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ABSTRACT

Commodity server and desktop computer systems have becorerfol enough in recent
years to profitably make use of system virtualization tedbgy System software vendors
are enthusiastically embracing system virtualizationddrass some of the key issues fac-
ing today'’s enterprises like manageability, rapid serdieployment, and disaster recovery.

Widespread adoption of virtualization has a disruptiveuigfice on system organiza-
tion. In a virtualized environment, the virtual machine rnton(VMM) supplants the op-
erating system as the primary resource manager. When ahlzdtion layer is present,
certain system features like resource scheduling, cachageanent, and security monitor-
ing can often be implemented most naturally within the VMM.

While a VMM understands and controls system hardware regssuyit currently knows
very little about the high-level software abstractions iempented within guest operating
systems, a fact referred to as the “semantic gap”. Infoongiertaining to OS constructs
like processes, threads, users, and caches is often usefuéver, when implementing
services at the VMM layer. Hence, researchers have invemdys of directly exporting
relevant information from the operating system to an uryilegl VMM. This direct ap-
proach, while effective, has some important drawbacks. eéxample, it leads to close
coupling between VMM-layer services and specific OS vendotsversions, reducing the
applicability of services and complicating deployment amehagement.

We have invented and implemented techniques that can bebysad/MM to infer
useful information about selected operating system atigtres and achieve a level of im-
plicit operating system awareness. Our approach useswattiser of architectural events
and the fact that modern operating systems share many leasicés and responsibilities.
This dissertation describes our techniques in detail aaggmts the results of a careful ex-
perimental evaluation of them. Using case studies, we shawimplicit operating system
awareness within a VMM can be used to implement a variety efulspplications like
sophisticated 1/0O scheduling, flexible memory managenegfitjent caching, and reliable
security monitoring that significantly enhance the valuthefvirtualization layer.
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Chapter 1

Introduction

System virtualization technology has arrived on every msgover and desktop computing
platform [3, 4, 46, 93]. High quality virtual machine implemtations for servers [4, 101]
and desktop PCs [27, 91] allow system managers to consebéaters [103], support mul-
tiple operating systems [36], provision resources on-dehj@9], perform security isola-

tion, monitoring, and authentication [34, 56], providelfaalerance [11], and optimize for

specialized architectures [12]. As both software [27] aaddtvare [37, 46] support for

near zero overhead virtualization develops, and as virat#bn is included in dominant

commercial operating systems [8], it appears that virrealicomputing environments will

become ubiquitous.

As virtualization becomes prevalent, thigtual machine monito(VMM), naturally
supplants the operating system as the primary resourcegaafta a machine. In a virtu-
alized environment, all physical system resources like §Pemory, and 1/0 peripherals
are owned and managed by a VMM. Today, the operating systéme imain target for in-
novation in system services. In a world where virtualizedmmments are the norm, one
should consider how to implement some traditional opegeairstem services like resource
allocation, scheduling, and security monitoring within IM [15].

The transition of some functionality from the operatingteysinto the VMM has many
potential benefits. For example, VMM-based services caropealple across different op-
erating systems. By implementing a feature a single timaiwia VMM, it is logically
available to all operating systems running above. Furthery MM may be the only place
where new features can be introduced into a system, bedaaiepérating system is legacy
or closed-source or both. The VMM is also the only locale inrtualized system that has
total control over system resources and can likely make th&t mformed resource man-
agement decisions.



2

1.1 Overcoming the Semantic Gap

However, pushing functionality down one layer, from the @® ithe VMM, has its draw-
backs as well. One significant problem is the lack of higleeel knowledge within the
VMM, sometimes referred to assemantic gajl5]. The semantic gap is a result of the
narrow interface provided by the virtual architecture. Vireual machine interface isolates
the VMM from guest operating systems and hides a guest'snatstate from the VMM.
For example, a VMM is not inherently privy to the semantics gfuest operating system’s
basic abstractiong(g, processes, threads, and users), its policies, or itsypeaftce goals.
No standard interfaces exist that allow a VMM to query a gopstrating system for these
details. The semantic gap fundamentally limits the kindieafures a VMM-level service
can provide.

Previous work in virtualized environments has partiallgagnized this dilemma and
other researchers have developed techniques to infemiatoon about one aspect of a
guest operating system, namely, how it makes use of the laaedwsources allocated to
it [12, 85, 101]. Techniques that provide resource utiiamainformation to a VMM are
useful because they allow a VMM to manage the resources alygtem more effectively.
For example, armed with memory utilization information, BIM can reallocate an other-
wise idle page in one virtual machine to a different virtuaahine that could use it more
effectively [101].

In addition, some recently proposed VMM-based servicesinfeemation about the
software abstractionsf the operating systems running above them. VMI [35], faarex
ple, uses debugging information about the specific versfdts @uest operating systems
to extract implementation details like the memory addresgeprivate operating system
variables and the layout of compound data structures. Wimtrf52], requires a priori se-
mantic information about key operating system functioksfior k, exec, andnmap to
stay informed of important guest events. These explicit@gghes are effective, but have
significant disadvantages. Explicit information closebyples a VMM-level service to a
specific operating system version. A service based on edtenprovided, explicit guest
implementation information must al$austthat the guest operating system it observes has
not been corrupted or compromised.

1.2 Research Statement

In response to these shortcomings, this dissertation egloow a VMM can indepen-
dently obtain information about the software abstractiohthe guest operating systems
running above it in the software stack. Techniques that @aged to implicitly extract
information about hardware or software components acregstam layer boundary using
observation and measurement are knowmyi@y-box[5] techniques. When explicit in-
formation about a guest OS is inconvenient to obtain, utetva, or unreliable, gray-box
techniques can help bridge the semantic gap. In this déggmrt we describe, implement,
and evaluate new gray-box techniques and algorithms timbeaised by a VMM to im-
plicitly obtain valuable information about two importamfsvare abstractionsoperating



system processemd theunified buffer cache and virtual memory systeim addition to
obtaining information, we employ several case studies ¢éavshat our implicitly obtained
information can be used as the basis of VMM-level servicas éimhance overall system
performance.

One important finding of our work is that implicit informatimbtained within a VMM
about a guest OS can be highly variable or noisy. Variabditg noise can complicate
making definitive statements about the current state of atgueor some kinds of ap-
plications implemented at the VMM layer, like security mwmming, incorrect decisions
can have disastrous results. In this dissertation, we shmwdtatistical inference tech-
nigues can transform the naturally noisy implicit inforiatavailable to a VMM into a
reliable indicator of unwanted malicious activity. As aeasudy, we have built a highly
accurate hidden process detection and identificationcewithin a VMM that uses this
transformed information to protect guest operating system

1.3 Process Information

Theprocesss a key operating system concept. Processes provide mamy iifndamental
abstractions that programmers rely on, like private addspaces, and serve as the basic
resource container and security isolation boundary for tesks. We have developed a
set of techniques that enable a virtual machine monitor fiaitly discover and exploit
information about processes. By monitoring low-level iatgions between guest operating
systems and the memory management structures on which épmnd, we show that a
VMM can accurately determine when a guest operating systeates processes, destroys
them, or context-switches between them.

Antfarmis the implementation of our process identification techagjfor two dif-
ferent virtualization environments, Xen [27] and Simic9][6 We evaluate Antfarm as
applied to multiple architecture and operating system doations including x86/Linux,
x86/Windows, and SPARC/Linux. This range of environmeptns two processor fami-
lies with significantly different virtual memory managenh@rterfaces and two operating
systems with very different process management semantics.

We demonstrate the utility and efficacy of VMM-level procesgareness by building
an anticipatory disk scheduler [47] within a VMM. In a virtuaachine environment, an
anticipatory disk scheduler requires information fromtbtite VMM and operating sys-
tem layers and so cannot be implemented exclusively in reitdaking a VMM process
aware overcomes this limitation and allows an OS-neutrglémentation at the VMM
layer without any modifications or detailed knowledge of tiperating system above. Our
implementation within the VMM is able to improve throughpmong competing sequen-
tial streams from processes across different virtual nmeshor within a single guest oper-
ating system by a factor of two or more. Antfarm imposes ordgnall runtime overhead of
about 2.4% in a worst case scenario and about 0.6% in a momoonprocess-intensive
compilation environment.
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1.4 Buffer Cache Information

The unified operating system buffer cache and virtual meragsyem is critical to overall
system performance. We have developed techniques to abtarmation about the buffer
cache by carefully observing guest operating system iatierss with virtual hardware like
the MMU and storage devices. Our methods detect when pagéssarted into or evicted
from the buffer cache.

Geigeris an implementation of these techniques within the Xen VN@éiger signifi-
cantly extends previous buffer cache related gray-boxtegcies by showing that a VMM
must track more than just disk requests to accurately inffebcache evictions on modern
operating systems. A VMM must also account for anonymous amgialocation to detect
a whole new class of evictions when the buffer cache is unifigtd the virtual memory
system. A VMM must also take basic file system behavior intmaat to accurately report
certain cache events. For example, the VMM must track whethmarticular data block
is live or dead on disk in order to avoid reporting many spusievictions. In addition,
journaling file systems, such as ext3 in Linux, require the NN distinguish between
writes to the journal and writes to other parts of storagevtiidaan aliasing problem that
leads to reporting false evictions.

We demonstrate how the inferred eviction information pded by Geiger can enable
useful services inside a VMM by building multiple applicais as case studies. The first
case study represents a novel, VMM-based working set staaaer called MemRx [51]
that complements existing techniques [101] by allowingnestion in the case that a VM
is thrashing in virtual memory. A second study explores haig@r-inferred evictions can
be used by a VMM to enable remote storage caches to implemenioa-based cache
placement [104] without changing the application or ofgegasystem storage interface,
hence enhancing the adoption of this feature.

1.5 Security Applications

Stealth rootkits that can hide processes are a current apariamt security issue. Half
of unpatched Windows systems surveyed by Mierosoft Malicious Software Removal
Tool [63] are infested with a single stealth rootkit alone [67]heTability to detect and
respond to malicious hidden processes is a clear advantdfe race to defend network-
attached computers.

Lycosidis our VMM-based security service thdeétectsandidentifieshidden processes.
Lycosid is resilient to malicious guest attack by virtueteflocation within a VMM. Unlike
previous VMM-based security services, Lycosid does noeddppn the guest operating
system for trusted information, rendering it less sustépto guest evasion attacks.

We have evaluated Lycosid using both Windows and Linux guastl show that it can
accurately detect and identify hidden processes in a widgeraf extremely challenging
environments despite the fact that the implicitly obtaimgfdrmation about guest virtual
machines it uses is noisy and sometimes wrong [49, 50]. Awyis achieved via a tar-
geted use of statistical inference techniques like hymighesting and linear regression



that trade time for accuracy. Despite uncertain inputsokid provides a robust, highly
accurate service usable even in security environmentseantherconsequences for wrong
decisions can be high.

1.6 Contributions

The primary contributions of this dissertation are:

e The formulation and design of new gray-box techniques whilbkbw a VMM to
implicitly obtain accurate information about key eventd éime current state of guest
operating system processes and the unified buffer cache@nal wmemory system.

e The implementation of those techniques in a real virtual ireee monitor and the
evaluation of the implementation along several axes inofydccuracy, timeliness,
and runtime overhead.

e The design and implementation of several case studies ¢énabstrate the feasibil-
ity of using implicit information to build real VMM-level ofimizations and services.

e The identification of key system features and parametetsrtfi@aence the accuracy
and practical value of implicit information obtained at ¥kIM-level.

e The developmentand evaluation of algorithms, based oistitat inference, to over-
come the fundamental variation and uncertainty in our VMa&dxd process infor-
mation that enables us to use implicit information in a higinsequence security
environment.

1.7 Outline

The rest of this dissertation is organized as follows. Inféa2 we review the key fea-
tures of virtual machine technology. In Chapter 3 we prowddeverview of our implicit
approach. Chapter 4 describes techniques to implicitbktogpiest OS processes. In Chap-
ter 5 we present techniques that allow a VMM to observe gu&sbdifer cache events.
Chapter 6 presents our VMM-based hidden process deteatidndantification service.
We survey related work in Chapter 7. Chapter 8 summarizefralings, discusses lessons
learned, and presents future work.






Chapter 2

Virtualization Background

Virtual machine techniques have been around for a long timdact, the earliest robust
virtual machine implementations were essentially codant with the first multi-user op-
erating systems [23, 65]. In this chapter we review the biasas behind virtualization
technology. We will especially emphasize virtualizatieatures that underlie our VMM-
based gray-box techniques.

2.1 The Role of the Virtual Machine

There are several varieties of virtualization [87]. Preelewvel virtual machines virtualize
a limited set of computer system features, including the-lesel instruction set and ap-
plication binary interface, for a single process. Exampfgzocess-level virtual machines
include the Java virtual machine runtime or the MicrosofRCBystem-level virtualization
provides a complete virtualized computer system to a fulirapng system including the
user and supervisor CPU instruction sets, memory, firmveare peripheral devices. The
primary purpose of system-level virtualization is to allowultiple operating systems to
transparently share a single host computer system. Thisntligion deals exclusively with
system-level virtualization.

The motivation for running multiple operating systems orningle hardware host was
originally to allow an expensive machine to be safely shémethdependent organizations
with different hardware and software requirements. Fongda, a department running a
critical batch-oriented accounting system could sharemapeter with an engineering de-
partment developing the next series of application or syseftware. Sharing remains
a primary application of system virtualization today wheomsolidating many underuti-
lized, single purpose servers onto a smaller number of mulsetftilized hosts can reduce
procurement, management, and energy costs.

In a virtualized environment, safe sharing of resourcesrapumncurrently executing
operating system instances is accomplished via stronatisol Each operating system in-
stance executes withinv@rtual machingVM). Operating systems running within a virtual
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machine are calleduests Each VM is provided with virtual copies of system resources
like CPUs, memory, disk storage, and network interfacese Vittual copies are multi-
plexed in time or space onto the real physical resources bindayer of control software
called thevirtual machine monito(VMM) or hypervisor The VMM is the primary re-
source manager for a virtualized systeim,, it has the responsibility of allocating and
scheduling access to all physical resources.

Virtual machine technology has advanced considerablyerptst 40 years and is set
to become a core feature in most server platforms. Virtatibn has expanded its scope
from large centralized computers like mainframes [23], toimmomputers [88], and (more
recently) to PC-based servers and desktops [91]. Virtuahine techniques are experi-
encing a research and commercial renaissance and are Iseith¢puenable interesting new
features like flexible resource management [101], workhoagtation [19, 82], service and
device driver isolation [31, 59], security services [34, 33], and fault tolerance [11].
All of IBM’'s POWERS5-based server platforms now include awajs-on, firmware-based
hypervisor, the main-line Linux kernel now includes hostédualization features, and
Microsoft plans to include a hypervisor as a core componeitsinext generation server
operating system.

2.2 Deprivileged Operation

One of the key techniques that enables a virtual machinetoraoi safely support multi-
ple, concurrent operating systems is deprivileged opmrablormally, an operating system
has complete and sole control over the underlying systeaweae. That level of control
cannot be shared safely among multiple operating systeersce] a VMMdeprivilegesall
guest operating systems by executing them, including theekein an unprivileged mode
of the host computer’s CPU. Sensitive operations, likedhbsat affect system configura-
tion or that directly access a shared resource, are notedlamwunprivileged modes. When
a deprivileged operating system attempts to invoke a semsiperation, the CPU generates
an exception otrap. On startup, a VMM registers itself as the handler for alermapts
and exceptions. Thus, a VMM is informed via a trap wheneven@sgoperating system
uses a sensitive instruction. Within the trap handler, a Vikiilsly emulate the effects of
the trapping instruction by, for example, updating virt@&U registers, updating a page
table entry, or initiating an 1/O request. This general teghe is calledrap and emulate
virtualizationand is the most common virtualization technique used by VMbdsy.

The techniques described in this dissertation rely on tligyabf a VMM to observe
certain exceptions delivered to it and to derive usefulimi@tion about the internal states
of its guest operating systems. Deprivileged operatioussthat the VMM gets that
opportunity. The next sections describe the specific ewentsise and why a VMM is
informed when they occur.



2.3 Virtualizing Memory

Inside a VMM, we make special use of information about how esgwperating system
manages virtual address spaces. Specifically, we need tddsened about all page faults,
page table updates, TLB flushes, and address space conitektesy

A VMM receives notification of page faults because of its rolevirtualizing system
interrupts and exceptions. Delivery of page faults to theM'Md a natural consequence of
interrupt processing. Information about TLB flushes, andrasls space context switches is
available within a VMM because of its role in virtualizingtl€PU’s memory management
unit (MMU).

To observe page table updates, however, a VMM must often@ngulditional tech-
nigues. The most common approach is caibddow page tableend ensures that a VMM
retains control over virtual to physical address trangfatiin shadow paging, guest page
tables are never used directly by the processor to perfodread translation. A VMM em-
ploys its own page tables, called shadow page tables, t@cmtbcted portions of a guest’s
page tables. In the shadow tables used by the processor,masaal for guest page tables
is marked read-only so that a VMM is informed via a page fallewentries are updated.
This allows the VMM to maintain consistency between its eaithersion and the original
guest page tables. See Adams and Agesen’s description ¥\Mweare VMM [2] for a
detailed description of one implementation of shadow pabkes. By employing shadow
page tables, a VMM can observe all relevant page table update

2.4 Virtualizing Disk I/O

Some of our techniques also use information about how a gyesating system utilizes
disk storage. Information about disk requests is availabéeVMM because it implements
the virtual disk I/O devices that are available to a guest.l/@request can be initiated
by a guest in two different ways. A VMM may provide a virtual ded of a real hardware
device. An unmodified guest OS device driver communicatéis sich a device using
memory mapped or programmed 1/O [91]. The VMM can configugeetthderlying hard-
ware to ensure that all such accesses are privileged. Hdre®MM is informed when
each operation occurs. Alternatively, a VMM may provide ghhlevel virtual device with
which a virtual machine aware device driver within the gweshmunicates using a private
interface similar to a system call [31]. In either case, thdN¥ can always observe the
memory address, the disk address, and the operation tyge grewrite) of each disk 1/O
request.

2.5 Trap and Emulate Limitations

Some architectures, notably the Intel x86, include sessitistructions which do not trap
when invoked in an unprivileged mode. Instead, they fadrdlly. This type of instruction
set is not formally virtualizable using only trap and emelachniques [73]. To virtualize
the x86, additional techniques like binary analysis andadyic code translation are used
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by popular x86 VMMs like VMware and Microsoft Virtual Servi, 45, 62]. Robin and
Irvine [77] provide a comprehensive discussion of the pepiatic x86 instructions. By
using binary analysis and code translation, a VMM like VM&agceives the same set of
notifications as a pure trap and emulate VMM.

2.5.1 Paravirtualization

Another virtualization approach called paravirtualiratj27, 103] solves the problems as-
sociated with the x86 architecture by defining them away. rayigtual VMM implements
a slight different virtual architecture than the undertytmost. It replaces problematic in-
structions with equivalent VMM operations similar to systealls. Hence, a significant
benefit of paravirtualization on platforms like the x86 idueed VMM complexity. A par-
avirtual VMM can also reduce virtualization overhead on anghitecture by introducing
private, streamlined interfaces for certain high-costrafjens. The benefits of paravirtu-
alization come at the cost of porting guest operating systenthe modified paravirtual
architecture. One of our implementation platforms (Xerg hgaravirtual mode. Paravir-
tual Xen is notified of the same architectural events as a wameentional x86 VMM like
VMware. The notification mechanism, however, is slightlffatient. Our results using
paravirtual Xen are equally applicable to other VMMs that trap and emulate or hybrid
techniques.

2.5.2 Hardware Trends

More recent processors from Intel and AMD include virtuatian extensions that trans-
form the x86 into a formally virtualizable platform whereaskic trap and emulate vir-
tualization can be used directly [3, 46]. The new procesals® include features meant
to improve virtualization performance by reducing the freqcy of virtualization-related
traps. These optimizations can, in some configuration¥eptea VMM from observing
certain events. For example, when these features are imiss®ilonger guaranteed that a
VMM will observe every guest page fault. The techniques wecdbe in this dissertation
depend on the ability of the VMM to observe events like paggt$a Modifications to our
techniques may be required if a CPU is configured to hide métion from the VMM.
This dissertation, as well as other research [2] show tHatare techniques have much to
offer virtual machine performance and security. Commog&¢g processors that include
virtualization extensions are still new and it remains tsben which of their features will
be used by VMMs in practice.

2.6 Summary

Our implicit techniques exploit the principle of deprivgled operation to ensure that the
VMM is notified of critical configuration, exception, and I/&ents, such as page faults,
page table updates, and disk requests. There are diffeegstw implement deprivileged
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operation including trap and emulate, paravirtualizateomd hardware assisted virtualiza-
tion. In each case, the VMM and the underlying architectaretee configured to provide
low overhead access to the notification events we rely on.
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Chapter 3

Implicit Operating System
Awareness

In this chapter we provide a high-level overview of our reskayjoals and approach. We
also discuss alternatives to our approach and how theimgayas and disadvantages com-
pare to ours in general.

3.1 Goals

Our primary research goal is to develop and evaluate teaksithat enable the construc-
tion of practical VMM-level system services. We believetthd/ MM is a natural place to
implement certain kinds of system services because of {id spread of system virtual-
ization technology. A practical VMM-level service should basy to deploy and manage,
impose low overhead, and retain the strong isolation andrigggroperties of a VMM.
Our techniques strive to enable easy deployment and mareagefivMM-based services
through portability without compromising system perfoma or security.

3.2 Approach

Portability is one major factor leading to easy deploymenVbM-based services. A
portable service can be installed in more diverse envirgrigthan an OS-specific solution.
Planning and provisioning for a portable service can bempiished independent of which
operating system is selected to provide guest servicesallyde portable VMM-layer
service should be implemented once and apply to any guesatipg system the VMM
encounters.

We have designed our techniques to be portable by avoidiaguse of vendor or
version-specific guest implementation information. lagdtewe observe the stream of
architecturally-defined events like page faults, hardvilaierrupts, configuration register
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updates, page table modifications, and 1/O requests thattaresically visible to a VMM

in its role as a service provider to guest operating syst&esemploy a gray-box approach
that applies a top-down, generic understanding of the commesponsibilities and goals of
modern operating systems to interpret the events deliveradVMM and to infer useful
information about the internal state of a guest OS. Limitiog use of guest knowledge to
features and responsibilities that are generic acroshalbperating systems that a VMM
supports means we can decouple our VMM-based services fuest geculiarities.

Our approach requires no new, non-standard interfaceskatguests and the VMM.
No modifications to the guest operating system or applinaadtware are required, which
makes our approach equally applicable to legacy or closedtgwftware.

An additional benefit of the implicit approach is that theoimhation we obtain reflects
actual guest activity. A corrupt or compromised guest caimibe information from or
mislead the VMM except by changing its externally visiblénaeor, which is more diffi-
cult than simply supplying incorrect information. By wayarialogy, it is easier to hide a
building on a map provided to an adversary than it is to higedthilding from an adversary
standing next to the building. As we show in Chapter 6, thigprty can be especially
useful in a security context.

3.2.1 Limitations

Our approach, however, is not perfect. It is unlikely thdbimation on every aspect of
a guest operating system that a VMM could find useful will beilable implicitly. In
this dissertation, we have limited ourselves to extracitirfigrmation about two guest ab-
stractions (processes and the buffer cache) that castraysarohitectural shadoweg., for
which virtual hardware is intimately involved. We beliel@wever, that information about
additional abstractions can be implicitly obtained. Foaraple, we have preliminary ap-
proaches for obtaining information about guest operatyrgesn threads and users. The
well of implicit guest information is not yet dry.

