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Abstract

Scheduling is the key-enabler in any resource sharing systems, be it the

operating system or the shared data center. By controlling which client or

application is serviced, critical features including fair sharing, through-

put guarantees, low tail latency and performance isolation can be suc-

cessfully realized. The storage stack, which provides persistence of data,

is one of the most important components in almost all systems. However,

scheduling in storage stacks has largely remained an unsolved problem;

existing storage systems offer very weak, if any, performance guarantees.

In this dissertation, we look at the scheduling problem in modern, multi-

layer storage systems, including the local and distributed storage stacks.

For the local storage stack, we first demonstrate that traditional block-

level I/O schedulers are unable to meet throughput, latency and isolation

goals. To overcome the limitations of traditional scheduling frameworks,

we introduce split-level I/O scheduling, a new framework that splits I/O

scheduling logic across handlers at three different layers: block, system

call, and page cache. By utilizing the split-level framework, we build a

variety of novel schedulers to readily achieve these goals: our Actually

Fair Queuing scheduler reduces priority-misallocation by 28×; our Split-

Deadline scheduler reduces tail latencies by 4×; our Split-Token scheduler

reduces sensitivity to interference by 6×. We show that the framework is

general and operates correctly with disparate file systems (ext4 and XFS).
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Finally, we demonstrate that split-level scheduling serves as a useful foun-

dation for databases (SQLite and PostgreSQL), hypervisors (QEMU), and

distributed file systems (HDFS), delivering improved isolation and per-

formance in these important application scenarios.

Effective scheduling in existing distributed storage systems has re-

mained difficult despite repeated attempts from both industry and academia;

these systems usually provide weak or no performance guarantees. We

introduce Maat, an approach to systematically examining the schedu-

lability of a system, identifying its scheduling problems and enabling

effective scheduling in the system. Following the Maat approach, We

use Thread Architecture Diagrams (TADs) to describe the behavior and in-

teractions of different threads in a system, and show both how to con-

struct TADs for existing systems as well as utilize TADs to identify crit-

ical scheduling problems. We identify five fundamental problems that

prevent a system from being Maat-adherent and show that these prob-

lems arise in existing systems, making it difficult or impossible to real-

ize various scheduling goals. By applying the Maat guideline, we derive

HBase-Maat, a flexible scheduling architecture for HBase that can realize

the desired scheduling disciplines even when presented with challenging

workloads.
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1

Introduction

Resource sharing has always been one of the central problems in com-

puter science, and it is becoming a theme of many technical trends go-

ing on today [49, 53, 96]. Operating system are built around the idea

of sharing computer hardware and software resources among different

programs [21, 38, 75]. Virtualization extends this idea further, enabling

hardware resources to be shared among different virtual machines, each

running its own operating system [30, 70, 115]. Such sharing across op-

erating systems has had abundant success in recent years [119]. Software

containers, such as Docker [87] and Linux Kernel Containment (LXC) [97],

present a different way to achieve similar level of sharing as virtual ma-

chines. Instead of running multiple operating systems on the same hard-

ware, the kernel of the operating system is equipped to allow multiple

isolated user-space instances, and each instance looks like a full OS envi-

ronment from the the user’s point of view.

Cloud computing has brought us a new economical model of resource

sharing; the cloud vendor provides a pool of computing resources in the

data centers, including hardware, networking, storage and softwares, and

other parties utilize these resources on demand with minimal manage-

ment effort [23, 86]. Cloud computing relies on sharing of resource to

achieve coherence and economy of scale. With significant capital and op-

erational benefits, the cloud computing model is becoming prevalent in
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recent years. It reached $209 billion revenue in 2016, and is projected to

affect more than $1 trillion in IT spendings by 2020 [42].

Scheduling is the key-enabler in any resource-sharing systems, be it

the operating system, virtual machine monitor or the shared data cen-

ter. Through careful scheduling, a single resource can be multiplexed

between multiple clients, creating the illusion that each client has its own

resource. By controlling which client or application is serviced, critical

features including fair sharing [55, 80, 81, 109, 123], throughput guaran-

tees [102, 128], low tail latency [39, 56, 117, 130] and performance isola-

tion [19, 103, 114] can be successfully realized.

In this dissertation we focus on the sharing of storage resources and the

scheduling problems arising from it. We broadly classify storage as the

hardware and software used to provide persistence of data, despite com-

puter crashes or power outages. The explosion of data volume, the mag-

nification of data criticality, and the increasing dependency of businesses

on big data in recent years have made storage one of the most important

computing resources. In the meantime, storage resource scheduling and

isolation have largely been an unsolved problem due to some unique chal-

lenges that are not present when scheduling other resources, such as CPU

or network. First, storage scheduling decisions have both short term and

long term ramifications. For example, when a scheduler makes a decision

of where to write data, it will affect performance later when data is being

read back. Second, the overall capacity of the storage system is affected

by the workload running on top of it and the scheduling decisions being

made. Finally, the consistency constraints associated with data usually

limits the flexibility of scheduling.

The aforementioned challenges make it a difficult task to schedule

storage resources. This task is further complicated by the fact that modern

storage systems are often quite complex and have different components

interacting with each other. One question naturally arises: where should we
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place scheduling logic in such complex systems to effectively meet our scheduling

goals? The answer to this question is not as obvious as it may seem like,

because the interactions between different components of the system can

have unexpected effects on scheduling, making it hard to enforce schedul-

ing disciplines at any given place in the system. For example, information

critical in making scheduling decisions may get lost in interactions be-

tween components; or one component could impose artificial limitations

on scheduling done at other components, leading to poor performance of

the system. We have observed both phenomena in commonly-used sys-

tems, and they can affect performance by orders of magnitude.

Previous works [31, 62, 89, 100] on scheduling in storage systems have

mostly focused on optimizations within a single layer or component in

the system. Not much thought was given to why scheduling is placed

at this particular layer/component, or how the rest of the system could

affect scheduling. These kind of approaches have led to poor performance

and failure to meet scheduling goals, both in local and distributed storage

systems. For example, traditionally I/O scheduling for a local host has

always been done at the block level, but as we will show later (§2.2.2), the

file system running on top of the block layer has a major impact on I/O

scheduling, and can render scheduling decisions made at the block layer

useless. Such block-level scheduling causes long I/O latency, unfairness in

I/O resource allocation, and failure to isolation.

More recent work, such as Pisces [103], PriorityMeister [130] and Red-

line [126], have taken a more holistic view of the storage system and rec-

ognized the necessity to schedule at multiple points in the system. For

example, Redline [126] tries to avoid unresponsiveness in the local stor-

age system by scheduling at both the buffer cache level and the block

level; Pisces [103] aims at providing isolation and fairness for multi-tenant

cloud storage by combining proxy-level replica selection, node-level weight

allocation and global-level data migration. However, these projects are
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mostly concerned about how to realize a particular scheduling goal or

policy (e.g., fairness), and achieve it by carefully tunning the scheduling

algorithms. We, on the other hand, believe that a few basic mechanisms

could be built into the complex storage stack so that one could easily real-

ize any scheduling policy she has in mind, be it fairness, isolation, meeting

of deadline, or others.

In this dissertation, we examine how we could build such schedul-

ing mechanisms in modern complex storage systems. We first look at

the local storage stack in a single computer node. We show that current

approach, namely the block-level I/O scheduling, provides insufficient

mechanisms to realize important I/O scheduling policies. The building

of local storage scheduling mechanisms leads to split-level I/O scheduling,

a novel scheduling framework in which a scheduler is constructed across

several layers. By implementing a judiciously selected set of handlers at

key junctures within the storage stack (namely, at the system-call, page-

cache, and block layer), a developer can implement a scheduling disci-

pline with full control over behavior of different layers and with no loss

in high- or low-level information. We demonstrate the generality of split

scheduling by implementing three new schedulers: AFQ (Actually-Fair

Queuing) provides fairness between processes, Split-Deadline observes

latency goals, and Split-Token isolates performance, and show vast im-

provements (6x - 28x) over similar schedulers in other frameworks.

We then study the scheduling problem of distributed storage systems.

We investigate popular distributed storage systems including HBase/HDFS,

MongoDB, and Riak. We identify five fundamental scheduling problems

in these systems: a lack of local scheduling control points, unknown re-

source usage, hidden competition between threads, uncontrolled thread

blocking, and ordering constraints upon requests. These problems are

commonly present in widely-used storage systems, and make it difficult

or impossible to realize scheduling disciplines. We introduce Thread Ar-
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chitecture Diagrams (TADs) to describe the behaviors and interactions of

different threads in a system, and show both how to construct TADs for

existing systems as well as utilize TADs to identify critical scheduling

problems. We introduce Maat, an approach to solve the scheduling prob-

lems and provide effective scheduling. By applying the Maat guidelines,

we derive HBase-Maat, a flexible scheduling architecture for HBase that

can realize the desired scheduling disciplines even when presented with

challenging workloads.

The central finding of this dissertation is that schedulers need proper sup-

port. A scheduler can only be effective when it is placed at the right place

of the system, given the right information and empowered of enough con-

trol to reorder the requests. In all system we studied, we found ineffec-

tive scheduling not because of inadequate scheduling algorithm, but in-

sufficient support to the scheduler from the system. This dissertation is

thus about how to add scheduling support to various existing systems to

enable different scheduling policies; it also suggests design principles to

make future systems more scheduling friendly.

1.1 Scheduling in Local Storage Systems

Deciding which I/O request to schedule, and when, has long been a core

aspect of the operating system storage stack [18, 21, 62–64, 79, 91, 99–

101, 122]. Each of these approaches has improved different aspects of I/O

scheduling; for example, research in single-disk schedulers incorporated

rotational awareness [63, 64, 100]; other research tackled the problem of

scheduling within a multi-disk array [121, 127]; more recent work has

targeted flash-based devices [68, 89], tailoring the behavior of the sched-

uler to this new and important class of storage device. All of these op-

timizations and techniques are important; in sum total, these systems

can improve overall system performance dramatically [54, 100, 127] as
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well as provide other desirable properties (including fairness across pro-

cesses [26] and the meeting of deadlines [126]).

Most I/O schedulers (hereafter just “schedulers”) are built at the block

level within an operating system, beneath the file system and just above

the device itself. Such block-level schedulers are given a stream of re-

quests and are thus faced with the question: which requests should be

dispatched, and when, in order to achieve the goals of the system?

Unfortunately, making decisions at the block level is problematic, for

two reasons. First, and most importantly, the block-level scheduler fun-

damentally cannot reorder certain write requests; file systems carefully

control write ordering to preserve consistency in the event of system crash

or power loss [45, 59]. Second, the block-level scheduler cannot perform

accurate accounting; the scheduler lacks the requisite information to de-

termine which application was responsible for a particular I/O request.

Due to these limitations, block-level schedulers cannot implement a full

range of policies.

An alternate approach, which does not possess these same limitations,

is to implement scheduling much higher in the stack, namely with sys-

tem calls [37]. System-call scheduling intrinsically has access to necessary

contextual information (i.e., which process has issued an I/O). Unfortu-

nately, system-call scheduling is no panacea, as the low-level knowledge

required to build effective schedulers is not present. For example, at the

time of a read or write, the scheduler cannot predict whether the request

will generate I/O or be satisfied by the page cache, information which can

be useful in reordering requests [20, 112]. Similarly, the file system will

likely transform a single write request into a series of reads and writes,

depending on the crash-consistency mechanism employed (e.g., journal-

ing [59] or copy-on-write [98]); scheduling without exact knowledge of

how much I/O load will be generated is difficult and error prone.

We introduce split-level I/O scheduling, a novel scheduling framework
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in which a scheduler is constructed across several layers. By implement-

ing a judiciously selected set of handlers at key junctures within the stor-

age stack (namely, at the system-call, page-cache, and block layers), a

developer can implement a scheduling discipline with full control over

behavior and with no loss in high- or low-level information. Split sched-

ulers can determine which processes issued I/O (via graph tags that track

causality across levels) and accurately estimate I/O costs. Furthermore,

memory notifications make schedulers aware of write work as soon as

possible (not tens of seconds later when writeback occurs). Finally, split

schedulers can prevent file systems from imposing orderings that are con-

trary to scheduling goals.

We demonstrate the generality of split scheduling by implementing

three new schedulers: AFQ (Actually-Fair Queuing) provides fairness be-

tween processes, Split-Deadline observes latency goals, and Split-Token

isolates performance. Compared to similar schedulers in other frame-

works, AFQ reduces priority-misallocation errors by 28×, Split-Deadline

reduces tail latencies by 4×, and Split-Token improves isolation by 6× for

some workloads. Furthermore, the split framework is not specific to a sin-

gle file system; integration with two file systems (ext4 [83] and XFS [107])

is relatively simple.

Finally, we demonstrate that the split schedulers provide a useful base

for more complex storage stacks. Split-Token provides isolation for both

virtual machines (QEMU) and data-intensive applications (HDFS), and

Split-Deadline provides a solution to the database community’s “fsync

freeze” problem [3, 11, 12]. In summary, we find split scheduling to be

simple and elegant, yet compatible with a variety of scheduling goals,

file systems, and real applications.
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1.2 Scheduling in Distributed Storage Systems

Modern distributed storage systems are complex, concurrent programs.

Many systems are realized via an intricate series of stages, queues, and

thread pools, based loosely on the SEDA design principles [120]. Un-

derstanding how to introduce scheduling control into these systems is

challenging; a single request may flow through numerous stages across

multiple machines before being completed.

To address the scheduling problem in the highly concurrent distributed

storage systems, we introduce Maat, an approach to systematically ex-

amining the schedulability of a system, identifying its scheduling prob-

lems, and enabling scheduling control in the system. The Maat principle,

named after the Egyptian concept of order, specifies three conditions that

make realizing a scheduling policy easy:

Completeness – the system provides necessary scheduling points so that

a global policy can be translated into local scheduling plans at these points.

Local enforceability – the local scheduling plans can be implemented. At

each scheduling point, the system provides both enough information and

control to the local scheduler to make implementing the plan possible.

Independent scheduling – the decisions made by one local scheduler do

not have unexpected effects at other scheduling points.

Following the Maat principle, we first demonstrate a method to dis-

cover the schedulability of these systems. Our method traces a system

of interest under various workloads and produces a Thread Architecture

Diagram (TAD); by analyzing a TAD, scheduling problems can be dis-

cerned, pointing towards solutions that introduce necessary scheduling

controls. We produce TADs for four important and widely-used scalable

storage systems: HBase/HDFS [46, 104], Cassandra [73], MongoDB [34],

and Riak [71], and highlight weaknesses in each systems’ scheduling ar-

chitecture. Our analysis centers around five common problems that cause

violation of the Maat conditions and in turn lead to inadequate schedul-
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ing: a lack of local scheduling control points, unknown resource usage,

hidden competition between threads, uncontrolled thread blocking, and

ordering constraints upon requests.

The solutions to overcome these difficulties, and thus enable schedul-

ing control in existing systems, are based on two core classes of tech-

niques. The first are direct methods, which explicitly alter the existing

thread architecture to avoid a specific scheduling problem; direct tech-

niques can sometimes be more challenging to implement, depending on

the exact concurrency architecture. The second are indirect methods, which

use information to overcome scheduling limitations; indirect approaches

[80, 117, 130] are easier to incorporate but more approximate in the schedul-

ing control they provide.

To show the benefits of the Maat approach, we apply it to the most

complex system that we studied, HBase/HDFS. We first identify its schedul-

ing problems; then through a combination of direct and indirect methods,

we show how HBase-Maat can be transformed to provide schedulabil-

ity. Specifically, HBase-Maat improves performance (by a factor of 3) un-

der intense resource competition and thus enables fair-sharing of system

throughput; HBase-Maat also significantly improves performance under

mixed workloads (sometimes by a factor of 50) by enabling cached (fast)

requests to be fairly serviced; finally, HBase-Maat achieves proper isola-

tion despite variances in request amount, size, and other workload fac-

tors. Although we utilize implementation to demonstrate the ultimate

efficacy of Maat, we also show how targeted simulations are useful in

schedulability analysis, especially when considering alternatives. To this

end, we also build a simulation framework to facilitate the scheduling

study in other SEDA-based systems.
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1.3 Overview

We now briefly describe the contents of the different chapters in this dis-

sertation.

In Chapter 2 we discuss in detail the scheduling problems in the lo-

cal storage stack, especially in the presence of modern file systems. We

then introduce the split-level I/O framework to solve these problems and

enable the developers to implement a full range of scheduling policy.

In Chapter 3 we demonstrate how to produce a Thread Architecture Dia-

gram (TAD) to discover the schedulability of a distributed storage system.

We also study the scheduling behavior of four popular systems, namely

HBase/HDFS, Cassandra, MongoDB and Riak under the lens of TAD.

In Chapter 4 we introduce the Maat scheduling principle. Using the

Maat principle, we identify five scheduling problems that commonly arise

in distributed storage systems, and general solutions to solve these prob-

lems and add scheduling control into existing systems.

In Chapter 5 we summarize previous effort people made toward schedul-

ing in storage systems and discuss how they are related to this disserta-

tion.

Chapter 6 summarizes our studies and highlights some general lessons

we learn. We also discuss possible future works here.
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2

Split-Level I/O Scheduling on Local
File Systems

Deciding which I/O request to schedule, and when, has long been a core

aspect of the operating system storage stack [18, 21, 62–64, 79, 91, 99–101,

122]. In this chapter, we first show the traditional block-level and syscall-

level scheduling are problematic and cannot implement a full range of

policies. We then introduce split-level I/O scheduling, a novel schedul-

ing framework in which a scheduler is constructed across several layers.

The split-level scheduling framework enables a developer to implement

a scheduling discipline with full control over behavior and with no loss

in high- or low-level information.

The rest of this chapter is organized as follows. We first give some

background on how I/O scheduling works and the role a scheduling

framework plays(§2.1). We then evaluate existing frameworks and de-

scribe the challenges they face (§2.2). Next we discuss the principles of

split scheduling (§2.3) and our implementation in Linux (§2.4). We then

implement three split schedulers as case studies (§2.5), discuss integra-

tion with other file systems (§2.6), and evaluate our schedulers with real

applications (§2.7). Finally, we conclude (§2.8).
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2.1 Background

In this section we give some background information on the structure of

the local storage stack and how different types of I/O scheduling frame-

works operate.

2.1.1 The Storage Stack

Schedulers allocate disk I/O to processes, but processes do not typically

use hard disks or SSDs directly. Instead, there is a complex storage stack

sitting in between the applications and the storage device. We use Linux

as an example here to introduce the basic structure of local storage stacks;

the storage stacks in FreeBSD [95] and other operating systems [8] are

similar.

As shown in Figure 2.1, the first component with which Linux pro-

grams (processes) interact when processing data is the virtual file system

(VFS); through VFS the process could invoke the same generic system

calls (open(), read(), write(), etc.) to access file data for different file

systems on different media.

VFS encapsulates a variety of individual file systems implementations,

including ext4 [7], XFS [107], Btrfs [82], and others [24, 29, 111]. Individual

file systems implement the generic VFS methods, translating file accesses

into block I/Os; they typically use the page cache to speed up the data

accesses. Complex mechanisms are implemented within individual file

systems to improve performance or to ensure consistency; for example,

some file systems may delay allocating disk space for a new file to oppor-

tunistically optimize the disk layout, or use journal transactions to log file

updates. As we will see later (§2.2.2), these mechanisms may cause many

difficulties for I/O scheduling.

The block level requests issued by the file systems are sent to the block

layer, which then forwards the requests to the storage devices. For Linux,
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Figure 2.1: Simplified Linux Storage Stack Diagram.

which schedules I/O at the block level, different block-level schedulers

(e.g., CFQ, deadline) can also be attached at this layer; these schedulers

control which requests to dispatch to the underlying devices, and when,

to achieve various goals such as fairness or latency guarantees. It is also

possible to schedule I/Os at other layers in the storage stack, which we

discuss next.
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2.1.2 Framework Architectures

Following the old wisdom of separating mechanisms and policies, I/O

scheduling in the local storage stack is usually separated into the schedul-

ing framework and individually schedulers. The framework provides a

running environment to different schedulers, while an individual sched-

uler is responsible for realizing a particular scheduling policy (e.g., fair-

ness or latency guarantee).

Scheduling frameworks offer hooks to which individual schedulers

can attach; via there hooks, a framework passes information and exposes

control to schedulers. Schedulers implement these hooks to achieves var-

ious scheduling goals. Different scheduling frameworks provide hooks

at different points in the storage stack; we categorize frameworks by the

level at which the hooks are available. Figure 2.2 shows the architecture

of different types of scheduling frameworks.

Figure 2.2(a) illustrates block-level scheduling, the traditional approach

implemented in Linux [10], FreeBSD [95], and other systems [8]. Clients

initiate I/O requests via system calls, which are translated to block-level

requests by the file system. Within the block-scheduling framework, these

requests are then passed to the scheduler along with information describ-

ing them: their location on storage media, size, and the submitting pro-

cess. Based on such information, a scheduler may reorder the requests ac-

cording to some policy. For example, a scheduler may accumulate many

requests in its internal queues and later dispatch them in an order that

improves sequentiality.

Figure 2.2(b) show the system-call scheduling architecture (SCS) pro-

posed by Craciunas et al. [37]. Instead of operating beneath the file system

and deciding when block requests are sent to the storage device, a system-

call scheduler operates on top of the file system and decides when to issue

I/O related system calls (read, write, etc.). When a process invokes a sys-

tem call, the scheduler is notified. The scheduler may put the process to
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Figure 2.2: Scheduling Architectures. The boxes show where scheduler
hooks exist for reordering I/O requests or doing accounting. Sometimes reads
and writes are handled differently at different levels, as indicated by “R” and
“W”.

sleep for a time before the body of the system call runs. Thus, the sched-

uler can reorder the calls, controlling when they become active within the

file system.

