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Abstract

We propose a novel method to measure the dependability
of journaling file systems. In our approach, we build models
of how journaling file systems must behave under different
journaling modes and use these models to analyze file sys-
tem behavior under disk failures. Using our techniques, we
measure the robustness of three important Linux journaling
file systems: ext3, Reiserfs and IBM JFS. From our anal-
ysis, we identify several design flaws and correctness bugs
present in these file systems, which can cause serious file
system errors ranging from data corruption to unmountable
file systems.

1 Introduction

Disks fail. Hence, modern file systems and storage sys-
tems must include internal machinery to cope with such fail-
ures, to ensure file system integrity and reliability despite
the presence of such failures.

Unfortunately, the way disks fail is changing. Most tra-
ditional systems assume that disks arefail-stop [15]; under
such an assumption, a disk is either working or it is not, and
if not, the failure is easily detectable. However, as disk com-
plexity increases, and as the pressures of time-to-market and
cost increase as well, new disk failure modes are becoming
more common. Specifically,latent sector faultsmay oc-
cur [3], in which a specific block becomes faulty (either in
a transient or permanent manner), rather than the disk as a
whole. Hence, viewing the disk as either working or not
may no longer be appropriate.

In this paper, we investigate how modern file systems
cope with this new class of fault. Most modern file systems
are journaling systems [1, 14, 19, 17]. By logging data in a
separate journal before writing them to their fixed locations,
these file systems maintain file system integrity despite the
presence of crashes.

To analyze such file systems, we develop a novelmodel-
basedfault-injection technique. Specifically, for the file
system under test, we develop an abstract model of its up-
date behavior,e.g., how it orders writes to disk to maintain
file system consistency. By using such a model, we can
inject faults at various “interesting” points during a file sys-
tem transaction, and thus monitor how the system reacts to
such failures. In this paper, we focus only on write failures
because file system writes are those that change the on-disk
state and can potentially lead to corruption if not properly
handled.

We use this fault-injection methodology to test three
widely used Linux journaling file systems: ext3 [19], Reis-
erfs [14] and IBM JFS [1]. From our analysis, we find sev-
eral design flaws with these file systems that can catastroph-
ically affect the on-disk data.

Specifically, we find that both ext3 and IBM JFS are not
designed to handle sector failures. Under such failures, both
of these file systems can be shown to commit failed transac-
tions to disk; doing so can lead to serious problems, includ-
ing an unmountable file system. In contrast, we find that
Reiserfs, for the most part, is paranoid about write failures;
specifically, Reiserfs crashes the system when a write to the
journal fails. By crashing in this manner, Reiserfs ensures
that file system integrity is maintained, at the cost of a (po-
tentially expensive) restart. However, in certain configura-
tions, Reiserfs does not abide by its general policy, and can
be coerced into committing failed transactions and also can
result in a corrupted file system. Further, Reiserfs assumes
such failures are transient; repeated failure of a particular
block will result in repeated crashes and restarts.

The rest of the paper is organized as follows. First,
we give a brief introduction to journaling file systems (§2).
Following that, we explain our methodology for analyzing
journaling file systems (§3), and then discuss the results of
our analysis of ext3, Reiserfs, and JFS (§4). We present
related work (§5) and finally, conclude (§6).



2 Background

When a file system update takes place, a set of blocks are
written to the disk. Unfortunately, if the system crashes in
the middle of the sequence of writes, the file system is left
in an inconsistent state. To repair the inconsistency, earlier
systems such as FFS and ext2 scan the entire file system and
perform integrity checks using fsck [12] before mounting
the file system again. This scan is a time-consuming process
and can take several hours for large file systems.

Journaling file systems avoid this expensive integrity
check by recording some extra information on the disk in
the form of a write-ahead log [5]. Once the writes are suc-
cessfully committed to the log, they can be transfered to
their final, fixed locations on the disk. The process of trans-
ferring the writes from the log to the fixed location on disk
is referred to ascheckpointing. If a crash occurs in the mid-
dle of checkpointing, the file system can recover the data
from the log and write them to their fixed locations.

Many modern file systems provide different flavors of
journaling, which have subtle differences in their update be-
havior to disk. We discuss the three different approaches:
data journaling, ordered journalingandwriteback journal-
ing. These journaling modes differ from each other by the
kind of integrity they provide, by the type of data they write
to the log, and the order in which the data is written.