We have also found that implicit information can be delayedhdimited cases, wrong.
A major contribution of our work is measuring this aspect mplicit information and
demonstrating that many services are resilient to delayhortderm errors. Statistical
techniques like hypothesis testing and regression haveatsven effective in transforming
highly variable implicit information into reliable intéfjence about the internal state of a
guest.

3.3 Alternative Approaches

There are other approaches for obtaining information afoest operating systems in sup-
port of VMM-services. These techniques can be divided i ¢ategories. The first in-
troduces new VMM-to-guest interfaces. The second usescitiypprovided details about
how a specific guest operating system is implemented.
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3.3.1 New Interfaces

New interfaces, through which arbitrary information abguest activities and state may
be passed, can be added to a VMM. This approach has the sigmifidvantage of being
straightforward to implement and use. Information prodidé such interfaces is timely
and reflects the guest’s true instantaneous state. The éirgdest information available to
a VMM is not limited when arbitrary interfaces between the MMnd guests exist. Any
information the guest operating system has and is willingxgort can be made available.

Adding new interfaces also has some interesting disadgastanost importantly, these
interfaces do not exist today. Current interface standatiin efforts suggest that the pro-
cess to define a standard VMM-to-guest interface will likedylong and contentious, leav-
ing a large window of time in which alternative approachesé required. Determining
what types of guest information are most useful and how teigeothat information to a
VMM in a safe and portable way is an interesting question teés¢archers have begun to
explore in related contexts [6, 38].

Guest operating systems must be modified to take advantagao¥MM interfaces.
The cost of porting an operating system and subsequentiytaiaing a VMM-aware ver-
sion can be high. Proponents of paravirtualization claiat the required changes to guest
operating systems are minor [27]. Unfortunately, the cleangquired are often in the
most complex and error-prone portions of an OS like the a&lnemory and I/O systems.
Other researchers cite the high engineering cost of pooiiregating systems to a paravir-
tual VMM as motivation for a clever, but complex, automatedting architecture [58]. In
either case, the cost of creating and maintaining yet anaperating system version is
non-trivial.

Finally, adding interfaces may have negative security icapions. Adding interfaces
enlarges the attack surface of a VMM and tends to reduce theiseadvantages a VMM
enjoys relative to other locations in a system. In addittoiMM that depends on a guestto
provide information about itself enters into an implicitationship of trust with the guest.
A buggy or compromised guest could mislead the VMM and thaatM-based security
monitoring service. Adding generic public interfaces tolM should be undertaken with
extreme caution.

3.3.2 Explicit Information

A second approach for obtaining high-level guest infororatises knowledge of explicit
guest OS implementation details. Memory addresses ofbladgand the semantic infor-
mation needed to interpret those variables are exampléddnd of explicit information
a VMM can use to extract current guest state. Such informaim often be derived from
debugging symbols and debugging libraries. Additionalinfation about the semantics of
specific operating system functions can be obtained by mgatiurce code or from binary
reverse engineering.

Similar to the new interfaces technique, the explicit infation approach provides ac-
cess to timely information that corresponds exactly to thestjs view of its own current
state. Rich, detailed information is available. Any inf@tion that is encoded in an inter-
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pretable guest data structure and any event that corresporadknown guest function is
available for consumption by the VMM.

Unfortunately, it may be inconvenient to get and maintasmekRplicit information that
a VMM requires. If the guest operating system is legacy oseth such information may
simply be unavailable. Since implementation details caange between versions or even
between patch-levels of a guest OS, keeping the informationt guest memory and func-
tion locations up-to-date can be challenging. Microsaftdributed, web-based debugging
symbol repository is a testimony to how difficult it is to ketiye debugging information
that its partners use up-to-date for the many hundreds ieamperating system versions
and patch-levels it supports.

Reading information from OS data structures without undeding the locking proto-
col used to protect them from concurrent update could leauctnsistent or corrupt data.
Uhlig et al.[98], show that a processor in an unprivileged mode imphasno kernel locks
are held and that all kernel data structures are consistantoday’s increasingly parallel
hardware and multi-threaded applications, waiting forpaticessor cores to enter an un-
privileged mode may severely restrict the opportunitiethefVMM to access guaranteed
consistent guest data directly.

3.4 Summary

Using implicit information to implement VMM-based serviceepresents an unexplored
region of the design space. It may be harder for the VMM to lgetinformation it needs
using only implicit techniques and that information may bbty inaccurate. However, a
VMM can use implicit information without knowing any detsidbout its guest operating
systems and no changes to those operating systems arescequir

From a security standpoint, implicit information is lesdnarable to evasion attacks
by a compromised guest OS because it is based on externalvatiees of a running
system rather than information supplied explicitly or imjily by the guest itself. By
using implicit techniques, a VMM need not trust the guest Ofbserves.



Chapter 4

Tracking Guest Operating
System Processes

This chapter introduces a set of techniques that enablet@limachine monitor to im-
plicitly discover and exploit information about one of theshimportant operating system
abstractions, therocess Processes provide some of the basic simplifying illusithras
help programmers manage complexity like large, flat, peiaddress spaces and private
CPUs. The process is the container within which each usgranoruns. Operating sys-
tems allocate and schedule resources to processes. Theabmsdefined by a process are
used to ensure program isolation. Each logical unit of a'sigark is often encapsulated
within by a process. Hence, knowledge about operating syptecesses can reveal useful
information about resource usage, workload organizasicimeduling policies, and security
goals.

We show how a VMM can accurately infer when a guest operatigtes creates pro-
cesses, destroys them, or context-switches between thegrbakic mechanism consists of
monitoring low-level interactions between guest opesipstems and the memory man-
agement structures, like page tables and TLBs, on whichdieegnd. These techniques
achieve our portability goals by operating without any @&ipinformation about the guest
operating system vendor, version, or implementation tetai

We demonstrate the utility and efficacy of VMM-level procesgreness by building
an anticipatory disk scheduler [47] within a VMM. In a virtuaachine environment, an
anticipatory disk scheduler requires information fromhbtite VMM and the operating
system layers, so it cannot be implemented exclusivelythreei Making a VMM process
aware overcomes this limitation and allows an OS-neutrpglémentation of anticipatory
scheduling at the VMM layer without any modifications or dieghknowledge of the guest
OS. Our implementation within the VMM is able to improve thghput among competing
sequential streams of disk read requests from processessatifferent virtual machines
or within a single guest operating system by a factor of twmore.

In addition to 1/0 scheduling, process information withire tVMM has several other
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important applications, especially in the security dom&ior example, it can be used to de-
tect that processes have been hidden from system monitoditeyby malicious software,
an application we discuss at length in Chapter 6. Code aradfdah particularly sensitive
or vulnerable processes can be identified that should betamedifor runtime modifica-
tion [35]. Patterns of system calls associated with a pocas be used to recognize when a
process has been compromised [33, 84]. In addition to justtieg intrusions, techniques
exist to slow or thwart intrusions at the process level bgaifhg process scheduling [89].
Finally, process information can be used as the basis fepdsing other high-level OS
abstractions. For example, the parent-child relationbkigveen processes can be used to
identify groups of related processes associated witkea All of these applications are
feasible within a VMM only when process information is awaile.

Antfarmis the implementation of our process identification tecbagjfor two differ-
ent virtualization environments, Xen and Simics. We hawdwated Antfarm as applied
to a range of platform and guest-OS combinations includi@@/xinux, x86/Windows,
and SPARC/Linux. This range of environments spans two msmefamilies with signif-
icantly different virtual memory management interfaced &mo operating systems with
very different process management semantics, providirgjréral evidence for our claim
of portability. Antfarm imposes only a small runtime oveseof about 2.4% in a worst
case scenario and about 0.6% in a more common, processiigeompilation environ-
ment.

4.1 Background

The techniques we describe in this paper are based on thevatisas that a VMM can
make of the interactions between a guest OS and virtual feevSpecifically, Antfarm
monitors how a guest uses a virtual MMU to implement virtuddii@ess spaces. In this
section we review some of the pertinent memory manageméaitsief the Intel x86 and
the SPARC architectures used by Antfarm.

4.1.1 x86 Virtual Memory Architecture

Our first implementation platform is the Intel x86 family oferoprocessors. We chose the
x86 because it is the most frequently virtualized proceascinitecture in use today. This
section reviews the features of the x86 virtual memory aechire that are important for
our inference techniques.

The x86 architecture uses a two-level, in-memory, architedly-defined page table.
The page table is organized as a tree with a single 4 KB memagg palled theage
directory at its root. Each 4-byte entry in the page directory can pioirst 4 KB page of
thepage tablefor a process.

Each page table entry (PTE) that is in active use containsdtieess of a physical page
for which a virtual mapping exists. Various page protectiod status bits are also available
in each PTE that indicate, for example, whether a page isbldgtor whether access to a
page is restricted to privileged software.
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A single address space is active per processor at any given tiSystem software
informs the processor's MMU that a new address space shadlonbe active by writing
the physical address of the page directory for the new addpexce into a processor control
register (CR3). Since access to this register is privilethedVMM must virtualize it on
behalf of guest operating systems.

TLB entries are loaded on-demand from the currently actagegables by the proces-
sor itself. The operating system does not participate irdlirag TLB misses.

An operating system can explicitly remove entries from a TihBone of two ways.
A single entry can be removed with thé\VLPG instruction. All non-persistent entries
(those entries whose corresponding page table entriesaarmarked “global”) can be
flushed from the TLB by writing a new value to CR3. Since no addrspace or process
ID tag is maintained in the TLB, all non-shared entries mestilsshed on context switch.

4.1.2 SPARC Virtual Memory Architecture

In this section we review the key aspects of the SPARC MMUegeigtly how it differs
from the x86. We chose the SPARC as our second implementatifwitecture because it
provides a significantly different memory management fatar to system software than
the x86.

Instead of architecturally-defined, hardware-walked gagtes as on the x86, SPARC
uses a software managed TLBg., system software implements virtual address spaces
by explicitly managing the contents of the hardware TLB. Wlaememory reference is
made for which no TLB entry contains a translation, the pssoe raises an exception,
which gives the operating system the opportunity to suppigla translation or deliver an
error to the offending process. The CPU is not aware of theatipg system’s page table
organization.

In order to avoid flushing the entire TLB on process contextcdves, SPARC supplies a
tag for each TLB entry, called@ontext ID that associates the entry with a specific virtual
address space. For each memory reference, the currenkcenseipplied to the MMU
along with the desired virtual address. In order to matckh bwe virtual page number and
context in a TLB entry must be identical to the supplied valu€his allows entries from
distinct address spaces to exist in the TLB simultaneously.

An operating system can explicitly remove entries from th& Bt the granularity of
a single page or at the granularity of an entire address sfdeese operations are called
page demap andcont ext denap respectively.

4.2 Process ldentification

The key to our process inference techniques is the logicakspondence between the
abstractiorprocesswhich is not directly visible to a VMM, and thartual address space
which is. This correspondence is due to the traditionallsimglidress space per process
paradigm shared by all modern operating systems.
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There are three major process events we seek to observéiooresit, and context
switch. To the extent address spaces correspond to pracéksse events are approxi-
mated by address space creation, destruction, and comt#ghs Hence, our techniques
track processes by tracking address spaces.

Our approach to tracking address spaces on both x86 and SRARdentify a VMM-
visible value with which we can associate a specific addneases We call this value an
address space identifier (ASID). Tracking address spaegi@neand context switch then
becomes simply observing the use of a particular piece of \\Mdible operating system
state, the ASID.

For example, when an ASID is observed that has not been séaebee can infer that
a new address space has been created. When one ASID is teplaaaother ASID, we
can conclude that an address space context switch has edcWe identify address space
deallocation by detecting when an ASID is available for eeWse assume that the address
space, to which an ASID refers, has been deallocated ifstscéeted ASID is available for
reuse.

4.2.1 Techniques for x86

On the x86 architecture we use the physical address of the disgctory as the ASID. A
page directory serves as the root of the page table tree d¢isatides each address space.
The address of the page directory is therefore charadtenfsa single address space.

Process Creation and Context Switch

To detect address space creation on x86 we observe how pagptodies are used. A
page directory is in use when its physical address resid€Ri®. The VMM is notified
whenever a guest writes a new value to CR3 because it is teged register. If we observe
an ASID value being used that has not been seen before, wafearthiat a new address
space has been created. When an ASID is seen for the firsttim®&MM adds it to an
ASID registry that it maintains for tracking purposes. Th8IB registry is similar to an
operating system process list.

When a new value is written to CR3 it implies an address spané&gt switch. By
monitoring writes to this privileged register, a VMM alwaksows which ASID is cur-
rently “active”.

Process Exit

To detect address space deallocation, we use knowledgé thleogeneric responsibilities
of an operating system to maintain address space isolatBmiation requirements lead
to distinctive operating system behavior that can be olestand exploited by a VMM to
infer when an address space has been destroyed.

Operating systems must strictly control the contents ofpadgles being used to im-
plement virtual address spaces. Process isolation coulitdsehed if a page directory
or page table page were reused for distinct processes witinstubeing cleared of their
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previous contents. To ensure that no stale page table ®ittiaepoint outside a process’s
allocated memory exist in reused page tables, Windows amaklsystematically clear the
non-privileged portions of page table pages used by a psagken it exits. Privileged por-
tions of the page tables, which are used to implement theepied kernel address space,
do not need to be cleared because they are shared betweesggsand map memory that
is not accessible to untrusted software.

An operating system must also ensure that no stale entmeaimen any TLB once
an address space has been deallocated. Since the x86 crokidoes not provide a way
for entries from multiple address spaces to coexist in a TABL.B must be completely
flushed prior to reusing address space structures like tipe giaectory. On x86, the TLB
is flushed by writing a value to CR3, an event the VMM can observ

Hence, to detect user address space deallocation, a VMMesmacount of the num-
ber ofuservirtual mappings present in the page tables describing dread space. When
this count drops to zero, the VMM can infer that one requinenfier address space reuse
has been met. Itis simple for a VMM to maintain such a refeegmmaint because the VMM
must be informed of all updates to a process’s page tabldssd tan reflect the changes
in its shadow page tables. Multi-threading does not intoedadditional complexity, be-
cause updates to a process’s page tables are always beayiaedrwithin the VMM for
correctness.

By monitoring TLB flushes on all processors, a VMM can detebew the second
requirement for address space deallocation has been mate lknth events have been
observed for a particular ASID, the VMM can consider the esponding address space
dead and its entry in the ASID registry can be removed. A sylset use of the same
ASID implies the creation of a new and distinct process agkispace.

4.2.2 Techniques for SPARC

The key aspect that was used to enable process awarenessisrstiBpresent on SPARC.
Namely, there is a VMM-visible identifier associated witlcleairtual address space. On
x86 this was the physical address of the page directory. GYREPwe use the virtual
address space context ID as an ASID. Making the obvious isutish leads to a process
detection technique for SPARC similar to that for x86.

Creation and Context Switch

On SPARC, installing a new context ID is a privileged openathence, it is always visible
to a VMM. By observing context ID switches, a VMM can maintaimegistry of known
ASIDs. When a new ASID is observed that is not in the ASID regishe VMM can infer
the creation of a new address space. Context switch is @etect SPARC whenever the
context ID is changed on a processor.
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x86 SPARC
ASID Page directory PA Context ID
Creation New ASID New ASID
Exit No user mappings and Context demap
TLB flushed
Context switch CR3 change Context ID change

Table 4.1:Process identification techniques.The table lists the techniques used by Antfarm to
detect each process event on the x86 and SPARC architectures

Exit

The only requirement for the reuse of a context ID on SPAR@as &ll stale entries from
the previously associated address space be removed frdnpeagessor’s TLBs. SPARC
provides the context demap operation for this purpose efiusbf monitoring page table
contents, as on x86, a VMM can observe context demap opesatild all entries for a
context ID have been flushed from every processor it imphes the associated address
space is no longer valid.

4.3 Resource Association

In addition to detecting process creation, exit, and cdrgestch, associatingother sys-
tem events with particular processes is important to affelgtutilize process information
within a VMM. Processes are primarily important to the VMMtheir role as containers
for resources Hence, associating resource consumption at the gratyubdia process en-
ables the VMM to make more informed and precise allocatiah srheduling decisions.
Examples of resource association that could be useful to \iiMlude CPU processor
time, disk and network I/O, and memory events like page cawation and eviction.

4.3.1 Context Association

The simplest and most generic means of associating resouiiteprocesses is to associate
them in time. We call this methazbntext associatiarlJsing the process identification and
context switching inferences described previously, weasmociate a specific process with
a series of time intervals. The interval during which cohgessociation will attribute an
eventto a process begins when its address space is instaltbd processor and ends when
it is replaced by another process’s address space or thehMrtachine is de-scheduled.
The advantages of this technique are its extreme simphgity its generality: any event
detectable by a VMM can be associated with a process usirtgxdassociation.
Unfortunately, context association is not always accuie to theasynchronyhat is
common within operating systems. Consider the case of &psanaking a disk request. If
the operating system chooses to forward the request tottuahilisk device immediately,
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context association will attribute the request correablythe issuing process. If, on the

other hand, the operating system delays issuing the redieestxample because other

requests are ahead of it in the disk queue, the originatioggss is likely to be suspended
and another process will be chosen to run. Hence, the regnéshe process have become
decoupled in time.

4.3.2 Event Chaining

To overcome the inaccuracy of asynchronous event assmtjatie develop a new tech-
nigue: event chaining The idea is to link synchronous events that occur in theecdruf
the issuing process with the event of interest.

To improve the accuracy of disk read associations, for eXx@nepent chaining based
on memory accesses can be used. When a read operation aesnihletrequesting process
will likely access the resulting data in memory at some pisihe future. This access may
occur inside the operating system, for example, when thadkeppies the data into a user-
supplied buffer; conventional read system call semangiad to this behavior. Alternately,
the access may occur at the resolution of a page fault, ieduyy the process when it
touches a page of a memory-mapped file for the first time. If areidentify any of these
access events (which likely occur in the process’s contettihitiated the read), we can
associate the related disk read more accurately with thengprocess.

One drawback of event chaining is that the more accuratdtsésprovides are nec-
essarily delayed. This can be problematic if the VMM wishesniake a decision based
on process association at the time the event is detectedaatploping the decision is not
practical. However, even in such cases, event chaining earséd to detect and correct
event misassociation, hence enabling recovery in somatisins.

We have implemented event chaining for association of diakl requests, using access
to the memory buffer where the read results are depositdteazhining event. When the
VMM receives a disk read request, the physical memory burfiter which the requested
data is to be placed by the disk controller is recorded. Wherréquest is ready to com-
plete, all known existing virtual mappings for that physigage are invalidated such that
any access using one of those mappings will result in a pagedad will be visible to
the VMM. When such a fault occurs, the process in whose comiexfaulting address
is located is associated with the original disk read requ€ke affected mapping is then
returned to its original status, and the process can traesppproceed as normal.

4.3.3 Data Structures

To implement simple context association, all we need tdtimevhich process is currently
running, something we already do for basic process awasenes

Implementing I/0 event chaining is more complex. To enaldelification of all exist-
ing mappings for a given physical page frame, the VMM mustzéin a reverse mapping
data structure; this structure is roughly the same sizeasdhmal set of page tables for
each actively tracked process.
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4.4 Antfarm Implementation

Antfarm is the name of the implementation of our processram@ss techniques. Antfarm
has been implemented for two virtualization environmeritse first, Xen [27], is a true

VMM. The other is a low-level system simulator called Sinf@8] which we use to explore

process awareness for operating systems and architeantrespported by the version of
Xen used in this research.

4.4.1 Antfarm for Xen

Xen is an open source virtual machine monitor for the Int@ aBhitecture. Xen provides
a paravirtualized [103] processor interface, which eralaeer overhead virtualization at
the expense of porting system software. We explicitynddmake use of this feature of
Xen; hence, the mechanisms we describe are equally aplglitala more conventional
virtual machine monitor such as VMWare [91, 101]. Becauserajing systems must be
ported to run on Xen, proprietary commercial operatingesyst like Microsoft Windows
are not currently supported.

Antfarm for Xen is implemented as a set of patches to the Xg@ehysor version 2.0.6.
Changes are concentrated in the handlers for events lilkeefpalis, page table updates, and
privileged register access. Additional hooks were addeden's back-end block device
driver. The Antfarm patches to Xen, including debugging arghsurement infrastructure,
total approximately 1200 lines across eight files.

4.4.2 Antfarm for Simics

Simics [60] is a full system simulator capable of executingnodified, commercial oper-
ating systems and applications for a variety of processtitctures. While Simics is not
a virtual machine monitor in the strict sense of native eXeouof user instructions [73],
it can play the role of a VMM by allowing Antfarm to observe ainterpose on operating
system and application hardware requests in the same wayM ddés. Simics allows us
to explore process awareness techniques for SPARC/Lintix&®YWindows which would
not be possible with a Xen-only implementation.

Antfarm for Simics is implemented as a Simics extension ned&imics extension
modules are shared libraries dynamically linked with themn&imics executable. Exten-
sion modules can read or write OS and application memory egidters in the same way
as a VMM.

Simics provides hooks called “haps” associated with vartwardware events for which
extension modules can register callback functions. Antféor Simics/x86 uses a hap
to detect writes to CR3 and Antfarm for Simics/SPARC uses fatbadetect when the
processor context ID is changed. Invocation of a callbackkis to the exception raised
when a guest OS accesses privileged processor registersw@\@M. A memory write
breakpoint is installed by Antfarm for Simics/x86 on all pagised as page tables so that
page table updates can be detected. A VMM like Xen marks addes read-only to detect
the same event.
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Antfarm for Simics/x86 consists of about 800 lines of C codet Simics/SPARC the
total is approximately 450 lines.

4.5 Process Awareness Evaluation

In this section we explore the accuracy of Antfarm in eachuwfimplementation environ-
ments. We also characterize the runtime overhead of AntfarnXen. Our analysis of
accuracy is decomposed into two components. The first mesisiie ability of Antfarm
to correctly detect process creations, exits, and conteiktises. We call this aspecom-
pletenessThe second component we explore is the time differentagdvetween process
events as they occur within the operating system and wherettesdetected by the VMM.

45.1 x86 Evaluation

We evaluate Antfarm for x86 as implemented within the Xendyfsor version 2.0.6.
Version 2.6.11 of the Linux kernel was used in Xen'’s privédgontrol VM. Linux kernel
version 2.4.30 and 2.6.11 are used in unprivileged VMs asch@ur evaluation hardware
consists of a 2.4 GHz Pentium IV PC with 512 MB of RAM. Virtuahohines are each
allocated 128 MB of RAM in this environment.

We also evaluate our techniques as applied to Microsoft WirsdNT4 guests. Since
Windows is not supported by Xen 2.0, Simics/x86 is used fisrflarpose. Our Simics/x86
virtual machines were configured with a 2.4 GHz Pentium IV GiPld 256 MB of RAM.

Completeness

To quantify completeness, each guest operating systemnstasiinented to explicitly re-
port process creation, exit, and context switch. The rigukvent records include the
appropriate ASID, as well as the time of the event obtainethfthe processor’s cycle
counter. These OS traces were compared to similar tracesaed by Antfarm. Guest
OS traces are functionally equivalent to the informaticat tiwould be provided by a par-
avirtualized OS that included a process event interfacenceleour evaluation implicitly
compares the accuracy of Antfarm to the ideal representeddayavirtual interface.

