SEMANTICALLY-SMART DISK SYSTEMS

by
Muthian Sivathanu

B.E. Computer Science (Anna University, India) 2000
M.S. Computer Science (University of Wisconsin-Madiso@)2

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy
in
Computer Sciences

University of Wisconsin - Madison
2005

Committee in charge:
Andrea C. Arpaci-Dusseau (Co-chair)
Remzi H. Arpaci-Dusseau (Co-chair)
David J. DeWitt
Mark D. Hill
Mikko H. Lipasti

(©Copyright 2005 by Muthian Sivathanu.
All rights reserved.

Abstract

SEMANTICALLY-SMART DISK SYSTEMS
Muthian Sivathanu

Robust and efficient storage of data is a prerequisite oeotiand future com-
puter systems. To keep pace with both rapid changes in teghnas well as
increasing demands from applications and users alikeaggsystems must evolve
in new and interesting ways.

Unfortunately, storage systems today have a problem: thgeraf function-
ality they can provide is fundamentally limited, despite firesence of significant
processing power within them. The main reason for this &tion is that storage
systems communicate with the outside world through a nabioek-based inter-
face today, and therefore lack higher-level “semantic” arathnding about how
they are being used.

This thesis proposes a solution to this fundamental problepresents a new
class of storage systems called “semantically-smart distems” (SDS’s); such
disk systems are capable of providing entirely new clast&snotionality by ex-
ploiting information about the system abowed, a file system or a database man-
agement system). An SDS does so by carefully monitoringaivelével stream of
block reads and block writes that a storage system normedly, and then inferring
higher-level behaviors of the system above. ImportantiyS®S does so without
any changes to the existing block-level storage interftaldng a pragmatic ap-
proach that enables ready deployment in existing compeimngonments.

In this thesis, we present a variety of techniques used byl t8 track se-
mantic information underneath modern file systems, demating how to trans-
form an I/O request stream into a source of useful high-levermation for the
underlying disk system. We also demonstrate the utilityeshantic information
within the disk system by presenting new improvements toatrelability, secu-
rity, and performance of storage. For example, we have awstbrage system that
exhibits much better availability under multiple failureg keeping semantically-

Vi

meaningful data available. In another case study, we shaisdmantic knowledge
within the storage system can enable reliable secure delefidata. Such innova-
tions are impossible to implement in the current storagastfucture, but become
possible with the acquisition and careful use of semanfariation. Finally, we
present a new logic framework for reasoning about file systand their interac-
tion with storage systems, and use this logic to prove ptseabout inference
within a semantically-smart disk system.

To my parents

viii

Acknowledgements

| am indebted to my advisors Andrea Arpaci-Dusseau and RAnpzci-Dusseau
for making my graduate study experience both amazinglyyatje and fruitful.
Although | had no intention of pursuing a Ph.D when | joined Uy work with
Andrea and Remzi during my first year was sufficient to coreime that it would
be a great experience, and in retrospect, | am very glad teatyed on. Their
invaluable guidance and constant feedback helped me nsgmécantly as a re-
searcher over the last 5 years. Weekly meetings with thera alerys fun, thanks
in part to their unflinching enthusiasm and sense of humadrh#fd become a pro-
fessor myself, Remzi and Andrea would have been my ideal haoldesors | strive
to emulate.

| would like to thank Mark Hill, David DeWitt, and Mikko Lipdsfor serving
on my thesis committee and providing valuable feedback aggestions. | es-
pecially thank Mark Hill and David DeWitt for their great ugrt during my job
search. They provided wonderful feedback on my practicégtdband had plenty
of useful insights while discussing various job optionslsbahank Ben Liblit and
Suman Banerjee for sharing their insights on the job seaimteps.

My various summer internships during my graduate scho@erarvere enjoy-
able and useful in terms of providing me varied perspectiremdustrial research.
I would like to thank my mentors and colleagues during myaasiinternships,
mainly Mahesh Kallahalla, Ram Swaminathan, and John Witké#° Labs, Hon-
esty Young in IBM Almaden, Anurag Acharya in Google, and Madlluri and
Yousef Khalidi in Microsoft. They were all wonderful peoptle work with and |
learned a lot in each of my internships. | especially thankirdg and Yousef for
their support and insights during my job search.

| was fortunate to have wonderful colleagues to work with &/ U Nitin
Agrawal, Lakshmi Bairavasundaram, John Bent, Nathan Byrii@én Denehy,
Brian Forney, Haryadi Gunawi, Todd Jones, James Nugentefitioa Popovici,
and Vijayan Prabhakaran. Our group meetings, hallway d&ons and our coffee
and ice-cream breaks were always enjoyable. Thanks to #ikaofi.

My stay in Madison was made pleasant and fun-filled becauagyoéat set of
friends, especially Gogul, Lakshmi, Koushik, Madhu, NitRrabu, Pranay, Ram,
Ravi, Sekar, Veeve, Venkat, Venkatanand, Vijayan, and &/irndhank all of them
for a great time.

Above all, words do not suffice to express my indebtednesgeatdude to my
parents: they have been the single largest contributor mayaaccomplishments,
by means of their boundless love and constant support, geedand encourage-
ment for all my actions. | am also deeply thankful to my broesh€opalan and
Sankaran for their love and support. | view myself profoyridcky to have such
wonderful parents and brothers, and dedicate this diseert® them.

Contents

Abstract v
Acknowledgements iX
1 Introduction 1
1.1 Motivation: AsnExample 2
1.2 Acquiring Semantic Knowledge 3
1.3 Exploiting Semantic Knowledge 4
1.4 Semantic Disks UnderneathaDBMS 5
1.5 Reasoning About SemanticDisks 5
1.6 Evaluation Methodology 6
1.7 Contributions 6
1.8 Outline 7
2 Background 9
2.1 Modern Storage Systems00 9
211 RAIDlayout 9
2.1.2 NVRAMbuffering 10
2.1.3 Blockmigration 10
214 Summary ... e e e e 11
2.2 File SystemBackground 11
2.21 Commonproperties. 11
222 Linuxext2 e 12
223 Linuxext3 12
224 VFAT . . . e 13
225 WindowsNTFS. 13

Xii

3 Semantic Disks: An Overview 15
3.1 BasicApproach, 15
3.1.1 Benefitsandconcerns 15
3.2 Alternative Approaches 17
3.21 Explicit 17
3.22 Implicit e 18
3.3 Evaluation Methodology 19
4 Acquiring Semantic Knowledge 21
4.1 StaticInformation L o o 21
4.2 Dynamic Information oo 22
4.2.1 Classification 23
422 Association o 25
4.2.3 Operationinferencing 26
4.2.4 Accuracyofinference 27
4.3 Dealingwith Asynchrony 27
4.3.1 Indirect classification 28
4.3.2 Association 29
4.3.3 Operationinferencing 29
4.3.4 Impactofuncertainty 29
4.4 Evaluation 30
441 Timeoverheads 30
442 Spaceoverheads 31
45 Summary e e e e 33
5 Exploiting Semantic Knowledge 35
5.1 FileSystemModel, 35
5.2 SemanticCaching 36
5.2.1 Tolerancetoinaccuracy 37
53 Journaling 38
5.3.1 Design and implementation 38
5.3.2 Evaluation 41
5.4 Complexity Analysis 43
55 Summary e 43
6 Improving Availability with D-GRAID 45
6.1 Introduction 45

6.1.1 The problem: Reduced availability due to semantiongnce 46
6.1.2 Asolution: D-GRAID 46

6.1.3 Keytechniques 47
6.2 Extended Motivation oL 48
6.3 Design: D-GRAID Expectations 49
6.3.1 Gracefuldegradation 49
6.3.2 Designconsiderations 50
6.3.3 Fastrecovery e 53
6.4 Exploring Graceful Degradation 53
6.4.1 Spaceoverheads 54
6.4.2 Staticavailability 55
6.4.3 Dynamicavailability 55
6.5 FileSystemModel 56
6.5.1 Arbitraryordering 57
6.5.2 Delayedupdate, 58
6.5.3 Hiddenoperation 58
6.6 Implementation: Making D-GRAID 58
6.6.1 Graceful degradation 60
6.6.2 Live-blockrecovery, 64
6.6.3 Otheraspectsof Alexander 65
6.6.4 Alexanderthe FAT 67
6.7 Evaluating Alexander 68
6.7.1 Does Alexander work correctly? 69
6.7.2 What time overheads are introduced? 71
6.7.3 How effective is access-driven diffusion? 72
6.7.4 How fastis live-block recovery? 73
6.7.5 What overall benefits can we expect from D-GRAID? .. 74
6.7.6 How complex is the implementation? 75
6.8 D-GRAIDLevels 76
6.8.1 D-GRAID-O: Noredundancy 77
6.8.2 D-GRAID-10: Mirroring 77
6.8.3 D-GRAID-5: Parity 79
6.8.4 Summary 80
6.9 Discussion: The ImpactofBeingWrong 80
6.10 Summary 81
Exploiting Liveness Knowledge in FADED 83
7.1 Introduction 83
7.2 Extended Motivation oo 84
7.3 Livenessin Storage: ATaxonomy 86
7.3.1 Granularity ofliveness 86

Xiv

7.3.2 Accuracy of liveness information 87
7.3.3 Timeliness of information 88
7.4 FileSystemModel, 88
7.5 Techniques for Liveness Detection 0 9
7.5.1 Contentliveness 91
7.5.2 Blockliveness 91
7.5.3 Generationliveness 93
7.6 Case Study: SecureDelete 95
76.1 Goalsof FADED 96
7.6.2 Basicoperation, 96
7.6.3 Coverageofdeletes. 98
7.6.4 FADED for other filesystems 104
7.6.5 Evaluation 104
7.7 Implicit Detection Under NTFS 109
7.8 Explicit Liveness Notification a1
7.8.1 Granularity of r ee notification 111
7.8.2 Timeliness of r ee notification 111
7.8.3 Orphanallocations 112
7.8.4 Explicit notificationinext2. 112
7.8.5 Explicit notificationinext3. 112
7.8.6 Explicitsecuredelete 113
7.9 Discussion e 114
7.10 SUMMANY e e e e e 115
Semantic Disks for Database Systems 117
8.1 Introduction 117
8.2 Extracting Semantic Information 181
8.2.1 Staticinformation 119
8.2.2 Dynamicinformation 119
8.3 Patrtial Availability withD-GRAID r
8.3.1 Design 122
8.3.2 Transactionsand Recovery 125
8.3.3 Evaluation oL 126
8.3.4 Discussion 131
8.4 Secure DeletewithFADED 131
8.4.1 Table-leveldeletes 131
8.4.2 Record-leveldeletes, 132
8.43 Performance 133

8.4.4 DIiSCUSSION v v o e 134

8.5 Towards a Semantic Disk-Friendly DBMS 413
8.5.1 Informationrequired 134
8.5.2 How DBMSes can help semanticdisks 136

8.6 Summary 137

A Logic of File Systems and

Semantic Disks 139

9.1 Introduction 140

9.2 Extended Motivation L. 141
9.2.1 Reasoning about existing file systems 142
9.2.2 Building new file system functionality 24
9.2.3 Designing semantically-smartdisks 314

9.3 Background e 143
9.3.1 Filesystemmetadata 143
9.3.2 Filesystemconsistency 144
9.3.3 Filesystemasynchrony 144

9.4 TheFormalism 145
9.4.1 Basicentities 145
9.4.2 Beliefsandactions 146
9.4.3 Ordering of beliefsand actions 147
9.4.4 Proofsystem 148
9.4.5 Attributes ofcontainers oL 148
9.4.6 Logicalpostulates 149

9.5 File System Properties, 152
9.5.1 Containerexclusivity 152
9.5.2 Reuseordering 152
9.5.3 Pointerordering e 153

9.6 Modeling Existing Systems 153
9.6.1 Dataconsistency 153
9.6.2 Modeling file system journaling 157

9.7 Redundant Synchrony inExt3 162

9.8 Support for Consistent Undelete 416
9.8.1 Undeleteinexistingsystems 165
9.8.2 Undelete with generation pointers 166
9.8.3 Implementation of undelete inext3 167

9.9 Application to SemanticDisks 167
9.9.1 Blocktyping 168
9.9.2 Utility of generation pointers 171

9.10 Summary e 171

XVi

10 Related Work 173
10.1 SmarterStorage e 173
10.1.1 Fixedinterfaceso 173
10.1.2 More expressive interfaces 174
10.1.3 New programming environments 175
10.1.4 Smarterfilesystems 175
10.2 Implicit Systems 176
10.3 Partial Availability 176
10.3.1 Distributed filesystems 177
10.3.2 Traditional RAID systems 177
10.4 Logical ModelingofSystems 178
11 Conclusions and Future Work 181
11.1 Lessons Learned 182
11.2 Future Work e 184
11.2.1 Implicit inference in other domains 418
11.2.2 Integrating logic into implementation checkers 185
11.2.3 More semantic disk functionality 618
11.2.4 Making semantic disks more semantic 186
187

11.3 Summary e e e e

Chapter 1

Introduction

Storage systems form the backbone of modern computing,reroavation in stor-

age is crucial to improving present and future computingrenments. Improving

storage systems along various dimensions such as avit§labécurity, and per-
formance is of paramount importance to keep pace with ex@easing modes of
usage and new requirements on storage systems.

Unfortunately, the range of innovation possible in storaagiay is limited due
to the narrow interfacethat exists between the storage system itself and the soft-
ware layer €.g, the file system or DBMS) that uses the storage system. Storag
systems today export a simple block-based interfagg, SCSI) that abstracts the
storage system as a linear array of blocks; file systems nperfidock reads and
block writes into this linear address space. This interfaes designed at a time
when storage systems were simple, passive disks and thuslffifte the simple
abstraction of a linear address space.

However, storage systems have since evolved into massioeiplex, powerful
systems incorporating a wide range of optimizations. Tpdyrage systems are
composed of multiple disks with different forms of redunciario tolerate disk
failures [12, 16, 22, 40, 49, 73, 76, 77, 95, 117], performnatign of blocks across
disks for load balancing [29, 117], transparently buffeiteg in non-volatile RAM
before writing them out to disk [117], and perform transparemapping of blocks
to hide failure. As a result of such sophistication, a sigatiiit amount of low-level
information and control is available within the storageteys such as the failure
boundaries across disks and the exact mapping of logicakblm physical disk
blocks.

While storage systems have become more intelligent and lesxripe narrow
block-based interface has remained unchanged, mainlyodbe tnassive industry-

wide effort required for such a change, and legacy issues sult, file systems
no longerunderstandthe storage system, but instead, simplistically contirue t
view the storage system as a “dumb” disk. Thus, the file sysmot implement
any functionality that requires low-level knowledge or ttohover the low-level
details of block layout; the storage system is the only letat has the information
required to provide such functionality.

Unfortunately, placing functionality within storage systs is limited as well,
again due to the narrow interface. Storage systems simglgroeb a raw stream of
block reads and block writes that have no semantic meanieigastic knowledge
about the logical grouping of blocks into files, the type oflack (e.g, data vs.
metadata), liveness of blocks, and so on, is unavailablleimihe storage system.
Thus, research efforts have been limited to applying dysitesn intelligence in
a manner that is oblivious to the nature and meaning of filéeaydraffic, e.g,
improving write performance by writing data to the closdetk on disk [30, 115].

Thus, the modern storage stack precludes an entire classictidnality that
requires information both from the file system and the s®mgtem. This thesis
proposes a solution to this fundamental limitation.

In this thesis, we propose a new class of storage systemsrildges the in-
formation gap between file systems and storagfbout requiring any change to
the existing block-based interface. Operating undernaathnmodified SCSI in-
terface, such storage systems automatically track hilgivef-semantic information
about the file system or database system running above, iéind titis information
to provide new classes of functionality that are impossibl@rovide in existing
systems. We call such a storage system that is aware of ttentiemof the higher
layer, asemantically-smart disk systg/®DS). By not requiring any changes to the
existing storage interface and in many cases, to the filesyabove, semantically-
smart disk systems present a pragmatic solution, and sodmgst systems are ex-
tremely easy to deploy and adopt.

The thesis of this dissertation is that it is possible, fgdasiand useful for a
block-based storage system to track higher level semanfticnnation about the
file system. As we show later, such information can be trat&eal high level of
accuracy that enables new classes of innovation withimgéosystems.

1.1 Motivation: An Example

To motivate the need for semantic intelligence within gjeraystems, we provide
an example of a functionality that cannot be provided toaybecomes possible
within a semantically-smart disk system. The example eslab improving the

3

availability of storage in the face of certain kinds of fag#a. Through the rest of
this thesis, we present various examples of semantic diskiifinality that improve
security, availability, and performance of storage in nesysv

Modern storage systems tolerate disk failures by employaripus forms of
RAID [77]; by storing redundant information in a small numioé disks, the stor-
age system can recover from a small, fixed number of failuigsowt losing any
data. The availability guarantee provided by existing RAlN3tems is quite sim-
ple: if D or fewer disks fail, the RAID continues to operate corredbiyt if more
than D disks fail, the RAID is entirely unavailable. In most RAIDrsanmes,D
is small (often 1); thus even when most disks are workingrsugbserve a failed
disk system. For example, even 2 failures in a 10 disk RAIResyswould result
in complete unavailability, despite the fact that 80% of diwks are still working;
ideally, availability loss in this scenario should be at tf23%.

This “availability cliff” behavior in existing RAID systemiis because the stor-
age system lays out blocks oblivious of their semantic irtgome or relationship;
most files become corrupted or inaccessible after just otra disk failure. For
example, the storage system has no information on the semariortance of
blocks, and therefore treats a root directory block in theesaay it does a regular
file block. Thus, if the extra failed disk happened to contirimportant block, a
large fraction of the file system is rendered unavailables flle system cannot ad-
dress this problem either, because it views the storageryas a single large disk,
and thus has no information about the failure boundariesdsi the disks, nor can
it control the exact physical disk to which a logical blockmspped. In Chapter 6,
we present a system called D-GRAID that provides much baitaiability un-
der multiple failures by exploiting semantic knowledgehaitthe storage system.
Specifically, D-GRAID enables graceful degradation of klity under multiple
failures by selective replication of key metadata striefunf the file system and
fault-isolated placement of semantically-related data.

1.2 Acquiring Semantic Knowledge

An important constraint in a semantically-smart disk sysis that the existing
block-based interface to storage cannot be modified. TmuUSD&Sinfers semantic
information by carefully monitoring the block-level readdawrite traffic. In order
to bootstrap its inference, the storage system relies ore snimimal understand-
ing of the file system. Specifically, the SDS is embedded wsftic knowledge
about the key on-disk structures of the file system. Once D® Bas this static
knowledge, it can build upon it to extract more sophistiddtids of information;

4

by monitoring the write traffic to some specific on-disk stuwmes and observing
how those structures change, the SDS can correlate thoegesh&o higher level
file system activities that should have led to the change.

A key challenge in tracking semantic information based ocseoling changes
to on-disk structure is thasynchronyexhibited by modern file systems. File sys-
tems typically buffer data in memory and sometimes arhijrae-order block
writes. While crucial for file system performance, such asyaony effectively
obfuscates information from the storage system, becagseitites made to disk
would reflect the effect of multiple file system operatiorang of which may can-
cel each other. As we show later, such asynchrony imposes lrags on the
extent and accuracy of semantic information that can bé&drchwithin an SDS.

In this thesis, we present detailed techniques to extratbus kinds of se-
mantic information within an SDS, and bring out the limitsitmw accurately such
information can be tracked. We find that the dynamic behaofdathe file sys-
tem significantly affects the effectiveness and simplioftglynamic inference, and
identify various file system properties that can simplify tachniques or improve
their accuracy. We experiment with a variety of file systermanely Linux ext2,
Linux ext3, VFAT, and to a smaller extent, Windows NTFS, iderto explore the
generality of our techniques, and to analyze their confogeao the various file
system properties that we identify. As we go through theishege successively
refine our model of the file system, starting from a very singylechronous file
system to more complex file systems with various dynamic gntigs.

1.3 Exploiting Semantic Knowledge

Given that the disk system has semantic knowledge aboutl¢hgyBitem, the next
relevant question is its utility. To demonstrate the wtilitf semantic disks, we
have built prototype implementations of several semansk dase studies that
show that semantic knowledge can improve storage systefnadamental ways.
Specifically, we present case studies targeted at imprdkmgvailability, security,

and performance of storage.

One of the case studies we present is D-GRAID, a storagensytstat pro-
vides graceful degradation of availability under multifddures, by ensuring that
semantically-meaningful data is available even afterstedgghic failures. D-GRAID
also enables faster recovery from failure by exploiting @etic knowledge to pref-
erentially recover only those blocks that are useful to tledystem,i.e., only
blocks that are live at the file system. We show that D-GRAIgh8icantly im-
proves storage availability at a modest performance cost.

5

To demonstrate that semantic disks can also provide furdltty that has ex-
treme correctness requirements, we have designed andnimpled a semantic
disk system called FADED that performscure deletiorti.e., makes deleted data
irrecoverable by performing repeated overwrites), byriirig logical deletes oc-
curring within the file system. This case study utilizes seticanformation in a
way that directly impacts correctness; an error in detgctinielete could result in
irrevocable deletion of valid data, or a missed secure ideleff really deleted data.
By showing that reliable secure deletion can be implemedésgite inherently un-
certain information, we show that even functionality th&tcorrectness-sensitive
can be implemented within semantic disks.

From our various case studies, we find that despite limitheratcuracy of se-
mantic inference, complex functionality can be implemdntéthin a semantically-
smart disk system. The key to implementing complex funetibynin an SDS is
conservatismBy identifying conservative techniques and abstractiong can cir-
cumvent the inherently inaccurate information and stibyide guarantees about
the functionality implemented based on the information. alé® find that the per-
formance cost of such conservatism is quite small; in oneuofcase studies, it
results in a 10-12% overhead. Besides the cost of consamyaive find that there
is also a modest CPU cost to tracking semantic informatiore dentify these
costs during our discussion of the case studies.

1.4 Semantic Disks Underneath a DBMS

Given that database management systems (DBMS) are anoithergient of stor-
age besides file systems, we have also investigated teg@mfqusemantic infer-
ence underneath a DBMS. We have implemented two of our mage studies,
D-GRAID and FADED, in the DBMS case, and bring out key diffezes. Overall,
we find that semantic inference underneath a DBMS is easiatise of the write-
ahead logging performed by a DBMS; the log thus communidatéise semantic
disk a complete time-ordered list of operations that the [Bddes. However, we
also find that database systems track fewer general purtaisstiss than file sys-
tems and this limits the effectiveness of some of our casiesuWe identify and
propose minor changes to database systems that will adtiiedisnitation.

1.5 Reasoning About Semantic Disks

Developing functionality within semantic disks entailsefal reasoning about the
accuracy of different pieces of semantic information tlint tunctionality relies

on, and the accuracy of information in turn depends on theispg@roperties of

the file system running above. In the process of developingtezhniques and
case studies, we found this reasoning to be quite challgngimd recognized the
need for a more systematic formal framework to model sematisks and their

interaction with file systems.

Towards the end of this thesis, we present a formal logicdprasenting and
proving properties about file systems and semantic diskthoAgh the intended
initial goal of this logic was to model semantic disks, weritiieed that reasoning
about information available to a semantic disk has a strargligl to reasoning
about file system consistency management, since in botfs,cse information
purely pertains to what can be “known” from on-disk stateud,hwe present this
logic as a way to model file systems in general and reason &heintcorrectness
properties, and then show how we can use it to reason aboainsierdisks.

1.6 Evaluation Methodology

We evaluate our techniques for semantic inference and aisugacase studies
through prototype implementations. To prototype an SDSemgploy a software-
based infrastructure. Our implementation inserts a pselest@e driver into the
kernel interposing between the file system and the disk. 1&inm a software
RAID, our prototype appears to file systems above as a deyior which a file

system can be mounted. The prototype observes the exadtlblad informa-

tion that the disk controller would, and is thus functiogpatientical to a hardware

prototype.

1.7 Contributions

The key contributions of this dissertation are as follows:

e The formulation and design of techniques by which a blockelbastorage
system can infer various pieces of semantic informatiorecmehth modern
file systems, despite the uncertainty caused due to filerayssgnchrony.

e The design, implementation, and evaluation of a varietyrotqtype case
studies that demonstrate that semantic disks can sigrtificamprove stor-
age systems along various axes such as availability, $gcand perfor-
mance. The case studies also serve to explore the costsaflipgthe
functionality within a semantic disk, in terms of perforngarand implemen-
tation complexity.

e The design of variousonservativetechniques to circumvent fundamental
uncertainty in semantic inference. These techniques etisatan SDS func-
tionality can still provide correctness guarantees (sucinaecure delete)
despite being based on inherently inaccurate information.

e The identification of various dynamic file system propertlest impact the
effectiveness and accuracy of semantic inference andmtjao of the limits
of semantic inference under such properties.

e The formulation of a logic framework and proof system fors@ang about
file systems and semantic disks, and demonstration of tleetefness of
the framework in representing file system properties andipgohigh-level
correctness guarantees about file systems, and theirdtiteravith semantic
disks.

1.8 Outline

The rest of this dissertation is organized as follows. Céapprovides background
information on modern storage systems and file systems. &pt€h3, we present
an overview of the basic SDS approach and compare it withnaltiee approaches
to addressing the information gap in storage. We descrieadthniques that an
SDS uses to track semantic information in Chapter 4, andeptesome simple
case studies that exploit this information to improve fiorality in Chapter 5. In
Chapter 6, we present D-GRAID, the system that improvesageavailability by
exploiting semantic knowledge. Chapter 7 presents FADEd2carre deleting disk
that shreds deleted data by inferring logical deletes. Iapfdr 8, we extend our
semantic disk technology to work underneath databasemsgstehapter 9 presents
our formal logic framework to reason about file systems amdasgic disks. We
discuss related work in Chapter 10, and we conclude andstiscture directions
in Chapter 11.

Chapter 2

Background

In this chapter, we provide background information on mod&orage systems
and file systems. First, we describe the range of functign#tat modern stor-

age systems already provide, hinting at the complexity hadektent of low-level

knowledge available in such storage systems. We then gaimhckground on the
various file systems we consider for semantic inference.

2.1 Modern Storage Systems

Storage systems today constitute a huge industry, rangingdesktop hard drives
to mid-range and high-end storage servers. Due to avatijabflcheap processing
power and memory, the level of intelligence in storage hanlwn the rise. This
is exemplified by the high-end storage systems availableytofbr example, the
EMC Symmetrix storage system has hundreds of processorstand 256 GB
of RAM [29]. Storage systems use this processing power tlagg o implement
a wide range of optimizations transparent to higher layéth® system. In this
section, we briefly describe some common examples of fumality that modern
storage systems provide.

2.1.1 RAID layout

A very common feature available in most enterprise storggtems today is tol-
erance to a small number of disk failures. By spreading daiasa multiple disks
with some redundant information, the storage system camatie a fixed number
of failures without losing data [77]. Spreading data acrosstiple disks also im-
proves performance, since the storage system can exptaltglism across several

9

10

disks.

There are various levels of RAID, each varying in the exagbld strategy em-
ployed for redundancy. The two most common RAID levels ardRA (i.e., mir-
roring), and RAID-5 {.e., parity). In RAID-1, each disk block is mirrored across
two disks, resulting in a 100% space overhead. RAID-5 aelsibetter space effi-
ciency by computing a parity block for each row of data bloaksoss the various
disks. For example, thé" parity block will be the XOR of the'* block in each
of the disks. A common variant of RAID-1 extended for the cafseore than two
disks is RAID-10, where data is striped across mirroredspdor example, in an
8-disk RAID-10 system, there are 4 mirrored pairs, and dattriped across the
pairs.

Given the complex performance and space trade-offs bettheamrious RAID
schemes, certain storage systems adaptively choose Hi&AED level for a given
workload, and migrate data across RAID levels based on squaterns [117].
Such optimizations result in dynamic mappings betweerchdgind physical blocks
that the storage system explicitly keeps track of.

2.1.2 NVRAM buffering

Storage systems today perform buffering of writes in nolatle RAM for better
performance [29]. When a write request arrives from the khgstem, the storage
system simply writes it to NVRAM and returns success on thieywthe actual
propagation of the write to disk occurs at a later time wherNWRAM gets filled
or after a certain delay threshold. This enables better ejoguof writes to disk
resulting in better scheduling performance.

2.1.3 Block migration

Traditional RAID follows a systematic pattern in choosingigh disk (and which
physical block) a given logical block is mapped to. For exlnm a NV disk
system, logical block will be mapped to the disk moduloN. However, storage
systems today sometimes break this mapping by migratingkblacross disks for
reasons such as load balancing to eliminate specific hetspabiding bad blocks
on disk, etc. To keep track of the logical-to-physical magpsuch storage systems
maintain an internal indirection table that tracks the tmraof the blocks that have
migrated [117].

11

2.1.4 Summary

While storage systems have been getting smarter at prgvalimide range of op-
timizations as described above, higher layers of the syst#wiew them as sim-
ple disks, as they were a few decades ago. The linear addqrass abstraction
provided by SCSI hides all the complexity of modern storage.a result, mod-
ern storage systems exclusively have a rich amount of leetlenowledge €.9,
number of disks in RAID array, RAID layout strategy, logitatphysical block
mapping, etc.) and controé(g, choosing which blocks are buffered in NVRAM).

2.2 File System Background

Techniques for tracking semantic information from withire tstorage system are
dependent on the characteristics of the file system aboveth&Vefore study the
range of techniques required for such inference by expeatimg underneath three
different file systems: ext2, ext3, and VFAT. Given that exd2 two modes of oper-
ation (synchronous and asynchronous modes) and ext3 legstiades (writeback,
ordered, and data journaling modes), all with differentatpdehaviors, we believe
these form a rich set of file systems. In Chapter 7, we alsort@mosome limited
experience underneath the Windows NTFS file system.

In this section, we provide some background information hwn tarious file
systems we study. We discuss both key on-disk data strgcamd the update
behavior.

2.2.1 Common properties

We begin with some properties common to all the file systemsansider, from
the viewpoint of tracking semantic information. At a bagwedl, all file systems
track at least three kinds of on-disk metadata: a struchatttacks allocation of
blocks €.g, bitmap, freelist), index structures., inodes) that map each logical
file to groups of blocks, and directories that map humanakidpath names to
logical files.

File systems manage data across two domains: main memonjisiadit any
given time, the file system caches a subset of blocks in merBafpre modifying
a block, the block is read from memory, and is written backis dome time after
the modification.

A common aspect of the update behavior of all modern file systsasyn-
chrony When a data or metadata block is updated, the contents dfltick is

12

not immediately flushed to disk, but instead, buffered in rmgnior a certain in-
terval (.e., thedelayed write intervgl Blocks that have been “dirty” longer than
the delayed write interval are periodically flushed to dike order in which such
delayed writes are committed can be potentially arbitraiiriough certain file sys-
tems enforce ordering constraints [32].

2.2.2 Linux ext2

The ext2 file system is an intellectual descendant of the 8eylk-ast File System
(FFS) [65]. The disk is split into a set bfock groups akin to cylinder groups in
FFS, each of which contains inode and data blocks. The #lbocatatus (live or
dead) of data blocks is tracked throulgitmap blocks Most information about a
file, including size and block pointers, is found in the fileiede. To accommodate
large files, a few pointers in the inode pointindirect blocks which in turn contain
block pointers.

While committing delayed writes, ext2 enforces no ordexi@tsoever; crash
recovery therefore requires running a tool lifszk to restore metadata integrity
(data inconsistency may still persist). Ext2 also has alypmous mode of oper-
ation where metadata updates are synchronously flushedkpsdimilar to early
FFS [65].

2.2.3 Linux ext3

The Linux ext3 file system is @urnaling file system that evolved from ext2, and
uses the same basic on-disk structures. Ext3 ensures rzetadaistency by write-
ahead logging of metadata updates, thus avoiding the nepdrtorm an fsck-
like scan after a crash. Ext3 employs a coarse-grained nufdednsactions; all
operations performed during a cert@pochare grouped into a single transaction.
When ext3 decides to commit the transaction, it takes andmany copy-on-write
snapshot of dirty metadata blocks that belonged to thasacion; subsequent
updates to any of those metadata blocks result in a new inemeoopy, and go
into the next transaction.

Ext3 supports three modes of operation.ohldered datamode, ext3 ensures
that before a transaction commits, all data blocks dirtiedhiat transaction are
written to disk. Indata journalingmode, ext3 journals data blocks together with
metadata. Both these modes ensure data integrity aftersh. ciidhe third mode,
data writeback does not order data writes; data integrity is not guaranieehis
mode.

13

2.2.4 VFAT

The VFAT file system descends from the world of PC operatirgjesys. In our
work, we consider the Linux implementation of VFAT. VFAT ap&ons are cen-
tered around thdile allocation table (FAT)which contains an entry for each al-
locatable block in the file system. These entries are usedcetd the blocks of
a file, in a linked-list fashion. For example, if a file’'s firdbbk is at address,
one can look in entry of the FAT to find the next block of the file, and so forth.
An entry can also hold an end-of-file marker or a setting thdiciates the block
is free. Unlike WNIx file systems, where most information about a file is found in
its inode, a VFAT file system spreads this information actbes=AT itself and the
directory entries; the FAT is used to track which blocks hglto the file, whereas
the directory entry contains information like size, typmmation and a pointer to
the start block of the file. Similar to ext2, VFAT does not mne® any ordering in
its delayed updates.

2.2.5 Windows NTFS

NTFS is the default file system used in Windows today. LIk&eXITFS is a jour-
naling file system. The journaling mode that NTFS employsesaaiata journaling
where only metadata operations are journaled; there is nivagnt of the data
journaling mode of ext3.

The fundamental piece of metadata in NTFS is the Master RlHeT(MFT);
each record in the MFT contains information about a uniqwe fvery piece of
metadata in NTFS is treated as a regular file; file O is the MBdlfitfile 2 is the
recovery log (similar to the ext3 journal), and so on. Theddtion status of all
blocks in the volume is maintained in a file called the clusiiémap, which is
similar to the block bitmap tracked by ext2. In addition, Ng€ontains extensible
metadata in the form of attribute lists for each logical file.

14

Chapter 3

Semantic Disks: An Overview

Before getting into the details of how a semantically-srdésk system extracts and
uses knowledge about the file system, we first present anieweof our approach,
and discuss its merits and demerits in comparison to atfeenapproaches.

3.1 Basic Approach

The basic idea presented in this thesis is to build a stonggjera that understands
higher-level semantic information about the file systema(database system), but
does so without requiring any changes to the existing blmded SCSI-like inter-
face to storage. Suchsemantically-smart disk systdnfers semantic knowledge
about the file system by carefully observing the block-lexegld and write traf-
fic, and combining this observation with a minimal amount wiedded knowl-
edge about the file system. Since the embedded knowledgdaelchniques are
somewhat specific to the file system running on top, thereasel bf dependency
created between the file system and the storage system.

3.1.1 Benefits and concerns

Implementing new functionality in a semantically-smarskdsystem has the key
benefit of enabling wide-scale deployment underneath arodiirad SCSI inter-

face without any OS modification, thus working smoothly végtisting file systems
and software base. Although there is some desire to evodvntarface between
file systems and storage [36], the reality is that currergriates will likely sur-

vive much longer than anticipated. As Bill Joy once said,st®yns may come and
go, but protocols live forever”. Similar to modern processihat innovate beneath

15

16

unchanged instruction sets, a semantic disk-level imptéatien is non-intrusive
on existing infrastructure. An individual storage vendanalecide to provide a
new functionality and can just sell the enhanced storagesywithout having to
interact with other layers of the system or achieve industrysensus.

However, because semantically-smart storage systemgeangore detailed
knowledge of the file system that is using them, a few concerise on the com-
mercial feasibility of such systems. We consider three roaircerns.

The first concern that arises is that placing semantic krdydevithin the disk
system ties the disk system too intimately to the file systbove. For example,
if the on-disk structure of the file system changes, the goiystem may have
to change as well. We believe this issue is not likely to bélematic. On-disk
formats evolve slowly, for reasons of backwards compatybilFor example, the
basic structure of FFS-based file systems has not changealitsrintroduction in
1984, a period of almost twenty years [65]; the Linux ext2 $istem, introduced
in roughly 1994, has had the exact same layout for its lifetirinally, the ext3
journaling file system [111] is backwards compatible witl2esmn-disk layout and
the new extensions to the FreeBSD file system [27] are baclsn@mpatible as
well. We also have evidence that storage vendors are alne#lilyg to maintain
and support software specific to a file system; for exampke BWC Symmetrix
storage system [29] comes with client-side software thatucelerstand the format
of most common file systems. Similarly, storage systems #&EC can recognize
an Oracle data block and provide an extra checksum to adsatre block write
(comprised of multiple sector writes) reaches disk atollyi¢a5], again illustrat-
ing that storage vendors are already willing to put in midiemaount of knowledge
about specific higher layers.

The second concern is that the storage system needs sefamiitedge for
each file system with which it interacts. Fortunately, tremenot a large number of
file systems that would need to be supported to cover a lasgtidn of the usage
population. If such a semantic storage system is used with syfstem that it does
not support, the storage system could detect it and turrisofipecial functionality
(e.g, revert revert to a normal storage system). Such detectonbe done by
simple techniques such as observing the file system ideritifitbe partition table
or looking for a magic number in the super block, similar tahibe host operating
system would detect the file system that a disk contains wistarts up.

One final concern that arises is that too much processindeiequired within
the disk system. We do not believe this to be a major issuausecof the general
trend of increasing disk system intelligence [1, 88]; axpssing power increases,
disk systems are likely to contain substantial computatiabilities. Indeed, mod-

17

ern storage arrays already exhibit the fruits of Moore’s | fnwvexample, the EMC
Symmetrix storage server can be configured with 100s proceasd upto 256 GB
of RAM [29].

3.2 Alternative Approaches

In this section, we discuss alternative approaches to ssidigethe problem of in-
formation divide between the file system and the storagesysind compare them
to the SDS approach. First, we describe an approach of ékptbanging the in-
terface to storage to convey richer information. Secondloek at other implicit
forms of information extraction besides the SDS approach.

3.2.1 Explicit

The explicit approach involves changing the interface ketwfile systems and
storage, to convey richer information across both layeos.ifstance, the storage
system could expose low-level information about its lay@ug, failure bound-
aries) to the file system [24], and then the file system collizeithis knowledge
for better layout. Alternatively, the file system could egjply communicate se-
mantic information to the storage systeenq, notify the storage system on logical
operations such as deletes), which can then be used by thgestsystem to imple-
ment new functionality. These techniques, while being etably less complex
than our approach, have a few major drawbacks. First, chgrnbie interface to
storage raises legacy issues in terms of the huge existimegtiment on the block-
based interface. Second, adopting a new interface to €oeggires broad industry
consensus, which is often extremely slow to occur. Finalldgemand for such a
new interface often requires industry-wide agreement emclgsar benefits of the in-
terface, which is difficult to achieve without actually hagithe interface deployed;
this chicken-and-egg problem is another key weakness @athproach.

Although the explicit approach has problems with regardrézficality of im-
mediate deployment, it also has some benefits. The first hénefiong the axis
of system complexity; the explicit approach conceivabbufts in simpler systems
than those built on semantic inference. Second, the setrdiski approach incurs
performance costs in inferring file system information; lexocommunication of
the information can be potentially more efficient. In Chaptewe quantify the
costs of the SDS approach relative to the explicit approaclihe context of a
specific case study.

18

3.2.2 Implicit

Implicit approaches are intended to address the bootstrgppsue with the ex-
plicit approach; the implicit approach requires no charngethe existing storage
interface, and involves inference of additional inforroativhile adhering to exist-
ing interfaces. Semantically-smart disks are an examptaeofmplicit approach.
In this subsection, we discuss other alternative impliggiraaches besides the SDS
approach.