Data journaling provides the strongest data integrity of
the three. Every block that is written to the disk, irrespective
of whether it is a data or metadata block, is first written to
the log. Once the transaction is committed, the journaled
data can be written to their fixed file system locations.

Writeback journaling logs only the file system metadata.
However, it does not enforce any ordering between data
writes and journal writes. Hence, while ensuring metadata
consistency, writeback journaling provides no guarantee as
to data consistency. Specifically, if a file’s metadata is up-
dated in-place before its data reaches disk, the file will con-
tain data from the old contents of that data block.

Ordered journaling adds data consistency to writeback
mode. It does so by enforcing an ordering constraint on
writes, such that the data blocks are written to their fixed lo-
cations before the metadata blocks are committed. This or-
dering constraint ensures that no file system metadata points
to any corrupt data.

3 Methodology

In this section, we describe the overall methodology we
use for testing the reliability of journaling file systems. Our
basic approach is quite simple: we inject “disk faults” be-
neath the file system at certain key points during its opera-
tion and observe its resultant behavior.

Our testing framework is shown in Figure 1(a). It con-
sists of two main components; a device driver called the
fault-injection driverand a user-level process labeled as the
coordinator. The driver is positioned between the file sys-
tem and the disk and is used to observe I/O traffic from the
file system and to inject faults at certain points in the I/O
stream. The coordinator monitors and controls the entire
process, informing the driver which specific fault to insert,
running workloads on top of the file system, and then ob-
serving the resultant behavior.

A flow diagram of the benchmarking process is shown
in Figure 1(b). We now describe the entire process in more
detail.

3.1 The Fault-Injection Driver

The fault-injection driver (or just “driver”) is a pseudo-
device driver, and hence appears as a typical block device
to the file system. Internally, it simply interposes upon all
I/O requests to the real underlying disk.

The driver has three main roles in our system. First, it
must classify each block that is written to disk based on
its type, i.e., what specific file-system data structure this
write represents. We have developed techniques to perform
this classification elsewhere [13], and simply employ those
techniques herein.

Second, the driver must “model” what the journaling file
system above is doing. Specifically, such a model repre-
sents the correct sequence of states that a transaction must
go through in committing to disk. By inserting failures at
specific points within the transaction sequence, we can ob-
serve how the file system handles different types of faults
and better judge if it correctly handles the faults we have
injected.

Third, the driver is used to inject faults into the system.
These faults are specified to occur at various state transi-
tions (as based on the model of the file system) in the I/O
stream.

3.2 The Coordinator

The coordinator monitors the entire benchmarking pro-
cess. It first inserts the fault-injection driver in to the Linux
kernel. Then, the coordinator constructs the file system,
passes a fault specification to the driver, spawns a child pro-
cess to run the workload, and looks for errors.

Before running each of the tests, the coordinator process
first moves the file system to a known state, for example, by
mounting the file system cleanly. Then, depending on the
type of the block to fail, the coordinator process passes the
fault specification to the driver, and spawns a child process
to run a workload on top of the file system. When the ex-
pected block is written by the file system, the driver injects
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Figure 1:Benchmarking Framework and Algorithm Flow.Figure (a) shows the benchmarking framework we use to measure the fault
tolerance of journaling file systems to write failures. The two main components in the figure are the user level process that issues the fault
and the SBA driver that classifies blocks and injects faults.Figure (b) shows a simplified flowchart of our benchmarking algorithm that is
implemented by the SBA driver.

the fault by failing that block write.
Errors can manifest themselves in numerous locales, so

we must log all such errors and have the coordinator col-
late them. Specifically, the child process may receive errors
from the file system, the driver may observe errors in the se-
quence of state transitions, and the coordinator itself must
look through system logs to look for other errors reported
by the file system but not reflected to the calling child pro-
cess.

3.3 Journaling Models

We now describe how we model journaling file systems.
As explained in Section 2, there are three different journal-
ing modes. Each of these journaling modes differs from the
other by the type of data it journals and the order in which
it writes the blocks. We build a model for each of the jour-
naling modes based on its functionality. The models rep-
resent the journaling modes by specifying the type of data
they accept and the order in which the data must be written.
For example, the model for ordered journaling mode speci-
fies that ordered data must be written before the metadata is
committed to the log.