In addition to process creation, exit, and context switalegis report address space
creation and destruction events so that we can discrimineti®een errors caused by a
mismatch between processes and address spaces and eus@d bg inaccurate address
space inferences made by Antfarm.

We categorize incorrect inferences as either false negmtv false positives. A false
negative occurs when a true process event is missed by AntfArfalse positive occurs
when Antfarm incorrectly infers events that do not exist.

To determine if false negatives occurred, one-to-one neatetere found for every
OS-reported event in each pair of traces. To be consideredtehmve require that the
Antfarm event have the same ASID, and that it occur withinrtirege for which the event
is plausible. For example, to match an OS process-creatiemt ghe corresponding event
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Proc ASpc Inf | Proc ASpc Inf Ctxt CS
Create Create Create | Exit Exit Exit Switch Inf
Linux 2.4
Fork Only 1000 1000 1000| 1000 1000 1000 3331 3331

Fork + Exec 1000 1000 1000 1000 1000 1000 3332 3332
Vfork + Exec 1000 1000 1000{ 1000 1000 1000 3937 3937

Compile 815 815 815| 815 815 815 4447 4447
Linux 2.6

Fork Only 1000 1000 1000| 1000 1000 1000 3939 3939
Fork+Exec 1000 2000 2000| 1000 2000 2000 4938 4938
Vfork + Exec 1000 1000 1000| 1000 1000 1000 3957 3957
Compile 748 1191 1191 748 1191 1191 2550 2550
Windows

Create 1000 1000 1000| 1000 1000 1000| 74431 74431
Compile 2602 2602 2602| 2602 2602 2602 835248 835248

Table 4.2:Completeness for x86 The table shows the total number of creations and exits for pr
cesses and address spaces reported by the operating syBhentotal number of process creations
and exits inferred by Antfarm are shown in comparison. Antfdetects all process creates and exits
without false positives or false negatives on both Linuxethd Windows. Fork and exec, however,
lead to false positives under Linux 21o{d face value$. All false positives are due to the mismatch
between address spaces and processes, which is indicatadtbliing counts for address space cre-
ates and inferred creates. Actual and inferred context@wibunts are also shown for completeness
and are accurate as expected.

inferred by Antfarm must occur after any previous OS-regbfrocess exit events with the
same ASID and before any subsequent OS-reported proces®arevents with the same
ASID.

Table 4.2 reports the process and address space event gativesed by our guest OSes
and by Antfarm during an experiment utilizing two procestensive workloads. The first
workload is synthetic. It creates 1000 processes, each mhwhns for 10 seconds then
exits. The process creation rate is 10 processes/secondn@n this synthetic workload
has three variants. The first creates processes using fiytkloa second uses fork followed
by exec; the third employs vfork followed by exec. Under Wing, processes are created
using the CreateProcess API.

The second workload is a parallel compile of the bash shetcas using the command
“make -j 20" in a clean object directory. A compilation woolkld was chosen because it
creates a large number of short-lived processes, stresitigrm’s ability to track many
concurrent processes that have varying runtimes.

Antfarm incurs no false negatives in any of the tested casesall process-related
events reported by our instrumented OSes are detected MMNe The fact that inferred
counts are always greater than or equal to the reported £suggests this, but we also
verified that each OS-reported event is properly matchedt byaat one VMM-inferred
event.

Under Linux 2.4 and Windows, no false positives occur, iatitgy Antfarm can pre-
cisely detect address space events and that there is a-@me-tmatch between address
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spaces and processes for these operating systems. Underd.By however, false posi-
tives do occur, indicated in Table 4.2 by the inferred evenints that are larger than the
OS-reported counts. This discrepancy is due to the impléatien of the Linux 2.6 fork
and exec system calls.

UNIX programs create new user processes by invoking the dgskem call which,
among other things, constructs a new address space for tldepcbcess. The child’s
address space is a copy of the parent’'s address space. lrcases; the newly created
child process immediately invokes the exec system call wreéplaces the child’s virtual
memory image with that of another program read from disk.

In Linux 2.4, when exec is invoked the existing process asklspace is cleared and
reused for the newly loaded program. In contrast, Linux 2€&tiys and releases the ad-
dress space of a process invoking exec. A new address spaltecated for the newly
exec’'d program. Hence, under Linux 2.6, a process that esexec has two distinct ad-
dress spaces associated with it, which do not overlap in timether words, the runtime
of the process ipartitionedinto two segments. One segment corresponds to the period
between fork and exec and the other corresponds to the peetaceen exec and process
exit. Antfarm, because it is based on address space trgokimgludes that two differ-
ent processes are created leading to twice as many inferoedgs creations and exits as
actually occurred.

Due to the idiomatic use of fork and exec, however, a procggaititioned in a distinc-
tive way. The Linux 2.6/x86 case in Figure 4.1 depicts theperal relationship between
the two inferred pseudo-processes. The duration of thepg#sudo-process will nearly
always be small. For example, in the case of our compilatiorkiead, the average time
between fork and exec is less than 1 ms, compared to the avhfetime of the second
pseudo-process, which is more than 2 seconds, a differditiceee orders of magnitude.

The two pseudo-processes are separated by a short time pdréye neither is active.
This interval corresponds to the time after the originalradd space is destroyed and before
the new address space is created. During the compilatiokleast this interval averaged
less than 0.1 ms and was never larger than 2.3 ms. Since nanggeictions can be exe-
cuted in the absence of a user address space, the combiogtientwo pseudo-processes
detected by Antfarm encompasses all user activity of theegrocess. Conventional use of
fork and exec imply that nearly all substantive activity lo¢ ttrue user process is captured
within the second pseudo-process.

Lag

The second aspect of process identification accuracy thabn&der is the time difference
between a process event and when the same event is detedieel BWyIM. We define a
process to exist at the instant the fork (or its equivaleys}esn call is invoked. Exit is
defined as the start of the exit system call. These definigoasnaximally conservative.
In Figure 4.1 create lag is labelédand exit lag is labele@.

Lag is similar in nature to response time, so we expect it tadigsitive to system
load. To evaluate this sensitivity, we conduct an experinigat measures lag times for
various levels of system load on Linux 2.4, Linux 2.6, and &dws. In each experiment,
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Figure 4.1 :Effects of error. The figure shows where each type of process identificatiam eccurs
for each tested platform. Error is either lag between whentthe event occurs and when the VMM
detects it, (e.g., A and B in the figure) or consists of falgalstitioning a single OS process into
multiple inferred processes. In Linux 2.6/x86, this onlgws onexec, which typically happens
immediately after fork. On SPARC this partitioning happesenever a process calls eithieor k

or exec.
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Figure 4.2:Lag vs. System Load The figure shows average and maximum create and exit lag time
measurements for a variety of system load levels in eachrof8@evaluation environments. Average
and worst case create lag are affected by system load in [2niand Windows, but are small and
nearly constant under Linux 2.6. Except for a large exit lathmo competing processes on Linux,
exit lag does not appear to be sensitive to system load.

0, 1, 10, or 50 CPU-bound processes were created. 100 additest processes were then
created and the create and exit lag time of each were complgstprocess creations were
separated by 10 ms and each test process slept for one sezfonel dxiting.

The results of these experiments are presented in FigureFb2each graph, the x-
axis shows the number of concurrent CPU-bound processdbarydaxis shows lag time.
Create lag is sensitive to system load on both Linux 2.4 anttdivs, as indicated by the
steadily increasing lag time for increasing system loads Tésult is intuitive since a call
to the scheduler is likely to occur between the invocatiothefcreate process API in the
parent (when a process begins) and when the child procasalgeuns (when the VMM
detects it). Linux 2.6, however, exhibits a different pregereation policy that leads to
relatively small and constant creation lag. Since Antfagtedts a process creation when
a process first runs, the VMM will always be informed of a pisxie existence before any
user instructions are executed.

Exit lag is typically small for each of the platforms. The eption is for an otherwise
idle Linux which shows a relatively large exit lag averagel6fms. The reason for this
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anomaly is that most Linux kernel tasks, including the idigkt do not need an associated
user address space and therefore borrow the previouslheagier address space when
they need to run. This mechanism allows a kernel task to rthowt incurring the expense
of a TLB flush. In the case of this experiment, test processe started at intervals of
10 ms and each process sleeps for one second; hence, whemen@icesses are ready
to run, approximately 10 ms elapse between process exit Aed another process begins.
During this interval, the Linux idle task is active and pretsethe previous address space
from being released, which leads to the observed delay.

The Big Picture

Figure 4.3 shows a set of timelines depicting how Antfarraksgprocess activity over time
for a parallel compilation workload on each of our x86 platfis. The top curve in each
graph shows the true, current process count over time astegldoy the operating system.
The middle curve shows the current process count as inféyelintfarm. The bottom
curve shows the difference between the two curves calauteén ferred — Actual.

The result of the relatively large creation lag under Linuk & apparent in the larger
negative process count differences compared to Linux 2d. tlts workload and met-
ric combination, creation lag is of greater concern tharnfélee positives experienced by
Linux 2.6. In another environment such as a more lightly &mhslystem, which would tend
to reduce lag, or for a metric like total cumulative processtt, the false positives incurred
by Linux 2.6 could be more problematic.

Exit lag is not prominent in any of the graphs. Large, peesisexit lag effects would
show up as significant positive deviations in the differeieves. The fact that errors due
to fork and exec do not accumulate over time under Linux 2&ds apparent because no
increasing inaccuracy trend is present.

45.2 Overhead

To evaluate the overhead of our process awareness techmiguaeasure and compare the
runtime of two workloads under Antfarm and under a pristinidoof Xen. The first work-
load is a microbenchmark that represents a worst case peafae scenario for Antfarm.
Experiments were performed using Linux 2.4 guests.

Since our VMM extensions only affect code paths where paglesaare updated, our
first microbenchmark focuses execution on those paths. Tdgram allocates 100 MB
of memory, touches each page once to ensure a page tabldamnemery allocated page
is created and then exits, causing all of the page tables ticlaeed and released. This
program is run 100 times and the total elapsed time is cordputde experiment was
repeated five times and the average duration is reportedre Mas negligible variance
between experiments. Under an unmodified version of Xenekpgeriment required an
average of 24.75 seconds to complete. Under Antfarm for Xenekperiment took an
average of 25.35 seconds to complete. The average slowdava% for this worst case
example.
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Figure 4.3:Compilation Workload Timelines. For x86/Linux 2.4, x86/Linux 2.6 and x86/Windows
a process count timeline is shown. Each timeline depict©tBeaeported process count, the VMM-
inferred process count and the difference between the twsusdime. Lag has a larger impact on
accuracy than false positives. x86/Linux 2.6, which ex&iignificantly smaller lag than x86/Linux
2.4 is able to track process counts more accurately.
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Proc ASpc Inf | Proc  ASpc Inf Ctxt Cs
Create Create Create | Exit Exit Exit Switch Inf
SPARC/Linux
Fork Only 1000 1000 2000 | 1000 1000 2000 3419 3419
Fork & Exec 1000 1000 3000 | 1000 1000 3000 3426 3426
Vfork 1000 1000 1000| 1000 1000 1000, 4133 4133
Compile 603 603 1396 | 603 603 1396 1678 1678

Table 4.3: Completeness for SPARCThe table shows the results for the same experiments re-
ported for x86 in Table 4.2, but for SPARC/Linux 2.4. Falssitpees occur for each fork due to an
implementation which uses copy-on-write. Antfarm alsergan additional, non-existent exit/create
event pair for each exec. This error is not due to multiplerads spaces per process as on x86, but
rather stems from the flush that occurs to clear the calleddrass space upon exec.

The runtime for configuring and building bash was also comgbetween our modified
and unmodified versions of Xen. In the unmodified case theageameasured runtime of
five trials was 44.49 s. The average runtime of the same arpatiunder our modified
Xen was 44.74 s. The variance between experiments was ighgelding a slowdown
of about 0.6% for this process-intensive application woakl.

45.3 SPARC Evaluation

Our implementation of process tracking on SPARC uses Simitach virtual machine
is configured with a 168 MHz UltraSPARC Il processor and 256 MBRAM. We use
SPARC/Linux version 2.4.14 as the guest operating systemliftests. We instrumented
the guest operating system to report the same informatidescribed for x86.

Completeness

We use the same criteria to evaluate process awarenessSPARIC as under x86. Table
4.3 lists the total event counts for our process creatiomarlienchmark and for the bash
compilation workload.

As on x86, no false negatives occur. In contrast to x86, thk-émly variant of the
microbenchmark incurs false positives. The reason foiigtise copy-on-write implemen-
tation of fork under Linux. During fork all of the writable piions of the parent’s address
space are marked read-only so that they can be copy-onshared with the child. Many
entries in the parent’s page tables are updated and all afdivesponding TLB entries
must be flushed. SPARC/Linux accomplishes this efficiengl§iishing all of the parent’s
current TLB entries using a context demap operation. Theéesbmlemap is incorrectly
interpreted by Antfarm as a process exit. As soon as the parenheduled to run again,
we detect the use of the address space and signal a matchimngusgprocess creation.

The false positives caused by the use of fork under SPARCitiezatht in character
than those caused by exec under x86. These errors are ntadiifiiy convention) to
the usually tiny time interval between fork and exec. Thelf appear whenever fork is
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invoked, which for processes like a user shell can occuatepky throughout the process’s
lifetime. The Linux 2.4/SPARC case in Figure 4.1 depicts looprocess that repeatedly
invokes fork might be partitioned into many inferred pseymiocesses by Antfarm.

When exec is used we see additional false positives, butdfifieaient reason than under
x86/Linux 2.6. In this case the process inference technigisely reports the creation of
new address spaces that don't really exist. The cause obétiavior is a TLB demap
operation that occurs when a process address space isdcteaexec. This error mode is
different than under x86 where observed errors were duedaltyfassumption of a single
address space per process. On SPARC, the error occurs bemaiushosen indicator,
context demap, can happen without the corresponding aslsipase being deallocated.

Given these two sources of false positives, one would exqaeatompilation workload
to experience approximately the same multiple of falsetjvesi as seen for the fork+exec
synthetic benchmark. We see, however, fewer false posithan we expect, due to the use
of vfork by both GNU make and gcc. Vfork creates a new processlbes not duplicate
the parent’s address space. Since no parent page tabldsaamged, no flush is required.
When exec is invoked we detect the creation ofdimglenew address space. Hence, when
vfork and exec are used to create new processes under SPRRKG/Antfarm experiences
no false positives. The build process, however, consistsaré than processes created by
make and gcc. Many processes are created by calls to an &dbeil and these process
creations induce the false positives we observe.

Lag

Lag between OS-recorded and VMM-inferred process evertstPARC/Linux is com-
parable to Linux on x86. The average and maximum lag valueSFARC/Linux under
various system loads are shown in Figure 4.4. Create lagstae to system load. Exit
lag is unaffected by load as on x86.

Limitations

While the SPARC inference technique is simple, it suffeesndracks relative to x86. As
shown, the technique incurs more false positives than tieeteghniques. In spite of the
additional false positives, Figure 4.5 shows that the teglecan track process events
during a parallel compilation workload at least as acclyate x86/Linux 2.4.

Unlike the x86, where one can reasonably assume that a peggaly page would
not be shared by multiple runnable processes, one cannat suah an assumption for
context IDs on SPARC. The reason is the vastly smaller sphgeigue context IDs. The
SPARC provides only 13 bits for this field which allows up t®2Mdistinct contexts to be
represented concurrently. If a system exceeds this nunilaetive processes, context IDs
must necessarily be recycled. In some cases, system sefivilafurther limit the number
of concurrent contexts it supports. For example, Linux oA architectures uses only
10 of the available 13 context bits, so only 1024 concurrddt@ss spaces are supported
without recycling.
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Figure 4.4:Lag vs. System Load, SPARCThe figure shows average and maximum create and
exit lag time measurements for the same experiments deddrild=igure 4.2. Create lag grows with
system load. Exit lag is small and nearly constant, indepandf load.

Figure 4.6 shows the behavior of our SPARC process deteg@miques when more
processes exist than can be distinguished by the availabkext IDs. Once the limit is
reached at 1024, the technique fails to detect additioralgss creations.

The importance of this second limitation is somewhat reddm@zause even very busy
servers rarely have more than 1000 active processes, alfisctt wo doubt influenced the
selection of the context ID field’s size.

Overhead

Since our SPARC techniques are implemented externalsimalatedmachine, they do
not contribute overhead to its execution. For this reasodevweot experimentally evaluate
their overhead. Intuitively the overheads should be verglsnOne hash table lookup
is added to two operations. The first is when a new context rigen. This happens
during context switch, which is already a fairly heavywaigttion. The second is context
demap. Context demaps most often occur during processamreatd exit, which are also
heavyweight and relatively infrequent operations.
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Figure 4.5: Compilation Workload Timeline. SPARC/Linux compilation timeline. Compare to
Figure 4.3.

45.4 Association Evaluation

In this section we evaluate our association techniques.a@aillysis focuses on 1/0O associ-
ation, as we have found that to be the most challenging as#mtito maintain, due to its
asynchrony. We focus on accuracy, time overhead, and spackead.

Accuracy

To measure the accuracy of /0O associations within the VMM jmstrumented the Linux
guest operating system to trace the individual requesteisfrom each process address
space. These traces were compared to corresponding tfaoésreed VMM associations
to calculate the accuracy of the mechanisms.

To stress the I/O association ability of the VMM, we increise load on the system
and plot the resulting 1/0O association accuracy. Figuresddivs our results.

For low levels of concurrency, the simple context assamiathethod achieves a high
degree of accuracy. With a large number of process groupgever, the accuracy of
the context method declines dramatically; increased aqugedelays between an 1/0O being
issued and its observation by the VMM cause a majority of dtpiests to be incorrectly
associated with other (CPU-bound) processes.

Event chaining, on the other hand, is able to achieve nearfggpt accuracy regardless
of the level of concurrency. Hence it is a robust techniquasociating asynchronous I/O
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Figure 4.6: Context ID Overflow. When more processes exist than can be represented by the
available SPARC context IDs our techniques fail to detentexd ID reuse.

events with the issuing process.

Time Overhead

To measure the overhead imposed by I/O association, we mestaguruntime and through-
put achieved by an 1/0O bound process when executed with -@yetihing association en-
abled and again when executed on an unmodified Xen/LinuesysiThe test program
sequentially reads 200 MB of data with minimal think timevieeén read requests. Each
experiment was repeated five times and the results aver&gack all association activity
is initiated by I/O, an I/O-bound workload represents a woese performance scenario
for the technique.

No significant difference in runtime or throughput betweke &xperiments was de-
tected. Low overhead is expected because copy-based éaintng adds only a small
number of minor page faults to each heavyweight I/O opematio

Space Overhead

The storage requirements for the reverse map are companabkestorage required for the
forward mappingi.e. the system’s page tables; hence there is a noticeable epadesad
(e.g, roughly 12 bytes per active mapping). However, these datetares need only
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Figure 4.7:1/0 Association Accuracy. The figure plots the percentage of I/0 requests that were
correctly associated with their process on the y-axis asnilmaber of process groups is increased
along the x-axis. In the top graph, each process group ctssisone process issuing sequential
1/0s and one compute-bound process. In the bottom graphddemae process per group that issues
random 1/Os. Two lines are plotted: simple context-basebeigtion and event-chain association.
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be maintained for processes that are actively running andrgéing enough 1/O to be of
interest, likely lowering the space overhead quite sulhisiynin practice.

4.5.5 Evaluation Summary

Our evaluation shows that a VMM can infer process creatiait, and context switch
using simple observations of guest OS MMU operations ingfttifferent environments
(x86/Linux, x86/Windows, and SPARC/Linux). On x86 undermdbws and Linux 2.4,
Antfarm precisely identifies the desired process eventsomesmight expect for any in-
ference technique the accuracy is not always perfect. Ux8@fLinux 2.6 and under
SPARC/Linux some false positives occur. However, the falssitives are stylized and
affect the ability of Antfarm to keep an accurate processitwary little.

Context association is a simple and generic technique furcéesting any event observ-
able by a VMM with a process. It is accurate for synchronowsney where the actual
occurrence of an event is not separated from the VMM'’s dieteaif the event in time.
Event chaining enhances the accuracy of context assatiayitracking chains of related
events until one of them is known to occur in the context ofghacess of interest. Event
chaining incurs delay while the consumer of the event waitstie chain being used to
resolve itself. We found that event chaining is especiadlgful for enhancing the accuracy
of I/O associations as their processing inside the operatiatem is highly asynchronous.

4.6 Case Study: Anticipatory Scheduling

The order in which disk requests are serviced can make a hffigeedce to disk I/O perfor-
mance. If requests to adjacent locations on disk are s&haoersecutively, the time spent
moving the disk head unproductively is minimized. Avoidingnecessary seeks is the pri-
mary performance strategy of most disk scheduling algm$thThis case study explores
the application of one innovative scheduling algorithmezhnticipatory schedulingd 7]

in a virtual machine environment. The implementation malgsof Antfarm for Xen.

4.6.1 Background

lyer et al[47] have demonstrated a phenomenon they dadleptive idlenes®r disk ac-
cess patterns generated by competing processes perfaymalgronous, sequential reads.
Deceptive idleness leads to excessive seeking betweetiolog@n disk. Their solution,
called anticipatory scheduling, introduces a small amotwaiting time between the com-
pletion of one request and the initiation of the next if theqass whose disk request just
completed is likely to issue another request for a nearbgtion. This strategy leads to
substantial seek savings and throughput gains for conuatigk access streams that each
exhibit spatial locality.

Anticipatory scheduling makes use of process-specifiamétion. It decides whether
to wait for a process to issue a new read request and how lowgitdased on statistics
the disk scheduler keeps for all processes about their religlnaccesses. For example,
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the average distance from one request to the next is storal estimate of how far away
the process’s next access will be. If this distance is lattgere is little sense waiting for

the process to issue a request nearby. Statistics aboutdmgnal process waits after one
request completes before it issues another are also kepdén to determine how long it

make sense to wait for the next request to be issued.

Anticipatory scheduling does not work well in a virtual maehenvironment. System-
wide information about disk requests is required to esémdiere the disk head is located,
which is essential in deciding if a request is nearby. Infation about individual process’s
I/O behavior is required to determine whether and how longgtib. This information is not
completely available to either a single guest, which onlgws about its own requests, or to
the VMM, which cannot distinguish between guest-level pases. While guests and the
VMM could cooperate to implement anticipatory schedulihds requires the introduction
of additional, specialized VMM-to-guest interfaces. Newerfaces may not be possible
in the case of legacy or binary-only components. In any casd) interfaces do not exist
today.

4.6.2 Information

To implement anticipatory scheduling effectively in a VMihe VMM must be able to
distinguish between guest processes. Additionally, itthasble to associate disk read re-
guests with specific guest processes. Given those two pi¢adgsrmation, a VMM imple-
mentation of anticipatory scheduling can maintain avessgk distance and inter-request
waiting time for processes across all guests. We use Antfainform an implementation
of anticipatory scheduling inside of Xen.

To associate disk read requests to processes, we employpke siomtext association
strategy that associates a read request with whatevergzrimoeurrently active. This simple
strategy does not take potential asynchrony within the atjpey system into account. For
example, due to request queuing inside the OS, a read maglediso the VMM after
the process in which it originated has blocked and conteitthed off the processor. This
leads to association error. The relatively low concurregegerated by the experiments
in this section do not merit the more complicated eventitihgitechniques described in
Section 4.3.