The first alternative is to have the file system infer inforioratibout the storage
system, in contrast to the SDS approach where the storatggnsysers informa-
tion about the file system. The main problem with this appgndadhe inadequacy
of implicit observation channels that the file system cantasefer information.
Implicit techniques rely on careful observations on an inipthannel, and the ef-
ficacy of the inference depends on the richness of this imgl@annel. From the
viewpoint of the storage system, this channel is rich bexdhs file system has
to inevitably store data in the storage system; the conthtise data written by
the file system constitutes a rich information channel fer storage system, and
semantic disks use this channel to make inferences. Inaginthe information
channel from the viewpoint of the file system is very fragitdl that the file sys-
tem can observe are specific timing characteristics of iceregjuests [25, 120].
This limited channel is often insufficient given the rangeopfimizations modern
storage systems perform.

Another implicit approach that is pertinent idbkck-boxapproach, where the
storage system simply uses the logical block stream to mafleeences such as
correlating related blocks based on observing sequend#saifs that are accessed
together [61]. This approach has the advantage of requirinimformation about
the file system. The main disadvantage with such a black-pproach, however,
is that its applicability is limited to a very small class afhf:tionality; for example,
it cannot be used for implementing functionality where eotness is paramount.
Since the black-box approach is fundamentally heuristd @pproximate, such
techniques cannot provide any guarantees in terms of theaxycof information.
As we show in the rest of this thesis, the SDS approach enahjgementing more
aggressive classes of functionality that utilize semamimwvledge in ways that can
impact correctness. Further, such black-box techniquedragile to concurrent
interleavings of independent streams.

19

3.3 Evaluation Methodology

We evaluate the techniques for semantic inference and timugacase studies uti-
lizing the information, through prototype implementasorTo prototype an SDS,
we employ a software-based infrastructure. Our implentiemanserts a pseudo-
device driver into the kernel, which is able to interpose raffic between the file
system and the disk. Similar to a software RAID, our protetgppears to file
systems above as a device upon which a file system can be rdounte

The primary advantage of our prototype is that it observes#ime block-level
information and traffic stream as an actual SDS, with no caang the file system
above; thus, conceptually, transferring the functiogdliom the pseudo driver to
an actual hardware prototype is straightforward.

However, our current infrastructure differs in three imtpat ways from a true
SDS. First, and most importantly, our prototype does noeltirect access to low-
level drive internals €.g, current head position); using such information is thus
made more difficult. Second, because the SDS runs on the sateensas the host
OS, there may be interference due to competition for ressyritus, the perfor-
mance overheads incurred by our prototype could be pes&imigtimates of the
actual overheads. Third, the performance characteristit® microprocessor and
memory system may be different than an actual SDS; howeigr;dnd storage
arrays already have significant processing power, and thiepsing capacity will
likely trickle down into lower-end storage systems.

Platform

We have experimented with our prototype SDS in the Linux 2@ lanux 2.4 op-
erating systems, underneath of the ext2, ext3, and VFATyideems, respectively.
We have also had limited experience underneath the WindolisSNile system
where we interpose underneath a virtual machine runningdViss XP. Some of
the initial case studies work only underneath the ext2 fistesy, while later case
studies such as D-GRAID and FADED operate underneath otheytems. Most
experiments in this paper are performed on a processordlalow” by modern
standards, a 550 MHz Pentium lll processor, with 5 10K-RPMI8LZX disks.
In some experiments, we employ a “fast” system, comprised26 GHz Pentium
IV, to gauge the effects of technology trends.

20

Chapter 4

Acquiring Semantic Knowledge

“To know that we know what we know, and that we do not know whdbwe
not know, that is true knowledgeConfucius

In this chapter, we discuss how a semantically-smart diskegy tracks file
system-specific semantic information underneath a bledet interface. We iden-
tify two classes of semantic information that are pertinenthe storage system:
static and dynami¢ and present various techniques to track these two clagses o
information. We then discuss how file system asynchronyifségntly limits the
extent and accuracy of semantic information that can b&edhevithin an SDS.
Finally, we evaluate the costs of our various techniquesdanantic inference.

4.1 Static Information

The basic piece of information that an SDS requires is kndgdeabout the key
on-disk data structures used by the file system. Such intiwmés static because
it does not change for a given version of a file system. Theistre of an inode in
the Linux ext2 file system and the specific fields in the sujpetbhre examples of
static information. It is important to note that static infation does not include
the entire realm of information about on-disk layout. Ciartile systems could
store file data within inodes for small files; in such cases,ftinmat of the inode
is not strictly static. However, the file system in this caas & way of determining
whether a given inode stores data inline, perhaps basedme specific field in
the inode. This field, together with the other static fieldthie inode alone would
constitute static information for such a file system.

Given the immutability of static knowledge for a given filesgym, imparting
this information to the SDS is quite straight-forward; weedily embed this infor-

21

22

mation into the SDS. Instead of hardcoding this informaiida the SDS, we could
also communicate it through a separate administrativeredaman offline fashion;
most modern storage systems have such separate admivestiannels [29]. An-
other alternative would be to encapsulate this informatioan add-on hardware
card that plugs into the storage system. In summary, aletbeshniques assume
“white-box” knowledge of this static information.

Another approach to impart static information would be ttomatically fin-
gerprint the on-disk structures of the file system usingy boxtechniques [103].
Such techniques can sometimes enable automatic detedtiminor changes to
on-disk formats. However, for the remainder of this thegis, will assume that
the SDS has static information about on-disk format throoigé of the white-box
techniques mentioned above.

Embedding static information about the file system into tiESSaises the
concern of tying the storage system to the specific file systbave. However,
as discussed in Chapter 3, given the stability of on-disknis and the relatively
small number of file systems in popular use, creating suchpardiency is rea-
sonable; current storage systems already have instanseslotiependency to file
systems [29], or even to databases [15].

4.2 Dynamic Information

While static information about the on-disk structures af fthe system is crucial
in a semantic disk, static information alone is not suffitterprovide a large class
of useful functionality. To enable useful functionalithet SDS requires dynamic
information about the operation of the file system. Dynamforimation involves
properties of blocks that keep constantly changing at tiesfjistem, or higher
level operations that the file system performs. For exaniplewing from within
the SDS whether a block is live or deade(, whether it contains valid data or it
is free) is one example of dynamic information, because ristantly changes as
blocks are allocated or deleted within the file system.

In this section, we describe various techniques to infdediht kinds of dy-
namic information within an SDS. Many of the techniques mgcexploiting the
static knowledge about on-disk structures that the SDS@yrdnas, to carefully
watch updates to those structures; for example, the SD$srwotraffic to inode
blocks and data bitmap blocks. In many cases, the SDS requinetionality to
identify how a block has changed, in order to correlate tlobsages to higher level
file system activity that could have led to the changes. Fangie, the SDS can
infer that a data block has been allocated within the fileesysivhen it observes

23

the corresponding bit change from 0 to 1 in the data bitmap.

The SDS tracks changes to blocks via block differencing.ngbaletection is
potentially one of the expensive operations within an SDSvi@ reasons. First,
to compare the current block with the last version of the kldlee SDS may need
to fetch the old version of the block from disk; however, toidvthis overhead, a
cache of blocks is employed. Second, the comparison itsgjf Ime expensive: to
find the location of a difference, each byte in the new bloclsinme compared with
the corresponding byte in the old block. This cost can beaeddior certain meta-
data blocks by skipping portions of the block that are umagtng; for example,
when differencing an inode block, the SDS might be able tp skanning through
inodes that are marked deleted. We quantify these coststinSd.4.

We describe below techniques for the two most common inEeemade within
an SDS:classification(i.e., tracking the type of a block) andssociation(e.g,
which inode a block is associated with). We then discuss th@a\3DS can track
higher level file system activity such as file creations andtims through the pro-
cess ofoperation inferencing An SDS can use some or all of these techniques to
implement its desired functionality.

For simplicity, we first discuss the techniques based on fisairaption that
the file system above synchronousn its meta-data updates. The BSD FFS file
system and Linux ext2 in synchronous mode fit into this asgiampIn the next
section, we discuss the implications of asynchrony and haa&n complicate the
techniques for tracking dynamic information.

4.2.1 Classification

The type of a block is one of the most useful pieces of infoiomathat an SDS can
exploit. For example, if it identifies that a block is an imfaot metadata block, it
can replicate the block to a high degree for better relighiKnowing block type
also enables more sophisticated inferences to be builimrhdoexample, if a block
is known to be an indirect block, the pointers within the kl@an be interpreted
meaningfully. Block type can be determined through dirext iadirect classifica-
tion. With direct classificationblocks are easily identified by their location on disk.
With indirect classificationblocks are identified only with additional information;
for example, to identify directory data or indirect blockise corresponding inode
must also be examined.

24

Inode

Type = Dir

Permissions

n Block 2034

/

Ptrl = 2034

Inference: Block 2034 is directory

Figure 4.1:Indirect Classification.

Direct classification

Direct classification is the simplest and most efficient famhon-line block iden-
tification for an SDS, and the only information it requireghe static knowledge
about the file system. The SDS determines the type of statitally-typedblocks
by performing a simple bounds check to calculate into whietho$ block ranges
the particular block falls. In an FFS-like file system, th@estblock, bitmaps, and
inode blocks are identified using this technique.

Indirect classification

Indirect classification is required when the type of a bloak ¥ary dynamically
and thus simple direct classification cannot preciselyrdéte the type of block.
For example, in FFS-like file systems such as Linux ext2 a8,exigiven block in
the data region of the file system can be either a data blockeetaory block, or
an indirect pointer blockd.g, a single, double, or triple indirect block). Indirect
classification is used in such cases to determine the prggseof the block. To
illustrate these concepts we focus on how directory dat#ferentiated from file
data; the steps for identifying indirect blocks versus mata are similar, and we
describe them briefly.

Identifying directory data:

25

The basic challenge in identifying whether a data block hgoto a file or a
directory is to track down the inode that points to this datd eheck whether its
type is a file or a directory. To perform this tracking, the S&®opson all inode
traffic to and from the disk: when a directory inode is obsdpitke corresponding
data block numbers are inserted intdiar bl ocks hash table. The SDS removes
data blocks from the hash table by observing when those blaok freed €.,
by using block differencing on the bitmaps). When the SDStratsr identify
a block as a file or directory block, its presence in this tdbticates that it is
directory data.

One problem with the above approach is that the SDS may pedrcess work
if it obliviously inserts all data blocks into the hash taideenever a directory inode
is read and written since this inode may have recently pagsedgh the SDS,
already causing the hash table to be updated. Thereforgtitnine performance,
the SDS can infer whether or not a block has been added (offienbdr deleted)
since the last time this directory inode was observed, amsld¢hsure that only those
blocks are added to (or deleted from) the hash table. Thisegsoofoperation
inferencingis described in detail in Section 4.2.3.

Identifying indirect blocks:

The process for identifying indirect blocks is almost idealtto that for identi-
fying directory data blocks. In this case, the SDS tracks imelivect block pointers
in all inodes being read and written. By maintaining a habletandi r ect bl ocks
of all single, double, and triple indirect block addressesSDS can determine if a
block in the data region is an indirect block.

4.2.2 Association

Association refers to the ability of the SDS to re-estaliighsemantic relationship
between various blocks. Various types of associations @ssilple within an SDS.
For example, the SDS could associate an inode with the dmethat contains
the inode; thus, the SDS can infer the pathname corresppndia certain inode,
and consequently, the pathname of the file to which a giveckbbelongs. This
information can be useful if the SDS decides to perform ogtitions specific to
the type of a file as inferred from its pathname.

The most useful association is to connect data blocks wiir thodes; for
example, in Chapter 6, we show that the SDS can employ sniaytaut of data in
RAID systems for better availability, if it knows that a cart set of blocks belong
to a single file. Association can be achieved with a simplesipaice-consuming
approach. Similar to indirect classification, the SDS ssampall inode traffic and
inserts the data pointers into amldr ess_t o_i node hash table. One concern

26

about such a table is size; for accurate association, tie ¢arbws in proportion
to the number of unique data blocks that have been read dewtid the storage
system since the system booted. However, if approximatenmdtion is tolerated
by the SDS, the size of this table can be bounded.

4.2.3 Operation inferencing

Block classification and association provide the SDS witkffinient way for iden-
tifying special kinds of blocks; however, operation infecang is necessary to un-
derstand the semantic meaning of the changes observedsia tthacks. We now
outline how an SDS can identify file system operations by nlisg certain key
changes.

For illustrative purposes, in this section we examine ha3bDS can infer file
create and delete operations. The discussion below isfeptxiext2, although
similar techniques can be applied to other file systems.

File Creates and Deletes

There are two steps in identifying file creates and deletds first is the actual
detection of a create or delete; the second is determiniagntbde that has been
affected. We describe three different detection mechanemd the corresponding
logic for determining the associated inode.

The first detection mechanism involves the inode blockfitsé/henever an
inode block is written, the SDS examines it to determine ifrantdle has been cre-
ated or deleted. A valid inode has a non-zero modificatioe tmd a zero deletion
time. Therefore, whenever the modification time change® fzero to non-zero or
the deletion time changes from non-zero to zero, it meansdhesponding inode
was newly made valid,e., created. Similarly, a reverse change indicates a newly
freed inodej.e., a deleted file. The inode number is calculated using theigdilys
position of the inode on disk (on-disk inodes do not contaode numbers).

The second detection mechanism involves the inode bitmagk bMWhenever
a new bit is set in the inode bitmap, it indicates that a newhie been created
corresponding to the inode number represented by the bitiggos Similarly, a
newly reset bit indicates a deleted file.

The update of a directory block is a third indication of a newteated or
deleted file. When a directory data block is written, the SR&wnes the block
for changes from the previous version. If a new directorynyefdent ry) has
been added, the name and inode number of the new file can bhrezbfeom the

27

dent ry;in the case of a removeatent r y, the old contents of théent r y con-
tain the name and inode number of the deleted file.

Given that any of these three changes indicate a newly dreatdeleted file,
the choice of the appropriate mechanism (or combinatiosietf) depends on the
functionality being implemented in the SDS. For exampléhdéf name of the newly
created or deleted file must be known, the directory blodetasolution would
be the most appropriate, since it would readily convey tlaeefile name that has
been added or removed.

Other File System Operations

The general technique of inferring logical operations bgestiing changes to blocks
from their old versions can help detect other file systematpmrs as well. We note
that in some cases, for a conclusive inference on a spedificdlboperation, the
SDS must observe correlated changes in multiple meta-datis For example,
the SDS can infer that a file has been renamed when it obsechesge to a direc-
tory block entry such that the name changes but the inode austays the same;
note that the version number within the inode must stay theesas well. Simi-
larly, to distinguish between the creation of a hard link antbrmal file, both the
directory entry and the file’s inode must be examined.

4.2.4 Accuracy of inference

The above techniques assume that the file system above isreyoas,i.e., re-
flects all metadata updates to disk immediately. Under sdite system, tracking
dynamic information is accurate as long as the informatengins to on-disk state.
However, sometimes an SDS may need to implicitly track imvoly state within
the file systeme.g, the contents of the file system’s buffer cache [9]; suchrérfee
will be uncertain despite a synchronous file system.

In the next subsection, we show that under most modern fitersygsthat do not
exhibit synchronous metadata updates, even tracking dgnaformation about
on-disk state becomes uncertain and inaccurate.

4.3 Dealing with Asynchrony
The techniques in the previous section for classificati@speiation, and opera-

tion inferencing ignored one basic trait of modern file systeasynchrony Most
modern file systems exhibit asynchrony in their updates ta dad metadata. File

28

systems typically delay updates to disk, and often reord@esvto disk for bet-
ter scheduling. Such asynchrony significantly complicaeblniques for tracking
dynamic information.

4.3.1 Indirect classification

Indirect classification depends on the SDS observing thdgirmontaining a block,
before observing the actual block write. Specifically, wlzedata block is not
present in the ndi r ect _bl ocks hash table, the SDS infers that the data corre-
sponds to a regular file block; however, in some cases, theecoed inode may
not have yet been seen by the SDS and as a result is not yethiaghegable. Such
a situation may occur when a new large file is created, or neakblare allocated
to existing files; if the file system does not guarantee thadenblocks are written
before data blocks, the SDS may incorrectly classify newtiften data blocks.
This problem does not occur when classifying data blockisateread. In the case
of reads, the file system must read the corresponding inam tlefore the data
block (to find the data block number); thus, the SDS will seeittode first and
correctly identify subsequent data blocks.

To solve this problem, the SDS needs to buffer writes unélttme when the
classification can be made; tlieferred classificatiomccurs when the correspond-
ing inode is written to disk or when the data block is freedcas be inferred by
monitoring data bitmap traffic.

We now move to a more subtle problem in indirect classificatiae to asyn-
chrony. Let us consider the example of detecting an indpetiter block. In order
to detect a block as an indirect block, the SDS should obgbate certain inode’s
indirect pointer field contains a pointer to the address efdlven block. More
formally, to identify an indirect block3, the semantic disk must look for the inode
that has blockB in its indirect pointer field. Thus, when the relevant inodieck
Ig is written to disk, the disk infers tha® is an indirect block and records this
information. When it later observes blodk written, it uses this information to
classify and treat the block as an indirect block. Howevee, t the delayed write
and reordering behavior of the file system, it is possiblé¢ itnéhe time between
the disk writes offg and B, block B was freed from the original inode and was
reallocated to another inode with a different type, as a normal data block. The
disk does not know this since the operations took place in ongrand were not
reflected to disk. Thus, the inference made by the semarsticai the block type
could be wrong due to the inherent staleness of the infoomdtacked.

29

4.3.2 Association

Similar uncertainty arises in tracking other forms of dymamformation such as
association as well. For example, associating a block wfite & uncertain because
between observing an inode owning a block and observing ¢helablock, the

block could have been deleted from the old inode and reasgitgnthe new inode.

4.3.3 Operation inferencing

Techniques for operation inferencing are impacted by deymy as well. For ex-
ample, if the SDS relies on the inode bitmap differencindntégue to identify file
creates and deletes (as described in Section 4.2.3), idwoids a create quickly
followed by a subsequent delete of the same inode, becaes®iB may not ob-
serve a change in the bitmap if the two operations are grodpedo a delayed
write in the file system. One way by which the SDS can stillkrégs information
partially is by looking for a change in the version number of#id inode, which
indicates that a delete followed by a create occurred.

Asynchrony within the file system thus effectively resulissuppression of
information from the SDS, and imposes hard limits on the eamuof what can be
known within an SDS.

4.3.4 Impact of uncertainty

While asynchrony imposes fundamental limits to the acguodgnformation that
can be tracked in an SDS, it does not preclude utilizing sofirination to pro-
vide interesting functionality. Certain kinds of functality are easily amenable
to inaccurate information; they utilize semantic inforfoatin a way that does not
impact correctness. For example, the SDS could utilizeriédion on block type
to selectively cache only metadata blocks in non-volatidvR In this case, a mis-
classification of a directory block as data block will at wdesad to sub-optimal
utilization of NVRAM cache space, which is a performanceauéssbut there is no
concern in terms of correctness. Another example is a fomality that utilizes
semantic information to track the contents of the cacheearhibst system, so that
the disk system can avoid caching the same blocks [9]. Suiniagtions are thus
inherently tolerant to inaccuracy.

However, a more challenging class of functionality is wheemantic informa-
tion is used in a way that can directly affect correctnesgherset of guarantees
the system can provide. In Chapters 6 and 7, we describe toloase studies
that have different levels of stringency in the degree tocltihey are correctness-
sensitive. The techniques for circumventing inaccuraey sgrecific to the func-

30

Indirect Block-Inode Operation
Classification Association Inferencing
Sync Async| Sync Async| Sync Async
Creatq 17 3.2 1.9 3.3] 339 3.2
Creatg, | 60.6 3.8| 3244 16.4| 279.7 3.8
Delete 4.3 3.6 6.7 39| 509 3.6
Deletg, | 37.8 6.9| 80.1 28.8| 91.0 6.9
Mkdir 56.3 8.6| 63.6 11.1| 231.9 8.6
Rmdir 499 106.2| 57.8 108.5| 289.4 106.2

Table 4.1: SDS Time Overheads. The table breaks down the costs of indirect classi-
fication, block-inode association, and operation infeiaegc Different microbenchmarks
(one per row) stress various aspects of each action. Thet€teanchmark creates 1000
files, of size 0 or 32 KB, and the Delete benchmark similarlgtde 1000 such files. The
Mkdir and Rmdir benchmarks create or remove 1000 directomespectively. Each result
presents the average overhead per operationdii.e., how much extra time the SDS takes
to perform classification, association, or inferencinghelexperiments were run upon the
“slow” system with the IBM 9LZX disk, with Linux ext2 mounssthchronously§ync) or
asynchronouslyAsync).

tionality implemented in the SDS. We show through those casdies that it is
indeed possible to build complex functionality that is eatness-sensitive, despite
potentially inaccurate information.

4.4 Evaluation

In this section, we evaluate the costs of tracking dynanmfierimation within an
SDS. Specifically, we examine the time and space overheadsiated with classi-
fication, association, and operation inferencing. As diesdrin Chapter 3, because
of our software-based prototype environment, the timeleeaas reported are pes-
simistic; a real hardware-based implementation would lzal@ver overhead due
to the absence of CPU and memaory contention.

4.4.1 Time overheads

Classification, association, and operation inferencirgpatentially costly opera-
tions for an SDS. In this subsection, we employ a series ofgh@&nchmarks to
illustrate the various costs of these actions. The rest@iltgioexperiments on an
SDS underneath of Linux ext2 are presented in Table 4.1. &ar action and mi-

31

crobenchmark we consider two cases. In the first case, theyBtem is mounted
synchronously, ensuring that meta-data operations ré&c8DS in order and thus
allowing the SDS to guarantee correct classification witadditional effort; syn-
chronous mounting in Linux ext2 is quite similar to traditéd FFS in its handling
of meta-data updates, in that metadata updates are wntteediately to disk. In
the second case, the file system is mounted asynchronousiljisicase, correct
classification and association cannot be guaranteed. Toelmenchmarks per-
form basic file system operations, including file and directtreates and deletes,
and we report the per-file or per-directory overhead of thmadhat is under test.

From our experiments, we make a number of observationst, Riest oper-
ations tend to cost on the order of tens of microseconds geoffitlirectory. Al-
though some of the operations do require nearly 30@ complete, most of this
cost is due to a per-block cost; for example, operation @mfeing in synchronous
mode with the Create workload takes roughly 28@s, which corresponds to a
34 us base cost (as seen in the Crgateorkload) plus a cost of approximately
30 us for each 4 KB block. Thus, although the costs rise as file sizecases,
the SDS incurs only a small per-block overhead comparecetadtual disk writes,
each of which may take some number of milliseconds to cormp¢cond, in most
cases, the overheads when the ext2 file system is run in asymels mode are
much lower than when run in synchronous mode. In asynchnwade, numer-
ous updates to meta-data blocks are batched and thus teetbkick differencing
are amortized; in synchronous mode, each meta-data aperstieflected through
to the disk system, incurring much higher overhead in the Sb8d, we observe
that in synchronous mode, classification is less expensam association which is
less expensive than inferencing. However, in asynchronmade, the relative dif-
ference in time overheads between the various forms of digniaference is quite
insignificant.

4.4.2 Space overheads

An SDS may require additional memory to perform classifagtassociation, and
operation inferencing; specifically, hash tables are reguio track mappings be-
tween data blocks and inodes whereas caches are neededléminp efficient
block differencing. We now quantify these memory overheauder a variety of
workloads.

Table 4.2 presents the number of bytes used by each hashtdabigport
classification, association, and operation inferencinige 3izes are the maximum
reached during the run of a particular workload: NetNew®[1@ostMark [55],
and the modified Andrew benchmark [74]. For NetNews and PadtMve vary

32

Indirect Block-lnode | Operation

Classification | Association | Inferencing
NetNews, 68.9 KB 1.19 MB 73.3KB
NetNews o 84.4 KB 1.59 MB 92.3 KB
NetNewsso 93.3KB 1.91 MB 105.3 KB
PostMarl 3.45KB 452.6 KB 12.6 KB
PostMarlks 3.45 KB 660.7 KB 16.2 KB
PostMarl 3.45KB 936.4 KB 19.9KB
Andrew 360 B 3.54 KB 1.34 KB

Table 4.2: SDS Space Overheads.The table presents the space overheads of the struc-
tures used in performing classification, association, apdration inferencing, under three
different workloads (NetNews, PostMark, and the modifiedréws benchmark). Two of
the workloads (NetNews and PostMark) were run with diffeeamounts of input, which
correspond roughly to the number of “transactions” each geates (i.e., NetNews im-
plies 50,000 transactions were run). Each number in thegtabpresents the maximum
number of bytes stored in the requisite hash table duringovechmark run (each hash
entry is 12 bytes in size). The experiment was run on the “sbystem with Linux ext2 in
asynchronous mode on the IBM 9LZX disk.

workload size, as described in the caption.

From the table, we see that the dominant memory overheadsttan SDS
performing block-inode association. Whereas classiboatind operation infer-
encing require table sizes that are proportional to the murnbunique meta-data
blocks that pass through the SDS, association requiresniafon on every unique
data block that passes through. In the worst case, an entegisred for every
data block on the disk, corresponding to 1 MB of memory fomrgveGB of disk
space. Although the space costs of tracking associati@mniration are high, we
believe they are not prohibitive. Further, if memory resesrare scarce, the SDS
can choose to either tolerate imperfect information (ifgiole), or swap portions
of the table to disk.

In addition to the hash tables needed to perform classificaissociation, and
operation inferencing, a cache of “old” data blocks is ukefyperform block dif-
ferencing effectively; recall that differencing is usedadioserve whether pointers
have been allocated or freed from an inode or indirect blaxkheck whether time
fields within an inode have changed, to detect bitwise chenga bitmap, and to
monitor directory data for file creations and deletions. pagormance of the sys-
tem is sensitive to the size of this cache; if the cache is moalls each difference
calculation must first fetch the old version of the block froiisk. To avoid the

33

extra 1/O, the size of the cache must be roughly proportiemahe active meta-
data working set. For example, for the PostMariworkload, we found that the
SDS cache should contain approximately 650 4 KB blocks td tied working set.
When the cache is smaller, block differencing operatiotesnadjo to disk to retrieve
the older copy of the block, increasing run-time for the tienark by roughly 20%.

4.5 Summary

In this chapter, we presented the basic techniques an SBIas@ack semantic
information about the file system. Based on a minimal amotustiabic information
about the on-disk layout of the file system, an SDS succdgsiuélds on this
information to track more complex pieces of information.

We have also shown that there are fundamental limits to ttemeand accuracy
of semantic information that can be tracked in an SDS. Assorchin meta-data
and data updates by the file system results in obfuscationfofniation at the
semantic disk. In the next three chapters, we will explone bo SDS can utilize
such potentially inaccurate information to implement nandk of functionality
that are precluded in today’s storage systems.

34

Chapter 5

Exploiting Semantic Knowledge

“Tis not knowing much, but what is useful, that makes
a wise mari. Thomas Fuller

In this chapter, we describe a few simple case studies, egalementing new
functionality in an SDS that would not be possible to impleineithin a drive
or RAID without semantic knowledge. Some of the case stugliesented in this
chapter could be built into the file system proper; however,present these case
studies to illustrate the range of functionality that carpbavided within an SDS.
In the next two chapters, we describe more complex caseestudhich represent
entirely new pieces of functionality that cannot be impletee either within the
storage system or within the file system today.

5.1 File System Model

Functionality implemented within a semantically-smagkd$ystem is often based
on certain assumptions about the dynamic behavior of they#eem above. If the
functionality is non-correctness-sensitivid, caching), and hence fundamentally
tolerant to inaccuracy, it can afford to be lax in its assuams about the dynamic
file system behavior. However, for functionality that wds semantic information
in a way that impacts correctness, the precise file systeomgmns it is based on
is crucial.

The first case study we consider in this chapter belongs todhecorrectness-
critical category. The second case study is correctnassitise, and works under-
neath a very specific file system behavior. It assumes thdiltheystem above
is synchronousin other words, the file system writes out metadata blocks sy

35

36

chronously. The Linux ext2 file system in synchronous mouatenfits this as-
sumption.

In the next two chapters, we will successively refine thispdistic file system
model to consider more general and more detailed dynamigepties of the file
system, to implement similar correctness-sensitive fanatity. While D-GRAID
(Chapter 6) considers a general asynchronous file systeBEEAXChapter 7) con-
siders various refinements of asynchronous file systemgpitbate different kinds
of guarantees on update behavior.

5.2 Semantic Caching

The first case study explores the use of semantic informaticaching within an
SDS. We examine how an SDS can use semantic knowledge toistpostant
structures in non-volatile memory. Specifically, we expkemantic knowledge
to store in NVRAM the journal of Linux ext3, a journaling filystem. Clearly,
other variants of this basic idea are possible, such asrogohily metadata blocks
(i.e., inodes, directories, etc.) in NVRAM, so this case studyrily oneant to be
illustrative of the potential for semantically-aware NVRIKcaching.

To implement the Journal Caching SDS (JC SDS), the SDS masgmneze
traffic to the journal and redirect it to the NVRAM. Doing sosgaightforward,
because the blocks allocated to the file system journal isgbatatic information
about the file system; either a designated set of blocks argresl for the journal,
or a specific inode (number 2) points to the journal and theenis pre-allocated
to point to the set of journal blocks as part of file systematization. Thus, by
classifying and then caching data reads and writes to thragbfile, the SDS can
implement the desired functionality. For prototyping pases, we treat a portion
of volatile RAM as NVRAM.

Tables 5.1 shows the performance of the JC SDS. We can sesitgle
NVRAM caching of the journal in ext3 is quite effective at tmihg run times,
sometimes dramatically, by greatly reducing the time takewrite blocks to sta-
ble storage. An LRU-managed cache can also be effectiveisrcése, but only
when the cache is large enough to contain the working setwbinge performance
of LRUg compared to default ext3 points to the overhead introdugeslibpseudo-
device driver layer. One of the main benefits of structurahoay in NVRAM is
that the size of the cached structures is known to the SDShausdguarantees ef-
fective cache utilization. A hybrid may combine the bestathbworlds, by storing
important structures such as a journal or other meta-datd/iRAM, and manag-
ing the rest of available cache space in an LRU fashion.

37

| Create Create+Sync

ext3 4.64 32.07
+LRUs SDS 5.91 11.96
+LRU199 SDS 2.39 3.35
+Journal Caching SD 4.66 6.35

Table 5.1: Journal Caching. The table shows the time in seconds to create 2000 32-KB
files, under ext3 without an SDS, with an SDS that performs NRBAM cache manage-
ment using either 8 MB or 100 MB of cache, and with the Jourraaliihg SDS storing an

8 MB journal in NVRAM. Th€reate benchmark performs a singgync after all of the
files have been created, whereas @reate+Syncbhenchmark performs sy nc after each

file creation, thus inducing a journaling-intensive worktb These experiments are run on
the “slow” system running Linux 2.4 and utilizing IBM 9LZXs#i

Semantic knowledge can also help efficient management ah#ie memory
cache within the storage system. Simple LRU managementiskadche is likely
to duplicate the contents of the file system cache [119, 1&4], thereby wastes
memory in the storage system. This waste is particularlyausein storage arrays,
due to their large amounts of memory. In contrast, an SDS saitsiunderstanding
of the file system to cache blocks more intelligently. Speaily, the SDS can
cache an exclusive set of blocks that are not cached withifilthsystem, and thus
avoid wasteful replication [9]. Also, caching within an S@8&n be made more
effective if the SDS identifies blocks that have been del|eted! removes them
from the cache, thus freeing space for other live blocks.

Another related optimization that an SDS could do is smarefetching. Since
the SDS has file awareness, it can make a better guess as tohidao& will next
be read. For example, when the SDS observes a read to a dirbtbok, it can
prefetch the first few inode blocks pertaining to the inodeisifed to by the direc-
tory.

5.2.1 Tolerance to inaccuracy

The various optimizations discussed above for smarterimgatithin an SDS be-
long to a category of semantic disk functionality that isunally tolerant to inac-
curate information. Since none of the above optimizatidiiz& semantic infor-
mation in a way that can impact correctness, they work uregghnasynchronous
file systems. Occasional inaccuracy will only make the options marginally
less effective, but with no correctness implications. Thhese optimizations are

38

simpler to build within an SDS since they can ignore the fmkisi of inaccuracy
in information. The next case study we explore has moregarinrequirements on
accuracy.

5.3 Journaling

Our next case study is more complex and demanding in its userafntic in-
formation; we use semantic knowledge within the SDS to immglet journaling
underneath of an unsuspecting file system. As described apt€h2, journaling
makes crash recovery both simple and efficient, by comryittietadata operations
as atomic transactions; journaling thus avoids expengsle stans such as those
found in FFS or FFS-like file systems [66]. The main difficudtgdressed in this
case study is how to track all of the necessary informatidhendisk itself, and to
do so in an efficient manner.

We view the Journaling SDS as an extreme case which helpsuiterstand
the amount of information we can obtain at the disk level. ikéinthe smarter
caching case study, the Journaling SDS requires a greabgedcise information
about the file system.

In view of the extreme requirements on the accuracy of infdiom required
in a Journaling SDS, we implement the Journaling SDS undéhnreesynchronous
file system (.e., Linux ext2 mounted in synchronous mode). By doing this $imp
fication, we focus on the challenges of implementing comflgctionality even
assuming accurate information about the file system. In e two chapters,
we explore similarly complex case studies, but working undere general asyn-
chronous file system behaviors.

5.3.1 Design and implementation

The fundamental difficulty in implementing journaling in &DS arises from the
fact that at the disk, transaction boundaries are blurrexd.irfStance, when a file
system does a file create, the file system knows that the inlod&, the parent
directory block, and the inode bitmap block are updated asqgfdahe single log-
ical create operation, and hence these block writes candeegd into a single
transaction in a straight-forward fashion. However, theS&iges only a stream of
meta-data writes, potentially containing interleaveddabfile system operations.
The challenge lies in identifying dependencies among thseks and handling
updates as atomic transactions.

The Journaling SDS maintains transactions at a coarseulgréy than what a

39

Name Type Purpose
(a) CurrCache| Cache Keeps needed blocks
for current epoch
(b) NextCache| Cache Keeps needed blocks
for next epoch
(c) AddPtrs Hash Tracks added block ptrs
in inodes
(d) AddBIks Hash Tracks added blocks
in bitmaps
(e) AddIind Hash Tracks write of
indirect blocks
(f) FreeBlks Hash Tracks freed inode
pointers and bitmaps
(g) AddFile Hash Tracks files
(inode, dentry, inode bitmap)
(h) DelFile Hash Tracks deleted files
(inode, dentry, inode bitmap)
(i) Dirty Hash Tracks dirty blocks
(j) Fast Hash Performance optimization

Table 5.2:Journaling SDS Structures.

journaling file system would do. The basic approach is todsuffieta-data writes
in memory within the SDS and write them to disk only when thenemory state
of the meta-data blocks together constitute a consisteté-tdeta state. This is
logically equivalent to performing incremental in-memdsgk’s on the current set
of dirty meta-data blocks and then writing them to disk whas ¢heck succeeds.
When the current set of dirty meta-data blocks form a comsisttate, they can be
treated as a single atomic transaction, thereby ensuraigtia on-disk meta-data
contents either remain at the previous (consistent) stagetdully updated with the
current consistent state. One possible benefit of thessegaained transactions
is that by batching commits, performance may be improved mare traditional
journaling systems.

This coarse-grained approach to journaling brings out twpartant require-
ments. First, we need an efficient way of identifying and keggdrack of de-
pendencies among meta-data blocks and then checking ifutinent in-memory
state of the blocks is consistent. Second, since the ergirefsirty meta-data
blocks constitute a single transaction, we need to ensateaticontinuous meta-
data-intensive workload does not indefinitely prevent aefreaching a consistent
state, thereby leading to an unbounded possible loss offtataa crash.

40

To meet these requirements, Journaling SDS maintains & cdi¢he old con-
tents of meta-data blocks for efficiently identifying chaagn them. Whenever it
detects that an "interesting” change has occurred in onleeoifteta-data blocks, it
records the change in one of multiple hash tables. Each hahrepresents a sin-
gle type of meta-data operation (like a newly added bit inrloele bitmap, a newly
added directory entry, and so forth), and thus we have aa&phash table for ev-
ery kind of meta-data operation that can occur. As we keegctiagy changes to
multiple meta-data blocks, we carunethese hash tables by canceling out changes
that lead to a consistent state. For example, when a new &teaded, the Journal-
ing SDS sees a write of an inode-bitmap block, detects thataimode bit is set
and records the corresponding inode number in a suitablethbk. Subsequently,
it gets a directory block write and records that a new dingcemtry pointing to a
certain inode number has been added. When it finally getsnthaeiblock write
with the initialized inode, the state of those three blodgether would constitute a
consistent state (assuming no other changes took place¢cdal the current state
as consistent, the Journaling SDS removes the same inodeendram the three
hash tables where they were recorded. In a similar fashiermanage hash tables
for other meta-data operations. Given this technique fepkey track of changes,
checking for consistency just involves checking that & ltash tables are empty,
and thus is quite efficient.

To guarantee bounded loss of data after crash, the Jowgr&ilh$ has a mecha-
nism of limiting the time that can elapse between two sudeegsurnal transaction
commits. A journaling daemon wakes up periodically aftepafigurable interval
and takes a copy-on-write snapshot of the current dirtydsiac the cache and the
current hash table state. After this point, subsequent-gheaoperations update a
new copy of the cache and the hash tables, and thereforetéatinduce additional
dependencies in the curregphoch From the commit decision-point until the actual
commit, a meta-data operation is treated as part of the rueggoch only if that
operation contributes to resolving existing dependeriai¢ise current epoch. This
is slightly complicated by the coarse block-level granityasf the cache which can
contain multiple meta-data operations, some of which ne&e fpart of the current
epoch and the rest, of the next epoch. Given that no additde@endencies are
allowed into the current epoch, the maximum delay till thetr@mmit is limited
to the configured periodicity of the journaling daemon, toge with the delayed
write interval of the file system above the SDS.

A few idiosyncrasies of the ext2 file system made the implegatem more
complex. For instance, even in synchronous mode, ext2 does/mite out the
inode blocks when the size or reference count of an inodeggsanThis requires

41

the Journaling SDS to keep track of additional state andtepgtiam based on other
operations seen. Similarly, when writing out inode bloakd? does not preserve
the temporal ordering of updates taking place on the inodeirnstance, an inode
block write that reflects a deleted inode may not reflect thatgwn of other inodes
within the same block that happened in the past.

Table 5.2 displays the data structures used by the Jougn8DS. As one can
see, there is a fair amount of complexity to tracking the edeiformation to
detect consistency.

As mentioned above, the Journaling SDS implementatiomasshat the file
system has been mounted synchronously. To be robust, the&DBes a way
to verify that this assumption holds and to turn off journgliotherwise. Since
the meta-data state written to disk by the Journaling SD®nisistent regardless
of a synchronous or asynchronous mount, the only problenoseg by an asyn-
chronous mount is that the SDS might miss some operationsiinz reversed
(e.g, a file create followed by a delete); this would lead to depecds that are
never resolved and indefinite delays in the journal traimactommit process. To
avoid this problem, the Journaling SDS looks for a suspggeguence of changes
in meta-data blocks when only a single change is expe@ay (ultiple inode
bitmap bits change as part of a single write) and turns offrjaling in such cases.
As a fall-back, the Journaling SDS monitors elapsed timeesihe last commit; if
dependencies prolong the commit by more than a certain tinashold, it suspects
an asynchronous mount and aborts journaling. When it ajmrisaling, the Jour-
naling SDS relinquishes control over the “clean” flag usedhgyfile systenfsck
program, thus forcing the file system to perform a consisteheck on subsequent
crashes. Thus, the Journaling SDS can never make congistemse than tradi-
tional ext2, irrespective of whether it is mounted synclogsly or asynchronously.