We build the models as follows. First, we construct a
regular expression for each journaling mode. We use reg-
ular expressions because they can represent the journaling
modes concisely and they are easy to construct and under-
stand. Then, we build a model based on the regular expres-

sion. Figure 2 shows the models for each journaling mode.
The journaling models consist of different states. These
states represent the state of on-disk file system. The on-
disk file system moves from one state to another based on
the type of write it receives from the file system. We keep
track of this state change by moving correspondingly in the
model.

We explain briefly the regular expression for each jour-
naling mode. Let,J represent journal writes,D represent
data writes,C represent journal commit writes,S repre-
sent journal super block writes,K represent checkpoint data
writes andF represent any write failures.

Data Journaling: Data journaling can be expressed by the
following regular expression:
((J+C)+(K∗S∗)∗)+. In data journaling mode, all the file
system writes are journaled (represented byJ) and there are
no ordered or unordered writes. After writing one or more
journal blocks, a commit block (represented byC) is written
by the file system to mark the end of the transaction. The
file system could write one or more such transactions to the
log. Once the transactions are committed, the file system
might write the checkpoint blocks (represented byK) to
their fixed locations or the journal super block (represented
by S) to mark the new head and tail of the journal. We
convert this regular expression to a state diagram as shown
in Figure 2(a) and add the failure stateS3 to it.

Ordered Journaling: Ordered journaling can be ex-
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Figure 2:Journaling Models.This figure shows the models that we use for verifying the different journaling modes. Each model is built
based on a regular expression and then the stateS3, which represents the state that is reached on any write failure, is added to it. In the
above models,J represents journal writes,D represents data writes,C represents journal commit writes,K represents checkpoint writes,
S represents journal super block writes andF represents any write failure.

pressed by the following regular expression:
(((D∗J+D∗)+C)+(K∗S∗)∗)+. In ordered mode, ordered
data writes (D) must be written before metadata blocks are
committedto the journal. Note that the data blocks can go
in parallel with the journal writes (J) but all of those writes
must be over before the commit block (C) is written. Once
the commit block is written, the transaction is over. There
could be one or more such transactions. Similar to data jour-
naling, the file system can write the checkpoint blocks (K)
or the journal super block (S) after the transactions. This
regular expression is converted in to a state diagram and a
failure stateS3 is added to it as shown in Figure 2(b).
Writeback Journaling: Writeback journaling is given by
the following regular expression:
(((D∗

J
+
D

∗)+C)+(K∗
D

∗
S
∗)∗)+. In writeback journal-

ing mode, the unordered data (D) can be written at any time
by the file system. It can be written before the journal writes
(J) or after them. Once the journal writes are over, a com-
mit block (C) is written. After the transaction is committed,
the file system can write the journal super block (S) or the
checkpoint blocks (K) or the unordered writes (D). Write-
back journaling model in Figure 2(c) is obtained from this
regular expression and adding the stateS3 to it.

3.4 Error Model

In our error model, we assume that the latent errors orig-
inate from the storage subsystem. These errors can be accu-
rately modeled through software-based fault injection be-
cause in Linux, all such low-level errors are reported to
the file system in a uniform manner as “I/O errors” at the
device-driver layer.

The errors we inject in to the block write stream have
three different attributes, similar to the classification of

faults injected to the Linux kernel by Guet al. [6]. The co-
ordinator passes the fault specification to the fault-injection
driver with the following attributes:
What: This specifies the file system to test. The driver cur-
rently understands ext3, Reiserfs, and IBM JFS file system
semantics.
Which: This attribute specifies the block type and it deter-
mines which request in a given traffic stream must be failed.
Not all request types are supported by all the file systems,
and therefore this attribute can change with the file system.
The request to be failed can be a dynamically-typed one
(like a journal commit block) or a statically typed one (like
a journal super block).
How long: This determines whether the fault that is in-
jected is a transient error (i.e., fails for the nextN requests,
but then succeeds), or a permanent one (i.e., fails upon all
subsequent requests).

3.5 Failure Classification

We now classify the different ways in which the file sys-
tem can fail due to the write failures. The type of losses one
might incur after the write failure are as follows.
No Loss: File system handles the write failure properly
and prevents its data from getting corrupted or lost.
Data Corruption: In this case, write failures lead to data
corruption but not metadata corruption. Although the file
system metadata structures remain consistent, data from
files can get corrupted. This type of failure can occur if the
data block pointers from metadata blocks point to invalid
contents on the disk. Note that these type of errors cannot
be detected by fsck.
Data Loss: In this type of failure, file data is lost due to
transient or permanent write failures. Data loss can occur if
the data block pointers are not updated correctly.