4.6.3 Implementation

Xen implements 1/O using device driver virtual machines {\D [31]. A DDVM is a vir-
tual machine that is allowed unrestricted access to one oe ptoysical devices. DDVMs
are logically part of the Xen VMM. Operationally, guests mimg in normal virtual ma-
chines make disk requests to a DDVM via an idealized diskadawiterface and the DDVM
carries out the I/O on their behalf. In current versions ofi@ese driver VMs run Linux
to take advantage of the broad device support it offers. Acgdvack-end in the driver VM
services requests submitted by an instance of a front-evefdiocated in all normal VMs.
The standard Linux kernel includes an implementation otgdtory scheduling. We
implement anticipatory scheduling at the VMM layer by efiradplthe Linux anticipatory
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scheduler within a Xen DDVM that manages a disk drive. To nthlseexisting implemen-
tation process-aware, we introduce a foreign processaalbistn that represents processes
running in other VMs. When a disk request arrives from a fgmetirtual machine, the
Xen back-end queries our process-aware Xen hypervisoitaifoch process is currently
active in the foreign virtual machine. Given the ability istthguish between processes we
expect that our VMM-level anticipatory scheduler (VMAS)Minprove synchronous read
performance for competing processes whether they exibeisame or different VMs.

4.6.4 Evaluation

To demonstrate the effectiveness of our implementationdA®, we repeat one of the ex-
periments from the original anticipatory scheduling papervirtual machine environment.
Our experiment consists of running multiple instances afogmm that sequentially reads
a 200 MB segment of a private 1 GB file. We vary the number of ggees, the assignment
of processes to virtual machines, and the disk schedulermsguests and by the VMM
to explore how process awareness influences the effectisefeanticipatory scheduling
in a VMM. We make use of the Linux deadline 1/0 scheduler asmur-anticipatory base-
line. Results for each of four scheduler configurations doedb with three workloads
are shown in Figure 4.8. The workloads are: (1) one virtuathiree with two processes,
(2) two virtual machines with one process each, and (3) twtuai machines with two
processes each.

The first experiment shows the results from a configuratidhout anticipatory schedul-
ing. It demonstrates the expected performance when aatigipis not in use for each of
the three workloads. On our test system this results in aneggte throughput of about
8 MB/sec.

The second configuration enables anticipatory schedulinige guest while the dead-
line scheduler is used by Xen. In the one virtual machinefinaress case, where the
guest has complete information about all processes agtieelding the disk, we expect
that an anticipatory scheduler at the guest level will beaife. The figure shows that
this is in fact the case. Anticipatory scheduling is ablenpiove aggregate throughput by
75% from about 8 MB/sec to about 14 MB/sec. In the other cagesst-level anticipatory
scheduling performs about as well as the deadline scheduéeto its lack of information
about processes in other virtual machines.

Our third experiment demonstrates the performance of uifrad@nticipatory schedul-
ing at the VMM layer. Similar to the case of anticipatory sghkng running at the guest
layer we would expect performance improvement for the tivbsal-machine/one-process-
each case to be good because a VMM can distinguish betwedaalinachines just as an
operating system can distinguish between processes. Tp@wement does not occur,
however, because of an implementation detail of the Xen DDhédk-end driver. The
back-end services all foreign requests in the context aiglsidedicated task so the antici-
patory scheduler interprets the presented I/O stream agjke girocess making alternating
requests to different parts of the disk. The performancensparable to the configuration
without anticipation for all workloads.

The final configuration shows the benefit of process awardnesticipatory schedul-
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Figure 4.8: Benefit of process awareness for anticipatory schedulingThe graph shows the
aggregate throughput for various configurations of 1/0O sliler, number of virtual machines and
number of processes per virtual machine. The experimeist thgeLinux deadline scheduler (DL),
the standard anticipatory scheduler (AS), and our VMM-lewgicipatory scheduler (VMAS). Adding
process awareness enables VMAS to achieve single processsial read performance in aggregate
among competing sequential streams. AS running at the tpgstis somewhat effective in the 1
VM /2 process case since it has global disk request infoonati
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ing implemented at the VMM layer. In each of the workload cgufations anticipatory
scheduling works well, improving aggregate throughput lmyerthan a factor of two, from
about 8 MB/sec to about 20 MB/sec. Because it is implemeritidd/MM layer, anticipa-
tory scheduling in this configuration has complete infoiioraabout all requests reaching
the disk. Our process awareness extensions allow it to statistics for each individual
process enabling it to make effective anticipation deaisio

4.7 Assumptions

As is the case for any inference technique, Antfarm requirascertain assumptions hold
to produce correct results. This section lists and disautseassumptions Antfarm makes
about the guest operating systems it observes. There ate/edf few assumptions and
we believe they hold for nearly all widely available opemgtsystems in common use on
workstation and server class computing systems today.

ProcessesAntfarm assumes that an operating system uses heavy-weigtesses to de-
fine the basic execution environment of all user-level protg including an address space
and I/O environment.

Hardware memory protection: Antfarm assumes that an operating system employs hard-
ware memory protection to implement isolated process addspaces. While nearly all
current operating systems take this approach, other aptaist. The recent Singular-
ity [43] research operating system uses programming laggtechniques like type check-
ing to ensure that processes do not interfere with each etteer when they share a single
hardware address space.

One address space per procesgntfarm uses address space events as a proxy for process
events. This implies a one-to-one correspondence betwddness spaces and processes.
This is typically true for most operating systems, but weewstssd a subtle violation of
this assumptions by the implementatioresfec under Linux 2.6. Whemexec is invoked

a new address space is created so a process that is creafenr kidollowed by exec
effectively uses two address spaces for a single logicatga® This pattern is highly
stylized. The lifetime of the initial address space is neahlvays tiny compared to that of
the second. For the applications of process information awe ldeveloped this violation
had no practical effect.

ASIDs are not multiplexed among active processesAntfarm assumes that the value it
uses as an address space identifier (ASID) is used by a sirmgegs while that process
is active. On SPARC we observed that, due to the limited spaoer chosen ASID (the
SPARC context ID), these values are subject to reuse wherga taumber of processes
(more than 8192) exist concurrently.

Address space data structures cleared before reuséntfarm reports process exit when
the data structures used to represent a process addresshepa@cbeen cleared and are
ready to be reused. On x86 this corresponds to clearing ¢ pges in memory. On
SPARC it corresponds to a context demap operation. Thisneagent is derived from the
basic operating system responsibility to maintain memswoiaition between processes.
Address space data structure clearing is timelyAntfarm assumes that an operating sys-
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tem clears address space data structures in a timely maithde an OS could arbitrarily
delay this operation for selected processes, in practideawe found that the operating sys-
tems we have tested, including Linux and the Windows NT faneiagerly reclaim these
resources and the lag between actual process exit and dataugt clearing is small.

4.8 Summary

In this chapter, we have described and evaluated technijaeallow a VMM to indepen-
dently discover information about processes for the Wirglamd Linux operating systems
and for the x86 and SPARC architectures. To do so, we haveiteglthe correspondence
between processes and address spaces and the ability oflet® observe events like
privileged register updates, TLB flushes, and page tablateisd Process creation and con-
text switch events can be deduced by simply tracking the fiae address space-specific
value like the physical address of the page directory or #&R8&C context ID. We detect
process exit by tracking the status of memory managemaertstes like the page tables
and noting when such resources can be safely reused.

The accuracy achieved by Antfarm is excellent. All true gpsscevents are detected
without error. For certain versions of Linux, matching gaif spurious events are detected
because the “one address space per logical process” moekehdo hold. Because of the
self-correcting nature and the very brief lifetime of theseors, they have little effect on
the ability of Antfarm to track the true current process list

Antfarm is careful to avoid interposing on high-frequencsitical-path operations;
hence, it imposes very little overhead. In our experimeni®est case performance sce-
nario results in a small 2.4% slowdown. Less pathologia#liskll demanding, workloads
impose only a tiny 0.6% overhead.

We used an 1/O scheduling case study to demonstrate tha¢gwanformation can
be utilized by a VMM to transparently improve overall systearformance. By taking
process-specific /0O patterns into account, our VMM-laysticipatory scheduler is able
to increase throughput for competing sequential streawes) rom different virtual ma-
chines, by a factor of more than two.
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Chapter 5

Monitoring the Guest Buffer
Cache

In this chapter we describe a set of techniques that can lkhysa VMM to infer in-
formation about a critically important OS sub-system, thdied buffer cache and virtual
memory system. The buffer cache’s job is deceptively dttédgward. It simply caches
recently accessed blocks from disk. However, deciding wblocks to cache and for how
long involves a subtle trade-off between memory space arfdnpeance that depends on
workload, cache size, and user preference. The buffer ¢acifiien the largest consumer of
memory in a modern system; hence, the memory used by the baffee must be carefully
balanced with the memory needs of other user processe®, 8lisk accesses typically ex-
hibit spatial and temporal locality, a well-managed buffache can have a huge impact
on overall system performance by transforming glacialbystlisk accesses into relatively
fast memory references.

A VMM is intimately involved in allocating and managing theemory resources in a
virtualized environment. We show in this chapter that a VMah carefully observe guest
operating system interactions with virtual hardware like MMU and storage devices to
detect when pages are inserted into or evicted from the tipgigystem buffer cache. Such
information can then be used to more effectively manage lacd remote disk caching
resources.

Geigeris an implementation of these techniques within the Xerugirtnachine mon-
itor [27]. In this chapter, we discuss the details of Geig@riplementation and perform a
careful evaluation of Geiger’s eviction detection teclugg, A few of Geiger's inferencing
techniques within the VMM are similar to those used by Céeal. within a pseudo-device
driver [17]. Hence, our evaluation focuses on which of Gesgeew techniques are needed
in different circumstances. First, we show that the unifieffids caches and virtual memory
systems found in modern operating systems require the VMi¥ati not only disk traffic,
but memory allocations as well. Second, we show that a VMMtrtalse basic storage
system behavior into account to accurately detect caclti@vi For example, the VMM
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must track whether a particular data block is live or deadiskid order to avoid reporting
many spurious evictions. We also show that journaling filtems, such as ext3 in Linux,
require the VMM to distinguish between writes to the jouraatl writes to other parts of
storage to avoid an aliasing problem that leads to falseiemiceporting. In summary, pas-
sively detecting cache events within modern operatingsystrequires new sophistication.
Without these techniques, passive inferencing can rasiticomplete information which
can be worse than no information at all.

Via case studies, we demonstrate how the inferred evictimrmation provided by
Geiger can enable useful services inside a VMM. In the firsectudy we implement a
novel, VMM-based working set size estimator that complet:ieristing techniques [101]
by allowing estimation in the case that a virtual machinehimshing. A second study
explores how Geiger-inferred evictions can be used by a ViMrtable remote storage
caches to implement eviction-based cache placement [1lidput changing the applica-
tion or operating system storage interface. Using existiteyfaces increases the probabil-
ity that such a feature is adopted in practice.

5.1 Geiger Techniques

We will begin our discussion of Geiger by describing the baschniques Geiger uses to
infer page cache promotion and eviction. We then descrilve Geiger performs more
complex inferences, in particular, how it handles unifieffdncaches and virtual memory
systems that are present in all modern operating systerdsh@m it handles issues that
arise due to storage system interactions.

5.1.1 Basic Techniques

Buffer cachepromotionoccurs when a disk page is added to the cache. Buffer cache
evictionoccurs when a cache page is freed by the operating systertsgmevious contents
remain available to be reloaded from disk. For example, &tiem occurs if the contents

of an anonymous page are written to a swap partition and treepdge is freed. Similarly,

an eviction occurs if a page that was read from the file sys¢dater freed without writing
anything back to disk, since the data can be reloaded frororilgsal location on disk.
However, an eviction does not occur if the OS frees a pagetarmbintents are lose(g,

an anonymous page when its associated process exits).

To detect promotion and eviction, Geiger performs two taskgst, Geiger tracks
whether the contents of a page are available on disk and, fveere on disk the con-
tents are stored. We call the on-disk location associatéid asmemory page the page’s
Associated Disk LocatiofADL). Second, Geiger must detect when a page is freed by the
OS. We describe each of these steps in turn.
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Associated Disk Locations

Geiger associates a disk location with each physical meipagg, whenever appropriate.
An associated disk location (ADL) is simply the paidevi ce, bl ock of fset >,
representing the most recent disk location with which a VM&h associate the page. A
VMM associates a disk location with a memory page whenearghge is involved in a
disk read or write operation. For example, if a page is thgetaof a read from disk location
A, the page becomes associated withSimilarly, if a page is the source of a write to disk
location B the page becomes associated withThese associations persist until replaced
by another association, the memory page is freed, or thear@ielisk blocks are freed.

Since the VMM virtualizes all disk 1/O, disk reads and writediated by a guest are
explicitly visible to the VMM and no special action on the paf the VMM is required to
establish the ADL of a page. However, to correctly invakdan ADL when the disk block,
to which it refers, is no longer in use requires detectingmtie disk block is freed. We
discuss this further in Section 5.1.3.

Detecting Page Reuse

Geiger must also determine when a memory page has been fyeth@ IOS. However,
the guest OS does not explicitly notify the VMM when it freepage. Often the only
difference between an active and a free page is an entry ina@OS data structure, such
as a free list or bitmap. We assume that the VMM does not havdetailed, OS-specific
information required to locate or interpret these datecstmes. Hence, instead of detecting
that a page has been freed, Geiger detects that a page hasbsshSince reuse implies
that a page was freed between uses, it is an appropriate foothe page free event.

Geiger uses numerous heuristics to detect that a page haseéaesed. Each heuristic
corresponds to a different scenario in which a guest OS atlhsca page of memory. If
Geiger detects a page allocation and the newly allocated pag a current ADL, then
Geiger signals that the previous contents of the page, asedefiy the ADL, have been
evicted.

The two most basic techniques used by Geiger are monitoiisigréads and disk
writes. This builds on the previous work of Chenhal. [17] which monitors reads and
writes in a device driver within an OS.

Disk Read: Geiger uses disk reads to infer that a new page may have bleeatat.
When a page is read from disk, a new page is allocated in theu®& lsache. If the allo-
cated page has a current ADL that refers to a different dis&tlon than the one currently
being read, Geiger reports that the page’s previous canteve been evicted. The ADL
of the affected page is updated to point to the new disk lonads a consequence of this
kind of eviction.

Disk Write:  Geiger uses disk writes to infer that a new page may have blesatd. If
a full page of data is written to disk and the page does noadjreeside in the page cache,
then the OS may allocate a new page to buffer the data urdibisynchronously written to
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disk. Geiger detects this case by observing all disk writessagnaling an eviction if the
write source is a page with a current ADL that is differentiiae target disk location of
the write. Note that if a previous read or write caused thk bisck to already exist in the
cache, Geiger will not erroneously signal a duplicate éwicsince the page’s ADL will
not change. As with the read-eviction heuristic, the ADLh# affected page is updated to
refer to the target disk location.

5.1.2 Techniques for Unified Caches

Techniques from previous research [17] work well with otglesfile system buffer caches,
which were kept distinct from the virtual memory system. Hwer, virtually all modern
operating systems, including Linux, *BSD, Solaris, and Wiws, have a unified buffer
cache and virtual memory system. Unification complicatésrénces: Geiger must be
able to detect page reuse for additional cases associatledhsivirtual memory system.
Hence, we introduce two new detection techniques.

Copy On Write:  Copy-on-write (COW) is a technique widely used in operasygtems
to implement efficient read sharing of memory. A page shasgthuCOW is marked read-
only in each process’s virtual address space that shar&glien one of these processes
attempts to write to a COW-shared page, the action causegedfaalt. The operating sys-
tem then transparently allocates a new, private page arnidst® data from the old page
into the new page. Subsequently, a new writable virtual mgmmapping is established
which refers to the new page. Because the private copy regjallocation of a free page,
it can lead to page reuse.

Geiger detects page reuse that occurs as a result of COW leyvolg page faults
and page table updates. When Geiger detects a page faulewhase is a write into a
read-only page, it saves the affected virtual address agé fadle entry in a small queue.
If, a short time later, the guest OS creates a new writablepmgpfor the same virtual
address, but a different physical page, Geiger infers treahew physical page was newly
allocated. If the newly allocated page has an active ADLnp tBeiger signals an eviction.
This heuristic clears the ADL of the newly allocated pagedose it is a modified private
copy of an existing page and is not associated with any disktion.

Allocation: Most modern operating systems allocate memory lazily. Wdreapplica-
tion requests memong(g, usingbr k or an anonymousmap), the OS does not immedi-
ately allocate physical memory; instead the virtual adslraege is “reserved” and physical
memory is allocated on-demand when the page is actuallysaede This property means
that physical memory allocation nearly always occurs indbetext of servicing a page
fault.

Similar to the COW heuristic, Geiger observes page fauls déine due to a guest ac-
cessing a virtual page that has no virtual-to-physical rmapand saves the affected virtual
address in a small queue. If, a short time later, the guestr&8eas a newvritable map-
ping for the faulting virtual address, Geiger infers a pdtpeation. If the newly allocated



49

physical page has a current ADL, then Geiger signals aniewict

The allocation eviction heuristic contains some simplifaras that could lead to false
positive inferences. First, the technique makes use ofatigtfiat memory is rarely write-
shared between address spaces. If a page is write-shareelydrpthe creation of a new
writable mapping as described above does not imply a pagesaibn, but will be counted
as such by our heuristic leading to false positives. Secdral,page belonging to an
mmapped disk file is initially brought into the page cacheaarite operation, the disk
page will first be read from disk (potentially causing a reaitteon) and a new writable
mapping will be created (causing an allocation evictiongnkk, a single write could lead
to two eviction reports, one of which is a false positive. Tinere common case of a shared,
read-only mapping of a disk file is handled correctly, howgesiace the allocation heuristic
ignores it and only a single read-eviction is generated vépopriate.

5.1.3 Techniques for Storage

Storage systems also introduce some nuances into thennésenade by Geiger. In par-
ticular, file system features like journaling lead toadiasingproblem; further, the fact that
disk blocks can be deleted leads to the problerfiveiness detectionWe now describe
these issues and how Geiger handles them in turn.

Journaling

The basic write heuristic signals an eviction whenever thetents of a page that has an
ADL are written to a location on disk which does not match tABIL. For example if

a page has ADLA and is written to disk locatio3 an eviction will be reported for the
contents of disk locatiod. The basic write heuristic over-reports evictions in caglesre
data are written from the same buffer cache page to multigleldcations; we view this
as analiasingproblem, as the same page is wrongly associated with twoedidkesses.

Journaling file systems, such as Linux ext3 [96], Reiser8§ JFS [10], and XFS [94],
routinely write to two locations on disk from the same cachggy namely the journal
location and the fixed disk location. In the worst-case jaliny scenario, where both data
and metadata are first written to the journal, twice the dctumber of write evictions will
be reported. In the more common case of metadata-only jomgna much smaller penalty
is incurred.

The negative effect of journaling and virtual memory can bggated if the VMM
identifies writes to the file system journal. This is straightvard in most systems, since
the journal is either placed on a separate, easily idenfiphrtition or in a file within
a file system partition to which a reference is made from tleesfilstem superblock [97].
Hence, to avoid the problem of journal aliasing, Geiger rtarsithe disk addresses of write
requests and ignores writes directed to the journal.
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Block Liveness

Geiger signals that a page has been evicted only if that pageatcurrent ADL. It is
possible that the blocks to which an ADL refers are dealledan disk between the time
that the ADL mapping is first established and when Geigeratietbat the associated page
has been reused. In this case, Geiger will falsely reporvemi@n, because an ADL exists
but the data to which the ADL refers have been deallocatecaaadio longer accessible.
This problem ofblock livenesgan lead to large numbers of false evictions for workloads
in which files are regularly deleted, truncated, or when psses die that have significant
parts of their virtual memory swapped to disk.

File systems: A virtual machine monitor can passively trafile systenblock liveness
in the same way a smart disk system can track block livendégs [Bhe allocation state
for each file system block is typically noted in some on-diskcture like a bitmap. The
file system superblock, which is stored at a known, fixed locabn disk, can be used to
locate these bitmap structures. By examining guest operatistem writes to these on-
disk areas, a VMM can snoop on the file system to determine wisdnblocks to which
an ADL refers have been freed. If the blocks to which an ADlersfare deallocated, the
ADL must be invalidated so that a future reuse of the affeptgk is not misinterpreted as
an eviction.

Implementing block liveness by observing only disk writes lone significant draw-
back; there is often substantial lag between when a file systaucture like an allocation
bitmap is updated in memory and when it is written to disk. lanyoperating systems
this interval can be 30 seconds or more. If Geiger does natrebdhat the file system
blocks, to which a page’s ADL points, have been deallocateil after the page has been
reused, a false eviction will occur. Hence, the timelinddslack deallocation notification
is important.

A VMM can improve the timeliness of block deallocation nai#fiion by tracking up-
dates to the in-memory versions of the allocation bitmapgeithe known locations of the
bitmaps, the VMM can observe when bitmaps are loaded frokidie memory. At that
time, the VMM can mark all such buffers read-only. When a ¢jugslates an in-memory
bitmap, a minor page fault will occur. The VMM can observettte fault is due to an
attempted bitmap update and respond by invalidating &fteaDLs.

Geiger implements this style of in-memory block livenesking. Bitmap blocks
are identified by reading and parsing the file system supekhior known file system
types. Pages used to cache file system allocation bitmapsaaked read-only in memory
by Geiger. When a write to such a page is detected, due to agratgction fault, the
effect of the faulting instruction is emulated on the guesimmry and register state and
the faulting instruction is skipped; hence, every bitmagatp is synchronously observed
and appropriate action is taken by the VMM. The overhead oflbliveness tracking is
kept low in spite of additional minor page faults due to thatreely low frequency of disk
bitmap updates.

Like Sivathanu [86], we consider embedding file system layoformation, such as
the format of the superblock, within a VMM a reasonable téghe. There are few com-
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monly used file systems and the on-disk data structure ferfoathose file systems change
slowly. A VMM can be provided with layout information for atlommonly used file sys-
tems and the information can be expected to remain valid fong time. The on-disk
format of ext2, for example, has not changed since its intctidn in 1994. This is a far
longer interval than the typical system software upgraadecy

Swap space: The liveness tracking techniques Geiger uses for file syst@titions do
not apply to disk space used as a swap area. As a rule, swap épes not contain any
on-disk data structures that track block allocation beealaga in swap is not expected to
persist across system restarts. All swap allocation inftion is managed exclusively in
volatile system memory. There are two swap liveness tracténhniques we have found
to be effective for some workloads in preventing false évitd due to ADLSs that point to
deallocated swap space.

The first technique invalidates any ADL that points to a setisk blocks that is over-
written. When disk blocks are overwritten, the data to wraohADL refers has been de-
stroyed; hence, ADL invalidation is appropriate. This t@ge is implemented by main-
taining a reverse mapping between cached disk blocks andsADL

The second technique makes use of implicitly obtained m®dtéetime information
like that provided by Antfarm [49]. Given accurate informoatabout guest OS processes
and a mapping of memory pages to the owning OS process, mahg A&h be invalidated
when the process exits. Specifically, an ADL from a page lmgtanto a dead process
that points to a swap space disk block can be invalidateds Jétond technique appears
promising but has not been fully implemented in the curremsion of Geiger.

5.2 Implementation

Geiger is implemented as an extension to the Xen virtual imaamonitor version 2.0.7.
Xen [27] is an open source virtual machine monitor for thelid86 architecture. Xen
provides a paravirtualized [103] processor interface,ciwhénables lower overhead vir-
tualization at the expense of porting system software. Vgiatty do not make use of
this feature of Xen; hence, the mechanisms we describe adlg@pplicable to a more
conventional virtual machine monitor such as VMWare [911]10

Geiger consists of a set of patches to the Xen hypervisor @msXlock device back-
ends. Changes are concentrated in the handlers for evkatpdge faults, page table
updates and block device reads and writes. The Geiger matdmsist of approximately
700 lines of code across three files. About 25 other files fioenXen hypervisor and the
Linux kernel required small changes in order to implemestrimmentation and tracing.