Figure 2.2(c) shows the hooks of the split framework, which we de-

scribe in a later section (§2.4.2). In addition to introducing novel page-

cache hooks, the split framework supports select system-call and block-

level hooks.

2.2 Motivation

Block-level schedulers are severely limited by their inability to gather in-

formation from and exert control over other levels of the storage stack.

As an example, we consider the Linux CFQ scheduler, which supports
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an ionice utility that can put a process in idle mode. According to the

man page: “a program running with idle I/O priority will only get disk time

when no other program has asked for disk I/O” [9]. Unfortunately, CFQ has

little control over write bursts from idle-priority processes, as writes are

buffered above the block level.

We demonstrate this problem by running a normal process A along-

side an idle-priority process B. A reads sequentially from a large file. B is-

sues random writes over a one-second burst. Figure 2.3 shows the result:

B quickly finishes while A (whose performance is shown via the CFQ line)

takes over five minutes to recover. Block-level schedulers such as CFQ are

helpless to prevent processes from polluting write buffers with expensive

I/O. As we will see, other file-system features such as journaling and de-

layed allocation are similarly problematic.

The idle policy is one of many possible scheduling goals, but the dif-

ficulties it faces at the block level are not unique. In this section, we con-

sider three different scheduling goals, identifying several shared needs

(§2.2.1). Next, we show existing frameworks are fundamentally unable

to meet scheduler needs when running in conjunction with a modern file

system (§2.2.2).

2.2.1 Framework Support for Schedulers

We now consider three commonly used I/O schedulers: CFQ [2], Dead-

line [4], and token-bucket [108], identifying what framework support is

needed to implement these schedulers correctly.

CFQ: CFQ aims to allocate I/O resources fairly between processes

based on their priorities [2]. To do so, CFQ must be able to track which

process is responsible for which I/O requests, estimate how much each

request costs, and reorder higher-priority requests before lower-priority

requests. Other schedulers such as SFQ [50] and YFQ [28] share similar

goals with CFQ.
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Figure 2.3: Write Burst. B’s one-second random-write burst severely degrades
A’s performance for over five minutes. Putting B in CFQ’s idle class provides no
help.

Deadline: The Deadline scheduler observes deadlines for I/O oper-

ations, offering predictable latency to applications that need it [4]. The

deadline scheduler needs to map an application’s deadline setting to each

request and issue lower-latency requests before other requests.

Token-Bucket: The token-bucket scheduler caps the resources an ap-

plication may use, regardless of overall system load [108]. Limits are use-

ful when resources are purchased and the seller does not wish to give

away free I/O. The token-bucket scheduler needs to know the cost and

causes of I/O operations in order to throttle correctly.

Although the above schedulers have distinct goals, they have three

common needs. First, schedulers need to be able to map causes to identify

which process is responsible for an I/O request. Second, schedulers need

to estimate costs in order to optimize performance and perform accounting

properly. Third, schedulers need to be able to reorder I/O requests so that
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Scheduler Goal
Support Needed

CM CE R O

CFQ [2] Fairness ✖ ✖ ✖

Deadline [4] Deadline ✖ ✖ ✖

Token-Bucket [108] Isolation ✖ ✖ ✖

QUASIO [66] Low Response Time ✖ Task-I/O Dependency
BAA [118] Fairness&Efficiency ✖ ✖ ✖

FIOS [89] Fairness&Efficiency ✖ ✖ ✖

Stream Scheduling [124] High Throughput ✖ ✖

PARDA [55] Fairness ✖ ✖

EW-Sched [129] Low Latency ✖ ✖

Freeblocks [78] High Utilization ✖ ✖

Semi-preemptible IO [40] Priority Enforcement ✖ ✖ ✖

Faccade [77] Deadline ✖ ✖ ✖

Table 2.1: Framework Support Needed by Different Schedulers. CM:
Cause Mapping, CE: Cost Estimation, R: Reordering, O: Other support needed.

the operations most important to achieving scheduling goals are served

first.

In fact, these three requirements (cause mapping, cost estimation and

reordering) are shared among most schedulers. To illustrate, we list in Ta-

ble 2.1 the above three schedulers as well as the I/O schedulers proposed

in the last 15 years in the USENIX Conference on File and Storage Tech-

nologies (FAST), one of the leading conferences on I/O and storage tech-

nologies. We could see that providing cause mapping, cost estimation

and reordering capacity could sufficiently meet the need of all proposed

schedulers except for one. Unfortunately, as we will see, current block-

level and system-call schedulers cannot provide all the support sched-

ulers need.

2.2.2 File-System Challenges

As we discuss earlier(§2.1.1), schedulers allocate disk I/O to processes,

but processes do not typically use hard disks or SSDs directly. Instead,

processes request service from a file system, which in turn translates re-



19

quests to disk I/O. Unfortunately, file systems make it challenging to

satisfy the needs of the scheduler. We now examine the implications

of writeback, delayed allocation, journaling, and caching for schedulers,

showing how these behaviors fundamentally require a restructuring of

the I/O scheduling framework.

2.2.2.1 Delayed Writeback and Allocation

Delayed writeback is a common technique for postponing I/O by buffer-

ing dirty data to write at a later time. Procrastination is useful because

the work may go away by itself (e.g., the data could be deleted) and, as

more work accumulates, more efficiencies can be gained (e.g., sequential

write patterns may become realizable).

Some file systems also delay allocation to optimize data layout [83,

107]. When allocating a new block, the file system does not immediately

decide its on-disk location; another task will decide later. More infor-

mation (e.g., file sizes) becomes known over time, so delaying allocation

enables more informed decisions.

Both delayed writeback and allocation involve file-system level dele-

gation, with one process doing I/O work on behalf of other processes. A

writeback process submits buffers that other processes dirtied and may

also dirty metadata structures on behalf of other processes. Such del-

egation obfuscates the mapping from requests to processes. To block-

level schedulers, the writeback task sometimes appears responsible for

all write traffic.

We evaluate Linux’s priority-based block scheduler, CFQ (Completely

Fair Queuing) [2], using an asynchronous write workload. CFQ aims to

allocate disk time fairly among processes (in proportion to priority). We

launch eight threads with different priorities, ranging from 0 (highest)

to 7 (lowest): each writes to its own file sequentially. A thread’s write

throughput should be proportional to its priority, as shown by the ex-
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Figure 2.4: CFQ Throughput. The left plot shows sequential write through-
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seen by CFQ. Unfortunately, the “Completely Fair Scheduler” is not even slightly
fair for sequential writes.

pectation line of Figure 2.4 (left). Unfortunately, CFQ ignores priorities,

treating all threads equally. Figure 2.4 (right) shows why: to CFQ all the

requests appear to have a priority of 4, because the writeback thread (a

priority-4 process) submits all the writes on behalf of the eight benchmark

threads.

2.2.2.2 Journaling

Many modern file systems use journals for consistent updates [24, 83,

107]. While details vary across file systems, most follow similar journal-

ing protocols to commit data to disk; here, we discuss ext4’s ordered-

mode to illustrate how journaling severely complicates scheduling.

When changes are made to a file, ext4 first writes the affected data

blocks to disk, then creates a journal transaction which contains all re-

lated metadata updates and commits that transaction to disk, as shown
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Figure 2.5: Journal Batching. Arrows point to events that must occur before
the event from which they point. The event for the blocks is a disk write. The
event for an fsync is a return.

in Figure 2.5. The data blocks (D1, D2, D3) must be written before the

journal transaction, as updates become durable as soon as the transac-

tion commits, and ext4 needs to prevent the metadata in the journal from

referring to data blocks containing garbage. After metadata is journaled,

ext4 eventually checkpoints the metadata in place.

Transaction writing and metadata checkpointing are both performed

by kernel processes instead of the processes that initially caused the up-

dates. This form of write delegation also complicates cause mapping.

More importantly, journaling prevents block-level schedulers from re-

ordering. Transaction batching is a well-known performance optimiza-

tion [59], but block schedulers have no control over which writes are batched,

so the journal may batch together writes that are important to scheduling

goals with less-important writes. For example, in Figure 2.5, suppose A is

higher priority than B. A’s fsync depends on transaction commit, which

depends on writing B’s data. Priority is thus inverted.

When metadata (e.g., directories or bitmaps) is shared among files,

journal batching may be necessary for correctness (not just performance).

In Figure 2.5, the journal could have conceivably batched M1 and M2 sep-

arately; however, M1 depends on D2, data written by a process C to a
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to flush one block of data to disk, while thread B flushes multiple blocks using
fsync. This plot shows how A’s latency depends on B’s I/O size.

different file, and thus A’s fsync depends on the persistence of C’s data.

Unfortunately (for schedulers), metadata sharing is common in file sys-

tems.

The inability to reorder is especially problematic for a deadline sched-

uler: a block-request deadline completely loses its relevance if one re-

quest’s completion depends on the completion of unrelated I/Os. To

demonstrate, we run two threads A (small) and B (big) with Linux’s Block-

Deadline scheduler [4], setting the block-request deadline to 20 ms for

each. Thread A does 4 KB appends, calling fsync after each. Thread B

does N bytes of random writes (N ranges from 16 KB to 4 MB) followed

by an fsync. Figure 2.6 shows that even though A only writes one block

each time, A’s fsync latency depends on how much data B flushes each

time.

Most file systems enforce ordering for correctness, so these problems

occur with other crash-consistency mechanisms as well. For example, in
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log-structured files systems [98], writes appended earlier are durable ear-

lier.

2.2.2.3 Caching and Write Amplification

Sequentially reading or writing N bytes from or to a file often does not

result in N bytes of sequential disk I/O for several reasons. First, file sys-

tems use different disk layouts, and layouts change as file systems age;

hence, sequential file-system I/O may become random disk I/O. Second,

file-system reads and writes may be absorbed by caches or write buffers

without causing I/O. Third, some file-system features amplify I/O. For

example, reading a file block may involve additional metadata reads, and

writing a file block may involve additional journal writes. These behav-

iors prevent system-call schedulers from accurately estimating costs.

To show how this inability hurts system-call schedulers, we evaluate

SCS-Token [36]. In SCS-Token, a process’s resource usage is limited by the

number of tokens it possesses. Per-process tokens are generated at a fixed

rate, based on user settings. When the process issues a system call, SCS

blocks the call until the process has enough tokens to pay for it.

We attempt to isolate a process A’s I/O performance from a process

B by throttling B’s resource usage. If SCS-Token works correctly, A’s per-

formance will vary little with respect to B’s I/O patterns. To test this be-

havior, we configure A to sequentially read from a large file while B runs

workloads with different I/O patterns. Each of the B workloads involve

repeatedly accessing R bytes sequentially from a 10 GB file and then ran-

domly seeking to a new offset. We explore 7 values for R (from 4 KB to

16 MB) for both reads and writes (14 workloads total). In each case, B is

throttled to 10 MB/s.

Figure 2.7 shows how A’s performance varies with B’s I/O patterns.

Note the large gap between the performance of A with B reading vs. writ-

ing. When B is performing sequential writes, A’s throughput is as high as
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Figure 2.7: SCS Token Bucket: Isolation. The performance of two processes
is shown: a sequential reader, A, and a throttled process, B. B may read (black) or
write (gray), and performs runs of different sizes (x-axis).

125 MB/s; when B is performing random reads, A’s throughput drops to

25 MB/s in the worst case. Writes appear cheaper than reads because

write buffers absorb I/O and make it more sequential. Across the 14

workloads, A’s throughput has a standard deviation of 41 MB, indicating

A is highly sensitive to B’s patterns. SCS-Token fails to isolate A’s perfor-

mance by throttling B, as SCS-Token cannot correctly estimate the cost of

B’s I/O pattern.

2.2.2.4 Discussion

Table 2.2 summarizes how different needs are met (or not) by each frame-

work. The block-level framework fails to support correct cause mapping

(due to write delegation such as journaling and delayed allocation) or

control over reordering (due to file-system ordering requirements). The

system-call framework solves these two problems, but fails to provide
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Block Syscall Split
Cause Mapping ✖ ✔ ✔

Cost Estimation ✔ ✖ ✔

Reordering ✖ ✔ ✔

Table 2.2: Framework Properties. A ✔ indicates a given scheduling func-
tionality can be supported with the framework, and an ✖ indicates a functionality
cannot be supported.

enough information to schedulers for accurate cost estimation because

it lacks low-level knowledge. These problems are general to many file

systems; even if journals are not used, similar issues arise from the or-

dering constraints imposed by other mechanisms such as copy-on-write

techniques [25] or soft updates [45]. Our split framework meets all the

needs in Table 2.2 by incorporating ideas from the other two frameworks

and exposing additional memory-related hooks.

2.3 Split Framework Design

Existing frameworks offer insufficient reordering control and accounting

knowledge. Requests are queued, batched, and processed at many layers

of the stack, thus the limitations of single-layer frameworks are unsur-

prising. We propose a holistic alternative: all important decisions about

when to perform I/O work should be exposed as scheduling hooks, re-

gardless of the level at which those decisions are made in the stack. We

now discuss how these hooks support correct cause mapping (§2.3.1), ac-

curate cost estimation (§2.3.2), and reordering (§2.3.3).
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Figure 2.8: Set Tags and I/O Proxies. Our tags map metadata and journal
I/O to the real causes, P1 and P2, not P3.

2.3.1 Cause Mapping

A scheduler must be able to map I/O back to the processes that caused it

to accurately perform accounting even when some other process is sub-

mitting the I/O. Metadata is usually shared, and I/Os are usually batched,

so there may be multiple causes for a single dirty page or a single request.

Thus, the split framework tags I/O operations with sets of causes, instead

of simple scalar tags (e.g., those implemented by Mesnier et al. [88]).

Write delegation (§2.2.2.1) further complicates cause mapping when

one process is dirtying data (not just submitting I/O) on behalf of other

processes. We call such processes proxies; examples include the writeback

and journaling tasks. Our framework tags proxy process to identify the

set of processes being served instead of the proxy itself. These tags are

created when a process starts dirtying data for others and cleared when

it is done.

Figure 2.8 illustrates how our framework tracks multiple causes and

proxies. Processes P1 and P2 both dirty the same data page, so the page’s

tag includes both processes in its set. Later, a writeback process, P3,

writes the dirty buffer to disk. In doing so, P3 may need to dirty the

journal and metadata, and will be marked as a proxy for {P1, P2} (the

tag is inherited from the page it is writing back). Thus, P1 and P2 are
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considered responsible when P3 dirties other pages, and the tag of these

pages will be marked as such. The tag of P3 is cleared when it finishes

submitting the data page to the block level.

2.3.2 Cost Estimation

Many policies require schedulers to know how much I/O costs, in terms

of device time or other metrics. An I/O pattern’s cost is influenced by file-

system features, such as caches and write buffers, and by device proper-

ties (e.g., random I/O is cheaper on flash than hard disk).

Costs can be most accurately estimated at the lowest levels of the stack,

immediately above hardware (or better still in hardware, if possible). At

the block level, request locations are known, so sequentiality-based mod-

els can estimate costs. Furthermore, this level is below all file-system fea-

tures, so accounting is less likely to overestimate costs (e.g., by counting

cache reads) or underestimate costs (e.g., by missing journal writes).

Unfortunately, writes may be buffered for a long time (e.g., 30 seconds)

before being flushed to the block level. Thus, while block-level account-

ing may accurately estimate the cost of a write, it is not aware of most
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writes until some time after they enter the system via a write system call.

Thus, if prompt accounting is more important than accurate accounting

(e.g., for interactive systems), accounting should be done at the memory

level. Without memory-level information, a scheduler could allow a low-

priority process to fill the write buffers with gigabytes of random writes,

as we saw earlier (Figure 2.3).

Figure 2.9 shows the trade-off between accounting at the memory level

(write buffer) and block level (request queue). At the memory level, sched-

ulers do not know whether dirty data will be deleted before a flush, whether

other writers will overwrite dirty data, or whether I/O will be sequential

or random. A scheduler can guess how sequential buffered writes will be

based on file offsets, but delayed allocation prevents certainty about the

layout. After a long delay, on-disk locations and other details are known

for certain at the block level.

The cost of buffered writes depends on future workload behavior, which

is usually unknown. Thus, we believe all scheduling frameworks are

fundamentally limited and cannot provide cost estimation that is both

prompt and accurate. Our framework exposes hooks at both the mem-

ory and block levels, enabling each scheduler to handle the trade-off in

the manner most suitable to its goals. Schedulers may even utilize hooks

at both levels. For example, Split-Token (§2.5.3) promptly guesses write

costs as soon as buffers are dirtied, but later revises that estimate when

more information becomes available (e.g., when the dirty data is flushed

to disk).

2.3.3 Reordering

Most schedulers will want to reorder I/O to achieve good performance

as well as to meet more specific goals (e.g., low latency or fairness). Re-

ordering for performance requires knowledge of the device (e.g., whether

it is useful to reorder for sequentiality), and is best done at a lower level
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in the stack. We enable reordering at the block level by exposing hooks

for both block reads and writes.

Unfortunately, the ability to reorder writes at the block level is greatly

limited by file systems (§2.2.2.2). Thus, reordering hooks for writes (but

not reads, which are not entangled by journals) are also exposed above

the file system, at the system-call level. By controlling when write system

calls run, a scheduler can control when writes become visible to the file

system and prevent ordering requirements that conflict with scheduling

goals.

Many storage systems have calls that modify metadata, such as mkdir

and creat in Linux; the split framework also exposes these. This ap-

proach presents an advantage over the SCS framework, which cannot

correctly schedule these calls. In particular, the cost of a metadata up-

date greatly depends on file-system internals, of which SCS schedulers

are unaware. Split schedulers, however, can observe metadata writes at

the block level and accordingly charge the responsible applications.

File-system synchronization points (e.g., fsync or similar) require all

dependent data to be flushed to disk and typically invoke the file sys-

tem’s ordering mechanism. Unfortunately, logically independent opera-

tions often must wait for the synchronized updates to complete (§2.2.2.2),

so the ability to schedule fsync is essential. Furthermore, writes followed

by fsync are more costly than writes by themselves, so schedulers should

be able to treat the two patterns differently. Thus, the split framework also

exposes fsync scheduling.

2.4 Split Scheduling in Linux

Split-style scheduling could be implemented in a variety of storage stacks.

In this work, we implement it in Linux, integrating with the ext4 and XFS

file systems.
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2.4.1 Cross-Layer Tagging

In Linux, I/O work is described by different function calls and data struc-

tures at different layers. For example, a write request may be represented

by (a) the arguments to vfs_write at the system-call level, (b) a buffer_head

structure in memory, and (c) a bio structure at the block level. Sched-

ulers in our framework see the same requests in different forms, so it is

useful to have a uniform way to describe I/O across layers. We add a

causes tagging structure that follows writes through the stack and iden-

tifies the original processes that caused an I/O operation. Split schedulers

can thereby correctly map requests back to the application from any layer.

Writeback and journal tasks are marked as I/O proxies, as described

earlier (§2.3.1). In ext4, writeback calls the ext4_da_writepages function

(“da” stands for “delayed allocation”), which writes back a range of pages

of a given file. We modify this function so that as it does allocation for the

pages, it sets the writeback thread’s proxy state as appropriate. For the

journal proxy, we modify jbd2 (ext4’s journal) to keep track of all tasks

responsible for adding changes to the current transaction.

2.4.2 Scheduling Hooks

We now describe the hooks we expose, which are split across the system-

call, memory, and block levels. Table 2.3 lists the split hooks.

System Call: These hooks allow schedulers to intercept entry and re-

turn points for various I/O system calls. A scheduler can delay the execu-

tion of a system call by simply sleeping in the entry hook. Like SCS, we in-

tercept writes, so schedulers can separate writes before the file system en-

tangles them. Unlike SCS, we do not intercept reads (no file-system mech-

anism entangles reads, so scheduling reads below the cache is preferable).

Two metadata-write calls, creat and mkdir, and the Linux synchroniza-

tion call, fsync, are also exposed to the scheduler. It would be useful
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write-entry(syscall,…) SCS

write-return(rv,…) SCS

fsync-entry(syscall,…) new

fsync-return(rv,…) new

creat-entry(syscall,…) new

creat-return(rv,…) new

B
lo

c
k req-add(req, …) block

req-complete(req,…) block

Split Hook Origin

mkdir-entry(sys call,…) new

mkdir-return(rv,…) new

req-merge(…) block

req-activate(req,…) block

req-deactivate(req,…) block

dispatch(…) block

Table 2.3: Split Hooks. The “Origin” column shows which hooks are new
and which are borrowed from other frameworks.

(and straightforward) to support other metadata calls in the future (e.g.,

unlink).

Note that in our implementation, the caller is blocked until the system

call is scheduled. Other implementations are possible, such as buffering

the system calls and returning immediately, or simply returning EAGAIN

to tell the caller to issue the system call later. We choose this particular im-

plementation because of its simplicity and POSIX compliance. Linux it-
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self blocks writes (when there are too many dirty pages) and fsyncs, and

most applications already deal with this behavior using separate threads;

what we do is no different.

Memory: These hooks expose page-cache internals to schedulers. In

Linux, a writeback thread (pdflush) decides when to pass I/O to the

block-level scheduler, which then decides when to pass that I/O to disk.