5.3.2 Evaluation

We evaluate both the correctness and performance of thealmg SDS. To verify
correctness of the implementation, we inserted crashgatrgpecific places in our
test workloads, and then ran our Journaling SDS recoveryrano that replays the
log within the SDS to propagate committed transactions erAttis, we ran fsck
on the file system and verified that no inconsistencies wererted. We repeated
this verification for numerous runs, and thus we are confidlesit our existing
implementation provides at least as strong a consisterasagtee as ext2/fsck, but
avoids the high cost of fsck-based recovery.

The performance of the Journaling SDS is summarized in TaBleOne inter-
esting aspect to note in the performance of Journaling SEraislespite requiring

42

| Create Read Delete

ext2 (2.2/sync) 63.9 0.32 20.8
ext2 (2.2/async) 0.28 0.32 0.03
ext3 (2.4) 0.47 0.13 0.26

ext2 (2.2/sync)+Journaling SD 0.95 0.33 0.24

Table 5.3: Journaling. The table shows the time to complete each phase of the LFS
microbenchmark in seconds with 1000 32-KB files. Four difieconfigurations are com-
pared: ext2 on Linux 2.2 mounted synchronously, the sametad@synchronously, the
journaling ext3 under Linux 2.4, and the Journaling SDS uradgynchronously mounted
Sxtl% on Linux 2.2. This experiment took place on the “slowstegn and the IBM 9LZX

isk.

SDS Infrastructure

Initialization 395
Hash table and cache 2122
Direct classification 195
Indirect classification 75
Association 15

Operation inferencing 1105
Case Studies

Journal Cache 305

Journaling SDS 2440

Table 5.4:Code Complexity. The number of lines of code required to implement various
aspects of an SDS are presented.

the file system to be mounted synchronously, its performansienilar to the asyn-
chronous versions of the file system. This effect is becatfigbeofact that the
Journaling SDS delays writing meta-data to disk due to ifiebng until the oper-
ations reach a consistent state. In the read test the SD$hites performance to
the base file system (ext2 2.2), and in the delete test, itiaasperformance to
the journaling file system, ext3. It is only during file creatithat the SDS pays a
significant cost relative to ext3; the overhead of blocket#hcing and hash table
operations have a noticeable impact. Given that the purgiibds case study is to
demonstrate that an SDS can implement complex functignalé believe that this
small overhead is quite acceptable.

43

5.4 Complexity Analysis

We briefly explore the complexity of implementing softwaoe &n SDS. Table 5.4
shows the number of lines of code for each of the componentsiirsystem and
the case studies. From the table, one can see that most abdieecomplexity is
found in the basic cache and hash tables, and the operafeencing code. The
smarter caching case study is trivial to implement on topisflbase infrastructure;
however, the Journaling SDS requires a few thousand linesdd due to its inher-
ent complexity. Thus, we conclude that including this typéuactionality within
an SDS is quite pragmatic.

5.5 Summary

In this chapter, we have described two case studies of fumadity that can be pro-
vided within an SDS. Both case studies provide file systdmnflinctionality within
the disk system - something that existing disk systems funeddally cannot pro-
vide. While the first case study was naturally tolerant teaumate information, the
second case studig., journaling, had more stringent requirements on accuracy.
To accommodate those stringent requirements, the jongneéise study required a
synchronous file system on top. In the next two chapters, Weelax this assump-
tion by building similar case studies that are complex amdectness-sensitive, but
that work under more general asynchronous file system baisavi

44

Chapter 6

Improving Availability with
D-GRAID

“If a tree falls in the forest and no one hears it, does it mak®and?
George Berkeley

In this chapter and the next, we demonstrate the feasibilibuilding complex
functionality within an SDS despite asynchrony at the filstegn. This chapter
presents the design, implementation, and evaluation ofRAG, a gracefully-
degrading and quickly-recovering RAID storage array, #giloits semantic in-
formation to enable much better availability compared testag storage sys-
tems [102]. D-GRAID ensures that most files within the fileteys remain avail-
able even when an unexpectedly high number of faults occttRAID achieves
high availability through aggressive replication of setigatly critical data, and
fault-isolated placement of logically related data. D-QRAalso recovers from
failures quickly, restoring only live file system data to a bpare.

6.1 Introduction

Storage systems comprised of multiple disks are the baekbbmodern comput-
ing centers, and when the storage system is down, the eetiterccan grind to a
halt. Downtime is clearly expensive; for example, in thelioe- business world,
millions of dollars per hour are lost when systems are notae [56, 78].

Storage systeravailability is formally defined as the mean time between fail-
ure (MTBF) divided by the sum of the MTBF and the mean time toovery
(MTTR): 1rrararrrr [39]. Hence, in order to improve availability, one can ei-

45

46

ther increase the MTBF or decrease the MTTR. Not surprigimgsearchers have
studied both of these components of storage availability.

To increase the time between failures of a large storagg, atasa redundancy
techniques can be applied [12, 16, 22, 40, 49, 73, 76, 77, BH, 1By keeping
multiple copies of blocks, or through more sophisticatetirelancy schemes such
as parity-encoding, storage systems can tolerate a (sfixal) number of faults.
To decrease the time to recovery, “hot spares” can be enpl\& 67, 76, 84];
when a failure occurs, a spare disk is activated and filled vétonstructed data,
returning the system to normal operating mode relativelgldy

6.1.1 The problem: Reduced availability due to semantic igorance

Although various techniques have been proposed to imprimvage availability,
the narrow interface between file systems and storage [Fl{hdailed opportu-
nities for improving MTBF and MTTR. For example, RAID reduarty schemes
typically export a simple failure model; b or fewer disks fail, the RAID con-
tinues to operate correctly, but if more thdn disks fail, the RAID is entirely
unavailable until the problem is corrected, perhaps vianeitonsuming restore
from tape. In most RAID schemeb), is small (often 1); thus even when most disks
are working, users observe a failed disk system. This “aldity cliff” is a result
of the storage system laying out blocks oblivious of themagtic importance or
relationship; most files become corrupted or inaccessilée pist one extra disk
failure. Further, because the storage array has no inf@mah which blocks are
live in the file system, the recovery process must restott@@tks in the disk. This
unnecessary work slows recovery and reduces availability.

An ideal storage array fails gracefully: j%th of the disks of the system are
down, at most-th of the data is unavailable. An ideal array also recovete-in
ligently, restoring only live data. In effect, more “impant” data is less likely
to disappear under failure, and such data is restored eddreng recovery. This
strategy for data availability stems from Berkeley’s olaéion about falling trees:
if a file isn’'t available, and no process tries to access ibteeft is recovered, is
there truly a failure?

6.1.2 A solution: D-GRAID

To explore these concepts and provide a storage array witk graceful failure
semantics, we present the design, implementation, andati@ of D-GRAID,
a RAID system that Degrades Gracefully (and recovers quickD-GRAID ex-
ploits semantic intelligence within the disk array to pldide system structures

a7

across the disks in a fault-contained manner, analogousetdault containment
techniques found in the Hive operating system [20] and inesdistributed file sys-
tems [54, 94]. Thus, when an unexpected “double” failurauoe¢39], D-GRAID
continues operation, serving those files that can still messed. D-GRAID also
utilizes semantic knowledge during recovery; specificalhly blocks that the file
system considers live are restored onto a hot spare. Bo#itiaspf D-GRAID com-
bine to improve the effective availability of the storageagr Note that D-GRAID
techniques are complementary to existing redundancy sebietinus, if a storage
administrator configures a D-GRAID array to utilize RAID led, any single disk
can fail without data loss, and additional failures lead fw@portional fraction of
unavailable data.

We have built a prototype implementation of D-GRAID, whicke wefer to
as Alexander Alexander is an example of a semantically-smart disk sysié
exploits semantic knowledge to implement graceful degiadand quick recov-
ery. Alexander currently functions underneath unmodifigtlk ext2 and VFAT
file systems. By running under more general asynchronousyfieem behaviors,
D-GRAID demonstrates that it is feasible to build complerdiionality despite
fundamentally imperfect information.

6.1.3 Key techniques

There are two key aspects to the Alexander implementatignaaieful degradation.
The first isselective meta-data replicatipin which Alexander replicates naming
and system meta-data structures of the file system to a higtreeaevhile using
standard redundancy techniques for data. Thus, with a smedunt of overhead,
excess failures do not render the entire array unavaildbétead, the entire direc-
tory hierarchy can still be traversed, and only some fraatitfiles will be missing,
proportional to the number of missing disks. The secondfeuli-isolated data
placemenstrategy. To ensure that semantically meaningful data ané available
under failure, Alexander places semantically-relatecckdoe.g, the blocks of a
file) within the storage array’s unit of fault-containmeatd, a disk). By observing
the natural failure boundaries found within an array, f@tumake semantically-
related groups of blocks unavailable, leaving the restefilk system intact.
Unfortunately, fault-isolated data placement improveslability at a cost; re-
lated blocks are no longer striped across the drives, radutie natural benefits
of parallelism found within most RAID techniques [34]. Tawedy this, Alexan-
der also implementaccess-driven diffusioto improve throughput to frequently-
accessed files, by spreading a copy of the blocks of “hot” eitgess the drives of
the system. Alexander monitors access to data to deterntii@iles to replicate

48

in this fashion, and finds space for those replicas eithemireeconfigurecperfor-
mance reserver opportunistically in the unused portions of the storagstesn.

We evaluate the availability improvements possible wittGRAID through
trace analysis and simulation, and find that D-GRAID doesael&ent job of
masking an arbitrary number of failures from most procefgesnabling contin-
ued access to “important” data. We then evaluate our pnogotplexander under
microbenchmarks and trace-driven workloads. We find thattnstruction of D-
GRAID is feasible; even with imperfect semantic knowledgawerful functional-
ity can be implemented within a block-based storage arrag.alsb find that the
run-time overheads of D-GRAID are small, but that the sterimyel CPU costs
compared to a standard array are high. We show that acdgss-diiffusion is
crucial for performance, and that live-block recovery ifeefive when disks are
under-utilized. The combination of replication, data plament, and recovery tech-
niques results in a storage system that improves avatlalihile maintaining a
high level of performance.

The rest of this chapter is structured as follows. In Seddi@) we present an
extended motivation for graceful degradation. We predemesign principles of
D-GRAID in Section 6.3, and present trace analysis and sitiauis in Section 6.4.
In Section 6.5, we outline the file system model on which oyslementation of
D-GRAID is based. In Section 6.6, we present our prototypgl@émentation, and
evaluate our prototype in Section 6.7. In Section 6.8, wegarecustom policies for
differentlevelsof D-GRAID. We discuss the resilience of D-GRAID to incorrec
information in Section 6.9, and summarize in Section 6.10.

6.2 Extended Motivation

In this section, we motivate the need for graceful degradatiuring multiple fail-
ures. The motivation for graceful degradation arises fromftact that users and
applications often do not require that the entire contehts wlume be present;
rather, what matters to them is whether a particular setes &éfe available.

One guestion that arises is whether it is realistic to expeamdtastrophic fail-
ure scenario within a RAID system. For example, in a RAID-5tegn, given the
high MTBF’s reported by disk manufacturers, one might hvelihat a second disk
failure is highly unlikely to occur before the first faileds#tiis repaired. However,
multiple disk failures do occur, for two primary reasongsEicorrelated faults are
more common in systems than expected [41]. If the RAID haseen carefully
designed in an orthogonal manner, a single controller faudither component er-
ror can render a fair number of disks unavailable [22]; swtlundant designs are

49

expensive, and therefore may only be found in higher enédgéoarrays. Second,
Gray points out that system administration is the main sowfcfailure in sys-
tems [39]. A large percentage of human failures occur dumagntenance, where
“the maintenance person typed the wrong command or unpiliigewrong mod-
ule, thereby introducing a double failure” (page 6) [39].

Other evidence also suggests that multiple failures canrocEor example,
IBM’s ServeRAID array controller product includes direeis on how to attempt
data recovery when multiple disk failures occur within a RA storage array [53].
Within our own organization, data is stored on file serveidauiRAID-5. In one of
the Computer Science department's servers, a single diekl fébut the indicator
that should have informed administrators of the problemndictio so. The problem
was only discovered when a second disk in the array faildidefstore from backup
ran for days. In this scenario, graceful degradation woakktrenabled access to a
large fraction of user data during the long restore.

One might think that the best approach to dealing with migtfgilures would
be to employ a higher level of redundancy [3, 16], thus enghihe storage array
to tolerate a greater number of failures without loss of datawever, these tech-
niques are often expensive.§, three-way data mirroring) or bandwidth-intensive
(e.g, more than 6 1/Os per write in a P+Q redundant store). Gradefgradation
is complementary to such techniques. Thus, storage admaiois could choose
the level of redundancy they believe necessary for commea taults; graceful
degradation is enacted when a “worse than expected” facltrecmitigating its ill
effect.

6.3 Design: D-GRAID Expectations

We now discuss the design of D-GRAID. We present backgroofatration on
file systems, the data layout strategy required to enableefiradegradation, the
important design issues that arise due to the new layoutttengrocess of fast
recovery.

6.3.1 Graceful degradation

To ensure partial availability of data under multiple fadls in a RAID array, D-
GRAID employs two main techniques. The first idalt-isolated data place-
mentstrategy, in which D-GRAID places each “semantically-etbset of blocks”
within a “unit of fault containment” found within the storagrray. For simplic-
ity of discussion, we assume that a file is a semanticalteel set of blocks, and
that a single disk is the unit of fault containment. We wilhgealize the former

50

below, and the latter is easily generalized if there arerddikire boundaries that
should be observed(g, SCSI chains). We refer to the physical disk to which a
file belongs as theome sitdor the file. When a particular disk fails, fault-isolated
data placement ensures that only files that have that disleashbme site become
unavailable, while other files remain accessible as whas.fil

The second technique selective meta-data replicatipin which D-GRAID
replicates naming and system meta-data structures of ¢heytem to a high de-
gree.e.g, directory inodes and directory data in a4 file system. D-GRAID thus
ensures that all live data is reachable and not orphaneddualtiple failures. The
entire directory hierarchy remains traversable, and thetifsn of missing user data
is proportional to the number of failed disks.

Thus, D-GRAID lays out logical file system blocks in such a wheat the avail-
ability of a single file depends on as few disks as possiblea tiaditional RAID
array, this dependence set is normally the entire set osdiskhe group, thereby
leading to entire file system unavailability under an unetpe failure. A WNIX-
centric example of typical layout, fault-isolated datagelment, and selective meta-
data replication is depicted in Figure 6.1. Note that fortdahniques in D-GRAID
to work, a meaningful subset of the file system must be laidiathtin a single D-
GRAID array. For example, if the file system is striped acmosttiple D-GRAID
arrays, no single array will have a meaningful view of the $§ystem. In such a
scenario, D-GRAID can be run at the logical volume manage |e&iewing each
of the arrays as a single disk; the same techniques remaiargl

Because D-GRAID treats each file system block type diffdyetite traditional
RAID taxonomy is no longer adequate in describing how D-GBRAEhaves. In-
stead, a more fine-grained notion of a RAID level is requieesdD-GRAID may
employ different redundancy techniques for different g/p&data. For example,
D-GRAID commonly employs-way mirroring for naming and system meta-data,
whereas it uses standard redundancy techniques, suchragmgiior parity encod-
ing (e.g, RAID-5), for user data. Note that, a value under administrative control,
determines the number of failures under which D-GRAID wdbdade gracefully.
In Section 6.4, we will explore how data availability degeadinder varying levels
of namespace replication.

6.3.2 Design considerations

The layout and replication techniques required to enaldeajul degradation in-
troduce a number of design issues. We highlight the majdtestges that arise.

51

inode:root
& _j'r._oﬁ:foo
data:root
data:foo
m—
inodebar [
3 data:bar data:bar
inode:root inode:root| . [inode:root| . |inode:root| |inode:root
O O O O O
I_i_npde:foo inode:foo inode:foo inode:foo | |inode:foo

foo
data:root data:root data:root data:root
data:foo data:foo data:foo data:foo
inode:bar inode:bar
data:bari data:bari
data:bar data:bar

Figure 6.1: A Comparison of Layout Schemes. These figures depict different layouts
of a file “/foo/bar” in a UNIX file system starting at the root inode and following down
the directory tree to the file data. Each vertical column egemts a disk. For simplicity,
the example assumes no data redundancy for user file data.h®©top is a typical file
system layout on a non-D-GRAID disk system; because blaokisijerefore pointers) are
spread throughout the file system, any single fault will esrttie blocks of the file “bar”
inaccessible. The left figure in the bottom is a fault-isetatiata placement of files and
directories. In this scenario, if one can access the inoda file, one can access its data
(indirect pointer blocks would also be constrained withire tsame disk). Finally, in the
bottom right is an example of selective meta-data replirati By replicating directory
inodes and directory blocks, D-GRAID can guarantee thatsisan get to all files that are
available. Some of the requisite pointers have been remiperdthe rightmost figure for
simplicity. Color codes are white for user data, light shdder inodes, and dark shaded
for directory data.

52

Semantically-related blocks

With fault-isolated data placement, D-GRAID places a lagignit of file system
data €.g, a file) within a fault-isolated containee.gq, a disk). Which blocks D-
GRAID considers “related” thus determines which data resavailable under
failure. The most basic approach fike-basedgrouping, in which a single file
(including its data blocks, inode, and indirect pointers)reated as the logical
unit of data; however, with this technique a user may find #mhe files in a
directory are unavailable while others are not, which mayseafrustration and
confusion. Other groupings preserve more meaningful gustiof the file system
volume under failure. Witllirectory-basedgrouping, D-GRAID ensures that the
files of a directory are all placed within the same unit of fantainment. Less
automated options are also possible, allowing users tafgpabitrary semantic
groupings which D-GRAID then treats as a unit.

Load balance

With fault-isolated placement, instead of placing blocka file across many disks,
the blocks are isolated within a single home site. Isolatedgment improves
availability but introduces the problem of load balanciwgjch has both space and
time components.

In terms of space, the total utilized space in each disk shbalmaintained
at roughly the same level, so that when a fraction of disKs raughly the same
fraction of data becomes unavailable. Such balancing canlthessed in the fore-
ground {.e., when data is first allocated), the background.,(with migration), or
both. Files (or directories) larger than the amount of figgce in a single disk can
be handled either with a potentially expensive reorgaitinatr by reserving large
extents of free space on a subset of drives. Files that agerléinan a single disk
must be split across disks.

More pressing are the performance problems introducediirifolated data
placement. Previous work indicates that striping of datasscdisks is better for
performance even compared to sophisticated file placenigmtitams [34, 118].
Thus, D-GRAID makes additional copies of user data that preasl across the
drives of the system, a process which we ealtess-driven diffusionWhereas
standard D-GRAID data placement is optimized for availghihccess-driven dif-
fusion increases performance for those files that are fretyjuaccessed. Not sur-
prisingly, access-driven diffusion introduces policy idamns into D-GRAID, in-
cluding where to place replicas that are made for performanbich files to repli-
cate, and when to create the replicas.

53

Meta-data replication level

The degree of meta-data replication within D-GRAID deterasi how resilient it is

to excessive failures. Thus, a high degree of replicatiatesrable. Unfortunately,

meta-data replication comes with costs, both in terms ofespad time. For space
overheads, the trade-offs are obvious: more replicas imqaye resiliency. One

difference between traditional RAID and D-GRAID is that tamount of space

needed for replication of naming and system meta-data isrdkgmt on usageg.,

a volume with more directories induces a greater amount eftmad. For time

overheads, a higher degree of replication implies lowerétevperformance for

naming and system meta-data operations. However, otheeohaerved that there
is a lack of update activity at higher levels in the directtvee [80], and lazy update
propagation can be employed to reduce costs [95].

6.3.3 Fastrecovery

Because the main design goal of D-GRAID is to ensure highailadility, fast
recovery from failure is also critical. The most straigintfard optimization avail-
able with D-GRAID is to recover only “live” file system data. séume we are
restoring data from a live mirror onto a hot spare; in theiglt®orward approach,
D-GRAID simply scans the source disk for live blocks, exanmgrappropriate file
system structures to determine which blocks to restore.s plocess is readily
generalized to more complex redundancy encodings. D-GR#D potentially
prioritize recovery in a number of ways,g, by restoring certain “important” files
first, where importance could be domain speciéig(files in/ et ¢) or indicated
by users in a manner similar to the hoarding database in GXja [

6.4 Exploring Graceful Degradation

In this section, we use simulation and trace analysis tauatalthe potential ef-
fectiveness of graceful degradation and the impact of iffesemantic grouping
techniques. We first quantify the space overheads of D-GRAH2n we demon-
strate the ability of D-GRAID to provide continued accesa foportional fraction
of meaningful data after arbitrary number of failures. Morgortantly, we then
demonstrate how D-GRAID can hide failures from users byicapihg “important”
data. The simulations use file system traces collected frérh&bs [89], and cover
10 days of activity; there are 250 GB of data spread acrossdi&dl volumes.

54

Level of Replication
l-way 4-way 16-way
ext2 kp 0.15% 0.60% 2.41%
ext i p 043% 1.71% 6.84%
VFAT1xp | 0.52% 2.07% 8.29%
VFAT x5 | 0.50% 2.01% 8.03%

Table 6.1:Space Overhead of Selective Meta-data Replication. The table shows the
space overheads of selective meta-data replication as eep&age of total user data, as
the level of naming and system meta-data replication irsgsa In the leftmost column,
the percentage space overhead without any meta-data atjolicis shown. The next two
columns depict the costs of modest (4-way) and paranoidv@®- schemes. Each row
shows the overhead for a particular file system, either ert2FAT, with block size set to
1 KB or 4 KB.

6.4.1 Space overheads

We first examine the space overheads due to selective mistaegidication that are
typical with D-GRAID-style redundancy. We calculate thesicof selective meta-
data replication as a percentage overhead, measured atireskimes of the HP

trace data when laid out in either the ext2 or the VFAT file syst When running

underneath ext2, selective meta-data replication is eghpdi the superblock, inode
and data block bitmaps, and the inode and data blocks ottdixefiles. The blocks

replicated in the case of VFAT are those that comprise the &Ad the directory

entries. We calculate the highest possible percentageeiftse meta-data repli-

cation overhead by assuming no replication of user dataseaf data is mirrored,

the overheads are cut in half.

Table 6.1 shows that selective meta-data replication ieslenly a mild space
overhead even under high levels of meta-data redundandyofborthe Linux ext2
and VFAT file systems. Even with 16-way redundancy of meta:danly a space
overhead of 8% is incurred in the worst case (VFAT with 1 KBdig). With
increasing block size, while ext2 uses more space (due ¢onialt fragmentation
with larger directory blocks), the overheads actually dase with VFAT. This phe-
nomenon is due to the structure of VFAT; for a fixed-sized filgam, as block size
grows, the file allocation table itself shrinks, although bhocks that contain direc-
tory data grow.

55

6.4.2 Static availability

We next examine how D-GRAID availability degrades undelufai with two dif-
ferent semantic grouping strategies. The first strategleibised grouping, which
keeps the information associated with a single file withimilufe boundaryi(e.,

a disk); the second is directory-based grouping, whiclcatkes files of a directory
together. For this analysis, we place the entire 250 GB o filed directories from
the HP trace onto a simulated 32-disk system, remove siptlildisks, and mea-
sure the percentage of whole directories that are avail@teassume no user data
redundancyi(e., D-GRAID Level 0).

Figure 6.2 shows the percent of directories available, e/hatirectory is avail-
able if all of its files are accessible (although subdiregeand their files may not
be). From the figure, we observe that graceful degradatiacksaguite well, with
the amount of available data proportional to the number akimg disks, in con-
trast to a traditional RAID where a few disk crashes wouldlleacomplete data
unavailability. In fact, availability sometimes degradightly less than expected
from a strict linear fall-off; this is due to a slight imbalamin data placement across
disks and within directories. Further, even a modest leebmespace replication
(e.g, 4-way) leads to very good data availability under failuvée also conclude
that with file-based grouping, some files in a directory akelyi to “disappear”
under failure, leading to user dissatisfaction.

6.4.3 Dynamic availability

Finally, by simulating dynamic availability, we examineMoften users or applica-
tions will be oblivious that D-GRAID is operating in degratmode. Specifically,
we run a portion of the HP trace through a simulator with sonmm@lver of failed
disks, and record what percent of processes observed naili@efduring the run.
Through this experiment, we find that namespace replicéiant enough; certain
files, that are needed by most processes, must be replicateella

In this experiment, we set the degree of namespace repliceti32 (full repli-
cation), and vary the level of replication of the contentpapular directories.e.,
{fusr/bin,/bin,/1ibandafew others. Figure 6.3 shows that without repli-
cating the contents of those directories, the percent afgases that run without
ill-effect is lower than expected from our results in Fig@€. However, when
those few directories are replicated, the percentage aegs®s that run to com-
pletion under disk failure is much better than expected. rélson for this is clear:
a substantial number of processegy(who, ps, etc.) only require that their exe-
cutable and a few other libraries are available to run ctged/ith popular direc-

56

Static Data Availability

[} 100% s T T T - T T T
el Directory-based: 8-way ———
= Directory-based: 4-way -
S File-based: 4-way =
i 80% Directory-based: 1-way «—a -
2 SR
9 TN
=3 N |
E 60% [R 4
= POXCR T
o IRV
4] IR AN N
2 R SN
S 40% r AN 1
g 0% I S N
£ SRR NN
o RERIERY
S 20% f PR TN 1
& oo M -

0 5 10 15

Number of Failed Disks

Figure 6.2:Static Data Availability. The percent of entire directories available is shown
under increasing disk failures. The simulated system stmsf 32 disks, and is loaded with
the 250 GB from the HP trace. Two different strategies forasin grouping are shown:
file-based and directory-based. Each line varies the leixdmication of namespace meta-
data. Each point shows average and standard deviation a@304rials, where each trial
randomly varies which disks fail.

tory replication, excellent availability under failurepsssible. Fortunately, almost
all of the popular files are in “read only” directories; thugde-scale replication

will not raise write performance or consistency issues.oAthe space overhead
due to popular directory replication is minimal for a reasoly sized file system;

for this trace, such directories account for about 143 M8&s tean 0.1% of the total
file system size.

6.5 File System Model

The journaling case study in the previous chapter congidareynchronous file
system, that committed metadata updates synchronouslysko drFor this case
study, we consider a more general file system model that igri@ with modern

57

Dynamic Per-Process Availability

100% L S T T T) T T
SR 4oL Popular Replication: 32-way ———
8-way -
a l-way =%
3 80%] 1
4 LT
o IR
o T
o X
B 60% [
o |
L !
5 |
S 40% r
S 1
- i
@ |
() 1
o %
0% . Lo bbb T e e
0 5 10 15 20 25 30

Number of Failed Disks

Figure 6.3: Dynamic Data Availability. The figure plots the percent of processes that
run unaffected under disk failure from one busy hour fromHietrace. The degree of
namespace replication is set aggressively to 32. Each bmies the amount of replication
for “popular” directories; 1-way implies that those direaties are not replicated, whereas
8-way and 32-way show what happens with a modest and extreraerd of replication.
Means and deviations of 30 trials are shown.

file system behaviors. Specifically, our implementation eGRAID works under
asynchronous file systems, such as ext2 in asynchronous. mode
The following generic behaviors hold for an asynchronowssfistem.

6.5.1 Arbitrary ordering

An arbitrary ordering file system orders updates to the fisesy arbitrarily; hence,

no particular update order can be relied upon to garner eXtamation about the

nature of disk traffic. For example, in FFS, meta-data update forced to disk

synchronously, and thus will arrive at the disk before theesponding data. Other
file systems are very careful in how they order updates to[8i8k and therefore

some ordering could be assumed; however, to remain as ¢esepassible, we

avoid any such assumptions.

58

In the next chapter, we will analyze this assumption in grnedetail to explore
how semantic inference techniques can be simplified if tleedfiistem provides
certain simple ordering guarantees.

6.5.2 Delayed update

An asynchronous file system delays updates to disk, oftgpeidormance reasons.
Delays are found in writing data to disk in many file systems|uding LFS [91],
which buffers data in memory before flushing it to disk; timgpiroves performance
both by batching small updates into a single large one, asul la} avoiding the
need to write data that is created but then deleted. A cdrtvadelayed updates
is a file system that immediately reflects file system changelisk; for example,
ext2 can be mounted synchronously to behave in this manner.

6.5.3 Hidden operation

The hidden operation property, which refers to the file systet reflecting all
its operations to disk, goes hand-in-hand with delayed igsdaFor example, a
file system could delay the disk update associated with féatwn; a subsequent
delete obviates the need to reflect the create to disk.

6.6 Implementation: Making D-GRAID

We now discuss the prototype implementation of D-GRAID knaag Alexander.
Alexander uses fault-isolated data placement and setectata-data replication to
provide graceful degradation under failure, and emplogess-driven diffusion to
correct the performance problems introduced by avaitghiliiented layout. Cur-
rently, Alexander replicates namespace and system meaaan administrator-
controlled value €.g, 4 or 8), and stores user data in either a RAID-0 or RAID-1
manner; we refer to those systems as D-GRAID Levels 0 ancspeotively.

In this section, we present the implementation of grace@grddation and
live-block recovery, with most of the complexity (and herliscussion) centered
around graceful degradation. For simplicity of expositiare focus on the con-
struction of Alexander underneath the Linux ext2 file systef the end of the
section, we discuss differences in our implementation urebth VFAT.

59

Static Static
Typing Typing

/F=Inode /I’=Data

—————— 1 Inode-to
_ _ _ _"homesite

Static |:| Static
Typing Typing
/=Data 1T T = -
| |
I . | |
. Deferredi |E| 1 Deferred

Block
unmapped |- 55— - - ~ Inode-to rgu =~ ~ ~ - Inode-to

- = —1
_ _ _ _'homesite | ML _ _ homesite

E
“imap

Figure 6.4:Anatomy of a Write This figure depicts the control flow during a sequence of
wr i t e operations in Alexander. In the first figure, an inode blockvittten; Alexander
observes the contents of the inode block and identifies thily aelded inode. It then selects
a home site for the inode and creates physical mappings &blicks of the inode, in that
home site. Also, the inode block is aggressively replicatedhe next figure, Alexander
observes a write to a data block from the same inode; since @ready mapped, the
write goes directly to the physical block. In the third figufdexander gets a write to an
unmapped data block; it therefore defers writing the blomkd when Alexander finally
observes the corresponding inode (in the fourth figure)rgaites the relevant mappings,
observes that one of its blocks is deferred, and therefeueis the deferred write to the
relevant home site.

- — -

! | L -

—

imap

60

6.6.1 Graceful degradation

We now present an overview of the basic operation of grackfgtadation within
Alexander. We first describe the simple cases before prowgéd the more intri-
cate aspects of the implementation.

The Indirection Map

Similar to any other SCSI-based RAID system, Alexandere@msshost systems
with a linear logical block address space. Internally, Alester must place blocks
so as to facilitate graceful degradation. Thus, to conttatgment, Alexander
introduces a transparent level of indirection between dlgechl array used by the
file system and physical placement onto the disks vidrtd&ection map (imap)
similar structures have been used by others [30, 115, 11dliké&Jmost of these
other systems, this imap only maps evive logical file system block to its replica
list, i.e,, all its physical locations. Alinmappedlocks are considered free and are
candidates for use by D-GRAID.

Reads

Handling block read requests at the D-GRAID level is strd@iward. Given the
logical address of the block, Alexander looks in the imaprid the replica list and
issues the read request to one of its replicas. The choicéighweplica to read
from can be based on various criteria [117]; currently Aheer uses a randomized
selection. However, in the presence of access-drivengifiifiy the diffused copy is
always given preference over the fault-isolated copy.

Writes

In contrast to reads, write requests are more complex tol&an@xactly how
Alexander handles the write request depends otytenf the block that is written.
Figure 6.4 depicts some common cases.

If the block is a static meta-data block.§, an inode or a bitmap block) that
is as of yet unmapped, Alexander allocates a physical bloadach of the disks
where a replica should reside, and writes to all of the copikxe that Alexander
can easily detect static block types such as inode and bitiwaks underneath
many WNix file systems simply by observing the logical block address.

When an inode block is written, D-GRAID scans the block fowlyeadded
inodes; to understand which inodes are new, D-GRAID congadwenewly written
block with its old copy, a process referred to as block diff@ming. For every new

61

inode, D-GRAID selects a home site to lay out blocks beloggmthe inode, and
records it in thénode-to-homesitbashtable. This selection of home site is done to
balance space allocation across physical disks. Curr@iyRAID uses a greedy
approach; it selects the home site with the most free space.

If the write is to an unmapped block in the data regioa.(a data block, an
indirect block, or a directory block), the allocation cahbe done until D-GRAID
knows which file the block belongs to, and thus, its actual éaite. In such a
case, D-GRAID places the block indeferred block lisand does not write it to
disk until it learns which file the block is associated withinc® a crash before
the inode write would make the block inaccessible by the fiktesn anyway, the
in-memory deferred block list is not a reliability concern.

D-GRAID also looks for newly added block pointers when andedor indi-
rect) block is written. If the newly added block pointer msfeo an unmapped block,
D-GRAID adds a new entry in the imap, mapping the logical kltca physical
block in the home site assigned to the corresponding inotdanyl newly added
pointer refers to a block in the deferred list, D-GRAID rerasthe block from the
deferred list and issues the write to the appropriate phybiock(s). Thus, writes
are deferred only for blocks that are writtbaforethe corresponding owner inode
blocks. If the inode is written first, subsequent data wnitdsbe already mapped
and sent to disk directly.

Another block type of interest that D-GRAID looks for is thatd bitmap
block. Whenever a data bitmap block is written, D-GRAID sc#mough it look-
ing for newly freed data blocks. For every such freed blocksRAID removes
the logical-to-physical mapping if one exists and freesdmeesponding physical
blocks. Further, if a block that is currently in the deferfistlis freed, the block is
removed from the deferred list and the write is suppressads, tdata blocks that
are written by the file system but deleted before their cpording inode is written
to disk do not generate extra disk traffic, similar to optiatians found in many file
systems [91]. Removing such blocks from the deferred lish@ortant because in
the case of freed blocks, Alexander may never observe anngwnode. Thus,
every deferred block stays in the deferred list for a bouratedunt of time, until
either an inode owning the block is written, or a bitmap blawudicating deletion
of the block is written. The exact duration depends on thayael write interval of
the file system.

Block Reuse

We now discuss a few of the more intricate issues involvedh witplementing
graceful degradation. The first such issue is block reuse.exsting files are

62

deleted or truncated and new files are created, blocks thatemee part of one file
may be reallocated to some other file. Since D-GRAID needsatteblocks onto
the correct home site, this reuse of blocks needs to be ddtaaid acted upon. D-
GRAID handles block reuse in the following manner: wheneremode block or
an indirect block is written, D-GRAID examines each validdK pointer to see if
its physical block mapping matches the home site allocaiethe corresponding
inode. If not, D-GRAID changes the mapping for the block te torrect home
site. However, it is possible that a write to this block (thais made in the context
of the new file) went to the old home site, and hence needs topied from its
old physical location to the new location. Blocks that musibpied are added to
apending copies lista background thread copies the blocks to their new home site
and frees the old physical locations when the copy completes

Dealing with Imperfection

Another difficulty that arises in semantically-smart digksderneath typical file
systems is that exact knowledge of the type of a dynamidatigd block is impos-
sible to obtain, as discussed in Section 4.3. Thus, Alexamdst handle incorrect
type classification for data blocksd,, file data, directory, and indirect blocks).

For example, D-GRAID must understand the contents of ictlindbocks, be-
cause it uses the pointers therein to place a file’s blocks itmhome site. How-
ever, due to lack of perfect knowledge, the fault-isolateEt@ment of a file might
be compromised (note that data loss or corruption is not suejs Our goal in
dealing with imperfection is thus to conservatively avdidvhen possible, and
eventually detect and handle it in all other cases.

Specifically, whenever a block construed to be an indiremtlbls written, we
assume it is a valid indirect block. Thus, for every live gemin the block, D-
GRAID must take some action. There are two cases to consdid#re first case, a
pointer could refer to an unmapped logical block. As memtbhefore, D-GRAID
then creates a new mapping in the home site correspondirige tmdde to which
the indirect block belongs. If this indirect block (and peir) is valid, this mapping
is the correct mapping. If this indirect block is misclaggifiand consequently, the
pointer invalid), D-GRAID detects that the block is free wHeobserves the data
bitmap write, at which point the mapping is removed. If thedil is allocated to
a file before the bitmap is written, D-GRAID detects the medition during the
inode write corresponding to the new file, creates a new mgppind copies the
data contents to the new home site (as discussed above).

In the second case, a potentially corrupt block pointeratpoint to an already
mapped logical block. As discussed above, this type of bleake results in a new

63

mapping and copy of the block contents to the new home sithislindirect block
(and hence, the pointer) is valid, this new mapping is theeobione for the block.
If instead the indirect block is a misclassification, Aledanwrongly copies over
the data to the new home site. Note that the data is still aties however, the
original file to which the block belongs, now has one of itsdkl®in the incorrect
home site. Fortunately, this situation is transient, beeaance the inode of the file
is written, D-GRAID detects this as a reallocation and @eat new mapping back
to the original home site, thereby restoring its correct piag. Files which are
never accessed again are properly laid out by an infrequess of inodes that
looks for rare cases of improper layout.

Thus, without any optimizations, D-GRAID will eventuallyave data to the
correct home site, thus preserving graceful degradatioowener, to reduce the
number of times such a misclassification occurs, Alexandetas an assumption
about the contents of indirect blocks, specifically thaytbentain some number of
valid unique pointers, or null pointers. Alexander can tage this assumption to
greatly reduce the number of misclassifications, by perfogran integrity check
on each supposed indirect block. The integrity check, wiichminiscent of work
on conservative garbage collection [13], returns truelitted “pointers” (4-byte
words in the block) point to valid data addresses within tbkeiwme and all non-
null pointers are unique. Clearly, the set of blocks thasphss integrity check
could still be corrupt if the data contents happened to &kagade our conditions.
However, a test run across the data blocks of our local fileesydndicates that
only a small fraction of data blocks (less than 0.1%) woulsisphe test;only those
blocks that pass the teahd are reallocated from a file data block to an indirect
block would be misclassifietl.

Access-driven Diffusion

Another issue that D-GRAID must address is performance. Itfsnlated data
placement improves availability but at the cost of perfanoea Data accesses to
blocks of a large file, or, with directory-based groupingfites within the same
directory, are no longer parallelized. To improve perfonce Alexander per-
forms access-driven diffusion, monitoring block accesseietermine which block
ranges are “hot”, and then “diffusing” those blocks via region across the disks
of the system to enhance parallelism.

1By being sensitive to data contents, semantically-smaksdplace a new requirement on file
system traces to include user data blocks. However, thagyizoncerns that such a campaign would
encounter may be too difficult to overcome.

64

Access-driven diffusion can be achieved at both the logiodl physical levels
of a disk volume. In the logical approach, access to ind&idiles is monitored,
and those considered hot are diffused. However, per-filkcegjon fails to capture
sequentiality across multiple small files, for example,sthin a single directory.
Therefore we instead pursue a physical approach, in whietlxakider replicates
segments of the logical address space across the disks wblime. Since file
systems are good at allocating contiguous logical blocka fingle file, or to files
in the same directory, replicating logical segments isljikke identify and exploit
most common access patterns.