Files and Directories Loss: In this case, file system meta-
data is corrupted. This can result in lost files or directories.
Unmountable File System: When write failures happen,
the file system can corrupt its important metadata blocks
like the super block or group descriptors and as a result can
become unmountable.
File System Crash: Write failures can lead to some seri-
ous file system reactions, such as a system-wide crash. This
failure could be initiated by an explicit call such aspanic
or it could be due to other reasons such as dereferencing a
null pointer.

3.6 Why Semantic Fault Injection?

One question we have to address now is why the fault in-
jection technique has to be file-system aware. Is it possible
to conduct a similar analysis without any semantic knowl-
edge?

The device driver that we use to fail the disk writes un-
derstands the various file system block types and transaction
boundaries. Without this high-level information, the driver
does not know the type of block it receives and therefore
it cannot determine if it is failing a journal block or a data
block. This information is important because file systems
behave differently on different block-write failures. Forex-
ample, Reiserfs crashes on journal write failures and does
not crash on data-block write failures. Moreover, depending
on the type of block failed, the file system errors can vary
from data corruption to unmountable file systems. With file-
system knowledge, it is possible to answerwhy the file sys-
tem fails in a certain way. Having higher-level semantic
knowledge also enables us to identify several design flaws
that would not have been identified if the fault injection was
performed without any semantic information, as we will see
in our analysis.

3.7 Putting it All Together: An Example of Fault
Injection

We conclude this methodology section with an example
of how fault is injected using the journaling model. Figure 3
shows the sequence of steps followed by the fault-injection
driver to track the file system writes and inject the fault.
In this example, we consider failing a commit block write
of a transaction in ordered journaling mode. Each step in
the figure captures a transition to a different state. Initially,
the transaction starts with a set of ordered data writes (Fig-
ure 3a). After the data writes, the journal blocks are logged
(Figure 3b). The commit block is written after all the data
and journal writes are over and it is failed (Figure 3c). The
file system can be oblivious to this commit block failure and
continue to checkpoint the journaled blocks (Figure 3d). Or,
the file system can recognize this failure and take steps to
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Figure 3: Fault Injection Example.This figure shows the se-
quence of steps followed by the fault-injection driver to track the
file system writes and fail specific writes.

prevent file system corruption by moving to stateS3 (Fig-
ure 3e). In stateS3, the file system could abort the failed
transaction, or do bad block remapping, or remount itself
read-only, or crash the system.

From the example, we can see that it is not sufficient to
know just the block types to inject fault in file system re-
quests. Without the model, the fault-injection driver cannot
reason if the requests following a write failure belong to the
failed transaction or to new transactions from the file sys-
tem. By keeping track of the writes using the journaling
model, fault-injection driver can explainwhy a particular
block write failure leads to certain file system errors.

Our fault injection experiments are not statistical. In-
stead, we carefully choose the fault injection points. We
inject faults at 5 main points: ordered data writes, journal
writes, commit writes, checkpoint writes and superblock
writes. Within the journal writes, we perform fault injection
to both the journal metadata and journal data blocks. Each
of our fault injection experiment proceeds as follows. The
file system to be tested is freshly created and the files and
directories needed for the testing are created in it. Then the
fault specification (which contains the attributes described
in §3.4) is passed to the SBA driver. A controlled workload
(e.g., creating a file or directory) that would generate the
block write to be failed is run as a child process. The driver
injects the fault and reports any file system writes that vi-
olate the journaling model. Once the fault is injected, the
coordinator collects the error logs from the child process,
system log and the driver. Although all the above process
is automated, the error logs have to be interpreted manu-
ally to figure out the extent to which the file system can be
damaged by extraneous writes.



4 Analysis

In this section, we explain the failure analysis for three
Linux based journaling file systems: ext3, Reiserfs and IBM
JFS.

4.1 Ext3 Analysis

Ext3 is a journaling file system based on the ext2 file
system [19]. Ext3 logs the file system writes in the jour-
nal at block level. It uses different types of journal meta-
data blocks to keep track of the transactions and the blocks
that are logged. Journal descriptor blocks store the fixed
location block numbers of the journaled data. Journal re-
voke blocks prevent the file system from replaying some
data that should not be replayed during recovery. Journal
commit blocks mark the end of transactions. Journal super
block stores information about the journal such as the head,
tail, next transaction id and so on. Apart from these journal
metadata blocks, the log also stores journal data blocks that
are journaled versions of the fixed location blocks.

