Deconstructing Storage Arrays

Timothy E. Denehy, John Bent, Florentina I. Popovici,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

Department of Computer Sciences, University of Wisconsin, Madison

ABSTRACT

We introduce Shear, a user-level software tool that characterizes
RAID storage arrays. Shear employs a set of controlled algorithms
combined with statistical techniques to automatically determine the
important properties of a RAID system, including the number of
disks, chunk size, level of redundancy, and layout scheme. We illus-
trate the correctness of Shear by running it upon numerous simu-
lated configurations, and then verify its real-world applicability by
running Shear on both software-based and hardware-based RAID
systems. Finally, we demonstrate the utility of Shear through three
case studies. First, we show how Shear can be used in a storage
management environment to verify RAID construction and detect
failures. Second, we demonstrate how Shear can be used to extract
detailed characteristics about the individual disks within an array.
Third, we show how an operating system can use Shear to automat-
ically tune its storage subsystems to specific RAID configurations.

Categories and Subject Descriptors: D.4.2 [Storage Manage-
ment]: Storage hierarchies

General Terms: Measurement, Performance.
Keywords: Storage, RAID.

1. INTRODUCTION

Modern storage systems are complex. For example, a high-
end storage array can contain tens of processors and hundreds of
disks [8] and a given array can be configured many different ways,
most commonly using RAID-0, RAID-1, or RAID-5. However, re-
gardless of their internal complexity, RAID arrays expose a simple
interface consisting of a linear array of blocks. All of the internal
complexity is hidden; a large array exports exactly the same inter-
face as a single disk.

This encapsulation has many advantages, the most important of
which is transparent operation of unmodified file systems on top of
any storage device. But this transparency has a cost: users and ap-
plications cannot easily obtain more information about the storage
system. For example, most storage systems do not reveal how data
blocks are mapped to each of the underlying disks and it is well

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASPLOS’ 04, October 7-13, 2004, Boston, Massachusetts, USA.

Copyright 2004 ACM 1-58113-804-0/04/0010 ...$5.00.

known that RAID configuration has a large impact on performance
and reliability [4, 17, 22, 29]. Furthermore, despite the fact that
configuring a modern array is difficult and error-prone, administra-
tors are given little help in verifying the correctness of their setup.

In this paper, we describe Shear, a user-level software tool that
automatically identifies important properties of a RAID. Using this
tool to characterize a RAID allows developers of higher-level soft-
ware, including file systems and database management systems, to
tailor their implementations to the specifics of the array upon which
they run. Further, administrators can use Shear to understand de-
tails of their arrays, verifying that they have configured the RAID
as expected or even observing that a disk failure has occurred.

As is common in microbenchmarking, the general approach used
by Shear is to generate controlled I/O request patterns to the disk
and to measure the time the requests take to complete. Indeed, oth-
ers have applied generally similar techniques to single-disk storage
systems [23, 27, 30]. By carefully constructing these I/O patterns,
Shear can derive a broad range of RAID array characteristics, in-
cluding details about block layout strategy and redundancy scheme.

In building Shear, we applied a number of general techniques
that were critical to its successful realization. Most important was
the application of randomness; by generating random 1I/O requests
to disk, Shear is better able to control its experimental environment,
thus avoiding a multitude of optimizations that are common in stor-
age systems. Also crucial to Shear is the inclusion of a variety of
statistical clustering techniques; through these techniques, Shear
can automatically come to the necessary conclusions and thus avoid
the need for human interpretation.

We demonstrate the effectiveness of Shear by running it upon
both simulated and real RAID configurations. With simulation, we
demonstrate the breadth of Shear, by running it upon a variety of
configurations and verifying its correct behavior. We then show
how Shear can be used to discover interesting properties of real
systems. By running Shear upon the Linux software RAID driver,
we uncover a poor method of parity updates in its RAID-5 mode.
By running Shear upon an Adaptec 2200S RAID controller, we find
that the card uses the unusual left-asymmetric parity scheme [13].

Finally, we demonstrate the utility of the Shear tool through three
case studies. In the first, we show how administrators can use Shear
to verify the correctness of their configuration and to determine
whether a disk failure has occurred within the RAID array. Sec-
ond, we demonstrate how Shear enables existing tools [23, 27, 30]
to extract detailed information about individual disks in an array.
Third, we show how a file system can use knowledge of the under-
lying RAID to improve performance. Specifically, we show that a
modified Linux ext2 file system that performs stripe-aware writes
improves sequential I/O performance on a hardware RAID by over
a factor of two.

—

00 01 02 03
16 17 18 19

04 05 06 07
20 21 22 23

Striping:

—_

>

00 01 02 03
28 29 30 31
32 33 34 35
60 61 62 63

04 05 06 07
24 25 26 27
36 37 38 39
56 57 58 59

Striping: Z

—

1G-ZAG, Stripe

00 01 02 03
08 09 10 11

04 05 06 07
1213 14 15

—_

i

—__

00 01 02 03
12 1314 15
16 17 18 19
28 29 30 31

04 05 06 07
00 01 02 03
20 21 22 23
16 17 18 19

Mirroring:

—

00 01 02 03
1213 14 15

04 05 06 07
16 17 18 19

>

>

>

>

>

S

08 09 10 11
24 25 26 27

vu
RAID-0, Stripe Size = Pattern Size = 16

12 13 14 15
28 29 30 31

>

i

08 09 10 11
20 21 22 23
40 41 42 43
5253 54 55

vu
Size = 16, Pattern Size = 32

S

12 13 14 15
16 17 18 19
44 45 46 47
48 4950 51

00 01 02 03
08 09 10 11

vu
Mirroring: RAID-1, Stripe Size = Pattern Size = 8

04 05 06 07
12 13 14 15

>

i

08 09 10 11
04 05 06 07
24 25 26 27
20 21 22 23

vu
Chained Declustering, Stripe = Pattern = 16

S

12 13 14 15
08 09 10 11
28 29 30 31
24 25 26 27

08 09 10 11
20 21 22 23

P P P P

PP PP

- s~

Parity: RAID—4, Stripe Size = Pattern Size = 12

00 01 02 03|04 05
16 17 18 19|20 21

06 07|08 09 10 11{P P P P
22 23| P P P P|12 13 14 15
P P |24 25 26 27|28 29 30 31
38 39(40 41 42 43|44 45 46 47

32 33 34 35| P P
P P P P|36 37

Parity: RAID-5 Left—Symmetric, Stripe Size = Pattern Size = 16

S > >

00 01 02 03|04 05 06 07({08 09 10 11| P
12 13 14 15|16 17 18 19| P P P P |20 21 22 23
24 25 26 27\ P P P P |28 29 30 31|32 33 34 35
P P P P|36 37 38 39(40 41 42 43|44 45 46 47
48 49 50 51|52 53 54 55(56 57 58 59|P P P P
60 61 62 63|64 65 66 67| P P P P|68 69 70 71
72 73 74 15| P P P P |76 77 78 79|80 81 82 &3

P P P P |84 85 86 8788 89 90 91|92 93 94 95
~ N "

Parity: RAID-5 Left—Asymmetric, Stripe = 16, Pattern = 48

00 01 02 03|04 05 06 07|P P P P|Q Q Q0 O
P P P PO QO Q0 0080910 11|12 13 14 15
16 17 18 19|20 21 22 23|P P P P|Q Q0 Q ©
P P P PO QO O 0242526 27[28 29 30 31

Parity: P+Q, Stripe Size = 8, Pattern Size = 16

Figure 1: Examples and Terminology. This picture displays a number of four disk arrays using several of the layout patterns discussed
in the paper. The numbers represent blocks, P and Q indicate parity blocks, and redundant data is denoted with italics. In each case, the
chunk size is four blocks and the stripe size and pattern size in blocks are listed. Each array depicts at least two full patterns for the given

layout scheme, the first of which is shaded in gray.

The rest of this paper is organized as follows. In Section 2 we
describe Shear, illustrating its output on a variety of simulated con-
figurations and redundancy schemes. Then, in Section 3, we show
the results of running Shear on software and hardware RAID sys-
tems, and in Section 4, we show how Shear can be used to improve
storage administration and file system performance through three
case studies. Finally, we discuss related work in Section 5 and con-
clude in Section 6.

2. SHEAR

We now describe Shear, our software for identifying the charac-
teristics of a storage system containing multiple disks. We begin
by describing our assumptions about the underlying storage sys-
tem. We then present details about the RAID simulator that we use
to both verify Shear and to give intuition about its behavior. Finally,
we describe the algorithms that compose Shear.