To implement access-driven diffusion, Alexander divides kogical address
space into multiple segments, and during normal operagjatiers information on
the utilization of each segment. A background thread selegical segments that
remain “hot” for a certain number of consecutipochsand diffuses a copy across
the drives of the system. Subsequent reads and writes firgi gwese replicas,
with background updates sent to the original blocks. Thepierary for the block
indicates which copy is up to date. Clearly, the policy focidang which segments
to diffuse is quite simplistic in our prototype implememat A more detailed
analysis of the policy space for access-driven diffusidefisfor future work.

The amount of disk space to allocate to performance-omergplicas presents
an important policy decision. The initial policy that Aleder implements is to
reserve a certain minimum amount of space (specified by gtersyadministrator)
for these replicas, and then opportunistically use thedpaee available in the array
for additional replication. This approach is similar tottiged by AutoRAID for
mirrored data [117], except that AutoRAID cannot identiftal that is considered
“dead” by the file system once written; in contrast, D-GRAI&ncuse semantic
knowledge to identify which blocks are free.

6.6.2 Live-block recovery

To implement live-block recovery, D-GRAID must understamtdich blocks are
live. This knowledge must be correct in that no block thais is considered dead,
as that would lead to data loss. Alexander tracks this inddion by observing
bitmap and data block traffic. Bitmap blocks tell us the liess state of the file
system that has been reflected to disk. However, due to méogdand delayed
updates, it is not uncommon to observe a write to a data bldase/corresponding
bit has not yet been set in the data bitmap. To account fQrBR(SRAID maintains

a duplicate copy of all bitmap blocks, and whenever it seegitewo a block,

sets the corresponding bit in the local copy of the bitmape @hplicate copy is
synchronized with the file system copy when the data bitmapkbis written by

65

the file system. Thigonservative bitmap tablus reflects a superset of all live
blocks in the file system, and can be used to perform livekatecovery. Note that
we assume the pre-allocation state of the bitmap will not bdem to disk after
a subsequent allocation; the locking in Linux and other modgystems already
ensures this. Though this technique guarantees that altiek s never classified
as dead, it is possible for the disk to consider a block livédiager than it actually
is. This situation would arise, for example, if the file systerites deleted blocks
to disk.

To implement live-block recovery, Alexander simply usestbnservative bitmap
table to build a list of blocks which need to be restored. Ateder then proceeds
through the list and copies all live data onto the hot spare.

6.6.3 Other aspects of Alexander

There are a number of other aspects of the implementatidnatearequired for
a successful prototype. In this subsection, we briefly descome of the key
aspects.

Physical block allocation

The logical array of blocks exported by SCSI has the prophay block numbers
that are contiguous in the logical address space are mappethtiguous physical
locations on disk. This property empowers file systems togptiata contiguously
on disk simply by allocating contiguous logical blocks te tthata. In traditional
RAID, this property is straightforward to preserve. Be@apsysical blocks are
assigned in a round-robin fashion across disks, the cdtytiguarantees continue
to hold; the physical block to assign for a given logical Bliga simple arithmetic
calculation on the logical block number.

However in D-GRAID, deciding on the physical block to alleedor a newly
written logical block is not straightforward; the decisidepends on the file to
which the logical block belongs, and its logical offset vintlthe file. Because of
fault-isolated placement, a set of contiguous logical kdoe.g, those that belong
to a single file) may all map to contiguous physical blockstmsame disk; thus,
if a logical block L within that set is mapped to physical bloék block L + k
within the same set should be mapped to physical bldekk in order to preserve
contiguity expectations. However, at a larger granulasityce D-GRAID balances
space utilization across files, the allocation policy stdm different; for large
values ofk, block L + k£ should map to physical block + (k/N) whereN is the

66

number of disks in the array. The choice of which of thesecpesito use requires
estimates of file size which are quite dynamic.

Our prototype addresses this issue with a simple technifgpace reserva-
tions. Alexander utilizes its knowledge of inodes and ieditblocks to ge& priori
estimates of the exact size of the entire file (or a large sagofdhe file, as in the
case of indirect block). When it observes a new inode writketh indicates a file
of sizeb blocks, it reserves contiguous blocks in the home-site assigned for that
file, so that when the actual logical blocks are written sgbeetly, the reserved
space can be used. Note that since blocks are deferredhaitiinodes (or indirect
blocks) are observed, a write to a new logical block will aterhave a prior reser-
vation. Since inodes and indirect blocks are written onlgiquically (e.g, once
every 5 seconds), the size information obtained from thasiesvs quite stable.

Just-in-time commit

Space reservations depend on the size information extréician inode and indi-
rect blocks. However, given that indirect block detectisriundamentally inaccu-
rate, a misclassified indirect block could result in spusiceservations that hold up
physical space. To prevent this, Alexander employs lazmycation, where actual
physical blocks are committed only when the correspondngical block is writ-
ten. The reservation still happeagpriori, but these reservations are vieweda#
and the space is reclaimed if required.

Interaction of deferred writes with sync

Alexander defers disk writes of logical blocks for whichasnot observed an own-
ing inode. Such arbitrary deferral could potentially canfivith application-level
expectations after aync operation is issued; whensync returns, the applica-
tion expects all data to be on disk. To preserve these setsaBtiGRAID handles
inode and indirect block writes specially. D-GRAID does ngiurn success on a
write to an inode or indirect block until all deferred writtssblocks pointed to by
that inode (or indirect) block have actually reached dislc& thesync opera-
tion will not complete until the inode block write returnd| deferred writes are
guaranteed to be complete befagnc returns. The same argument extends for
f sync, which will not return until all writes pertaining to the pewular file com-
plete. However, one weakness of this approach is that if pipication performs
an equivalent of dat async (i.e., which flushes only the data blocks to disk, and
not metadata), the above technique would not preserve flected semantics.

67

Inconsistent fault behavior of Linux ext2

One interesting issue that required a change from our degignthe behavior of
Linux ext2 under partial disk failure. When a process treesead a data block that

is unavailable, ext2 issues the read and returns an I/Qdatituthe process. When
the block becomes available againd, after recovery) and a process issues a read
to it, ext2 will again issue the read, and everything workexgsected. However, if

a process tries to open a file whose inode is unavailable, reatRs the inode as
“suspicious” and will never again issue an 1/O request toitloele block, even if
Alexander has recovered the block. To avoid a change to theyfiitem and retain
the ability to recover failed inodes, Alexander replicaii@sde blocks as it does
namespace meta-data, instead of collocating them withateeldocks of a file.

Persistence of data structures

There are a number of structures that Alexander maintairch) as the imap, that
must be reliably committed to disk and preferably, for goed@rmance, buffered
in a small amount of non-volatile RAM. Note that since the NAMR only needs
to serve as a cache of actively accessed entries in thesestdattures, its space
requirements can be kept at an acceptable level. Thoughuwtent prototype
simply stores these data structures in memory, a complgiementation would
require them to be backed persistently.

Popular directory replication

The most important component that is missing from the Aleeauprototype is the
decision on which “popular” (read-only) directories sucy aisr/ bi n to repli-
cate widely, and when to do so. Although Alexander contdiesgroper mech-
anisms to perform such replication, the policy space resnaimexplored. How-
ever, our initial experience indicates that a simple apghdaased on monitoring
frequency of inode access time updates may likely be efiecf\n alternative ap-
proach allows administrators to specify directories thaiutd be treated in this
manner.

6.6.4 Alexander the FAT

Overall, we were surprised by the many similarities we foumdmplementing

D-GRAID underneath ext2 and VFAT. For example, VFAT alsortneds data
blocks, using them as either user data blocks or directdnmsce Alexander must
defer classification of those blocks in a manner similar ekt2 implementation.

68

As can be expected, the implementation of most of the basghamsms in D-
GRAID such as physical block allocation, allocation of hosikes to files, and
tracking replicas of critical blocks is shared across bettsions of D-GRAID.

However, there were a few instances where the VFAT impleatiemt of D-
GRAID differed in interesting ways from the ext2 version.rEsample, the fact
that all pointers of a file are located in the file allocatiobléeamade a number of
aspects of D-GRAID much simpler to implement; in VFAT, thare no indirect
pointers to worry about. When a new copy of a FAT block is writtthe new
version can be directly compared with the previous contehtbie block to get
accurate information on the blocks newly allocated or @eletVe also ran across
the occasional odd behavior in the Linux implementation 8AV. For example,
Linux would write to disk certain blocks that were allocated then freed, avoiding
an obvious and common file system optimization. Because isfihavior of
VFAT, our estimate of the set of live blocks will be a stricpsuset of the blocks
that are actually live. Although this was more indicativetloé untuned nature of
the Linux implementation, it served as yet another indicafdvow semantic disks
must be wary of any assumptions they make about file systeawloeh

6.7 Evaluating Alexander

We now present a performance evaluation of Alexander. Sirtolthe SDS proto-
type described in Section 2, the Alexander prototype istcooed as a software
RAID driver in the Linux 2.2 kernel. We focus primarily on thenux ext2 variant,

but also include some baseline measurements of the VFAEmysiVe wish to
answer the following questions:

e Does Alexander work correctly?

What time overheads are introduced?

How effective is access-driven diffusion?

How fast is live-block recovery?

What overall benefits can we expect from D-GRAID?

How complex is the implementation?

69

Misplaced blocks

Without remapping ———
8000 -~ With remapping —><— r
P 6000 -] :
(8]
o 4000 -+ E -
e ¥
T 2000 - L
8
?)_ 0 N B
‘E 8000 - 6000 Close-up 1000 - Close-up N
S
s 6000 A M i
4000 ~ ’r/ \‘, 0 1 0 L
2000 - L 700 710 720 3285 3315 |-
0 SR . . . oo :
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (sec)

Figure 6.5:Errors in Placement. The figure plots the number of blocks wrongly laid out
by Alexander over time, while running a busy hour of the HRc&ralThe experiment was
run over 4 disks, and the total number of blocks accesseckitréice was 418000.

6.7.1 Does Alexander work correctly?

Alexander is more complex than simple RAID systems. To gamfidence that
Alexander operates correctly, we have put the system througerous stress tests,
moving large amounts of data in and out of the system withmlilpms. We have
also extensively tested the corner cases of the systemingusimto situations that
are difficult to handle and making sure that the system degrgdacefully and re-
covers as expected. For example, we repeatedly craftedipeicchmarks to stress
the mechanisms for detecting block reuse and for handlimggifact information
about dynamically-typed blocks. We have also construcatthmarks that write
user data blocks to disk that contain “worst case” data, data that appears to
be valid directory entries or indirect pointers. In all cgs@lexander was able to
detect which blocks were indirect blocks and move files anectidries into their
proper fault-isolated locations.

To verify that Alexander places blocks on the appropriasé,dve instrumented
the file system to log block allocations. In addition, Aleslanlogs events of inter-

70

Operational Overheads

2 T T T T T T T T T T T T T T T T
ext2 Il FAT

o

9' 15 r -

<

o

(2]

=}

o

) 1

>

c

=

o

Ee]

5

B 05 r .
0

1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4
Create Read Overwrite Unlink

Figure 6.6:Time Overheads. The figure plots the time overheads observed on D-GRAID
Level O versus RAID Level 0 across a series of microbenchsnarke tests are run on

1 and 4 disk systems. In each experiment, 3000 operatiores evexcted (e.g., 3000 file
creations), with each operation on a 64 KB file.

est such as assignment of a home site for an inode, creatimmef mapping for
a logical block, re-mapping of blocks to a different homesihd receipt of logical
writes from the file system. To evaluate the behavior of Ateler on a certain
workload, we run the workload on Alexander, and obtain theetordered log of
events that occurred at the file system and Alexander. We giharess this log
off-line and look for the number of blocks wrongly laid outaaty given time.

We ran this test on a few hours of the HP Traces, and found thiatainy of
the hours we examined, the number of blocks that were misglagen temporar-
ily was quite low, often less than 10 blocks. We report dethitesults for one
such hour of the trace where we observed the greatest nurhivesaced blocks,
among the hours we examined. Figure 6.5 shows the results.

The figure has two parts. The bottom part shows the normalatpar of
Alexander, with the capability to react to block reuse by apping (and copy-
ing over) blocks to the correct homesite. As the figure shédeander is able to
quickly detect wrongly placed blocks and remap them apjpatady. Further, the

71

Run-time Blocks Written
(seconds)| Total Meta Unigue
data
RAID-0 69.25 101297 - -

D-GRAID; 61.57 93981 5962 1599
D-GRAID2 66.50 99416 9954 3198
D-GRAID3 73.50 | 101559 16976 4797
D-GRAID4 78.79 | 113222 23646 6396

Table 6.2:Performance on postmark. The table compares the performance of D-GRAID
Level 0 with RAID-0 on the Postmark benchmark. Each row nthixésRAID indicates

a specific level of metadata replication. The first columrorépthe benchmark run-time
and the second column shows the number of disk writes irgtufiee third column shows
the number of disk writes that were to metadata blocks, aadithirth column indicates the
number of unique metadata blocks that are written. The exyaat was run over 4 disks.

number of such blocks misplaced temporarily is only aboutof%e total number
of blocks accessed in the trace. The top part of the figure shbw number of
misplaced blocks for the same experiment, but assumingthieatemapping did
not occur. As can be expected, those delinquent blocks remaiplaced. The
dip towards the end of the trace occurs because some of tipaces blocks are
later assigned to a file in that homesite itself (after a ptecpdelete), accidentally
correcting the original misplacement.

6.7.2 What time overheads are introduced?

We now explore the time overheads that arise due to semarfeice. This
primarily occurs when new blocks are written to the file systsuch as during
file creation. Figure 6.6 shows the performance of Alexanoheler a simple mi-
crobenchmark. As can be seen, allocating writes are slouetalthe extra CPU
cost involved in tracking fault-isolated placement. Reandd overwrites perform
comparably with RAID-0. The high unlink times of D-GRAID o®\F is because
FAT writes out data pertaining to deleted files, which havedqrocessed by D-
GRAID as if it were newly allocated data. Given that the inmpéatation is untuned
and the infrastructure suffers from CPU and memory coraantiith the host, we
believe that these are worst case estimates of the ovetheads

Another cost of D-GRAID that we explore is the overhead ofadata replica-
tion. For this purpose, we choose Postmark [55], a metadtgadive file system

72

benchmark. We slightly modified Postmark to performyanc before the deletion
phase, so that all metadata writes are accounted for, makingessimistic eval-
uation of the costs. Table 6.2 shows the performance of Algsaunder various
degrees of metadata replication. As can be seen from the ®jsichronous repli-
cation of metadata blocks has a significant effect on peidoce for metadata in-
tensive workloads (the file sizes in Postmark range from yt@dto 10 KB). Note

that Alexander performs better than default RAID-0 for lowlegrees of replica-
tion because of better physical block allocation; sinc éxbks for a contiguous
free chunk of 8 blocks to allocate a new file, its layout is sptimal for small files,

since it does not pack them together.

The table also shows the number of disk writes incurred duitie course of
the benchmark. The percentage of extra disk writes rougtdgunts for the differ-
ence in performance between different replication leaats, these extra writes are
mostly to metadata blocks. However, when we count the numienique physi-
cal writes to metadata blocks, the absolute difference émtvdifferent replication
levels is small. This suggests that lazy propagation of tgzdep metadata block
replicas, perhaps during idle time or using freeblock salied, can greatly reduce
the performance difference, at the cost of added complekityr example, with
lazy update propagation.€., if the replicas were updated only once), D-GRAID
would incur only about 4% extra disk writes.

We also played back a portion of the HP traces for 20 minuteghaga stan-
dard RAID-0 system and D-GRAID over four disks. The playbangine issues re-
guests at the times specified in the trace, with an optioresdygp factor; a speedup
of 2x implies the idle time between requests was reduced by arfatteo. With
speedup factors ofxd and 2x, D-GRAID delivered the same per-second opera-
tion throughput as RAID-0, utilizing idle time in the trace hide its extra CPU
overhead. However, with a scaling factor of 3the operation throughput lagged
slightly behind, with D-GRAID showing a slowdown of up to 2% during the
first one-third of the trace execution, after which it caugptdue to idle time.

6.7.3 How effective is access-driven diffusion?

We now show the benefits of access-driven diffusion. In edehdf this exper-
iment, we perform a set of sequential file reads, over filemofeiasing size. We
compare standard RAID-0 striping to D-GRAID with and with@ccess-driven
diffusion. Figure 6.7 shows the results of the experiment.

As we can see from the figure, without access-driven diffuséequential ac-
cess to larger files run at the rate of a single disk in the systnd thus do not
benefit from the potential parallelism. With access-drid#ffusion, performance

73

Access-driven Diffusion

120 T T T T T T
RAID-0 ——

D-GRAID File-based with Access-driven Diffusion -—x——
100 -D-GRAID Directory-based with Access-driven Diffusion - oo

D-GRAID File-based &
D-GRAID Directory-based --=--

© 80t .
m ! I | | | —
2 S ¥ B e = S
=
S 60 | .
=
o
G
8 40t -
/X//
20 e - R
0 L 1 L 1 L 1 L 1 L 1 L 1 n
4 16 64 256 1024 4096 16384 65536

File Size (KB)

Figure 6.7: Access-driven Diffusion. The figure presents the performance of D-GRAID
Level 0 and standard RAID-0 under a sequential workload.acheexperiment, a number
of files of sizer are read sequentially, with the total volume of data fixed 4tMB. D-
GRAID performs better for smaller files due to better phyldiback layout.

is much improved, as reads are directed to the diffused sapieoss all of the
disks in the system. Note that in the latter case, we arramgthé files to be al-
ready diffused before the start of the experiment, by reathiem a certain thresh-
old number of times. Investigating more sophisticatedgiedi for when to initiate
access-driven diffusion is left for future work.

6.7.4 How fast is live-block recovery?

We now explore the potential improvement seen with liveckloecovery. Fig-
ure 6.8 presents the recovery time of D-GRAID while varyihg amount of live
file system data.

The figure plots two lines: worst case and best case livekblecovery. In
the worst case, live data is spread throughout the disk, egisein the best case
it is compacted into a single portion of the volume. From thaph, we can see
that live-block recovery is successful in reducing recguane, particularly when

74

The Costs of Reconstruction
25 T

D-GRAID Level 1 (Worst Case) ——
D-GRAID Level 1 (Best Case) -

20 - g

Idealized RAID Level 1

Reconstruction Time (s)

0 1 1 1 1
0% 20% 40% 60% 80% 100%

Live Volume Percentage

Figure 6.8:Live-block Recovery. The figure shows the time to recover a failed disk onto a
hot spare in a D-GRAID Level 1 (mirrored) system using lileck recovery. Two lines for
D-GRAID are plotted: in the worst case, live data is spreatbas the entire 300 MB vol-
ume, whereas in the best case it is compacted into the smedieguous space possible.
Also plotted is the recovery time of an idealized RAID Level 1

a disk is less than half full. Note also the difference betweerst case and best
case times; the difference suggests that periodic disljaaization [93] could be
used to speed recovery, by moving all live data to a localpation.

6.7.5 What overall benefits can we expect from D-GRAID?

We next demonstrate the improved availability of Alexandeder failures. Fig-
ure 6.9 shows the availability and performance observed psoeess randomly
accessing whole 32 KB files, running above D-GRAID and RAID-To ensure
a fair comparison, both D-GRAID and RAID-10 limit their ratgiruction rate to
10 MB/s.
As the figure shows, reconstruction of the 3 GB volume withGBlive data
completes much faster (68 s) in D-GRAID compared to RAID-160(s). Also,
when the extra second failure occurs, the availability oflRAO drops to near

75

Operation Under Failure

D-GRAID: Availability —=— RAID 10: Availability ——
D-GRAID: Throughput —=— RAID 10: Throughput ——

— 100 60
©
% 80 50@
3 40 @
5 60 R
2 30 3
g 0 20 €
§ 20 | 10 g_
e
g 0 0 5
> 100 ; 60 £
S 80 50 1
3 40 T
g o 30 *
<
40 20
20
Téﬁﬁﬁ%w 10
0 1 1 1 1 1 1 O
0 100 200 300 400 500 600 700 800

Time (sec)

Figure 6.9:Availability Profile. The figure shows the operation of D-GRAID Level 1 and
RAID 10 under failures. The 3 GB array consists of 4 data daks 1 hot spare. After
the first failure, data is reconstructed onto the hot sparg;RAID recovering much faster
than RAID 10. When two more failures occur, RAID 10 loses atrad files, while D-
GRAID continues to serve 50% of its files. The workload ctsefsread-modify-writes of
32 KB files randomly picked from a 1.3 GB working set.

zero, while D-GRAID continues with about 50 % availabilitgurprisingly, after
restore, RAID-10 still fails on certain files; this is becausnux does not retry
inode blocks once they fail. A remount is required before BAD returns to full
availability.

6.7.6 How complex is the implementation?

We briefly quantify the implementation complexity of Alextsr. Table 6.3 shows
the number of C statements required to implement the diffecemponents of
Alexander. From the table, we can see that the core file syistienencing module
for ext2 requires only about 1200 lines of code (counted witimber of semi-
colons), and the core mechanisms of D-GRAID contribute wuaR000 lines of

76

Semicolons Total
D-GRAID Generic
Setup + fault-isolated placement 1726 3557
Physical block allocation 322 678
Access driven diffusion 108 238
Mirroring + live block recovery 248 511
Internal memory management 182 406
Hashtable/Avl tree 724 1706
File System Specific
SDS Inferencing: ext2 1252 2836
SDS Inferencing: VFAT 630 1132
Total 5192 11604

Table 6.3:Code size for Alexander implementation.The number of lines of code needed
to implement Alexander is shown. The first column shows th#auof semicolons and
the second column shows the total number of lines, includhite-spaces and comments.

code. The rest is spent on a hash table, AVL tree and wrappermdmory man-
agement. Compared to the tens of thousands of lines of coeledgl comprising
modern array firmware, we believe that the added complefiy-GRAID is not

that significant. Being an academic prototype, these caofitpleumbers could be
a slight under-estimate of what would be required for a pectida quality imple-
mentation; thus, this analysis is only intended to be anaiprate estimate.

6.8 D-GRAID Levels

Much of the discussion so far has focused on implementingRXIB® over a stor-
age system with no redundancy for user dag, (RAID-0), or over a mirrored
storage system.€., RAID-10). However, as mentioned before, the laymech-
anismsin D-GRAID are orthogonal to the underlying redundancy secéeln this
section, we formalize the differefgvelsof D-GRAID, corresponding to the pop-
ular traditional RAID levels. We also present certain cosfmliciesfor each D-
GRAID level that are tailored to the underlying redundanachranism. Note that
in contrast to traditional RAID levels, the levels of D-GRAHiffer only in the
type of redundancy for normal user data; system meta-datevés/s maintained in
RAID-1 with a certain configured replication degree.

e

6.8.1 D-GRAID-0: No redundancy

This is the simplest D-GRAID level where no redundancy mam is employed
for normal user data. Thus, even a single disk failure resultlata loss. In contrast
to traditional RAID-0 where a single disk failure resultscdomplete data loss, D-
GRAID-0 ensures proportional data availability undenfesl Figure 6.10(a) shows
the D-GRAID-0 configuration.

Because of the absence of redundancy for normal data, thiéoadd storage
required for access-driven diffusion in D-GRAID-0 needsdme from a separate
performance reseryes described in Section 6.6. This reserve can be fixed to be
a certain percentage.g, 10% of the storage volume size) or can be tunable by
the administrator. Tuning this parameter provides the adhtnator control over
the trade-off between performance and storage efficienag i€sue with changing
the size of the performance reserve dynamically is that fitgesns may not be
equipped to deal with a variable volume size. This limitati@n be addressed by
a simple technique: the administrator creates a file in thesfistem with a certain
reserved namee(g, /.diffusg. The size of this file implicitly conveys to D-GRAID
the size of its performance reserve. Since the file systefmafluse the blocks
assigned to this reserved file to any other file, D-GRAID i fi@ use this storage
space. When the file system runs short of storage, the adraioiscan prune
the size of this special file, thus dynamically reducing tize sf the performance
reserve.

6.8.2 D-GRAID-10: Mirroring

A mirrored D-GRAID system stripes data across multiple oried pairs, similar
to RAID-10. Note that D-GRAID is not meaningful in a storagestem comprised
of a single mirrored pairif., RAID-1) because such a system fundamentally has
no partial failure mode. The access-driven diffusion polic D-GRAID-10 is
quite similar to D-GRAID-0 where a dynamic performance reses used to hold
diffused copies; Figure 6.10(b) depicts this configuratidiote that the diffused
copies are not mirrored; thus D-GRAID-10 requires only lib# percentage of
space that D-GRAID-0 requires, in order to achieve the sawe bf diffusion.

A slight variant of D-GRAID-10 can make access-driven diftn much more
effective, though at the cost of a slight degradation irak@lity. Instead of the disks
in a mirrored pair being physical mirrors as discussed abosecould employ
logical mirroring, where we just impose that each logical disk blbak two copies
in two different disks. With such a relaxed definition, D-GRAcould store one
copy of a file in the traditional striped fashion, while théaet copy of the file is

78

Diffused copies

(d) DGRAID - 5

Figure 6.10:D-GRAID Levels. The figures depict the data layout of D-GRAID under
various redundancy schemes. Each style of shading regeeaetifferent file. In the D-
GRAID-5 figure, the color of shading indicates a physical BAl stripe. The diffusion
segments and the striped region in D-GRAID-1(Logical) adidated as separate regions
of the disk for simplicity; in practice, they will be intedeed with the fault-isolated copies.

79

stored in fault-isolated fashion. Figure 6.10(c) depihts tonfiguration. Each file
has a fault-isolated copy laid out in a single disk, and agrotiopy striped across
all the other disks, so that a single disk failure will notuksn any data loss.

Such logical mirroring of data achieves the benefits of fisdtated placement
with almost no impact on performance, because parallelgsstili available out

of the striped copies. Note that in such a scenario no extaaesjs required for
access-driven diffusion.

Although the above variant of D-GRAID-10 improves performoa by more
efficient access-driven diffusion, it reduces reliabiitympared to a traditional D-
GRAID-10. In a traditional D-GRAID-10i(e., physical mirroring), after a single
disk failure, only the failure of its mirror disk will lead toss of data. However, in
logical mirroring, the second failure always results irsla$ data, though propor-
tionally, irrespective of which disk incurred the failure.

6.8.3 D-GRAID-5: Parity

D-GRAID-5 is the counterpart of traditional RAID-5; redwamtty for user data is
maintained in the form of parity encoding on a small numbedisks (usually 1),
resulting in better space efficiency. While it may appeat tiwafine grained block-
level striping that is fundamental to RAID-5 would be in cdctflwith the fault
isolated placement in D-GRAID, these techniques are quiteogonal. The fine-
grained striping required for RAID-5 occurs at thhysicallevel, across actual
physical disk blocks, while fault isolated placement ist jadogical assignment
of files onto those physical blocks. Thus, D-GRAID-5 wouldl shaintain the
invariant that the*" parity block is the XOR of thé*” block in every disk; the
only difference is that th&'” block in each disk would contain data pertaining to a
different file in D-GRAID, while in RAID, they would usuallydpart of the same
file. This configuration is shown in Figure 6.10(d), wherechlo belonging to the
same physical RAID-5 stripe are shaded with the same color.

However, fault isolated placement with RAID-5 like redundg leads to a per-
formance issue. Since blocks within a RAID-5 stripe are myéy part of a single
file (and thus not logically related), full stripe writes loete uncommon. Thus
with the block allocation policies described so far, mositegr will be to partial
stripes; suclsmall writeshave the well known performance problem of requiring
four disk operations for every block written [77].

To address the small write problem in D-GRAID-5, we need aauied
block allocation policy. While the allocation policies debed in Section 6.6
are targeted at preserving the logical contiguity perakive the file system, D-
GRAID-5 requires a policy that minimizes the impact of smaites. One example

80

of such a policy is log-structured allocation [91, 117], whblocks are not written
in place, but allocated from emp$ggmentsinvalidating the old locations.

With such log structured allocation, D-GRAID-5 would simplivide each disk
into multiple segments; at any given time, D-GRAID-5 wouftkoate on @degment
stripe, which comprises of thé" segment in each disk. When a write arrives, the
fault isolation module of D-GRAID-5 would decide which digke block needs to
be laid out in, and then would allocate the tail physical klotthe corresponding
segment to that logical block. Considering that in a typiwatkload, writes are
spread across multiple files, and given that D-GRAID balargmgace utilization
across disks, it is most likely that writes to such multiplediare spread across
different segments within the current segment stripe, tlesslting in full stripe
writes. Note however that for this technique to be effectitielog cleanershould
co-ordinate cleaning across the entire set of disks, sdlibaget of freed segments
comprise full segment stripes.

6.8.4 Summary

In summary, we find that the basic layout techniques in D-ARAlle orthogonal
to the underlying redundancy mechanism. By building on tbany physical re-
dundancy scheme, D-GRAID strictly improves the avail&pilif the storage array.
However, custom policies(g, for access driven diffusion, physical block alloca-
tion, etc.) often make D-GRAID more effective for a given wadancy mecha-
nism.

6.9 Discussion: The Impact of Being Wrong

As described in Section 6.6, there is a fair amount of coniyléx identifying the
logical file to which a block belongs, in order to place it iretborrect home site
for graceful degradation. An interesting question thaseswiin the light of such
complexity is: what happens if D-GRAID makes a wrong infeah For example,
what happens if D-GRAID permanently associates a block thghwrong file, and
thus places it in the wrong home site? Such incorrect infereraffect different
parts of the D-GRAID design differently.

The graceful degradation component of D-GRAID is quite stlio incorrect
inferences; an incorrect association of a block to the wifdagvould only affect
fault isolation, and not impact correctness. Even if D-GBAtiscalculates a large
fraction of its associations, the reliability of the resudt storage layout will still
be strictly better than the corresponding traditional RAéel. This is because

81

D-GRAID builds on top of existing RAID redundancy. An incect association
may lead to a layout that is not completely fault isolated,dnech a layout will still
exhibit better fault isolation compared to traditional RAIThus even in the face
of incorrect inference, the storage system correctnesatiaffected, thus making
D-GRAID an ideal candidate to make aggressive use of suchrsigrinformation.

In contrast, the live block recovery component of D-GRAIDedalepend on
semantic information for correctness. Although it regsiiomly a conservative es-
timate of the set of live blocks in the volume, D-GRAID reagrthis estimate to
be strictly conservative; a live block should never be inferred to beldsiace that
could lead to loss of data. However, as described in Sect@nrécking such block
liveness information conservatively is quite simple, amaistis straightforward to
realize. If liveness tracking is not accurate under a diffiefile system, D-GRAID
could still reconstruct the blocks it thinks are live firshdato be conservative, re-
cover the remaining blocks as well in the background.

Thus, D-GRAID requires accuracy only for a very simple pietesemantic
information for implementing fast recovery. Much of the idesand complexity of
D-GRAID is on fault isolation for graceful degradation; ghtiomponent is much
more robust to incorrect inference, and cannot be “wronginy bad way.

6.10 Summary

D-GRAID turns the simple binary failure model found in mogtirage systems
into a continuum, increasing the availability of storagecbytinuing operation un-
der partial failure and quickly restoring live data afteraéure does occur. In this
chapter, we have shown the potential benefits of D-GRAID)argd the limits
of semantic knowledge, and have shown how a successful DiBRéplementa-
tion can be achieved despite these limits. Through sinonadind the evaluation
of a prototype implementation, we have found that D-GRAID && built in a
semantically-smart disk system without any file system fication, and that it
delivers graceful degradation and live-block recovery,ahrough access-driven
diffusion, good performance.

82

Chapter 7

Exploiting Liveness Knowledge in
FADED

“Life is pleasant. Death is peaceful. It's the transitiontthdaroublesomé.
Isaac Asimov

D-GRAID, presented in the previous chapter, was naturaiherable to ap-
proximate semantic inference, because wrong informatiomat lead to correct-
ness issues. In this chapter, we present a more aggressoeeghiSDS functionality
that has stringent requirements on correctness. The sptaifitionality involves
performingsecure deletiomwithin the disk system by exploiting knowledge on live-
ness of data [101]. We discuss techniques for tracking wariorms of liveness in
general, and then apply those techniques in the contextafeseleletion.

7.1 Introduction

Liveness of blocks is a key piece of semantic information thaseful in storage
systems. Previous work has demonstrated the utility of dundwledge: dead
blocks can be used to store rotationally optimal replicagadé [122] or to provide
zero-cost writes [115]. In this chapter, we describe howmaasgically-smart disk
system can acquire information on liveness, and demoastesaapplication with a
case study.

Before presenting the specific techniques for trackingnkas, we first for-
malize the notion of liveness within storage. Specificallg, identify three useful
classes of liveness (content, block, and generation ls®nand present techniques
for explicit and implicit tracking of each type. Becausehieicues for tracking live-
ness are dependent on the characteristics of the file systestudy a range of file

83

84

systems, including ext2, ext3 and VFAT; in doing so, we idfgritey file system
properties that impact the feasibility and complexity oflstechniques.

We then demonstrate the utility and applicability of thehteiques by describ-
ing the design, implementation, and evaluation of a prg@gecure deleting disk
that infers logical deletes occurring at the file system,stméds the deleted blocks,
making deleted data irrecoverable [44]. Unlike the D-GRA®Se study explored
in the previous chapter, secure delete poses new challelget® its extreme re-
quirements on the type and accuracy of liveness informatibinrough the case
study, we show that even underneath modern asynchronousy$ilems, one can
implement SDS functionality that has extreme correctnegairements.

Finally, we compare the SDS approach of tracking livenesls an alternative
approach where the interface to the disk system is changadtitan explicit “free”
command. This comparison helps bring out the complexity@ertbrmance costs
of the semantic inference approach in comparison to theagxgpproach.

This chapter is organized as follows. We first present ameletg motivation
(§7.2), followed by a taxonomy of livenes$/(3), and a list of file system properties
that impact techniques for tracking liveness informatign.4). We then discuss
the specific techniques for tracking livene§g.5), and present the secure delete
case study§7.6). We then describe our initial experience with livengasking
under NTFS, a closed-source file systeji.7). Finally, we describe the explicit
notification approachs{.8), compare the merits of the two approachgs9), and
conclude §7.10).

7.2 Extended Motivation

Liveness information enables a variety of functionalityl gerformance enhance-
ments within the storage system. Most of these enhancemant®t be imple-
mented at higher layers because they require low-levetalmtailable only within
the storage system.

Eager writing: Workloads that are write-intensive can run faster if theage
system is capable @ager writing i.e., writing to “some free block closest to the
disk arm” instead of the traditional in-place write [30, 113However, in order
to select the closest block, the storage system needs iafiamon which blocks
are live. Existing proposals function well as long as thedqisteblocks that were
never written to; once the file system writes to a block, tlogagte system cannot
identify subsequent death of the block as a result of a dekstdisk empowered
with liveness information can be more effective at eagetingi

Adaptive RAID: Information on block liveness within the storage systemalaa

85

facilitate dynamic, adaptive RAID schemes such as thos&enHP AutoRAID
system [117]; AutoRAID utilizes free space to store data AIR1 layout, and
migrates data to RAID-5 when it runs short of free space. Kadge of block
death can make such schemes more effective.

Optimized layout: Techniques to optimize on-disk layout transparently withie

storage system have been well explored. Adaptive reorgtmizof blocks within

the disk [93] and replication of blocks in rotationally apfl locations [122] are
two examples. Knowing which blocks are free can greatlylifaté such tech-
niques; live blocks can be collocated together to minimieeks, or the “free”
space corresponding to dead blocks can be used to holdrathteplicas.

Smarter NVRAM caching: Buffering writes in NVRAM is a common opti-
mization in storage systems. For synchronous write wodddhat do not benefit
much from in-memory delayed writes within the file system, RAM buffering
improves performance by absorbing multiple overwrites tdogk. However, in
delete-intensive workloads, unnecessary disk writes tihoccur; in the absence
of liveness information, deleted blocks occupy space in MWRand need to be
written to disk when the NVRAM fills up. From real file systenades [90], we
found that up to 25% of writes are deletefier the typical delayed write interval of
30 seconds, and thus will be unnecessarily written to distowdedge about block
death within storage removes this overhead.

Intelligent prefetching: Modern disks perform aggressive prefetching; when a
block is read, the entire track in which the block residesfisroprefetched [97],
and cached in the internal disk cache. In an aged (and tlaggnénted) file system,
only a subset of blocks within a track may be live, and thushireg the whole track
may result in suboptimal cache space utilization. Althouggding in the whole
track is still efficient for disk I/O, knowledge about livesgecan enable the disk to
selectively cache only those blocks that are live.

Faster recovery: Liveness information enables faster recovery in storageyar
A storage system can reduce reconstruction time duringfdikle by only recon-
structing blocks that are live within the file system, as desd in the previous
chapter.

Self-securing storage: Liveness information in storage can help build intelligent
security functionality in storage systems. For exampletosage level intrusion
detection system (IDS) provides another perimeter of $yduy monitoring traffic,
looking for suspicious access patterns such as deletegmmaties of log files [79];
detecting these patterns requires liveness information.

Secure delete: The ability to delete data in a manner that makes recovery im-
possible is an important component of data security [10,584, Government

86

Liveness Description Currently Example
type possible? utility
Content Data within block Yes Versioning
Block Whether a block holds No Eager write,
valid data currently fast recovery
Generation Block’s lifetime in No Secure delete,
the context of a file storage IDS

Table 7.1:Forms of liveness.

regulations require strong guarantees on sensitive datg Hergotten”, and such
requirements are expected to become more widespread igbeghnment and in-
dustry in the near future [2]. Secure deletion requires llewel control on block
placement that is available only within the storage systemplementing storage
level secure delete requires liveness information withia $torage system. We
explore secure deletion further in Section 7.6.

7.3 Liveness in Storage: A Taxonomy

Having discussed the utility of liveness information witha storage system, we
now present a taxonomy of the forms of liveness informatlat aire relevant to
storage. Such liveness information can be classified alueg tdimensionsgran-
ularity, accuracy andtimeliness

7.3.1 Granularity of liveness

Depending on the specific storage-level enhancement thiaestliveness infor-
mation, the logical unit of liveness to be tracked can varg.itiéntify three granu-
larities at which liveness information is meaningful anéfut content, block and
generation. A summary is presented in Table 7.1.

Content liveness

Content liveness is the simplest form of liveness. The ufliveness is the actual
data in the context of a given block; thus, “death” at thisngtarity occurs on
every overwrite of a block. When a block is overwritten withwndata, the storage
system can infer that the old contents are dead. An appréeifoam of content
liveness is readily available in existing storage systeans, has been explored in

87

previous work; for example, Wareg al’s virtual log disk frees the past location of
a block when the block is overwritten with new contents [1I5hcking liveness at
this granularity is also useful in on-disk versioning, asrsm self-securing storage
systems [108]. However, to be completely accurate, thageosystem also needs
to know when a block is freed within the file system, since thetents stored in
that block are dead even without it being overwritten.

Block liveness

Block liveness tracks whether a given disk block currentgitains valid data,e.,
data that is accessible through the file system. The unittefast in this case is
the “container” instead of the “contents”. Block livenesshie granularity required
for many applications such as intelligent caching, prdifietg, and eager writing.
For example, in deciding whether to propagate a block fronRIAWI to disk, the
storage system just needs to know whether the block is livistgranularity.
This form of liveness information cannot be tracked in triadial storage systems
because the storage system is unaware of which blocks thegyfitem thinks are
live. However, a weak form of this liveness can be trackedpalbthat was never
written to can be inferred to be dead.