Ext3 is designed such that its journal metadata blocks
such as journal super block, descriptor block, revoke block
and commit block contain a magic number that identifies
them as journal metadata blocks. The journal metadata
blocks also contain a sequence number that denotes the
transaction number of the particular transaction in which
they occur. During recovery, if the block read from the jour-
nal does not have the correct magic number, it is treated as a
journal data block. If it has the magic number and if its se-
quence number does not match the next transaction id that is
expected, then those blocks are skipped. Based on our ext3
analysis, we found the following design flaws in handling
write failures.

4.1.1 Committing Failed Transactions

When a write in a transaction fails, ext3 continues to write
the transaction to the log and commits it before fixing the
failed write. This can affect file system integrity. For exam-
ple, when an ordered data write fails in ordered journaling
mode, we expect the file system to abort the transaction,
because if it commits the transaction, the metadata blocks
will end up pointing to wrong or old data contents on the
disk. This problem occurs in ext3 where failure of an or-
dered write can cause data corruption.

4.1.2 Checkpointing Failed Transactions

When a write in a transaction fails, the file system must
not checkpoint the blocks that were journaled as part of
that transaction. Because during checkpointing if a crash
occurs, the file system cannot replay the failed transaction

properly during recovery phase. This can result in corrupted
file system. Ext3 commits a transaction even after one of the
transaction write fails. After committing the failed transac-
tion, ext3 checkpoints the blocks that were journaled in that
transaction. Depending on the journaling mode, the check-
pointing can be either partial or complete as described be-
low.
Partial Checkpointing: In certain cases, ext3 only check-
points some of the blocks from a failed transaction. This
happens in data journaling mode when journal descriptor
block or journal commit block write fails. In these cases,
during checkpointing,only the file system metadata blocks
of the transaction are checkpointed and the data blocks are
not checkpointed. For example, in data journaling mode,
when a file is created with some data blocks, if the transac-
tion’s descriptor block fails, then only the metadata blocks
like the file’s inode, data bitmap, inode bitmap, directory
data and directory inode blocks are written to their fixed lo-
cations. The data blocks of the file, which are also journaled
in data journaling mode, are not written. Since the data
blocks are not written to their fixed locations, the metadata
blocks of the file end up pointing to old or wrong contents
on the disk.
Complete Checkpointing: In ordered and writeback jour-
naling mode, only file system metadata blocks are journaled
and no data blocks are written to the log. In these modes,
ext3 checkpoints all the journaled blocks even from a failed
transaction. Below we describe a generic case where it can
cause file system corruption.

Let there be two transactionsT1 and T2, whereT1 is
committed first followed byT2. Let blockB1 be journaled
in T1 and blocksB1 andB2 be journaled inT2. Assume
transactionT2 fails and that the file system continues to
checkpoint blocksB1 andB2 of the failed transactionT2.
If a crash occurs after writing blocksB1 andB2 to their
fixed locations, the file system log recovery runs during next
mount. During the recovery only transactionT1 will be re-
covered becauseT2 is a failed transaction. WhenT1 is re-
covered, contents of blockB1 will be overwritten by old
contents fromT1. After the recovery, file system will be in
an inconsistent state where blockB1 is from transactionT1

and blockB2 is from transactionT2.
This problem occurs in ext3. It can happen when a jour-

nal metadata block like descriptor block, revoke block or
commit block fails. This can lead to file system corruptions
resulting in loss of files, inaccessible directories and so on.

4.1.3 Not Replaying Failed Checkpoint Writes

Checkpointing is the process of writing the journaled blocks
from the log to their fixed locations. When a checkpoint
write fails, the file system must either attempt to write again
or mark the journal such that the checkpoint write will hap-



pen again during the next log replay. Ext3 does not replay
failed checkpoint writes. This can cause data corruption,
data loss, loss of files or directories.

4.1.4 Not Replaying Transactions

Journaling file systems maintain a state variable to mark the
log as dirty or clean. When the file system is mounted, if
the log is dirty, the transactions from the log are replayed
to their fixed locations. Usually journaling file systems up-
date this state variable before starting a transaction and af-
ter checkpointing the transaction. If the write to update this
state variable fails, two things can possibly happen; one, the
file system might replay a transaction that need not be re-
played; two, it might fail to replay a transaction that needs
recovery. Replaying the same transaction again does not
cause any integrity problems. But the second possibility
(i.e., not replaying the journal contents) can lead to corrup-
tion, loss of data, files or directories.