Both components are performing scheduling tasks, and separating them

is inefficient (e.g., writeback could flush more aggressively if it knew when

the disk was idle). We add two hooks to inform the scheduler when

buffers are dirtied or deleted. The buffer-dirty hook notifies the sched-

uler when a process dirties a buffer or when a dirty buffer is modified.

In the latter case, the framework tells the scheduler which processes pre-

viously dirtied the buffer; depending on policy, the scheduler could re-

vise accounting statistics, shifting some (or all) of the responsibility for

the I/O to the last writer. The buffer-free hooks tell the scheduler if a

buffer is deleted before writeback. Schedulers can either rely on Linux to

perform writeback and throttle write system calls to control how much

dirty data accumulates before writeback, or they can take complete con-

trol of the writeback. We evaluate the trade-off of these two approaches

later (§2.7.1.2).

Block: These hooks are identical to those in Linux’s original schedul-

ing framework; schedulers are notified when requests are added to the

block level or completed by the disk. Although we did not modify the

function interfaces at this level, schedulers implementing these hooks in

our framework are more informed, given tags within the request struc-

tures that identify the responsible processes. The Linux scheduling frame-

work has over a dozen other block-level hooks for initialization, request

merging, and convenience. We support all these as well for compatibility,

but do not discuss them here.
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def req_add(req):

# put block-level read requests in a per-process queue

if req.type == read:

process = req.tag.get_cause()

q = get_queue(process)

enqueue(q, req)

# immediately dispatch block-level write requests

if req.type == write:

send_to_disk(req)

def write_entry(syscall):

process = syscall.tag.get_cause()

q = get_queue(process)

enqueue(q, syscall)

sleep_until_scheduled(syscall)

# after write_entry returns

# the write system-call proceeds as usual

return

def dispatch():

process = get_min_cost_process()

# task could be a block-level read request

# or a system-call level syscall

task = dequeue(get_queue(process))

if task.type == read:

send_to_disk(task)

if task.type == write:

signal_scheduled(task)

def req_complete(req):

# accounting done at block level for both reads and writes

disk_time = get_cost(req)

process = req.tag.get_cause()

add_cost(process, disk_time)

Figure 2.10: Sample Scheduler Code. Pseudo-code of a simplified split-level
scheduler that implements fair scheduling.
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2.4.3 Implement a Split-Level Scheduler

To demonstrate how to use the split hooks to implement a scheduling

algorithm, Figure 2.10 lists the pseudo-code of a simplified split-level

scheduler that implements fair scheduling (real schedulers would be im-

plemented in C).

This scheduler employs a two-level scheduling strategy. Reads are

scheduled at the block level to allow cache hits, while writes are sched-

uled at the system-call level to avoid any file-system entanglement. When-

ever the scheduler receives a block-level read request (invokes req-add)

or a syscall-level write call (invokes write-entry), it first finds the pro-

cess that is responsible for the received I/O task by consulting the tag,

then inserts the task to the queue corresponding to the process. Block-

level writes received by the scheduler (also invokes req-add) are imme-

diately dispatched to disk without any scheduling because writes are al-

ready subjected to scheduling at the higher system-call level.

Whenever the disk is idle, the dispatch hook is invoked to request

more I/O tasks from the scheduler; the scheduler then checks which pro-

cess has incurred the least I/O cost yet, and schedules I/O tasks from that

process queue to ensure fair share between processes.

Accounting of the I/O cost (done within the req-complete hook) is

performed at the block-level, regardless of the request type (read or write),

because the block-level has the most knowledge of the location of the re-

quest and other information that determines the I/O cost.

2.4.4 Implementation Effort and Overhead

Implementing the split-level framework in Linux involves ∼300 lines of

code, plus some file-system integration effort, which we discuss later (§2.6).

While representing a small change in the Linux code base, it enables pow-

erful scheduling capabilities, as we will show next.
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Figure 2.11: Time Overhead. The split framework scales well with the num-
ber of concurrent threads doing I/O to an SSD.

We now evaluate the time and space overhead of the split framework.

In order to isolate framework overhead from individual scheduler over-

head, we compare no-op schedulers implemented in both our framework

and the block framework (a no-op scheduler issues all I/O immediately,

without any reordering). Figure 2.11 shows our framework imposes no

noticeable time overhead, even with 100 threads.

The split framework introduces some memory overhead for tagging

writes with causes structures (§2.4.1). Memory overheads roughly cor-

respond to the number of dirty write buffers. To measure this overhead,

we instrument kmalloc and kfree to track the number of bytes allocated

for tags over time. For our evaluation, we run HDFS with a write-heavy

workload, measuring allocations on a single worker machine. Figure 2.12

shows the results: with the default Linux settings, average overhead is

14.5 MB (0.2% of total RAM); the maximum is 23.3 MB. Most tagging is

on the write buffers; thus, a system tuned for more buffering should have
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Figure 2.12: Space Overhead. Memory overhead is shown for an HDFS
worker with 8 GB of RAM under a write-heavy workload. Maximum and av-
erage overhead is measured as a function of the Linux dirty_ratio setting.
dirty_background_ratio is set to half of dirty_ratio.

higher tagging overheads. With a 50% dirty_ratio [6], maximum usage

is still only 52.2 MB (0.6% of total RAM).

2.5 Scheduler Case Studies

In this section, we evaluate the split framework’s ability to support a va-

riety of scheduling goals. We implement AFQ (§2.5.1), Split-Deadline

(§2.5.2), and Split-Token (§2.5.3), and compare these schedulers to sim-

ilar schedulers in other frameworks. Unless otherwise noted, all experi-

ments run on top of ext4 with the Linux 3.2.51 kernel (most XFS results

are similar but usually not shown). Our test machine has an eight-core,

1.4 GHz CPU and 16 GB of RAM. We use 500 GB Western Digital hard

drives (AAKX) and an 80 GB Intel SSD (X25-M).
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2.5.1 AFQ: Actually Fair Queuing

As shown earlier (§2.2.1), CFQ’s inability to correctly map requests to pro-

cesses causes unfairness, due to the lack of information Linux’s elevator

framework provides. Moreover, file-system ordering requirements limit

CFQ’s reordering options, causing priority inversions. In order to over-

come these two drawbacks, we introduce AFQ (Actually Fair Queuing

scheduler) to allocate I/O fairly among processes according to their pri-

orities. More precisely, AFQ shares the disk head time among processes

in proportion to (8−prio), where prio is the priority of a process, ranging

from 0 (high) to 7 (low).

Design: AFQ employs a two-level scheduling strategy. Reads are han-

dled at the block level and writes (and calls that cause writes, such as

fsync) are handled at the system-call level. This design allows reads to hit

the cache while protecting writes from journal entanglement. Beneath the

journal, low-priority blocks may be prerequisites for high-priority fsync

calls, so writes at the block level are dispatched immediately.

AFQ chooses I/O requests to dequeue at the block and system-call

levels using the stride algorithm [116]. Whenever a block request is dis-

patched to disk, AFQ charges the responsible processes for the disk I/O.

The I/O cost is based on a simple seek model. In this model, the disk

time needed to serve one request consists of the seek time and the trans-

fer time, where the seek time is proportional to the offset difference be-

tween current request and the previous request, and the transfer time is

proportional to the request size.

Evaluation: We compare AFQ to CFQ with four workloads, shown

in Figure 2.13. Figure 2.13(a) shows read performance on AFQ and CFQ

for eight threads, with priorities ranging from 0 (high) to 7 (low), each

reading from its own file sequentially. We see that AFQ’s performance is

similar to CFQ, and both respect priorities.

Figure 2.13(b) shows asynchronous sequential-write performance, again
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with eight threads. This time, CFQ fails to respect priorities because of

write delegation, but AFQ correctly maps I/O requests via split tags, and

thus respects priorities. On average, CFQ deviates from the ideal by 82%,

AFQ only by 16% (a 5× improvement).

Figure 2.13(c) shows synchronous random-write performance: we set

up 5 threads per priority level, and each keeps randomly writing and

flushing (with fsync) 4 KB blocks. The average throughput of threads

at each priority level is shown. CFQ again fails to respect priority; us-

ing fsync to force data to disk invokes ext4’s journaling mechanism and

keeps CFQ from reordering to favor high-priority I/O. AFQ, however,

blocks low-priority fsyncs when needed, improving throughput for high-

priority threads. As shown, AFQ is able to respect priority, deviating

from the ideal value only by 3% on average while CFQ deviates by 86%

(a 28× improvement).

Finally, Figure 2.13(d) shows throughput for a memory-intense work-

load that just overwrites dirty blocks in the write buffer. One thread at

each priority level keeps overwriting 4 MB of data in its own file. Both

CFQ and AFQ get very high performance as expected, though AFQ is

slightly slower (AFQ needs to do significant bookkeeping for each write

system call). The plot has no fairness goal line as there is no contention

for disk resources.

In general, AFQ and CFQ have similar performance; however, AFQ

always respects priorities, while CFQ only respects priorities for the read

workloads.

2.5.2 Deadline

As shown earlier (Figure 2.6 in §2.2.2.2), Block-Deadline does poorly when

trying to limit tail latencies, due to its inability to reorder block I/Os in

the presence of file-system ordering requirements. Split-level scheduling,
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with system-call scheduling capabilities and memory-state knowledge, is

better suited to this task.

Design: We implement the Split-Deadline scheduler by modifying the

Linux deadline scheduler (Block-Deadline). Block-Deadline maintains

two deadline queues and two location queues (for both read and write

requests) [4]. In Split-Deadline, an fsync-deadline queue is used instead

of a block-write deadline queue. During operation, if no read request

or fsync is going to expire, block-level read and write requests are issued

from the location queues to maximize performance. If some read requests

or fsync calls are expiring, they are issued before their deadlines.

Split-Deadline monitors how much data is dirtied for one file using the

buffer-dirty hook and thereby estimates the cost of an fsync. If there

is an fsync pending that may affect other processes by causing too much

I/O, it will not be issued directly. Instead, the scheduler asks the kernel to

launch asynchronous writeback of the file’s dirty data and waits until the

amount of dirty data drops to a point such that other deadlines would not

be affected by issuing the fsync. Asynchronous writeback does not gen-

erate a file-system synchronization point and has no deadline, so other

operations are not forced to wait.

Evaluation: We compare Split-Deadline to Block-Deadline for a database-

like workload on both hard disk drive (HDD) and solid state drive (SSD).

We set up two threads A (small) and B (big); thread A appends to a small

file one block (4 KB) at a time and calls fsync (this mimics database log

appends) while thread B writes 1024 blocks randomly to a large file and

then calls fsync (this mimics database checkpointing).

The deadline settings are shown in Table 2.4. We choose shorter block-

write deadlines than fsync deadlines because each fsync causes multiple

block writes; however, our results do not appear sensitive to the exact

values chosen. Linux’s Block-Deadline scheduler does not support setting

different deadlines for different processes, so we add this feature to enable
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A B
Block Write Fsync Block Write Fsync

HDD 10 ms 100 ms 100 ms 6000 ms
SSD 1 ms 3 ms 10 ms 100 ms

Table 2.4: Deadline Settings. For Block-Deadline, we set deadlines for block-
level writes; for Split-Deadline, we set deadlines for fsyncs.

a fair comparison.

Figure 2.14 shows the experiment results on both HDD and SSD. We

can see that when no I/O from B is interfering, both schedulers give A low-

latency fsyncs. After B starts issuing big fsyncs, however, Block-Deadline

starts to fail: A’s fsync latencies increase by an order of magnitude; this

happens because B generates too much bursty I/O when calling fsync,

and the scheduler has no knowledge of or control over when they are

coming. Worse, A’s operations become dependent on these I/Os.

With Split-Deadline, however, A’s fsync latencies mostly fluctuate around

the deadline, even when B is calling fsync after large writes. Sometimes A

exceeds its goal slightly because our estimate of the fsync cost is not per-

fect, but latencies are always relatively near the target. Such performance

isolation is possible because Split-Deadline can reorder to spread the cost

of bursty I/Os caused by fsync without forcing others to wait.

2.5.3 Token Bucket

Earlier, we saw that SCS-Token [36] fails to isolate performance (Figure 2.7

in §2.2.2.3). In particular, the throughput of a process A was sensitive to

the activities of another process B. SCS underestimates the I/O cost of

some B workloads, and thus does not sufficiently throttle B. In this section,

we evaluate Split-Token, a reimplementation of token bucket in our frame-

work that caps the I/O used by each throttled process to a pre-specified

rate to guarantee isolation.
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Design: As with SCS-Token, throttled processes are given tokens at a

set rate. I/O costs tokens, I/O is blocked if there are no tokens, and the

number of tokens that may be held is capped. Split-Token throttles a pro-

cess’s system-call writes and block-level reads if and only if the number

of tokens is negative. System-call reads are never throttled (to utilize the

cache). Block writes are never throttled (to avoid entanglement).

Our implementation uses memory-level and block-level hooks for ac-

counting. The scheduler promptly charges tokens as soon as buffers are

dirtied, and then revises when the writes are later flushed to the block

level (§2.3.2), charging more tokens (or refunding them) based on ampli-

fication and sequentiality. Tokens represent bytes, so accounting normal-

izes the cost of an I/O pattern to the equivalent amount of sequential I/O

(e.g., 1 MB of random I/O may be counted as 10 MB).

Split-Token estimates I/O cost based on two models, both of which

assume an underlying hard disk (simpler models could be used on SSD).

When buffers are first dirtied at the memory level, a preliminary model

estimates cost based on the randomness of request offsets within the file.

Later, when the file system allocates space on disk for the requests and

flushes them to the block level, a disk model (similar to the one we use in

$2.5.1) revises the cost estimate. The second model is more accurate be-

cause it can consider more factors than the first model, such as whether

the file system introduced any fragmentation, and whether the file is lo-

cated near other files being written.

Evaluation: We repeat our earlier SCS experiments (Figure 2.7) with

Split-Token, as shown in Figure 2.15. We observe that whether B does

reads or writes has little effect on A (the A lines are near each other). Whether

B’s pattern is sequential or random also has little impact (the lines are flat).

Across all workloads, the standard deviation of A’s performance is 7 MB,

about a 6× improvement over SCS (SCS-Token’s deviation was 41 MB).

We now directly compare SCS-Token with Split-Token using a broader
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Figure 2.15: Isolation: Split-Token with ext4. The same as Figure 2.7, but
for our Split-Token implementation. A is the unthrottled sequential reader, and B

is the throttled process performing I/O of different run sizes.

range of read and write workloads for process B. I/O can be random

(expensive), sequential, or served from memory (cheap). As before, A is

an unthrottled reader, and B is throttled to 1 MB/s of normalized I/O.

Figure 2.16 (left) shows that Split-Token is near the isolation target all

six times, whereas SCS-Token significantly deviates three times (twice by

more than 50%), again showing Split-Token provides better isolation.

After isolation, a secondary goal is the best performance for throttled

processes, which we measure in Figure 2.16 (right). Sometimes B is faster

with SCS-Token, but only because SCS-Token is incorrectly sacrificing iso-

lation for A (e.g., B does faster random reads with SCS-Token, but A’s per-

formance drops over 80%). We consider the cases where SCS-Token did

provide isolation. First, Split-Token is 2.3× faster for “read-mem”. SCS-

Token logic must run on every read system call, whereas Split-Token does

not. SCS-Token still achieves nearly 2 GB/s, though, indicating cache
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hits are not throttled. Although the goal of SCS-Token was to do system-

call scheduling, Craciunas et al. needed to modify the file system to tell

which reads are cache hits [37]. Second, Split-Token is 837× faster for

“write-mem”. SCS-Token does write accounting at the system-call level,

so it does not differentiate buffer overwrites from new writes. Thus, SCS-

Token unnecessarily throttles B. With Split-Token, B’s throughput does not

reach 1 MB/s for “read-seq” because the intermingled I/Os from A and B

are no longer sequential; we charge it to both A and B.

We finally evaluate Split-Token for a large number of threads; we re-

peat the six workloads of Figure 2.16, this time varying the number of

B threads performing the I/O task (all threads of B share the same I/O
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Figure 2.17: Split-Token Scalability. A’s throughput is shown as a function
of the number of B threads performing a given activity. Goal performance is
101.7 MB (these numbers were taken on a 32-core CloudLab node with a 1 TB
drive).

limit). Figure 2.17 shows the results. For sequential read, the number of

B threads has no impact on A’s performance, as desired. We do not show

random read, sequential write, or random write, as these lines would ap-

pear the same as the read-sequential line (varying at most by 1.7%). How-

ever, when B is reading or writing to memory, A’s performance is only

steady if B has 128 threads or less. Since the B threads do not incur any

disk I/O, our I/O scheduler does not throttle them, leaving the B threads

free to dominate the CPU, indirectly slowing A. To confirm this, we do an

experiment (also shown in Figure 2.17) where B threads simply execute a

spin loop, issuing no I/O; A’s performance still suffers in this case. This

reminds us of the usefulness of CPU schedulers in addition to I/O sched-

ulers: if a process does not receive enough CPU time, it may not be able

to issue requests fast enough to fully utilize the storage system.
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2.5.4 Implementation Effort

Implementing different schedulers within the split framework is not only

possible, but relatively easy as it only requires implementing relevant

hooks (see §2.4.3). Split-AFQ takes ∼950 lines of code to implement from

scratch, Split-Deadline takes ∼750 lines of code, and Split-Token takes

∼950 lines of code. As a comparison, Block-CFQ takes more than 4000

lines of code (though it includes many performance optimizations that

AFQ does not offer), Block-Deadline takes ∼500 lines of code, and SCS-

Token takes ∼2000 lines of code (SCS-Token is large because there is not a

clean separation between the scheduler and framework).

Additional complexity of split-level schedulers compared to their block-

level counterparts comes from scheduling system calls to work around

file system ordering requirements. For example, in addition to maintain-

ing the deadline and location queues as Block-Deadline does, the Split-

Deadline scheduler has to also track whether an fsync would prevent

the scheduler from reordering requests to meet their deadlines, and take

necessary measures to avoid the situation. We feel that this complexity

is justified because it enables correct scheduling. However, if one does

not wish to afford the additional complexity, Block-Deadline and other

block-level schedulers can natively run within the split framework as we

provide backward compatibility.

2.6 File System Integration

Thus far we have presented results with ext4; now, we consider the effort

necessary to integrate ext4 and other file systems, in particular XFS, into

the split framework.

Integrating a file system involves (a) tagging relevant data structures

the file system uses to represent I/O in memory and (b) identifying the

proxy mechanisms in the file system and properly tagging the proxies.
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In Linux, part (a) is mostly file-system independent as many file sys-

tems use generic page buffer data structures to represent I/O. Both ext4

and XFS rely heavily on the buffer_head structure, which we already tag

properly. Thus we are able to integrate XFS buffers with split tags by

adding just two lines of code, and ext4 with less than 10 lines. In con-

trast, btrfs [82] uses its own buffer structures, so integration would require

more effort.

Part (b), on the other hand, is highly file-system specific, as different

file systems use different proxy mechanisms. For ext4, the journal task

acts as a proxy when writing the physical journal, and the writeback task

acts as a proxy when doing delayed allocation. XFS uses logical journal-

ing, and has its own journal implementation. For a copy-on-write file sys-

tem, garbage collection would be another important proxy mechanism.

Properly tagging these proxies is a bit more involved. In ext4, it takes 80

lines of code across 5 different files. Fortunately, such proxy mechanisms

typically only involve metadata, so for data-dominated workloads, partial

integration with only (a) should work relatively well.

In order to verify the above hypotheses, we have fully integrated ext4

with the split framework, and only partially integrated XFS with part (a).

We evaluate the effectiveness of our partial XFS integration on both data-

intensive and metadata-intensive workloads.

Figure 2.18 repeats our earlier isolation experiment (Figure 2.15), but

with XFS; these experiments are data-intensive. Split-Token again pro-

vides significant isolation, with A only having a deviation of 12.8 MB. In

fact, all the experiments we show earlier are data intensive, and XFS has

similar results (not shown) as ext4.

Figure 2.19 shows the performance of a metadata-intense workload

for both XFS and ext4. In this experiment, A reads sequentially while B

repeatedly creates empty files and flushes them to disk with fsync. B is

throttled, A is not. B sleeps between each create for a time varied on the
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Figure 2.18: Isolation: Split-Token with XFS. This is the same as Figure 2.7
and Figure 2.16, but for XFS running with our Split implementation of token
bucket.

x-axis. As shown in the left plot, B’s sleep time influences A’s performance

significantly with XFS, but with ext4 A is isolated. The right plot explains

why: with ext4, B’s creates are correctly throttled, regardless of how long

B sleeps. With XFS, however, B is unthrottled because XFS does not give

the scheduler enough information to map the metadata writes (which are

performed by journal tasks) back to B.

We conclude that some file systems can be partially integrated with

minimal effort, and data-intense workloads will be well supported. Sup-

port for metadata workloads, however, requires more effort.

2.7 Real Applications

In this section, we explore whether the split framework is a useful foun-

dation for databases (§2.7.1), virtual machines (§2.7.2), and distributed

file systems (§2.7.3).
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Figure 2.19: Metadata: Split-Token with XFS and ext4. Process A sequen-
tially reads while B creates and flushes new, empty files. A’s throughput is shown
as function of how long B sleeps between operations (left). B’s create frequency is
also shown for the same experiments (right).

2.7.1 Databases

To show how real databases could benefit from Split-Deadline’s low-latency

fsyncs, we measure transaction-response time for SQLite3 [61] and Post-

greSQL [12] running with both Split-Deadline and Block-Deadline.