2.1 Assumptions

In this paper, we focus on characterizing block-based storage
systems that are composed of multiple disks. Specifically, given
certain assumptions, Shear is able to determine the mapping of
logical block numbers to individual disks as well as the disks for
mirrored copies and parity blocks. Our model of the storage sys-
tem captures the common RAID levels 0, 1, 4, and 5, and variants
such as P+Q [4] and chained declustering [11].

We assume a storage system with the following properties. Data
is allocated to disks at the block level, where a block is the minimal
unit of data that the file system reads or writes from the storage
system. A chunk is a set of blocks that is allocated contiguously
within a disk; we assume a constant chunk size. A stripe is a set of
chunks across each of D data disks.

Shear assumes that the mapping of logical blocks to individual
disks follows some repeatable, but unknown, pattern. The pattern
is the minimum sequence of data blocks such that block offset ¢
within the pattern is always located on disk j; likewise, the pat-
tern’s associated mirror and parity blocks, ¢, and ,, are always on
disks k,, and k,, respectively. Note that in some configurations, the
pattern size is identical to the stripe size (e.g., RAID-0 and RAID-5
left-symmetric), whereas in others the pattern size is larger (e.g.,
RAID-5 left-asymmetric). Based on this assumption, Shear can-
not detect more complex schemes, such as AutoRAID [29], that
migrate logical blocks among different physical locations and re-
dundancy levels.

Figure 1 illustrates a number of the layout configurations that we
analyze in this paper. Each configuration contains four disks and
uses a chunk size of four blocks, but we vary the layout algorithm
and the level of redundancy.

RAID systems typically contain significant amounts of memory
for caching. Shear currently does not attempt to identify the amount
of storage memory or the policy used for replacement; however,

techniques developed elsewhere may be applicable [2, 23, 28, 30].
Due to its use of random accesses and steady-state behavior, Shear
operates correctly in the presence of a cache, as long as the cache
is small relative to the storage array. With this assumption, Shear is
able to initiate new read requests that are not cached and perform
writes that overwhelm the capacity of the cache.

Our framework makes a few additional assumptions. First, we
assume that all of the disks are relatively homogeneous in both per-
formance and capacity. However, the use of random accesses again
makes Shear more robust to heterogeneity, as described in more
detail below. Second, we assume that Shear is able to access the
raw device; that is, it can access blocks directly from the storage
system, bypassing the file system and any associated buffer cache.
Finally, we assume that there is little traffic from other processes in
the system; however, we have found that Shear is robust to small
perturbations.

2.2 Techniques

The basic idea of Shear is that by accessing sets of disk blocks
and timing those accesses, one is able to detect which blocks are
located on the same disks and thus infer basic properties of block
layout. Intuitively, sets of reads that are “slow” are assumed to be
located on the same disk; sets of reads that are “fast” are assumed
to be located on different disks. Beyond this basic approach, Shear
employs a number of techniques that are key to its operation.
Randomness: The key insight employed within Shear is to use
random accesses to the storage device. Random accesses are im-
portant for a number of reasons. First, random accesses increase
the likelihood that each request will actually be sent to a disk (i.e.,
is not cached or prefetched by the RAID). Second, the performance
of random access is dominated by the number of disk heads that are
servicing the requests; thus Shear is able to more easily identify the
number of disks involved. Third, random accesses are less likely to
saturate interconnects and hide performance differences. Finally,
random accesses tend to homogenize the performance of slightly
heterogeneous disks: historical data indicates that disk bandwidth
improves by nearly 40% per year, whereas seek time and rotational
latency improve by less than 10% per year [10]; as a result, disks
from different generations are more similar in terms of random per-
formance than sequential performance.

Steady-state: Shear measures the steady-state performance of the
storage system by issuing a large number of random reads or writes
(e.g., approximately 500 outstanding requests). Examining steady-
state performance ensures that the storage system is not able to
prefetch or cache all of the requests. This is especially important
for write operations that could be temporarily buffered in a write-
back RAID cache.

Statistical inferences: Shear automatically identifies the param-
eters of the storage system with statistical techniques. Although
Shear provides graphical presentations of the results for verifica-
tion, a human user is not required to interpret the results. This
automatic identification is performed by clustering the observed ac-
cess times with K-means and X-means [18]; this clustering allows
Shear to determine which access times are similar and thus which
blocks are correlated.

Safe operations: All of the operations that Shear performs on the
storage system are safe; most of the accesses are read operations
and those that are writes are performed by first reading the existing
data into memory and then writing out the same data. As a result,
Shear can be run on storage systems containing live data and this
allows Shear to inspect RAIDs that appear to have disk failures or
other performance anomalies over time.

2.3 Simulation Framework

To demonstrate the correct operation of Shear, we have devel-
oped a storage system simulator. We are able to simulate storage
arrays with a variety of striping, mirroring, and parity configura-
tions; for example, we simulate RAID-0, RAID-1, RAID-4, RAID-
5 with left-symmetric, left-asymmetric, right-symmetric, and right-
asymmetric layouts [13], P+Q redundancy [4], and chained declus-
tering [11]. We can configure the number of disks and the chunk
size per disk. The storage array can also include a cache.

The disks within the storage array are configured to perform sim-
ilarly to an IBM 9LZX disk. The simulation of each disk within the
storage array is fairly detailed, accurately modeling seek time, ro-
tation latency, track and cylinder skewing, and a simple segmented
cache. We have configured our disk simulator through a combina-
tion of three methods [23]: issuing SCSI commands and measur-
ing the elapsed time, by directly querying the disk, and by using
the values provided by the manufacturer. Specifically, we simu-
late a rotation time of 6 ms, head switch time of 0.8 ms, a cylinder
switch time of 1.8 ms, a track skew of 36 sectors, a cylinder skew
of 84 sectors, 272 sectors per track, and 10 disk heads. The seek
time curve is modeled using the two-function equation proposed by
Ruemmler and Wilkes [20]; for short seek distances (less than 400
cylinders) the seek time is proportional to the square root of the
cylinder distance (with endpoints at 0.8 and 6.0 ms), and for longer
distances the seek time is proportional to the cylinder distance (with
endpoints of 6.0 and 8.0 ms).

2.4 Algorithm

Shear has four steps; in each step, a different parameter of the
storage system is identified. First, Shear determines the pattern
size. Second, Shear identifies the boundaries between disks as well
as the chunk size. Third, Shear extracts more detailed information
about the actual layout of blocks to disks. Finally, Shear identifies
the level of redundancy.

Although Shear behaves correctly with striping, mirroring, and
parity, the examples in this section begin by assuming a storage
system without redundancy. We show how Shear operates with
redundancy with additional simulations in Section 2.5. We now
describe the four algorithmic steps in more detail.

2.4.1 Pattern Size

In the first step, Shear identifies the pattern size. This pattern
size, P, is defined as the minimum distance such that, for all B,
blocks B and B + P are located on the same disk.

Shear operates by testing for an assumed pattern size, varying the
assumed size p from a single block up to a predefined maximum (a
slight but unimplemented refinement would simply continue until
the desired output results). For each p, Shear divides the storage
device into a series of non-overlapping, consecutive segments of
size p. Then Shear selects a random segment offset, o,., along with
N random segments, and issues parallel reads to the same offset o,
within each segment. This workload of random requests is repeated
R times and the completion times are averaged. Increasing /N has
the effect of concurrently examining more segments on the disk;
increasing R conducts more trials with different random offsets.

The intuition behind this algorithm is as follows. By definition, if
p does not match the actual pattern size, P, then the requests will be
sent to different disks; if p is equal to P, then all of the requests will
be sent to the same disk. When requests are serviced in parallel by
different disks, the response time of the storage system is expected
to be less than that when all requests are serviced by the same disk.

To illustrate this behavior, we consider a four disk RAID-0 array
with a block size of 4 KB and a chunk size of 4 blocks (16 KB);

2 Blocks (8 KB)

4 Blocks (16 KB) 6 Blocks (24 KB) 8 Blocks (32 KB)

10 Blocks (40 KB) 12 Blocks (48 KB) 14 Blocks (56 KB) 16 Blocks (64 KB)

Figure 2: Pattern Size Detection: Sample Execution. Given 4 disks and a chunk size of 4 blocks, the shaded blocks are read as Shear
increments the assumed pattern size. For compactness, the figure starts with an assumed pattern size of 2 blocks and increases each time
by 2 blocks. The figure highlights all blocks at the given stride; in reality, only N random blocks are read.