Ext3 maintains its journal state in the journal super
block. Ext3 clears this field and writes the journal super
block to indicate a clean journal. To mark the journal as
dirty, journal super block is written with a non-zero value
in this field. When the journal super block write fails, ext3
does not attempt to write it again or save the super block
in other locations. Moreover, even after the journal super
block failure, ext3 continues to commit transactions to the
log. If the journal super block written to mark the journal as
dirty is failed, the journal appears as clean on next mount.
If any transaction needed replay due to a previous crash,
ext3 fails to replay them. This can result in lost files and
directories.

4.1.5 Replaying Failed Transactions

When a journal data block write fails, that transaction must
be aborted and not replayed. Because if the transaction is
replayed, journal data blocks with invalid contents might
be read and written to the fixed location. If not handled
properly, this can lead to serious file system errors.

As said earlier, ext3 does not abort failed transactions. It
continues to commit them to the log. Therefore during re-
covery, it can write invalid contents on file system fixed lo-
cation blocks. This can corrupt important file system meta-
data and even result in unmountable file system.

To show this, we created a transaction that journaled the
group descriptor block of the file system. Then we failed
the journal write of this group descriptor block. Ext3 com-
mitted this transaction and failed to mark it as an invalid
one. After the commit, we crashed the file system and
forced ext3 to do recovery on next mount. During recov-
ery, ext3 read the block from the journal that is supposed to
be the group descriptor block and overwrote the fixed loca-
tion group descriptor block with the invalid contents from

the journal. This corrupted the group descriptor block and
resulted in an unmountable file system.

4.1.6 Ext3 Summary

Overall, we find that ext3 is designed only with the whole
system crash in mind. Ext3 does not effectively handle sin-
gle block write failures. Some features in ext3 are well de-
signed. First, ext3 does not crash the entire system on failed
writes. Second, by using magic numbers and transaction ids
on journal metadata blocks, ext3 prevents replay of invalid
contents. The main weakness in the ext3 design is that it
does not abort failed transactions but continues to commit
them. This can lead to serious file system errors ranging
from data corruption to unmountable file system. We also
found that ext3 sometimes logs empty transactions - trans-
actions that do not have any blocks in them other than the
commit block. Although it does not affect integrity, this can
result in unnecessary disk traffic.

4.2 Reiserfs Analysis

Journaling in Reiserfs is similar to that of ext3 [14].
Reiserfs uses a circular log to capture the journal writes and
logs the file system writes at block level. Reiserfs supports
all the three different journaling modes. It also uses journal
metadata blocks like the journal descriptor block, journal
commit block and journal super block to describe the trans-
actions and the fixed location blocks. The journal metadata
blocks in Reiserfs also contain a magic number and a trans-
action number similar to that of ext3. Based on our analysis,
we found the following design flaws in Reiserfs.

4.2.1 Crashing File System

When a write fails in Reiserfs, most of the time it crashes
the whole file system by making apanic call. This neces-
sitates the entire system to be rebooted before using it again.
Not only does this affect processes running on Reiserfs, but
it also affects other processes running in the same system.

However, crashing the entire file system on single write
error also has a benefit. When a journal write (journal data
or journal metadata) fails, the system crashes and there-
fore the failed transaction does not get committed to the
disk. When the system boots up and mounts the file system,
Reiserfs performs the recovery. During recovery, it replays
all transactions that were successfully committed before the
failed transaction. Since no failed transactions are commit-
ted, they are not replayed and the file system remains in
a consistent state after recovery. This avoids some of the
problems that we saw in ext3 such ascheckpointing failed
transactions, not replaying successful transactionsandre-
playing failed transactions. In other words, Reiserfs con-
verts the problem of fail-stutter fault tolerance to a fail-stop



one. However, if a particular journal block write fails al-
ways then Reiserfs can repeatedly crash the whole system.

Reiserfs also crashes the system when a checkpoint write
fails. After the crash, recovery takes place and the failed
checkpoint write is replayed properly. Note that this works
fine for transient write failures but for permanent write er-
rors, Reiserfs requires fsck to be run to handle replay fail-
ures. Crashing on checkpoint write failures prevents the
problem ofnot replaying failed checkpoint writesthat hap-
pens in ext3.