Generation liveness

The generation of a disk block is the lifetime of the blockhie tontext of a certain
file. Thus, by death of a generation, we mean that a block thatwritten to disk
(at least once) in the context of a certain file becomes eftkeror is reallocated
to a different file. Tracking generation liveness ensures the disk can detect
every logical file system delete of a block whose contentsrbadhed disk in the
context of the deleted file. An example of a storage leveltionality that requires
generation liveness is secure delete, since it needs torigust whether a block
is live, but also whether it contained data that belongedile generation that is no
longer alive. Another application that requires generatieeness information is
storage-based intrusion detection. Generation livereassat be tracked in existing
storage systems.

7.3.2 Accuracy of liveness information

The second dimension of liveness is accuracy, by which wer tefthe degree of
trust the disk can place in the liveness information avélétit. Inaccuracy in live-
ness information can lead the disk into either overestimgadir underestimating the

88

set of live entities (blocks or generations). The degreecofigcy required varies
with the specific storage application. For example, in detgfuashing NVRAM, it

is acceptable for the storage system to slightly overestirtiee set of live blocks,

since it is only a performance issue and not a correctnegs;iss the other hand,
underestimating the set of live blocks is catastrophicesthe disk would lose valid

data. Similarly, in generation liveness detection for sedelete, it is acceptable
to miss certain intermediate generation deaths of a blodrasas the latest gen-
eration death of the block is known.

7.3.3 Timeliness of information

The third and final axis of liveness is timeliness, which defithe time between
a death occurring within the file system and the disk learmhthe death. The
periodicity with which the file system writes metadata blediposes a bound
on the timeliness of the liveness information inferred. lany applications, such
as eager writing and delete-aware caching, this delayedlkdge of liveness is
acceptable, as long as the information has not changed mélaatime. However,
in certain applications such as secure delete, timely tetemay provide stronger
guarantees.

7.4 File System Model

While D-GRAID in the previous chapter considered an asyoiebus file system,
the file system model it was based on assumed the worst-dastseff asynchrony,
namely, arbitrary reordering and delayed writes. Howeseme modern file sys-
tems provide certain kinds of guarantees in terms of how tipelate data to disk.
In this case study, we study the range of such dynamic updapemies that hold
in modern file systems, and study how such properties aff@ctechniques for
semantic inference. Towards this goal, we experimentednnedth three different
file systems: ext2, ext3, and VFAT. We have also experimeniigid NTFS, but
only on a limited scale due to lack of source code access; dEI\Experience is
described in Section 7.7. Given that ext2 has two modes ohtipa (synchronous
and asynchronous modes) and ext3 has three modes (wrifedydeked, and data
journaling modes), all with different update behaviors,beéeve these form arich
set of file systems.

Based on our experience with the above file systems, we fgestime key
high level behavioral properties of a file system that areviatt in the context of
tracking liveness information. Table 7.2 summarizes thpeperties. In the next

89

(8]

]
S, o|T| %
L = | o | D
glglxlelele
x x Lo x x x
Property W W |>|W|W|d
Reuse ordering X x | x | x

Block exclusivity X | x| %
Generation marking X | X X | x| x
Delete suppression X | x| x| x| x| x
Consistent metadata X | x | x
Data-metadata coupling X

Table 7.2:File system properties. The table summarizes the various properties exhibited
by each of the file systems we study.

two sections, we will discuss how these properties influeéackniques for storage-
level liveness tracking.

Reuse ordering

If the file system guarantees that it will not reuse disk btoghktil the freed status of
the block €.g, bitmaps or other metadata that pointed to the block) readis&, the
file system exhibitseuse ordering This property is necessary (but not sufficient) to
ensure data integrity; in the absence of this property, adildd end up with partial
contents from some other deleted file after a crash, everomraaling file system.
While VFAT and the asynchronous mode of ext2 do not have retdering, all
three modes of ext3, and ext2 in synchronous mode, exhilsererdering.

Block exclusivity

Block exclusivityrequires that for every disk block, there is at most one didgy
of the block in the file system cache. It also requires thafithsystem employ ad-
equate locking to prevent any update to the in-memory copleutie dirty copy is
being written to disk. This property holds for certain filss®gms such as ext2 and
VFAT. However, ext3 does not conform to this property. Besgaaf its snapshot-
based journaling, there can be two dirty copies of the santadata block, one for
the “previous” transaction being committed and the othertie current transac-
tion.

90

Generation marking

The generation markingproperty requires that the file system track reuse of file
pointer objectsd.g, inodes) with version numbers. Both the ext2 and ext3 file sys
tems conform to this property; when an inode is deleted auslec:for a different
file, the version number of the inode is incremented. VFATsdoet exhibit this

property.

Delete suppression

A basic optimization found in most file systems is to suppmsates of deleted
blocks. All file systems we discuss obey this property foadabcks. VFAT does
not obey this property for directory blocks.

Consistent metadata

This property indicates whether the file system conveys aistant metadata state
to the storage system. All journaling file systems exhibi donsistent metadata
property; transaction boundaries in their on-disk log icif}y convey this infor-
mation. Ext2 and VFAT do not exhibit this property.

Data-metadata coupling

Data-metadata couplinguilds on the consistent metadata property, and it requires
the notion of consistency to be extended also to data blobkother words, a

file system conforming to this property conveys a consisteatadata state to-
gether with the set of data blocks that were dirtied in theedrof that transaction.
Among the file systems we consider, only ext3 in data joungainode conforms

to this property.

7.5 Techniques for Liveness Detection

In this section, we analyze various issues in inferringriegs information from
within the storage system. Because semantic inferencesisyfitem dependent,
we discuss the feasibility and generality of implicit line=s detection by consider-
ing three different file systems: ext2, ext3, and VFAT. Int®&c7.7, we discuss
our initial experience with detecting liveness underngathWindows NTFS file
system.

Among the different forms of liveness we address, we onlysm@r the gran-
ularity and accuracy axes mentioned in Section 7.3. Alorgaitcuracy axis, we

91

consideraccurateand approximateinferences; thapproximateinstance refers to

a strict over-estimateof the set of live entities. On the timeliness axis, we ad-
dress the more common (and complex) case of lack of timetyrnm&tion; under
most modern file systems that are asynchronous and hengendeladata updates,
timeliness is not guaranteed.

7.5.1 Contentliveness

As discussed in Section 7.3, when the disk observes a wnitevocontents to a live
data block, it can infer that the previous contents storettham block has suffered
a content death. However, to be completely accurate, coliteness inference
requires information on block liveness.

7.5.2 Block liveness

Block liveness information enables a storage system to kmoether a given block
contains valid data at any given time. To track block livendke storage system
monitors updates to structures tracking allocation. 112 @xtd ext3, there are spe-
cific data bitmap blocks which convey this information; in AFthis information
is embedded in the FAT itself, as each entry in the FAT indisatvhether or not
the corresponding block is free. Thus, when the file systeitesvan allocation
structure, the storage system examines each entry andudescihat the relevant
block is either dead or live.

Because allocation bitmaps are buffered in the file systednvatiten out pe-
riodically, the liveness information that the storage egsthas is often stale, and
does not account for new allocations (or deletes) that oedwturing the interval.
Table 7.3 depicts a time line of operations which leads tonaarrect inference by
the storage system. The bitmap blakks tracking the liveness oB is written in
the first step indicatind? is dead. Subsequentlss is allocated to a new filé, and
written to disk whileM s (now indicatingB as live) is still buffered in memory. At
this point, the disk wrongly believes thatis dead while the on-disk contents Bf
are actually valid.

To address this inaccuracy, the disk trackshadow copyf the bitmaps inter-
nally, as described in Chapter 6; whenever the file systertresve bitmap block,
the disk updates its shadow copy with the copy written. Initamd whenever a
data block is written to disk, the disk pro-actively sets teresponding bit in its
shadow bitmap copy to indicate that the block is live. In tbewve example, the
write of B leads the disk to believe tha is live, thus preventing the incorrect
conclusion from being drawn.

92

Operation In-memory On-disk
Initial Mg = B free
Mg write to disk B free
I, alloc I, — B

Mg = B alloc
B write to disk B written
Liveness belief | B live B free

Table 7.3:Naive block liveness detection. The table depicts a time line of events that
leads to an incorrect liveness inference. This problem Isegsbby the shadow bitmap
technique.

File system properties for block liveness

The shadow bitmap technique tracks block liveness acdyraidy underneath file
systems that obey either the block exclusivity or data-detacoupling property.

Block exclusivity guarantees that when a bitmap block isttemi, it reflects
the current liveness state of the relevant blocks. If thesfilstem tracks multiple
snapshots of the bitmap bloc&.§, ext3), it could write an old version of a bitmap
block My (indicating B is dead) after a subsequent allocation and writ&of he
disk would thus wrongly infer thaB is dead while in fact the on-disk contentsf
are valid, since it belongs to a newer snapshot; such umugrt@omplicates block
liveness inference.

If the file system does not exhibit block exclusivity, bloékehess tracking
requires the file system to exhibit data-metadata couplieg,to group metadata
blocks €.g, bitmaps) with the actual data block contents in a singlesisbent
group; file systems typically enforce such consistent gsdhpough transactions.
By observing transaction boundaries, the disk can themuéiacthe temporal in-
formation that was lost due to lack of block exclusivity. example, in ext3 data
journaling mode, a transaction would contain the newlycalted data blocks to-
gether with the bitmap blocks indicating the allocation ast @f one consistent
group. Thus, at the commit point, the disk conclusively ligfiveness state from
the state of the bitmap blocks in that transaction. Sinca daites to the actual
in-place locations occur only after the correspondingdaation commits, the disk
is guaranteed that until the next transaction commit, aitké marked dead in the
previous transaction will remain dead. In the absence @-tdetadata coupling,
a newly allocated data block could reach its in-place locatiefore the corre-
sponding transaction commits, and thus will become liv@éndisk before the disk
detects it.

93

Operation In-memory On-disk
Initial Mg = B alloc B live
I1 — B I1 g B
B write to disk B written
1, delete Mg = B free
I, alloc I, — B
Mg = B alloc
Mg write to disk B live
Liveness belief (Missed gen. death)

Table 7.4:Missed generation death under block livenessThe table shows a scenario to
illustrate that simply tracking block liveness is insuffiti to track generation deaths.

For accuracy, block liveness also requires the file systemotdorm to the
delete suppression property; if delete suppression dagsotahy a write of a block
does not imply that the file system views the block as live, gns the shadow
bitmap technique will overestimate the set of live blocksluihe next bitmap write.
From Table 7.2, ext2, VFAT, and ext3 in data journaling mduestreadily facilitate
block liveness detection.

7.5.3 Generation liveness

Generation liveness is a stronger form of liveness thankbliseness, and hence
builds upon the same shadow bitmap technique. With geperkieness, the goal
is to find, for each on-disk block, whether a particular “gatien” of data é.g,
that corresponding to a particular file) stored in that blecklead. Thus, block
liveness is a special case of generation liveness; a blodkdd if the latest gen-
eration that was stored in it is dead. Conversely, blocknigs information is not
sufficient to detect generation liveness because a blodlerly live could have
stored a dead generation in the past. Table 7.4 depictsabés dlockB initially
stores a generation of inode, and the disk thinks that blocR is live. I; is then
deleted, freeing up, andB is immediately reallocated to a different file. When
Mg is written the next timepB continues to be marked live. Thus, the disk missed
the generation death @ that occurred between these two bitmap writes.

Generation liveness under reuse ordering

Although tracking generation liveness is in general mowmdlehging, a file system
that follows the reuse ordering property makes it simplerack. With reuse or-

94

dering, before a block is reused in a different file, the @elettatus of the block
reaches disk. In the above example, befBris reused inl,, the bitmap block\i g
will be written, and thus the disk can detect tliats dead. In the presence of reuse
ordering, tracking block liveness accurately implies aataitracking of generation
liveness. File systems such as ext3 that conform to reusgingd thus facilitate
accuratetracking of generation liveness.

Generation liveness without reuse ordering

Underneath file systems such as ext2 or VFAT that do not edthibireuse ordering
property, tracking generation liveness requires the diskook for more detailed
information. Specifically, the disk needs to monitor writesnetadata objects that
link blocks together into a single logical file (such as theda and indirect blocks
in ext2, the directory and FAT entries in VFAT). The disk need explicitly track
the “generation” a block belongs to. For example, when adénis written, the
disk records that the block pointers belong to the speciidén

With this extra knowledge about the file to which each bloclobgs, the disk
can identify generation deaths by looking fdranges in ownershig=or example,
in Table 7.4, if the disk tracked thd& belongs toly, then eventually whed, is
written, the disk will observe a change of ownership, beedu®wns a block that
I; owned in the past; the disk can thus conclude that a generm¢iath must have
occurred in between.

A further complication arises when instead of being reusef} i B is reused
again inly, now representing a new file. Again, sinéenow belongs to a new
generation offy, this scenario has to be detected as a generation deathhebut t
ownership change monitor would miss it. To detect this cagerequire the file
system to track reuse of inodese(, the generation marking property). Ext2 al-
ready maintains such a version number, and thus enabledidetef these cases
of generation deaths. With version numbers, the disk nogkéréor each block the
“generation” it belonged to (the generation number is a doatton of the inode
number and the version number). When the disk then observéamde written
with an incremented version number, it concludes that altks that belonged to
the previous version of the inode should have incurred argdoa death. We call
this techniquegeneration change monitoring

Finally, it is pertinent to note that the generation liveneketection through
generation change monitoring is ordpproximate Let us assume that the disk
observes that block belongs to generatiof¥;, and at a later time observes thiat
belongs to a different generati@r,. Through generation change monitoring, the
disk can conclude that there was a generation deathtbfit occurred in between.

95

Liveness type | Properties

Blockapprox Block exclusivityor Data-metadata coupling
Blockaccurate [Block approz] + Delete suppression
Generation pprox [Block appros] + Generation marking

Generationccuyrate | [BloCKAccurate] + Reuse ordering

Table 7.5:FS properties for liveness inference. Approz indicates the set of live entities
is over-estimated.

However, the disk cannot know exactiyw manygeneration deaths occurred in
the relevant period. For example, after being freed fi@m B could have been
allocated toGi3, freed fromG3 and then reallocated G5, but the disk never saw
G5 owning B due to delayed write of75. However, as we show in our case study,
this weaker form of generation liveness is still quite ukefu

A summary of the file system properties required for variausis of liveness
inference is presented in Table 7.5.

7.6 Case Study: Secure Delete

To demonstrate our technigues for imparting liveness tagtn we present the de-
sign, implementation, and evaluation ofecure deleting diskThere are two pri-
mary reasons why we chose secure deletion as our case sitgtysécure delete
requires tracking of generation liveness, which is the neobsilenging to track.
Second, secure delete uses the liveness information intex¢amhere correctness
is paramount. A false positive in detecting a delete wouddl l® irrevocable dele-
tion of valid data, while a false negative would result in litieg-term recoverability
of deleted data (a violation of secure deletion guarantees)

Our secure deletion prototype is called FADED (A File-Aw&rata-Erasing
Disk); FADED works underneath three different file systenegt2, VFAT, and
ext3. Because of its complete lack of ordering guaranteé2,pesented the most
challenges. Specifically, since ext2 does not have the mnasging property, de-
tecting generation liveness requires tracking generatimnmation within the disk,
as described in Section 7.5.3. We therefore mainly focusiermtplementation of
FADED underneath ext2, and finally discuss some key diff@erin our imple-
mentation for other file systems.

96

7.6.1 Goals of FADED

The desired behavior of FADED is as follows: for every bloblttreaches the
disk in the context of a certain file F, the delete of file F sdaumigger a secure
overwrite {.e., shred of the block. This behavior corresponds to the notiogeri-
eration livenesslefined in Section 7.3. Ahredinvolves multiple overwrites to the
block with specific patterns so as to erase remnant magrfegctof past layers
(that could otherwise be recovered through techniques asichagnetic scanning
tunneling microscopy [44]). Recent work suggests that tachsoverwrites are
sufficient to ensure non-recoverability in modern diskg.[52

Traditionally, secure deletion is implemented within tHe 8ystem [10, 105,
106]; however, such implementations are unreliable givedem storage systems.
First, for high security, overwrites need to tié-track writes (.e., writes straggling
physical track boundaries), which external erase progr@amg the file system)
cannot perform [51]. Further, if the storage system buffertes in NVRAM [117],
multiple overwrites done by the file system may be collapsegd & single write
to the physical disk, making the overwrites ineffective.ndy, in the presence
of block migration [29, 117] within the storage system, amrmwite by the file
system will only overwrite the current block location; streopies of deleted data
could remain. Thus, the storage system is the proper looadlaglement secure
deletion.

Note that FADED operates at the granularity of an entire mauthere is no
control over which individual files are shredded. Howevais timitation can be
dealt with by storing “sensitive” files in a separate volunmewehich the secure
delete functionality is enabled.

7.6.2 Basic operation

As discussed in Section 7.5.3, FADED monitors writes to éadd indirect blocks
and tracks the inode generation to which each block beldhgagments this infor-
mation with the block liveness information it collects thgh the shadow bitmap
technique. Note that since ext2 obeys the block exclusaitg delete suppres-
sion properties, block liveness detection is reliable. sTiwhen a block death is
detected, FADED can safely shred that block.

On the other hand, if FADED detects a generation death thrthg ownership
change or generation change monitors.(the block is live according to the block
liveness module), FADED cannot simply shred the block, bee&ADED does not
know if the current contents of the block belong to the getimmahat was deleted,
or to a new generation that was subsequently allocated the bck due to block

97

reuse. If the current contents of the block are valid, a stinggdof the block would
be catastrophic.

We deal with such uncertainty through a conservative agpré@ generation-
death inference. By being conservative, we convert an appaorrectness prob-
lem into a performance probleme., we may end up performing more overwrites
than required. Fundamental to this approach is the notiancohservative over-
write.

Conservative overwrites

A conservative overwrite of bloclB erases past layers of data on the block, but
leaves the current contents &f intact. Thus, even if FADED does not know
whether a subsequent valid write occurred after a predigeteration death, a
conservative overwrite on block will be safe; it can never shred valid data. To
perform a conservative overwrite of bloégk, FADED reads the bloc into non-
volatile RAM, then performs a normal secure overwrite of heck with the spe-
cific pattern, and ultimately restores the original datakbato block 5.

The problem with a conservative overwrite is that if the Bloontents that are
restored after the conservative overwrite are in fact tidedalta (which had to be
shredded), the conservative overwrite was ineffectivehikcase, FADED can be
guaranteed to observe one of two things. First, if the bloa#t been reused by
the file system for another file, the new, valid data will betteri eventuallyi(e.,
within the delayed write interval of the file system). WhenH2D receives this
new write, it buffers the write, and before writing the newalto disk, FADED
performs a shred of the concerned block once again; this #BED knows that
it need not restore the old data, because it has the more i@m#ents of the block.
To identify which writes to treat in this special manner, HAD tracks the list of
blocks that were subjected to a conservative overwrite snspicious blockéist,
and a write to a block in this list will be committed only afeesecure overwrite of
the block; after the second overwrite, the block is removerthfthe suspicious list.
Note that the suspicious list needs to be stored persigt@eatiihaps in NVRAM, in
order to survive crashes.

Second, if the block is not reused by the file system immelgiateen FADED
is guaranteed to observe a bitmap reset for the correspprodiack, which will
be flagged as a block death by the block liveness detectoce Silock liveness
tracking is reliable, FADED can now shred the block agairstiging the old
data. Thus, in both cases of wrongful restore of old data, EBs guaranteed to
get another opportunity to make up for the error.

98

Cost of conservatism

Conservative overwrites come with a performance cost;yesenservative over-
write results in the concerned block being treated as “sims”, regardless of
whether the data restored after the conservative overwatethe old or new data,
because FADED has no information to find it at that stage. Bszaf this uncer-
tainty, even if the data restored were the new data (and herexknot be overwrit-
ten again), a subsequent write of the block in the contexietame file would lead
to a redundant shredding of the block. Here we see one exafiple performance
cost FADED pays to circumvent the lack of perfect informatio

7.6.3 Coverage of deletes

In the previous subsection, we showed that for all genaratieaths detected,
FADED ensures that the appropriate block version is ovétewr without com-
promising valid data. However, for FADED to achieve its gpdhese detection
techniques must baufficientto identify all cases of deletes at the file system level
that need to be shredded. In this section, we show that FADEDrmeed detect
all deletes, but requires two minor modifications to ext2.

Undetectable deletes

Because of the weak properties of ext2, certain deletes eanissed by FADED.
We present the two specific situations where identificatioretetes is impossible,
and then propose minor changes to ext2 to fix those scenarios.

File truncates: The generation change monitor assumes that the versionerumb
of the inode is incremented when the inode is reused. Howtheversion number
in ext2 is only incremented on a complete delete and reusgalpauncates do not
affect the version number. Thus if a block is freed due to &éigldruncate and is
reassigned to the same file, FADED misses the generatioh.d&lihough such a
reuse after a partial truncate could be argued as a logieshoie of the file (and
thus, not aleletg, we adopt the more complex (and conservative) interpostatf
treating it as a delete.

To handle such deletes, we propose a small change to extatihsf incre-
menting the version number on a reallocation of the inode,ineeement it on
every truncate. Alternatively, we could introduce a sefgafi@ld to the inode that
tracks this version information. This is a non-intrusiveabe, but is effective at
providing the disk with the requisite information. This ibe@ique could result in
extra overwrites in the rare case of partial truncates, btrectness is guaranteed

99

Operation | In-memory On-disk

Initial I, —B™ [, — B™

I, delete B free

I, alloc I, — B

B write to disk I, — B
(wrong type)

Table 7.6:Misclassified indirect block. The table shows a scenario where a normal data
block is misclassified as an indirect blockI™¢ indicates thatB is treated as an indirect
block. Reuse ordering for indirect blocks prevents thispgm.

because the “spurious” overwrites would be conservativkveould leave data in-
tact.

Reuse of indirect blocks: A more subtle problem arises due to the presence of
indirect pointer blocks. Indirect blocks share the datdaomegf the file system with
other user data blocks; thus the file system can reuse a nogealdata block as
an indirect block and vice versa. In the presence of slyctamic typingthe disk
cannot reliably identify an indirect block, as shown in Cteapt.

The only way FADED can identify a block as an indirect block is when it
observes an inodé; that containsB in its indirect pointer field. FADED then
records the fact thaB is an indirect block. However, when it later observes a write
to B, FADED cannot be certain that the contents indeed are thioe andirect
block, because in the meanwhile could have been deleted, afiticould have
been reused as a user data block in a different ided&his scenario is illustrated
in Table 7.6.

Thus, FADED cannot trust the block pointers in a suspectditidot block; this
uncertainty can lead to missed deletes in certain casegeVerm this occurrence, a
data block should never be misclassified as an indirect blbalensure this, before
the file system allocates, and immediately after the fileesystrees an indirect
block B/, the concerned data bitmap blogk;:.. should be flushed to disk, so
that the disk will know that the block was freed. Note thastisia weak form of
reuse ordering only for indirect blocks. As we show lateg tihange has very little
impact on performance, since indirect blocks tend to be ysmall fraction of the
set of data blocks.

Practicality of the changes: The two changes discussed above are minimal and
non-intrusive; the changes together required modificatibh? lines of code in
ext2. Moreover, they are required only because of the weddriorg guarantees of
ext2. In file systems such as ext3 which exhibit reuse ordethese changes are

100

Operation In-memory On-disk

Initial B free B free

I, alloc L, — B

B write to disk B written

I, delete B free

I alloc I, — B

1> write to disk I, —- B
(Missed delete oB3)

Table 7.7:Missed delete due to an orphan write. The table illustrates how a delete can
be missed if an orphan block is not treated carefully. BlBGhnitially free, is allocated to
I; in memory. Beforé, is written to disk,B is written. I, is then deleted angé reallocated
to I,. Whenl, is written, FADED would associatB with I, and would miss the overwrite
of B.

not required. Our study of ext2 is aimed as a limit study ofrthirimal set of file
system properties required to reliably implement seculetida at the disk.

Orphan allocations

Orphan allocations refer to a case where the file system aenssa block dead
while the disk considers it live. Assume that a block is neatlgcated to a file and
is written to disk in the context of that file. If a crash occatshis point (but before

the metadata indicating the allocation is written to digkg disk would assume
that the block is live, but on restart, the file system vieweslttock as dead. Since
the on-disk contents of the block belong to a file that is ngéwrextant in the file

system, the block has suffered a generation death, but sikeddies not know of

this.

Implicit block liveness tracking in FADED already addresdhis in the case
of ext2; when ext2 recovers after a crash, the fsck utilititegrout a copy of all
bitmap blocks; the block liveness monitor in FADED will thdistect death of those
orphan allocations.

Orphan writes

Due to arbitrary ordering in ext2, FADED can observe a writeatnewly allo-
cated data block before it observes the corresponding gwnode. Suclorphan
writes need to be treated carefully because if the owning inode letete before
being written to disk, FADED will never know that the blockambelonged to that

101

inode. If the block is reused in another inode, FADED wouldsnbverwriting
the concerned block which was written in the context of thieinbde. Table 7.7
depicts such a scenario.

One way to address this problem isdeferorphan block writes until FADED
observes an owning inode [102], a potentially memory-isitensolution. Instead,
we use the suspicious block list used in conservative ovesvto also track or-
phan blocks. When FADED observes a write to an orphan bleck marks B
suspicious; when a subsequent write arrive®tahe old contents are shredded.
Thus, if the inode owning the block is deleted before reaghiisk, the next write
of the block in the context of the new file will trigger the stirdf the block is not
reused, the bitmap reset will indicate the delete.

This technigue results in a redundant secure overwriteirapyan orphaned
block is overwritten by the file system in the context of theedile, again a cost
we pay for conservatism. Note that this overhead is incuordd the first time an
orphan block is overwritten.

Delayed overwrites

Multiple overwrites of the same block cause additional di€ks that can hurt per-
formance if incurred on the critical path. For better perfance, FADED delays
overwrites until idle time in the workload [38] (or optiohaluntil up ton minutes
of detection). Thus, whenever FADED decides to shred a blibglst queues it;
a low priority thread services this queue if FADED had notestied useful fore-
ground traffic for more than a certain duration. Delayed wviées help FADED to
present writes to the disk in a better, sequential ordehiagides reducing the im-
pact on foreground performance. Delaying also reducesuh®ar of overwrites
if the same block is deleted multiple times. The notion ofsmmative overwrites
is crucial to delaying overwrites arbitrarily, even aftiee tlock that had to be over-
written is written in the context of a new file. Note that if inedfiate shredding is
required, the user needs to performymnc.

A summary of the key data structures and components of FABHIDdsented
in Figure 7.1.

Guaranteed detection of deletes

We now demonstrate how the basic techniques outlined sodattier ensure that
FADED captures all relevant cases of deletes. We prove dhatvery blockB that
is deleted by the file system after it has reached disk, FADER\&® overwrites
the deleted contents @.

102

Block—to—inode

mapping
Block Generation
liveness ~——~| change
monitor monitor
Shadow bitmaps X #
. Persistent
' data

Suspicious list

Overwrite
thread

EEEEE

Figure 7.1:Key components of FADED.

When a delete of an inodg occurs within ext2, a set of blocks are freed
from a file; this results in an increment of the version nundddf, and the reset of
relevant bits in the data bitmap block pertaining to thedrelcks. Let us consider
one such blockB that is freed. Let us assume thathad already been written to
disk in the context of;. If B had not been written to disk, the disk does not need
to perform any overwrite, so we do not consider that case.theebitmap block
containing the status dd be M, and letB; be the block containing the inodg.
Now, there are two possibilities: eithéris reused by the file systebeforeMp is
written to disk, orB is not reused until the write /.

Case 1:Block B not reused

If Bis not reused immediately to a different file, the bitmap kld¢z, which
is dirtied, will be eventually written to disk, and the disiiimmediately know of
the delete through the bitmap reset indicator, and thusioiter.

Case 2:Block B is reused

Let us now consider the case whdBeis reused in inodd,. There are three

103

possibilities in this caseat the point of receiving the write aB, the disk either
thinks B belongs taly, or it thinks B is free, or thatB belongs to some other inode
I.
Case 2a:Disk thinksI; — B
If the disk knew thatl; — B, the disk would have tracked the previous version
number ofl;. Thus, when it eventually observes a write Bf, (which it will,
since By is dirtied because of the version number increment), thie wif note
that the version number df, has increased, and thus would overwrite all blocks
that it thought belonged t@;, which in this case include8. ThusB would be
overwritten, perhaps restoring a newer value. As discuiss8dction 7.6.2, even if
this was a conservative overwrite, the old contents areagieed to be shredded.
Case 2h:Disk thinks B is free
If the disk thinks B is free, it would treatB as an orphan block when it is
written, and mark it suspicious. Consequently, whens written again in the
context of the new inod#,, the old contents oB will be shredded.
Case 2c:Disk thinksI, — B
To believe thatl, — B, the disk should have observdd pointing to B at
some point before the current write & The disk could have observdd — B
either before or afteB was allocated td; by the file system.
Case 2c-i:I, — B beforel; — B
If the disk observed, — B beforeit was allocated tal;, and still thinks
1, — B whenB is written in the context of;, it means the disk never salw — B.
However, in this case, block was clearly deleted from, at some time in the past
in order to be allocated té;. This would have led to the version number Igf
incrementing, and thus when the disk obsergwritten again, it would perform
an overwrite ofB since it thinksB used to belong td,.
Case 2c-ii:I, — B after]; — B
If this occurs, it means thdt, was written to disk ownind3 after B got deleted
from I, but beforeB is written. In this caseB will only be written in the context
of I, which is still not deleted, so it does not have to be overemittAs discussed
in Section 9.5, this is true because of the block exclusprtyperty of ext2.
Note that the case of a block being deleted from a file and thékly reallo-
cated to the same file is just a special cas€ade 2¢ with I1 = I,..
Thus, in all cases where a block was written to disk in theedrnif a certain
file, the delete of the block from the file will lead to a shrediwd deleted contents.

1If indirect block detection was uncertain, the disk can vglgrthink I, — B because of a
corrupt “pointer” in a false indirect block. However, withuiofile system modification for reuse
ordering in indirect blocks, that case does not occur.

104

7.6.4 FADED for other file systems

We have also implemented FADED underneath other file systemnasn each case,
validated our implementation with the same testing mettlomgoas will be de-

scribed in Section 7.6.5. However, for the sake of breviigy,omly point to the key
differences we observed relative to ext2.

FADED for VFAT

Like ext2, VFAT also does not conform to reuse ordering, SODEB needs to track
generation information for each block in order to detecétds. One key difference
in VFAT compared to ext2 is that there are no pre-allocateijuely addressable
“inodes”, and consequently, no “version” information adlw®ynamically allo-
cated directory blocks contain a pointer to the start bldck file; the FAT chains
the start block to the other blocks of the file. Thus, detectieletes reliably un-
derneath unmodified VFAT is impossible. We therefore inficetl an additional
field to a VFAT directory entry that tracks a globally uniggeneration number
The generation number gets incremented on every createedete ¢h the file sys-
tem, and a newly created file is assigned the current valuemdrgtion number.
With this small change (29 lines of code) to VFAT, the generathange monitor
accurately detects all deletes of interest.

FADED for ext3

Since ext3 exhibits reuse ordering, tracking generatimnkss in ext3 is the same
as tracking block liveness. However, since ext3 does noy ¢he block exclu-
sivity property, tracking block liveness accurately is mapible except in the data
journaling mode which has the useful property of data-natadoupling. For the
ordered and writeback modes, we had to make a small changen avmetadata
transaction is logged, we also made ext3 log a list of datekislthat were allocated
in the transaction. This change (95 lines of code), couplial tive reuse ordering
property, enables accurate tracking of deletes.

7.6.5 Evaluation

In this section, we evaluate our prototype implementatibsecure delete. The
enhanced disk is implemented as a pseudo-device drivee ibitlux 2.4 kernel, as
described in Chapter 3.

105

Config Delete Overwrite Excess Miss
No changes 76948 68700 11393 854
Indirect 76948 68289 10414 28
Version 76948 69560 11820 0
Both 76948 67826 9610 0

Table 7.8: Correctness and accuracy. The table shows the number of overwrites
performed by the FADED under various configurations of extBe columns (in order)
indicate the number of blocks deleted within the file systamtotal number of logical
overwrites performed by FADED, the number of unnecessagpites, and the number
of overwrites missed by FADED. Note that deletes that oeclinefore the corresponding
data write do not require an overwrite.

Correctness and accuracy

To test whether our FADED implementation detected all @sleif interest, we
instrument the file system to log every delete, and corréatih the log of writes
and overwrites by FADED, to capture cases of unnecessaryissenhoverwrites.
We tested our system on various workloads with this techmidncluding a few
busy hours from the HP file system traces [89]. Table 7.8 pieshe results of
this study on the trace ho# 00 of 11,/30/00.

In this experiment, we ran FADED under four versions of Liraxt2. In the
first, marked “No changes”, a default ext2 file system was .ubetindirect”, we
used ext2 modified to obey reuse ordering for indirect blodks“Version”, we
used ext2 modified to increment the inode version number erydgwncate, and
the “Both” configuration represents both changes (the coffiee system imple-
mentation required for FADED). The third column gives a meaf the extra
work FADED does in order to cope with inaccurate informatidime last column
indicates the number of missed overwrites; in a correcesysthe fourth column
should be zero.

We can see that the cost of inaccuracy is quite reasonabBEBEAperforms
roughly 14% more overwrites than the minimal amount. Alsteribat without the
version number modification to ext2, FADED indeed missesvadeletes. The
reason no missed overwrites are reported for the “Versiamifiguration is the
rarity of the case involving a misclassified indirect block.

106

Config Reads Writes Run-time(s)
No changes 394971 234664 195.0
Version 394931 234648 1955
Both 394899 235031 200.0

Table 7.9:Impact of FS changes on performanceThe performance of the various file
system configurations under a busy hour of the HP Trace isshbBar each configuration,
we show the number of blocks read and written, and the trandime.

Run-time (s)
PostMark HP Trace
Default 166.8 200.0
SecureDelete 177.7 209.6
SecureDelete 178.4 209.0
SecureDelete 179.0 209.3

Table 7.10:Foreground impact: Postmark and HP trace. The run-times for Postmark
and the HP trace are shown for FADED, with 2, 4 and 6 overwrdsges. Postmark was
configured with 40K files and 40K transactions.

Performance impact of FS changes

We next evaluate the performance impact of the two changemade to ext2,
by running the same HP trace on different versions of exthleld.9 shows the
results. As can be seen, even with both changes, the perioemmaduction is only
about 2% and the number of blocks written is marginally highe to synchronous
bitmap writes for indirect block reuse ordering. We thusatode that the changes
are quite practical.

Performance of secure delete

We now explore the foreground performance of FADED, and t%t af overwrites.
Foreground performance impact: Tracking block and generation liveness re-
quires FADED to perform extra processing. This cost of resegngineering di-
rectly impacts application performance because it is imclion the critical path
of every disk operation. We quantify the impact of this exiracessing required
at FADED on foreground performance. Since our softwaregiype competes for
CPU and memory resources with the host, these are worst stisates of the
overheads.

107

We run the Postmark file system benchmark [55] and the HP traeefile sys-
tem running on top of FADED. Postmark is a metadata intersinall-file bench-
mark, and thus heavily exercises the inferencing mechani$rRADED. To arrive
at a pessimistic estimate, we perforrayanc at the end of each phase of Postmark,
causing all disk writes to complete and account that timeumresults. Note that
we do not wait for completion of delayed overwrites. Thug tlumbers indicate
the performance perceived by the foreground task.

Table 7.10 compares the performance of FADED with a defasit d-rom the
table, we can see that even for 4 or 6 overwrite passes, taredrperformance is
not affected much. Extra CPU processing within FADED causdg about 4 to
7% lower performance compared to the modified file systemingnon a normal
disk.

Idle time required: We now quantify the cost of performing overwrites for shred-
ding. We first run a microbenchmark that repeatedly creat MB file, flushes

it to disk, deletes it, and then waits for a certain delayqukliefore repeating these
steps, for a total of 10 iterations. Varying the amount ofgldletween each phase,
we measure the time for the whole benchmark (including @elayverwrites) to
complete.

First, we run this experiment in a way that no block reuse et the file
system; each of the 10 iterations creates files in a diffed@rttory (ext2 places
directories on different block groups). The overwrite ms& thus has to overwrite
about 64 MB for each iteration, no matter how long the oveesriare delayed.
The left graph in Figure 7.2 shows the results. As can be ¢ggetor each extra
overwrite pass, the extra time required to finish those oxirsvis roughly equal
to the default benchmark run-time with zero delay, sinceatim@unt of data writ-
ten in a single overwrite pass is the same as that written @tieet create. Since
FADED delays overwrites and presents them to disk in selarder, the over-
writes achieve close to sequential disk performance.

We next run the same experiment, but allowing block reusénbyite system.
This might be more representative of typical workloads wlasletes and new cre-
ates occur roughly in the same set of directories. In thisenent, all phases
create the file in the same directory. Thus, roughly the sashefsblocks are
repeatedly assigned to the files, and therefore delayingwies can yield signifi-
cant benefit. While overwriting blocks synchronously wolée incurred a 64MB
overwrite for every phase, delayed overwrites will ideahly incur the overhead
once. The right graph in Figure 7.2 shows the benchmark nug ¢in FADED with
varying number of overwrite passes. Note that the time tédenoverwrites is not
fixed as in the case of the previous experiment; this is becaith more idle time,

108

Create-delete-delay benchmark (No Block Reuse)

600 T T T T T T a
Default ——
FADED 2 over —*—
500 - FADED 4 over —+— |
FADED 6 over —=—
O
(]
£ 400
<
2
x 300
I
£
=
e 200
[
M
100
0 1 1 1 1 1 1 1 -
0 5 10 15 20 25 30 35 40
Delay between each phase (s)
Create-delete-delay benchmark (Block Reuse)
600 T T T T T T T a
Default ——
FADED 2 over —*—
500 + FADED 4 over —+— |
FADED 6 over —=—
O
()
£ 400
€
2
x 300
<
£
=
e 200
[
m
100
0 1 1 1 1 1 1 1 -
0 5 10 15 20 25 30 35 40

Delay between each phase (s)

Figure 7.2: 1dle time requirement for microbenchmark. The figure plots the time

taken by a create-delete-delay microbenchmark. The lafilgshows no block reuse while
the right graph includes block reuse. The baseline exenutioe for the benchmark is

indicated by the “Default” line.

FADED performs more unnecessary overwrites in the intefategohases. Thus,
in the presence of block reuse, very little idle time is regai

We next explore the time required for overwrites. First, vge the same Post-
mark configuration as above, but measure the time for thehmesaik to complete
including delayed overwrites. Since Postmark deletesladl &t the end of its run,
we face a worst case scenario where the entire working skedfénchmark has to

109

Run-time with overwrites (s)

PostMark HP Trace |
Default 166.8 200.0
SecureDelete 466.6 302.8
SecureDeletg 626.4 345.6
SecureDelete 789.3 394.3

Table 7.11:1dle time requirement. The table shows the total run-time of two bench-
marks, Postmark and the HP trace. The time reported incledespletion of all delayed
overwrites.

be overwritten, accounting for the large overwrite timgsoréed in Table 7.11. In
the HP-trace, the overwrite times are more reasonablee &iost blocks deleted in
the HP trace are then reused in subsequent writes, mosta¥éinerites performed
here are conservative. This accounts for the steep incfease0 to 2 overwrite
passes, in the implicit case.

7.7 Implicit Detection Under NTFS

In this section, we present our experience building supfaorimplicit liveness
detection underneath the Windows NTFS file system. The nisitlemge we faced
underneath NTFS was the absence of source code for the fitenmsydVhile the
basic on-disk format of NTFS is known [107], details of itdafe semantics and
journaling behavior are not publicly available. As a resolir implementation
currently tracks only block liveness which requires onlpkiedge of the on-disk
layout; generation liveness tracking could be implemeiitéae details of NTFS
journaling mechanism were known.