2.7.1.1 SQLite3

We run SQLite3 on a hard disk drive. For Split-Deadline, we set short

deadlines (100 ms) for fsyncs on the write-ahead log file and reads from

the database file and set long deadlines (10 seconds) for fsyncs on the

database file. For Block-Deadline, the default settings (50 ms for block

reads and 500 ms for block writes) are used. We make minor changes

to SQLite to allow concurrent log appends and checkpointing and to set

appropriate deadlines. For our benchmark, we randomly update rows in

a large table, measure transaction latencies, and run checkpointing in a
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Figure 2.20: SQLite Transaction Latencies. 99th and 99.9th percentiles of
the transaction latencies are shown. The x-axis is the number of dirty buffers we
allow before checkpoint.

separate thread whenever the number of dirty buffers reaches a thresh-

old.

Figure 2.20(a) shows the transaction tail latencies (99th and 99.9th per-

centiles) when we change the checkpointing threshold. When checkpoint

thresholds are larger, checkpointing is less frequent, fewer transactions

are affected, and thus the 99th line falls. Unfortunately, this approach

does not eliminate tail latencies; instead, it concentrates the cost on fewer

transactions, so the 99.9th line continues to rise. In contrast, Figure 2.20(b)

shows that Split-Deadline provides much smaller tail latencies (a 4× im-

provement for 1K buffers).

2.7.1.2 PostgreSQL

We run PostgreSQL [12] on top of an SSD and benchmark it using pg-

bench [5], a TPC-B like workload. We change PostgreSQL to set I/O dead-

lines for each worker thread. We want consistently low transaction laten-

cies (within 15 ms), so we set the foreground fsync deadline to 5 ms,



52

1 10 100 1000
0%

20%

40%

60%

80%

100%
P

er
ce

nt
ag

e 
of

 X
ac

ts

Transaction Latency (ms)

target latency

Split-Deadline
Split-Pdflush
Block-Deadline

Figure 2.21: PostgreSQL Transaction Latencies. A CDF of transaction
latencies is shown for three systems. Split-Pdflush is Split-Deadline, but with
pdflush controlling writeback separately.

and the background checkpointing fsync deadline to 200 ms for Split-

Deadline. For Block-Deadline, we set the block write deadline to 5 ms.

For block reads, a deadline of 5 ms is used for both Split-Deadline and

Block-Deadline. Checkpoints occur every 30 seconds.

Figure 2.21 shows the cumulative distribution of the transaction la-

tencies. We can see that when running on top of Block-Deadline, 4% of

transactions fail to meet their latency target, and over 1% take longer than

500 ms. After further inspection, we found that the latency spikes happen

at the end of each checkpoint period, when the system begins to flush a

large amount of dirty data to disk using fsync. Such data flushing in-

terferes with foreground I/Os, causes long transaction latency and low

system throughput. The database community has long experienced this

“fsync freeze” problem, and has no great solution for it [3, 11, 12]. We

show next that Split-Deadline provides a simple solution to this problem.

When running Split-Deadline, we have the ability to schedule fsyncs
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and minimize their performance impact to foreground transactions. How-

ever, pdflush (Linux’s writeback task) may still submit many writeback

I/Os without scheduler involvement and interfere with foreground I/Os.

Split-Deadline maintains deadlines in this case by limiting the amount

of data pdflush may flush at any given time by throttling write system

calls. In Figure 2.21 we can see that this approach effectively eliminates

tail latency: 99.99% of the transactions are completed within 15 ms. Un-

fortunately, the median transaction latency is much higher because write

buffers are not fully utilized.

When pdflush is disabled, though, Split-Deadline has complete con-

trol of writeback, and can allow more dirty data in the system without

worrying about untimely writeback I/Os. It then initiates writeback in a

way that both observes deadlines and optimizes performance, thus elim-

inating tail latencies while maintaining low median latencies, as shown

in Figure 2.21.

2.7.2 Virtual Machines (QEMU)

Isolation is especially important in cloud environments, where customers

expect to be isolated from other (potentially malicious) customers. To

evaluate our framework’s usefulness in this environment, we repeat our

token-bucket experiment in Figure 2.16, this time running the unthrottled

process A and throttled process B in separate QEMU instances. The guests

run a vanilla kernel; the host runs our modified kernel. Thus, throttling is

on the whole VM, not just the benchmark we run inside. We use an 8 GB

machine with a four-core 2.5 GHz CPU.

Figure 2.22 shows the results for QEMU running over both SCS and

Split-Token on the host. The isolation results for A (left) are similar to

the results when we ran A and B directly on the host (Figure 2.16): with

Split-Token, A is always well isolated, but with SCS, A experiences major

slowdowns when B does random I/O.
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Figure 2.22: QEMU Isolation. This is the same as Figure 2.16, but processes
A and B run in different QEMU virtual machines ext4 on the host. B is throttled
to 5 MB/s. Reported throughput is for the processes at the guest system-call level.

The throughput results for B (right) are more interesting: whereas be-

fore SCS greatly slowed memory-bound workloads, now SCS and Split-

Token provide equal performance for these workloads. This is because

when a throttled process is memory bound, it is crucial for performance

that a caching/buffering layer exist above the scheduling layer. The split

and QEMU-over-SCS stacks have this property (and memory workloads

are fast), but the raw-SCS stack does not.

2.7.3 Distributed File Systems (HDFS)

To show that local split scheduling is a useful foundation to provide iso-

lation in a distributed environment, we integrate HDFS with Split-Token

to provide isolation to HDFS clients. We modify the client-to-worker
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Figure 2.23: HDFS Isolation. Solid-black and gray bars represent the to-
tal throughput of throttled and unthrottled HDFS writers, respectively. Dashed
lines represent an upper bound on throughput; solid lines represent Block-CFQ
throughput.

protocol so workers know which account should be billed for disk I/O

generated by the handling of a particular RPC call. Account informa-

tion is propagated down to Split-Token and across to other workers (for

pipelined writes).

We evaluate our modified HDFS on a 256-core CloudLab cluster (one

NameNode and seven workers, each with 32 cores). Each worker has 8 GB

of RAM and a 1 TB disk. We run an unthrottled group of four threads and

a throttled group of four threads. Each thread sequentially writes to its

own HDFS file.

Figure 2.23(a) shows the result for varying rate limits on the x-axis.

The summed throughput (i.e., that of both throttled and unthrottled writ-

ers) is similar to throughput when HDFS runs over CFQ without any pri-
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orities set. With Split-Token, though, smaller rate caps on the throttled

threads provide the unthrottled threads with better performance (e.g., the

gray bars get more throughput when the black bars are locally throttled

to 16 MB/s).

Given there are seven datanodes, and data must be triply written for

replication, the expected upper bound on total I/O is (ratecap/3)∗7. The

dashed lines show these upper bounds in Figure 2.23(a); the black bars

fall short. We found that many tokens go unused on some workers due

to load imbalance. The hashed black bars represent the potential HDFS

write I/O that was thus lost.

In Figure 2.23(b), we try to improve load balance by decreasing the

HDFS block size from 64 MB (the default) to 16 MB. With smaller blocks,

fewer tokens go unused, and the throttled writers achieve I/O rates nearer

the upper bound. We conclude that local scheduling can be used to meet

distributed isolation goals; however, throttled applications may get worse-

than-expected performance if the system is not well balanced.

2.8 Conclusion

In this work, we have shown that single-layer schedulers operating at ei-

ther the block level or system-call level fail to support common goals due

to a lack of coordination with other layers.

While our experiments indicate that simple layering must be aban-

doned, we need not sacrifice modularity. In our split framework, the

scheduler operates across all layers, but is still abstracted behind a collec-

tion of handlers. This approach is relatively clean, and enables pluggable

scheduling. Supporting a new scheduling goal simply involves writing a

new scheduler plug-in, not re-engineering the entire storage system.

Our hope is that split-level scheduling will inspire future vertical in-

tegration in storage stacks. The source code of the split framework and
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three individual split-level schedulers can be found at

http://research.cs.wisc.edu/adsl/Software/split.

http://research.cs.wisc.edu/adsl/Software/split
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3

Thread Architecture Diagrams

In Chapter 2 we focused on the scheduling in local storage stacks; we now

move to the scheduling in distributed storage systems. Local scheduling

forms the foundation for any effective scheduling in distributed systems.

However, distributed scheduling has its own set of challenges. In partic-

ular, modern storage systems are complex, concurrent programs; many

systems are realized via an intricate series of stages, queues, and thread

pools, based loosely on the SEDA design principle [120]. Understanding

how to introduce scheduling control into these systems is challenging; a

single request may flow through numerous stages across multiple ma-

chines before its completion.

Due to these challenges, effective scheduling in distributed storage

systems has remained difficult despite repeated attempts from both in-

dustry and academia. Existing systems usually provide weak or no per-

formance guarantees as they lack the scheduling support to realize such

guarantees. For example, HBase [46] places the scheduling control at

the entry point of RPC handling; however, as we show later (§4.4), the

RPC handling threads in HBase interact with other threads in unexpected

ways, causing the schedulers placed here to fail. Similarly, Cassandra [73]

used to schedule requests immediately after they enter the system, but

only finds that it is insufficient to achieve proper scheduling and isola-

tion: scheduling at this point is ineffective due to Cassandra’s complex

internal structure [15].
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To overcome the challenges, we demonstrate a method to discover the

schedulability of concurrent storage systems. Our method traces a sys-

tem of interest under various workloads and produces a Thread Architec-

ture Diagram (TAD). TAD models the thread behavior and interactions

of a system; by analyzing a TAD, scheduling problems of the said sys-

tem can be discerned, pointing towards solutions that introduce neces-

sary scheduling controls. TADs can be used to model and analyze any

multiple-threaded programs as it reveals how different threads interact

with each other and consume resources; it is particularly useful in ana-

lyzing distributed storage systems, where a request could flow through

many stages across multiple nodes, consuming various types of resources

(I/O, network, CPU, etc.) along its path.

In this chapter, we first introduce how we model the system behav-

iors using TAD, and the general notations used (§3.1). We then discuss

TADalyzer, a tool we develop to automatically produce TADs for various

systems based on dynamic instrumentation and tracing techniques (§3.2).

Next we produce TADs for four important and widely-used scalable stor-

age systems and discuss their behaviors under the lens of TAD. We dis-

cuss HBase/HDFS [46, 104] in §3.3, MongoDB [34] in §3.4, Cassandra [73]

in §3.5, and Riak KV [71] in §3.6. Finally, we conclude (§3.7).

3.1 Thread Architecture Diagrams

At the highest level, we model scheduling in a storage system as contain-

ing requests that flow through the data path consuming various resources

while a control plane collects information and determines a scheduling

plan to realize the system’s overall goal (e.g., fairness, isolation, latency

guarantees, or other SLOs). This plan is distributed to and enforced by

local schedulers at different points along the data path, as shown in Fig-

ure 3.1.
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Process boundary (stages within the same process share 
address space)
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Name (#)
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No-scheduling, Unknown resource usage, hidden-Contention, 
Blocking, Ordering-constraint problem [Left to Right]N U C B O

CPU, I/O, network, lock resource [Left to Right]

Blocking relationship [Stage A blocks on the stage B]BA

Data flow [Stage A issues requests to stage B]BA

Information FlowBA

Table 3.1: Notation for Thread Architecture Diagrams.

How well scheduling policies can be realized depends on specific fea-

tures of the data path. In modern SEDA-based distributed storage sys-

tems, the data path consists of many distinct stages that each exhibit com-

plex behaviors. We introduce thread architecture diagrams to visualize

these behaviors. Table 3.1 summarizes the building blocks used in TADs.

A TAD models a system as a collection of nodes, each of which con-

sists of stages. Arrows indicate the flow of requests between nodes and

stages. Resources are consumed within a stage as requests are processed;

in a TAD, the resources shown as consumed include CPU, I/O, network,

and locks (with four different symbols).

A stage contains threads performing similar tasks (e.g., handling RPC
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Figure 3.1: Scheduling Framework Model. Circles represent stages along
the data path (gray indicates scheduling within the stage)

requests or performing I/O). A thread refers to any sequential execution

(e.g., a kernel thread, a user-level thread, or a virtual process implemented

by a virtual machine) regardless of its implementation. Within a stage,

threads can be organized as a thread pool with a fixed (or maximum)

number of active threads (bounded stage) or can be allocated dynamically

as new requests arrive (on-demand stage). In a TAD, on-demand stages are

shaded in gray.

Each bounded stage has an associated queue from which threads pick

tasks; each queue is a potential scheduling point where scheduling policies

can be realized by reordering requests. The queue can be either implicit

(e.g., the default FIFO queue associated with a Java thread pool) or ex-

plicit (with an API to allow choice of policy, or hard-coded decisions).

Even with an explicit queue, some requests may need to be served in or-

der for correctness; this is an ordering constraint. In a TAD, both explicit

and implicit queues are shown; the plug symbol designates the scheduler

may be configured with different policies and the lock symbol indicates

an ordering constraint.
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After a thread issues a request to downstream stages, the thread may

immediately proceed to other requests (asynchronous), or block until noti-

fied that the request is completed at the downstream stage (synchronous).

Blocking is indicated in a TAD with a dashed line between the down-

stream stage and the blocked stage.

3.2 TADalyzer

TADs are automatically obtained using TADalyzer, a tool we developed

to automatically discover thread architecture using instrumentation and

tracing techniques. TADalyzer requires the user to annotate the code to

identify important stages; it then tracks thread activities (i.e., creation, ter-

mination, resource consumption, blocking on signals) and interactions to

construct the data flow and interactions between stages. For now TA-

Daylzer only works for storage systems based on Java or C++, but it can

be extended to support other languages as well.

3.2.1 Automatic Discovery

To discover the thread architecture of a system, the user first needs to

annotate the code to identify important stages in the system. TADalyzer

then uses binary instrumentation tools (byteman [41] for Java and Pin [76]

for C++) to monitor thread creation and termination, and builds a map-

ping between threads and stages based on the annotation. Any threads

that are not explicitly annotated map to a special NULL stage. Using this

mapping, TADalyzer discovers the following information:

Stage Type: TADalyzer tracks the number of active threads at each

stage to determine if a stage is bounded or on-demand.

Resource Consumption: Using extended Berkeley Packet Filter (eBPF) [85]

and the BPF Compiler Collection [1] tool, TADalyzer attaches hooks on

vfs_read, vfs_write, socket_read, socket_write and other relevant ker-
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nel functions to monitor the I/O and network resources consumed at

each stage. The CPU resource consumption is tracked through /proc/stat.

TADalyzer also supports user-defined resources such as database locks

or threads in a particular thread pool. However, for custom resources the

user is required to annotate the code to tell TADalyzer when the resource

is claimed and released.

Intra-Node Data Flow: TADalyzer automatically instruments stan-

dard classes that are commonly used to pass requests, such as util.AbstractQueue

in Java and std<queue> in C++, to build data flow between stages within

the same node. If a system uses non-traditional data structures to pass

requests between stages, the user has to manually annotate the relevant

operations (e.g., put and get) for TADalyzer to correctly track them and

build the data flow. Out of the four systems we studied, only HBase

uses data structures that we do not automatically monitor – it uses Ring-

Buffer [110] to enable lock-free accesses on the WAL entry queue.

Inter-Node Data Flow: Using eBPF and BCC, TADalyzer also tracks

how much data each thread sends and receives on different ports. By

matching the IP and port information, TADalyzer build the data flow be-

tween stages on different nodes.

Blocking Relationship: TADalyzer injects delays in a stage and de-

termines whether other stages block on it by observing if the delay prop-

agates to these stages.

Based on the above information, TADalyzer then generates the TAD.

It also gives warning if the NULL stage is responsible for too much resource

consumptions; this usually indicates that some resource intensive stages

(thus important for scheduling) are not annotated by the user.

3.2.2 Limitations

We now discuss the limitations of TADalyzer. First, TADalyzer relies on

run-time instrumentation to collect information, and may miss some in-
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formation if the workload supplied to it is not comprehensive enough.

Second, TADalyzer uses kernel instrumentation to track network and

I/O activities of each thread, so it only works on systems where an appli-

cation thread directly corresponds a kernel thread. Most systems based

on Java, C++ or other traditional programming languages work well with

TADalyzer. However, Riak, which makes use of the Erlang user-level pro-

cesses [74], requires additional instrumentation to obtain its TAD.

Third, the automatic queue operation instrumentation may miss some

data flows. For example, the HBase RPC Read threads use a fast-path

mechanism, which directly dispatches an RPC call to an RPC Handle

thread without going through the queue to improve data locality. Manual

instrumentation is required to capture requests passed in this way.

Finally, contention on application specific resources, such as locks,

may greatly impact system performance, but TADalyzer relies on the user

to identify such resources.

In summary, the TADs generated by TADalyzer is correct, but may be

incomplete. We use TADalyzer to automatically discover the thread archi-

tecture of storage systems, and then argument the architecture based on

documentation, code inspection and discussion with the developers.

3.3 HBase/HDFS

The TAD of the HBase/HDFS storage stack is shown in Figure 3.2. HBase

is widely deployed in many production environments [46], and achieving

schedulability remains difficult despite repeated attempts from both in-

dustry and academia [13, 16, 80, 117, 128].

HBase is built on top of HDFS and its data model closely resembles

BigTable [32], where data are stored in tables, which have rows and columns.

HBase tables are divided horizontally by row key range into regions; each

RegionServer is responsible for managing one or more data regions. Re-
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gionServers usually co-locate with the DataNodes in the HDFS cluster.

HMaster assigns regions to different RegionServers, and monitors all Re-

gionServers in the cluster. During reads or writes, the clients first contacts

HMaster to find out which RegionServer is serving the concerned data re-

gion, and then sends the requests to the particular RegionServer.

3.3.1 Request Flow

When HBase clients send queries to the RegionServer, the RPC Read stage

reads these requests from the network and passes them to the RPC Han-

dle stage (1). Depending on the request type (Put or Get) and whether

data/metadata is cached, the RPC Handle stage may have different be-

havior. One may insert custom schedulers into the RPC Handle stage, as

indicated by the plug symbol.

If the RPC requires metadata lookups, the RPC Handle thread sends a

request to the Namenode and blocks until the operation is finished (m1 −

m4); blocking is indicated by the dashed m4 arrow.

If the RPC wants to read data, RPC Handle checks if the data is local. If

not, RPC Handle sends a read request to the Data Xceive stage in a Datan-

ode and blocks until the read completes(r1−r2). If it is local, a short-circuit

mechanism reads data directly within the RPC Handle thread, consum-

ing I/O (HBase still contacts the Datanode to get the file descriptor but

the actual reading is local). I/O resource usage in RPC Handle is initially

unknown; thus it is marked with a bracket in the TAD.

For operations that modify data, RPC Handle appends WAL entries to

a log (a1) and blocks until the entry is persisted (indicated by the dashed

a3 arrow). The LOG Append thread fetches WAL entries from the queue

in the same order they are appended (indicated by lock symbol by the

LOG Append queue). LOG Append writes those entries to HDFS by

passing data to Data Stream (w1), which is described in more detail be-

low. LOG Append also sends information about WAL entries to LOG
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Sync (a2), which blocks (w7) until the write path notifies it of the write

completion; it then tells RPC Handle to proceed (a3).

Along the write path, the Data Stream stage sends data to the Data

Xceive stage in an HDFS Datanode, which spawns a thread for each block

of data (w2). The RegionServer and DataNode are usually co-located in

one physical node, as indicated by the process boundary lines in the TAD.

Depending on the replication level, Data Xceive may pass the data to an-

other datanode, which would spawn another Data Xceive thread to write

another copy of the data block (w3). Data Xceive writes data to disk; for

each written data packet, it sends an ack to Packet Ack (w4). Packet Ack

collects acks from downstream datanodes and send acks to either the up-

stream Packet Ack stage (w5) or to the issueing client (w6). Back within

the RegionServer, each Data Stream thread also spawns a correspond-

ing Ack Process thread, which is responsible for receiving and processing

acks from the Datanode; once the Ack Process thread receives all relevant

acks, it notifies the LOG Sync thread that the write is persisted (w7).

RPC Handle may also flush changes to the MemStore cache (f1); when

the cache is full, the content is written to HDFS with the same steps as

with LOG Append writes (w1 −w7).

Finally, after RPC Handle finishes an RPC, it passes the result to RPC

Respond and continues another RPC (2). In most cases, RPC Respond

responds to the client, but if the connection is idle, RPC Handle bypasses

RPC Respond and responds directly.

The stages in the Namenode (i.e., RPC Read, RPC Handle, and RPC

Respond) are similar to those in the RegionServer. However, RPC Handle

in the namenode does not need to invoke operations in other stages; it

simply grabs a lock and performs local operations. The TAD shows only

the lock resource because it incurs the most contention.
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3.3.2 Summary

The HBase TAD shows more than ten complex stages exhibiting different

local behaviors (e.g., bounded vs. on-demand), resource usage patterns

(e.g., unknown I/O demands), and interconnections (e.g., blocking and

competing for the same resources across stages). Understanding such a

TAD enables one to identify problematic scheduling in HBase, which we

discuss in Chapter 4.

3.4 MongoDB

Figure 3.3 shows the TAD of MongoDB [34], another NoSQL database

that is widely used but exhibit very different thread behaviors compared

to HBase. MongoDB mostly resembles the traditional thread-based archi-

tecture, but its limit on active worker thread numbers and the replication

design are strongly influenced by SEDA.

MongoDB stores all data in documents, which are JSON-style data struc-

ture composed of field-value pairs. Documents of similar structures form

a collection, which is equivalent to a table in HBase. MongoDB also stores

indexes of the data to support efficient queries. Data in one collection are

divided into chunks based on key values among different shards. Each

shard is an independent replication set, and consists of one primary and

two secondary data nodes. The primary node receives all write opera-

tions and records all changes to its operation log (oplog). The secondaries

replicate the primary’s oplog and apply the operations to their data. Both

primary and secondaries can serve read requests.