All experiments described in this paper were performed o€ ah a 2.4 GHz Pen-
tium IV processor, 2 GB of system memory, and two WD1200BB Alisk drives. We
used Linux kernel version 2.6.11 in the Xen control domahlanux kernel version 2.4.30
for all unprivileged domains. We use either the ext2 or ext3dystem, depending upon
the experiment. The Xen control domain is configured with B of memory. Unless
otherwise noted, each unprivileged guest virtual machirmssigned 128 MB of memory.
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5.3 Evaluation

In this section we evaluate the ability of Geiger to accuyaitefer page cache evictions
and promotions occurring within guest operating system& bBé&gin by describing our
workloads and metrics; we then evaluate Geiger using a geuoimicrobenchmarks and
four application workloads. We conclude by measuring therlogads that Geiger imposes
on the system.

Microbenchmark Description

Read Evict Sequentially reads a section of a file
larger than available memory multiple times
Write Evict Sequentially writes a file larger than
available memory. Repeated multiple times.
COW Evict Allocates a memory buffer approximately the

size of available physical memory, then writes to
each virtual page to ensure a physical page is
allocated, then forks and writes to each
page in the child.

Allocation Evict Allocates a memory buffer that exceeds the
size of available memory and writes to each
virtual page to ensure a page is allocated.

Figure 5.1:Microbenchmark Workloads. This table describes the four microbenchmarks used to
isolate a specific type of page eviction.

Application Description

Dbench [95] File system benchmark simulates load
on a network file server

Mogrify [44] Scales and converts a large bitmap image

OSDL-DBT1 [70] TPC-W-like web commerce benchmark

simulating web purchase transactions in
an online store.

SPC Web Search 2 [90] Storage performance council bloclcdevi
traces from a web search engine server.
Traces are replayed to a real file system.

Figure 5.2:Application Workloads. This table describes each of the four application workloads

5.3.1 Workloads

Throughout the experimental evaluation of Geiger, we usesgts of workloads. The first
workload set consists of four microbenchmarks. Each ofliesr microbenchmarks have
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Application Read % Write% COW% Alloc%
Dbench 41.13%  58.85% 0.00%  0.00%
Mogrify 53.22% 22.31% 0.01% 24.25%
OSDL-DBT1 77.02% 2.14% 0.54% 20.29%

SPC Web Search2  99.6 % 0.03% 0.00%  0.00%

Figure 5.3:Application Workload Eviction Mix. This table reports the percentage of total eviction
events caused by each eviction type.

been constructed to generate a specific type of page cadtteopviRead, Write, Copy-

On-Write (COW), or Allocate. Thus, these microbenchmaskdate Geiger’s ability to

track evictions due to specific events. The microbenchmamkslescribed in more detail
in Figure 5.1.

The second set of workloads consists of four applicatiortherarks. These represent
more realistic workloads. Each workload contains a mix aften types, whether read,
write, COW, or allocation. Figure 5.2 describes the apfilicaworkloads. Figure 5.3
shows the breakdown of eviction types generated by eachcafiph workload. Hence,
these application workloads stress Geiger’s ability takravictions that may occur for
several different reasons.

5.3.2 Metrics

Our methodology for evaluating the accuracy of Geiger ioimgare the trace of evictions
signaled by Geiger to a trace of evictions produced by thetgumerating system; we have
modified the Linux kernel to generate this trace. Since thesgoperating system has
complete information about which pages are evicted and ywh@ncomparison is against
the ideal eviction detector. The eviction records in badicds contain the physical memory
address, the disk address of the evicted data, and a timp.stam

We consider three different metrics for accuracy. The firstrin is simply theeviction
countreported by Geiger compared to that reported by the guesv®Sime. The second
metric isdetection lag or the time between when a particular eviction takes pladbé
OS and when it is detected by Geiger. Finally, the third roesrithedetection accuracy
which tracks the percentage of records from the inferredaamtdal traces that match in a
one-to-one mapping; we report both the percentage of fagativesi(e., actual evictions
not detected by Geiger) and false positivies.(inferred evictions that did not correspond
to OS-reported evictions).

5.3.3 Microbenchmarks

We begin by running workloads consisting of the four micnodd@marks. Figure 5.4 shows
the resulting eviction count time-lines. For all microbbnwarks, the eviction counts in-
ferred by Geiger closely match the actual OS counts; howeegending upon the work-
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Figure 5.4:Eviction Inference Counts. The figure compares inferred vs. actual eviction counts
over time for microbenchmarks that isolate each evictiqre tnferred by Geiger.

load, some interesting differences may occur along the ®aryexample, during the COW
workload, the guest OS reclaims pages in groups, leadingligta stair-step eviction pat-
tern; Geiger’'s inferences lag slightly behind in this casethe write workload, the guest
OS begins evicting pages early and continues to evict gatfgdughout the experiment.
Because the pages being evicted are dirty, they must bewtdtdisk before they are freed
which significantly delays their reuse. Geiger’s inferenaee based on page reuse; hence,
eviction is not detected until a page is reused, and infesvéttions lag noticeably behind
actual evictions when caused primarily by writes.

Figure 5.5 shows the cumulative distributions of evictiag times for each of the mi-
crobenchmarks. As expected, the lag times for read, COW,afladation eviction are
concentrated at very small values. However, the lag timeth®write microbenchmark
are concentrated at about three seconds due to the glutkofdtes caused by dirty pages
being evicted.

Figure 5.6 reports Geiger's detection accuracy in botlefaklsgatives and false posi-
tives. For all workloads, false negatives are uncommon:aastyfewer than 2.5% of the
total number of evictions are missed by Geiger. False pesitare even less common: at
worst, Geiger over-reports 1.45% of its inferred evictions

In our final microbenchmark experiment, we explore Geigab#ity to detect aliased
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Figure 5.5:Eviction Lag. The figure shows the cumulative lag distribution for micratienarks
that isolate each eviction type.

writes to the file system journal. We use the write workloadttess this detection. Fig-
ure 5.7 shows the accuracy of Geiger with and without theiafieation to disregard write
traffic to the file system journal. Without this specialipati Geiger performs satisfactorily
when journaling is disabled or when only metadata is jowthdle., Linux ext3 ordered-
mode); with metadata journaling, relatively few blocks éaliases. However, with data
journaling, many blocks have aliases and, as a result, nharehalf of the evictions re-
ported by the un-specialized Geiger are false positivescolmtrast, the full version of
Geiger accurately handles all journaling modes of Linux3griven with data journaling,
Geiger has a false positive percentage of only 0.06%.

5.3.4 Application Benchmarks

We next consider workloads containing more realistic ajapions. Figure 5.8 reports the
detection accuracy of Geiger on these application worldokdr all workloads, false neg-
ative ratios are small: in the worst case, Geiger misses28K% of the evictions reported
by the OS. However, the Dbench and Mogrify workloads haverégting behavior regard-
ing false positives.
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Workload  False Neg % False Pos %

Read Evict 0.96% 0.58%
Write Evict 1.68% 0.03%
COW Evict 2.47% 1.45%
Alloc Evict 0.17% 0.17%

Figure 5.6:Microbenchmark Heuristic Accuracy. The table reports the false positive and false
negative ratios for the complete set of eviction heuridticeach of the microbenchmark workloads.

Workload w/o Journal Opt w/ Journal Opt
FNeg% F. Pos%| FNeg% F Pos%
No Journal 1.68% 0.039 1.68% 0.03%
Metadata 1.83% 0.33% 0.61% 0.08%
Data 1.43%  61.919 2.51% 0.06%

Figure 5.7:Effect of Journaling. The table reports the false positive and false negativevsdior
the write-eviction microbenchmark workload when run withournaling, with metadata journaling
(ordered mode), and data journaling with the Linux ext3 filstem. The table shows the benefits of
turning on the Geiger specialization to detect writes tojthenal.

Block Liveness

The Dbench and Mogrify workloads illustrate the benefit ofihg Geiger attempt to track
the liveness of each block on disk. Dbench creates and deatesmy files; as a result,
many pages in memory are reused for different files (andreiffiedisk blocks). Mogrify
causes large amounts of swap to be allocated and deallodatied) its execution. If the
VMM uses only the change in association between a memory aadéts disk block to
infer an eviction, then the VMM concludes that many evictitrave occurred that actually
have not (e, many false positives). Thus, without live block detecti@eiger has a
30.2% false positive rate for Dbench and a 23% false pogititeefor Mogrify. However,
when Geiger tracks whether a particular disk block is freean detect when a page is
simply reused without the previous contents being eviaed result, the false positive rate
improves dramatically to 5.7% for Dbench and 2.46% for MiygriThus, to adequately
handle delete-intensive (or truncate-intensive) worettpaGeiger includes techniques to
track disk block liveness.

Limitations

As mentioned previously, we do not expect our current tegines for tracking block live-
ness in swap space to be adequate in all situations. To dématarthis remaining problem,
a microbenchmark was crafted that results in large numidfefiedse positives despite the
best efforts of Geiger to track block liveness. The programds a large buffer (allocated
usingnmmap) to be swapped to disk and then the buffer is released. Ind, iasithe buffer
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Workload  Geiger Opts False Neg % False Pos %
Dbench w/o block liveness 1.10% 30.23%
Dbench w/ block liveness 2.30% 5.72%
Mogrify w/o block liveness 0.05% 22.99%
Mogrify w/ block liveness 0.65% 2.46%
TPC-W 0.14% 3.12%
SPC Web 2 2.24% 0.32%

Figure 5.8:Application Heuristic Accuracy. The table reports the false positive and false negative
ratios for Geiger on the four application workloads. For tBdench and Mogrify workloads, we
evaluate Geiger both without and with the optimizationsetedt whether a block is live on disk.

is released, the associated swap space is also deallobatg@eiger does not detect that
event. As additional memory is allocated by the programepage reused whose ADLs
point to deallocated swap space resulting in an evictisefpbsitive ratio of about 37%.

5.3.5 Overhead

Geiger observes events that are intrinsically visible ta\iWIlike page faults, page table
updates, and disk 1/0. Except in the case of disk block ligerteacking, no additional
memory protection traps or I/O requests are caused by Gdigeness tracking imposes
one additional minor page fault for each disk bitmap updaielwoccur relatively rarely.
Hence, we expect the runtime overhead imposed by Geiger sonladl. To validate this
expectation, we compare the runtime of workloads runningiwmunmodified version of
Xen to that of Geiger. We are interested in two performangémes. The first regime
is the more common case, in which a workload has sufficient ongrand few evictions
occur. The second regime occurs when a machine is thraginug, this implies that many
evictions are taking place and Geiger’s inference mecha@e being stressed.

We evaluate each of these four cases using two carefullyechemrkloads. Since
Geiger interposes on code paths for handling page fault® tadble updates and disk 1/O,
we use the microbenchmark “allocation-evict” describedrigure 5.1 and Dbench de-
scribed in Figure 5.2. Allocation-evict causes many pagit§aand page-table updates
stressing that portion of Geiger’s inference machineryeiith causes a large number of
file creations, reads, writes, and deletes which exercisgetportions of Geiger’s heuris-
tics.

Figure 5.9 shows the results of the experiment. Each valowrsis the average of five
runs; the standard deviation is shown with error bars. Thgekt observed overhead is
2.19%, which occurs for a thrashing Dbench. For all casestdhbults for Geiger and the
unmodified Xen are comparable.

Geiger requires some extra space per physical memory pagactoADLs. In our
prototype this amounts to 20 bytes per memory page. In otisyssem, configured with
2 GB of physical memory, a total of 10 MB of additional memasallocated by the VMM,
leading to a space overhead of approximately 0.5%. If trhi€spverhead is a concern, it
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Figure 5.9:Geiger Runtime Overhead. The figure shows that Geiger imposes very small runtime
overheads for two workloads that stress its inference Iséos.

could be substantially reduced, given the preallocateddfsize, and sparsely-populated
data structures of our prototype.

5.4 Case study: Working Set Size Estimation

Geiger’s eviction detection techniques are useful for enmpnting a number of pieces
of functionality. In our first case study, we show how Geigan de used to implement
MemRx, a VMM service that tracks the working sets of guest VM begin by describing
the implementation of MemRx and then present performarmétse

5.4.1 MemRx Design

Previous research by Waldspurger [101] for ESX Server hasisinow a VMM can deter-
mine the system working set size of a VM whose memory footfitsin physical mem-
ory. MemRx complements the ESX Server technique by enablMiIM to determine the
working set size for ghrashingvirtual machine.

MemRx does this by simulating the buffer cache behavioreftfhest operating system
as if more memory were allocated to it. Geiger allows MemRxmnitor buffer cache
evictions and promotions. Figure 5.10 shows a schematibepage cache simulation
implemented by MemRx. Using the ADL mechanism, Geiger knahich blocks on
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Figure 5.10:MemRx Operation. The figure shows a schematic of the cache simulation imple-
mented by MemRx. A) When a page is evicted by a guest, thisiewstected by MemRx and an
entry is added to the head of a series of queues. B) If necgspague entries ripple from the tail

of one queue to the head of the next. C) Upon reload, the agsdaijueue entry is removed and an
array entry associated with that queue is incremented. Egtty tracks which sub-queue it appears
in to enable fast depth estimation.

disk correspond to an evicted page. When a page is evictegfeeence to the page’s
location on disk is inserted at the head of a queue maintamé&&U order by MemRx.
Subsequent evictions push previous references deepee iquitue. When a previously
evicted page is read from diske., promoted into the page cache, the reference to that page
is removed from the queue and its distarizérom the head of the queue is computed. The
distance is approximately equal to the number of evictibas have taken place between
that page’s eviction and its subsequent reload. MemRx tees/2ito compute the amount
of memory that would have been required to prevent the algiwictions from taking
place asizepqge X (D 4+ 1). This information is used to compute a miss-ratio curve [107
The working set size can be read from the miss-ratio curvetsting the curve’s primary
knee.

For example, if a page is evicted and immediately reloadéate@ny other pages are
evicted, MemRx would record that the eviction could havenbpeevented by one addi-
tional page of physical memory. If a page’s eviction is foléa by 1024 evictions of 4 KB
pages, MemRx would report th&t024 + 1) x 4 KB (roughly 4 MB) of additional
memory would be required to prevent the original eviction.

Our general strategy, which is similar to Pattersbal’s ghost buffering scheme [71],
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Benchmark Activity

FS Sequential | Sequentially scan a 256 MB section

of a file system file 10 times

VM Sequential| Sequentially scan 256 MB section

of allocated virtual memory 10 times

FS Random Randomly read page-sized blocks from

a 256 MB file system file two times

VM Random | Randomly touch virtual memory pages from
256 MB virtual memory allocation 2 times

Figure 5.11:Calibrated Microbenchmarks. The table describes each of the microbenchmarks
used to evaluate VMM-MemRXx.

relies upon certain properties of the operating systemeeghlacement policy to function
correctly. Specifically, the algorithm used must (roughgy@serve thénclusionor stack
property [61]. The key aspect of the stack property is thatche of a sizéV + 1 has the
same contents as a cache of si¥¢eplus the one additional buffer which has some other
block within it. LRU and LFU obey this property; FIFO does 1j8f. By assuming the
stack property holds, the VEC can efficiensiynulatethe contents of larger caches, safe
in the knowledge that the buffers of the main page cache woeldomprised of the same
contents even if more memory were available.

Neither Linux, nor most other operating systems, employgepaplacement strategy
that perfectly maintains the stack property. Our evaluiatemonstrates, however, that
MemRx is quite robust to these deviations under Linux for ynaseful cases.

5.4.2 Evaluation

We first evaluate the accuracy of MemRx by using it to measueentorking set size of
microbenchmark workloads for which the working set sizepgpraximately known. Ta-
ble 5.11 lists each of the microbenchmarks and the actianspbrform; the working set
size for each is approximately 256 MB and the virtual macksrenfigured with 128 MB
of memory. Second, we compare the working set size predigtédemRx to the working
set size determined by trial and error for more realistidiappon workloads, in particular,
Mogrify and Dbench.

Figure 5.12 shows the predicted and actual miss ratio cdordlhe four microbench-
mark workloads. The miss ratio curve shows the fraction ef¢hpacity cache misses
occurring in the smallest memory configuratioe( 128 MB) that remain misses in larger
memory configurations. Tharedictedcurve is calculated by MemRx using measurements
taken during a single run at the smallest memory configuraied then simulating the
page cache behavior of the guest operating system on-lireeferal larger memory con-
figurations in increments of 32 MB. Tlaetualcurve is calculated by running the workload
at each of the noted memory sizes and counting actual cgpaisses in the page cache.

These calibrated tests show that MemRx can locate the wgpideén size of simple
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Figure 5.12:VMM-MemRx Predicted vs. Actual Miss Ratio. The figure shows the miss ratio
predicted by VMM-MemRXx vs. the actual miss ratio measunedaiying memory sizes. The known
working set of 256 MB is marked by a vertical dashed line.

workloads very accurately. The prediction made by MemRxiéntical to that found by
direct measurement using trial and error. The result is mqdrssing, because under these
simple workloads, Geiger incurs few eviction false posiiv

Figure 5.13 shows the results for the two application wallky Mogrify and Dbench.
The leftmost two graphs show the predicted and actual missaarves. In these cases, the
inferred working set size predicted by MemRXx is slightlyglarthan the actual working set
size found using trial and error. To determine whether tiserdpancy was due to Geiger
(e.g, false positive/negative evictions or lag) or to MemRxg(, cache simulation error)
we implemented MemRx within Linux [51] and compared the ol and actual miss
ratio curves produced by that version. Within the operasipstem, MemRx has access
to precise eviction and promotion information, which eliaies Geiger as a source of
error. The rightmost two graphs in Figure 5.13 show the n@#is curves obtained for the
Mogrify and Dbench workloads using our operating systemémgntation of MemRx.

For the Dbench workload, the version of MemRx in the OS shdv@same deviation
as the one produced by MemRx in the VMM, this leads us to catecthat the cause of the
deviation is MemRx simulation error. MemRx models the glester cache using a strict
LRU policy that does not exactly match the policy used by kinuhich is something more
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Figure 5.13:Application Predicted vs. Actual Miss Ratio. The figure shows the miss ratio curve
predicted by MemRXx vs. the actual miss ratio measured fgingumemory sizes for two application
workloads. Results from MemRx implemented in the VMM @deffiMemRx implemented in the OS
(right) are shown.

akin to 2Q [48]. The difference between the modeled poliay #re true policy leads to

simulation errors like the one shown. In the case of Moghfywever, the OS-based miss
ratio curve matches the actual curve closely, leading uslie\® that the error observed
in the VMM-predicted working set size is due to the small iefece errors imposed by
Geiger and the granularity of the experiment.

In summary, the information provided by Geiger enables a Vididstimate the work-
ing set sizes of thrashing VMs. The predictions made by Memuf@xaccurate enough to be
highly useful when allocating memory between competing \dWis single machine [101]
or when selecting an appropriate target host during virnedhine migration [105].

5.5 Case study: Eviction-Based Cache Placement

In our second case study, we show how Geiger can be used teycewiction information
to a secondary cache. The basic idea is that the VMM uses Geigeer which pages have
been evicted from the OS buffer cache, then sends this irftiome.g, with a DEMOTE
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operation [104]) to the storage server, which is potenti@mote. The storage server uses
this explicit information to perform eviction-based caghacement.

5.5.1 Implementation

Our implementation of an eviction-based secondary cachévtmcomponents. First, the
VMM interposes on the virtual block device interface praddoy Xen to see the block
request stream generated by the workload. Second, the VM @giger to infer which
blocks have been evicted from the guest OS buffer caches themnts are then communi-
cated to the remote storage server. We simulate the behaivéostorage server by using
the actual trace gathered from running Geiger for a giverkisad as input. We refer to
our approach as Eviction-Geiger.

To evaluate our implementation, we compare it with threeraditives. In the first ap-
proach (Eviction-OS) the operating system is modified t@repctual evictions; this rep-
resents the ideal case. In the second approach (Evictidffetgithe VMM performs only
the eviction detections that are possible using clientdndfidresses as used by Cletn
al. [17] (i.eread and write evictions). Finally, we simulate a storageheahat uses no
information about client evictions and performs tradiigrdemand-based placement. In
all cases we use an LRU-based replacement policy.

5.5.2 Evaluation

We use the application workloads listed in Figure 5.2 towatd our VMM implementation
of eviction-based cache placement. For each workload, weider remote caches from
32 MBto 512 MB. We evaluate the four placement policies: EoicOS, Eviction-Geiger,
Eviction-Buffer, and Demand. Our metric is cache hit ratio.

Figure 5.14 shows graphs of the cache hit ratio vs. cachdaizbe four workloads
and four cache policies. In all cases, OS and Geiger evittased placement outperform
demand-based placement, sometimes significantly. Thedaggins occur for moderate
cache sizes where the working set of the application fitshaeiin the client cache nor
in the storage cache individually, but does fit within the reggte cache. OS and Geiger
eviction-based placement are able to improve cache hitosatess much as 28 percentage
points for these workloads. For example, under the Mogrifykload using a secondary
cache size of 96 MB, the cache hit ratio goes from 14.9% underashd placement to
42.9% when eviction-based placement is used. When the dagonache size is large
enough to contain the full system working set, OS and Geigietien-based placement
perform similarly to demand-based placement. In the ca&P&f web search, the traces
exhibit almost no locality. The results are included for gbateness only.

For one workload, Dbench, eviction-based placement withsO&port outperforms
that with inferred evictions, even with Geiger. For exampligh a secondary cache size of
416 MB, we observe a difference in hit rates of about 15 paeaggnpoints. This perfor-
mance difference is due to the significant time lag betweerattiual and inferred write-
eviction events (approximately 2 seconds for most eventhigiexperiment). Because
some inferred evictions are delayed, the secondary casks the opportunity to place a
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Figure 5.14:Secondary Cache Hit Ratio.The figure compares the cache hit ratio in a secondary
storage cache for various workloads when demand placenmhénd), eviction placement based
on inferred evictions (Eviction-Buffer and Eviction-Geiy and eviction placement based on actual
evictions (Eviction-OS) is used. Experiments are perforosing cache sizes from 32 MB to 512 MB.

block prior to the block being referenced by the client, anthehe miss occurs. How-
ever, the eviction-based approaches still perform sigmitly better than demand-based
placement.

Eviction-Geiger always performs as good or better thantiorieBuffer. In fact, Eviction-
Buffer sometimes performs significantiyorsethan straightforward demand-based place-
ment. The problem occurs because Eviction-Buffer may déteeer evictions than actu-
ally occur {.e., large false negatives). For workloads, such as MogrifyEP@-W, where a
significant number of non-1/0O based evictions occur, mgsivictions lead to poorer over-
all cache performance. Missing evictions are particularfyroblem with large secondary
caches, because few blocks are placed effectively, evargthadequate cache space is
available. In the case of TPC-W, missing eviction eventsigkahe cache hit rate by about
10 percentage points, while under Mogrify the differencaldsut 40 points.