Pattern Size Detection: RAID-0 4 Disks 16 KB Chunks

Time (s)

0 32 64 96 128 160 192 224 256

Pattern Size Assumed (KB)

Pattern Size Detection: RAID-0 6 Disks 16 KB Chunks

Time (s)

0 32 64 96 128 160 192 224 256
Pattern Size Assumed (KB)

Pattern Size Detection: RAID-0 8 Disks 16 KB Chunks

05 - Ao mj EY | PO 3, *j

R
T T T T T T T T T
0 32 64 96 128 160 192 224 256

Pattern Size Assumed (KB)

Time (s)

Figure 3: Pattern Size Detection: Simulations. The graphs show
the results of running the pattern size detection algorithm on
RAID-0 with 16 KB chunks and 4, 6, and 8 disks.

thus, the actual pattern size is 16 blocks (64 KB). Figure 2 shows
the location of the reads as the assumed pattern size is increased
for a sample execution. The top graph of Figure 3 shows the corre-
sponding timings when this workload is run on the simulator.

The sample execution shows that when the assumed pattern is
2, 4, or 6 blocks, the requests are sent to all disks; as a result,
the timings with a stride of 8, 16, and 24 KB are at a minimum.
The sample execution next shows that when the assumed pattern
is 8 blocks, the requests are sent to only two disks; as a result,
the timing at 32 KB is slightly higher. Finally, when the assumed
pattern size is 16 blocks, all requests are sent to the same disk and
a 64 KB stride results in the highest time.

To detect pattern size automatically, Shear clusters the observed
completion times using a variant of the X-means cluster algorithm
[18]; this clustering algorithm does not require that the number of
clusters be known a priori. Shear then selects that cluster with
the greatest mean completion time. The correct pattern size, P, is
calculated as the greatest common divisor of the pattern size as-
sumptions in this cluster.

To demonstrate that Shear is able to detect different pattern sizes,
we configure the simulator with six and eight disks in the remaining

two graphs of Figure 3. As desired, blocks with a stride of 96 KB
(i.e., 6 disks x 16 KB) and 128 KB (i.e., 8 disks x 16 KB) are
located on the same disk and mark the length of the pattern.

2.4.2 Boundaries and Chunk Size

In the second step, Shear identifies the data boundaries between
disks and the chunk size. A data boundary occurs between blocks a
and b when block « is allocated to one disk and block b to another.
The chunk size is defined as the amount of data that is allocated
contiguously within a single disk.

Shear operates by assuming that a data boundary occurs at an
offset, ¢, within the pattern. Shear then varies ¢ from 0 to the pattern
size determined in the previous step. For each ¢, Shear selects NV
patterns at random and creates a read request for offset ¢ within the
pattern; Shear then selects another N random patterns and creates
aread request at offset (¢ — 1) mod P. All 2N requests for a given
c are issued in parallel and the completion times are recorded. This
workload is repeated for R trials and the times are averaged.

The intuition is that if ¢ does not correspond to a disk boundary,
then all of the requests are sent to the same disk and the workload
completes slowly; when c does correspond to a disk boundary, then
the requests are split between two disks and complete quickly (due
to parallelism).

To illustrate, we consider the same four disk RAID-0 array as
above. Figure 4 shows a portion of a sample execution of the chunk
size detection algorithm and the top graph of Figure 5 shows the
timings. The sample execution shows that when c is equal to 0 and
4, the requests are sent to different disks; for all other values of c,
the requests are sent to the same disk. The timing data validates
this result in that requests with an offset of 0 KB and 16 KB are
faster than the others.

Shear automatically determines the chunk size C' by dividing the
observed completion times into two clusters using the K-Means
algorithm and selecting the cluster with the smallest mean comple-
tion time. The data points in this cluster correspond to the disk
boundaries; the RAID chunk size is calculated as the difference
between these boundaries.

To show that Shear can detect different chunk sizes, we consider
a few striping variants. We begin with RAID-0 and a constant pat-
tern size (i.e., 64 KB); we examine both 8 disks with 8 KB chunks
and 16 disks with 4 KB chunks in the next two graphs in Figure 5.
As desired, the accesses are slow at 8 KB and 4 KB intervals, re-
spectively. To further stress boundary detection, we consider ZIG-
ZAG striping in which alternating stripes are allocated in the re-
verse direction; this scheme is shown in Figure 1. The last graph
shows that the first and last chunks in each stripe appear twice as
large, as expected.

2.4.3 Layout

The previous two steps allow Shear to determine the pattern size
and the chunk size. In the third step, Shear infers which chunks
within the repeating pattern fall onto the same disk.

To determine which chunks are allocated to the same disk, Shear

Block 0 (0 KB) Block 1 (4 KB) Block 2 (8 KB)

Block 3 (12 KB)

Block 4 (16 KB) Block S (20KB) Block 6 (24 KB) Block 7 (28 KB)

Figure 4: Chunk Size Detection: Sample Execution. Given 4 disks and 4 block chunks, the shaded blocks are read as Shear increments
the offset within the pattern. Although requests are shown accessing every pattern, only N are selected at random.

Chunk Size Detection: RAID-0 4 Disks 16 KB Chunks

1.5
=
o 1.0 1
E
= 05+
00 <, T T T T
0 16 32 48 64
Boundary Offset Assumed (KB)
Chunk Size Detection: RAID-0 8 Disks 8 KB Chunks
1.5
=
o 1.0 A
E
= 0.5
00 <, T T T T
0 16 32 48 64
Boundary Offset Assumed (KB)
Chunk Size Detection: RAID-0 16 Disks 4 KB Chunks
1.5
(o]
€
= 0.5
0.0 1 T T T T
0 16 32 48 64
Boundary Offset Assumed (KB)
Chunk Size Detection: ZIG-ZAG 6 Disks 8 KB Chunks
2.0
" 05
0.0 -

Boundary Offset Assumed (KB)

Figure 5: Chunk Size Detection: Simulations. The first three
graphs use RAID-0 configurations: 4 disks with 16 KB chunks,
8 disks with 8 KB chunks, and 16 disks with 4 KB chunks. The
last graph uses the ZIG-ZAG striping configuration in which al-
ternating stripes are allocated in the reverse direction; this has 6
disks and 8 KB chunks.

examines in turn each pair of chunks, c; and c2, in a pattern. First,
Shear randomly selects /N patterns and creates read requests for
chunk ¢; within each pattern; then Shear selects another /V patterns
and creates read requests for co within each pattern. All of the
requests for a given pair are issued in parallel and the completion
times are recorded. This workload is repeated over R trials and the
results are averaged. Shear then examines the next pair.

Figure 6 shows that these results can be visualized in an inter-
esting way. For these experiments, we configure our simulator to
model both RAID-0 and ZIG-ZAG with 6 disks and 8 KB chunks.
Each point in the graph corresponds to a (c1, c2) pair; light points
indicate slow access times and thus fall on the same disk. The di-
agonal line in each graph corresponds to pairs where ¢; = ¢z and
thus always fall on the same disk. In RAID-0, no chunks within
a pattern are allocated to the same disk; thus, no pairs are shown

Chunk
Chunk

Chunk Chunk

Figure 6: Read Layout Detection: Simulations. The first graph
uses RAID-0; the second graph uses ZIG-ZAG. Both configura-
tions use 6 disks and 8 KB chunks. The points in the graph cor-
respond to pairs of chunks within a pattern that are accessed si-
multaneously. Lighter points indicate the workload finished more
slowly and therefore those chunks reside on the same disk.

in conflict. However, in ZIG-ZAG, the second half of each pat-
tern conflicts with the blocks in the first half, shown as the second
(upper-left to lower-right) diagonal line.

To automatically determine which chunks are on the same disk,
Shear divides the completion times into two clusters using K-means
and selects the cluster with the largest mean completion time. Shear
infers that the chunk pairs from this cluster are on the same physical
disk. By dividing the chunks into associative sets, Shear can infer
the number of primary data disks in the system.

The above algorithm elicits read dependencies between pairs of
chunks. Running the same algorithm with writes instead of reads
allows Shear to identify write dependencies, which may occur due
to rotating mirrors as in chained declustering or a shared parity
block in RAID-4 or RAID-5. For example, consider the RAID-
5 left-asymmetric array in Figure 1. Writing to blocks O and 16
at the same time will result in a short response time because the
operations are spread across all four disks. Writing to blocks 0
and 52, however, will result in a longer response time because they
share a parity disk. Similarly, writing to blocks 0 and 20 will take
longer because the parity block for block 0 resides on the same disk
as block 20.