3.4.1 Request Flow

In MongoDB, a new Worker thread is launched for each client connec-

tion. However, only 128 threads are allowed to make progress at any
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given time, which essentially implements a fixed size thread pool. The

Worker threads are responsible for reading requests from the clients, cal-

culating the optimal query plan, carrying out the query plan to retrieve

indexes and data, and sending the reply back to the client. During the

query processing, the Worker threads may perform I/O synchronously

on the underlying storage engine.

When processing write operations, the Worker threads also record the

operations in the oplog, which are replicated to the secondary nodes (step

1). Depending on the consistency level, the Worker threads may block



70

until the writes have been replicated to enough secondary nodes.

The NetInterface thread receives the serialized oplog and passes it to

the Fetcher thread (step 2); which parses the oplog and sends the opera-

tions to be applied to the Batcher thread (step 3).

The Batcher thread collects the operations and separates them into

batches. Operations within each batch have to be applied in order, but

different batches can be applied in parallel. These batches are passed to

the Oplog Writer thread (step 4).

The Oplog Writer thread first writes operations to the secondary node’s

own oplog; it then assigns batches to the Writer threads to apply to the

main database (step 5). The Oplog Writer thread blocks until the Writer

threads finish the batches (step 6), at which point it signals the Feedback

thread (step 7), which in turn notifies the primary node (step 8).

At the primary node, if a Worker thread is waiting for the replication

to finish, it stops blocking and sends reply to the client.

3.4.2 Summary

In MongoDB, one Worker thread serves a request throughout its lifetime,

from reading the request in, to processing it, and to sending the reply

back. While conceptually simple, as we will see later (Chapter 4), it causes

hard-to-solve scheduling problems.

3.5 Cassandra

The thread architecture of Cassandra is shown in Figure 3.4. Cassandra is

a distributed storage system that provides high scalability and fault toler-

ances on commodity hardwares [73]. In Cassandra, all nodes play iden-

tical roles in a "ring" like architecture, and data are replicated to multiple

nodes in the ring based on a consistent hashing scheme.
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3.5.1 Request Flow

When one client sends a query to one of the Cassandra nodes, a thread in

the C-ReqHandle stage reads the request in, decodes it, and coordinates

its processing; we call this thread the coordination thread of this request.

After parsing a request, the coordination thread first looks up where

the relevant data is stored. For local data, the request is directly submit-

ted to the corresponding local processing stages, such as the Read and

Mutation stage (step 1). For remote data, the coordination thread passes

the request to the Msg Out stage (step 1). It then blocks until the request

completes, either on the local or remote node.

The Msg Out stage picks up the requests and sends them through the

network (step 2). On the receiving end, the Msg In stage reads the data

off the network and de-serializes them. Once finished, the Msg In stage

puts the parsed messages in the queue of different processing stage (Read,

Mutation, etc.) based on the request type (step 3).

Cassandra has 10 different processing stages: Read, Read-Repair, Mu-

tation, Counter-Mutation, View-Mutation, Gossip, Anti-Entropy, Internal-

Response, Tracing, and Misc. We omit most of them in the TAD shown

here because they all have similar behaviors. These stages execute the re-

quests, which might include looking up the cache, performing I/O, and

compressing/de-compressing the data. After completing a request, the

processing stages generate a response and pass it to the Msg Out stage

(step 4).

The Msg Out stage in the remote node sends the response back, which

is received by the Msg In stage (step 5). The Msg In stage passes the re-

sponse to the Respond stage, who is responsible for executing any call-

backs associated with the request completion (step 6). Finally, the coordi-

nation thread in the C-ReqHandle stage is notified and finishes blocking

(step 7); it passes the response to the C-Respond stage, who is responsible

for serializing the response and sending it to the clients.
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3.5.2 Summary

Cassandra closely follows the standard SEDA architecture, where all ac-

tivities are managed in bounded stages. These stages are divided based

on their functionalities; there are dedicated stages to handle reads, muta-

tions, counter-mutations, etc. As we will discuss later (Chapter 4), such a

division weakens SEDA’s strength on explicit resource management, and

causes scheduling problems.

3.6 Riak KV

The TAD of Riak KV is shown in Figure 3.5. Riak KV [71] (hereafter just

Riak) is a newly emerged distributed NoSQL database based on the func-

tional programming language Erlang [74]. Similar to Cassandra, Riak

uses consistent hashing to divide data into partitions and places multiple

partitions in one physical node. Built on top of the Erlang VM (virtual

machine), Riak relies heavily on the light-weighted processes (referred

as threads in the following description) and transparent IPC mechanisms

the Erlang VM provides.

3.6.1 Request Flow

When clients issue requests to one of the Riak nodes, a new Req In-Out

thread is created for each new client connection to read from/write to the

connection, and to encode/decode the messages. After decoding a re-

quest, the Req In-Out thread passes the request to the Req Process thread

(step 1), which is also spawned on demand for each new client connec-

tion. The Req In-Out thread then blocks until the response of the request

is available.

The newly created Req Process thread looks up in which partition the

requested data is, and sends the request to one or more of these partitions
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(step 2). It then blocks until the request is completed by the partitions.

There is one Cmd Handle thread for each partition, which is respon-

sible for performing I/Os. Upon completion of the I/O, the Cmd Handle

thread sends the response back to the issuing Req Process thread (step 3).

After hearing back from all the Cmd Handle threads it sends requests

to, the Req Process thread generates the response to the client and passes

it to the Req In-Out thread (step 4). The Req In-Out thread encodes the

response, sends it off the network and waits for another request from the

client.
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3.6.2 Summary

Riak is another system that closely follows the SEDA design. However,

instead of using bounded stages, Riak heavily uses on-demand stages

and relies on the underlying Erlang VM to schedule the potentially large

number of threads [43]. Riak is also oblivious on whether a partition it

accesses is local or remote; it contacts the Cmd Handle thread responsi-

ble for that partition using the same IPC mechanism. Though simplifying

programming, these designs cause additional challenges when enforcing

scheduling on Riak, which we will discuss later (§4.5.3).

3.7 Conclusions

In this chapter we introduce the Thread Architecture Diagrams as a gen-

eral way to describe the thread behavior and interactions of a system,

which in turn determines the system’s schedulability. We show the TADs

of four widely used systems: HBase/HDFS, MongoDB, Cassandra, and

Riak, and describe how they work under the lens of TAD. Next we will use

the tools we developed in this chapter to study the scheduling problems

on distributed storage systems.
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4

Maat: Toward Schedulability on
Distributed Storage Systems

Request scheduling lies at the heart of scalable storage systems. However,

introducing scheduling control into modern storage systems is challeng-

ing due to their complex thread architectures. Equipped with the tool we

developed in Chapter 3, we now turn to solving such scheduling chal-

lenges.

System developers rarely have the luxury of constructing a new ser-

vice from scratch that can provide a new scheduling policy or goal. In-

stead, developers often retrofit new scheduling policies into existing ar-

chitectures containing a number of limitations and flaws. We have two

resulting questions. First, which types of thread architectures most natu-

rally enable new scheduling policies to be implemented? Second, when

problems do exist in a thread architecture, how can those problems be

most easily remedied?

We begin by considering an ideal thread architecture. To realize a

global scheduling policy in a distributed storage system, one first needs to

translate the global policy into local scheduling plans to be enforced at key

points of the system; the local plans are then implemented by local sched-

ulers inserted at these points. For example, to achieve global fairness,

one might allocate local client share at each node to match the clients’

demand; these local shares are then enforced by weighted fair queuing
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schedulers at the individual storage nodes, similar to the approach pro-

posed in Pisces [103].

Since Maat is the ancient Egyptian concept for order, balance, and

ideal [67], we say a system adheres to the Maat principle if it satisfies the

following three conditions that make realizing a scheduling policy easy:

Completeness – the system provides necessary scheduling points so that

a global policy can be translated into local scheduling plans at these points.

Local enforceability – the local scheduling plans can be implemented. At

each scheduling point, the system provides both enough information and

control to the local scheduler to make implementing the plan possible.

Independent scheduling – the decisions made by one local scheduler do

not have unexpected effects at other scheduling points.

Unfortunately, most systems violate the above conditions in one or

more ways, causing scheduling difficulties. In particular, we identify five

common problems exhibited in modern distributed storage systems that

cause violations of the ideal Maat scheduling conditions: no scheduling

points, unknown resource usage, hidden competition, blocking, and ordering

constraint. We illustrate how each of the problems causes Maat violation

and leads to scheduling difficulties.

We also show how to fix an existing stage so the system is Maat-compliant.

In general, a stage can adhere to the Maat principle in one of two ways:

directly with a thread architecture that naturally avoids Maat violation or

indirectly by adding control logic that adjusts the stage behavior based on

additional informations (e.g., knowledge about past requests in this stage

or other stages and their resource usage) to mitigate the problem. There

are different tradeoffs for direct and indirect solutions. We apply the Maat

principle to the most complex system that we studied, HBase/HDFS;

through a combination of direction and indirection methods, we show

that HBase-Maat can be transformed to provide schedulability.

The rest of this chapter is structured as follows. First we introduce
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the TAD-based simulation framework that allows one to emulate a sys-

tem’s behavior with high fidelity to study its scheduling properties (§4.1).

We then discuss the Maat principle, centered around the five fundamen-

tal scheduling problems (§4.2); we use simulation to demonstrate these

problems. Next we apply Maat to HBase/HDFS, showing via simulation

(§4.3) and implementation (§4.4) how to make said system schedulable;

we then briefly discuss schedulability of other systems and show their

scheduling problems via simulation(§4.5). Finally, we conclude (§4.6).

4.1 TAD Simulation

Before diving into the Maat scheduling principle, we first build a simu-

lation framework to facilitate the understanding of systems’ scheduling

behavior. Based on simpy (a Python package for event-driven simula-

tion) [84], the simulation framework provides basic building blocks such

as requests, threads, stages, resources and schedulers. Using the sys-

tem TADs as blueprints, one can assemble the stages in different ways

to form various thread architectures and insert different schedulers at

each scheduling point. The framework then simulates how requests flow

through the stages and consume resources, and report detailed statistics

(e.g., client throughput, latency, and resource utilization).

In this section, we describe the design and implementation of this sim-

ulation framework, and its limitations. We show the fidelity of the simu-

lation later (§ 4.4), where we compare our simulation results to the results

obtained on real implementations.

4.1.1 Design

The architecture of the TAD simulation framework is shown in Figure 4.1;

it is based on three key abstractions: Request, Resource, and Stage.
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A Request encodes how this request flows through different stages

in the system; the processing required at each stage is represented by a

StageRequest. Each StageRequest has a ResourceProfile that describes

the amount of resources to be consumed during its processing, and also

points to a list of downstream StageRequest’s to be submitted next. This

downstream list indicates the immediate next stages the Request flows

through. After the processing of a StageRequest, all StageRequest’s in

its downstream list are submitted. A StageRequest may block on certain

events (e.g., the done event) on the downstream StageRequest’s before it

can finish (raising its own done event). A Request is considered finished

when all specified StageRequest’s finish; note that it needs not to be all

the StageRequest’s included in this Request, because some processing

can be done after the acknowledgement to the client.

Resource can be used to model any kind of resources, e.g., cpu, I/O,

network. One can specify the rate and parallelism of a resource. For ex-

ample, a 1GHz cpu with 8 cores has a rate of 1 and a parallelism of 8.

Resource provides an interface to consume a certain amount of resource;
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the caller blocks until the resource consumption is done.

A Stage is a set of workers (threads) that continuously pick StageRequest’s

submitted to it and process them. During the processing, the worker

consumes resources based on the StageRequest’s ResourceProfile. The

worker then submits the downstream StageRequest’s to their designated

stages, and blocks on events on the downstream StageRequest’s if neces-

sary. A Scheduler encodes the logic a Stage uses to pick up requests to

process from all the requests that are submitted to it. Different schedul-

ing policies can be implemented as different schedulers, which are then

plugged into Stages to control the Stages’ behavior. The framework pro-

vides commonly used schedulers such as FIFO, DRF and priority sched-

ulers; the user can also define other schedulers based on his/her needs.

Scheduling is done based on the cost of the StageRequest; depending on

its scheduling goal, a Scheduler might calculate the cost differently, thus

each Stage also supplies its Scheduler a CostFunction, which is used to

map a StageRequest to its cost.

Request setFirstStageReq(stageReq)

StageRequest submit(stage)

addResourceConsumption(resource, amount)

addDownstreamRequest(stageReq)

addBlockingEvent(event)

Resource consume(amount)

Stage setScheduler(scheduler)

setCostFunction(costFunction)

Scheduler getReq()

Table 4.1: Simulation APIs.

Table 4.1 summarizes important APIs provided by the simulation frame-

work. Using these APIs, one can construct a system as simple or complex

as one wants. In particular, the framework is capable of simulating any

behavior described in a TAD. In the rest of this chapter we will show how
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targeted simulation based on the TAD of a system can provide insights in

its scheduling problems.

4.1.2 Simplifications

When designing the simulation framework, we made some conscious choices

to keep it simple and easy to use, even when sometimes the simplicity

comes at the cost of deviation from the real world. We now briefly dis-

cuss the simplifications.

First, we do not consider the cost of creating a thread and switching

between threads. Such cost varies significantly depending on the thread

implementation and the workloads. Moreover, the scheduling problems

we discuss are present even when these activities are completely free.

Second, resources in our simulation have fixed rate and parallelism;

we do not capture complex resource performance properties such as how

disk throughput changes on the randomness of the requests. Moreover,

all resources we model are completely stateless; we do not consider re-

sources such as cache whose usage depends on its current state. Though

we do not treat cache as a resource and study how to share cache among

different clients, we do take into account the effect caching has on other

resource usages (e.g., a request that hits cache does not consume I/O re-

sources).

Finally, in our simulation resource consumptions are non-preemptive.

Once a thread in a Stage starts accessing a resource on behalf of a StageRequest,

it is not interrupted until it finishes consuming the amount specified in

the ResourceProfile of the StageRequest. Such preemptions, even when

they happen, are rarely in the control of the application scheduling logic.

For example, CPU preemption is controlled by the operating system.



82

4.2 The Maat Principle

In this section we present the Maat principle in detail. Our analysis cen-

ters around five Maat-violation problems that we posit are at the core of

inadequate scheduling: a lack of local scheduling points, unknown re-

source usage, hidden competition between threads, uncontrolled thread

blocking, and ordering constraints upon requests.

To illustrate the Maat principle more clearly, we begin by focusing on

systems with only a single problem; in Section 4.3 we consider the HBase

TAD in which multiple problematic stages are interconnected. We use

simulation to show both the symptoms of the scheduling problems and

their root causes. Unless otherwise noted, all simulations in this section

use a common configuration, which is summarized in Table 4.2.

Goal Isolate C1 from the behavior change of C2.

Clients Two closed-loop clients, C1 and C2, continuously issue re-

quests. C1 has 40 parallel threads; thread count of C2 varies.

Resources Stages in 1 node with 1 GHz CPU, one disk with 100 MB/s

bandwidth, and 1 Gbps network.

Schedulers Weighted fair queueing for dominated resource fairness

(DRF) [47]; equal weight across clients.

Table 4.2: Simulation Configuration. Common configuration across the
simulations in § 4.2.1-§ 4.2.5.

4.2.1 No Scheduling Points

The completeness condition dictates that each resource-intensive stage

in a thread architecture provides local scheduling. An on-demand stage

with significant resource usage suffers from the no scheduling points prob-

lem because the system has no scheduling point to control resource ac-

cesses within this stage; these unregulated resource-intensive activities

can thus violate the system’s overall scheduling goal (e.g., fairness). One
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can identify the no scheduling points problems in a TAD by looking for

stages with shading and resource usage (e.g., in HBase, Data Stream and

Data Xceive suffer from no scheduling points).

Figure 4.2(a) shows a simple TAD with two stages, the second of which

has no scheduling points (an on-demand stage with intensive I/O). The

scheduler for the first stage (Q1) attempts to enforce DRF [47], but is un-

successful: as client C2 issues requests with more threads, C2 receives

more I/O resources (up to 90%) and the throughput of C1 declines. The

problem occurs because Q1 scheduling is irrelevant given that requests

are not bottlenecked at this stage. The Req Handle threads quickly finish

processing the request, pass them to the I/O stage and return to ask Q1

for more requests. As shown in Figure 4.2(a), the average length of Q1 is

zero and it therefore cannot reorder requests. Meanwhile, there are many

requests contending for I/O in the second stage, which the first scheduler

has no control over and no scheduling points is provided at.

Figure 4.2(b) shows an indirect solution in which the thread architec-

ture remains the same, but control logic is added to limit the number of re-

quests sent from the Req Handle stage to the I/O stage. To achieve this, Q1

enforces rate limiting instead of DRF. Specifically, information from the

I/O stage is collected to estimate per-client I/O demand, utilization, and

additional capacity using an Additional-Increase-Multiplicative-Decrease

(AIMD) algorithm [33]; based on the estimate demands and capacity, each

client’s weight is translated to a rate limit, pushed to Q1 to enforce fair-

ness. System (b) is able to enforce global scheduling despite the lack of

a scheduling point at the I/O stage because Q1 gives up work conserva-

tion: Q1 postpones requests from C2 even when there are idle Req Handle

threads. Because of this, any work-conserving scheduling policy such as

fair queuing or priority-based scheduling would have to be emulated at

the control plane. Many indirect approaches that share information are

possible; for example, Retro [80] similarly translates different scheduling
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Figure 4.2: The No Scheduling Problem. Each client request requires
100 us CPU time and 100 KB I/O, making I/O the bottleneck. The average num-
ber of requests per client waiting to be scheduled at each scheduling point is shown
below.
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policies into rate limits.

Figure 4.2(c) shows how to solve the problem directly by adding a

scheduling point at the I/O stage. Local scheduling points enable the sys-

tem to regulate I/O resource usage at the point where the resource is con-

tended. The direct approach simply and naturally ensures fairness and

isolation of the two clients with no need for information sharing across

stages.

4.2.2 Unknown Resource Usage

A stage has unknown resource usage if requests may follow different execu-

tion paths with different resource usage, and these paths are not known

until after the stage begins. For example, a thread could first check if

a request is in cache, and if not, perform I/O; the requests in this stage

have two execution paths with distinct resource usage patterns and the

scheduler does not know this ahead of time. Unknown resource usage

forces the scheduler to make decisions early, before important resource

information is available, thus violating the local enforcement condition

(not enough information is provided to the scheduler to make schedul-

ing decisions). Unknown resource usage is denoted in a TAD by stages

with square brackets around resources. In HBase, the RPC Handle stage

exhibits unknown resource usage on I/O due to the short-circuited reads

it might perform.

Figure 4.3(a) shows a single stage with unknown I/O resource usage

(note the bracket on the I/O resource). Even though Q1 allocates the I/O

resource, it does not know whether a request requires I/O at the time

of scheduling because a request may hit cache. When C2 issues a mix

of cold- and hot-cache requests, Q1 schedules C2-cold and C2-cached in

the same way, causing low CPU utilization and low throughput for C2-

Cached.

System (b) solves this problem with the indirect method of specula-
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Figure 4.3: The Unknown Resource Usage Problem. Both C1 and C2
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Handle threads first look up the cache when serving a request, and perform I/O
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tive execution. While many approaches are feasible, the simulated ap-

proach speculatively executes a waiting request when the CPU is idle.

If during the speculative execution, the request is found to require I/O,

the request is aborted and put back on the queue where it is subjected

to normal scheduling. For the single-stage system (b), speculative execu-

tion provides high throughput for C2-cold, but must abort some requests.

Speculative execution works best for predictable workloads and relatively

simple resource usage patterns; if a stage may potentially perform I/O,

initiate network connections, and contend for locks, predicting whether

a request will use each resource becomes much harder and less accurate.

System (c) solves the unknown resource problem directly by split-

ting one stage into two. The Req Handle stage performs CPU-intensive

cache lookups while a new stage performs I/O for requests that miss the

cache. Each stage has its own scheduler. Q1 freely admits requests when

there are enough CPU resources, leading to high CPU utilization and C2-

Cached throughput. Meanwhile, not only does Q2 know a request needs

I/O, it also has exact knowledge about the size and location of the I/O,

enabling Q2 to make better scheduling decisions.

4.2.3 Hidden Contention

When multiple stages with independent schedulers compete for the same

resource, they suffer from hidden contention which impacts overall resource

allocation in unexpected ways, causing violation of the independent schedul-

ing condition of the Maat principle. In a TAD, one can identify hidden

contention by stages within a node boundary that have separate queues

but the same resources in the resource usage boxes. Hidden contention

is ubiquitous in every system we investigate, because some contention is

difficult to avoid (e.g., most stages use CPU). In HBase, both RPC Han-

dle and Data Xceive might compete for the same I/O resource; multiple

stages compete for CPU and network.



88

10 20 50 100 150 200

1K

2K

3K

4K

5K

6K

0

25

50

75

100

125

C1

C2

C1-Perf

Reply size of C2 (KB)

Reply size of C2 (KB)

N
e
tw

o
rk

 B
a
n
d

w
id

th
 (
M

B
)

C
1
-T

h
ro

u
g

h
p

u
t 

(r
e
q

/s
)

(b)

(c)

C
1
-T

h
ro

u
g

h
p

u
t 

(r
e
q

/s
)

N
e
tw

o
rk

 B
a
n
d

w
id

th
 (
M

B
)

10 20 50 100 150 200

1K

2K

3K

4K

5K

6K

0

25

50

75

100

125

C1-S1

C2-S1

C1-S2

C2-S2

C1-Perf

Reply size of C2 (KB)

(a)
C

1
-T

h
ro

u
g

h
p

u
t 

(r
e
q

/s
)

N
e
tw

o
rk

 B
a
n
d

w
id

th
 (
M

B
)

Req Read (10)

C

Req Respond(10)

C

...