In summary, Geiger can be used effectively to notify a seapndache of the evictions
that have been performed by clients. As confirmed in otheliet[17, 16, 104], secondary
caches using eviction-based placement can perform mutdr fean those using demand-
based placement. Our results show that the eviction infoomgrovided by Geiger is
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nearly as good as that which could be provided directly byaBgif the OS were modified
to do so). The one exception occurs when a significant lagreéouhe time between the
actual eviction and the inference; however, even in this,dagiger enables much better hit
rates than those with simple demand-based placement. Witfiom-based placement, it is
essential to not miss evictions in the clients; evictioredgbn based only on I/O reads and
writes can miss important evictions, leading to hit rated ttre actually worse than simple
demand-based placement. Therefore, the full set of teabsigvithin Geiger should be
used for buffer cache inferences.

5.6 Assumptions

As is the case with Antfarm, described in Chapter 4, Geigen atakes some basic as-
sumptions about how operating systems work to form its @rfees about the buffer cache.
This section enumerates and discusses those assumptions.

Memory allocation mechanisms: Geiger assumes that most memory is allocated by an
operating system via the small number of mechanisms listémb

o Buffer-cache allocation during disk read and write
e Copy-on-write sharing

e Lazily in response to a not-present page fault

Geiger knowingly ignores other types of memory allocatistheey are typically rare or
concern small amounts of memory. Examples of memory allmeathat Geiger ignores
are non-cache kernel allocatioresd, inodes, directory entries, and other special purpose
data structures).

Write sharing in memory is rare: The write and allocation eviction heuristics assume that
processes do not often write-share large amounts of meriddnjle this is typically true,

it would be simple to create a contrived workload that shdaege amounts of writable
memory. If this occurs, Geiger will spuriously report anrepaviction whenever a memory
page within the writable buffer is lazily allocated by thesogting system for any process,
except the first, sharing the buffer.

Filesystems update in place:Some of the filesystem optimizations employed by Geiger
to reduce false positives assume that the filesystem in usategp data in place. Nearly
all filesystems have this feature. Some special purposgdtiess like WAFL [40], which

is used on dedicated storage appliances, or ZFS [92], a neandg filesystem designed
for the Solaris operating system, do not overwrite existiata on update in order to easily
support filesystem features like creating and maintainimgpshots. WAFL is used in a
proprietary appliance environmentwhere system virtaditin is unlikely. ZFS is a general
purpose filesystem, but is quite new and not widely used.

Operating systems avoid unnecessary data copyingome of Geiger’s heuristics assume
that operating systems avoid copying data around in menfaugh copying could break
the association that Geiger tracks between disk locatinds@emory pages. In practice
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we have found that operating systems go to great lengthoid awpying for performance
reasons. In some cases copying is unavoidable. For exampbgacy systems using the
ISA peripheral bus, devices are limited in the addressesateallowed to use for DMA.

In such a situation, the OS must copy data from low to high nrgmden necessary, a
technique known alsounce-buffering

5.7 Summary

In this chapter, we have explored techniques to make infeeabout when pages are
added to or removed from a guest OS buffer cache. We have fibabchodern operating
systems, which typically incorporate unified system cades journaling file systems,
require new inferencing techniques that account for soreeigusly ignored subtleties like
anonymous memory allocation, aliasing and block liveness.

Geiger’s full range of inference techniques are neededrutifferent circumstances.
For example, our COW and Allocation techniques are needbdrdle an important class
of applications that allocate significant amounts of anooysnmemory; live block detec-
tion improves the accuracy of workloads that delete or tatmdiles; finally, writes to the
journal must be isolated to handle file system data jourgalithese features make a real
impact on performance. For example, in some cases the nuwhbsse positives can be
reduced by more than a factor of nine by taking block liveretgsaccount.

Overall, our techniques are efficient. Our largest obsemretime overhead was 2.19%
and overheads for more typical workloads were much less 18an In some cases we
observed that the lag between actual and inferred eventseddhe value of inferred in-
formation, but in general the information provided by Geigetimely with average lag
measured in small numbers of milliseconds.

Geiger allows us to implement two useful prototype caseistudviemRx, a work-
ing set size estimator that compliments and extends egistimmercial techniques, and
eviction-based cache placement for second-level cacheserfly, another group of re-
searchers have proposed using Geiger and MemRx as compamérgir dynamic, virtual
machine-based cluster management system [105].



Chapter 6

Detecting and Identifying Hidden
Guest Processes

Stealth rootkits that can hide processes are an importentigeissue. According to statis-
tics gathered from Microsoft's widely deployédalicious Software Removal Tof83],

a significant fraction of the malware it encounters and regsaonsists of stealth rootk-
its with process and other resource hiding capabilitie$. [6lalf of unpatched Windows
systems surveyed by the Microsoft tool are affected by alsiraptkit alone. Often the
stealth rootkit components are bundled and used by othdskihdestructive malware like
remote control programs for botnets and spyware, exterttigigcapabilities and compli-
cating their detection and removal. The ability to deteat egspond to malicious hidden
processes is a clear advantage in the race to defend neattadtied computers.

One way to detect that processes have been hidden is by usiolgraque calledross-
viewvalidation [102]. Cross-view validation works by obsenymresource, like operating
system processes, from multiple perspectives and noticgnsistencies between them.
One view is obtained from an untrusted, high-level vantagjatp The other is obtained
from a low level in the system that is unlikely to have beenveuted by an attacker; hence,
its information is considered trustworthy. If a resourcpegus in the trusted view and does
not appear in the untrusted view, a detector based on the-gies principle can conclude
that a resource has been hidden independent of the techusgddo hide it.

One serious problem with cross-view validation is the itedsie race that develops be-
tween attackers and defenders to control the lowest reaftzesystem. If an attacker sub-
verts the level from which the trusted view is obtained, sroiew validation fails. Clearly,
the deeper within a system a trusted view can be extracteldtier. In this paper we
describe a cross-view technique for detecting hidden ps&Esthat obtains its trusted view
from deep within the system at the VMM-layer.

A virtual machine monitor (VMM) is an attractive place to d@psecurity monitoring
services like anomaly detection systems [35, 52]. By vidti¢heir location behind the
relative security of the virtual machine interface, VMMsdeal services are better shielded
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from malicious attacks that originate from within a guestual machine [55], even if the

guest operating system kernel is compromised. In spite ioftseparated from guests by
a secure barrier, a VMM maintains good visibility into the thctivities and state of its

guest virtual machines. For example, a VMM can easily reatvaiite guest registers and
memory and can observe guest I/O like disk and network regues

The VMM-based security services that have been proposeats assume that the
VMM has detailed implementation information about the dumserating systems they
observe [35, 52]. These services use information about #gmary locations of private
operating system variables and functions, the layout ofpmmd structures, the call sig-
natures of important operating system functions, and kgetaemantics of various operat-
ing system components to perform their work. Some of thisrimfation can be obtained
automatically from debugging symbols [35]. Other kindsrdbrmation are only available
via careful study of system source code or reverse engimgfs2].

VMM-level services based on explicit implementation imfation are effective, but
there are drawbacks. One interesting consequence is thatrthy be just as susceptible
to evasion by an attacker that has subverted the guest opesystem as if they were
located within the guest itself. In spite of their locatidrtlee VMM-layer, these services
depend on guest-level information which is still open to@enguest-level manipulation.
For example, if a service depends on the correctness of th& gperating system process
list, a kernel-resident attacker can modify the list to hitdgoresence. If a security system
depends on monitoring the location of a function liker k to be informed of process
creation, it may be thwarted by an attacker that re-direstsdations of the system call to
their own implementation.

In this chapter we present the design, implementation, &athation ofLycosid a
VMM-based security service that detects and identifiesdmdatocesses. Lycosid does not
depend on explicit guest operating system implementatiforination. Instead, general
operating system principles and observations of architedevel activity are used to infer
required information about the activities and state of guegial machines. Like previous
VMM-based security services, Lycosid is resilient to mialits guest attack by virtue of its
location within a VMM. Unlike previous work, Lycosid obtarand uses true VMM-level
information about guest operating systems which shouldeeit less susceptible to guest
evasion attacks. Additionally, by decoupling Lycosid fr@arspecific operating system
version and patch-level, the service can be deployed irrsivenvironments without the
burden of maintaining version-specific implementatiominiation.

The detection and identification of specific hidden procegsevided by Lycosid en-
able a VMM to engage in a targeted response to this kind ofaioails activity. A VMM
that knows which processes are hidden can provide morefigpand detailed logging.
Per-process profiling information can be generated vialmigoe like on-demand emula-
tion [41]. This additional detail enables a more effectivstpmortem malware analysis.
Finally, an aggressive VMM security policy might elect tagactively kill hidden pro-
cesses, while allowing untainted processes to continugmgn

We evaluate our Lycosid implementation using both Windows kinux guests and
find that it is highly accurate in a wide range of extremelyligmging environments. This
result comes despite the fact that the implicitly obtaingfdrimation about guest virtual
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machines used by Lycosid is noisy and sometimes wrong [49,Auracy is achieved
via a targeted use of statistical inference techniqueshikmthesis testing and linear re-
gression that trade time for accuracy. Despite low quatipts, Lycosid provides a robust,
highly accurate, and portable service usable even in gg@nmvironments where the con-
sequences for wrong decisions can be high.

Lycosid bases most of its decisions on passively obtainfedriration. In some cases,
however, we find that passive information is inadequateltably identify which of many
candidate processes has been hidden. Lycosid introducew @echnique callecCPU
inflation that allows a VMM to influence the runtime of specific procasbg carefully
patching a process’s executable code. Using CPU inflatipogdid can often transform
a detectable, but unidentifiable, hidden process into agmgaocess that can be reliably
identified, enabling an appropriate response.

6.1 Process Hiding

When a system is compromised, itis common for an attackewatgel programs behind that
advance the attacker’s goals. This approach is especatlydéd when the attacker accesses
a machine from a remote location over a network. For exaraplattacker will often leave
behind a back door program that listens to the network armdvalthe attacker to regain
a privileged presence on a compromised system withoutpésiting a vulnerability [81].

In other cases, key capture or file system scanning prograekefh running to collect
additional useful information like login names, passwogedsl financial records.

The presence of unexplained processes, network connggtiofiles is an indicator to
a system administrator or intrusion detection system tisatcaessful attack has occurred.
To avoid tipping off a defender, an attacker will often atf#ro hide their malicious pro-
cesses, network connections or data files [14]. Hiding igslly accomplished by modi-
fying some aspect of the system using a suite of tools calkdadth rootkit. For example,
some rootkits modify program binaries likes, net st at, andl s [64]. Other rootkits
hook into the call path between a user application and theekdryy modifying libraries,
dynamic linker structures, system call tables, or opegatirstem functions that report sys-
tem status [42]. Finally, some rootkits manipulate kerrethdstructures using so-called
direct kernel object manipulation (DKOM) [32]. Rootkit hk@and modified kernel data
structures lead to corrupted results of user requeststiefiy hiding the presence of ma-
licious resources [20, 83]. The list of techniques avadablhide system resources is long
and growing.

Long lived malicious processes are the most likely candglédr hiding. The proba-
bility of detecting a short lived malicious process via aqass introspection tool likes
is relatively small, so an attacker rarely goes to the trewablhiding a short-lived process.
The long-lived nature of maliciously hidden processes hgdications for the kinds of
detection techniques that are feasible.
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6.2 Detection

The Lycosid service is partitioned into detection and id&aition components. We discuss
the detection componentin this section. Detection camsistietermining if any processes
running within a guest virtual machine have been hidden.dgtection algorithm does not
identify which specific processes are hidden. Identificeisodiscussed in Section 6.3.

6.2.1 Approach

If a process has been hidden using any of the methods deddnilfgection 6.1, it will
not appear on a user-level process listing. It will, howgaepear on a suitably obtained,
trusted process list. Hence, to detect a hidden process wearapare the lengths of
process lists obtained at a trusted and an untrusted Iéteé frusted list is longer than the
untrusted list we can conclude that at least one processdmastidden.

On an idle system, simply obtaining a single instance ofwwegrocess lists and com-
paring them would suffice to detect hidden processes. Ontie agstem, however, where
processes are being created and destroyed, the situatombe more complicated. For
example, Lycosid cannot perfectly synchronize the timeghath it makes its two process
list observations, so they may reflect different procetsted states of the system. Addi-
tionally, the measurements taken within the VMM can be dsdiajurther complicating the
inference. As the system experiences higher levels of peoo@ation and exit activity, the
problem becomes worse.

Lycosid overcomes these issues by employing statistitatence techniques. Specif-
ically, it obtains many pairs of measurements over time agrfopms a series of paired-
sample hypothesis tests [75]. Each pair consists of a pgamamt obtained from within
the VMM and a process count obtained from within the guesindJa hypothesis test, we
can determine if the two process lists differ in length evéremthe system process state
is in dramatic flux. The test procedure also provides thatahd quantitatively limit the
chance that we assert one or more processes are hidden wfa imo hiding is taking
place,i.e., the false positive rate can be explicitly controlled.

Formally, letT be the length of the trusted process list andJdbe the length of the
untrusted process list. Our null and alternative hypothase then:

Ho:T-U<0 (6.1)
H:T-U>0 (6.2)

We use the non-parametric Wilcoxon rank-sign statistid jASour tests because it
makes no assumptions about the distribution of the popudtom which our samples are
drawn. Data analysis indicates that the distributiofi'ef U is quite symmetric, but has a
slight negative skew and is not normally distributed.

If we can reject the null hypothesig, in favor of the alternative hypothesi$, at an
appropriate level of confidence, we can quantitatively amtesthat one or more processes
is being hidden. The hypothesis test p-value indicates tbbgbility of a false positive,
i.e., indicating hiding when the null hypothesif, (no processes are hidden) is true. As
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with most anomaly detection systems, the consequenceal$arositives in the detection
performed by Lycosid are significant. Too many false posgtidegrade the confidence
in the system and render the information it provides lessalse. Hence, we choose a
conservative threshold confidence valae£ 2 x 10-5). If the one-sided p-value computed
during the hypothesis test falls belaw Lycosid reports that one or more processes have
been hidden.

In addition to a hidden process indicator, the averagerdiffee observed between the
two lists during the detection phase provides an estimateeohumber of processes that
have been hidden. This point estimate is used as input toidide procesglentification
algorithm described in Section 6.3.

6.2.2 Details

Lycosid obtains a trusted view of guest processes from wahVMM. The VMM-based
approach has advantages over any technique that obtagtedrinformation from within
the guest itself because a VMM is typically much harder toveutithan guest software
services or even the guest operating system kernel. Thigdbaws from the relatively
smaller and well-defined virtual machine interface thabsafes the guest from the VMM [55].

VMI [35], for example, uses this advantage to provide vasimsilient security services
within a VMM, one of which is hidden process detection. Lyidadiffers from VMI in the
way it obtains trusted information about the guest opegatirstem. VMI exploits detailed
information about the location and semantics of privatei&kdata structures to obtain a
low-level guest process list. In contrast, Lycosid obtaiadow-level guest information
implicitly. This is a key advantage of Lycosid. No detailedplementation information
about the guest is required. As a result, Lycosid can be gleglwithout taking versions
and patch levels of the target operating systems into a¢coun

Lycosid uses Antfarm [49] to obtain its low-level view of gi@perating system pro-
cesses. Antfarm is a VMM component that implicitly obtaimfermation about guest oper-
ating system events like process creations and exits bywibgelosely related events like
virtual address space creation and destruction. Infoonatbout virtual address spaces is
explicitly visible to a VMM. Antfarm can also provide estites of other process-related
guantities like CPU time consumed, working set size, andecaiswitch counts by observ-
ing their virtual address space analogues.

Lycosid obtains its untrusted view of guest operating sygpeocesses the same way
that VMI does. A network connection is made from the VMM to theest and a user-level
program within the guest is invoked to enumerate proces3asa UNIX-like system the
ps command can provide this information. On Windows systenasious utilities like
psli st. exe [21] or the built-int askl i st. exe can be used. To minimize the data
that must be transported over the network, Lycosid uses ®mougrocess enumeration
utility that returns only the information it requires. Weeus custom utility to reduce the
time required to obtain information from a guest, improvthg synchronization between
VMM and guest measurements.

Lycosid obtains trusted and untrusted process lists at gredlom intervals. A window
of the most recent samples is preserved for use in hypotkesting. The size of the
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window and the sample interval are configurable. In our imm@etation, samples are
obtained every one second on average. Up to the most recBrga®ples are used in
each hypothesis test. Approximately every minute, we teshull hypothesis that the two
lists are the same length. Given the detection threshotd 2 x 10~°, our configuration
corresponds to about one expected false positive per year.

6.3 Identification

After detecting that one or more processes have been hidldematural next step is to
identifywhich processes have been hidden. By identifying the spgmificesses that have
been hidden we enable a more effective VMM response to thigimas activity.

Given only the information provided by the hiding deteceagch process visible from
within the VMM is equally likely to be the culprit. Our approafor identifying which pro-
cesses have been hidden is to select a measurable quastityedisd with hidden processes
and use it to select from the set of candidate processes.

6.3.1 Approach

As a process executes, it consumes CPU time. Both the apggtstem and a process-
aware VMM like Lycosid can account CPU time to specific preess LetG; denote
the CPU time for process as observed from within a guest. L&} be the CPU time
accumulated by procegsas seen by the VMM. Then, when hiding occurs, the quantity

H=>V;=> G (6.3)

represents the total CPU time observed within the VMM thaidisaccounted for by pro-
cesses visible to the gueste,, it is the CPU time used by hidden processes. We can
construct a linear equation usitifjand the per-process CPU times we have obtained from
within the VMM.

H=pVi+ Vot ...+ BVa (6.4)

Equation 6.4 holds if the coefficienty take the value for processes that are hidden
ando for non-hidden processes. We can identify likely hiddercpseses by fitting a multi-
ple variable linear model using least-squares regressidaquation 6.4 and choosing the
N variables from the model that best explain the variancerebdan H, whereN is the
estimated number of hidden processes obtained during teetibe phase. Hence, hidden
process identification in Lycosid is a multiple linear reggien variable selection problem.

There is no universal, automated technique available foalvke selection in multiple
regression that is guaranteed to select the best set oblesito include in a model. Step-
wise procedures attempt to refine an over-specified or usyglesified model iteratively, but
often choose bad models. All-possible-subsets regressiumaranteed to choose the best
model as long as the number of variables to include is knowadivance. As the name
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implies, all-possible-subsets does this by trying all gmesvariable combinations of the
specified size and maximizing a provided model statistie file multipleR? measure. Un-
fortunately the cost of all-possible-subsets variablect@n grows Iike(%) whereN is the

total number of processes atidis our estimate of the number of hidden processes. Since
the number of processes to choose from is often large in adirogrment, this technique is
usually far too expensive.

Lycosid uses a simple variable selection heuristic thatriperates what we know about
the form of the true model. We know that the coefficients of vhdables representing
hidden processes should be closelid and we have an estimate for the total number
of hidden processes. Once an initial model has been fit, thasables corresponding
to processes that are obviously not related to the extraroddeCPU time are removed
from the model. Specifically, variables with negative estied slopes and variables whose
estimated slopes are much greater than(e.g., greater thaf in our implementation)
are removed. A new model is then fit using only the remainingpldes. Finally, theV
variables whose positive relationship to the extra CPU tisngtrongest are chosen. The
strength of a variable’s relationship to the extra CPU timeepresented by the p-value
that results from testing the null hypothesis that the \mefa estimated coefficient is zero.
Note that we do not attempt to interpret the resulting p-@as a probability related to
our identification task. The p-value is simply used to ordherariables according to the
strength of their relationship to the extra observed CPtifrhe topV variables from the
ordered list are selected. As in the detection case, we gmapbonservative threshold p-
value @ = 1 x 10~°) to reduce the chance of false positivies, of incorrectly identifying
a process as hidden when it is not. If we do not f¥idariables with sufficiently small p-
values, additional samples are taken and the procedurimaestuntil a configurable upper
limit of samples is reached.

6.3.2 Detalils

Lycosid obtains CPU time information about processes froth the VMM and from the
guest operating system. CPU times for VMM-visible process® obtained using Ant-
farm. As in the detection phase, Lycosid uses a custom nktutility that calls docu-
mented APIs to obtain and return per-process CPU time irdtiom.

Samples are obtained from the VMM and from the guest opeyaystem at small
random intervals. In our prototype, samples are obtainedtaince per second on average.
A sample consists of a set of process identifiers and the GR&used by each associated
process since the last measurement interval.

Figure 6.1 shows a notional data set used for identificatimpgses. Note that Ly-
cosid is unaware of the mapping from guest process IDs todbteact internal process IDs
available within the VMM. No simple method of inferring thisapping currently exists.
Otherwise identification would consist of a simple set sattton operation.

Over time, samples are collected and stored. Once adecaa@es have been ob-
tained, a model can be fit and evaluated for hidden processifidation. In our current
implementation, an initial model is fit ono@x (40, nunber of processes) sam-
ples has been obtained. Up to a maximum of 1000 samples amedfor use in identifi-
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# VWM PI D VMM proc runtine (s)
0x3a40 1.219
Oxad3f 0. 203
0xf 003 0. 491

# Quest PID Quest proc runtinme (s)

30 1.1083
495 0.422
933 0. 001

Figure 6.1: Sample Identification Data. The figure shows a notional data set used to identify
hidden processes. There is no correlation between VMM aedtguocess IDs.

cation.

6.3.3 CPU Inflation

The key feature used by our identification algorithm is théJGitne consumed by each
process as observed from within the VMM and from within thegfwperating system. Itis
important to note that the identification technique, unttke detection technique, requires
that the hidden process actually runs. Lycosid can detathdt identify a completely idle
hidden process.

Lycosid uses a new technique, calleBU inflation that allows it to influence the CPU
time used by a process. Itis an intrusive technique usedvangn the passive methods al-
ready described fail to reliably identify a hidden proc&3BU inflation works by transpar-
ently placing patches in guest program code. By forcing @sses to run more frequently
and more aggressively than they normally would, CPU inflagifectively increases the
resolving power of Lycosid’s identification techniques.

Details

When control is about to return from the VMM to a guest and CRflation is enabled,
Lycosid determines the address where execution will resaamdeplaces a small patch con-
taining a tight loop at that location. The patch forces ttepamted process to fully utilize
its scheduling quantum until it is removed, effectively nmaizing the amount of CPU time
used by a process.

Patches are only placed when control returns to user-madwrirlVMM environment,
nearly all VMM-to-guest transitions return to kernel-motlgcosid must therefore manu-
facture situations where the VMM returns to user-mode. ¢doatplishes this by arranging
for high-resolution timer interrupts to occur a short tinfieaa return to kernel-mode. The
small extra interval allows the operating system to conepitst current taskg.g, inter-
rupt processing) and return to user-mode where the guediinisately interrupted. The
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ideal length of the timer interval can be determined expenially within the VMM by
repeatedly increasing the interval until most timer intets occur in user-mode. By lim-
iting patches to user-mode code, the normal guest opersgisigm scheduler is free to
de-schedule a patched process and the system remains stable

In our implementation, after a patched process accumudatestain amount of CPU
time, chosen from a configurable, uniformly random intertiaé patch is removed and
the process is allowed to continue its normal executioncHeat are installed repeatedly
according to a configurable patch schedule. Processeséhpatched experience reduced
performance, but are still allowed to make progress. Whed @fation is enabled, patch-
ing is applied across all running processes. Lycosid esdbiRlJ inflation when the detec-
tion module indicates hiding but the identification mod@einhable to identify the hidden
processes.

6.4 Threat Model

Lycosid assumes few limitations on the abilities of an &tta.c Our threat model allows
an adversary complete control of a virtual machine inclgdull system administrator
privileges and the ability to observe and modify the opagasiystem kernel. Indeed, hiding
processes often requires an attacker to possess thesesibié#cause privileged utilities,
like ps on UNIX, operating system functions, likEnunPr ocesses on Windows, and
key OS structures, like the process list, must be modifiethfdément malicious hiding.