The write layout results can reinforce conclusions from the read
layout results, and they will be used to distinguish between RAID-
4, RAID-5, and P+Q, as well as between RAID-1 and chained
declustering. We discuss write layouts further and provide example
results in Section 2.5.

2.4.4 Redundancy

In the fourth step, Shear identifies how redundancy is managed
within the array. Generally, the ratio between random read band-
width and random write bandwidth is determined by how the disk
array manages redundancy.

Therefore, to detect how redundancy is managed, Shear com-
pares the bandwidth for random reads and writes. Shear creates N
block-sized random reads, issues them in parallel, and times their

Pattern Size Detection: RAID-0

2.0
1.5 4
1.0
0.5 o
0.0 -

Time (s)

T T T T T T T
0 16 32 48 64 80 96

Pattern Size Assumed (KB)
Chunk Size Detection: RAID-0

2.0 +
15
1.0 4

0.5 1
0.0 -

Time (s)

Boundary Offset Assumed (KB)

Figure 7: Pattern Size and Chunk Size Detection: RAID-0. We
simulate RAID-0 with 6 disks and 8 KB chunks. The first graph
confirms that the pattern size is 48 KB; the second graph confirms
that the chunk size is 8 KB.

completion. Shear then times N random writes issued in paral-
lel; these writes can be performed safely if needed, by first reading
that data from the storage system and then writing out the same
values (with extra intervening traffic to flush any caches). The ra-
tio between the read and write bandwidth is then compared to our
expectations to determine the amount and type of redundancy.

For storage arrays with no redundancy (e.g., RAID-0), the read
and write bandwidths are expected to be approximately equal. For
storage systems with a single mirror (e.g., RAID-1), the read band-
width is expected to be twice that of the write bandwidth, since
reads can be balanced across mirrored disks but writes must prop-
agate to two disks. More generally, the ratio of read bandwidth
to write bandwidth exposes the number of mirrors. For systems
with RAID-5 parity, write bandwidth is roughly one fourth of read
bandwidth, since a small write requires reading the existing disk
contents and the associated parity, and then writing the new val-
ues back to disk. In RAID-4 arrays, however, the bandwidth ratio
varies with the number of disks because the single parity disk is a
bottleneck. This makes RAID-4 more difficult to identify, and we
discuss this further in Section 3.

One problem that arises in our redundancy detection algorithm
is that instead of solely using reads, Shear also uses writes. Using
writes in conjunction with reads is essential to Shear as it allows us
to observe the difference between the case when a block is being
read and the case when a block (and any parity or mirrors) is being
committed to disk.

Unfortunately, depending on the specifics of the storage system
under test, writes may be buffered for some time before being writ-
ten to stable storage. Some systems do this at the risk of data
loss (e.g., a desktop drive that has immediate reporting enabled),
whereas higher-end arrays may have some amount of non-volatile
RAM that can be used to safely delay writes that have been ac-
knowledged. In either case, Shear needs to avoid the effects of
buffering and move to the steady-state domain of inducing disk I/O
when writes are issued.

The manner in which Shear achieves this is through a simple,
adaptive technique. The basic idea is that during the redundancy
detection algorithm, Shear monitors write bandwidth during the
write phase. If write performance is more than twice as fast as the
previously observed read performance, Shear concludes that some

Pattern Size Detection: RAID-5 Left-Symmetric

2.0 4
@ 1.5
2 1.0+
= 05

00 - T T T T T T

0 16 32 48 64 80 96

Pattern Size Assumed (KB)
Pattern Size Detection: RAID-5 Left-Asymmetric

2.0 4
© 1.5
£ 1.0
" 05
0.0 -

0 64 128 192 256 320 384 448

Pattern Size Assumed (KB)

Pattern Size Detection: RAID-5 Right-Symmetric

Time (s)

0 64 128 192 256 320 384 448
Pattern Size Assumed (KB)

Pattern Size Detection: RAID-5 Right-Asymmetric

Time (s)

0 64 128 192 256 320 384 448

Pattern Size Assumed (KB)

Figure 8: Pattern Size Detection: RAID-5. We simulate
RAID-5 with left-symmetric, left-asymmetric, right-symmetric,
and right-asymmetric layouts. Each configuration uses 6 disks
and a chunk size of 8 KB. The pattern size is 48 KB for RAID-5
left-symmetric and 240 KB for the rest.

or all of the writes were buffered and not written to disk, so another
round of writes is initiated. Eventually, the writes will flood the
write cache and induce the storage system into the desired steady-
state behavior of writing most of the data to disk; Shear detects this
transition by observing that writes are no longer much faster than
reads (indeed, they are often slower). We explore this issue more
thoroughly via experimentation in Section 3.

2.4.5 Identifying Known Layouts

Finally, Shear uses the pattern size, chunk size, read layout, write
layout, and redundancy information in an attempt to match its ob-
servations to one of its known schemes (e.g. RAID-5 left-asym-
metric). If a match is found, Shear first re-evaluates the number of
disks in the system. For instance, the number of disks will be dou-
bled for RAID-1 and incremented for RAID-4. Shear completes by
reporting the total number of disks in the array, the chunk size, and
the layout observed.

If a match is not found, Shear reports the discovered chunk size
and number of disks, but reports that the specific algorithm is un-
known. By assuming that chunks are allocated sequentially to disks,
Shear can produce a suspected layout based on its observations.

ulate (from left to right) RAID-5 left-symmetric, left-asymmetric,
right-symmetric, and right-asymmetric, with 6 disks. The first
row displays the read layouts and the second row shows the write
layout graphs.

Pattern Size Detection: RAID-4 Read Layout

2.0 4
1.5 4
1.0 4
0.5 4
0.0 -

Time (s)

T T T T T T
0 16 32 48 64 80

Pattern Size Assumed (KB)

Chunk Size Detection: RAID-4

2.0 4
1.5 4
1.0 4

0.5 4

Write Layout

Time (s)

T T T T T
0 8 16 24 32

Boundary Offset Assumed (KB)

Figure 10: Pattern Size, Chunk Size, and Layout Detection:
RAID-4. We simulate RAID-4 with 6 disks and 8 KB chunks.
The first graph confirms that the pattern size of 40 KB is detected;
the second graph shows the chunk size of 8 KB is detected. The
read layout graph on the right resembles that for RAID-0, but
the write layout graph uniquely distinguishes RAID-4 from other
parity-based schemes.

2.5 Redundancy Simulations

In this section, we describe how Shear handles storage systems
with redundancy. We begin by showing results for systems with
parity, specifically RAID-4, RAID-5, and P+Q. We then consider
mirroring variants: RAID-1 and chained declustering. In all sim-
ulations, we consider a storage array with six disks and an 8 KB
chunk size. For the purpose of comparison, we present a base case
of RAID-0 in Figure 7.

2.5.1 Parity

Shear handles storage systems that use parity blocks as a form

of redundancy. To demonstrate this, we consider four variants of
RAID-5, RAID-4, and P+Q redundancy [4].
RAID-5: RAID-5 calculates a parity block for each stripe of data,
and the location of the parity block is rotated between disks. RAID-
5 can have a number of different layouts of data and parity blocks
to disks, such as left-symmetric, left-asymmetric, right-symmetric,
and right-asymmetric [13]. Left-symmetric is known to deliver the
best bandwidth [13], and is the only layout in which the pattern size
is equal to the stripe size (i.e., the same as for RAID-0); in the other
RAID-5 layouts, the pattern size is D — 1 times the stripe size.

Pattern Size Detection: P+Q Read Layout

2.0 4
B 15 |
£ 1.0
= 05
00 <, T T T T T T
0 16 32 48 64 80 96
Pattern Size Assumed (KB)
Chunk Size Detection: P+Q Write Layout
2.0 4
@ 1.5
£ 1.0+
F 05
0.0 -

Boundary Offset Assumed (KB)

Figure 11: Pattern Size, Chunk Size, and Layout Detection:
P+Q. We present simulated results for P+Q redundancy with 6
disks and a chunk size of 8 KB. The first graph confirms that
the pattern size of 48 KB is detected; the second graph shows the
chunk size of 8 KB is detected. The read layout graph on the right
resembles RAID-0, but the write layout graph distinguishes P+Q
Jfrom other schemes.

The pattern size results for the four RAID-5 systems are shown
in Figure 8. The first graph shows that the pattern size for left-
symmetric is 48 KB, which is identical to that of RAID-0; the
other three graphs show that left-asymmetric, right-symmetric, and
right-asymmetric have pattern sizes of 240 KB (i.e., 30 chunks), as
expected. Note that despite the apparent noise in the graphs, the
X-means clustering algorithm is able to correctly identify the pat-
tern sizes. The chunk size algorithm does not behave differently for
RAID-5 versus RAID-0; therefore we omit those results.