S1

S2

Q1

Q2

Req Read (10)

C

Req Respond(10)

C

...

S1

S2

Q1

Q2

10 20 50 100 150 200

1K

2K

3K

4K

5K

6K

0

25

50

75

100

125

C1-S1

C2-S1

C1-S2

C2-S2

C1-Perf

Respond(10)Req Read (10)

...

Figure 4.4: The Hidden Contention Problem. C1 sends 1 KB requests
and receives 10 KB replies; C2 also sends 1 KB requests but its reply size varies
(shown in the x-axis). The left y-axis shows throughput of C1. The right y-
axis shows the total network bandwidth and the bandwidth each stage is forced to
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only C1/C2 requests in the queue. C1-S1 means the bandwidth S1 (Req Read) is
forced to allocate to C1, and so on.
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Figure 4.4 shows a two-stage system with the network as the source of

hidden contention; one stage reads requests and the other sends replies.

Enforcing fairness at each stage does not guarantee fair sharing at the

node level. Note that both clients have much larger reply size than re-

quest size, so S2 (the Req Response stage) consumes more than 90% of

the total network bandwidth and S1 (the Req Read stage) consumes less

than 10%. Yet scheduling at S2 does not ensure 90% of the network re-

source is fairly shared across C1 and C2. When C2 increases its reply size

(i.e., its network usage), it unfairly consumes up to 95% of the network

and reduces throughput of C1. One can see from Figure 4.4-a that with

larger C2 reply sizes, the scheduler S2 is frequently forced to schedule C2

because there are no requests from C1. C2 in the second stage effectively

monopolizes the network and prevents S1 from using the network; this

causes fewer requests to be completed at S1 and flow to S2, further limit-

ing choices available to S2. Hidden network contention between the two

stages leads to this cycle and causes unfair scheduling.

System (b) solves the problem indirectly by sharing information about

network usage across the two stages. In the simulated approach, if a stage

uses excessive resources, it backs off by reducing its thread count, allow-

ing the other stage to catch up. The figure shows that system (b) allows S1

to process more requests, thus giving S2 more freedom when scheduling,

which leads to effective isolation of C2. Although S2 is sometimes forced

to schedule C2, S2 can compensate by favoring C1 later.

System (c) solves the problem directly by having the two stages share

the same scheduling point. Both the Req Read and Req Respond stage

use Q1 for requests, though each handles different request types. This

change gives Q1 full control of the network and enables it to isolate C1

and C2 perfectly.
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4.2.4 Blocking

A system has a blocking problem if a bounded stage may block on a down-

stream stage and requests in the bounded stage may follow different paths.

In an ideal system, even when some requests are blocked, each stage al-

lows other requests to make progress; a problem occurs if there are no

unblocked threads to process other requests. Blocking is a problem be-

cause it violates the independent scheduling condition of the Maat princi-

ple and forces upstream stages to account for downstream progress. In a

TAD, blocking is indicated by bounded stages with dashed arrows point-

ing to them (this does not necessarily lead to the blocking problem, which

requires multiple data paths, but is a strong indicator). In HBase, RPC

Handle blocks on namenode lookups, HDFS reads, and LOG appends.

Figure 4.5(a) shows a system with the blocking problem at the Req

Handle stage. Requests entering Req Handle have two paths: they may

complete in this stage or cause a thread to block on the I/O stage. Initially

both C1 and C2 receive high throughput as they issue CPU-intensive re-

quests without blocking; however, when C2 switches to an I/O-intensive

workload, the throughput of both C2 and C1 drop to the disk rate. The

Figure shows that all threads in Req Handle are blocked on I/O, leaving

no threads to process C1 requests that do not require I/O. Increasing the

threads at the Req Handle stage from 10 to 30 does not help: it only leads

to more blocked threads.

Figure 4.5(b) shows an indirect solution where the system tries to avoid

blocking with a feedback loop: information about the congestion level

and estimated queuing delay for each client at the downstream stage is

passed upstream. S1 avoids scheduling a request if it anticipates excessive

blocking, reserving threads for more useful work. Using this information-

based anticipation, system (b) keeps the number of blocked threads low

and provides high throughput to C1.

In system (c) blocking is directly eliminated by making the Req Han-
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dle stage asynchronous. No threads block and all perform useful work,

leading to high throughput for C1.

4.2.5 Ordering Constraint

When a system requires the requests at a stage to be served in a specific

order to ensure correctness, it has the ordering constraint problem. For

example, many storage systems use Write-Ahead Logging (WAL), which

requires the writes to the log to occur in sequence. Ordering constraint

violates the local enforcement condition of the Maat principle because the

local scheduler cannot re-order requests as desired, leaving the schedul-

ing framework with fewer or no choices. One can identify ordering con-

straints in TAD by looking for the lock symbols on the scheduling points.

HBase imposes an ordering constraint at the Log Append stage.

Figure 4.6(a) shows a two-stage system with ordering constraints on

the second stage. The scheduler enforces priorities, where high priority

requests are served first as long as this does not break correctness. In

this system, C1 (high priority) suffers much longer latency when C2 (low

priority) issues requests aggressively. The majority of this latency occurs

from queuing delay in the second stage since low priority requests must

be serviced first if they enter the stage earlier.

The ordering problem can be mitigated with indirect methods that

share information across stages. In system (b), the two stages coordinate

to ensure that there are never more than 10 requests in the LOG Append

queue. Although requests in the LOG Append stage must still be served

in order, the number of possible low-priority requests is now bounded.

The Figure shows that the latency of C1 increases initially, but is bounded

eventually.

System (c) directly solves the problem by separating requests from dif-

ferent clients into different streams; even though requests within a stream

are still serviced in order, the scheduler can choose which stream to serve
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Figure 4.6: The Ordering Constraint Problem. High priority C1 issues
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in the x-axis). Each request requires 100 us CPU time at the Worker stage, and
100 KB I/O at the I/O stage. The left y-axis shows the average latency of C1’s
request; the right y axis shows the average queue size of the LOG Append stage.
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Problem Identifiable on TAD Maat Condition Violated

No Scheduling Points Completeness
Unknown Resource Usage Local Enforceability

Hidden Contention Independent Scheduling
Blocking Independent Scheduling

Ordering Constraint Local Enforceability

Table 4.3: Summary of Scheduling Problems Identifiable on TAD and
Their Maat Violations.

and provide differentiated services on a per-stream basis. The Figure

shows that C1 maintains low latency despite the larger queue size at the

LOG Append stage when C2 issues more requests: free from the ordering

constraint, Q2 can pick the high priority requests from C1 first.

4.2.6 Summary and Discussion

In this section we identify five categories of scheduling problems that vi-

olate the Maat principle and that can be identified on a TAD. Table 4.3

summarizes how each problem violates the ideal scheduling conditions

specified by Maat.

These scheduling problems can be fixed with indirect and direct meth-

ods. Indirect methods add information within and across stages to help

a thread architecture work around inherent structural flaws of its stages.

The advantage of indirect approaches is that they usually involve min-

imal changes to the thread architecture, which implies low engineering

effort. However, adding information flow and complex feedback logic

can add overhead and increase convergence time. Furthermore, indirect

solutions often rely on stable workload characteristics, so that resource

demands and path usage is predictable. The direct method has the oppo-

site strengths and weaknesses. Choosing an indirect or direct approach

for a stage will be specific to each system and the complexities of its code

base, thread architecture, scheduling goals, and workload.
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Previous researchers have proposed frameworks that ensure fairness [103],

enforce SLOs [117], provides reservations [128], and more [80, 102, 106].

Many frameworks focus on calculating a scheduling plan to achieve a

global policy. For example, Pisces [103] discusses how to allocate local

weight at each scheduling point to achieve global fairness; Cake [117]

proposes a feedback loop to adjust local scheduler behavior to provide

latency guarantees; Argus [128] uses a centralized controller to calculate

resource reservations for each individual scheduling point. However, a

problematic thread architecture may prevent these plans from being ef-

fective.

To achieve scheduling goals in real storage systems, proposed frame-

works must overcome the five categories of problems we have identified.

Table 4.4 summarizes how we believe some previous frameworks could

solve each problem (although the solutions may not be discussed explic-

itly in their documentations). We believe that previous systems have in-

novative scheduling plans for various scheduling goals, and when re-

alizing these plans, they may coincidentally provide solutions for some

scheduling problems. However, none have addressed all five problems in

a systematical way. For example, Libra [102] provides fair I/O allocation

by delaying threads that call file system APIs; while this mechanism pro-

vides a single scheduling point across multiple stages and could remove

hidden contention, it does not solve other problems. Retro [80] applies

rate limits to multiple scheduling points to emulate different scheduling

polices, but does not provide enough information or control to the local

schedulers when presented with unknown resource usages and ordering

constraints.
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Methods
Problems

N U C B O

Cake (2012) [80] D (partly) ✖ ✖ I ✖

Pisces (2012) [103] ✖ ✖ ✖ ✖ ✖

Libra (2014) [102] D (partly) ✖ D ✖ ✖

Argus (2015) [128] ✖ ✖ ✖ ✖ I
Retro (2015) [80] I&D ✖ I I ✖

Maat I&D I&D I&D I&D I&D
HBase-Maat D I I&D I I

Table 4.4: How Different Scheduling Framework Meet Scheduling
Challenges. D: Direct solution, I: Indirect solution, ✖: no solution proposed.

4.3 Applying Maat to HBase

The five problems we describe can potentially cause ineffective schedul-

ing, but how these problems manifest themselves depends on interac-

tions across multiple stages, available resources, workload, and the de-

sired scheduling policy. We now apply the Maat principles and inves-

tigate the tradeoffs involved for a real-world system, HBase/HDFS. The

TAD of HBase is shown in Figure 3.2.

Complex systems such as HBase contain multiple problems and the

presence of one problem may hide others. For example, an on-demand

stage does not encounter the blocking problem because it spawns a new

thread to handle more requests; however, if a scheduling point is added

to this stage to fix the no scheduling problem, the blocking problem may

manifest. Therefore, we solve the largest problems first and then use our

solution to identify new problems that arise. For terminology, we start

with Maat-[?|?|?|?|?], which corresponds to the original HBase. After we

choose a direct or indirect solution, we replace ? with d or i.

We simulate a wide range of solutions for the HBase TAD, and then

implement our chosen solutions to both validate our TAD model and to

discuss the actual engineering effort. Our simulated HBase cluster has 8
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Figure 4.7: No Scheduling Solutions. Clients keep issuing (uncached) Gets,
each of which incurs 128 K I/O at the Data Xceive stage. C1 has 40 threads
issuing requests in parallel; number of threads of C2 increase from 40 to 200.

nodes; one master node hosts the HMaster and Namenode, and 7 slave

nodes host RegionServers and DataNodes. Each node has one 1 GHz CPU

and one disk with 100 MB bandwidth, and is connected via 1 Gbps net-

work. Client identifiers are propagated across stages with requests, so

each scheduler can map requests back to the originating client.

4.3.1 No Scheduling

Problem: The Data Xceive and Data Stream stages consume significant

resources but export no scheduling points; RPC Read and RPC Respond

have only hard-coded scheduling logic.

We investigate both direct and indirect solutions. For the direct solu-

tion (Maat-[d|?|?|?|?]), we add scheduling points to the Data Xceive and

Data Stream stages.

Indirectly solving the no-scheduling problem with rate limiting (Maat-

[i|?|?|?|?]) is much more complicated. RPC Handle, Data Stream, and Data
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Xceive stages on different nodes can all issue requests to Data Xceive on

one DataNode; similarly, both LOG Append and Mem Flush may issue

requests to the Data Stream stage. Thus many stages must coordinate to

limit the aggregated rate of requests sent to the on-demand stages. We

simulate an algorithm similar to the one described in §4.2.1, but add ad-

ditional logic to allocate rates between these stages based on previous

workload patterns.

Figure 4.7 shows that even though Original does not isolate C1 from

C2, both the direct and indirect approaches provide stable throughput

to C1 despite the change of C2. The indirect approach achieves lower

throughput because it conservatively sets the rate limits and only probes

for more when observing low resource utilization. An additional disad-

vantage of the indirect approach occurs with more nodes: each node in-

troduces more information that must be shared with others, making the

approach less scalable.

Since the direct approach is superior in this case, HBase-Maat adds

scheduling points to solve the no scheduling problem (Maat-[d|?|?|?|?]).

4.3.2 Unknown Resource Usage

Problem: The RPC Handle stage may short-circuit reads and send re-

sponses to clients. Short-circuited reads could cause contention for I/O,

yet this is not known when the request is scheduled. RPC Handle only

sends responses when the network resource (i.e., the connection) is idle,

so this do not interfere with scheduling.

We compare the direct splitting-stage approach ([d|d|?|?|?]) and the in-

direct speculative-execution approach ([d|i|?|?|?]) to handle short-circuited

reads in the HBase RPC Handle stage. For the direct approach, we move

the short-circuited read processing to the Data Xceive stage, and make

RPC Handle non-blocking to enable independent scheduling. For the in-

direct approach, we track the workload pattern of each client; when CPU
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Figure 4.8: Unknown Resource Usage Solutions. Both C1 and C2 issue
Gets on cold data, which incur 100 KB short-circuited reads at the RPC Handle
stage. C2 also issues cached Gets that do not require I/O.

and network are idle, we speculatively execute requests from those clients

who mostly issue CPU-intensive requests and abort these requests if they

need I/O.

We compare these two approaches in a simulated standalone HBase

node; this setting ensures that all HDFS reads at the RegionServer are

short-circuited, thus isolating the effect of unknown resource usage. Fig-

ure 4.8 shows that both approaches achieve additional throughput for

the cached Gets of C2, without reducing the throughput of C1 or C2’s

cold-cache Gets. The indirect approach achieves slightly lower through-

put than the direct approach because it aborts some requests, but this

difference would decrease with faster CPUs since the cost of a failed spec-

ulation will be relatively lower.

HBase-Maat adopts the indirect speculative-execution approach (Maat-

[d|i|?|?|?]) because its involves less change to the HBase system and re-

mains highly efficient when CPU is relatively fast.
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Figure 4.9: Hidden Contention. C1 and C2 keep issuing RPCs with 1 KB
message size. C1’s response size remains 20 KB, while C2’s response size varies
from 10 KB to 200 KB. (a) shows the average throughput of C1; (b) shows the
time the cluster takes to stabilize (client throughput fluctuation less than 5%)
when C2’s response size changes from 20 KB to various values.

4.3.3 Hidden Contention

Problem: Both the RPC Handle and Data Xceive stage consume I/O; the

RPC Read, RPC Handle, RPC Respond, Data Stream, and Data Xceive

stage all contend for network; CPU resources are contended by many

stages within the same node.

We investigate direct and indirect solutions to the hidden contention

problem. The direct solution (Maat-[d|i|d|?|?]) combines scheduling points:

all stages within the same physical node share the same scheduler. Note

that we do not combine stages; different stages obtain their requests from

the same scheduler.

In the indirect approach (Maat-[d|i|i|?|?]), a controller monitors resource

usage and adjusts client weights at each stage. If stage S1 is excessively

using resources on behalf of client C1, the weight of C1 is reduced across
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all stages so that less C1 requests are issued to S1, forcing S1 to either use

fewer resources or serve other clients.

Figure 4.9(a) shows that both approaches isolate C1 from C2’s reply

size change, versus Original and Maat-[d|i|?|?|?] cannot provide isolation.

Figure 4.9(b) shows when C2’s workloads suddenly changes, the indi-

rect approach takes a long time to converge to a fair state, depending on

the amount of workload imbalance. The direct approach converges much

more quickly.

In HBase-Maat, we adopt a hybrid of the above two approaches for

ease of implementation. All stages within the RegionServer process share

the same scheduler; the Data Xceive stage, which is in a different DataN-

ode process, uses a separate scheduler and relies on the controller to coor-

dinate with the RegionServer scheduler. We denote this as Maat-[d|i|di|?|?],

where di indicates a hybrid of direct and indirect.

4.3.4 Blocking

Problem: Three stages in the HBase RegionServer block on other stages:

RPC Handle, Mem Flush and Log Sync. However, all Mem Flush or Log

Sync requests follow the same data path (HDFS writes), and therefore do

not cause a blocking problem. The RPC Handle stage, however, allows

multiple data paths and is susceptible to the blocking problem. Indeed,

the blocking problem of HBase occurs in production [16].

We compare one direct approach and two indirect approaches to solve

the blocking problem in HBase. In the direct approach (Maat-[d|i|di|d|?])

RPC Handle is changed to be non-blocking, thus enabling independent

scheduling at different stages.

In the first indirect approach (Maat-[d|i|di|i1|?]), RPC Handle is modi-

fied to monitor the per-client congestion level in Data Xceive and avoids

scheduling requests that may trigger excessive blocking. In the second

indirect approach (Maat-[d|i|di|i2|?]), RPC Handle threads are treated as
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Figure 4.10: Blocking. Initially both C1 and C2 issue cached Gets. At time 60
C2 request uncached data, causing threads to block on I/O. The range of high and
low CPU and I/O utilization is shown across the 7 slave nodes; also the average.
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a resource and allocated between clients like CPU or I/O resources. This

approach does not eliminate blocking, but prevents one client from occu-

pying all RPC Handle threads and allows other clients to make progress.

More upstream threads are needed with this approach to maintain the

same utilization and more threads lead to less scheduling control and

worse latency guarantees. The advantage is that upstream scheduling

decisions are made locally, avoiding any control plane involvement.

Figure 4.10 shows that when C2 switches to an I/O intensive work-

load, all three solutions allow C1 to utilize CPU effectively and achieve

high throughput, while Maat-[d|i|di|?|?] delivers very low throughput.

Original behaves similarly to Maat-[d|i|di|?|?] so its result is omitted. The

direct approach achieves the highest throughput and nearly perfect re-

source utilization. The I/O utilization of Maat-[d|i|di|i1|?] fluctuates as

the scheduler adjusts how aggressively it limits requests from C2 based

on information from the Data Xceive stage. The CPU utilization of Maat-

[d|i|di|i2|?] fluctuates as the scheduler allocates different numbers of RPC

Handle threads to C1.

Figure 4.11 shows that for Maat-[d|i|di|i1|?], both C1’s throughput and

the CPU utilization drop sharply as the probability of a wrong prediction

increases. Similarity, for Maat-[d|i|di|i2|?], smaller number of RPC Handle

threads leads to lower throughput and CPU utilization.

We incorporate the second indirect approach (Maat-[d|i|di|i2|?]) into

HBase-Maat to solve the blocking problem, because it enables the sched-

uler to make local decisions and involves relatively few changes to HBase.

4.3.5 Ordering Constraints

Problem: The Log Append stage must process WAL entries in the order

they are accepted and the writes it issues to HDFS must be processed in

this order. Log Append enforces this by appending writes to the same

file, which HDFS writes in sequence.
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Figure 4.11: Blocking. C1 issues cached Gets; C2 issues un-cached Gets
that block on I/O. The left y-axis shows average CPU utilization; the right y-axis
shows C1 throughput.

We compare a direct and an indirect solution to the ordering constraint

problem in HBase. For the direct approach (Maat-[d|i|d|i2|d]), we maintain

one WAL per client, so there is no ordering constraints across clients.

For the indirect approach (Maat-[d|i|d|i2|i]), we schedule at the RPC

Handle stage, above the ordering-constrained LOG Append stage. Note

that we already schedule based on RPC Handle time in this stage to solve

the blocking problem. Since threads block until WAL writes are done, un-

der a stable workload where queue size at each stage is relatively stable,

the blocking time is roughly proportional to the number of downstream

requests, and scheduling RPC Handle time indirectly schedules the WAL

writes before passing them to the LOG Append stage. However, the num-

ber of RPC Handle threads are typically larger than the I/O parallelism

in the system, making this approach less effective; therefore, we compare

two settings of Maat-[d|i|d|i2|i] with 10 or 30 RPC Handle threads.

Figure 4.12 shows that unlike in Original, where the throughput drop
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Figure 4.12: Ordering Constraints. Both C1 and C2 issue 1 KB Puts,
resulting in 1 KB WAL appends. (a) shows the throughput of C1 when it issues
a steady stream of requests using 80 concurrent threads. (b) shows the latency of
C1 when it issues bursty requests every 1 second. 30 or 10 represents the number
of RPC handler threads.

and latency increase are unbounded, the three solutions are able to limit

C2’s effect on C1. The separate-WAL approach (Maat-[d|i|d|i2|i]) achieves

the best throughput and performance guarantee; the schedule-handle-

time approach (Maat-[d|i|d|i2|i]) largely ensures isolation, but at the cost

of lower throughput. With more RPC Handle threads, isolation becomes

less effective and the latency guarantee degrades because C1 competes

with more requests from C2 after they enter the RPC Handle stage.

For our final simulated system, we incorporate the indirect solution,

resulting in HBase-Maat ([d|i|d|i2|i]).
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4.4 HBase-Maat Implementation

To demonstrate that real storage systems can be implemented with the

Maat principles, we now modify HBase according to the lessons we learned

from the TAD simulations in §4.3. The HBase-Maat implementation gives

us experience implementing Maat mechanisms in real systems and vali-

dates that the TAD simulations are excellent predictors of the real world.