The only limitation we place on the abilities of an attaclesthiat the VMM itself cannot
be compromised. Clearly, an attacker that has control o¥¥i&1 could interfere with the
functionality of Lycosid, which is also implemented at th&M layer. We believe this
limitation is reasonable because the architectural iaterprovided by a VMM to a guest
operating system is relatively lean and, so far, has proesitient to misbehaving and
malicious guest software. While researchers have showrthhose a VMM toimplement
malware [57, 79], to our knowledge there have been no vercfesds where a commercial-
grade VMM has been compromised from outside by a guest.

6.4.1 Definition of Success

We consider it a success if Lycosid complicates succeygshidling malicious processes
sufficiently such that the cost of hiding is significantly ieased. As process hiding be-
comes more complicated and dangerous, an attacker witldilpiselect a different stealth

technique or forgo stealth altogether. We believe that kict@s a positive defensive step
that helps to gradually remove opportunities to be stedtthy attackers.

6.5 Evasion

We claim that Lycosid is less vulnerable to evasion by guefiveire than previously pre-
sented VMM-based security services. Demonstrating thatsystem is more secure than
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another in general is notoriously difficult (or impossiblé) this section we describe our
rationale for the claim and why we believe implicit techrégican represent a net benefit
for VMM-level system defense.

If a VMM-based security service depends on the correctnkasyguest-level com-
ponent, it is vulnerable to malicious corruption of that gmment [28]. For example, if
a VMM uses the integrity of the guest operating system pmotissto determine when
processes have been hidden, it is subject to evasion whestlitfeased on direct kernel
object manipulation corrupts the list. The rootkit leaveslist in a consistent, but incorrect
state. A VMM could use additional explicit information alia@ther system components
(e.g., thread scheduling queues) to detect inconsista@heysame approach has been taken
by guest-level hiding detectors [78], for which there anefontunately, malicious work-
arounds [1]. In this case, the VMM has no detection advantage a guest-level tool
because the information the VMM uses is fundamentally oletfrom the guest.

Lycosid is based on implicitly obtained information abolu tobserved guest virtual
machine. The information is derived from the basic behavidine guest operating system.
For example, Lycosid uses process information provided bifakm. Antfarm obtains its
process information by observing how a guest operatingaystanages its virtual address
spaces. To evade Antfarm, an attacker must modify how theatipg system implements
a fundamental feature (virtual memory) and must do so in atiwvayremains consistent
with its desired user-level view of processes.

In summary, Lycosid is perhaps best described as “diffgresabject to gaming and
evasion on the part of compromised guests. We believe tbet effiquired to deceive Ly-
cosid about ongoing process hiding while still maintainanfylly consistent outward ap-
pearance exceeds that of earlier VMM-based detectors. iJlideature of VMM-based
security services based on implicitly obtained informatmd raises the bar against mali-
cious process hiding.

6.6 Implementation

Lycosid is an extension to the Xen [27] VMM. The implemerdatiof Lycosid is split
between the Xen hypervisor and user-level programs thainrien’s privileged control
virtual machine.

Antfarm [49] is one hypervisor component. It infers infortna about guest operat-
ing system processes by observing architectural everplke table updates and context
switches. Antfarm provides the basis for Lycosid’s hiddeocpss detection and identifi-
cation. CPU inflation is also implemented as a core hyperfesature. It interposes on
Xen’s virtual CPU scheduling and shadow page table handbtngglectively and safely
patch user-level program code. Lycosid adds approxim&®dylines of C code to the
hypervisor.

The data collection and analysis components of Lycosidithplement its hidden pro-
cess detection and identification features are implemeagader-level programs running
in a Linux guest virtual machine. They communicate with tigpdrvisor components of
Lycosid via private VMM interfaces that are only availabieden’s privileged control VM.
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The analysis components are written in python and totalagmately 6000 lines of code
including statistics libraries and interfaces to libR.84][ a statistical computing library.

By partitioning Lycosid, only necessary components aresddd the hypervisor itself
allowing it to remain relatively small, which is a desiralsiecurity property. The analy-
sis components are normal user mode programs which camfaiba restarted without
compromising the integrity of the whole system. They opeirapolled batch mode which
removes them from any synchronous critical path and allbwmtto amortize the cost of
their communication with the VMM over many observations.

6.7 Evaluation

In this section we evaluate the performance of Lycosid’'sess detection and identifica-
tion. We want to measure accuracy, timeliness, and runtwveehead. Accuracy is the
ability of Lycosid to correctly detect and identify hidderopesses measured in terms of
false positives and false negatives. Our timeliness exparis measure how long it takes
Lycosid to come to its conclusions.

6.7.1 Experimental Environment

Lycosid is an extension to the Xen [27] VMM version 3.0.3titgg. We use the Linux ker-
nel version 2.6.16 in Xen’s privileged control virtual maoh We evaluate Lycosid using
two guest operating systems. The firstis the retail versidficrosoft Windows 2000 Pro-
fessional. The second is a default installation of Redh&tfpnise Linux 4.3. Both guests
run unmodified using Xen'’s full virtualization support efedbby the Intel virtual machine
extensions (VTx) [46]. Our experimental host has a 3.0 GHatiBen D processor and
is configured with 4 GB of system memory. Both privileged angnvileged virtual ma-
chines are allocated 512 MB of memory. The system contaiimggesSeagate 7200 RPM
Barracuda SATA hard disk drive.

6.7.2 Detection Evaluation

In Section 6.2 we noted that hidden process detection is koatgd by multiple factors.
For example, measurements make by the VMM cannot be psraesithronized, implicit
information can be subtly inaccurate, and unrelated psocesation and exit activity make
the measurements obtained by Lycosid unstable. The kegblaraffecting the ability of
Lycosid to detect hidden processes is how much unrelatedpsareation and exit activity
is occurring within the monitored virtual machine. Processation and exit activity tends
to inject variability into the quantities measured by Lyicband can magnify other, latent
sources of variance inherent in the implicit measurementgss like lag. To evaluate if
Lycosid can accurately detect a hidden process in spiteesEthoncerns, we perform many
detection tests at various levels of process creation amhd@&ivity.
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Figure 6.2: Process Count Difference Timelines.The figure shows a timeline of the difference
between the process list length obtained within the VMM aoich the guest operating system for
various levels of process creation and exit activity. ATpBs activity increases the variability in the
measured difference increases.
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Figure 6.3:Detection Timelines. The figure shows a timeline of the hypothesis test p-valus us
in the detection process for each of several levels of ppcesation/exit activity. The p-values
approach the detection threshold over time.
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Detection with Interference

Our detection experiments evaluate the accuracy and tigsdiof Lycosid when detecting
a single hidden process. When more than one process hasidden tthe difference be-
tween the VMM and user process lists is larger, making dieteeasier. Hence, detecting
a single hidden process is a worst case detection scenario.

The tests we perform explore how sensitive the detectidmigaes used by Lycosid are
to unrelated process creation and exit activity. To gerguedcess activity we use a syn-
thetic process generator that spawns processes randoarghdl-Balter and Downey in-
dicate in their study [39] that process arrivals are burgtian Poisson. We use a pareto
distribution with shape parametér= 1 for process inter-arrival times. We control the
average rate of process creation by varying the paretoitmcparameter. This distribution
leads to large process creation bursts which stress thetietéechniques. The process
lifetime distribution described by Harchol-Balter and Dwy applies to processes whose
lifetime exceeds one second. The arrival rates we use tessitgeeosid, however, are too
high to support such long lived processes. As a result, wessprocess lifetimes from
the uniform distribution on the interval from 0-1 secondjehhallows our test system to
remain stable.

To hide processes under Windows, we use the tanlexe and its accompanying
device drivemsdi r ect x. sys [32]. This tool hides Windows processes by unlinking
the target process from the kernel processfist. exe is the most frequently encountered
stealth rootkit removed by Microsoft's automated antiwwaate tools [67]. Under Linux we
simulate hidden processes by filtering process informatiarur guest process reporting
tool. Unlikef u. exe, most recent Linux rootkits hide themselves and manipwat®ous
logging and security features making them inconvenientrigsaarch setting.

To motivate our use of statistical techniques, Figure 6@wshhow the magnitude of
the difference between VMM process count and guest procest ased by Lycosid varies
over time when the system is subjected to different levelprotess creation and exit
activity under Windows. As process activity increases fiam to an average of 100 pro-
cesses/second, the variance and amplitude of the sigmabmying the difference increase.
This characteristic of the detection problem suggests $igeati statistical inference tech-
nigues to probabilistically determine if hiding is occuogi

Figure 6.3 provides intuition about how the p-value resgltirom the hypothesis test
used by Lycosid incrementally approaches the detecticgstinld for the cases depicted
in Figure 6.2. The test process is hidden immediately wheh eaperiment begins. De-
tection occurs when the p-value drops below= 2 x 10~%, which is shown as a dashed
horizontal line. In each case an orderly progression towatdction can be seen.

Figure 6.3 also hints that detection time increases witlagss activity. To quantify this
effect, time to detection was measured for our various E®egetivity levels. The results
for Windows are shown in Figure 6.4 where the Y-axis reptrgime to detection and the
X-axis indicates the process activity level. The valueswshfor each level are the average
of 10 trials. The standard deviation of detection time isvahaising error bars. Both
detection time and its variance increase with processioreand exit activity. In the worst
measured cases, under severe process load, Lycosid megeireral minutes to detect the
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Figure 6.4:Time to Detection. The figure shows how the time to detect a hidden process varies

for Windows as process creation and exit activity increases 0 processes/second to 100 pro-
cesses/second. The values shown are an average of 10 Erads.bars show the standard deviation
of detection time.

hidden process. Since hidden processes are typically lead (on the order of hours or
days) detection times of several minutes are not a real conde all of the experiments
shown, Lycosid correctly detects the hidden process.

An important output of a positive detection result is anreate of the number of pro-
cesses that have been hidden. In the detection experimestsilied above, a single pro-
cess was hidden, so, in each case a good estimate will betolase. Figure 6.5 shows
a summary of the estimated number of hidden processes elitaihen a single process
has been hidden under Windows. When process load is smalbbderate, the estimated
number of hidden processes is good, leading to a corregeimée of one hidden process.
Under extreme process creation and exit load, the estirbatgia to experience larger er-
ror and greater variance. Under the most extreme (and mastmumon) load, 5 of 10
estimates are too high. This error may result in falsely fifigng a non-hidden process
as hidden during the identification phase. However, ourewmadive p-value identification
threshold tends to reduce the chance of false positiveifamtions.

Portability

To explore the portability of Lycosid we repeat selectedegipents performed for Win-
dows guests using Linux. The setup of the Linux experimerirtons that for the Windows
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Estimating # Hidden Procs (Windows)
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Figure 6.5: Estimating the Number of Hidden Process. The figure shows how the estimate of
the number of hidden processes obtained from the detectiagepvaries for Windows as process
creation and exit activity increases from 0 processes#ts&¢o 100 processes/second when a single
process has been hidden. The values shown are an averagérial4 OError bars show the minimum
and maximum hidden process estimate observed.

guestsj.e., a single process is hidden with varying levels of procesatan and exit in-
terference. Figure 6.6 and Figure 6.7 show detect time addiehi process estimates. As
in the Windows experiments, the values shown are averagk8 wfals. Error bars show
the standard deviation of detection time and the minimumraagimum hidden process
estimates observed. Under Linux, Lycosid correctly dstdet hidden process in all cases.
In most cases, detection occurs within the first 60 secondriesval. For extreme inter-
ference levels, average detection time grows moderatédlysignificantly larger variation
between trials.

Under Linux, Lycosid estimates the number of hidden praeeascurately except for
very large process creation and exit activity. Interedyintpe direction of the error ex-
perienced by Lycosid when observing Linux guests is oppasfithat experienced under
Windows. Under Windows, Antfarm detects process credteforethe operating system
reports its creationi.e., process creation lag is negative under Windows. The ofmosi
is true under Linux; Antfarm detects process creation dfterOS reports it. High inter-
ference and load levels exacerbate the lag under both omesatstems leading to larger
deviations, but in opposite directions. Detection is nanpared, however, as our test
statistic is not based on averages and does not depend oaificsgistribution.
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Detecting Hiding (Linux)
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Figure 6.6: Time to Detection. The figure shows how the time to detect a hidden process
varies for Linux as process creation and exit activity irasres from 0 processes/second to 100 pro-
cesses/second. The values shown are an average of 10 Erads.bars show the standard deviation

of detection time.

False Positives

In addition to reliable detection, it is important that Ly not report hidden processes
spuriouslyj.e., that its false positive rate is small. Our statistical grehare predicts about
one false positive result per year. To explore this quesipirically, an experiment was
performed using a Windows guest in which no process was higtdeur most challenging
detection environment (100 process creations and exitsish. An 11 hour timeline from
the experiment is shown in Figure 6.8. As can be seen, no tematrd false detection is
apparent and no false detections occur. The experimentabdgsove the formal claim of
few false positives, but provides graphic empirical suppor

Performance Overhead

Lycosid detection is meant to run continuously, so it is imgot that it impose minimal
runtime overhead. To evaluate the overhead of the detegtiase of Lycosid we compare
the runtimes for three Windows benchmarks when they are mderlLycosid in detection
mode and when run under an unmodified Xen hypervisor. Tablstiws the results. Each
value is an average of five trials. We observed no significariaxce between trials.
Lycosid primarily adds overhead to Xen’s shadow page tahtalling and virtual ad-
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Estimating # Hidden Procs (Linux)
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Figure 6.7:Estimating the Number of Hidden Process.The figure shows how the estimate of the
number of hidden processes obtained from the detectioneplerges for Linux as process creation
and exit activity increases from 0 processes/second to t@epses/second when a single process
has been hidden. The values shown are an average of 10 tBalst bars show the minimum and
maximum hidden process estimate observed.

dress space switching. The first two benchmarks spend redhdf/their time performing
these two tasks and can be considered worst case scenarigedsid’s detection perfor-
mance. The&reateProdoenchmark creates and then destroys 1000 processes aly gsick
possible. ThdviemAllochenchmark allocates a 200 MB segment of memory, then touches
each page, causing many minor page faults and page tabléeesptiéemAlloc is repeated
five times in each trial. Our prototype experiences 5.3%/uvad for CreateProc and 3.6%
overhead for MemAlloc. The final benchmark is represengadive more common, but still
demanding, workload. It consists of compiling a large C pangusing gcc. In this case,
Lycosid adds a tiny 0.7% overhead.

6.7.3 Identification Evaluation

In this section we evaluate the ability of the identificatadgorithm described in Section 6.3
to identify which processes have been hidden once the d@mtextmponent provides a pos-
itive hiding indicator. As in the evaluation of the detectiphase, this evaluation focuses
on Lycosid’s accuracy and timeliness. In this case, acguisatycosid’s ability to cor-
rectly identify hidden processes. Our timeliness expenimguantify how long it takes to
positively identify the correct hidden processes.
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Detection without Hiding
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Figure 6.8: Timeline without Hiding. The figure shows an approximately 11 hour detection
timeline when no processes are hidden and very aggressbge$s creation/exit activity (100 pro-

cesses/second) is present. The top graph shows the sidgkb¥s/pothesis test p-value. The bottom
graph shows the difference between the VMM and guest praoesss. No false detections occur.

Identification Among Many Running Processes

Ouir first experiment measures how Lycosid performs wherefbto choose among vary-
ing numbers of active processes. In the experiments, a nuohipeocesses (from 1 to 50)
is created. Each of the test processes alternately runslegss The runtime is chosen
randomly from the range 0—-500 ms using a uniform distribut®imilarly, a sleep interval
is chosen from the interval 0—-1000 ms. One of the test presdssiidden using the same
techniques described in Section 6.7.2. Experiments weferpged with 1, 10, 25, and 50
total processes. At each level, 10 identification trialsevgerformed. Lycosid correctly
identifies the single hidden process in all cases. The tinmidemtify the hidden process
for both Windows and Linux guests is shown in Figure 6.9. TéfeHand bars show how
identification time and standard deviation increase as tinebrer of active processes grows
when one process has been hidden. Detection time and vaigaow because larger num-
bers of competing processes decrease the effective runfithe hidden process. Hence,
more samples are required to associate the runtime of thieehigrocess with the regres-
sion response variable in the face of measurement noise.

Hiding multiple processes is a common scenario when ankaitdmas several distinct
tasks to accomplish on a compromised system. For exampédtaaker may leave behind
a network backdoor to enable remote control, a keyloggdetd passwords, and a network
sniffer to acquire the addresses and open ports for targdteecsame network. Does iden-
tification become more difficult when more than one procesdiegn hidden? Our second
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Figure 6.9: Time to Identification. The figure shows how the time to identify hidden processes
grows as the number of total active processes increasesirimn®0 processes for both Windows (up-
per graph) and Linux (lower graph). The values shown are araye of 10 trials. Lycosid identified
the correct hidden processes in all cases on both platfoEnsr bars show the standard deviation

of identification time. The left bar corresponds to trialsvihich a single process was hidden. The
right bar shows results when 5 processes were hidden.
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Benchmark | Lycosid Xen | % Overhead

Runtime | Runtime
CreateProc 6.551s 6.222s 5.3%
MemAlloc 6.803 s 6.565 s 3.6%
Compile 25.386s| 25.210s 0.7%

Table 6.1:Detection Runtime Overhead.The table shows runtimes and overheads for three bench-
marks run under Lycosid and under a pristine version of Xen.

Average | Average
Runtime (s) | Sleep (s)| % True ID | % False ID | % No ID
0.25 0.5 100% 0% 0%
0.025 0.5 90% 0% 10%
0.0025 0.5 0% 0% 100%
0.25 5.0 100% 0% 0%
0.25 50.0 0% 0% 100%

Table 6.2:dentification under Reduced Runtime. The table reports the identification accuracy of
Lycosid for a set of experiments in which a single hidden ggeanust be identified among 10 active
processes when the hidden process runs exponentially festeas often. As the relative runtime
decreases, Lycosid’s ability to classify a process as idaebenign is impaired.

experiment is similar to the first, but in this case 5 out of 18e 25, or 50 total processes
have been hidden. Again, Lycosid correctly identifies alldein processes correctly for
both platforms. The right hand bars in Figure 6.9 show thatithe to identification grows
for the multi-process case, but not significantly. Hencesdsyd identification is accurate,
portable across guest operating systems and applicabésasavhere multiple processes
have been hidden.

Identifying Mostly Idle Hidden Processes

Our next series of experiments demonstrates that a lowdintarbound exists beneath
which Lycosid cannot identify which of several processdgdsien. We then test the ability
of CPU inflation to overcome the issue.

We first perform two variants of an earlier experiment in vihime process is hidden
among 10 total active processes under Windows. In eachntasi@ change the runtime
of the hidden process along one of two axes. The first axis sy bime, i.e., the time
between sleep intervals. The second axis is run frequemcythe length of the sleep
intervals. Reducing runtime along either axis decreasesitinal-to-noise ratio between
hidden process CPU time and the measurement error expedidycLycosid. The effect
is to make identification more challenging.

In the first set of experiments we exponentially reduce hidglecess busy time by
factors of 10 and measure the ability of Lycosid to identtg thidden process. In the
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Average | Average
Runtime (s) | Sleep (s)| % True ID | % False ID | % No ID
0.025 0.5 100% 0% 0%
0.0025 0.5 100% 0% 0%
0.00025 0.5 100% 0% 0%
0.025 5.0 100% 0% 0%
0.025 50.0 100% 0% 0%
0.025 500.0 100% 0% 0%
0.025| 5000.0 20% 0% 80%

Table 6.3: Effect of CPU Inflation. The table shows how CPU inflation can help make hidden
processes that run relatively little identifiable by Lyabdn the experiments, a single hidden process
must be identified among 10 active processes when the hiddessp runs very little or infrequently.
CPU inflation forces the hidden process to run more, progdigicosid with the information it needs
to make a positive identification. When average sleep timseesls the maximum sample period,
Lycosid naturally fails to reliably identify all hidden presses.

second round of experiments we exponentially increaseldtiep snterval by factors of 10
and again evaluate if Lycosid can identify the hidden precdsble 6.2 lists the runtime
parameters for the hidden process in each experiment angetisentage of 10 trials in
which Lycosid successfully identifies the single hiddencess.

When the busy time is reduced from earlier experiments by@rfaf 10 Lycosid cor-
rectly identifies the hidden processes in only 9 of 10 trigddter reducing the runtime
by a factor of 100, no process exceeds the identificatiorstimid p-value before the im-
plementation sample limit of 1000 is reached; hence, noge®ds identified as hidden.
When the sleep time increases by a factor of 10 or 100, non8 tfdls produces a pos-
itive hidden process identification. Note that in no casealsef positives occur,e., o
innocent processes are accused of being hidden. We seevdrptinat if a hidden process
runs for limited periods, even if it runs regularly, or if addien process runs infrequently,
Lycosid cannot identify it properly. Even in these casesyédwer, Lycosid correctly detects
that process hiding is taking place.

Table 6.3 shows the results of applying CPU inflation to idiattion tasks in which
the hidden process runs for short periods of time or raratg.r®©ur evaluation shows that
CPU inflation enables Lycosid to identify processes whoseame busy time is as low as
250us. The table also shows that even when a hidden process tatigaly rarely €.9,
once every 500 seconds on average) CPU inflation makes tHerhjarocess identifiable
by Lycosid. Finally, when the hidden process’s averagepstimee exceeds the amount of
time over which Lycosid makes observations (once every 52@0nds vs. approximately
1000 seconds of observation time in this experiment) Lytssnaturally unable to reliably
identify the hidden process. Our evaluation shows that Gfdtion is a powerful tool that
significantly extends the set of hidden processes that lig@as reliably identify.
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6.8 Attacks on Lycosid

Lycosid depends on an untrusted, user-level process viea.v@y to attack Lycosid is to
manipulate its user-level view.

H 1
Lycosid . Guest
Trusted View Untrusted View 1 Task Manager
0x49B2 winlogon.exe 1 winlogon.exe
0x2A4D csrss.exe 1 csrss.exe
0x338C explorer.exe ] explorer.exe
0x5522 services.exe 1 services.exe
0xAA2D svchost . exe svchost . exe
O0xDA2F spoolsv.exe i spoolsv.exe
0x41DE hideme.exe 1
1
1
1
1
Total = 28 Total = 28 1 Total =27
Matching lists ! No suspicious
No hiding I processes
1

Figure 6.10: Desynchronization Attack. The figure demonstrates the desynchronization attack
concept against Lycosid hidden process detection.

6.8.1 Desynchronization

The attack works bylesynchronizinghe untrusted, user-level view used by Lycosid and
the user-level view used by a defender to detect unexpecteggsesd.g, Windows task
manager). In the desynchronization attack, an adversdgshhe presence of a malicious
process from a defender, but doesn’t hide it from Lycosidthis way Lycosid fails to
detect hiding because, from its perspective, no hidingstgkace. A defender fails to
detect the hidden process because, from their perspetttevenalicious process does not
exist. Figure 6.10 shows a conceptual example of the desynization attack.

To successfully mount this style of attack, an adversarytimeiable to reliably identify
process enumeration requests made on behalf of Lycosidhelgéneral case, this task
will be difficult because Lycosid uses the same standard AdP&umerate processes as
any other process introspection tool ligs or the Windows task manager. Additionally,
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Lycosid is not limited to using a single tool with a fixed siguna to obtain its user-level
process view, so an attacker cannot easily rely on a fixedatigm database of known
Lycosid probe programs. In the same way, there are manyreliff¢éools that can be used
by a defender to enumerate processeg.(ps, top, task manager pslist, tasklist). For the
sake of this discussion, we will assume an attacker carbiglidentify and preferentially
handler any Lycosid process enumeration request.