Figure 9 shows the read layout and write layout graphs for RAID-
5. Note that each of the four RAID-5 variants leads to a very dis-
tinct visual image. As before, light points correspond to dependent
chunk pairs that are slow; points that are dark correspond to in-
dependent chunk pairs that offer fast concurrent access. A read
dependence occurs when the two chunks are located on the same
disk. Write dependencies occur when the two chunks reside on the
same disk, share a parity disk, or cause interference with a parity
disk. These instances result in an overburdened disk and a longer
response time.

Each graph depicts a pattern-sized grid that accounts for all pos-

sible pairs of chunks. For example, the RAID-5 left-asymmetric
read layout graph is a 30 chunk by 30 chunk grid. The points
that pair chunk 0 with chunks 5, 10, 15, 20, and 25 are all light
in color because those chunks are located on the same disk. With
this knowledge, Shear is able to identify if the storage system is us-
ing one of these standard RAID-5 variants and it can calculate the
number of disks.
RAID-4: RAID-4 also calculates a single parity block for each
stripe of data, but all of the parity blocks reside on a single disk.
The pattern size, chunk size, read layout, and write layout results
for RAID-4 are shown in Figure 10. The pattern size is 40 KB
because the parity disk is invisible to the read-based workload. The
read layout graph resembles the RAID-0 result because the pattern
size is equal to the stripe size, and therefore each disk occurs only
once in the pattern.

On the other hand, the write layout graph for RAID-4 is quite
unique. Because the parity disk is a bottleneck for writes, all pairs
of chunks are limited by a single disk and therefore exhibit similar

Pattern Size Detection: RAID-1

Read Layout

1.2

1.0 4
0.8
0.6
0.4 o

0.2
0.0

Time (s)

Pattern Size Assumed (KB)

Chunk Size Detection: RAID-1 Write Layout

1.2 +

1.0 4
0.8 o
0.6 1

0.4 o
0.2 o
0.0 -

Time (s)

Boundary Offset Assumed (KB)

Figure 12: Pattern Size, Chunk Size, and Layout Detection:
RAID-1. We present simulated results for RAID-1 with 6 disks
and a chunk size of 8 KB. The first graph confirms that the pattern
size of 24 KB is detected; the second graph shows the chunk size
of 8 KB is detected. The read layout and write layout graphs on
the right resemble those for RAID-0.

completion times. This bottleneck produces a relatively flat RAID-
4 write layout graph, allowing us to distinguish RAID-4 from other
parity schemes.

P+Q: To demonstrate that Shear handles other parity schemes, we
show the results of detecting pattern size and chunk size for P+Q
redundancy (RAID-6). In this parity scheme, each stripe has two
parity blocks calculated with Reed-Solomon codes; otherwise, the
layout looks like left-symmetric RAID-5. In Figure 11, the first
graph shows that the pattern size of 48 KB is detected; the second
graph shows an 8 KB chunk size.

Figure 11 also shows the read layout and write layout graphs
for P+Q. The read layout graph resembles that for RAID-0. The
write layout graph, however, exhibits three distinct performance
regions. The slowest time occurs when all requests are sent to the
same chunk (and disk) in the repeating pattern. The fastest time oc-
curs when the requests and parity updates are spread evenly across
four disks, for instance when pairing chunks 0 and 1. A middle per-
formance region occurs when parity blocks for one chunk conflict
with data blocks for the other chunk. For example, when testing
chunks 0 and 2, about half of the parity updates for chunk 2 will
fall on the disk containing chunk 0. Again, this unique write layout
allows us to distinguish P+Q from the other parity-based schemes.

2.5.2 Mirroring

Using the same algorithms, Shear can also handle storage sys-
tems that contain mirrors. However, the impact of mirrors is much
greater than that of parity blocks, since read traffic can be directed
to mirrors. A key assumption we make is that reads are balanced
across mirrors; if reads are sent to only a primary copy, then Shear
will not be able to detect the presence of mirrored copies. To
demonstrate that Shear handles mirroring, we consider both sim-
ple RAID-1 and chained declustering.

RAID-1: The results of running Shear on a six disk RAID-1 sys-
tem are shown in Figure 12. Note that the pattern size in RAID-1 is
exactly half of that in RAID-0, given the same chunk size and num-
ber of disks. The first graph shows how the RAID-1 pattern size of
24 KB is inferred. As Shear reads from different offsets throughout
the pattern, the requests are sent to both mirrors. As desired, the
worst performance occurs when the request offset is equal to the
real pattern size, but in this case, the requests are serviced by two

Pattern Size Detection: Chained Declustering Read Layout

1.2
1.0 o
% 0.8
g 0.6
£ 0.4 -
0.2 4
0.0 1, T T T T T T
0 16 32 48 64 80 96
Pattern Size Assumed (KB)
Chunk Size Detection: Chained Declustering Write Layout
1.2 H
1.0 o
© 0.8
o 0.6
€
i 044
0.2 4
0.0 -

o
©
=)
n
i
&)
o
N
S

3

Boundary Offset Assumed (KB)

Figure 13: Pattern Size, Chunk Size, and Layout Detection:
Chained Declustering. We present simulated results for chained
declustering with 6 disks and a chunk size of 8 KB. The first graph
confirms the pattern size of 48 KB; the second graph shows the
chunk size of 8 KB is detected. The wider bands in the read lay-
out and write layout graphs show that two neighboring chunks
are mirrored across a total of three disks; this uniquely identifies
chained declustering.

disks instead of one. This is illustrated by the fact that the worst-
case time for the workload on RAID-1 is exactly half of that when
on RAID-O0 (i.e., 1.0 instead of 2.0 seconds).

The second graph in Figure 12 shows how the chunk size of

8 KB is inferred. Again, as Shear tries to find the boundary be-
tween disks, requests are sent to both mirrors; Shear now auto-
matically detects the disk boundary because the workload time in-
creases when requests are sent to two disks instead of four disks.
Since the mapping of chunks to disks within a single pattern does
not contain any conflicts, the read layout and write layout graphs in
Figure 12 resemble RAID-0.
Chained Declustering: Chained declustering [11] is a redundancy
scheme in which disks are not exact mirrors of one another; instead,
each disk contains a primary instance of a block as well as a copy
of a block from its neighbor. The results of running Shear on a six
disk system with chained declustering are shown in Figure 13.

The first graph shows that a pattern size of 48 KB is detected,
as desired. As with RAID-1, each read request can be serviced by
two disks, and the pattern size is identified when all of the requests
are sent to only two disks in the system. Note that the chained
declustering pattern size is twice that of RAID-1 since each disk
contains a unique set of data blocks.

The second graph in Figure 13 shows that four block chunks
are again detected. However, the ratio between best and worst-
case performance differs in this case from RAID-0 and RAID-1;
in chained declustering the ratio is 2:3, whereas in RAID-0 and
RAID-1, the ratio is 1:2. With chained declustering, when adja-
cent requests are located across a disk boundary, those requests are
serviced by three disks (instead of four with RAID-1); when re-
quests are located within a chunk, those requests are serviced by
two disks.

The mapping conflicts with chained declustering are also in-
teresting, as shown in the remaining graphs in Figure 13. With
chained declustering, a pair of chunks can be located on two, three,
or four disks; this results in three distinct performance regimes.
This new case of three shared disks occurs for chunks that are cycli-
cally adjacent (e.g., chunks O and 1), resulting in the wider bands
in the read and write layout graphs.

Shear Overhead

4

@ Redundancy ——

5 Read Pattern ==

= 3r Write Pattern mmm

= Chunk Size = 3 100
» Pattern Size =

_5 2L Total wm

©

9] 4 10
joR

o

Q

16 4 8 16 4 8 16

4 8
RAID-1 RAID-5-LS RAID-5-LA

4 8 16
RAID-0

Figure 14: Shear Overhead. The graph shows the number
of 1/0s generated by each phase of Shear. Four simulated re-
dundancy schemes are shown (RAID-0, RAID-1, RAID-5 left-
symmetric, and RAID-5 left-asymmetric), each with three num-
bers of disks (4, 8, and 16) and 32 KB chunks.. Each bar plots the
number of 1/0s taken for a phase of Shear except the last (right-
most) bar which shows the total. The RAID-5 left-asymmetric
results are plotted with a log scale on the y-axis.