4.4.1 Implementation Experience

Our implementation closely follows our final simulated solution: HBase-

Maat ([d|i|d|i2|i]). To the original HBase, we add scheduling points to the

Data Xceive and Data Stream stages, and modify the other stages to allow

pluggable schedulers. Different implementations of the local schedulers

are possible; for our evaluation, we uses DRF-based [47] weighted fair

queuing as our local schedulers. RPC Handle time is treated as a resource

in addition to the CPU, network, I/O and the namespace lock during

scheduling. The scheduler only performs network resource scheduling

when the server’s bandwidth is the bottleneck; we anticipate incorporat-

ing global network bandwidth allocation [72] in the future.

To avoid hidden competition, within one RegionServer, the RPC Read,

RPC Handle, RPC Respond, Data Stream and LOG Append stages all

share the same multi-stage scheduler. Since it is difficult for the Data

Xceive stage, which resides in a separate Java process, to access the same

scheduler, there is a separate Data Xceive scheduler.

A centralized controller coordinates between the Data Xceive sched-

uler and the RegionServer scheduler, as well as the schedulers on different

nodes. The controller provides a Thrift [105] server interface and commu-

nicates with the scheduler using Protocol Buffers [113]. Each scheduler

contains a thread that periodically sends status to the controller, retrieves

the latest local weight allocations, and applies these allocations.
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The original HBase/HDFS storage stack does not propagate the client

identifier across the HBase/HDFS boundary; we add end-to-end client id

propagation so that every scheduler can map a request back to its origi-

nating client.

One concern with multiple stages sharing the same scheduler is in-

creased lock contention; even original HBase (in which only RPC Han-

dle threads access a common scheduler) suffers from lock contention.

We use the same solution as the original HBase: multiple scheduler in-

stances, each protected by its own lock. While conceptually there is only

one scheduler, in practice, an upstream stage places requests in a random

scheduler instance, and each downstream thread is assigned a scheduler

instance to pick requests from. We find that three instances of the multi-

stage scheduler in each RegionServer works well.

Another concern with scheduling at every stage is additional context

switches during request processing. For example, in the original HBase,

each RPC Read thread monitors a set of connections and reads immedi-

ately when data is available. To enforce scheduling during RPC reading,

though, a separate ConnectionEnqueuer thread performs monitoring and

puts the connection with data available in queue. While the RPC Read

threads pick connections in queue to read from, which introduces one

extra context switch. To amortize this cost, we increase the scheduling

unit and allow the RPC Read threads to read multiple RPC calls at once.

Similarly, at the Data Xceive stage, we allow the scheduler to schedule

multiple data packets at once to minimize the context switch cost.

4.4.2 TAD Validation

To match the simulation environment, we run experiments on an 8-node

cluster. Each node has two 8-core CPUs at 2.40 GHz (plus hyper-threading),

128 GB of RAM, an 480 GB SSD (to run the system) and two 1.2 TB HDD

(to host the HDFS data). The nodes are connected via 10 Gbps network.
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Figure 4.13: HBase Implementation: No Scheduling. We repeat the
experiment in Figure 4.7. (a) shows the simulation results (same as Figure 4.7);
(b) shows the results measured on an cluster.

One node hosts the HMaster, Namenode and Secondary Namenode; the

other seven nodes host RegionServers and Datanodes.

We now re-run the simulated experiments in §4.3 and show side by

side the simulated results and the results obtained from real implemen-

tation. We can see that both the problems and solutions in the implemen-

tation match the simulations of the TAD diagrams amazingly well; this

accuracy holds across all five categories.

Figure 4.13 illustrates that the original implementation of HBase suf-

fered from the no scheduling problem and as a result, the throughput of

client C1 is significantly harmed when C2 issues more requests concur-

rently; further, Figure 4.13 shows that the solution of adding scheduling

points at resource-intensive stages provides performance isolation in the

real-world, as suggested in the simulation.

The unknown resource problem that exists in the original implemen-
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Figure 4.14: HBase Implementation: Unknown Resource Usage. We
repeat the experiment in Figure 4.8. (a) shows the simulation results (same as
Figure 4.8); (b) shows the results measured on a standalone node. A standalone
node is used instead of a cluster to isolate the effect of short-circuit reads.

tation of HBase is shown in Figure 4.14: when client C2 requests in-cache

data, HBase is not able to efficiently utilize the CPU. Our solution of spec-

ulatively executing requests to discover their resource consumption dra-

matically improves the throughput of C2 without harming C1. We see

much higher relative throughput improvement for cached requests in im-

plementation than in simulation because in our cluster the CPU is much

faster (16 cores at 2.4 GHz with hyper-threading) than the simulated single-

core 1 GHz CPU.

Figure 4.15 verifies that HBase suffers from hidden contention across

multiple stages, which manifests when one client uses more resources

in one stage (i.e., C2 uses more network). The small difference between

the implementation and simulation results for a reply size of 64KB occurs

because in the implementation, after transferring 64KB, the RPC Respond

thread switches to another request; we did not simulate this detail. The



110

0 50 100 150 200
��

	�
�


�
�

��
�

0 16 32 48 64

0
K

3
K

6
K

9
K

C
1
 T

h
ro

u
g
h
p

u
t

C2 Reply Size (KB) C2 Reply Size (KB)

(a) sim (b) impl

Figure 4.15: HBase Implementation: Hidden Contention. We repeat the
experiment in Figure 4.9. (a) shows the simulation results (same as Figure 4.9);
(b) shows the results measured on a cluster. To ensure that the network bandwidth
is the bottleneck, the bandwidth between the nodes in the cluster is limited to
100 Mbps using dummynet [94].

solution suggested by our TAD simulations of producing a multi-stage

scheduler again works well for the implementation.

The blocking problem that exists within HBase is illustrated in Fig-

ure 4.16. In the original HBase, when the workload of one client switches

from CPU to I/O-intensive requests (C2 at time 60), both clients are harmed

because not enough threads are available. In real implementation, unlike

in simulation, the throughput of both clients increases to around 30 kop-

s/s after a while, when the data C2 accesses are cached by the local file

system in the page cache. The effect of the OS page cache is not captured

in our simulation, but the general trend, that C1 is slowed down to the C2

throughput level, remain the same both in simulation and in real imple-

mentation. When disabling the page cache (not shown here) we observe

that the throughput of both C1 and C2 remain low, as suggested by the

simulation.
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Figure 4.16: HBase Implementation: Blocking. We repeat the experiment
in Figure 4.10. (a) shows the simulation results (same as Figure 4.10); (b) shows
the results measured on a cluster.

Finally, HBase’s ordering problem is shown in Figure 4.17; when C2

writes more data, the throughput of C1 suffers. Again, this problem is

fixed by limiting the number of outstanding requests to the lower stage

to 10 or 30; 30 outstanding requests leads to worse isolation than 10, as

suggested by the simulation.

The final performance of HBase-Maat for YCSB [35] is shown in Fig-

ure 4.18; in this workload, five different clients are each given a differ-

ent weight and we would like weighted fairness. The original version

of HBase was unable to provide weighted fairness across clients with dif-

ferent shares, instead delivering approximately equal throughput to each.

The Figure shows that HBase-Maat enforces weighted fairness as desired.
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Figure 4.17: HBase Implementation: Ordering Constraint. We repeat
the experiment in Figure 4.12. (a) shows the simulation results (same as Fig-
ure 4.12(a); (b) shows the results measured on a cluster.

4.5 Analyzing Other TADs

Earlier (§3.4-3.6) we presented the TADs of MongoDB (Figure 3.3), Cas-

sandra (Figure 3.4) and Riak (Figure 3.5). Here, we analyze each and dis-

cuss their scheduling problems.

4.5.1 MongoDB

MongoDB mostly resembles the traditional thread-based architecture, but

its limit on active worker numbers and replication design are influenced

by SEDA. MongoDB thus shares a lot of the scheduling problems of the

thread-based architecture.
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Figure 4.18: Weighted Fairness on HBase. 5 clients with different priorities
run the YCSB workload on 8 nodes. The original version of HBase does not
deliver weighted throughput; a version of HBase adhering to the Maat principles
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4.5.1.1 Scheduling Challenges

Unknown Resource Usages: Unknown resource usage is the inherent

scheduling problem associated with the traditional thread-based archi-

tecture, and MongoDB suffers from it heavily. The requests entering the

Worker stage go through complex, highly variable execution paths until

their completion. When the Worker threads read a request off the net-

work, it does not know whether this request hits cache, requires replica-

tion, has to obtain exclusive locks, or needs I/O within this stage; it does

not even have basis to make good predictions, making it extremely diffi-

cult to schedule at this point.

Hidden Contention: At the secondary node, multiple stages compete

for the same resources, leading to the hidden contention problem. Most

notably, the Worker stage and the Oplog Writer stage compete for the

database locks, causing reads on the secondary node to be delayed for

an unbounded amount of time under heavy write load [17].
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Figure 4.19: MongoDB: Unknown Resource Usage. Both C1 and C2 read
cold data, which incur 1 MB I/O. C2 also issues cached Gets that do not require
I/O. (a) shows the simulation of the original MongoDB; (b) shows the simulation
when MongoDB processes the cached requests while CPU is idle.

Blocking: The Worker stage at the primary node blocks on the completion

of data replication, and could run into the situation that it does not have

enough active threads to execute requests that do not need replication,

leading to the blocking problem.

4.5.1.2 TAD Simulation

We simulate an MongoDB cluster with 24 nodes that form 8 replication

sets; each replication set consists of one primary node and two secondary

nodes. Each node has one 1 GHz CPU and one disk with 100 MB band-

width, and is connected via 1 Gbps network. In original MongoDB work-

ers are scheduled to execute using a simple FIFO algorithm, we instead

allow any scheduler and use DRF for our simulation.

Figure 4.19(a) shows the unknown resource usage problem on I/O

resources. We could see that when C2 issues both cold- and hot-cache
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Figure 4.20: MongoDB: Hidden Contention. C1 issues read requests
to the secondary nodes; C2 issues write requests to the primary nodes that are
replicated to the secondary nodes. (a) shows the simulation of MongoDB where
separate DRF schedules at the Oplog Write stage and the Worker stage; (b) shows
the simulation of MongoDB where a unified scheduler is used to schedule requests
at multiple stages.

requests, original MongoDB fails to utilize CPU effectively (less then 40%

utilization) and provides low throughput to C2 cached requests. If Mon-

goDB knows beforehand if a request needs I/O and schedules the cached

requests when CPU is idle, both the CPU utilization and C2 throughput

would be improved, as shown in Figure 4.19(b). However, as the Worker

stage is so complex and performs many tasks, it is generally hard to pre-

dict the resource usage of a request.

Figure 4.20 shows the hidden contention on the database lock in the

MongoDB secondary nodes. We can see that applying DRF separately at

each stage does not guarantee C1 gets a fair share of the database lock

time, as shown in Figure 4.20(a). Instead, when C2 updates more docu-

ments at the same time, which leads the Oplog Write stage to take more

time to replicate the updates, it holds the lock for up to 98% of the time,

and causes the throughput of C1 to drop from 35 Kops/s to less than

0.5 Kops/s. When using a unified scheduler, however, C2 only uses up
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Figure 4.21: MongoDB: Blocking. One replication set is simulated instead
of 8. Both C1 and C2 issue requests to the primary node of the replication set;
C1 read requests and C2 write requests. The writes of C2 are replicated to the
secondary nodes. At second 10, the I/O bandwidth of the secondary nodes are
reduced from 100 MB/s to 1 MB/s. (a) shows the simulation of original Mon-
goDB, where the Worker threads block until the replication is done; (b) shows the
simulation of MongoDB where the Worker threads do not block.

to 50% of the database lock time, and C1’s throughput stabilizes as C2

updates more documents.

Figure 4.21 shows the Blocking problem of MongoDB. When the I/O

bandwidth of the secondary nodes decreases, we expect the throughput

of C2 to decrease since it relies on replication but the throughput of C1 to

remain stable. However, as we can see from Figure 4.21(a), the through-

put of C1 suffers because all 128 Worker threads are blocking and no

threads are available to process the read requests. After changing the

Worker stage to be non-blocking, as shown in Figure 4.21(b), the through-

put of C1 is not affected.

4.5.1.3 Lessons

MongoDB resembles the traditional thread-per-request architecture and

thus suffers from unknown resource usage. The complex execution path

within the Worker stage makes indirect solutions to this problem extremely

challenging to implement. We expect that altering MongoDB to com-



117

ply with the Maat principles will be difficult and may require substantial

structural changes.

One may consider alternative ways of scheduling on MongoDB, e.g.,

intercepting resource accesses and suspending the accessing threads as

needed. Libra [102] used this approach for I/O resource scheduling. How-

ever, it dictates the scheduling granularity (each resource access), imposes

high overhead when scheduling fast resources such as CPU, and does not

address the scheduling problems that requires scheduling at higher level

(blocking, ordering constraints).

4.5.2 Cassandra

Cassandra closely follows the standard SEDA architecture, where all ac-

tivities are managed in controlled stages. However, schedulability does

not automatically follow. Having too many stages with the same resource

pattern leads to hidden contention and the "inability to balance read-

s/writes/compaction/flushing" [14]; likewise, CPU- and I/O-intensive

operations in the same stage leads to unknown resource usage. More

specifically, Cassandra has the following scheduling problems.

4.5.2.1 Scheduling Problems

Unknown Resource Usages: The database processing stages have no knowl-

edge on whether a request needs I/O when picking up requests for exe-

cution, leading to the unknown resource usage problem.

Hidden Contention: Cassandra has more than 10 database processing

stages (Read, Mutation, View-Mutation, Counter-Mutation etc.); all of

them compete for the same CPU and I/O resources. In addition, four dif-

ferent network-related stages complete for the network resources. Those

competitions lead to the hidden contention problem. The Cassandra de-
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Figure 4.22: Cassandra: Unknown Resource Usage. Both C1 and C2
read cold data, which incurs 100 KB I/O. C2 also issues reads repeatedly on a
single key, which does not require I/O. (a) shows simulation of the original Cas-
sandra; (b) shows the simulation of an improved version of Cassandra, which
speculatively executes cached requests when network and CPU are idle.

velopers also realize that such a design causes "inability to balance read-

s/writes/compaction/flushing" [14].

Blocking: The C-ReqHandle stage blocks on the request completion event,

and could run into the situation where it has no additional threads to pro-

cess more requests that can be finished without waiting for the blocking

requests, leading to the blocking problem.

4.5.2.2 TAD Simulation

Based on the TAD of Cassandra shown in Figure 3.4, We simulate a Cas-

sandra cluster with 3 nodes. Each node has one 1 GHz CPU and one

100 MB/s disk, and is connected via 1 Gbps network.

Figure 4.22 shows the unknown resource usage problem of Cassan-

dra on I/O resources. We could see that when C2 issues both cold- and
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Figure 4.23: Cassandra: Blocking. Initially both C1 and C2 issue issue
cached requests. At time 10 C2 starts to request uncached data, causing its pro-
cessing threads to block for a longer time. The left y-axis shows the number of
C-ReqHandle threads currently serving C2 (128 C-ReqHandle threads in total).
(a) shows the simulation of original Cassandra; (b) shows the simulation of an
improved version of Cassandra, where the C-ReqHandle stage does not block on
the processing stages.

hot-cache requests, original Cassandra, without the exact knowledge of

resource usage for each request, fails to utilize network effective (less than

20% utilization) and provides low throughput to C2 cached requests. How-

ever, by speculatively executing requests when network and CPU are idle,

Cassandra could fully utilize network and provide much higher through-

put (8x improvement) for C2.

Figure 4.23 shows the blocking problem of Cassandra. When C2 switches

from an CPU-intensive workload to an I/O-intensive one, we expect the

throughput of C1 to increase since more CPU resources become available.

However, as we can see from Figure 4.23(a), the throughput of C1 declines

abruptly. All C-ReqHandle threads are blocked waiting for the process-

ing of C2 requests to complete, which takes a long time since it requires

I/O; no threads are left to serve C1. When we change the C-ReqHandle

stage to be non-blocking, as shown in Figure 4.23(b), the throughput of

C1 improves as expected after C2’s workload change; the number of serv-

ing C-ReqHandle threads remains low because C-ReqHandle stage is not
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Figure 4.24: Cassandra: Hidden Contention. C1 and C2 keep issuing
requests with 1 KB message size. C1’s response size remains 10 KB, while C2’s
response size varies from 10 KB to 200 KB. (a) shows the simulation of origi-
nal Cassandra with fair scheduler at each stage; (b) show the simulation of an
improved version of Cassandra, where a unified scheduler is used to schedule re-
quests at multiple stages.

the bottleneck and it does not have to wait for other stages.

Figure 4.24 shows the hidden contention on network resources in Cas-

sandra. We can see that attempting fair scheduling at each stage does not

ensure fair sharing globally. Instead, as C2 increases its response size, it

unfairly consumes as much as 95% of the network resource, leading to

declined C1 performance. When using a unified scheduler, however, all

contentions on the network are explicitly managed since the scheduler

has a global view of network usage. As a result, C2 can only use its fair

share of network, and C1’s throughput is not affected by C2’s behavior.

4.5.2.3 Lessons

Simply following the SEDA design principle does not guarantee schedu-

lability. More thoughts on how to divide stages are needed to build a

highly schedulable system. Instead of dividing stages based on function-

ality, we recommend dividing stages based on resource usage patterns
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to give more resource information to the scheduler and reduce hidden

competition. Cassandra is currently moving toward this direction: devel-

opers have proposed combining different processing stages into a single

non-blocking stage, and moving I/O to a dedicated thread pool [14].

4.5.3 Riak

Riak is another system the closely follows SEDA. However, instead of us-

ing controlled stages, Riak heavily uses on-demand stages and relies on

the underlying Erlang virtual machine to schedule the potentially large

number of threads. From the TAD of riak we can identify the following

scheduling problems.

4.5.3.1 Scheduling Problems

No Scheduling: Riak has no control on how the Req In-Out stage and the

Req Process stage access the CPU and network resources. The underly-

ing Erlang VM, which is in charge of scheduling these processes, is obliv-

ious about the storage system’s scheduling goals and cannot be used as

a general mechanism to provide flexible, application-specific scheduling

policies.

Unknown Resource Usage: Depending on whether the Req Process thread

and Cmd Handle thread locate on the same physical node, communica-

tions between them may consume network resources. However, Erlang

uses a completely transparent IPC mechanism which does not distinguish

local and remote communication. The scheduler can not tell whether a

request uses network resource or not, even after the request execution

(which precludes speculative execution as an indirect solution).

Hidden Contention: In Riak, all stages may compete for network re-

sources; the Req In-Out stage and the Req Process stage compete for the

CPU resource; and the Cmd Handle stages from different partitions within
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Figure 4.25: Riak: No Scheduling. Both C1 and C2 issue random read
requests that are cached in memory (so that only the network resource is in con-
tention). (a) shows the simulation of original Riak; (b) shows the simulation of
a modified Riak version where both the Req In-Out and Process stages are con-
trolled stages using DRF schedulers.

the same node compete for I/O resources. None of the contentions are

explicitly managed.

4.5.3.2 TAD Simulation

Based on the TAD of Riak shown in Figure 3.5, we simulate a Riak cluster

with 4 physical nodes. Each node has one 1 GHz CPU and one 100 MB/s

disk, and hosts 4 data partitions (i.e., has 4 Cmd Handle stages). Nodes

are connected via 800 Mbps network.

Figure 4.25(a) shows the no scheduling problem of Riak. We can see

that original Riak fails to provide isolation: when C2 issues requests with

more threads, it consumes more network resources and the throughput

of C1 suffers greatly. After adding scheduling points at the previous on-

demand Req In-Out and Process stages, as shown in Figure 4.25(b), net-

work resources are shared fairly between C1 and C2, and the throughput

of C1 is not affected by C2.

Figure 4.26(a) shows the unknown resource usage problem of Riak.

Without the knowledge of the network resource usage, the scheduler can-
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Figure 4.26: Riak: Unknown Resource Usage. C1 issues requests to
one node but the data it requests reside on another node (thus requires network
communication between these two nodes); C2 issues requests that access data
at both the local and remote nodes. (a) shows the simulation of Riak where the
Process and Cmd Handle stage schedule schedule the network resources without
knowing whether a request needs it; (b) shows the simulation of Riak where the
Process and Cmd Handle stages are split so that network communications are
handled in separate stages that have knowledge of the network resource usage.

not effectively utilize the I/O resource by scheduling requests that do not

require network transfers, leading to lower throughput of C2. When sep-

arate network handling stages are added, which has exact knowledge of

the network usage, though, requests can be scheduled based on their re-

source usage patterns. As a result, the I/O resource is fully utilized and

the throughput of C2 improves as more requests that access local data are

served, as shown in Figure 4.26(b).

Figure 4.27(a) shows the hidden contention on I/O resources among

the Cmd Handle stage in Riak. When C2 issues larger I/O requests, we

can see that it uses more I/O resources (up to 70%) and causes the through-

put of C1 to decrease. Even though the scheduler at each stage attempts

to allocate I/O resource fairly, the contention between these stages is un-
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Figure 4.27: Riak: Hidden Contention. C1 keeps issuing 5 KB read re-
quests; the request size C2 issues vary. The Zpif distribution governs which
partitions the requests go to for both C1 and C2. (a) shows the simulation of
Riak where each Cmd Handle stage has a separate DRF scheduler; (b) shows the
simulation of Riak where all stages in one physical node DRF schedulers.

regulated and causes C2 to receive more resources when it issues larger

requests. When a unified scheduler is used, as shown in Figure 4.27(b),

C2 always receives a fair share of the I/O resources and does not affect

the performance of C1.