6.8.2 Countermeasures

Lycosid is designed to be a part of a larger, comprehensagisg monitoring framework.
Such a framework would include a process monitoring compbtieat continuously ob-
serves the process list and generates an alert when unedpgcuspicious processes are
encountered. It is just such a security feature that anlatdwpes to deceive by hiding
their malicious processes. The desynchronization attaskribed above assumes that the
process view used by the process monitor component is eliffdrom the view used by
Lycosid. By integrating the process monitor and Lycosidlsat they both use the same
user-level process view, the opportunity to desynchroisizemoved and the attack fails.

6.9 Assumptions

Lycosid makes certain assumptions about operating systaththe attacker. Assumptions
made beyond the threat model stated in Section 6.4 are eatedeand discussed in this
section.

Whole-process hiding: Lycosid targets onlywhole-process hidingn which a malicious
user-level program is executed normally and the presenitebhormal process is hidden,
using arbitrary techniques, from a defender. Other hidéegniques exist such as injecting
a thread into an already existing, long running processngith plain sight by mimick-
ing the name and other characteristics of an existing, lpepigcess, or dispensing with
a user-level process altogether by deploying completegrating system kernel-resident
malware. Lycosid, because it is based on user-level praocé&ssnation, does not detect
these less common, alternative hiding techniques.

Statistical inference assumptions:Lycosid uses hypothesis testing and linear regression
to detect and identify hidden processes. These technigagsgre certain assumptions to
produce reliable inferences. We use a non-parametricttatiuring the Lycosid detec-
tion phase, so no distributional assumptions are requit@tkar regression, used during
identification, assumes independence of errors, constantvariance, linearity, and nor-
mality of errors. Data analysis shows that the data used lopdig meets all regression
requirements except normality of errors.

Residuals obtained using the models created by Lycosid@raarmal, but are quite
symmetric. Non-normality of errors affects the relialildf the p-value produced during
the hypothesis test of whether a model coefficient is zerowewer, we do not directly
interpret these values as probabilities. They are only tsedder the coefficients during
model selection. Hence, we believe this slight deviatignssfied.
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6.10 Summary

Stealth rootkits that allow attackers to hide maliciouscesses are a current and alarm-
ing security issue. In this chapter we have described, implged, and evaluated a novel
VMM-based hidden process detection and identificationisewalled Lycosid. Lycosid dif-
fers from prior VMM-layer process hiding detectors becaiisgses noisy information
about internal guest operating system state and eventalateaimplicitly to a VMM. Ly-
cosid provides an accurate and reliable service in spits abisy inputs by using statistical
inference techniques like hypothesis testing and regredeitrade detection and identifi-
cation time for accuracy.

In our evaluation, Lycosid correctly detected processrigidn each of hundreds of
trials. Identification is similarly robust except in caselenre a hidden process does not
run long enough or frequently enough. To overcome this #tiah, we have introduced
CPU inflation to force processes into an execution regimehichva hidden process can
be positively identified.

The performance-critical portions of Lycosid are based atfakm and exhibit similar
runtime overheads. In a worst-case performance scenammsid’s detection phase ex-
hibits less than 6% overhead. For a more typical, processsive workload, Lycosid im-
poses a mere 0.7% penalty.

An interesting consequence of our use of implicit informatis that Lycosid is likely
less susceptible to evasion attacks on the part of a compeahgiuest OS. To evade Ly-
cosid, an attacker must modulate externally visible bedrawi very specific ways, and
achieve their hiding goals at the same time. This complichtding and may drive at-
tackers into more difficult, error-prone, or risky hidingesarios like thread-injection or
kernel-resident malware.

Our implementation of Lycosid demonstrates that impligemting system informa-
tion can be effectively used at the VMM-level even when thst@d being wrong is high
as in a security monitoring service.
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Chapter 7

Related Work

The work described in this dissertation focuses on devefppmplementing, and evalu-
ating techniques that allow a VMM to implicitly obtain andpdait information about im-
portant software constructs within the guest operatintesys running above it. We have
benefited from previous research efforts that have explbosdto obtain and use infor-
mation across layer boundaries in hierarchical layeretésys In this chapter we survey
related work and describe how our own research fits into théesbdthat it provides.

7.1 Gray-box systems

The termgray-box[5] refers to any technique that uses observation and measunt to
obtain information about software or hardware across @&Byftyer boundary. The system
call interface that separates an operating system fromapgaications is an example of
such a boundary. A system can use gray-box information tiondg# its own performance
or to control the behavior of cross-layer components.

For example, gray-box information about operating systeemiory management can
be exploited by a user application to reorder its disk acess prefer blocks already
resident in the OS buffer cache [13] or to carefully managenémory allocation to avoid
paging [5]. Overriding the default file system layout schéoeptimize for cross-directory
access patterns in a web server [69] is an example of exanfhggnce across a system
boundary using gray-box techniques when no explicit cdimterface exists.

Gray-box information has also proven itself useful to comgrts logically below the
operating system. For example, Sivathatal, have shown that file system semantic in-
formation, such as how disk blocks are grouped to form filesetadata, and whether disk
blocks are live or dead in the file system, can be used to cRxali® storage systems that
degrade gracefully in the face of multiple failures [86] andeduce downtime resulting
from failure by recovering only live blocks [85]. Bairavaslaramet al, use gray-box
knowledge of file systems within a storage device to inferalutdlocks are resident in
a client buffer cache [7]. Gray-box information about ctieache contents can be used
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to implement an effective exclusive caching component [1@thin the storage system
without modifying the storage interface.

The techniques described in this dissertation focus onrinfginformation across a
different system boundary, namely the virtual architezinterface that separates a VMM
from its guest operating systems. Like gray-box storageesys, our modified VMM re-
sides below the operating system and bases its inferencagespreting the stream of
requests supplied by the OS and user applications. The ofpeformation available to a
VMM are considerably richer than that available to a stoiaggtem and include processor
interrupts, virtual memory configuration, memory conteatsd I/O requests. Richer infor-
mation enables additional applications not feasible or@miate within a storage device.

7.2 Guest Information in a VMM

Other researchers have recognized the value of OS-levehiattion in a VMM. We cate-
gorize this body of work by the method used to obtain infoioraébout the guest OS.

7.2.1 Paravirtualization and Explicit Interfaces

One straightforward and widely used method to obtain inftiom about the internal state
of a guest operating system is to create new interfaces toaide the information di-
rectly. Paravirtualization [27, 103] is a virtualizatioechnique that replaces expensive,
implicit guest requests like page table updates and I/OasigU31] by a virtualization-
aware interface similar to a system call. The primary goglasfvirtualization is to reduce
virtualization overhead. Overhead is typically reducedgtigamlining guest-to-VMM in-
terfaces and via batching, which allows a guest to amortizecbst of VMM invocation
across many requests.

The goal of our work is to transparently enable useful VMMeleservices. In many
cases our goal requires information about high-level g@&tbstractions like processes
and I/O caches. Paravirtual interfaces were not design#dthis goal in mind and do
not include the ability for a guest OS to inform a VMM aboutliigh-level internal state
or events. While explicit interfaces would greatly simplthe task of obtaining guest
information within a VMM, such interfaces do not exist tod&orting operating systems
to take advantage of new explicit interfaces requires figmit engineering effort. Creating
standard, multi-vendor interfaces requires immenseipalieffort. These costs will likely
hamper the creation and adoption of standard, multi-OS VMtdrfaces.

7.2.2 Explicit Information

Several recent projects obtain guest level information impedding details about the
version-specific memory layout and OS-specific data stracsemantics of a guest into
a VMM [35, 52, 56, 72, 68]. Required implementation detads sometimes be automat-
ically extracted from debugging symbols and libraries [35]t often detailed source or
binary analysis is needed to obtain them [52, 72, 68]. Systhiat take this approach read
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kernel data structures, like the process list, program érsadnd system call tables, di-
rectly. Some use information about the location and semsnfikey kernel functions like
fork, exec, map, ortry_t o_swap_out to stay informed of important guest events.
Reading and using data drawn directly from guest kernel nmeties a VMM to specific
guest OS vendors and versions, and creates an implicitoreshtip of trust between the
VMM and the guest. Implicit techniques, like those desdatibethis dissertation, help to
combat these drawbacks at the expense of more limited agittlgliess reliable informa-
tion.

7.2.3 Implicit Information

Other attempts to obtain implicit information about gugsé@ting systems have mostly
been confined to determining how a guest utilizes the vintesburces it has been allo-
cated. Disco [12], for example, determines when a guesttiasing is CPU allocation by
detecting when it enters a low-power processor mode. VMWa&8X Server [101] uses
page sampling to determine the utilization of physical mgnassigned to each of its vir-
tual machines to aid in page reallocation. Work by Uldtal.[98] introduces techniques
to manage processor resources more intelligently in a prattessor VMM environment.
It is most similar to our own work because it infers the stdta guestsoftwareconstruct.
Specifically, they deduce when no kernel locks are held bemiirsy when the guest OS
is executing in user versus kernel mode. The techniques s@itle target different, more
complex software abstractions like processes and diskesadmplicit techniques can be
easily composed to form more comprehensive solutions.

7.3 Statistical Techniques

Lycosid uses statistical techniques like hypothesisrigstind regression to transform un-
certain, implicitly obtained input information into relie intelligence that can be confi-
dently acted upon. Many other systems employ statisticdinigues to infer behavior,
to provide input to control algorithms, and to implementwséy classifiers. For exam-
ple, MS Manners [26] uses hypothesis testing to regulatestheduling of low-priority
background processes and to reduce their performance trmpdigh priority foreground
jobs. Junget al. [54] use sequential hypothesis techniques to probalbgikyi determine
whether remote hosts are conducting port scanning by usiqgesitial hypothesis testing
techniques [100]. Bayesian spam filters [80] and statiséicamaly detection systems [30]
use statistical learning techniques to build a model of mbtmehavior, then compare that
model to arriving email, network packets, or other meadersystem features to determine
if they are abnormal.

7.4 Case Studies

To demonstrate the practical value of guest OS informatighimva VMM we have de-
veloped several applications as case studies. We drew tassestudies from existing
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applications implemented using different techniques a different system layer. In this
section we briefly discuss the origin of some of our case studnd how our VMM-based
variations compare with previous implementations.

7.4.1 Working Set Size

In a virtualized environment, knowing theorking set siz¢24, 25] of a virtual machine is
useful for allocating the appropriate amount of memory.tédhen migrating VMs [19, 82]
in a distributed computing environment [29, 106] working sie information enables
the job scheduler to intelligently select a new host with dacuate amount of available
memory.

Techniques for estimating the working set size of a virtuathine have been explored
by Waldspurger and are part of the VMware ESX Server prodi@d], However, the ESX
Server technique can only determine the working set sizéfflaral machines that are using
less than their full allocation. Our working set size estion@omplements the ESX Server
technique by directly supporting situations where a virtnachine needs more memory,
i.e, itis thrashing.

7.4.2 Secondary-level Caching

Knowledge of the contents of the OS buffer cache is usefulvirtaalized environment
when implementing an effectiveecondary-level cach&or example, when multiple VMs
run on the same machine, the VMM can manage a shared secaadeyin its own mem-
ory, increasing the utilization of memory when the VMs shpages [12]. Additionally,

when the hosted OS is a legacy system that cannot addreggeaal@mount of memory, a
secondary cache can enable the legacy OS to exceed itslraatdrassing limits. Finally,

the VMM can explicitly communicate with a remote storageveecache, informing it of

which pages are currently cached within each VM [104].

Designing a secondary cache management policy is nomdtridecondary storage
caches exhibit less reference locality than client cacleesise the reference stream is
filtered through the client cache [66]. This, plus the fa@tthecondary storage caches
are often about the same size as client caches has led taatimmwin cacheeplacement
policies [108] and in cachplacemenpolicies [104]. We have implemented one promis-
ing placement policy called “eviction-based placementiahitinserts blocks into the sec-
ondary cache only when they have been evicted from the clieche. This approach
tends to make the caches overlap less and leads to morewffeetondary cache utiliza-
tion [17, 104]. Eviction-based placement is similar to miarchitectural victim caches in
the processor cache hierarchy [53].

Passive eviction detection in support of exclusive seconckching has been explored
to some extent by storage system researchers. For exampl&yYX{7] uses file system
semantic informationd.g, which storage blocks contain inodes) to snoop on updatas to
file’s accessed time field. Knowing which files have been rdgaccessed allows X-RAY
to build an approximate model of a client's cache. HoweveRAY is somewhat limited
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in its inferences because the storage system only has aodbed/O block stream outside
the OS.

Other exclusive caching work has assumed that one has docesse OS information;
for example, Cheret al.[16, 17] perform their inferencing within a pseudo-devicer
that has access to the addresses of the memory pages thairayedad and written. Thus,
they are able to infer that an eviction has occurred when aangpage that is storing disk
data is reused for other disk data.

Our approach to secondary disk caching is most similar todh&henet al,, but uses
additional information available to a VMM to improve its &tyi to accurately infer cache
events. The key differences include: handling unified butches and virtual memory
systems, recognizing when blocks on disk are free to avdse fvictions, and taking file
system journaling into account to avoid disk block aliasing

7.4.3 Hidden Process Detection

Cross-view validation for hiding detection has been stuidied variously implemented in
user applications [22], within the operating system keffh@P], inside a virtual machine
monitor [35], and using dedicated coprocessor hardwaie THe key aspect of cross-view
validation that differentiates these efforts is the meddrarused to obtain the low-level,
trusted view of the resource of interest.

Garfinkel et al, have shown the value of VMM-level cross-view validatiom fte-
tecting hidden processes with VMI [35]. VMI uses explicitavating system debugging
information like the memory addresses of variables andajeut and semantics of com-
pound structures to locate and interpret private kernel tates at runtime. This insight
into operating system data structures is used to obtairstettwiew of the guest operating
system process list. Lycosid extends the VMI concept bygusimly implicitly obtained
guest information within a VMM.
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Chapter 8

Conclusion

Virtualization technology is rapidly penetrating commtydiomputing systems. Key mi-
croprocessor vendors like Intel, AMD, and IBM are supplyiregdware virtualization as-
sistance that promises to vastly reduce the overheads edpwns virtualization. VMM
implementations like VMware and the POWER5 hypervisor as¢ume and robust. Lead-
ing operating systems like Microsoft Windows, Linux, S@édaand i5/0OS already include
or will soon include virtualization as a core feature.

Ina system thatincludes a virtualization layer, the VMM isadural place to implement
certain key features. For example, only the VMM has the remggsnsight and control to
globally optimize resource allocation and scheduling, imgkhese tasks a good match for
VMM-level implementation. VMM-based security services another example; they can
monitor vulnerable, network-facing guest operating systend applications from behind
the relative safety of the virtual machine interface.

We, and other researchers, have shown that many potentidMAdvler innovations
require information about high-level guest software aations—information that a VMM
does not intrinsically have. This dissertation has exgl@eortion of the VMM-service
design space that has been mostly ignored. We have shown¥YiMiecan independently
and implicitly obtain information about key guest OS softvabstractions by observing
how the guest interacts with virtual hardware resourcestlie MMU and storage devices.
Our techniques have proven to be accurate, low overheadpeantable across multiple
guest operating systems.

8.1 Lessons Learned

In the process of developing our techniques and creatingpmiotype implementations
we have been able to make several general observations laitiing services within a
VMM.
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OS responsibilities and available architectural featuresonstrain guest
implementations

General purpose operating systems like Windows and Lidwshate certain key constructs
and responsibilities. For example, all support the basicabSractions like processes,
threads, address spaces, and persistent data storage dpstigens. All provide certain
characteristics like process memory isolation, starmafiee scheduling, and basic virtual
memory semantics. An OS must implement these features tisngechanisms provided
by the underlying hardware architecture, such as the memarnyagement unit, timers,
memory, and disk devices. The constraints imposed by conaraitectural features and
OS requirements lead to generic, externally observablkenatin the behavior of guest
operating systems that a VMM can observe and use.

In general, the less implementation flexibility providedthg architecture to the OS,
the more constrained and easy to interpret the behavioredds will be. For example,
the hardware-defined page tables of the x86 architectured@a more concrete basis for
address space tracking than the software managed TLB muebbig SPARC.

Reuse is a good proxy for release

The inference techniques described in this dissertatierofien based on detecting when
aresource is allocated and deallocated. For example, gg@ceation and exit correspond
to address space allocation and deallocation. We have fthatdletecting allocation is
often quite simple. Detecting deallocation is often mofédlilt. The principle that reuse
implies release has been helpful in detecting deallocatissveral cases.

Time is of the Essence

In the process of building VMM-based services, we have faimatiwhena certain guest
OS event has occurred is important. This stands in contastuch previous gray-box
research which has focused on discovering static configurparameterse(g, the cache
replacement policy) or the current state of a resoueag, (vhether a file block is cached).
Invariably, the time at which a VMM observes that an event desurred using implicit
techniques is different from the time the event occurrededimed by the guest OS. Lag
between actual and inferred events places practical liomtsow implicit information can
be used. We have seen that delayed, but correct, processaehe information can be
useless, while short term errors cause no harm or even hedircapplications. In general,
minimizing lag is just as or more important than rigidly regucing the same set of events
as experienced by a guest OS.

Hardware that hides, hurts

Recent hardware-assisted virtualization [37] has thergiateto significantly reduce the
overhead imposed by a VMM. The current implementation oflihvare-assisted virtual-
ization for the x86 architecture [3, 46] can, in some caske iImformation about certain
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events, like page faults and page table updates, from a VMi4. Side effect inadvertently
complicates some powerful software-based optimizatigpoapinities, including some dis-
cussed in this dissertation. Other research [2] shows trag¢ist hardware virtualization
can interfere with important features of a sophisticatdthwre VMM and can ultimately
reduce overall performance. Hence, hardware virtuatimggatures must be carefully de-
signed so that they do not unintentionally reduce the flégitdnd power of a software
VMM to employ code and workload-specific optimizations.

Portability does not imply guest-independence

We have built portable VMM-based services; the same impteati®n can be applied suc-
cessfully to very different guest operating systems likadféws and Linux. The concrete
results obtained under each guest, however, can vary stiibfiia For example, Linux
kernel version 2.6 exhibits false positive process eveotsuffered by Windows or Linux
2.4. Creation lag under Linux 2.4 can be three orders of ntadeiarger than under Linux
2.6. An application wishing to utilize implicit informatmowithin a VMM must take such
platform variations into account.

Online statistical inference helps manage uncertainty

Variation and uncertainty in the form of false positive etgesind lag are a recurring theme
in this dissertation. Elementary statistical inferenahteques, like hypothesis testing, that
can be applied continuously and automatically within a VM&hdransform uncertainty
due to variance into inferences about a guest that can beaigeduantifiably high levels
of confidence.

8.2 Future Work

The space of possible applications implemented at the VMMrlar with VMM assistance
is large and has only begun to be explored. In this sectionigeugs some possible fu-
ture avenues of inquiry relating to OS-aware services wighYMM beginning with tasks
closely related to those we have already discussed and thedesing further afield.

8.2.1 Targeting Other Guest Abstractions

There are many other important guest operating systemeatisins like threads, users, and
network protocols that we have not considered in our workwlinich could be useful when
implementing services in a VMM. In the same way we have exddrad VMM to observe
the MMU and disk devices to infer information about OS preessand caches, a VMM
can observe other virtual devices, like the microproceasdrnetwork interface cards, to
inform itself about additional OS abstractions.



102

8.2.2 Resource Association

We were able to show in Section 4.3 how a VMM can reliably aisgedisk read requests
with their originating process. This is just one part of a imlazger, general problem of log-
ically connecting asynchronous guest OS events (like lifDiests) to implicitly observed
entities (like processes, users, and threads). Our exiagproach exploits the direction
of data movement through memory toward a user process tdifigl@s destination and
make an association. The same technigue cannot be used ataemalves in the opposite
direction. A new approach is required.

Other asynchronous requests like network sends and recaigealso difficult to asso-
ciate with a specific process from within a VMM. Does the tgpiapproach to network
protocol processing employed by most operating system&dempportunities for effi-
ciently associating network packets with a sending or xéogiprocess? Accurate and
early network packet association can be used, for exantpsgléctively implement novel
VMM-based security features like process-specific filtlgria protect applications from
exploits targeting known vulnerabilities and taint tragki41] to prevent network-based
code injection attacks.

8.2.3 Observing Memory Structure

There are other sources of information about guest operatiatems than the stream of
service requests and fault notifications that we use in oukwdne that seems particularly
interesting is the content and structure of guest OS menAargperating system’s memory
image is a collection of dynamic, interconnected strucufiene organization and content
of these structures can reveal a great deal about the cstegatof the guest OS. A VMM
may be able to discover the location and the semantics of sfrese structures on its
own, without resorting to external information sourcee ldebugging symbols.

For example, an OS process is typically represented in mebya compound memory
structure, often referred to as tpeocess control blockThe complete set of processes is
usually represented by a dynamic, pointer-based collectigorocess control blocks like
a list or a tree. By employing on-demand emulation [41] teestely observe which
memory addresses are accessed temporally close to pretatesd architectural events,
like address space context switch, a VMM can identify mamcpss management-related
memory locations.

Compound memory structures are often accessed using heseffsiet variants of load
and store instructions which can be parsed to identify tise painter of a structure and the
offsets of commonly used individual fields. Each field acedssithin a structure also has
an implicit data type consisting of the size, range, and obllhe memory operanc(g,
small integer, bit vector, pointer). By combining field @ffs and data types, an implicit
compound type for a structure can be created and used tafidetiter structures of the
same type in memory. By analyzing the data types of indiiflakls and how structures
of similar type point to each other in memory it may be possior a VMM to infer the
organization and partial semantics of important dynamta g&ructures like the guest OS
process list.
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Chilimbi et al.[18], have employed similar techniques to discover invetgan appli-
cation heap memory like the average pointer in-degree atdegree of heap allocated
data structures. They then use the invariants to discowg ipypointer manipulating code.
Petroniet al. [68], scan kernel memory from within a PCI device for viotets of pre-
defined correctness invariants using explicit, user-saggdernel memory layout informa-
tion. Using the approach described above, these technapudd be extended to allow a
VMM to identify kernel data structures and check securitsaiants without requiring ex-
plicit implementation information. For example, a seliatained and independent VMM
service could ensure that all active processes are linkedhe system process list.

8.3 Closing Remarks

In this dissertation we have focused on implicitly obtagniand exploiting information
about certain guest operating system abstractions. Wenaskas our starting point the
basic organization and division of labor between the VMM gudst operating systems that
exist today. We have argued that the broad deployment oémysirtualization suggests
that certain OS features should migrate from the OS into th#vlV Our approach has
been to implement these OS-like features within a VMM withclianging the guest OS
by using implicit information.

Operating systems and VMMs will change over time. The qoastif if and how
the relationship between the operating system and the VMbdilshchange is important.
Which features currently implemented in the operatingesystvould make more sense
implemented within a VMM? How should the interfaces betw#enVVMM and the OS
change to facilitate communication without compromisihg key desirable features of
each?

The inclusion of a system virtualization layer as a core congmt in most system-level
software represents an exciting and fundamental evolukording an acceptable balance
between isolation and cooperation among diverse operagisggms and VMMs will re-
quire significant technical and political innovation. Unlie perfect balance is discovered
and adopted, there will be room for implicit methods likeghave have described here.
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