2.6 Overhead

We now examine the overhead of Shear, by showing how it scales
as more disks are added to the system. Figure 14 plots the total
number of I/Os that Shear generates during simulation of a variety
of disk configurations. On the x-axis, we vary the configuration,
and on the y-axis we plot the number of I/Os generated by the tool.
Note that the RAID-5 left-asymmetric results are shown with a log
scale on the y-axis.

From the graphs, we can make a few observations. First, we
can see that the total number of I/Os issued for simple schemes
such as RAID-0, RAID-1, and RAID-5 left-symmetric is low (in
the few millions), and scales quite slowly as disks are added to
the system. Thus, for these RAID schemes (and indeed, almost all
others), Shear scales well to much larger arrays.

Second, we can see that when run upon RAID-5 with the left-
asymmetric layout, Shear generates many more I/Os than with other
redundancy schemes, and the total number of I/Os does not scale
as well. The reason for this poor scaling behavior can be seen from
the read layout and write layout detection bars, which account for
most of the I/O traffic. As illustrated in Figure 1, the RAID-5 left-
asymmetric pattern size grows with the square of the number of
disks. Because the layout algorithms issue requests for all pairs of
chunks in a pattern, large patterns lead to large numbers of requests
(although many of these can be serviced in parallel); thus, RAID-5
left-asymmetric represents an extreme case for Shear. Indeed, in its
current form, Shear would take roughly a few days to complete the
read layout and write layout detection for RAID-5 left-asymmetric
with 16 disks. However, we believe we could reduce this by a factor
of ten by issuing fewer disk I/Os per pairwise trial, thus reducing
run time but decreasing confidence in the layout results.

3. REAL PLATFORMS

In this section, we present results of applying Shear to two dif-
ferent real platforms. The first is the Linux software RAID device
driver, and the second is an Adaptec 2200S hardware RAID con-
troller. To understand the behavior of Shear on real systems, we
ran it across a large variety of both software and hardware config-
urations, varying the number of disks, chunk size, and redundancy
scheme. Most results were as expected; others revealed slightly
surprising properties of the systems under test (e.g., the RAID-5
mode of the hardware controller employs left-asymmetric parity

The Effect of Region Size
22

Quantum Atlas 10K ———
IBM UltraStar 9LZX ------—- J
Seagate Cheetah X15 -

20 r
1.8
1.6

14 -

Read/Write Ratio

1.2

1.0 ! !
100 1000 10000

Region Size (MB)

Figure 15: Sensitivity to Region Size. The figure plots the band-
width ratio of a series of random read requests as compared to
a series of random write requests. The x-axis varies the size of
the region over which the experiment was run. In each run, 500
sector-sized read or write requests are issued. Lines are plotted
Jor three different disks: a Quantum Atlas 10K 18WLS, an IBM
9LZX, and a Seagate Cheetah X15.

The Effect of Write Buffering
20 T T

Bandwidth (MB/s)
o

0.1 1 10 100
Amount Written (MB)

Figure 16: Avoiding the Write Buffer. The figure plots the per-
Jormance of writes on top of the RAID-5 hardware with write-
buffering enabled. The x-axis varies the number of writes issued,
and the y-axis plots the achieved bandwidth.

placement). Due to space constraints, we concentrate here on the
most challenging aspect of Shear: redundancy detection.

While experimenting with redundancy detection, we uncovered
two issues that had to be addressed to produce a robust algorithm.
The first of these was the size of the region over which the test was
run. Figure 15 plots the read/write ratio of a single disk as the size
of the region is varied.

As we can see from the figure, the size of the region over which
the test is conducted can strongly influence the outcome of our
tests. For example, with the Quantum disk, the desired ratio of
roughly 1 is achieved only for very small region sizes, and the ratio
grows to almost 2 when a few GB of the disk are used. We believe
the reason for this undesirable inflation is the large settling time of
the Quantum disk. Thus, we conclude that the redundancy detec-
tion algorithm should be run over as small of a portion of the disk
as possible.

Unfortunately, at odds with the desire to run over a small portion
of the disk is our second issue: the possible presence of a write-
back cache within the RAID. The Adaptec 2200S card can be con-
figured to perform write buffering; thus, to the host, these writes
complete quickly, and are sent to the disk at some later time. Note
that the presence of such a buffer can affect data integrity (i.e. if the
buffer is non-volatile).

Because the redundancy detection algorithm needs to issue write
requests to disk to compare with read request timings, Shear must

Read/Write Bandwidth Ratios

10
Software RAID == .
8 Hardware RAID s
il
% 6
o

jlﬂlﬂlﬂlﬂlJLﬂLﬂlM H

23456 2 4 6

RAID-0 RAID-1

Figure 17: Redundancy Detection. The figure plots the ratio of
read to write bandwidth over a variety of disk configurations. The
x-axis varies the number of disks and the configuration: RAID-
0, RAID-1, RAID-4, or RAID-5 left-asymmetric, with either soft-
ware or hardware RAID.

circumvent caching effects. Recall that Shear uses a simple adap-
tive scheme to detect and bypass buffering by issuing successive
rounds of write requests and monitoring their performance. At
some point, the write bandwidth decreases, indicating the RAID
system has moved into the steady-state of writing data to disk in-
stead of to memory, and thus a more reliable result can be gener-
ated. Figure 16 demonstrates this technique on the Adaptec hard-
ware RAID adapter with write caching enabled.

With these enhancements in place, we study redundancy detec-
tion across both the software and hardware RAID systems. Fig-
ure 17 plots the read bandwidth to write bandwidth ratio across a
number of different configurations. Recall that the read/write ratio
is the key to differentiating the redundancy scheme that is used; for
example, a ratio of 1 indicates that there is no redundancy, a ratio of
2 indicates a mirrored scheme, and a ratio of 4 indicates a RAID-5
style parity encoding. Note that our hardware RAID card does not
support RAID-4 and will not configure RAID-5 on two disks.

The figure shows that Shear’s redundancy detection does a good
job of identifying which scheme is being used. As expected, we
see read/write ratios of approximately 1 for RAID-0, near 2 for
RAID-1, and 4 for RAID-5. There are a few other points to make.
First, the bandwidth ratios for RAID-4 scale with the number of
disks due to the parity disk bottleneck. This makes it more difficult
to identify RAID-4 arrays. To do so, we rely on the write layout
test described previously that exhibits this same bottleneck in write
performance. The unique results from the write layout test allow us
to distinguish RAID-4 from the other parity-based schemes.

Second, note the performance of software RAID-5 on 5 and 6
disks; instead of the expected read/write ratio of 4, we instead mea-
sure a ratio near 5. Tracing the disk activity and inspecting the
source code revealed the cause: the Linux software RAID con-
troller does not utilize the usual RAID-5 small write optimization
of reading the old block and parity, and then writing the new block
and parity. Instead, it will read in the entire stripe of old blocks and
then write out the new block and parity. Finally, the graph shows
how RAID-5 with 2 disks and a 2-disk mirrored system are not
distinguishable; at two disks RAID-5 and mirroring converge.

4. SHEAR APPLICATIONS

In this section, we illustrate a few of the benefits of using Shear.
We begin by showing how Shear can be used to detect RAID con-
figuration errors and disk failures. We then show how Shear can
be used to discover information about individual disks in an array.
Finally, we present an example of how the storage system parame-

10

Figure 18: Detecting Misconfigured Layouts. For RAID-
5 left-symmetric, left-asymmetric, right-symmetric, and right-
asymmetric, the upper graph shows the read layout graph when
the RAID of IBM disks is correctly configured. The lower graphs
show the read layout when two logical partitions are misconfig-
ured such that they are placed on the same physical device.

Chunk Size Detection: RAID-0

2.5
2.0 1

Time (s)

1.0
0.5 1
0.0 -

T T T T T T
0 8 16 24 32 40

Boundary Offset Assumed (KB)

Figure 19: Detecting Heterogeneity. The first graph shows the
output of the chunk size detection algorithm run upon an array
with a single heterogeneous fast rotating disk. The second row
of figures shows the results of the read layout algorithm on four
different simulated disk configurations. In each configuration, a
single disk has different capability than the others. A fast rotat-
ing, slow rotating, fast seeking, and slow seeking disk is depicted
in each of the figures.

ters uncovered by Shear can be used to better tune the file system;
specifically, we show how the file system can improve sequential
bandwidth by writing data in full stripes.