The fundamental piece of metadata in NTFS is the Master RlHeT(MFT);
each record in the MFT contains information about a uniqwe fvery piece of
metadata in NTFS is treated as a regular file; file 0 is the ME&lfit file 2 is
the recovery log, and so on. The allocation status of allkddn the volume is
maintained in a file called the cluster bitmap, which is samtb the block bitmap
tracked by ext2. On block allocations and deletions, NTRulely writes out
modified bitmap blocks.

Our prototype implementation runs as a device driver in kjraimilar to the
setup described earlier for other file systems. The virtigk dn which we inter-
pose is exported as a logical disk to a virtual machine imgtasf Windows XP
running over VMware Workstation [113]. To track block livass, our implemen-

110

tation uses the same shadow bitmap technique mentionedctios&.5.2. By
detailed empirical observation under long-running waoakls, we found that NTFS
did not exhibit any violation of the block exclusivity andlefe suppression prop-
erties mentioned in Section 9.5; however, due to the absehseurce code, we
cannot assert that NTRBwaysconforms to these properties. This limitation points
to the general difficulty of using implicit techniques undeath closed-source file
systems; one can never be certain that the file system costorogertain properties
unless those are guaranteed by the file system vendor. Ihhdeaee of such guar-
antees, the utility of implicit techniques is limited to opizations that can afford
to be occasionally “wrong” in their implicit inference.

Our experience with NTFS also points to the utility of chaeaizing the precise
set of file system properties required for various formsw#ress inference. This
set of properties now constitutes a minimal “interface”dommunication between
file system and storage vendors. For example, if NTFS confiiitseconformance
to the block exclusivity and delete suppression properigsstorage system could
safely implement aggressive optimizations that rely omitglicit inference.

7.8 Explicit Liveness Notification

We have so far considered how to infer liveness within an Sivg, the costs of
doing so. A pertinent issue to consider is how the livenetsrémce techniques
compare to an approach where one had the luxury of changadntarface to
support a new command that explicitly indicates deleteghigsection, we discuss
such anexplicit notificationapproach, where we assume that spealdl ocat e
andf r ee commands are added to SCSI. As an optimization, we obviatadbd
for an explicital | ocat e command by treating ar i t e to a previously freed
block as an implicial | ocat e.

We first describe the issues in incorporating such an explminmand into
existing file systems. Although modifying file systems to tlsis interface may
seem trivial, we find that supporting tlie& ee command has ramifications in the
consistency management of the file system under crashes.héfeimplement
secure deletion in such an explicit notification scenarid emmpare the costs of
doing secure delete with the semantic inference approach.

We have modified the Linux ext2 and ext3 file systems to usef thee com-
mand to communicate liveness information; we discuss thgeis therein. The
f r ee command is implemented as @rctl to a pseudo-device driver, which serves
as our enhanced disk prototype.

111

7.8.1 Granularity of f r ee notification

One issue that arises with explicit notification is the exsghantics of thér ee
command, given the various granularities of liveness wedliin Section 7.3. For
example, if only block liveness or content liveness needbedracked, the file
system can be lazy about initiatifig ee commands (thus suppressihgee to
blocks that are subsequently reused). For generatioreldgithe file system needs
to notify the disk of every delete of a block whose contenéehed disk in the con-
text of the deleted file. However, given multiple intermeeitayers of buffering,
the file system may not know exactly whether the contents ddeklreached disk
in the context of a certain file.

To simplify file system implementation, the file system sklaubt be concerned
about what form of liveness a particular disk functionaligquires. In our ap-
proach, the file system invokes theee command for every logical delete. On re-
ceiving af r ee command for a block, the disk marks the block dead in its iatler
allocation structureq.g, a bitmap), and on ar i t e, it marks the corresponding
block live. The responsibility for mapping thebe ee commands to the appropri-
ate form of liveness information lies with the disk. For exde) if the disk needs
to track generation deaths, it will only be interested frr&e command to a block
that it thinks is live (as indicated by its internal bitmapa)redundanf r ee to a
block that is already free within the disk (which happenshié block is deleted
before being written to disk) will not be viewed as a generatieath. For correct
operation, the file system should guarantee that it will natena block to disk
without a prior allocation; if thew i t e itself is treated as an implic#l | ocat e,
this guarantee is the same as tledete suppressioproperty. Awr i t e to a freed
block without an allocation will result in incorrect conslon of generation live-
ness within the disk. Note that afterfa ee is issued for a block, the disk can
safely use that block, possibly erasing its contents.

7.8.2 Timeliness of r ee notification

Another important issue that arises in explicit notificataf af r ee is whenthe file
system issues the notification. One optiomsnediate notificationwhere the file
system issues a “free” immediately when a block gets deletetemory. Unfortu-
nately, this solution can result in loss of data integritgémtain crash scenarios. For
example, if a crash occurs immediately after theee notification for a blockB
but before the metadata indicating the corresponding eleéstches disk, the disk
considers blockB as dead, while upon recovery the file system views blBcks
live since the delete never reached disk. Since a live filecavtains a freed block,

112

this scenario is a violation of data integrity. While sucblations are acceptable
in file systems such as ext2 which already have weak dataitytggiarantees, file
systems that preserve data integrity (such as ext3) nedelay notification until
the effect of the delete reaches disk.

Delayed notification requires the file system to conform mrduse ordering
property; otherwise, if the block is reused (and becomesiiithin the file system)
before the effect of the previous delete reaches disk, ttayel@f r ee command
would need to be suppressed, which means the disk would rgessesation death.

7.8.3 Orphan allocations

Finally, explicit notification needs to handle the casethan allocationswhere
the file system considers a block dead while the disk corsitléve. Assume that
a block is newly allocated to a file and is written to disk in tomtext of that file.
If a crash occurs at this point (but before the metadata atidig the allocation is
written to disk), the disk would assume that the block is,llmgt on restart, the file
system views the block as dead. Since the on-disk contertedflock belong to
a file that is no longer extant in the file system, the block héfesed a generation
death, but the disk does not know of this. Theze notification mechanism should
enable accurate tracking of liveness despite orphan éilbmsa Handling orphan
allocations is file system specific, as we describe below.

7.8.4 Explicit notification in ext2

As mentioned above, because ext2 does not provide dataiiptggarantees on
a crash, the notification of deletes can be immediate; thi&siexokes the r ee
command synchronously whenever a block is freed in memogalibg with or-
phan allocations in ext2 requires a relatively simple bytessive operation; upon
recovery, the fsck utility conservatively issukesee notifications to every block
that is currently dead within the file system.

7.8.5 Explicit notification in ext3

Because ext3 guarantees data integrity in its ordered aadjalarnaling modes,
f r ee notification in ext3 has to be delayed until the effect of theresponding
delete reaches disk. In other words, the notification hasetdddayed until the
transaction that performed the delete commits. Therefoeaecord an in-memory
list of blocks that were deleted as part of a transactionjgswkf r ee notifications

113

for all those blocks when the transaction commits. Sinc8 akeady conforms to
the reuse ordering property, such delayed notificationasikde.

However, a crash could occur during the invocation of thee commands
(i.e., immediately after the commit of the transaction); therefohesd r ee oper-
ations should be redo-able on recovery. For this purposea)sedog specidl r ee
records in the journal which are then replayed on recovesypaat of the delete
transaction.

During recovery, since there can be multiple committed dagtions which
will need to be propagated to their on-disk locations, a bldeleted in a trans-
action could have been reallocated in a subsequent comdnigtasaction. Thus,
we cannot replay all loggefdr ee commands. Given our guarantee of completing
all f r ee commands for a transaction before committing the next &etien, we
should only replay r ee commands for the last successfully committed transaction
in the log (and not for any earlier committed transactiorzd Hre replayed).

To deal with orphan allocations, we log block numbers of dddaks that are
about to be written, before they are actually written to di€hkn recovery, ext3
can issud r ee commands to the set of orphan data blocks that were part of the
uncommitted transaction.

7.8.6 Explicit secure delete

We have also built secure deletion under the explicit natiftie framework. We
modified the ext2 and ext3 file systems to notify the disk ofglagical delete (as
described ir7.8). The file system modifications accounted for 14 and 25l
of code respectively. Upon receiving the notification, tiek dlecides to shred the
block. However, similar to FADED, the disk delays overwsitentil idle time to
minimize impact on foreground performance.

Performance of “explicit” secure delete

To evaluate our explicit secure delete implementation,wnethhe same hour of the
HP trace; the results are presented in Table 7.12. Sinceléhsyftem does not
require the changes that FADED required, the default perdimice corresponds to
the “No changes” row in Table 7.9.

In terms of the foreground performance, the explicit impbamation performs
better because it does not incur the overhead of inferencethdt, it does not
require the file system modifications reported in Table Hh& (torresponds to the
“No changes” row in Table 7.9). Note that we do not model thst @b sending
afree command across the SCSI bus; thus the overheads in theiexpke

114

System Run-time (s)
Foreground With overwrites
Default 195.0 -
Ex.SD, 195.5 280.0
Ex.SDy 196.8 316.2
Ex.SDs 196.4 346.1

Table 7.12:HP trace performance under explicit secure delete. The table shows the
foreground run time and the total completion time of ovetggiof the HP Trace on explicit
secure delete.

are optimistic. Also, since the explicit mode has perfeébrimation, it avoids
unnecessary overwrites, thus resulting in 8-13% lowererit times compared
to FADED. Thus, we can conclude that the extra costs of semarference in
comparison to the explicit approach are quite reasonable.

7.9 Discussion

In this section, we reflect on the lessons learned from oue sasdy to refine
our comparison on the strengths and weaknesses of the iegpltt implicit ap-
proaches.

The ideal scenario for the implicit approach is where charage required only
in the storage system and not in the file system or the intrfadowever, in
practice, accurate liveness detection requires certa&rsystem properties, which
means the file system needs to be modified if it does not confortnose requi-
site properties. In the face of such changes to both thegg@mgstem and the file
system, it might appear that the implicit approach is notimmore pragmatic than
the explicit approach of changing the interface also. Tlaeestwo main reasons
why we believe the implicit approach is still useful.

First, file system changes are not required if the file systesady conforms to
the requisite properties. For example, many file systergs éxi2, VFAT, ext3-data
journaling, and perhaps NTFS) are already amenable to bileehess detection
without any change to the file system. The ext3 file system ta gaurnaling
mode already conforms to the properties required for géineriveness detection.
Clearly, in such cases, the implicit approach enables ntrnsive deployment of
functionality.

Second, we believe that modifying the file system to confarra set of well-
defined properties is more general than modifying the filéesggand the inter-

115

face) to convey a specific piece of information. Although vesdndiscussed the
file system properties from the viewpoint of implicit livesgedetection, some of
the properties enable richer information to be inferredgiample, the association
between a block and its owning inode (required for certaipliegtions such as
file-aware layout [102]) can be tracked accurately if thedylstem obeys the reuse
ordering or the consistent metadata properties. Our uléirgaal is to arrive at a
set of properties that enable a wide variety of informatmivé tracked implicitly,
thus outlining how file systems may need to be designed tolesaich transpar-
ent extension within the storage system. In contrast, tipeoagh of changing the
interface requires introducing a new interface every tindédfarent piece of infor-
mation is required.

7.10 Summary

In this chapter, we explored various techniques to infamass information in an
SDS and then utilized those techniques to implement relisbture delete. By
this implementation, we have demonstrated that even fomality that relies on
semantic information for correctness can indeed be emleddthe storage sys-
tem, despite fundamental uncertainty due to asynchronyodiyg conservative in
dealing with imperfect information, the storage system camvert apparent cor-
rectness problems into a minor performance degradationha¥e also quantified
the performance and complexity costs of implementing swetetfonality in an
SDS by comparing it to an alternative implementation thatiexly changes the
interface to achieve the same functionality.

The inference techniques and case studies thus far havmedghbat the stor-
age system is being used by a file system. Another populaeusanario for a
storage system is in the context of a DBMS. In the next chapterwill explore
applying similar semantic inference techniques undemaatatabase system.

116

Chapter 8

Semantic Disks for Database
Systems

““Today we have this sort of simple-minded model that a digkhis arm on
one platter and [it holds the whole database]. And in fact &t holding
the database] is RAID arrays, it's storage area network's, @l kinds of
different architectures underneath that hood, and it'srathsked over by a
logical volume manager written by operating system people may or may
not know anything about databases. Some of that transpgismeally good
because it makes us more productive and they just take céne oktails. ...
But on the other hand, optimizing the entire stack would Endetter. So,
we [in the two fields] need to talk, but on the other hand we vitaratccept
some of the things that they're willing to do for us.” [98].

-Pat Selinger

We have so far considered the range of functionality that28 8an provide
if it understood semantic information about the file systelm.this chapter, we
extend this philosophy by having the storage system uratetstven higher layers
of the system. Specifically, we consider techniques by whitctSDS can infer
information about a database management system, and ham ititdize those
techniques to provide improved functionality.

8.1 Introduction

In order to explore the applicability of the semantic diskigology in the realm of
databases, we describe two of our earlier case studies hsdafmpdatabase man-
agement systems. Each of the case studies is based on outha&bsguccessfully
applied the corresponding idea underneath a file systemciffspdly, we study

117

118

how to improve storage system availability by building a DB#pecific version
of D-GRAID, a RAID system that degrades gracefully undelufai. We also im-
plement a DBMS-specialized version of FADED, a storageesydhat guarantees
that data is unrecoverable once the user has deleted it. dMead® the case studies
by prototype implementations underneath the Predator DIEEbuilt upon the
SHORE storage manager [63].

In D-GRAID, we find that the DBMS-specific version did not wak well as
its file-system-specific counterpart. Upon further invgegtion, we found that there
were fundamental underlying reasons for this unexpectsctefiancy. First, data
structures and inter-relationships among data items are gmmplex in databases
than in file systems; hence, improving reliability provedrmdifficult than an-
ticipated. Second, databases tend to keep less genepalseumetadata than file
systems, and certainly do not reflect such information tolststorage.

We conclude by discussing a set of evolutionary changesiitabase manage-
ment systems could incorporate to become more amenablen@anseally-smart
disk technology. Specifically, we believe that a DBMS shaxfdort knowledge of
data relationships to the storage system, and that it stkeeld general purpose us-
age statistics and periodically reflect them to disk. Witbhsincremental changes
in place, we believe that database systems will be well gdis¢ake advantage of
more intelligent storage systems.

The rest of this chapter is organized as follows. In Secti@nBe discuss how
a semantic disk extracts information about the DBMS. In i8ast8.3 and 8.4, we
present our two DBMS-specific case studies. We present aaetiscussion of
additional DBMS support required for semantic disks in B&cB.5, and conclude
in Section 8.6.

8.2 Extracting Semantic Information

To implement database-specific functionality within a aggr system, the storage
system needs to understand higher level semantic infasmatbiout the DBMS that
uses the storage system. Similar to the file system casdadatspecific semantic
information can be broadly categorized into two types:isttd dynamic. In this
section, we describe the types of information a semantic idiguires underneath
a DBMS, and discuss how such information can be acquired.

Since our experience has primarily been with the PredatoMBB99] built
upon the SHORE storage manager [63], we illustrate our tqake with specific
examples from Predator; however, we believe the techniguegieneral across
other database systems.

119

8.2.1 Static information

Static information is comprised of facts about the dataltfasedo not change while
the database is running. The structure of the log record etidtabase and the
format of a database page are examples of static informatuch information
can be embedded into the storage system firmware, or can bewacated to the
storage system through an out-of-band channel once durstgra installation. As
in the file systems case, such on-disk formats change vamjyslthus, embedding
this information within the storage system firmware is dcatt

To gain some insight as to how often a storage vendor would hadeliver
“firmware” updates in order to keep pace with DBMS-level des) we studied
the development of Postgres [81] looking for times in itsisian history when
a dump/restore was required to migrate to the new versioheflatabase. We
found that a dump/restore was needed every 9 months on ayeragmber higher
than we expected. However, in commercial databases that tsei@bytes of data,
requiring a dump/restore to migrate is less tolerable tosysedeed, more recent
versions of Oracle go to great lengths to avoid on-disk farchanges.

Thus, we assume that the storage system has static informaltiout a few
relevant data structures of the DBMS; the main challenggeitiduilding upon this
minimal information to automatically infer higher leveperationsperformed by
the database system.

8.2.2 Dynamic information

Dynamic information pertains to information about the DBNMfat continually
changes as the database system operates. Tracking thedss blocks allocated
to a certain table is an instance of dynamic information,t &eé&ps changing as
records are inserted into or deleted from the table. Siigjlénacking whether a
certain disk block belongs to a table or an index is anothamgpte.

Unlike static information, dynamic information needs todoatinually tracked
by the disk. To track dynamic information, a semantic diskaets static informa-
tion about data structure formats to monitor changes to kg dtructures; these
changes are then correlated to specific higher level DBMSatipas that could
have caused the change. In the case of file systems, we shbatetthis process
of dynamic inference is significantly complicated by bufigrand reordering of
writes within the file system.

Fortunately, tracking dynamic information accurately agléhbly underneath a
DBMS is quite straightforward, because of the write-ahegdWAL) that databases
use. The log records every operation that leads to any changedisk contents,

120

and because of the WAL property, the log of an operation escliskbeforethe
effect of the operation reaches disk. This strong orderimarantee makes infer-
ences underneath a DBMS accurate and straightforward. Wedascribe how a
semantic disk infers different kinds of dynamic informati&mbout the DBMS. Note
that not every case study requires all types of informatremguantify and discuss
this further in Section 8.5.

Log snooping

The basic technique that a semantic disk uses to track dgnaformation about
the DBMS is tasnoopon the log records written out by the DBMS. Each log record
contains a Log Sequence Number(LSN) [69], which is usubiyhyte offset of the
start of that record in the log volume. The LSN gives the sdmalisk accurate
information on the exact ordering of events that occurrethéndatabase. To track
these events, the disk maintains expected LShbointer that tracks the LSN of
the next log record expected to be seen by the disk; thus, teesemantic disk
receives a write request to a log block, it knows exactly wherthe block to look
for the next log record. It processes that log record, and #tlwvances the expected
LSN pointer to point to the next record. When the DBMS doesigrmommits, log
blocks could arrive out of order, but the semantic disk za#i the LSN ordering
to process them in order; log blocks arriving out of order deéerreduntil the
expected LSN reaches that block.

Tracking block ownership

An important piece of information that is useful within a semtic disk is the log-
ical grouping of blocks into tables and indices. This ines\associating a block
with the corresponding table or indestore that logically ownsthe block. Since
the allocation of a block is an update to on-disk data thattinesecoverable, the
DBMS logs it before performing the allocation. For exam@elORE writes out a
cr eat e_ext log record with the block number and the ID of the store it Ie-al
cated to. When the semantic disk observes this log entggdtrds this information
in an internabl ock_t o_st or e hash table.

Once the semantic disk knows the numerical store 1D to whigage belongs,
it needs to map the store ID to the actual table (or index) nafoeget this map-
ping, the disk utilizes static knowledge of the system catahble that tracks this
mapping at the DBMS. In the case of Predator, this mappingaisitained in a B-
Tree called th&kootindex Thus, the disk monitorist r ee_add records in the log;
such records contain the store-id of the B-Tree and the ewlied. Since the logi-

121

cal store ID of the Rootindex is known (as part of static infation), the semantic
disk identifies newly created mappings and tracks thensinar e_t o_nane hash
table.

Tracking block type

Another useful piece of information that a semantic disk meguire is thetype

of a store (or a block)e.g, whether the block is a data page or an index page.
To track this information, the semantic disk watches upltidhe system catalog
tables that track this information. The semantic disk dstétserts to this table
by looking forpage_i nsert records in the log, which contain the tuple added,
together with the page number. Since the disk already knlogvstbre 1D to which
the page belongs (block ownership), it is straightforwardnbnitor inserts to the
store IDs corresponding to the catalogs. Note that the tadoiees of these catalog
tables are part of the static information known to the disk. Predator, we are
mainly interested in theSINDXS table which contains the list of indexes in the
database. Each tuple in th8INDXS table contains the name of the index, the
name of the table and the attribute on which it is built.

Relationship among stores

The most useful type of relationship is that between a tahtkthe set of indices
built on the table. Tracking this information again invaweonitoring updates to
the _SINDXS catalog table, which contains the association. Nio&t this rela-
tionship is maintained in the catalogs only in terms of tadnd indexnamesand
not the store IDs; hence the need to track the store-to-naappinmg as described
earlier.

Fine-grained information

While the aforementioned dynamic information can be ex¢by log snooping,
tracking certain pieces of information requires the sematsk to also probe into
the contents of a page. For example, to find whether a B-Trge igaan internal
page or a leaf page, the disk needs to look at the relevantJiithin the page.
Similarly, to find byte ranges within a page that got deletikd,semantic disk needs
to scan the page looking for “holes”. Such fine-grained imfation thus requires
more static knowledge within the storage system, sincedttbaunderstand the
format of B-Tree and data pages.

122

8.3 Partial Availability with D-GRAID

In this section, we describe our first case study D-GRAID pdqiype semantically-
smart storage system that utilizes DBMS-specific infororato lay out blocks in

a way that ensures graceful degradation of database aligjlainder unexpected

multiple failures. Thus, D-GRAID enables continued operabf the database in-
stead of complete unavailability under multiple failur#¢e motivated the need for
partial availability and showed that this approach sigaiiity improves the avail-
ability of file systems in Chapter 6.

8.3.1 Design

The basic goal of D-GRAID is to mak&mantically meaningfdfagments of data
available under failures, so that queries that access boketparts of the data can
still run to completion, oblivious of data loss in other gaot the database. The key
idea is to lay out all blocks of semantic fragmermwithin a single disk, so that even
after arbitrary disk failures, semantic fragments will lvaikable or unavailable in
their entirety. Thus, data present in the live disks will beamingful in isolation.
The choice of which blocks constitute a semantic fragmermtejsendent on the
database workload.

D-GRAID exports a linear logical address space to the DBM$ing above
(like any SCSI disk). Internally, it needs to place thesddalgblocks in the ap-
propriate physical disk to ensure partial availabilityké.iin the file system case,
the key structure D-GRAID uses to enable such flexibility lock placement is
theindirection map which maps every logical block to the corresponding plalsic
block; similar structures are used in modern arrays [117thd logical block is
replicated, a bit in the indirection map entry tracks the fugsto date copy.

We now present various layout strategies for partial DBM&lability. First,
we discuss what structures need to be aggressively reglidat partial availabil-
ity. Then, we explore two classes of techniques for fragate, targeting widely
different database usage patterns: coarse-grained fragtiom and fine-grained
fragmentation. Finally, we discuss how partial availdpilnteracts with the trans-
action and recovery mechanism of the DBMS, and the issueailadmlity of the
database log.

System metadata replication

Before delving into semantic fragmentation, there are sdaia structures within
a DBMS that must be available fany query in the system to be able to run. For

123

example, system catalogs (that contain information abach éable and index) are
frequently consulted; if such structures are unavailalvldeu partial failure, the
fact that most data remains accessible is of no practicalUserefore, D-GRAID
aggressively replicates the system catalogs anéttent mapn the database that
tracks allocation of blocks to stores. In our experiments,amploy 8-way repli-
cation of important meta-data; we believe that 8-way repiim is quite feasible
given the “read-mostly” nature of such meta-data and themaihspace overhead
(less than 1%) this entails.

Coarse-grained fragmentation

When the database has a large number of moderately sized taldemantic frag-
ment can be defined in terms of entire tables. This subsegtesents layout strate-
gies for improved availability in such a scenario.

A. Scans:

Many queries, such as selection queries that filter on a mdexed attribute
or aggregate queries on a single table, just involve a s¢iglisnan of one entire
table. Since a scan requires the entire table to be availaldeder to succeed, a
simple choice of a semantic fragment is the set of all bloe{sriging to a table;
thus, an entire table is placed within a single disk, so tHa@mfailures occur, a
subset of tables are still available in their entirety, dreté¢fore scans just involving
those tables will continue to operate oblivious of failure.

B. Index lookups:

Index lookups form another common class of queries. Wheteatimn condi-
tion is applied based on an indexed attribute, the DBMS lapkihe corresponding
index to find the appropriate tuple RIDs, and then reads flegant data pages to
retrieve the tuples. Since traversing the index requiressxcto multiple pages in
the index, collocation of a whole index improves availapilHowever, if the index
and table are viewed independently for placement, an inderyfails if either the
index or the table is unavailable, decreasing availabilAybetter strategy to im-
prove availability is to collocate a table with its indicé&/e call the latter strategy
asdependent index placement
C. Joins:

Many queries involve joins of multiple tables. Such quetigscally require
all the joined tables to be available, in order to succeedimfarove availability
of join queries, D-GRAID collocates tables that are liketylde joined together
into a single semantic fragment, which is then laid out omglsidisk. Note that
identification of such “join groups” requires extra accedistics to be tracked
by the DBMS. Specifically, we modified the Predator DBMS toorelcthe set of

124

stores (tables and indexes) accessed for each query, astlubran approximate
correlation matrix that indicates the access correlatetwben each pair of stores.
This information is written to disk periodically (once eyés seconds). D-GRAID

then uses this information to collocate tables that ardyliteebe accessed together.

Fine-grained fragmentation

While collocation of entire tables and indices within a $ndisk provides en-

hanced availability, certain scenarios may preclude sagbut. For example, a
single table or index may be too large to fit within a single&kdis a table can be
“popular” (i.e., accessed by most queries); placing such a hot table witkin-a
gle disk will lead to significant loss of availability uponiliae of that particular

disk. In such scenarios, we require a fine-grained appraasérantic fragmenta-
tion. In this approach, D-GRAID stripes tables and index@sss multiple disks

(similar to a traditional RAID array), but adopts new teajues to enable graceful
degradation, as detailed below.

A. Scans:

Scans fundamentally require the entire table to be availavld thus any strip-
ing strategy will impact availability of scan queries. Hawe with disk capacities
roughly doubling every year [42], tables that are too laméttinto a single disk
may become increasingly rare. In such cases, a hierarcdpgabach is possible:
a large table can be split across the minimal number of diskisdan hold it, and
the disk group can be treated as a logical fault-boundar§gH)AID can be applied
over such logical fault-boundaries. Finally, if the datsdaupports approximate
queries [47], it can provide partial availability for scanegies even with missing
data.

B. Index lookups:

With large tables, index-based queries are likely to be nsoremon. For ex-
ample, an OLTP workload normally involves index lookups ameall number of
large tables. These queries do not require the entire indabte to be available.
D-GRAID uses two simple techniques to improve availabifity such queries.
First, the internal pages of the B-tree index are aggregsieplicated, so that a
failure does not take away, for instance, the root of thee®B-trSecond, an index
page is collocated with the data pages corresponding taufhiest pointed to by
the index page. For this collocation, D-GRAID uses a prdistu strategy; when
a leaf index page is written, D-GRAID examines the set of R¢Dstained in the
page, and for each RID, determines which disk the correspgridple is placed in.
It then places the index page on the disk which has the gteatsther of matching
tuples. Note that we assume the table is clustered on thg aittéute; page-level

125

collocation may not be effective in the case of non-clusteneices.
C. Joins:

Similar to indices, page-level collocation can also be igplpghcross tables of a
join group. For such collocation to be feasible, all tableshie join group should
be clustered on their join attribute. Alternatively, if ser@ables in the join group
are “small”, they can be replicated across disks where figetdables are striped.

Diffusion for performance

With coarse-grained fragmentation, an entire table isqulagithin a single disk. If
the table is large or is accessed frequently, this can haggarmance impact since
the parallelism that can be obtained across the disks isdia$b remedy this, D-
GRAID monitors accesses to the logical address space adtiegical segments
that are likely to benefit from parallelism. D-GRAID then ates an extra copy of
those blocks and spreads them across the disks in the akey hormal RAID
would do. Thus, for blocks that are “hot”, D-GRAID regain tlost parallelism
due to collocated layout, while still providing partial #edility guarantees. Reads
and writes are first sent to the diffused copy, with backgdoupdates being sent to
the actual copy.

8.3.2 Transactions and Recovery

A pertinent issue to consider is how partial availabilitieiracts with the transaction
and recovery mechanisms within a DBMS. Databases declasnsatction com-
mitted once it is recorded in the loge., potentially before the actual data blocks
are written; since ACID guarantees impose that this commiurable in the face
of database crashes, the recovery process needs to readhtire log andedo
operations that were not committed to disk. However, wherstbrage system un-
derneath supports partial availability, some of the blagkdd be “missing”; if one
of the blocks referred to in a REDO record is missing, the veppprocess cannot
execute the redo.

However, this problem has been considered and solved in 8R8E], in the
context of handling offline objects durirfgferred restart Specifically, the solution
is to just ignore redo of those blocks until the blocks adyuaecome available
again (when it is restored from tape, for instance). PageLSNn the unavailable
page would have remained the same while it was unavailahl wdnen it does
become available, the REDO record will be more recent tharPdigeLSN of the
page, and thus the redo applied. Accesses to the page oremoinbs available,
should be prevented until the recovery takes place on thgg.p&imilarly undo

126

operations can be handled, either at the logical or phykeal. The key idea is to
turn off access to those pages by normal transactions @hnive done by holding
a long-standing lock on those pages until they are recoy¢68i

Another side-effect of the partial availability semantimscurs even during
normal transaction execution. A transaction could be cdierhiafter recording
changes in the log, but when the actual data pages are beidtageal the corre-
sponding disk blocks can be unavailable, thereby forciegititabase to violate the
durability guarantees. To prevent this, D-GRAID guarastiat writes will never
fail as long as there is some space in atleast one of the diaksststill alive. When
a write request arrives to a dead disk, it automatically ggsrigto a new block in a
disk that is still alive, and updates timapaccordingly. If there was no space, still
D-GRAID does not do worse than a normal storage system inlwguch a mul-
tiple failure occured in the middle of query execution; tlaadbase would abort,
and REDO during log replay after the disk is recovered, veitore sanity to the
contents of the block.

Availability of the database log

The database log plays a salient role in the recoverabifithed database, and its
ability to make use of partial availability. It is therefomaportant for the log to
be available under multiple failures. We believe that pding high availability for
the log is indeed possible. Given that the size of the “agbwedion” of the log
is determined by the length of the longest transaction fadtby the concurrency
in the workload, the portion of the log that needs to be kephlli available is
quite reasonable. Modern storage arrays have large amofipersistent RAM,
which are obvious locales to place the log for high availgbiperhaps replicating
it across multiple NVRAM stores. This, in addition to norroal-disk storage of the
log, can ensure that the log remains accessible in the fatrilbiple disk failures.

8.3.3 Evaluation

We evaluate the availability improvements and performarié GRAID through a
prototype implementation; our D-GRAID prototype functsoais a software RAID
driver in the Linux 2.4 kernel, and operates underneath tedd®or/Shore DBMS.

Availability improvements

To evaluate availability improvements with D-GRAID, we @sB-GRAID array of
16 disks, and study the fraction of queries that the dataferses successfully un-
der an increasing number of disk failures. Since layoutrteghes in D-GRAID are

% queries that succeed

127

Table Scans Index Lookup queries
100 Sy " " " " Availability —— 100 Moy " Dependent index placéement ——
\'|:‘ f\f Independent index placement -
80 i o 80 o ko
~L 9] % .
. o} : s,
g o N
40 + {¥ o 4ot sk]
h [} Py
{ 2 [
A D
20 -] R 20+ i 1]
O DES N |
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14
failed disks # failed disks
Join queries
100y With join collocation -+
Without collocation -
- 80F
Q
[}
(8]
5
o 60 r
IS
=]
%]
2 40t
[}
=]
o
S 20+
0

0 2 4 6 8 10 12 14 16
failed disks

Figure 8.1:Coarse-grained fragmentation. The graphs show the availability degrada-
tion for scans, index lookups and joins under varying nundfetisk failures. A 16-disk
D-GRAID array was used. The steeper fall in availability fagher number of failures
is due to the limited (8-way) replication of metadata. Thaight diagonal line depicts
“ideal” linear degradation.

complementary to existing RAID schemes such as parity amomiirg, we show D-
GRAID Level 0 (.e., no redundancy for data) in our measurements, for simylicit
We mainly use microbenchmarks to analyze the availabilityided by various
layout techniques in D-GRAID.
A. Coarse-grained fragmentation

We first evaluate the availability improvements due to therse-grained frag-
mentation techniques in D-GRAID. Figure 8.1 presents tlaalatvility of various
types of queries under synthetic workloads.

The first graph in Figure 8.1 shows the degradation in avithalfor scan
gueries, under multiple disk failures. The database had#fés, each with 10,000

128

tuples. The workload is as follows: each query chooses a &hhndom and com-
putes an average over a hon-indexed attribute, thus requiriscan of the entire
table. The percentage of such queries that complete stigitess shown. As
the graph shows, collocation of whole tables enables thabdat to be partially
available, serving a proportional fraction of queries. ¢mparison, just one fail-
ure in a traditional RAID-0 system results in complete uilatdity. Note that if
redundancy is maintained€., parity or mirroring), both D-GRAID and traditional
RAID will tolerate up to one failure without any availabilitoss.

The middle graph in Figure 8.1 shows the availability forardookup queries
under a similar workload. We consider two different layouitsboth layouts, an
entire “store” (.e., an index or a table) is collocated within one disk.indepen-
dent index placemenD-GRAID treats the index and table as independent stores
and hence possibly allocates different disks for them, evhiith dependent in-
dex placementD-GRAID carefully allocates the index on the same disk a&s th
corresponding table. As can be seen, dependent placenagist te much better
availability under failure.

Finally, to evaluate the benefits of join-group collocatiere use the follow-
ing microbenchmark: the database contains 100 pairs aégatlith joins always
involving tables in the same pair. We then have join quersglomly selecting
a pair and joining the corresponding two tables. The botost graph in Fig-
ure 8.1 shows that by collocating joined tables, D-GRAIDiagbs higher avail-
ability. Note that for this experiment, the DBMS was modiftedeport additional
statistics on access correlation between tables.

B. Fine-grained fragmentation

We now evaluate the effectiveness of fine-grained fragntient&n D-GRAID.
We mainly focus on the availability of index lookup queri@sxce they are the most
interesting in this category. The workload we use for thiglgtconsists of index
lookup queries on randomly chosen values of a primary keibaté in a single
large table. We plot the fraction of queries that succeeaumdrying number of
disk failures. The top graph in Figure 8.2 shows the results.

There are three layouts examined in this graph. The lowdriivas shows
availability under simple striping with just replicatior gystem catalogs. We can
see that the availability falls drastically under multifgdures due to loss of inter-
nal B-tree nodes. The middle line depicts the case whereait8-tree nodes are
replicated aggressively; as can be expected, this achietes availability. Finally,
the third line shows the availability when data and indexgsagre collocated, in
addition to internal B-tree replication. Together, these techniques ensure near
linear degradation of availability.

129

Split Tables and Indexes

' Repl'ication + Colo_éation —
With Replication -
R Plain Striping ~-+--
kel 4 TR A
0]
2 %
Q T -
S
® 60+ N A
IS I
£
1%}
2 40+ % J
5]
=}
o i (I ;
S 2t S, T 1
R SN fg
IR S -
0 L ' ' : T‘ Feg
0 2 4 6 8 10 16
failed disks
Split Tables/Indexes: Hot-Cold tuples
140 ; ; :
Hot-cold: 8-way ——
Hot-cold: 2-way -
120 ¢ Hot-cold: 1-way +--+ 4
©
[
S 100 veowem o 1
a RS
= 80F A
£
8 60r 7
g
o 40 A
B3 IR SO SN Y
20 L i R -1‘; 4
O 1 1 I I 1 %
0 2 4 6 8 10 12 14 16

failed disks

Figure 8.2:Index Lookups under fine-grained fragmentation.

The right graph in Figure 8.2 considers a similar workloaat, & small sub-
set of tuples are much “hotter” compared to the others. $palty, 5% of the
tuples are accessed in 90% of the queries. Even under suchkiady simple
replication and collocation provide near linear degratain availability since hot
pages are spread nearly uniformly across the disks. Howemder such a hot-
cold workload, D-GRAID can improve availability further lbgplicating data and
index pages containing such hot tuples. The other two liepgctavailability when
such hot pages are replicated by factors of 2 and 8. Thus, wisemall fraction of
(read mostly) data is hot, D-GRAID utilizes that informattim enhance availability
through selective replication.

130

| D-GRAID RAID-0 Slowdown

Table Scan 7.97s 6.74 s 18.1%
Index Lookup 51ms 49.7ms 2.7%
Bulk Load 186.61s 176.14s 5.9%
Table Insert 11.4 ms 11 ms 3.6%

Table 8.1: Time Overheads of D-GRAID. The table compares the performance of D-
GRAID with default RAID-0 under various microbenchmarks.atray of 4 disks is used.

Performance overheads

We now evaluate the performance implications of faultased layout in D-GRAID.
For all experiments in this section, we use a 550 MHz P-lItesyswith a 4-disk D-
GRAID array comprised of 9.1 GB IBM UltraStar 9LZX disks witteak through-
put of 20 MB/s. The database used has a single table of 508@80€ds, each sized
110 bytes, with an index on the primary key.

A. Time and space overheads

We first explore the time and space overheads incurred by éBRBID pro-
totype for tracking information about the database anchtayiut blocks to facili-
tate graceful degradation. Table 8.1 compares the perfoyenaf D-GRAID with
fine-grained fragmentation to Linux software RAID 0 underimas basic query
workloads. The workloads examined are a scan of the enble, tan index lookup
of a random key in the table, bulk load of the entire indexddietaand inserts into
the indexed table. D-GRAID performs within 5% of RAID-0 foll aorkloads
except scans. The poor performance in scans is due to a &redamaly, where
the scan workload completely saturated the CPU (6.74 s for B table across
4 disks). Thus, the extra CPU cycles required by D-GRAID iatpahe scan per-
formance by about 18%. This interference is because ouotyp® competes for
resources with the host; in a hardware RAID system, sucihfégmence would not
exist. Overall, we find that the overheads of D-GRAID aregu#asonable.

We also evaluated the space overheads due to aggressivdataateplication
and found them to be minimal; the overhead scales with thebeurf tables, and
even in a database with 10,000 tables, the overhead is oalyt &0% for 8-way
replication of important data.

B. Parallelism for Collocated Tables

We now evaluate the benefits of diffusing an extra copy of fapables. Ta-

ble 8.2 shows the time taken for a scan of the table describedcaunder coarse-

131

grained fragmentation in D-GRAID. As can be seen, simpléocation leads to
poor scan performance due to the lost parallelism. With e aliffusion aimed
at performance, D-GRAID performs much closer to default BAI

8.3.4 Discussion

In comparing our implementation of D-GRAID underneath a DBMith our file
system work discussed in Chapter 6, we uncovered some fiendahcthallenges
that are unique to a DBMS. First, the notion of semanticedlgted groups is
much more complex in a DBMS because of the various intetiogiships that
exist across tables and indexes. In the file system caseeMiles or whole direc-
tories were reasonable approximations of semantic grgspiin a DBMS, since
the goal of D-GRAID is to enable serving as many higher leugrigs as possible,
the notion of semantic grouping dynamic i.e., it depends on the query work-
load. Second, identifying “popular” data that needs to bgresgively replicated,
is relatively easier in file systems; standard system kesaaind libraries were ob-
vious targets, independent of the specific file system rgnabove. However, in a
DBMS, the set of popular tables varies with the DBMS and isrofiependent on
the query workload.