4.2.2 Committing Failed Transactions

On certain write failures, Reiserfs does not crash but con-
tinues to commit the failed transaction. In ordered journal-
ing mode, when an ordered data block write fails, Reiserfs
journals the transaction and commits it without handling the
write error. This can result in corrupted data blocks be-
cause on such failed transactions the metadata blocks of the
file system will end up pointing to invalid data contents.
Reiserfs does not have a uniform failure handling policy. It
crashes on some write failures and not on others. File sys-
tem corruption would have been prevented if Reiserfs was
crashing the system even on ordered write failures.

4.2.3 Reiserfs Summary

Overall, we find that Reiserfs avoids many of the mistakes
done by ext3 butexpensivelyat the cost of crashing the en-
tire file system. Basically, Reiserfs converts a fail-stutter
system in to a fail-stop one to handle the write errors. We
find that not committing a failed transaction, as done in
Reiserfs, is a desirable design decision because it would
solve many of the problems that we saw in ext3. However,
if the block write errors are permanent, then Reiserfs might
make the system unusable by repeated crashing. We also
used our model to find a bug in Reiserfs on Linux 2.6.7.
The data journaling mode in that version was behaving like
ordered journaling mode. Thus our journaling model can
also be used to find such bugs where the semantics of jour-
naling is violated.

4.3 JFS Analysis

IBM JFS works only in ordered journaling mode [1].
Unlike ext3 and Reiserfs, it does not support data and write-
back journaling modes. JFS also differs from ext3 and Reis-
erfs by the information that is written to the log. While
ext3 and Reiserfs log whole blocks in to the journal, JFS
writes records of modified blocks to the log. However, or-
dered data block writes are written as whole blocks similar
to other file systems.

Since JFS does record level journaling, log blocks can-
not be classified as journal data blocks or journal commit

blocks. A single log write can contain both the journal data
records and commit records. It is hard to separate commit
record from other journal records as most of the transactions
are small and so can fit in a single journal block. We modi-
fied our ordered journaling model to work under JFS record
level journaling. We performed the same failure analysis on
JFS and found the following design mistakes.

4.3.1 Crashing File System

Similar to Reiserfs, JFS also crashes the file system on cer-
tain write failures. For example, the system crashes when
the journal super block write fails during the mount opera-
tion. As said earlier, crashing the whole system affects all
the processes running in that system. Also, crashing the
whole system is not a graceful way to provide fault toler-
ance if the write errors are permanent.

4.3.2 Not Replaying Failed Checkpoint Writes

When a checkpoint block write fails, JFS does not attempt
to rewrite it or mark the transaction for a replay. JFS simply
ignores this error. This can lead to corrupted file system.
This behavior is similar to that of ext3. Since both these file
systems do not record failed checkpoint writes, they have
no way of identifying which transactions must be replayed
again.

4.3.3 Committing Failed Transactions

We found that all the three journaling file systems commit
a failed transaction on an ordered block write failure. JFS
does not notify the application of an ordered write failure
and commits the transaction. This can lead to data corrup-
tion.

4.3.4 Failing to Recover

When a journal block write fails, JFS does not abort the
failed transaction but commits it. If a crash happens after
a journal write failure, the logredo routine of JFS fails be-
cause of unrecognized log record type. This can lead to
unmountable file system.

4.3.5 JFS Summary

JFS has some of the design flaws we saw in ext3 and Reis-
erfs. For example, JFS commits failed transactions and does
not replay failed checkpoint writes. It also crashes the file
system like Reiserfs on journal super block write failures.
We also found a bug in JFS. JFS does not flush the blocks
associated with a file even after a sync call. We created
a zero sized file and calledfsync on the file descriptor.
Thefsync call returned without flushing any blocks to the



Ext3 Reiserfs IBM JFS
Committing Failed Transactions × × ×
Checkpointing Failed Transactions ×
Not Replaying Failed Checkpoint Writes× ×
Not Replaying Transactions ×
Replaying Failed Transactions ×
Crashing File System × ×

Table 1:Design Flaws. This table gives a summary of the type of design flaws we have identified in ext3, Reiserfs and IBM JFS.
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Journal Descriptor Block × × × × – – – – –
Journal Revoke Block × × × – ×
Journal Commit Block × × × × ×
Journal Super Block × × × × ×
Journal Data Block × × × × × ×
Checkpoint Block × × × × × × ×
Data Block × × ×