4.1 Shear Management

One of our intended uses of Shear is as an administrative util-
ity to discover configuration, performance, and safety problems.
Figure 18 shows how a failure to identify a known scheme may
suggest a storage misconfiguration. The upper set of graphs are the
expected read layout graphs for the four common RAID-5 levels.
The lower are the resulting read layout graphs when the disk array
is misconfigured such that two logical partitions actually reside on
the same physical disk. These graphs were generated using disk
arrays comprised of four logical disks built using Linux software
RAID and the IBM disks. Although the visualization makes it obvi-
ous, manual inspection is not necessary; Shear automatically deter-
mines that these results do not match any existing known schemes.

Shear can also be used to detect unexpected performance hetero-
geneity among disks. In this next experiment, we run Shear across
a range of simulated heterogeneous disk configurations; in all ex-

Chunk Size Detection: RAID-5 Left-Symmetric

+4 4

15+ +
)
o 1.0 o
£
= 05

00 - T T T T T

0 16 32 48 64 80
Boundary Offset Assumed (KB)
Chunk Size Detection: RAID-5 Left-Symmetric

2.0 4
2 154
(9]
£ 1.0
= 05

0.0 -

T T T T T T
0 16 32 48 64 80

Boundary Offset Assumed (KB)

Figure 20: Detecting Failure. Using the chunk size detection al-
gorithm, Shear can discover failed devices within a RAID system.
The upper graph shows the initial chunk size detection results
collected after building a 10 disk software RAID system using the
IBM disks. The lower graph is for the same system after the fifth
disk was removed.

periments, one disk is either slower or faster than the rest. Figure 19
shows results when run upon these heterogeneous configurations.

As one can see from the figure, a faster or slower disk makes its
presence known in obvious ways in both the read layout graphs as
well as in the chunk size detection output (the pattern size detection
is relatively unaffected). Thus, an administrator could view these
outputs and clearly observe that there is a serious and perhaps un-
expected performance differential among the disks and take action
to correct the problem.

Finally, the chunk size detection algorithm in Shear can be used
to identify safety hazards by determining when a redundant array
is operating in degraded mode. Figure 20 shows the chunk size
detection results for a ten disk software RAID system using the
IBM disks. The upper graph shows the chunk size detection cor-
rectly working after the array was first built. The lower graph shows
how chunk size detection is changed after we physically remove the
fifth disk from the array. Recall that chunk size detection works by
guessing possible boundaries and timing sets of requests on both
sides of the boundary. Vertical downward spikes should be half the
height of the plateaus and indicate that the guessed boundary is cor-
rect because the requests are serviced in parallel on two disks. The
plateaus are false boundaries in which all the requests on both sides
of the guessed boundary actually are incurred on just one disk. The
lower graph identifies that the array is operating in degraded mode
because the boundary points for the missing disk disappear, and its
plateau is higher due to the extra overhead of performing on-the-fly
reconstruction.

4.2 Shear Disk Characterization

Related projects have concentrated on extracting specific proper-
ties of individual disk drives [23, 27, 30]. Several techniques have
been built on top of this characteristic knowledge, such as align-
ing files to track boundaries [24] and free-block scheduling [14].
Shear enables such optimizations in the context of storage arrays.
Shear can expose the boundaries between disks, and then existing
tools can be used to determine specific properties of those individ-
ual disks.

We demonstrate this ability using the Skippy disk characteriza-
tion tool [27]. Skippy uses a sequence of write operations at in-

11

Skippy: 1 Disk
—~ 10
(2]
E 8
g
= 4
£ 2
R
0 50 100 150 200 250 300 350 400 450 500
Request Number
Skippy: RAID-0 2 Disks
—~ 10
(2]
E 8
g
= 4
£ 2
R
0 50 100 150 200 250 300 350 400 450 500
Request Number
Skippy: RAID-1 2 Disks
& 10
E 8
g °
= 4
[0}
£ 2
; 0 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Request Number

Figure 21: Skippy. The figures plot the results of running the
Skippy disk characterization tool on a single Quantum disk, a
two disk RAID-0 array, and a two disk RAID-1 array.

creasing strides to determine the disk sector to track ratio, rotation
time, head positioning time, head switch time, cylinder switch time,
and the number of recording surfaces. The first graph in Figure 21
shows the pattern generated by Skippy on a single Quantum disk.

The second graph in Figure 21 shows the results of running a
modified version of Skippy on a RAID-0 array with two disks. This
version of Skippy uses the array information provided by Shear to
map its block reference stream to the corresponding logical blocks
residing on the first disk in the array. This results in a pattern that
is nearly identical to that running on a single disk, allowing us to
extract the individual disk parameters. The final graph in Figure
21 shows the results of the same technique applied to a two disk
RAID-1 array. Again, the results are nearly identical to the single
disk pattern except for some small perturbations that do not affect
our analysis.

There are some limitations to this approach, however. For ex-
ample, in the case of RAID-1, the Skippy write workload performs
as expected, but a read workload produces spurious results due to
the fact that reads are balanced across disks. Conversely, reads
work well under RAID-5 whereas writes do not due to the need to
update parity information. Additionally, because the parity blocks
under RAID-5 cannot be directly accessed, characterization tools
may obtain an incomplete set of data. Despite these limitations, we
have tested a read-based version of Skippy on RAID-5 and success-
fully extracted all parameters from the individual disks.

4.3 Shear Performance

The stripe size within a disk array can have a large impact on
performance [3, 5]. This effect is especially important for RAID-
5 storage, since writes of less than a complete stripe require ad-
ditional I/0. Previous work has focused on selecting the optimal
stripe size for a given workload. We instead show how the file sys-
tem can adapt the size and alignment of its writes as a function of
a given stripe size.

The Effects of Stripe-Alignment

20 T T T T
18 b Stripe-Aligned ——]
Default ----x--
@ 16 b
o 14 ¢ k
S 12} -
= 10 F]
-‘g 8t W)S*,x,x_x,x~><»><~~><—x~x~>é<><—x—%*’X—x—*’x*x'éf%"_
s ol]
©
m 4 + 4
2 4
0 1 1 1 1
0 500 1000 1500 2000

Average File Size (KB)

Figure 22: Benefits of Stripe Alignment. The figure plots the
bandwidth of a series of file creations of an average size, as varied
along the x-axis. Two variants are shown: one in which the file
system generates stripe-sized writes and the default Linux. The
workload consists of creating 100 files. The x-axis indicates the
mean size of the files, which are uniformly distributed between
0.5 x mean and 1.5 X mean.

The basic idea is that the file system should adjust its writes to be
stripe aligned as much as possible. This optimization can occur in
multiple places; we have modified the Linux 2.4 device scheduler
so that it properly coalesces and/or divides individual requests such
that they are sent to the RAID in stripe-sized units. This modifica-
tion is straight-forward: only about 20 lines of code were added to
the kernel.

This simple change to make the file system stripe-aware leads to
tremendous performance improvements. The experiments shown
in Figure 22 are run on a hardware RAID-5 configuration with
4 Quantum disks and a 16 KB chunk size. These results show
that a stripe-aware file system noticeably improves bandwidth for
moderately-sized files and improves bandwidth for larger files by
over a factor of two.

5. RELATED WORK

The idea of providing software to automatically uncover the be-
havior of underlying software and hardware layers has been ex-
plored in a number of different domains. Some of the earliest
work in this area targeted the memory subsystem; for example, by
measuring the time for reads of different amounts and with dif-
ferent strides, Saavedra and Smith reveal many interesting aspects
of the memory hierarchy, including details about both caches and
TLBs [21]. Similar techniques have been applied to identify as-
pects of a TCP protocol stack [9, 16], to determine processor cycle
time [26], and CPU scheduling policies [19].

The work most related to ours is that which has targeted char-
acterizing a single disk within the storage system. For example,
in [30], Worthington et al. identify various characteristics of disks,
such as the mapping of logical block numbers to physical loca-
tions, the costs of low-level operations, the size of the prefetch
window, the prefetching algorithm, and the caching policy. Later,
Schindler er al. and Talagala et al. build similar but more portable
tools to achieve similar ends [23, 27]. We have shown how Shear
can be used in conjunction with such low-level tools to discover
properties of single disks inside arrays.

Evaluations of storage systems have usually focused on measur-
ing performance for a given workload and not on uncovering un-
derlying properties [1, 12, 15]. One interesting synthetic bench-
mark adapts its behavior to the underlying storage system [6]; this
benchmark examines sensitivity to parameters such as the size of
requests, the read to write ratio, and the amount of concurrency.