Thus, effective implementation of D-GRAID underneath a DBNMequires
modification of the DBMS to record additional informationivén that D-GRAID
enables the database system to serve a large fraction agitieq even under multi-
ple failures that, in traditional storage arrays would lemdomplete unavailability
of the database, we believe that such simple modificatiotlset®@BMS to enable
D-GRAID are reasonable and feasible. We outline the exacgsi of information
required in Section 8.5.

8.4 Secure Delete with FADED

In this section, we describe FADED, a prototype semantieathart disk that de-
tects deletes of records and tables at the DBMS level andredgcoverwrites
(shred$ the relevant data to make it irrecoverable. The file systestance of
FADED was discussed in Chapter 7.

8.4.1 Table-level deletes

The simplest granularity of secure delete is a whole tablaemadr op t abl e
command is issued, FADED needs to shred all blocks that betbto the table.
FADED uses log snooping to identify log records that indickieeing of extents

132

| Scan Time (s)

RAID-0 6.74
D-GRAID 15.69
D-GRAID + Diffusion 7.35

Table 8.2:Diffusing Collocated Tables. The table shows the scan performance observed
over a 4-disk array under various configurations.

from stores. In SHORE, far ee_ext | i st log record is written for every extent
freed. Once FADED knows the list of freed blocks, it can isseeure overwrites
to those pages. However, since the contents of the freed pagyg be required by
the database if the transaction aborts (thus undoing tteted®) FADED needs to
delay the overwrites until the transaction that perfornteddelete commits. Thus,
FADED keeps track of a list of “pending” transactions, andas forconm t
records in the log to identify if those transactions have watted, so that the rele-
vant secure overwrites can be initiated.

8.4.2 Record-level deletes

Handling record level deletes in FADED is more challengihen specific tuples
are deleted (via the SQtel et e fr omstatement), specific byte ranges in the
pages that contained the tuples need to be shredded. One, @dBBMS typically
marks the relevant page “slot” free, and increments thesfraee count in the page.
Since such freeing of slots is logged, FADED can learn of gecbrd deletes by
log shooping.

However, FADED cannot shred the whole page on detectingaletalbecause
other records in the page could still be valid. The shreddnferefore deferred
until FADED receives a write to the page that reflects theveeiedelete. On re-
ceiving such a write, FADED shreds the entire page in the, @isl then writes the
new data received. Thus, past layers of data in the diskipiengato the deleted
records disappear.

There are two main problems in implementing the above tegctmi The first
problem relates to identifying the correct version of thgedahat contained the
deleted record. Assume that FADED observed a record déletepage P, and
waits for a subsequent write &f. WhenP is written, FADED needs to detect if the
version written reflectd. The version could be stale if the DBMS wrote the page
out sometime before the delete, but the block got reordeyatidodisk scheduler,

133

Run time (s)
Workload | Workload II
Default 52.0 66.0
FADED, 78.3 128.5
FADED, 91.0 160.0
FADEDg 104.5 190.2

Table 8.3:0verheads of secure deletion. This table shows the performance of FADED
with 2,4 and 6 overwrites, under two workloads. Workload Ietks contiguous records,
while Workload Il deletes records randomly across the table

and arrives late at the disk. To identify whether the curcamttents ofP reflects
the delete, FADED uses tliRagelL SNield in the page [69]. ThPageLSNof a page
tracks the sequence number of the latest log record dasgrbihange in the page.
Thus, FADED simply needs to compare thegeLSNo the LSN of the deletéd it

is tracking.

The second issue is that the DBMS typically does not zero pigtshthat be-
longed to deleted records; as a result, old data still regriaithe page. Thus, when
FADED observes the page write, it has to scan the page lodirfgee space, and
zero out deleted byte ranges. Since the page could stileésithe DBMS cache,
all subsequent writes to the page also need to be scannecee®tiout in their
freespace.

8.4.3 Performance

In this subsection, we briefly evaluate the cost of securetidelin FADED through
a prototype implementation. Similar to the D-GRAID prototy FADED is imple-
mented as a device driver in the Linux 2.4 kernel, and worldeumeath Preda-
tor [99]. We consider two workloads operating on a table \&ifi9,000 110-byte
records. In the first workload, we perforndal et e f r omin such a way that all
rows in the second half of the table are deleted, the deleted pages are contigu-
ous). The second workload is similar, but the tuples to betddlare selected in
random.

Table 8.3 compares FADED under various number of overwesses, with the
default case, a plain disk. As expected, secure deletiors@ta performance cost
due to the extra disk I/O for the multiple passes of overwritédowever, since such
overhead is incurred only on deletes, and only sensitive we¢ds to be deleted in

134

this manner, we believe the costs are reasonable in siisatibere the additional
security is required.

8.4.4 Discussion

The fine record-level granularity of deletes in a DBMS malasise deletion more
complex in the case of DBMS, compared to its file system copaté Although

our implementation does not require any changes to the DBiVi&juires detailed
information about the on-disk page layout of the DBMS. Thus, make an as-
sumption that on-disk page formats are relatively stablesscDBMS releases;
alternatively, when the format changes, the storage systeaid require a corre-
sponding firmware upgrade. However, secure delete is biegito be recognized
as a crucial piece of functionality especially in the cohtelkrecent legislations
on data retention. Given that a semantic disk is an idealddmaimplement it,

incurring this extra dependency seems worth the cost.

8.5 Towards a Semantic Disk-Friendly DBMS

In this section, we first discuss what exact types of DBMS:geinformation
are required by the storage system for our case studies. &vestiggest a few
evolutionary changes that would make a DBMS more amenabdertantically-
smart disks.

8.5.1 Information required

In Section 8.2, we presented various techniques that aggt@gstem can employ
to learn more about a DBMS, but as these techniques wereaenet all case
studies require each of the techniques. By listing the exges of information
required for the case studies, we see how intimate theagakitip between storage
and the DBMS above must be for the semantic-disk technolodpe tsuccessful.

The exact information required for each of our case studidssied in Ta-
ble 8.4. The table presents each case study (with variaitesl las appropriate), and
in each column shows which type of information is needed ftoendatabase. The
columns are broken down into three major categories: stadgicamic, and extra
information.

As discussed before, static information is the type of imfation that does
not change as the DBMS is running.g, the format of a log record); rather such
information might change when a new version of the datalsasstalled. Dynamic
information continually changes during operatiang, which blocks on disk a

135

Static Dynamic Extra
embedded | automatically| provided
tracked | by DBMS
o
= o
— [— *(7)' (2]
© >
e EEle ofF 9
0w = o =< C = =
Loy el g 2 2]
=
ST 20|l 0o § & g
= 5 8 D = 2 c B n
D 0 2 @5 > o %)
A - 0
8 5 2 8o v &8 ¢ 3
S & % ©|lS © v © 3]
O Jm Ao - <
D-GRAID
basic X X X X
+fine-grained frags| x x x X X X
+join-collocation X X X X X X
FADED
basic X X X X X
+record-level delete x X X | x X X

Table 8.4:.DBMS Information required for case studies The table lists different pieces of
information about the DBMS that our case studies require flilst column specifies static
information that must be embedded into the semantic disls¢bond column lists dynamic
state automatically tracked by the disk, and the third caldists additional information
tracked and communicated to the disk by the DBMS.

table is allocated upon). Finally, extra information is wh& needed to add to the
DBMS in order for the storage system to implement certaiasela of functionality.

Probably the biggest concern from the perspective of databandors is what
types of static information are required; if a storage syséssumes it understands
the contents of a catalog table, for example, the databastovenay be loathe to
change it or feel constrained by this dependency. As we carirem the table,
the amount of static information needed by each case stuiigsvguite a bit. All
the case studies need to know the structure of catalog tabkk$og records. In
addition, implementing features such as fine-grained feagation in D-GRAID
or record-level delete in FADED required an understandihghore detailed as-
pects of the DBMS, including the B-tree page format and thia gage format,
respectively. Given this level of detail, one must weigh thiee the additional
functionality provided merits the increased level of idipendence.

136

8.5.2 How DBMSes can help semantic disks

Despite the simplicity of tracking dynamic information w@mdeath a DBMS, we
encountered some fundamental challenges in implemeritengerious case studies
underneath a DBMS, that do not arise in their file system @rpatts. Being
general-purpose, file systems track richer informatiometimes implicitly, about
the way files are accessed. For example, the fact that arcesgaiof files lies
within a single directory implicitly conveys informatioo the storage system that
those files are likely to be accessed together. Similarlystrfile systems track
the last time each file was accessed. Such information isreshfor effective
implementation of one of our case studies.

However, database systems do not typically track detailmation on how
tables and indexes are accessed. In this subsection, weodrawr experiences
from the case studies to identify simple ways in which a DBM6 assist semantically-
smart disks, by tracking more information. We provide thkeg suggestions that
could be easily incorporated into DBMS systems, as dematestin our case stud-
ies above.

First, we require the DBMS to track statistics on relatiopstbetween logical
entities such as tables and indexes, and write them outdieaity to disk. For
example, the DBMS could record for each query, the set oetabhhd indexes
accessed, and aggregate this information across querhesse Tstatistics capture
the semantic correlation between the accesses to diffeablas, and thus inform
the storage system on general semantic groupings that ndeel ¢ollocated for
improved reliability. These statistics can be written aditmhal catalog tables.
Because these updates are primarily meant to be perfornimémise they need not
be transactional, and thus can avoid the logging overhead.

Second, the DBMS needs to track statistics on the populafixarious pieces
of data, such as the number of queries that accessed a ghlenotzer a certain
duration. This piece of information conveys to the storaggtesn the importance
of various tables and indexes. The storage system can ssmthimation to to
aggressively replicate “hot” data to improve availability

Interestingly, some modern database systems alreadyanacdest amount of
similar access information, though at a coarser granyjdat purposes of perfor-
mance diagnosis; for example, the Automatic Workload Riggrysin Oracle 10g
maintains detailed access statistics and commits thenskopdiriodically [72].

Finally, a key point to note is the stability of on-disk dadégaut in a DBMS,
such as the format of a data page. As described in ChaptertBe inase of file
systems, on-disk formats rarely change. In the case of a DBMBat changes
are more of a concern. To facilitate semantic disks, DBM$esirio be judicious

137

in format changes. We believe that this trend already hadmtextent in modern
DBMSes given that format changes require a dump and resfaegisting data,
an arduous task for large databases. For example, modeiongof Oracle take
great care in preserving on-disk format.

8.6 Summary

We have demonstrated in this chapter that semantic knowledgbles the con-
struction of powerful functionality within a storage systetailored to a system as
complex as a modern DBMS, and yet avoiding complex changégtdatabase in
order to harness said functionality. We have also shownsingple evolutionary
changes to the DBMS can make database-specific storagensystere effective.
Instead of viewing storage systems and database systertackdbxes relative to
each other, the SDS approach enables new classes of fualitfidsy making the
storage system DBMS-aware.

138

Chapter 9

A Logic of File Systems and
Semantic Disks

“In theory, there’s no difference between theory and practic
but in practice, there i5. Anonymous

In the previous chapters, we presented detailed techniguedract semantic
information underneath modern file systems and databasssysand various case
studies to utilize that information to provide enhanceccfiomality within storage.
As could be clearly seen from the description of some of ose ctudies, extracting
and utilizing semantic information under modern file systesquite complex.
When building functionality within the SDS that utilizedanmation in a way that
can impact correctness (such as FADED), one needs a clearstizuading of the
kinds of information that can be tracked accurately in a segimalisk given a set
of file system behaviors.

In order to simplify and systematize the process of reagpaiiout the kinds of
information that can be tracked accurately in a semantlg gis formulate in this
chapter a logic framework for formally reasoning about fitstems and semantic
disks. Although the intended initial goal of this logic wasthodel semantic disks,
it was very soon clear that reasoning about informationlabta to a semantic disk
has a strong parallel to reasoning about file system consisrmanagement, since
in both cases, the information purely pertains to what catfkhewn” from on-
disk state. Thus, we present this logic as a way to model fdeegays and reason
about their correctness properties, and then show how weaszit to reason about
semantic disks.

139

140

9.1 Introduction

Reliable data storage is the cornerstone of modern comgpysegems. File systems
are responsible for managing persistent data, and it iefibrer essential to ensure
that they function correctly.

Unfortunately, modern file systems have evolved into exélgroomplex pieces
of software, incorporating sophisticated performancenuigations and features.
Because disk 1/O is the key bottleneck in file system perfoceamost optimiza-
tions aim at minimizing disk access, often at the cost of daafpng the interac-
tion of the file system with the storage system; while early $ystems adopted
simple update policies that were easy to reason about [65flem file systems
have significantly more complex interaction with the dislginfy stemming from
asynchrony in updates to metadata [11, 32, 46, 68, 86, 12], 11

Reasoning about the interaction of a file system with dislaramount to ensur-
ing that the file system never corrupts or loses data. Howesttr complex update
policies, the precise set of guarantees that the file systewides is obscured, and
reasoning about its behavior often translates into a manuative exploration of
various scenarios by the developers; sadthocexploration is arduous [112], and
possibly error-prone. For example, recent work [121] hamébmajor correctness
errors in widely used file systems such as ext3, ReiserFSkE®ad J

In this chapter, we present a formal logic for modeling thenaction of a file
system with the disk. With formal modeling, we show that oesisg about file
system correctness is simple and foolproof. The need fdr adormal model is
illustrated by the existence of similar frameworks in matlyeo areas where cor-
rectness is paramount; existing models for authenticairotocols [18], database
reliability [45], and database recovery [58] are a few ex&sp While general
theories for modeling concurrent systems exist [8, 59]hduameworks are too
general to model file systems effectively; a domain-speloficc greatly simplifies
modeling [18].

A logic of file systems serves three important purposes.t,kirenables us to
prove properties about existing file system designs, fiegulh better understand-
ing of the set of guarantees and enabling aggressive pafa@optimizations that
preserve those guarantees. Second, it significantly lotherbarrier to providing
new mechanisms or functionality in the file system by enabligorous reason-
ing about their correctness; in the absence of such a frarkewesigners tend to
stick with “time-tested” alternatives. Finally, the lodielps design functionality in
semantically-smart disk systems by facilitating precisaracterization and proof
of their properties.

A key goal of the logic framework isimplicity, in order to be useful to general

141

file system designers, the barrier to entry in terms of applyhe logic should be
low. Our logic achieves this by enablimgcremental modelingOne need not have
a complete model of a file system before starting to use thie;lagstead, one
can simply model a particular piece of functionality or maeism in isolation and
prove properties about it.

Through case studies, we demonstrate the utility and effiohour logic in
reasoning about file system correctness properties. Wiesgpresent and prove the
soundness of important guarantees provided by existingigoes for file system
consistency, such as soft updates and journaling. We thethaslogic to prove
that the Linux ext3 file system is needlessly conservativis inansaction commits,
resulting in sub-optimal performance; this case study destnates the utility of the
logic in enabling aggressive performance optimizations.

To illustrate the utility of the logic in developing new filgstem functional-
ity, we propose a new file system mechanism cafjederation pointerso enable
consistent undeletaf files. We prove the correctness of our design by increnhenta
modeling of this mechanism in our logic, demonstrating thepticity of the pro-
cess. We then implement the mechanism in the Linux ext3 faeesy, and verify
its correctness. As the logic indicates, we empiricallywsltitat inconsistency does
indeed occur in undeletes in the absence of our mechanism.

Finally, we demonstrate the value of the logic in reasonibgua semantic
disks. We consider one specific type of semantic informat@amely block type,
and logically prove that under a certain set of file systemabiehs, inference of
that information is guaranteed to be accurate.

The rest of this chapter is organized as follows. We firstgmesn extended
motivation §9.2), and a quick context on file systen§9.3). We present our logic
(§9.4), and represent some common file system properties tisnigpgic §9.5).
We then use the logic to prove consistency properties otiegisystems §9.6),
prove the correctness of an unexploited performance agaiinon in ext3 §9.7),
and reason about a new technique for consistent undelfied).(We then apply
our logic to semantic disk$9.9), and then summarizg9.10).

9.2 Extended Motivation

A systematic framework for reasoning about the interaabicmfile system with the
disk has multifarious benefits. We describe three key amitins of the framework.

142

9.2.1 Reasoning about existing file systems

An important usage scenario for the logic is to model exisfite systems. There
are three key benefits to such modeling. First, it enablesa cinderstanding of
the precise guarantees that a given mechanism provideth@adsumptions under
which those guarantees hold. Such an understanding erabtest implementa-
tion of functionality atother system layers such as the disk system by ensuring
that they do not adversely interact with the file system aggioms. For example,
write-back caching in disks often results in reordering otes to the media; this
can negate the assumptions journaling is based on.

The second benefit is that it enables more aggressive pexrfmenoptimiza-
tions. When reasoning about complex interactions becoraas file system de-
velopers tend to be conservative.d, perform unnecessarily more synchronous
writes). Our logic helps remove this barrier; it enableseligpers to be more
aggressive in their performance optimizations while &tiing confident of their
correctness. In Section 9.7, we analyze a real example df @uopportunity for
aggressive performance optimization in the Linux ext3 filsteam, and show that
the logic framework can help prove its correctness.

The final benefit of the logic framework is its potential uséniplementation-
level model checkers [121]; having a clear model of expedteldavior against
which to validate an existing file system would perhaps enaiire comprehensive
and efficient model checking, instead of the current teakeif relying on thésck
mechanism which is quite expensive; the cost of an fsck onyexeplored state
limits the scalability of such model checking.

9.2.2 Building new file system functionality

Recovery and consistency are traditionally viewed askyfitssues to reason about
and get right. A classic illustration of this view arises hetcontext of database
recovery; the widely used ARIES [69] algorithm pointed tarecotness issues
with many earlier proposals. The success of ARIES has a@edtinnovation
in database recovery, because of the notion that it is tas thabe confident about
the correctness of new techniques.

Given that a significant range of innovation within the filst®m deals with its
interaction with the disk and can have correctness impdinat this inertia against
changing “time-tested” alternatives stifles the incorgioraof new functionality in
file systems. A systematic framework to reason about a negeméfunctionality
can greatly reduce this barrier to entry. In Section 9.8, wpgse a new file system
functionality and use our logic to prove its correctnessfurther illustrate the effi-

143

cacy of the logic in reasoning about new functionality, warake in Section 9.6.2
a very common file system featuriee., journaling, and show that starting from
a simple logical model of journaling, we can systematicallyive at the various
corner cases that need to be handled, some of which involvittadly complex
interactions [112].

A key attraction of the logic framework is that it enablesremental modeling
one need not have a complete model of a file system in ordeattiopsbving prop-
erties, but instead can model the specific subset of the filimsythat is impacted
by the new functionality.

9.2.3 Designing semantically-smart disks

The logic framework also significantly simplifies reasoniggout semantically-
smart disk systems. As we showed in our various case studfes;ng informa-
tion accurately underneath modern file systems is quite taxngspecially be-
cause it is dependent on the dynamic properties of the filemsysin Section 9.9,
we show that the logic can simplify reasoning about a semaligk; this can in
turn enable more aggressive classes of functionality iresgimdisks.

9.3 Background

In this section, we provide some basic context informatiboua file systems.
While Chapter 2 provided detailed background informatibau file systems, this
section provides a high-level background for a general maidefile system.

A file system organizes disk blocks into logical files and clioeies. In order
to map blocks to logical entities such as files, the file sydtatks various forms
of metadata correct maintenance of this metadata is crucial to englgnoper re-
trieval of data by the file system. In this section, we firstadibg the forms of
metadata that file systems track, and then discuss the i$dile gystem consis-
tency. Finally, we describe the asynchrony of file systehws, it a major source of
complexity in its interaction with disk.

9.3.1 File system metadata

File system metadata can be classified into three types:

Directories: Directories map a logical file name to per-file metadata. &inc
the file mapped for a name can be a directory itself, diregsoehable a hierarchy
of files. When a user opens a file specifyingptgh namethe file system locates
the per-file metadata for the file, reading each directoriénpath if required.

144

File metadata: File metadata contains information about a specific file. Ex-
amples of such information are the set of disk blocks thatprisa the file, the size
of the file, and so on. In certain file systems such as FAT, filadsaa is embedded
in the directory entries, while in most other file systems, ffiletadata is stored sep-
arately €.g, inodes) and is pointed to by the directory entries. The tgasnfrom
file metadata to the actual disk blocks can sometimes beeirtdil througlindirect
pointerblocks which in turn contain pointers to actual data blocks.

Allocation structures: File systems manage various resources on disk such as
the set of free disk blocks that can be allocated to new filed tlae set of free file
metadata instances. To track such resources, file systemsamastructuresd.g,
bitmaps, free lists) that indicate for each instance of éseurce, whether it is free
or busy.

In addition, file systems track other metadatay(super block for bootstrap-
ping, etc.), but we mainly focus on the three major typesutised above.

9.3.2 File system consistency

For proper operation, the internal metadata of the file aysiad its data blocks
should be in @onsistenstate. By consistency, we mean that the state of the various
metadata structures obeys a set of invariants that the fidemsyrelies on. For
example, a directory entry should only point to a valid filetagata structure; if
a directory points to file metadata that is uninitializée.(marked free), the file
system is said to bimconsistent

Most file systems provide metadata consistency, since shatuicial to cor-
rect operation. A stronger form of consistencydata consistengywhere the file
system guarantees that data block contents always conedpdhe file metadata
structures that point to them. We discuss this issue in @eéti6.1. Many modern
file systems such as Linux ext3 and ReiserFS provide datastensy.

9.3.3 File system asynchrony

An important characteristic of most modern file systemseasaiynchronythey ex-
hibit during updates to data and metadata. Updates areyshuoffered in memory
and are written to disk only after a certain delay intervathwossible reordering
among those writes. While such asynchrony is crucial fofgparance, it compli-
cates consistency management. Due to asynchrony, a sysismleads to a state
where an arbitrary subset of updates has been applied onpditdatially leading
to an inconsistent on-disk state. Asynchrony of updatesatincipal reason for
complexity in the interaction of a file system with the disk.

145

9.4 The Formalism

In this section, we define a formal model of a file system. W diefine the basic
entities in the model and the various relationships amoegithWe then present
basic operations and logical postulates.

9.4.1 Basic entities

The basic entities in our model acentainers pointers andgenerations A file
system is simply a collection of containers. Containersliated to each other
through pointers. Each file system differs in the exact tyygdeontainers it defines
and the relationship it allows between those containerstytds abstraction based
on containers and pointers is thus general to describe angyfitem.

Containers in a file system can freedandreused A container is considered
to be free when it is not pointed to by any other containes live otherwise. The
instance of a container between a reuse and the next fredlad eegeneration
thus, a generation is a specific incarnation of a contain@me@tions are never
reused. When a container is reused, the previous genew@itithrat container is
freed and a new generation of the container comes to life. Weigaion is thus
fully defined by its container plus a logicgeneration numbethat tracks how
many times the container was reused. Note that generatiesrd refer to the
contentsof a container, but is an abstraction for its current inctona contents
can change without affecting the generation.

We illustrate the notion of containers and generations wiimple example
from a typical UNIX-based file system. If the file system camdaa fixed set of
designatednodes each inode slot is eontainer At any given point, an inode slot
in use is associated with an inodenerationthat corresponds to a specific file.
When the file is deleted, the corresponding inode generaioeleted (forever),
but the inode container is simply marked free. A differerd fiteated later can
reuse the same inode container for a logically differentléngeneration. Similarly,
a directory container is the block in which the directoryrigistare stored; the block
can have a different generation at a later time. Pointera fhe directory to inodes
are pointers to the respective inocentainers because directory entries typically
just contain the inode number.

Note that a single containee.g, an inode) can point to multiple containers
(e.g, data blocks). A single container can also be sometimeggabin by multiple
containers €.g, hard links in UNIX file systems). Data block containers tgily
do not point to any other container.

146

Symbol Description

&A set of entities that point to containgr

*x A set of entities pointed to by containdr
|A] container that tracks if container is live
&a set of entities that point to generatian
*Q set of entities pointed to by generation

A — B | denotes that containet has a pointer t&3
&A =0 | denotes that no entity points tb

Ak thek*" epoch of containert

t(A®) type of k" epoch of container A

g(AF) generation of th&!” epoch of containes
C(a) container associated with generation
Ag generatiork of containerA

Table 9.1:Notations on containers and generations.

Notations

The notations used to depict the basic entities and theae#hlips across them are
listed in Table 9.1. Containers are denoted by upper camedewhile generations

are denoted by lower case letters. An “entity” in the desnmprepresents a con-
tainer or a generation. Note that some notations in the &iglelefined only later

in the section.

Memory and disk versions of containers

A file system needs to manage its structures across two dematatile memory
and disk. Before accessing the contents of a container,|¢h&/Stem needs tead
the on-disk version of the container into memory. Subseilyeine file system
can make modifications to the in-memory copy of the contaared such modified
contents are periodically written to disk after a certaimation of residence in
memory. Thus, until the file system writes a modified contaio&lisk, the contents
of a modified container in memory will be different from that disk.

9.4.2 Beliefs and actions

We formulate the logic in terms difeliefsandactions A belief represents a certain
state in memory or disk, while an action is some operatiofopmed by the file
system, resulting in a certain set of beliefs.

147

A belief represents the creation or existence of a cegtte Any statement
enclosed within{} represents a belief. Beliefs can be eitiememorybeliefs or
on diskbeliefs, and are denoted as eitfén, or {}p respectively. For example
{A — B}, indicates thatA — B is a belief in the file system memorye,,
containerA currently points toB in memory, while{A — B}p means it is a
disk belief. While memory beliefs just represent the stheefile system tracks in
memory, on-disk beliefs are defined as follows: a belief fad disk at a given
time, if on a crash, the file system can conclude with the sagtieflpurely based
on a scan of on-disk state at that time. On-disk beliefs are $blely dependent on
on-disk data.

Since the file system manages free and reuse of contairebgligfs can be in
terms ofgenerationsfor example{ A, — B,} . is valid (note that4;, refers to gen-
erationk of containerA). However, on-disk beliefs can only deal with containers,
since generation information is lost at the disk. In Secti®@!8 and 9.9, we propose
techniques to expose generation information to the distf,sliow that it enables
better guarantees.

The other component of our logic &tions which result in changes to the set
of beliefs that hold at a given time. There are two actionsnéefin our logic, both
performed by the file system on the disk:

e read(A) — This operation is used by the file system to read the conténts
an on-disk container (and thus, its current generatiory memory. The
file system needs to have the container in memory before inadify it.
After aread, the contents ofd in memory and on-disk are the same,,
{Arm ={A}p.

e write(A) — This operation results in flushing the current contents asra
tainer to disk. After this operation, the contents4in memory and on-disk
are the same.e., {A}p = {A} .

9.4.3 Ordering of beliefs and actions

A fundamental aspect of the interaction of a file system wittk ds the order-
ing among its actions. The ordering of actions also determime®tder in which
beliefs are established. The operation of a file system canelweed as a partial
ordering on the beliefs and actions it goes through. To aedgons and the result-
ing beliefs, we use thbefore(«) andafter (>>) operators. Thusy < [means
thata occurred beforg in time. Note that byrderingbeliefs, we are using thig
notation as both a way of indicating tbheentof creation of the belief, and thstate
of existence of a belief. For example, the beljgf — A}, represents the event
where the file system assigrsas one of the pointers frotA.

148

We also use a special ordering operator caiestedeg<). Only a belief can
appear to the left of & operator. The< operator is defined as follows: < [
means that belieft occurs befores (i.e, a < 8 = a <« f); further, it means
that beliefa holds at least untif occurs. This implies there is no intermediate
action or event between and § that invalidates belief.. The operator is not
transitive;a < 3 < - does not implyx < ~, because beliet needs to hold only
until 8 and not necessarily until (note thatoe < 3 < -+ is simply a shortcut for

(@< B)A(B=7)A(a<7)).

9.4.4 Proof system

Given our primitives for sequencing beliefs and actions cene definerulesin our

logic in terms of anmplication of one event sequence given another sequence. We
use the traditional operators> (implication) and< (double implication,i.e., if

and only if). We also use the logical AND operator) (and logical OR Y) to
combine sequences.

An example of a logical rule isx < 3 = ~. This notation means thavery
timean event or actio occurs afteky, eventy occursat the point of occurrence
of 3. Another example of arule is < f = o < v < 3 this rule denotes
that every times occurs aftera, + should have occurred sometime between
and 5. Note that in such a rule where the same event occurs in bd#s,sthe
event constitutes a temporal reference point by referiintdhé same time instant
in both LHS and RHS. This temporal interpretation of idegitievents is crucial to
the above rule serving the intended implication; otherwlieeRHS could refer to
some other instant where < .

Rules such as the above can be used in logical proofs/bgt sequence sub-
stitutiory for example, with the rulee < [= ~, whenever the subsequence
a < [occurs in a sequence of events, it logically implies the eyerwe could
then apply the above rule to any event sequence by replaningusequence that
matches the left half of the rule, with the right half; thusthathe above rule, we
have the following postulater < < § = v < 4.

9.4.5 Attributes of containers

To make the logic expressive for modern file systems, we dxtemvocabulary of
the logic with attributes on a container; a generation hasttime attributes as its
container. We define three attributes: epoch, type, andnghar

149

Epoch

The epochof a container is defined as follows: every time ttoatentsof a con-
tainer changén memory its epoch is incremented. Since the file system can batch
multiple changes to the contents due to buffering, the sepoths visible at the
disk is a subset of the total set of epochs a container goesghr We denote an
epoch by the superscript notatioA* denotes thé:*"* epoch ofA. Note that our
definition of epoch is only used for expressivity of our lggtdoes not imply that

we expect the file system to track such an epoch. Also noteistiaation between
anepochand ageneration a generation change occurs only on a reuse of the con-
tainer, while an epoch changes on every change in contenitien the container

is reused.

Type

Containers can have a certaype associated with them. The type of a container
can either bestatic i.e., it does not change during the lifetime of the file system, or
can bedynami¢ where the same container can belong to different typedfateit
points in time. For example, in typical FFS-based file systdnode containers
are statically typed, while block containers may changér ttype between data,
directory and indirect pointers. We denote the type of aaioet A by the notation
t(A).

Shared vs. unshared

A container that is pointed to by more than one container lisd¢a shared con-
tainer, a container that has exactly one pointer leading into itrishared. By
default, we assume that containers are shared. We dendtaradscontainers with
the @ operator. A indicates thatd is unshared. Note that being unshared is a
property of the containelypethat the file system always ensures; a container be-
longing to a type that is unshared, will always have only oniater pointing into

it. For example, most file systems designate data block smrsato be unshared.

9.4.6 Logical postulates

In this subsection, we present the fundamental rules thagrgahe behavior of
event sequences and beliefs. We first define the compositioar @perators, and
then present the rules of our logic using those operators.

150

Operator composition

We define the following rules on how the operators in our lagimpose with each
other:

e The operator AND /) is distributive with the precedes] operator and the
other ordering operatorsg and>>>).

aN (B=<7v) = (anp)=< (aA7) (9.1)

e The < operator distributes over itself according to the follogvirule (note
the parentheses used to group the beliefs, which are otenet transitive):

({st1} < {st2}) < {st3} = {stl} < {st2} A
{st1} < {st3} A
{st2} < {st3} (9.2)

Basic rules

We now present the basic rules that govern the transitiorladfis across memory
and disk, and the actions leading to them.

e If a containerB points toA in memory, its current generation also points to
A in memory.

{B* = Aty & {9(BY) = Alu (9:3)
e If B points toA in memory, awrite of B will lead to the disk belief thaBB
points toA.

{B — A}M < write(B) = {B — A}D (9.4)

The converse states that the disk belief implies that theedaatief first oc-
curred in memory.

{B—A}p = {B—-Alu< {B—A}p (9.5)

e Similarly, if B points toA on disk, aread of B will result in the file system
inheriting the same belief.

151

{B — A}D < read(B) = {B — A}M (9.6)

If the on-disk contents of containet pertain to epocly, some generation
should have pointed to generatigfA?) in memory, followed bywrite(A).
The converse also holds:

{A%}p = {c— g(AY)}m < write(4) < {AY}p (9.7)
{¢ = Ap}m < write(A) = {AY}p A (g(AY) =k) (9.8)

If {v — A} and{c — 4;} hold in memory at two different points in time,
containerA should have been freed between those instants.

{b— At < {c—= At N (k#J)
={b— At < {&A =0} < {c— Ajlm (9.9)

Note that the rule includes the scenario where an interrteedeneratiord;
occurs between;, and A;.

If containerB pointed toA on disk, and subsequently the file system removes
the pointer fromB to A in memory, a write ofB will lead to the disk belief
that B does not point toA.

{B— A}p < {A ¢ *B}n < write(B)
={A¢ «B}p (9.10)

Further, if A is an unshared container, the write Bfwill lead to the disk
belief that no container points t4, i.e., A is free

BAN ({B— A}p < {&A =0}m < write(B))
= {&A=0}p (9.11)

If Ais adynamically typed container, and its type at two instame differ-
ent, A should have been freed in between.

({t(A) =zt < {t(A) =ytm) A (z #y)
= {t(A) = 1’}M < {&A = (Z)}M < {t(A) = y}M (9.12)

152

9.5 File System Properties

Various file systems provide different guarantees on theitate behavior. Each
guarantee translates into new rules to the logical moddiefite system, and can
be used to complement our basic rules when reasoning alatuilehsystem. In
this section, we discuss three such properties.

9.5.1 Container exclusivity

A file system exhibitontainer exclusivityif it guarantees that for every on-disk
container, there is at most one dirty copy of the containeostents in the file
system cache. It also requires the file system to ensurehthatimemory contents
of a container do not change while the container is beingtevrito disk. Many
file systems such as BSD FFS, Linux ext2 and VFAT exhibit doeteexclusivity;
some journaling file systems like ext3 do not exhibit thisgandy. In our equations,
when we refer to containers in memory, we refer to the lajgstle of the container
in memory, in the case of file systems that do not obey contaxausivity. For
example, in eq. 9.1§&A = (0}, means that at that time, there is no container
whose latest epoch in memory points A4g similarly, write(B) means that the
latest epoch oB at that time is being written. When referring to a specificsian,
we use the epoch notation. Of course, if container excliysialds, only one epoch
of any container exists in memory.

Under container exclusivity, we have a stronger conversedo9.4:

{B — A}D = {B — A}M < {B — A}D (9.13)

If we assume thatl is unshared, we have a stronger equation following from
equation 9.13, because the only way the disk beglief- A}, can hold is ifB was
written by the file system. Note that many containers in tgbfite systems (such
as data blocks) are unshared.

{B—-A}p = {B—A}lu =<
(write(B) < {B — A}p) (9.14)

9.5.2 Reuse ordering

A file system exhibitseuse orderingf it ensures that before reusing a container, it
commits the freed state of the container to disk. For exanifplé is pointed to by
generatiorb in memory, later freedig., &A = ()), and then another generation

153

is made to point ta4, the freed state ofl (i.e., the container of generatidn with
its pointer removed) is written to disk before the reuse oc&cu

{b — A}]\,{ < {&A = (2)}1\4 < {C — A}]V[
= {&A =0} < write(C(b)) < {c— A}ar

Since every reuse results in such a commit of the freed st&teould extend
the above rule as follows:

b= Aty < {&A =0} < {c— A}m
= {&A =0}y < write(C(b)) € {¢ — A}m (9.15)

FFS with soft updates [32], and Linux ext3 are two exampleBl®fsystems
that exhibit reuse ordering.

9.5.3 Pointer ordering

A file system exhibitgointer orderingif it ensures that before writing a container
B to disk, the file system writes all containers that are pointeby B.

{B — A}n < write(B)
= {B — A}m < (write(A) < write(B)) (9.16)

FFS with soft updates is an example of a file system that eshointer order-
ing.

9.6 Modeling Existing Systems

Having defined the basic formalism of our logic, we proceedding the logic to
model and reason about file system behaviors. In this seatierpresent proofs
for two properties important for file system consistencyst-iwe discuss thdata
consistencyroblem in a file system. We then model a journaling file syséeith
reason about theon-rollbackproperty in a journaling file system.

9.6.1 Data consistency

We first consider the problem afata consistencyf the file system after a crash.
By data consistency, we mean that the contents of data btwdkioers have to be
consistent with the metadata that references the datadldclother words, a file

154

should not end up with data from a different file when the filstegn recovers after

a crash. Let us assume thatis a file metadata container (i.e. contains pointers
to the data blocks of the respective file), ands a data block container. Then,
if the disk belief thatB* points to A holds, and the on-disk contents dfwere
written whenk was the generation od, then epochB* should have pointed (at
some time in the past) exactly to thé&" generation ofd in memory, and not a
different generation. The following rule summarizes this:

{Bz — A}D A {Ay}D = ({Bz — Ak}M < {BCc N A}D)
A (k= g(A%))

For simplicity, let us make a further assumption that the daintainers in our
file system are nonshare@ 4), i.e. different files do not share data block pointers.
Let us also assume that the file system obeys the containkrsisity property.
Many modern file systems such as ext2 and VFAT have these niiexe Since
under block exclusivity B® — Alp = {B* — A}x < {B® — A}p (by eq. 9.13), we
can rewrite the above rule as follows:

({B* — Ax}m < {B" — A}p) A {A%}p
= (k= g(A")) (9.17)

If this rule does not hold, it means that the file representethb generation
g(B?) points to a generatiok of A, but the contents ofi were written when its
generation wag(AY), clearly a case of data corruption.

To show that this rule does not always hold, we assume thdiorgmd prove
that it is reachable as a sequence of valid file system adfiors 5 = —(aA—f)).

From eq. 9.7, we havea¥}p = {c — g(A¥)}ar < write(A). Thus, we have two
event sequences implied by the LHS of eq. 9.17:

7. {Bz — Ak}j\,{ < {Bz — A}D
it. {c— g(AY)}m < write(A)

Thus, in order to prove eq. 9.17, we need to prove that evesyiple interleav-
ing of the above two sequences, together with the claugseg(AY)) is invalid. To
disprove eqg. 9.17, we need to prove that at least one of thdgatings is valid.

Since(k # g(AY)), and since{B® — Ax}m < {B® — A}p, the event{c —
g(AY)}r cannot occur in between those two events, due to contairensixity
and becausel is unshared. SimilarlyB® — A,}a cannot occur betweeft —
(A%} < write(A). Thus, we have only two interleavings:

155

LAB® — Ax}m < {B* — A}p < {c — g(A")}mr < write(A)
2. {c = g(A")}m < write(A) € {B* — Ax}u < {B* — A}p

Case 1.
Applying eg. 9.3,

= {9(B") = Ax}m < {B" — A}p
< {ec— g(A")}u < write(A) N (k# g(AY))

Applying eg. 9.9,

= {9(B*) — Axtm < {B" = A}p
< A{&A =0 m < {c— g(AY)}m < write(A) (9.18)

Since step 9.18 is a valid sequence in file system executibarexgeneration
A* could be freed due to delete of file represented by generatiBfi) and then a
subsequent generation of the block is reallocated to thesjileesented by genera-
tion ¢ in memory, we have shown that this violation could occur.

Let us now assume that our file system obeys reuse ordedngguation 9.15.
Under this additional constraint, equation 9.18 would wriple following:

= {9(B*) = Ar}m < {B" — A}p <
{&A =0} n < write(B) <
{c = g(A")}m < write(A)

By eq. 9.11,

= {9(B") = Ax}m < {B* — A}p <
{&A=0}p < {c— g(A")}m <
write(A)

= {&A=0}p A {A}D (9.19)

This is however, a contradiction under the initial assumptive started off
with, i.e. {&A = B}p. Hence, under reuse ordering, we have shown that this
particular scenario does not arise at all.