Table 2:Analysis Summary. This table presents the summary of the type of failures that can occur in ext3, Reiserfs and IBM JFS when
block writes fail. Data block represents both ordered and unordered writes in ext3 and Reiserfs whereas it represents only ordered writes
in JFS. DCmeans ”Data Corruption”, DL means ”Data Loss”, FDLmeans ”Files and Directory Loss”, UFS means ”Unmountable File
System”, and CR means ”Crash”. A ”–” means that the corresponding block type is not available inthat file system. Although JFS does
not have separate commit or revoke blocks, it has records of that type.

journal while one would expect the file system to write the
metadata blocks associated with the file to the disk.

4.4 Analysis Summary

The summary of our analysis is presented in Table 1 and
Table 2. Table 1 lists the various design flaws we identi-
fied in Linux journaling file systems. Table 2 gives the dif-
ferent types of file system failures that can happen when
block writes fail. Overall, we find that Linux journaling file
systems need better uniform failure handling policies that
could handle fail-stutter systems.

5 Related Work

In this section, we discuss related work. We first talk
about related work in fault injection in general and then
about specific work on file and storage systems testing.
Fault Injection: Fault injection has been used for a long
time to measure the robustness of systems. Koopman ar-
gues that faults injected directly in to the modules under test
do not give representative results for dependability evalua-
tion [10]. He says that the fault must be injected in the ex-
ternal environments of the module under test and the fault
must be activated by inputs during real execution. This is

similar to our approach. We inject faults external to the file
system module and activate them by running workloads on
top of the file system.

We use software to simulate the effects of hardware
faults and inject faults by dynamically determining the
block types of the file system. FTAPE is a tool that performs
dynamic workload measurements and inject faults by auto-
matically determining time and location that will maximize
fault propagation [18]. FIAT is one of the early systems to
use fault injection techniques to simulate the occurrences
of hardware errors by changing the contents of memory or
registers [8]. FINE is a tool developed by Kaoet al., to in-
ject hardware induced software faults into UNIX kernel and
trace the execution flow of the kernel [11]. In a more recent
work, fault injection techniques are used to test the Linux
kernel behavior under errors [6].

File and Storage System Testing:Most of the file system
testing tools test the file system API with various types of
invalid arguments. Siewioreket al.develop a benchmark to
measure the system’s robustness and use it to test the de-
pendability of file system’s libraries [16]. Similarly, Koop-
manet al. use the Ballista testing suite to find robustness
problems in Safe/Fast IO (SFIO) library [4]. Another way
to test file system robustness is to use model checking tech-
niques and apply it to the file system code. In a more recent



work, Yanget al. use model checking comprehensively to
find bugs in three different file systems: ext3, Reiserfs and
JFS [20]. They use formal verification techniques to sys-
tematically enumerate a set of file system states and verify
them against valid file system states. Their work can be used
to identify problems like deadlock, NULL pointers whereas
our work focuses mainly on how file systems handle latent
sector errors.

Previous work has studied the reliability of storage sys-
tems. Brownet al.developed a method to measure the sys-
tem robustness and applied it to measure the availability of
software RAID systems in Linux, Solaris and Windows [2].
They use a PC to emulate a disk and use the disk emula-
tor to inject faults. They test the software RAID systems
while our work targets the file systems. Moreover, we use
file system knowledge to carefully select and fail specific
block types whereas they don’t require any semantic in-
formation for fault injection. Other studies have evaluated
RAID storage systems for reliability and availability [7, 9].
These studies have developed detailed simulation models of
RAID storage arrays and network clusters and used them to
obtain the dependability measures.

6 Conclusion

In this paper, we propose a new way to evaluate the ro-
bustness of journaling file systems under disk write failures.
We build semantic models of different journaling modes
and use them along with Semantic Block-Level Analysis
technique to inject faults in to the file system disk requests.
We evaluate three widely used Linux journaling file sys-
tems. From our analysis, we find that ext3 and IBM JFS
violate journaling semantics on block write failures, which
could result in corrupt file systems. In contrast, Reiserfs
maintains file system integrity by crashing the entire system
on most write failures. However, on permanent write fail-
ures, this will result in repeated crashes and restarts. Based
on the analysis, we identify various design flaws and cor-
rectness bugs in these file systems that can catastrophically
affect the on-disk data. Overall, we find that modern file
systems need a better and uniform failure handling policy.
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