12

Finally, the idea of using detailed storage-systems knowledge
within a file system or storage client has been investigated. For
example, Schindler et al. investigate the concept of track-aligned
file placement [24] in single disk systems; in this work, a modified
file system allocates medium-sized files within track boundaries to
avoid head switches and thus deliver low-latency access to files.
Other systems, like I-LFS [7] and Atropos [25], augment the ar-
ray interface to provide information about individual disks. I-LFS
uses knowledge of disk boundaries to dynamically allocate writes
based on performance and to control redundancy on a per-file ba-
sis. The Atropos volume manager extends the storage interface to
expose disk boundary and track information and provide efficient
semi-sequential access to two-dimensional data structures. Shear
enables the use of such information in multiple disk systems with-
out the need for an enhanced interface.

6. CONCLUSIONS

We have presented Shear, a tool that automatically detects impor-
tant characteristics of modern storage arrays, including the number
of disks, chunk size, level of redundancy, and layout scheme. The
keys to Shear are its use of randomness to extract steady-state per-
formance and its use of statistical techniques to deliver automated
and reliable detection. We have verified that Shear works as de-
sired through a series of simulations over a variety of layout and
redundancy schemes. We have subsequently applied Shear to both
software and hardware RAID systems, revealing properties of both.
Specifically, we found that Linux software RAID exhibits poor per-
formance for RAID-5 parity updates, and the Adaptec 2200S RAID
adapter implements RAID-5 left-asymmetric layout.

We have also shown how Shear could be used through three case
studies. Storage administrators can use Shear to verify properties
of their storage arrays, monitor their performance, and detect disk
failures. Shear can help extract individual parameters from disks
within an array, enabling performance enhancements previously
limited to single disk systems. Finally, we have shown a factor
of two improvement in performance from a file system tuning its
writes to the stripe size of its RAID storage.

Storage systems, and computer systems in general, are becoming
more complex, yet their layers of interacting components remain
concealed by a veil of simplicity. We hope the techniques devel-
oped within Shear can help reveal the true power of future systems
and subsequently make them more manageable, composable, and
efficient.

7. ACKNOWLEDGEMENTS

‘We would like to thank Bradford Beckmann, Nathan Burnett, Vi-
jayan Prabhakaran, Muthian Sivathanu, and the anonymous review-
ers for their excellent feedback. This work is sponsored by NSF
CCR-0092840, CCR-0133456, CCR-0098274, NGS-0103670, ITR-
0086044, 1TR-0325267, IBM, EMC, and the Wisconsin Alumni
Research Foundation.

8.
(1
2]

3

[4]

[5

(6]

(7]

8

[91

[10]

[11]

[12]

[13]

[14]

REFERENCES

T. Bray. The Bonnie
http://www.textuality.com/bonnie/.
N. C. Burnett, J. Bent, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Ex-
ploiting Gray-Box Knowledge of Buffer-Cache Contents. In Proceedings of the
USENIX Annual Technical Conference (USENIX 02), pages 29-44, Monterey,
California, June 2002.

P. Chen and E. K. Lee. Striping in a RAID Level 5 Disk Array. In Proceedings
of the 1995 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS ’95), pages 136-145, Ottawa, Canada, May
1995.

P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson.
RAID: High-performance, Reliable Secondary Storage. ACM Computing Sur-
veys, 26(2):145-185, June 1994.

P. M. Chen and D. A. Patterson. Maximizing Performance in a Striped Disk
Array. In Proceedings of the 17th Annual International Symposium on Computer
Architecture (ISCA ’90), pages 322-331, Seattle, Washington, May 1992.

P. M. Chen and D. A. Patterson. A New Approach to I/O Performance
Evaluation—Self-Scaling I/0O Benchmarks, Predicted I/O Performance. In Pro-
ceedings of the 1993 ACM SIGMETRICS Conference on Measurement and Mod-
eling of Computer Systems (SIGMETRICS ’93), pages 1-12, Santa Clara, Cali-
fornia, May 1993.

T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Bridging the
Information Gap in Storage Protocol Stacks. In Proceedings of the USENIX An-
nual Technical Conference (USENIX "02), pages 177-190, Monterey, California,
June 2002.

EMC Corporation. Symmetrix Enterprise Information Storage Systems.
http://www.emc.com, 2002.

File System Benchmark.

T. Glaser. TCP/TP Stack Fingerprinting Principles.
http://www.sans.org/newlook/resources/IDFAQ/ TCP_fingerprinting.htm,
October 2000.

E. Grochowski. Emerging Trends in Data Storage on Magnetic Hard Disk
Drives. Datatech, September 1999.

H.-I. Hsiao and D. DeWitt. Chained Declustering: A New Availability Strat-
egy for Multiprocessor Database Machines. In Proceedings of 6th International
Conference on Data Engineering (ICDE "90), pages 456-465, Los Angeles, Cal-
ifornia, February 1990.

J. Katcher. PostMark: A New File System Benchmark. Technical Report TR-
3022, Network Appliance Inc., October 1997.

E. K. Lee and R. H. Katz. Performance Consequences of Parity Placement in
Disk Arrays. In Proceedings of the 4th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS
1V), pages 190-199, Santa Clara, California, April 1991.

C. Lumb, J. Schindler, G. Ganger, D. Nagle, and E. Riedel. Towards Higher
Disk Head Utilization: Extracting “Free” Bandwidth From Busy Disk Drives. In
Proceedings of the 4th Symposium on Operating Systems Design and Implemen-
tation (OSDI "00), pages 87-102, San Diego, California, October 2000.

13

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

W. Norcutt. The I0zone Filesystem Benchmark. http://www.iozone.org/.

J. Padhye and S. Floyd. Identifying the TCP Behavior of Web Servers. In Pro-
ceedings of SIGCOMM ’01, San Diego, California, August 2001.

D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays of Inexpen-
sive Disks (RAID). In Proceedings of the 1988 ACM SIGMOD Conference on
the Management of Data (SIGMOD ’88), pages 109—116, Chicago, Illinois, June
1988.

D. Pelleg and A. Moore. X-means: Extending K-means with Efficient Estimation
of the Number of Clusters. In Proceedings of the 17th International Conference
on Machine Learning, June 2000.

J. Regehr. Inferring Scheduling Behavior with Hourglass. In Proceedings of the
USENIX Annual Technical Conference (FREENIX Track), Monterey, California,
June 2002.

C. Ruemmler and J. Wilkes. An Introduction to Disk Drive Modeling. [EEE
Computer, 27(3):17-28, March 1994.

R. H. Saavedra and A. J. Smith. Measuring Cache and TLB Performance
and Their Effect on Benchmark Runtimes. IEEE Transactions on Computers,
44(10):1223-1235, 1995.

S. Savage and J. Wilkes. AFRAID — A Frequently Redundant Array of In-
dependent Disks. In Proceedings of the USENIX Annual Technical Conference
(USENIX '96), pages 27-39, San Diego, California, January 1996.

J. Schindler and G. Ganger. Automated Disk Drive Characterization. Technical
Report CMU-CS-99-176, Carnegie Mellon University, November 1999.

J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger. Track-aligned Extents:
Matching Access Patterns to Disk Drive Characteristics. In Proceedings of the
1st USENIX Symposium on File and Storage Technologies (FAST '02), Monterey,
California, January 2002.

J. Schindler, S. W. Schlosser, M. Shao, A. Ailamaki, and G. R. Ganger. Atropos:
A Disk Array Volume Manager for Orchestrated Use of Disks. In Proceedings of
the 3nd USENIX Symposium on File and Storage Technologies (FAST 03), San
Francisco, California, April 2004.

C. Staelin and L. McVoy. mhz: Anatomy of a micro-benchmark. In Proceedings
of the USENIX Annual Technical Conference (USENIX ’98), pages 155-166,
New Orleans, Louisiana, June 1998.

N. Talagala, R. H. Arpaci-Dusseau, and D. Patterson. Microbenchmark-based
Extraction of Local and Global Disk Characteristics. Technical Report CSD-99-
1063, University of California, Berkeley, 1999.

E. Varki, A. Merchant, J. Xu, and X. Qiu. Issues and challenges in the per-
formance analysis of real disk arrays. IEEE Transactions on Parallel and Dis-
tributed Systems, 15(6):559-574, June 2004.

J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID Hierarchi-
cal Storage System. ACM Transactions on Computer Systems, 14(1):108-136,
February 1996.

B. L. Worthington, G. R. Ganger, Y. N. Patt, and J. Wilkes. On-Line Extraction
of SCSI Disk Drive Parameters. In Proceedings of the 1995 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS
'95), pages 146—156, Ottawa, Canada, May 1995.