4.5.3.3 Lessons

Riak relies heavily on light-weighted processes and transparent IPC pro-

vided by the Erlang virtual machine, which makes resource management

implicit. Creating a new Erlang process may have low overhead, creating

them on-demand leads to the no scheduling problem. Similarly, transpar-

ent IPC hides important network usage information, making scheduling

the network difficult. To make Riak comply with Maat principles, one

must either explicitly manage the above mechanisms, or change Erlang

VM to allow scheduling policies to be passed from Riak to the VM level.
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N U C B O
HBase [46] ✖ ✖ ✖ ✖ ✖

MongoDB [34] ✖ ✖ ✖

Cassandra [73] ✖ ✖ ✖

Riak [71] ✖ ✖ ✖

Table 4.5: Different Storage Systems Presents Different Scheduling
Challenges. ✖:have the corresponding problem

4.5.4 Discussions

Table 4.5 presents a summary of the systems we study and their schedul-

ing problems; we now discuss some general findings across systems.

First, some problems are more common than others; for example, the

hidden contention on CPU is hard to avoid as most stages use CPU. We ob-

serve the unknown resource usage and hidden contention problem on ev-

ery system we study, but the ordering constraint problem only in HBase.

Second, fixing one problem might introduce other problems in the

system. For example, Riak does not have a blocking problem. Even though

its Req In-Out and Process stages block on downstream stages, these stages

are on-demand and can always spawn a new thread to handle new re-

quests; no requests would be denied service in Riak due to a lack of active

(not blocked) threads. However, if one changes the Req In-Out and Pro-

cess stages to be bounded to solve the no scheduling problem of Riak, one

introduces the blocking problem to Riak because now all threads in the

bounded stages may be blocked, leaving no threads available to process

non-blocking requests.

Finally, even though different systems might possess the same prob-

lem, the difficulty of fixing that problem could vary vastly based on the

system’s internal structure and code base. Fixing the unknown resource

problem directly in HBase requires only separating the short-circuited

read processing from the RPC-Read stage; fixing the same problem di-

rectly in MongoDB, however, requires a major re-structuring of the Worker
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stage to account for the the complex execution path within that stage. Our

TADs are effective in identifying the problems, but do not give many in-

dications on how difficult solving the problems would be; systematically

reasoning about such difficulties is an interesting direction to extend the

thread architecture diagrams.

4.6 Conclusions

We have presented Maat, an approach to building schedulable distributed

storage systems. By using direct or indirect approaches, Maat enables sys-

tems to overcome the five fundamental problems of schedulability and

deliver fairness, isolation, and other important performance properties.

We show both via simulation and implementation how to apply the Maat

principle to enable scheduling in the HDFS/HBase storage stack. We also

discuss the scheduling problems of MongoDB, Cassandra and Riak using

the Maat principle.
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5

Related Work

In this chapter, we discuss various research efforts and systems that are

related to this dissertation. We start by discussing works related to local

storage system scheduling (§5.1). We then discuss how previous research

proposed to realize scheduling in distributed storage systems (§5.2).

5.1 Scheduling in Local Storage System

Deciding which I/O request to schedule, and when, has long been a core

aspect of the local storage stack in the operating system, and there is a rich

history in the system community to improve it[ 11, 13, 22, 27, 28, 29, 31, 38,

43, 44, 45, 54]. Each of these approaches has improved different aspects of

I/O scheduling. In this section, we discuss how these works on local stor-

age stack scheduling are related to our proposed split-level I/O schedul-

ing in five different aspects: multi-layer scheduling, cause-mapping and

tagging, software-defined storage, exposing file-system mechanisms, and

I/O scheduling algorithms.

Multi-Layer Scheduling: Split-level I/O advocates for scheduling at

multiple layers; a number of works also argue that efficient I/O schedul-

ing requires coordination at multiple layers in the storage stack [101, 114,

118, 126]. Riska et al. [93] evaluated the effectiveness of optimizations at

various layers of the I/O path, and found that superior performance is
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yielded by combining optimizations at various layers. Redline [126] tries

to avoid system unresponsiveness during fsync by scheduling at both

the buffer cache level and the block level. Argon [114] combines mech-

anisms at different layers to achieve performance insulation. However,

compared to these ad-hoc approaches that require re-engineering of the

whole storage stack, the split I/O framework provides a systematic way

for schedulers to plug in logic at different layers of the storage stack while

still maintaining modularity.

Cause Mapping and Tagging: The need for correctly accounting re-

source consumption to the responsible entities arises in different contexts

in addition to the tagging needed in the split-level I/O scheduling frame-

work. Banga et al. [22] found that kernel consumes resources on behalf of

applications, causing difficulty in scheduling. The hypervisor may also

do work on behalf of a virtual machine, making it difficult to isolate per-

formance [58]. We identify the same problem in I/O scheduling, and

propose tagging as a general solution. Both Differentiated Storage Ser-

vices (DSS) [88] and IOFlow [109] also tag data across layers. DSS tags

the type of data, IOFlow tags the type and cause, and split scheduling

tags with a set of causes. Multi-causes tags that represent many-to-many

mappings between causes and operations are important in local storage,

as metadata and journal I/Os frequently have multiple causes.

Software-Defined Storage Stack: In the spirit of moving toward a

more software-defined storage (SDS) stack, the split-level framework ex-

poses knowledge and control at different layers to a centralized entity,

the scheduler. The IOFlow [109] stack is similar to split scheduling in this

regard; both tag I/O across layers and have a central controller.

IOFlow, however, operates at the distributed level; the lowest IOFlow

level is an SMB server that resides above a local file system. IOFlow does

not address the core file-system issues, such as write delegation or order-

ing requirements, and thus likely has the same disadvantages as system-
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call scheduling. We believe that the problems introduced by the local file

systems, which we identify and solve in this dissertation, are inherent to

any storage stack. We argue any complete SDS solutions would need to

solve them and thus our approach is complementary. Combining IOFlow

with split scheduling, for example, could be very useful: flows could be

tracked through hypervisor, network, and local-storage layers.

Shue et al. [102] provision I/O resources in a key-value store (Libra)

by co-designing the application and I/O scheduler; however, they noted

that “OS-level effects due to filesystem operations [ …]are beyond Libra's

reach”; building such applications with the split framework should pro-

vide more control.

Exposing File-System Mechanisms: Split-level scheduling requires

file systems to expose certain mechanisms (journaling, delayed allocation,

etc.) to the framework by properly tagging them as proxies. Others have

also found that exposing file-system information is helpful [44, 90, 125].

For example, in Featherstitch [44], file-system ordering requirements are

exposed to the outside as dependency rules so that the kernel can make

informed decisions about writeback.

I/O Scheduling Algorithms: Split-level I/O scheduling framework

does not stipulate the scheduling algorithm one uses; it only provides

more information and control to any scheduler one implements. Differ-

ent I/O scheduling algorithms have been proposed to improve different

aspects of I/O scheduling: to better incorporate rotational-awareness [63,

65, 100], to better support different storage devices [68, 89], or to provide

better QoS guarantees [56, 77, 92]. All these techniques are complemen-

tary to our work and can be incorporated into our framework as new

schedulers. These schedulers would benefit from the additional infor-

mation and control the split framework provides.
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5.2 Scheduling in Distributed Storage Systems

Distributed storage systems that host data from many clients are widely

adopted [43, 46, 71, 73]. However, most systems today provides very weak

performance guarantees such as isolation, fairness, or bounded latency, if

at all. Various research efforts have been made to enable scheduling and

performance guarantees in these systems, with different extent of suc-

cess. However, to the best of our knowledge, no study has looked at the

schedulability of these systems in a systematic way.

Several systems focus on coarse-grained resource allocation on a per-

VM basis rather than on per application-level request. For example, mClock [57]

and PRADA [55] support proportional-share fairness on storage server

bandwidth allocation across client virtual machines. IOFlow [109] uses

a logically centralized control plane to enable scheduling policies at the

VM level. PriorityMeister [130] employs a combination of priorities and

rate limits to provide tail latency QoS on NFS for each virtual machine.

These systems usually schedule low-level I/O resources (block level or

file system level) and need not deal with the complex internal structure

and mechanisms of replicated, fault-tolerant, distributed storage systems

with rich data semantics such as HBase or Cassandra. Performance guar-

antee at the VM-level also do not meet the need for finer-grained control,

where request-level scheduling is needed.

More recently, Pisces [103] investigates how to perform request schedul-

ing in distributed key-value store systems. Pisces provides global coor-

dination mechanisms to adjust the scheduling policy within each node

to achieve the overall scheduling goal. However, it avoids the complex-

ities of enforcing the scheduling policy in complex thread architectures

as they assume an unrealistically simple storage server design with only

in-memory operations. Libra [102] is complementary to Pisces as it pro-

vides a local I/O scheduling framework that works at each storage node

to enforce higher-level policies. Libra is implemented as a wrapper layer
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on top of POSIX file systems, plus modifications to levelDB to pass the

client identity. Libra works by delaying the threads calling the file system

APIs, thus is only suitable to schedule I/O resources. However, differ-

ent resources may become bottlenecks in a storage system [80], so they

all need to be monitored and managed. Otherwise the system would run

into the no scheduling problem, as we identified in this dissertation.

Cake [117] enforces SLOs by inserting schedulers on the RPC Handle

and Data Xceive stages and using a centralized controller to adjust the

schedulers. However, Cake does not cover the resource consumptions in

other stages, such as RPC Read or RPC Respond. Argus [128] schedules

cache and I/O resources in HBase. It partitions cache and uses a local

scheduler in each RegionServer’s RPC Handle to schedule I/O resources.

A centralized scheduler co-located with HMaster pushes resource reser-

vation policy. Neither system puts thoughts on where the scheduling

points should be; they simply place the scheduling logic at the most con-

venient places. Unfortunately, such choices lead to ineffective scheduling,

including the no scheduling problem as some resource-intensive stages

are not managed.

Retro [80] applies rate limits to multiple scheduling points to emulate

different scheduling polices at the Hadoop stack. Retro does not have

scheduling points at every resource intensive stage, instead it uses the in-

direct approach we described in §4.2.1 to limit the number of requests sent

to the un-scheduled stages. In Retro, all schedulers are treated the same

way: if one client uses too much resource at one stage, all other stages

across all nodes would be throttled, including those requests that do not

use that type of resource at all, leading to inefficiency. Retro thus cannot

solve the scheduling problems that involves multiple stages interacting

with each other, such as blocking.

Pulsar [19] takes a different approach in scheduling. Pulsar uses a

centralized controller to determine local scheduling policy, and enforces
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the local scheduling policy within the hypervisor on the client side. For

key-value storage, Pulsar estimated the cost of Puts and Gets based on

a single-dimension cost function, and throttles a client if its requests to

the storage server cost more that its fair share. This approach requires

the storage server to trust the clients to schedule themselves, which is not

always possible, especially in a cloud setting. The client side cost estima-

tion could also be far off due to caching and other internal mechanisms

in the storage server.

There are also many cluster scheduling solutions [27, 48, 51, 52, 60]

that allocate per-node CPU and memory to schedule batch jobs and VMs.

While they may provide useful insights, due to the unique challenges

present in scheduling I/O resources, they are not directly applicable for

scheduling in storage systems.



133

6

Conclusions and Future Work

In this chapter, we summarize our studies (§6.1) and list some of our

lessons learned (§6.2). Finally, we describe our plans for future work (§6.3)

and conclude (§6.4).

6.1 Summary

This dissertation showed how the scheduling in current local and dis-

tributed storage systems is inadequate, and proposed new frameworks

to enable scheduling in these systems.

For the local storage stack, we have shown that single-layer schedulers

operating at either the block level or system-call level fail to support com-

mon goals due to a lack of coordination with other layers. While our

experiments indicate that simple layering must be abandoned, we need

not sacrifice modularity. In our split framework, the scheduler operates

across all layers, but is still abstracted behind a collection of handlers.

This approach is relatively clean, and enables pluggable scheduling. Sup-

porting a new scheduling goal simply involves writing a new scheduler

plug-in, not re-engineering the entire storage system.

For distributed storage systems, we first introduced thread architec-

ture diagrams as a tool to assess the schedulability of a system and an-

alyze its scheduling problems. We used TAD to analyze popular stor-
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age systems such as HBase, Cassandra and MongoDB. We then presented

Maat, an approach to building schedulable distributed storage systems.

By using direct or indirect approaches, Maat enables systems to overcome

the five fundamental problems of schedulability and deliver fairness, iso-

lation, and other important performance properties. We showed both via

simulation and implementation how to apply the Maat principle to enable

scheduling in the HDFS/HBase storage stack. We also discussed how to

use the Maat principle to discover and fix the scheduling problems in

MongoDB, Cassandra and Riak.

6.2 Lessons Learned

We now describe some general lessons on scheduling we learned while

working on this dissertation.

Scheduling can be modeled at the request flow level, abstracting out

most implementation details: One can understand the scheduling prob-

lem at a system by simply looking at how requests flow through various

components of the system and consume resources, and how schedulers

are placed at key points in the system to shape the flow. At this level, vi-

sualization tools (e.g., Figure 2.2 for the local storage stack, or TADs for

distributed storage systems) can be introduced to achieve quick insights,

and simulation can be utilized to study system behavior in detail without

having to deal with cumbersome implementation details.

Where to place scheduling logic matters: Traditionally, few thoughts

have teen given to where to place the scheduling logic in complex stor-

age systems. Due to the interactions between different components of

the system, which may have unexpected effects on scheduling, it might

be hard to enforce scheduling disciplines at certain points in the system.

For example, one part of the system may be blocking on the progress of

another part, or imposes artificial ordering limits. It is thus important to
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understand these interactions and how they effect scheduling; TAD is one

tool to facilitate such understanding. Equipped with the understanding

of the inner works of the storage system, one can make more informed

decisions on where to place schedulers to most effectively achieve one’s

scheduling goals.

Proper framework support is a prerequisite for effective scheduling:

Just having sophisticated scheduling algorithms is not enough to achieve

the desired scheduling goals. A scheduler needs both the information to

make the right scheduling decisions and the control to implement these

decisions. However, as we have shown in this dissertation, inadequate

framework support (e.g., unknown resource usage or ordering constraint)

often leaves the scheduler unable to perform effective scheduling.

Vertical integration is necessary for multi-layer storage stacks: Modern

storage systems are complex and composed of multiple layers; scheduling

at one single layer cannot achieve end-to-end performance goals. Both the

split-level framework and the Maat approach deploy schedulers at multi-

ple points to enforce scheduling; split scheduling in particular does so in

a modular and systematic way, without requiring individual schedulers

to re-engineer the complex storage stack. We hope that our work will in-

spire future vertical integration in storage stacks. RCP [69] is one such

effort that further explores how to enable I/O prioritization by integrat-

ing multiple layers at the I/O path.

Schedulability should be made a first-class citizen in system design:

Retrofitting scheduling control into existing systems is difficult; various

architectural and structural problems can prevent effective scheduling

from being realized. When scheduling is added as an afterthought to the

system, these problems are almost unavoidable. One can work around

the structural problems by adding information flows and feedback con-

trol. However, these indirect approaches only provide approximate schedul-

ing controls; they also add overheads to the system control plane and
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severely limit the scalability of the system. Directly solving these prob-

lems, on the other hand, often involves significant re-structuring of the

system, which implies a large amount of engineering effort.

To avoid the lengthy and often painful process of making a problem-

atic system schedulable, schedulability should be treated as a first-class

citizen in the system design process; architectural choices that may in-

troduce scheduling problems should be thoroughly compared with their

alternatives. Depending on the system requirement, sometimes schedu-

lability need to be compromised to achieve other even more desirable fea-

tures of the system; however, such compromises have to be made as con-

scious decisions other than being mere coincidences. Such schedulability

evaluation and optimization at the system design phase would save the

system designers and developers a great deal of trouble later when they

realize various scheduling policies and provide performance guarantees.

6.3 Future Work

In the era of cloud computing and big data, more and more data are stored

in the shared infrastructure in large data centers. Scheduling accesses to

these data in an efficient and scalable way has become more compelling

an issue than ever. We see many opportunities in optimizing the current

storage stack and providing the much needed performance guarantees.

In this section, we discuss several directions to extend the work in this

dissertation and build storage systems that better meet the requirement

in modern data centers.

6.3.1 Scalable Scheduling Architecture

Today’s data centers have tens of thousands of nodes and millions of

cores; any scheduling framework operating in these data centers need the

ability to scale to such magnitudes.
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We model scheduling in a storage system as containing requests that

flow through the data path consuming various resources while a control

plane collects information and determines a scheduling plan to realize

the system’s overall goal (e.g., fairness). This plan is enforced by local

schedulers at different points along the data path. To achieve scalabil-

ity, one needs to place as much work as possible at the local schedulers,

while minimizing the control plane involvement for information collec-

tion, computation and coordination.

However, as we discussed earlier in this dissertation, a storage system

may have various architectural problems that prevent the local schedulers

from being effective. Additional information and coordination across the

local schedulers can be utilized to circumvent these scheduling obstacles,

but at the cost of scalability. For example, two local schedulers competing

for the same resource may lead to unfairness, as shown in §4.2.3. In this

case, simply allocating local weights at the two schedulers is not sufficient,

the control plane has to be involved to coordinate resource consumption

between these schedulers, creating extra global work. We thus believe

that the architecture of a storage system ultimately limits how scalable its

scheduling can be, and such limits are independent of how the scheduling

is implemented.

Denote the average workload change time in a storage system by w,

and the average time the distributed scheduler needs to respond to the

workload (collecting the information about the workload, devising a new

scheduling plan, enforcing the plan at the local schedulers and stabiliz-

ing) as s; one can quantify the scalability of the system by the ratio of w

and s, which we note as τ = w/s. For a well scalable system, despite the

increasing number of nodes and local schedulers, τ should remain ≪ 1,

so that the system can adapt well with the workload change. It would

be interesting to look at how the problematic architecture of a system re-

quires additional information and feedbacks to achieve the same schedul-
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ing goal, thus causes s to increase, and ultimately limits how large (the

scheduling component of) the system can scale to. Such study would pro-

vide valuable insights on the trade-offs between the scalability of a sys-

tem, the performance guarantee it provides, and the engineering effort

required to achieve such scalability and performance.

6.3.2 Completeness of the Maat Principle: A Formal

Analysis

In this dissertation, we first introduced the CLI ideal scheduling condi-

tions: Completeness, Local enforceability, and Independent scheduling

points. We then identified five common problems that cause CLI viola-

tions and thus lead to scheduling failures.

Some questions naturally follow: are the five problems the only ones

that can prevent effective scheduling in a system? If a system is free of

the five problems, can any (reasonable) scheduling policy be realized on

it without difficulties? In other words, is the Maat principle complete?

One can answer the completeness questions empirically by examining

multiple systems and experimenting with various scheduling policies, as

we did in this dissertation. Fully answering these questions, however,

requires a more formal treatment of the scheduling problem.

The CLI ideal scheduling conditions can serve as a good starting point;

however, it is still drawn from our experiences and intuition, instead of

derived from the first principle of scheduling. A more precise definition

of "inadequate scheduling support" is needed to separate the difficulties

inherent to a scheduling goal (e.g., achieve isolation and high utilization

simultaneously), from the scheduling difficulties introduced by the sys-

tem structure (e.g., schedulers being placed at the wrong spot in the sys-

tem). The queuing network formulation is useful in this context: the sys-

tem can be modeled as a queuing network, and different scheduling goals

as different utility functions. Given the definition, a stronger link from
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inadequate scheduling and the CLI conditions can be established. The

completeness of the five Maat problems can then be reasoned by exam-

ining exhaustively how thread behaviors and interactions can violate the

CLI conditions.

Given the thread architecture of a system, ideally one should be able to

use the above formulation to derive the list of scheduling policies that can

be implemented in this system, how precise the scheduling control would

be for these polices, and why other scheduling policies are not possible

to realize in this system.

6.3.3 Build a Natively Schedulable Storage System

As we discussed earlier (§6.2), schedulability should be made a first-class

citizen in system design. In this dissertation we mostly focus on retrofitting

scheduling controls into existing systems, which did not consider schedu-

lability in their initial design processes. Many scheduling problems arise

as a result; we discuss possible solutions to eliminate or mitigate these

problems in this dissertation.

Another possible direction is to construct a new system from scratch

that adheres to the Maat principle. Such an natively schedulable system

(as opposed to the systems that require restructuring or extra feedback

mechanisms to enable scheduling) allows the maximum flexibility in re-

alizing various scheduling policies. Since no control plane involvement

is required to mitigate structural scheduling problems, the system would

also scale much better than traditional systems, which only add schedul-

ing as an afterthought and introduce significant control plane overheads

to do so.
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6.4 Closing Words

Resource sharing and scheduling has always been one of the key prob-

lems in computer sciences. With cloud computing on the rise, it is be-

coming even more important. Storage systems, however, present some

unique challenges in terms of scheduling the shared resource accesses.

People have developed numerous schedulers to achieve various per-

formance goals; these schedulers, however, are only effective when placed

at the right place and given the right support in the system. In this disser-

tation we looked at multiple systems, including the local and distributed

ones, where the traditional approaches of scheduling fail to provided

such support and thus lead to scheduling failures. We hope that in the fu-

ture the community could put more thoughts on the scheduling support

a system provides (which we term the schedulability of the system) and

design the next generation of storage systems with strong performance

guarantees.
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