesystem Semi-Microkernel Approach
• Performs and scales well under various workloads
• Has all the benefits of user-level development

Available at: https://research.cs.wisc.edu/adsl/Software/uFS/

38

https://research.cs.wisc.edu/adsl/Software/uFS/

Conclusion

uFS: a filesystem semi-microkernel
• Designs for modern storage device performance delivery and scalability

• Outperforms ext4 under LevelDB workloads by 1.22x to 4.6x

• Scales independently from the applications and dynamically matches demand

Filesystem Semi-Microkernel Approach
• Performs and scales well under various workloads
• Has all the benefits of user-level development

Available at: https://research.cs.wisc.edu/adsl/Software/uFS/

38
Thank you!

https://research.cs.wisc.edu/adsl/Software/uFS/