Case 2:{c — g(AY)} s < write(A) < {B* — Ayx}m < {B* — Alp A (k # g(AY))
Again, applying eq. 9.3,

= (k#g(A") A {c— g(A")}m < write(A) <
{9(B*) — Ax}m < {B* — A}p

156

By eqn 9.9,
= {c—g(AY)}Im < write(A) € {&A=0}m
< {9(B") = Ax}m < {B" — A}p (9.20)

Again, this is a valid file system sequence where file germratpointed to data
block generatiory(AY), the generatiog(AY) gets deleted, and a new generation
of containerA gets assigned to file generatig(B™”). Thus, consistency violation
can also occur in this scenario.

Interestingly, when we apply eqg. 9.15 here, we get

= {c—g(AY)}m < write(A) < {&A=0}m
< write(C(c)) < {9(B*) — Artm
=< {Bz — A}D

However, we cannot apply eq. 9.11 in this case because tled bel — A}p
need not hold. Even if we did have a rule that led to the bgliefl = ()} , imme-
diately afterwrite(C/(c)), that belief will be overwritten by B* — A} p later in
the sequence. Thus, eq. 9.15 does not invalidate this segususe ordering thus
does not guarantee data consistency in this case.

Let us now make another assumption, that the file system &lsgsagpointer
ordering (eq. 9.16).

Since we assume that is unshared, and that container exclusivity holds, we
can apply eq. 9.14 to equation 9.20.

= {c— g(AY)}m < write(A) € {&A =0} <
{g(B*) = Ax}m < write(B) < {B” — A}p (9.21)
Now applying the pointer ordering rule (egn 9)16,
= {c— gAY} < write(A) € {&A =0} <

{9(B*) = Ar}tm < write(A) < write(B)
< {B" — A}p

By eq. 9.8,
= {c— A}u < write(A) € {&A =0} <

{AY}p < write(B) < {B” — A}p A (k= g(AY))
= {AY}p A {B" — A}p A (k= g(AY)) (9.22)

This is again a contradiction, since this implies that theteots ofA on disk
belong to the same generatich,, while we started out with the assumption that

157

g(AY) # k.

Thus, under reuse ordering and pointer ordering, the fileesysiever suffers
a data consistency violation. If the file system does not abgysuch ordering
(such as ext2), data consistency could be compromised shasa Note that this
inconsistency is fundamental, and cannot be fixed by scaaebeonsistency tools
such adsck

9.6.2 Modeling file system journaling

We now extend our logic with rules that define the behavior @@urnaling file
system. We then use the model to reason about a key propeatjournaling file
system.

Journaling is a technique commonly used by file systems tarensetadata
consistency. When a single file system operation spanspiautthanges to meta-
data structures, the file system groups those changes mmamsactionand guar-
antees that the transaction commits atomically; eitheclainges reach disk or
none of them reach disk, thus preserving consistency. Taideaatomicity, the
file system first writes the changes twvate-ahead log (WAL)and propagates the
changes to the actual on-disk location only after the tretiwais committedo the
log. A transaction is committed when all changes are loggead,a special “com-
mit” record is written to log indicating completion of theatrsaction. When the
file system recovers after a crash, a checkpointing praeggaysall changes that
belong to committed transactions.

To model journaling, we consider a logical “transactionfem that determines
the set oflog record containers that belong to that transaction, and thus ltgica
contains pointers to the log copies of all containers madiifiehat transaction. We
denote the log copy of a journaled container by tegmbol on top of the container
name;A? is thus a container in tHeg, i.e., journal of the file system (note that we
assumehysical logging such as the block-level logging in ext3). The physical re-
alization of the transaction object is the “commit” recasithce it logically points to
all containers that changed in that transaction. For WAIpprty to hold, the com-
mit container should be written only after the log copy ofrabhdified containers
that the transaction points to, are written.

If T'is the commit container, the WAL property leads to the follmgvtwo rules:

{T — A=}pr < write(T) = {T — A*}y < (write(A»)
< write(T)) (9.23)

{T — A=}y < write(A”) = {T — A®}y < (write(T)
< write(A")) (9.24)

158

The first rule states that the transaction is not commitied €¢ommit record
not written) until all containers belonging to the trangactare written to disk.
The second rule states that the on-disk copy of a contairveritien only after the
transaction in which the container was modified, is commhittedisk. Note that
unlike the normal pointers considered so far that point tdaoers or generations,
the pointers from containéf in the above two rules point tepochs Theseepoch
pointersare used because a commit record is associated with a sgth €.9,
snapshot) of the container.

The replay or checkpointing process can be depicted by tlosviag two rules.

{T — A=}p A {T}p = write(A”) < {A"}p (9.25)
{T1 — A”}D ANAT: — A?’}D AN {Th}p < {I2}p)
= write(AY) < {AY}p (9.26)

The first rule says that if a container is part of a transaciod the transaction
is committed on disk, the on-disk copy of the container isaipd with the logged
copy pertaining to that transaction. The second rule satdftthe same container
is part of multiple committed transactions, the on-diskycaop the container is
updated with the copy pertaining to the last of those traiwa

The following belief transitions hold:

({T — BAZ}M N {Bw — A}M) < write(T)
= {B® — A}p (9.27)
{T — AZ}NI < wm’te(T) = {AZ}D (928)

Rule 9.27 states that iB* points to A and B* belongs to transactiof’, the
commit of ' leads to the disk beliefB* — A}p . Rule 9.28 says that the disk
belief { A%} p holds immediately on commit of the transaction whi¢his part of;
creation of the belief does not require the checkpoint woiteappen. As described
in §9.4.2, a disk belief pertains to the belief the file system ld@each, if it were
to start from the current disk state.

In certain journaling file systems, it is possible that onbyi@iners of certain
types are journaled; updates to other containers directhpglisk, without going
through the transaction machinery. In our proofs, we wilhsider the cases of
both complete journaling (where all containers are jowdplnd selective jour-
naling (only containers of a certain type). In the selectiase, we also address the
possibility of a container changing its type from a jourktgpe to a non-journaled
type and vice versa. For a containgrthat belongs to a journaling type, we have
the following converse of equation 9.27:

159

{B* — A}p = ({T —B*}uA {B*— A}m)
< write(T) < {B* — A}p (9.29)

We can show that in complete journaling, data inconsistemsyer occurs; we
omit this due to space constraints.

The non-rollback property

We now introduce a new property calledn-rollbackthat is pertinent to file sys-
tem consistency. We first formally define the property ana tteason about the
conditions required for it to hold in a journaling file system

The non-rollback property states that the contents of aaboett on disk are
never overwritten bylder contents from a previous epoch. This property can be
expressed as:

{A"tp < {A%p = {A"tn < {A%u (9.30)

The above rule states that if the on-disk contentglahove from epochr to
y, it should logically imply that epockr occurred before epoch in memory as
well. The non-rollback property is crucial in journalingefidystems; absence of the
property could lead to data corruption.

If the disk believes in the** epoch ofA, there are only two possibilities. If
the type ofA* was a journaled typed”® should have belonged to a transaction and
the disk must have observed the commit record for the tréinsa@s indicated in
eq 9.28, the belief of A*} p occurs immediately after the commit. However, at
a later point the actual contents 4f will be written by the file system as part of
its checkpoint propagation to the actual on-disk locatibas re-establishing belief
{A"}p. If J is the set of all journaled types,

{A%}p A {t(A%) € Tl = ({A"}u A {T — A7})
=< write(T) < {A"}p
< write(A”) < {A"}p (9.31)

The second possibility is that® is of a type that is not journaled. In this case,
the only way the disk could have learnt of it is by a prior corafiiA*.

{A%}p A {t(A") ¢ JTim = {A"}m < write(A”)
< {A%}p (9.32)

160

A* and AY are journaled:

Let us first assume that bot* and AY belong to a journaled type. To prove
the non-rollback property, we consider the LHS of eq 980} » <« {AY}p; Since
both A* and AY are journaled, we have the following two sequence of evémas t
led to the two beliefs (by eq. 9.31):

({A" A (T — Am}ar) < write(Th) < {A%}p
< write(A®) < {A%}p

({Ay}M A {TQ — Ay}M) < wTite(TQ) < {Ay}D
< write(AY) < {AY}p

Omitting thewrite actions in the above sequences for simplicity, we have the
following sequences of events:

i. {A"lvw < {A"}p < {A%}p
. {Atu < {AY}p < {AY}p

Note that in each sequence, there are two instances dfaimedisk belief
being created: the first instance is created when the camegpy transaction is
committed, and the second instance, when the checkpoipagation happens at
a later time. In snapshot-based coarse-grained journalisgms (such as ext3),
transactions are always committed in order. Thus, if epd€hoccurred before
AY, Ty will be committed beforel (i.e., the first instance of A*} p will occur
before the first instance gfAY} . Another property true of such journaling is that
the checkpointing is in-order as well; if there are two comtexi transactions with
different copies of the same data, only the version perigito the later transaction
is propagated during checkpoint.

Thus, the above two sequences of events lead to only twddaaténgs, de-
pending on whether epochoccurs before epoch or vice versa. Once the order-
ing between epoch andy is fixed, the rest of the events are constrained to a single
sequence:

Interleaving 1.:

{A" e < {A"n) A ({A%}p < {A%}p < {AY}p)
= {A"tm < {AY}m

Interleaving 2:

= ({Atm < {A") A ({A%p < {A%}p < {A%}p)

161

= {AIp < {A%}p

Thus, the second interleaving results in a contradictiomfour initial state-
ment we started withi.g.,, {4°}p < {A4¥}p). Therefore the first interleaving is
the only legal way the two sequences of events could be cadbiBince the first
interleaving implies thaf4”}, < {AY}., We have proved that if the two epochs
are journaled, the non-rollback property holds.

AY is journaled, but A* is not:

We now consider the case where the typelathanges between epochsnd
1y, such that4¥ belongs to a journaled type amt¥ does not.

We again start with the statemepl”}p < {AY}p. From equations 9.31
and 9.32, we have the following two sequences of events:

i ({AY}m A {T — Av}nr) < write(T)
< {AY}p <« write(AY) < {AY}p
. {Aw}M < write(Aw) < {Aw}D

Omitting thewrite actions for the sake of readability, the sequences become:

i. {A"lu < {AY}p < {AY}D
ii. {A"}m < {A"}p

To prove the non-rollback property, we need to show thatyepessible inter-
leaving of the above two sequences whete},, < {A”}, results in a contradic-
tion, i.e.,, cannot co-exist withA”}p < {AY}p.

The interleavings whergav},, <« {A%}a are:

{A My < {A% v < {A%}p < {AY}p <« {AY}D
{A My < {AY}p < {A"tu < {A%}p < {AY}D
{A% < {AY}p <« {A%}p < {A"}mw < {A%}D
Ay < {A% v < {AY}p < {A%}p < {AY}D
{A My < {A% v < {AY}p < {AY}p < {4A%}D
{A vy < {AY}p < {A% v < {AY}p < {A%}p

A S o e

Scenarios 3,5,and 6 implyAY}p < {A*}p and are therefore invalid inter-
leavings.
Scenarios 1,2, and 4 are valid interleavings that do notradiat our initial as-
sumption of disk beliefs, but at the same time, impl§¥},; < {A%}; these
scenarios thus violate the non-rollback property. Thesfander dynamic typ-
ing, the above journaling mechanism does not guaranteeailtmack. Due to this

162

violation, file contents can be corrupted by stale metadatggtions.

Scenario 2 and 4 occur because the checkpoint propagatearl@r epoctd?
which was journaled, occuedter A was overwritten as a non-journaled epoch. To
prevent this, we need to impose that the checkpoint projmemat a container in
the context of transactiofi’ does not happen if the on-disk contents of that con-
tainer were updatedfter the commit of 7. The journal revoke recordsn ext3
precisely guarantee this; if a revoke record is encountdrethg log replay, the
corresponding block is not propagated to the actual disktiog.

Scenario 1 happens because a later epochisfcommitted to disk before the
transaction which modified an earlier epoch is committedprévent this, we need
a form ofreuse orderingwhich imposes that before a container changes type (i.e.
is reused in memory), the transaction that freed the prejemeration be commit-
ted. Since transactions commit in order, and the freeingsretion should occur
after transactionl’ which usedA? in the above example, we have the following
guarantee:

{t(A%) € Jhu A {H(A") ¢ Tha A (A} < {A"}u)
= {A%} v < write(T) < {A%}m

With this additional rule, scenario 1 becomes the same asmsos 2 and 4
and is handled by the revoke record solution. Thus, undeettwo properties, the
non-rollback property is guaranteed.

9.7 Redundant Synchrony in Ext3

We examine a performance problem with the ext3 file systenmrevite transaction
commit procedure artificially limits parallelism due to @oadant synchrony in its
disk writes [82]. Theordered mod®f ext3 guarantees that a newly created file will
never point to stale data blocks after a crash. Ext3 ensbigegtarantee by the
following ordering in its commit procedure: when a trangatis committed, ext3
first writes to disk the data blocks allocated in that trafieacwaits for those writes
to complete, then writes the journal blocks to disk, waitdfimse to complete, and
then writes the commit block, If is an inode containerf” is a file data block
container, and’ is the transaction commit container, the commit procedéiBxt3
can be expressed by the following equation:

({[z — Fk}]\l A {T — [Az}]\,{) < wm’te(T)
= ({[z — Fk}]\,f N {T — IAI}]\,{)
< write(F) < write(I*) < write(T) (9.33)

163

To examine if this is a necessary condition to ensure thdale-data guarantee,

we first formally depict the guarantee that the ext3 orderederseeks to provide,
in the following equation:

"= Fiu < {I"=F}p = {F}p<{I"=F}p
A(g(FY) =k) (9.34)

The above equation states that if the disk acquires thefltebe{/* — F'},
then the contents of the data contairféron disk shouldalready pertain to the
generation off’ that I* pointed to in memory. Note that because ext3 obeys reuse
ordering, the ordered mode guarantee only needs to catee twate of free data
block container being allocated to a new file.

We now prove equation 9.34, examining the conditions thatirte hold for
this equation to be true. We consider the LHS of the equation:

{I" > Fuilu < {I" > F}p

Applying equation 9.29 to the above, we get

= ({I" = Filu A {T — I*}u) <
write(T) < {I" — F}p

Applying equation 9.33, we get

= ({[“L — Fk}M A {T — IA””}M) <
write(F) < write(I7) <
write(T) < {I" — F}p (9.35)

By equation 9.8,

= ({I"—> FIun{T— IA””}M) <
{FY}p < write(I*) <
write(T) < {I" — F}p A (g(FY)
= {F'}p < A{I" = Fip A (9(F") =

)

ES!

)

Thus, the current ext3 commit procedure (equation 9.33)agiees the no-
stale-data property. However, to see if all the waits in theva procedure are
required, let us reorder the two actionsite(F') andwrite(I*) in eq. 9.35:

= ({I" = Filu A {T — I7}u) <
write(I*) < write(F) <

164
write(T) < {I" — F}p

Once again, applying equation 9.8,
= {F'}p < AI" = F}p A (9(F") = k)

Thus, we can see that the ordering between the actiofts(") andwrite(I%)
is inconsequential to the guarantee that ext3 ordered nttefag@s to provide. We
can hence conclude that the wait that ext3 employs after tite W data blocks
is redundant, and unnecessarily limits parallelism beitwdsta and journal writes.
This can have especially severe performance implicatiosgettings where the log
is stored on a separate disk, because ext3 is unnecessaitlydl to single disk
bandwidth.

We believe that this specific example from ext3 points to a&garproblem with
file system design. When developers do not have rigorousefranmks to reason
about correctness, they tend todmnservative Such conservatism often translates
into unexploited opportunities for performance optimizat A systematic frame-
work such as our logic enables more aggressive performgutimipations while
not compromising correctness.

9.8 Support for Consistent Undelete

In this section, we demonstrate that our logic enables oneitikly formulate and
prove properties about new file system features and mechani¥Ve explore a
functionality that is traditionally not considered a paftcore file system design:
the ability toundeletedeleted files with certain consistency guarantees. The abil
ity to recover deleted files is useful, as demonstrated byatiye number of tools
available for the purpose [83, 87]. Such tools try to rebdideted files by scav-
enging through on-disk metadata; this is possible to amexiecause file systems
do not normally zero out freed metadata containers (thegiarply marked free).
For example, in a UNIX file system, the block pointers in a tieleénode would
indicate the blocks that used to belong to that deleted file.

However, none of the existing tools for undelete can guasnunsistencyi.e.,
assert that the recovered contents are valid). While utededédundamentally only
best-effort (files cannot be recovered if the blocks weressgbently reused in an-
other file), the user needs to know how trustworthy the rem/eontents are. We
demonstrate using our logic that with existing file systesnshconsistentindelete
is impossible. We then provide a simple solution, and prbe¢ the solution guar-
antees consistent undelete. Finally, we present an impi&tien of the solution

165

in ext3.

9.8.1 Undelete in existing systems

In order to model undelete, the logic needs to be capable mkeging pointers
from containers holding deadgeneration. We introduce the notation to indicate
such a pointer, which we calldead pointer We also define a new operattron a
container that denotes the set of all dead live entities pointing to the container.
Let undel(B) be an action to initiate undelete of contairigr

The undelete process can be summarized by the followingiequa

undel(B) A {B* ~ A}p A {&A = {B}}p
& {B"~ A}p < {B' — A}p A (9(B") = g(BY)) (9.36)

In other words, if the dead (free) containBf points toA on disk, and is the
only container (alive or dead) pointing td, the undelete makes the generation
g(B?) live again, and makes it point téd.

The guarantee we want to hold for consistency is that if a gexcter from
B* to A is brought alive, the on-disk contents df at the time the pointer is
brought alive, must be corresponding to the same genertitadrepochB* origi-
nally pointed to in memory (similar to the data consisterayrfulation in§9.6.1):

{B® — Ay}m < {B” ~ A}p < {B" — A}p
A (g(B*) = g(BY))
= {B"~ Alp AN{A%}p A (9(A7) = k)

Note that the clausg B*) = g(BY) is required in the LHS to cover only the case
where thesamegeneration is brought to life, which would be true only fodetete.

To show that the above guarantee does not hold necessagilgomsider the
negation of the RHS,e., {A*}p A (g(A®) # k), and show that this condition can
co-exist with the conditions required for undelete as dbedrin equation 9.36. In
other words, we show thatdel(B)A {B* ~ A}pA {&A = {B}}pA {A*}p A (g(A%) #
k) can arise from valid file system execution.

We utilize the following implications for the proof:

{B*~ A}p & {B*" — Axtm < {&A =0}m < write(B)
{A%}p = {e—g(A7)}u < write(A) (€q.9.7)

166

Let us consider one possible interleaving of the above tvenesequences:
{c = g(A")}m < write(A) € {B* — Ap}m < {&A =0}m < write(B)

This is a valid file system sequence where a file representagebgrationc
points tog(A*), A* is written to disk, then block is freed frome thus killing the
generatiory(A?), and a new generatiad;, of A is then allocated to the generation
g(B*). Now, wheng(B¥) is deleted, and3 is written to disk, the disk has both
beliefs{B* ~» A} and{A*}p. Further, if the initial state of the disk wag A = 0},
the above sequence would also simultaneously lead to théeief {&A = {B}}p.
Thus we have shown that the conditiofis® ~ A}p A {&A = {B}}p A {A%}p A
(k # g(A%)) can hold simultaneously. An undelete Bfat this point would lead to
violation of the consistency guarantee, because it woddaate a stale generation
of A with the undeleted filg(B*). It can be shown that neither reuse ordering nor
pointer ordering would guarantee consistency in this case.

9.8.2 Undelete with generation pointers

We now propose the notion géneration pointerand show that with such pointers,
consistent undelete is guaranteed. So far, we have assiatgabinterson disk
point to containers(as discussed in Section 9.4). If instead, each pointertgabin
to a specifiageneration it leads to a different set of file system properties. To im-
plement such “generation pointers”, each on-disk containatains a generation
number that gets incremented every time the container seceuln addition, ev-
ery on-disk pointer will embed this generation number inithokl to the container
name. With generation pointers, the on-disk contents ohgadiwer will implicitly
indicate its generation. Thu§By } p is a valid belief; it means that the disk knows
the contents oB belong to generatiok.

Under generation pointers, the criterion for doing unde(ety. 9.36) becomes:

undel(B) A {B* ~ Ax}p N {Ax}p
< {B"~ Ap}p < {BY = Ai}p (9.37)

Let us introduce an additional constrajnt*}» A (k # g(A?)) into the left hand
side of the above equation (as we did in the previous sulosgcti

{B" ~ Ag}p A {Ar}p A {A"Yp A (k # g(A?)) (9.38)

Sincek # g(A?), letus denotg(A*) ash. Since every on-disk container holds
the generation number too, we have,} . Thus, the above equation becomes:

{B* ~ Ax}p AN {Ax}p AN {Antp A (K#h)

167

This is clearly a contradiction, since it means the on-disktainerA has the
two different generations and. simultaneously. Thus, it follows that an undelete
would not occur in this scenario (or alternatively, this Wwbbe flagged as incon-
sistent). Thus, all undeletes occurring under generatiomtgrs are consistent.

9.8.3 Implementation of undelete in ext3

Following on the proof for consistent undelete, we impletadnthe generation
pointer mechanism in Linux ext3. Each block has a generationber that gets
incremented every time the block is reused. Although theeggion numbers are
maintained in a separate set of blocks, ensuring atomic ¢bofrthe generation
number and the block data is straightforward in the datanling mode of ext3,
where we simply add the generation update to the createattios. The block
pointers in the inode are also extended with the generationber of the block.
We implemented a tool for undelete that scans over the dastligctures, restoring
all files that can be undeletensistently Specifically, a file is restored if the gen-
eration information in all its metadata block pointers rhatdgth the corresponding
block generation of the data blocks.

We ran a simple microbenchmark creating and deleting vawuiinectories from
the linux kernel source tree, and observed that out of rquyJ200 deleted files,
2970 files (roughly 25%) were detected to be inconsistent ravidundeletable,
while the remaining files were successfully undeleted. Thistrates that the sce-
nario proved in Section 9.8.1 actually occurs in practiceuadelete tool without
generation information would wrongly restore these filethwbrrupt or mislead-
ing data.

9.9 Application to Semantic Disks

We now move to the application of our logic framework for i@aiag about semantically-
smart disk systems. As seen from our case studies, thisniegsprocess is quite

hard for complex functionality. Our formalism of memory adidk beliefs fits the

SDS model, since the extra file system state tracked by an S@Ssentially a

disk belief. In this section, we first use our logic to expldre feasibility of track-

ing block type within a semantic disk. We then show that thegesof generation
pointers by the file system simplifies information trackinighin an SDS.

168

9.9.1 Block typing

An important piece of information required within a semardisk is thetype of
a disk container [102]. While identifying the type of stalig-typed containers is
straightforward, dynamically typed containers are hardeal with. The type of a
dynamically typed container is determined by the contefdgparentcontainer; for
example, an indirect pointer block can be identified only bgerving a parent in-
ode that has this block in its indirect pointer field. Thuacking dynamically typed
containers requires correlating type information from petgletermining parent,
and then using the information to interpret the contenthiefdynamic container.
For accurate type detection in an SDS, we want the followireygntee to hold:

(A" =klp = [tHA")=k}ur (9.39)

In other words, if the disk interprets the contents of an epbtto be belonging
to typek, those contents should have belonged to type memory as well. This
guarantees, for example, that the disk would not wronglgrpret the contents of
a normal data block container as an indirect block contaiiNate however that
the equation does not impose any guarantea/loenthe disk identifies the type of
a container; it only states that whenever it does, the as$oeiof type with the
contents is correct.

To prove this, we first state an algorithm of how the disk &siat a belief
about a certain type [102]. An SDS snoops on metadata tradbkjng for type-
determining containers such as inodes. When such a coniaim&itten, it ob-
serves the pointers within the container and concludes @iyiie of each of the
pointers. Let us assume that one such pointer of kypeints to contained. The
disk then examines if containet was written since the last time it was freed. If
yes, it interprets the current contents #fas belonging to typé. If not, when
A is written at a later time, the contents are associated wyh k. We have the
following equation:

{t(A")=k}p = {BY— AlpA (f(BY,A)=k)
AN{A"}p (9.40)

In other words, to interpref” as belonging to typé, the disk must believe
that some containeB points to A, and the current on-disk epoch &f (i.e., BY)
must indicate thatl is of type k; the functionf(BY, A) abstracts this indication.
Further, the disk must contain the contents of epdéhin order to associate the
contents with typé.

Let us explore the logical events that should have led to ebittte components

169

on the right side of equation 9.40. Applying eq. 9.13,

{BY — A}p N (f(BY,A) =k)

= ({BY — Au A (f(BY,A) =k)) = {BY — A}p

= ({By — A}M A {t(A) = k’}M) < {By — A}D (9.41)
Similarly for the other componertd® } p,

{A%}p = write(A”) < {A"}p (9.42)

To verify the guarantee in equation 9.39, we assume thaei dot hold, and
then observe if it leads to a valid scenario. Thus, we can hedlauset(A*) =
jtar A (§ # k) to equation 9.40, and our equation to prove is:

{BY = A}p A (f(BY,A) = k) A {A"}p A {H(A") = j}ur

We thus have two event sequences (from eq. 9.41 and 9.42):

L ({BY — Aym A {t(A) = k}m) < {BY — A}p
2. {t(A") = j}m A write(A”)

Since the type of an epoch is unique, andrdte of a container implies that it
already has a type,

{t(A®) = j}m A write(A”) = {t(A%) = j}m < write(A").
These sequences can only be interleaved in two ways. Théepboccurs

either before or after the epoch in whi¢h(A) = k} .
Interleaving 1:

({BY = A} A {t(A) = k}m) < {BY — A}p
< {t(A") = 5 m < write(A”)

By eq. 9.12,

= (B = Alu A {t(A) = k}m) < {BY = A}p
< {&A =0} < {t(A") = j}m < write(A)

This is a valid sequence where the contaidds freed after the disk acquired
the belief{ B — A} and a later version of is then written when its actual type has
changed tg in memory, thus leading to incorrect interpretationAdfas belonging
to typek.

However, in order to prevent this scenario, we simply needduse ordering
rule (eq. 9.15). With that rule, the above sequence wouldyirtine following:

170

= (B = Alu A {t(A) =k}m) < {BY = A}p

< {&A =0} < write(B) < {t(A") = j}m < write(A”)
= ({BY = Alu A {t(A) = k}m) < {BY — A}p

< {&A=0}p < {t(A") = j}m < write(A”)

Thus, whenA® is written, the disk will be treatingl as free, and hence will not
wrongly associated with type .
Interleaving 2:

Proceeding similarly with the second interleaving whereabpA® occurs be-
fore A is assigned typ&, we arrive at the following sequence:

= {t(A") =j}m < write(A”) < {&A=0}m
< ({BY = Aty A {t(A) = k}m) < {BY — A}p

We can see that simply applying the reuse ordering rule doeprevent this
sequence. We need a stronger form of reuse ordering whet&rdbd state” ofA
includes not only the containers that pointed4tobut also the allocation structure
|A| tracking liveness ofi. With this rule, the above sequence becomes:

= {t(A") =j}tm < write(A”) < {&A=0}u
< write(|A]) € ({BY — A} A {t(A) =k}um)
< {BY > Alp (9.43)

We also need to add a new behavior to the SDS which states lieat tive SDS
observes an allocation structure indicating tHat free, it inherits the belief that
Alis free.

{&A =0} < write(|4]) = {&A=0}p

Applying the above SDS operation to egn 9.43, we get

= {t(A%) = j}m < write(A”) € {&A = 0}p
< ({BY = A}am A {t(A) = k}m) < {BY — A}p

In this sequence, because the SDS does not observe a wrtsiate it was
treated as “free”, it will not associate typeo A until A is subsequently written.

Thus, we have shown that an SDS cannot accurately track dgrigpe un-
derneath a file system without any ordering guarantees. ‘W &lao shown that

171

if the file system exhibits a strong form of reuse orderingyaiyic type detection
can indeed be made reliable within an SDS.

9.9.2 Utility of generation pointers

In this subsection, we explore the utility of file systemdEtgeneration pointers”
(§ 9.8.2) in the context of an SDS. To illustrate their utilitye show that track-
ing dynamic type in an SDS is straightforward if the file systieacks generation
pointers.

With generation pointers, equation 9.40 becomes:

{t(Ag) =k}p = {B" = Ag}lp A (f(BY,Ay) =k)
A {Ag}D

The two causal event sequences (as explored in the previtnsection) be-
come:

({BY — Agtm N {t(Ag) = k}m) < {B” — Ag}p
{t(Ag) = j}lVf A write(Ag)

Since the above sequences imply that the same genetaktiad two different
types, it violates rule 9.12. Thus, we straightaway arriv@ gaontradiction that
proves that violation of rule 9.39 can never occur.

9.10 Summary

As the need for dependability of computer systems becomes mmportant than

ever, it is essential to have systematic formal framewodkserify and reason

about their correctness. Despite file systems being aariciemponent of sys-

tem dependability, formal verification of their correctadms been largely ignored.
Besides making file systems vulnerable to hidden errorsalisence of a formal
framework also stifles innovation, because of the skeptidiswards the correct-
ness of new proposals, and the proclivity to stick to “tirastéd” alternatives. In

this chapter, we have taken a step towards bridging this méifeisystem design

by showing that a logical framework can substantially sifg@nd systematize the
process of verifying file system correctness. We have alswstiow such a logic

systematizes the process of reasoning about semantic disks

172

Chapter 10

Related Work

The related work on semantically-smart disk systems canrbepgd into two
classes: work on smarter storage in general, and work ondrmngystems. We
discuss each in turn. Finally, we also discuss related werkaming to some of
our case studies and the logic framework.

10.1 Smarter Storage

The idea of embedding intelligence into storage systemswelbexplored one,
dating back to the “logic per track” devices [104] suggedtgdslotnick in 1970,
and database machines proposed in the early 1980s [14]. afige 1of previous
work on smart disks fall into four categories. The first catggassumes that the
interface between file and storage systems is fixed and caeratanged, the cate-
gory under which an SDS belongs. Research in the second groppses changes
to the storage interface, requiring that file systems be fieatlio leverage this new
interface. The third group proposes changes not only tatieeface, but also to the
programming model for applications. Finally, the fourtlogp advocates placing
all storage-like smartness within file systems, revertiagkbto the old model of
“dumb” storage.

10.1.1 Fixed interfaces

The focus of this thesis is on the integration of smart disks a traditional file
system environment. In this environment, the file systemahaarrow, SCSl-like
interface to storage, and uses the disk as a persistenfataisdata structures. An
early example of a smart disk controller is Loge [30], whieltessed its process-

173

174

ing capabilities to improve performance by writing blocksan the current disk-
head position. Wangt al's log-based programmable disk [115] extended this
approach in a number of ways, namely quick crash-recovedyfrae-space com-
paction. Neither of these systems assume or require anyl&dgw of file system
structures, and thus are limited in the range of optimizetitiey can provide.

When storage system interfaces are more developed thaprthadled in the
local setting, there are more opportunities for new fumality. The use of a net-
work packet filter within the Slice virtual file service [5]lalvs Slice to interpose
on NFS traffic in clients, and thus implement a range of oatons €.g, pref-
erential treatment of small files). Interposing on an NF8itratream is simpler
than doing so on a SCSI-disk block stream because the cer@ENFS packets are
well-defined.

High-end RAID products are the perfect place for semantiaremess, because
a typical enterprise storage system has substantial iogesapabilities and mem-
ory capacity. For example, an EMC Symmetrix server contabwut 100 proces-
sors and can be configured with up to 256 GB of memory [29]. Shigle-end
RAID systems currently leverage their resources to perfarbare minimum of
semantically-smart behavior; for example, storage systeom EMC can recog-
nize an Oracle data block and provide an extra checksum tioeaitsat a block write
(comprised of multiple sector writes) reaches disk atottyi¢a5]. This thesis ex-
plores the acquisition and exploitation of more detailedvwdedge of file system
behavior.

10.1.2 More expressive interfaces

Given that one of the primary factors that limits the additmf new functional-

ity in a smart disk is the narrow interface between file systemd storage, it
is not surprising that there has been research that ine¢stigcchanging this in-
terface. Mime investigates an enhanced interface in théegbof an intelligent

RAID controller [19]; specifically, Mime adds primitives tlow clients to con-

trol both when updates to storage become visible to oth#ictitreams and the
commit order of operations. Logical disks expand the iafby allowing the
file system to express grouping preferences with lists [#8]s, file systems are
simplified since they do not need to maintain this informati&x RAID exposes

per-disk information to an informed file system (namellyFIS), providing perfor-

mance optimizations, more control over redundancy, andowgal manageability
of storage [24]. Finally, Ganger suggests that a reevalnatf this interface is

needed [31], and outlines two relevant case studies: mhgked extents [97] and
freeblock scheduling [62].

175

Distributed storage has been another domain where researbhve consid-
ered changing the interface to storage, in order to providtebfunctionality. For
example, the Petal storage system [60] proposes a spatsal disk abstraction
to its file system counterpart, Frangipani [110]. More reiyethe Boxwood stor-
age system provides higher level abstractions such as & Toesoftware layers
above [64]; such a high level interface to storage natui@lyveys rich semantic
information to the storage system.

Also, recent work in the storage community suggests thanéx evolution
in storage will place disks on a more general-purpose né&tand not a standard
SCSI bus [36]. Some have suggested that these network dipkste higher-
level, object-like interface [37], thus moving the respbilisies of low-level stor-
age management from the file system into the drives thensselddthough the
specific challenges would likely be different in this corttdke fixed object-based
interface between file systems and storage will likely pievén interesting avenue
for further research into the utility of semantic awareness

10.1.3 New programming environments

In contrast to integration underneath a traditional filetesys other work has fo-
cused on incorporating active storage into entirely nevalgprogramming envi-
ronments. Recent work on “active disks” includes that by &ghet al.[1], Riedel
et al. [88], Amiri et al. [4], and Sivathanet al. [100]. Much of this research in-
volves shipping computation to the storage system, andséscan how to partition
applications across host and disk CPUs to minimize datafeeied across system
busses or to reduce latency.

10.1.4 Smarter file systems

A different approach that is considered by certain custoensiyistems to circum-
vent the narrow interface limitation is to revert back to tié model of storage,
i.e,, treat storage as a collection of dumb disks. The file systegn thanages
storage-like functionality such as RAID layout, placemantl migration of data,
etc. The Google file system is one example in this category [BBS implements
all the smarts within the file system and is simply built on @i collection of
IDE disks. Although an interesting alternative, this agmtois fraught with limi-
tations. Storage-level placement and optimizations afegend very much on the
low-level details of the storage system such as power sugmyactual busses con-
necting the disks, etc. GFS was successful because it wasssmmemade that it
had specific information and control over these various lleve! details. In more

176

general purpose environments, customizing the file systesudh low-level details
is quite infeasible, so it is no surprise that large entegpdtorage systems today
constitute a multi-billion dollar industry; most geneplfpose customers such as
banks and e-commerce site tend to deploy sophisticatecpbestestorage systems
that take care of the low-level complexity.

10.2 Implicit Systems

Semantically-smart disk systems are based on the genalasgbhy of implicit
inference of information around existing interfaces. Tééneral approach has
been formalized under the term “Gray-box systems” by Ariausseatet al. [6],
where the authors propose techniques to infer the stateeobplerating system
based on high-level “gray-box” assumptions about the egebehavior of the
operating system. This approach has subsequently beeedpplnfer and con-
trol various aspects of the operating system, such as cagtecement [17], file
placement [71], and CPU scheduling [85].

Implicit inference of information has been explored alsotimer boundaries be-
sides the application to operating system boundary. Fanple in programming
language research, Hsiehal. investigate the automatic extraction of bit-level in-
struction encodings by feeding permutations of instrungionto an assembler and
analyzing the resulting machine code [50]. Schineleal., have proposed implicit
techniques for tracking various internal parameters d digves by utilizing tim-
ing information for various carefully chosen microbenciksa[96, 120]. More
recent work has looked at deconstructing internal infoiomatbout RAID sys-
tems with a similar approach of careful microbenchmarkig§].] As described
in Chapter 3, although such microbenchmarking techniquesiseful in tracking
information about the storage system, the implicit chaniney rely on is a frag-
ile timing channel, and thus such techniques cannot traekMbalth of dynamic
information existent in modern storage systems.

Other examples of systems where usage of implicit inforomakias been ex-
plored are in inferring TCP behavior [75], inferring the ip@s used in a com-
modity storage cluster [43], and co-ordinated processdidhmng in distributed sys-
tems [7].

10.3 Partial Availability

Our case study D-GRAID for partial availability draws onateld work from a
number of different areas, including distributed file systeand traditional RAID

177

systems.

10.3.1 Distributed file systems

Designers of distributed file systems have long ago realizegroblems that arise
when spreading a directory tree across different maching@system. For example,
Walkeret al. discuss the importance of directory namespace replicatitirin the
Locus distributed system [80]. The Coda mobile file systeso séhkes explicit
care with regard to the directory tree [57]. Specificallyaifile is cached, Coda
makes sure to cache every directory up to the root of thetdingtree. By doing
so, Coda can guarantee that a file remains accessible shdigicoanection occur.
Perhaps an interesting extension to our work would be tongder host-based in-
memory caching with availability in mind. Also, Slice [5]ds to route namespace
operations for all files in a directory to the same server.

More recently, work in wide-area file systems has also refesiged the im-
portance of the directory tree. For example, the Pangaeayliiem aggressively
replicates the entire tree up to the root on a node when a fledsssed [94]. The
Island-based file system also points out the need for “faalation” but in the con-
text of wide-area storage systems; their “one island poletiis quite similar to
fault-isolated placement in D-GRAID [54].

Finally, P2P systems such as PAST that place an entire filesorgke machine
have similar load balancing issues [92]. However, the mnobls more difficult
in the p2p space due to the constraints of file placementkbitgration is much
simpler in a centralized storage array.

10.3.2 Traditional RAID systems

We also draw on the long history of research in classic RAIBteays. From
AutoRAID [117] we learned both that complex functionalitputd be embed-
ded within a modern storage array, and that backgrounditgctiould be utilized
successfully in such an environment. From AFRAID [95], warfeed that there
could be a flexible trade-off between performance and néitigband the value of
delaying updates.

Much of RAID research has focused on different redundanbgmses. While
early work stressed the ability to tolerate single-diskufais [12, 76, 77], later
research introduced the notion of tolerating multiplekdiailures within an ar-
ray [3, 16]. We stress that our work is complementary to timie bf research;
traditional techniques can be used to ensure full file systeailability up to a
certain number of failures, and D-GRAID techniques ensuaeeaful degradation

178

under additional failures. A related approach is paritipstig [40] which stripes
only the parity and not data; while parity striping would este a primitive form of
fault isolation, the layout is still oblivious of the semmstof the data; blocks will
have the same level of redundancy irrespective of their itapoe {.e., meta-data
vs data), so multiple failures could still make the entire flystem inaccessible.
Also, file systems typically spread out large files acrosddbial address space,
hence parity striping cannot ensure collocation of the kdaxf a file. A number of
earlier works also emphasize the importance of hot spadirspéed recovery time
in RAID arrays [48, 67, 76]. Our work on semantic recoveryisda@omplementary
to those approaches.

Finally, note that term “graceful degradation” is sometinoged to refer to the
performance characteristics of redundant disk systemesrdadure [49, 84]. This
type of graceful degradation is different from what we dgscin this thesis; indeed,
none of those systems continues operation when an unegpaateber of failures
occurs.

10.4 Logical Modeling of Systems

In this section, we examine prior work related to our loganfiework for modeling
file systems and semantic disks.

Previous work has recognized the need for modeling compietems with for-
mal frameworks, in order to facilitate proving correctn@ssperties about them.
The logical framework for reasoning about authenticatiooigrols, proposed by
Burrowset al.[18], is the most related to our work in spirit; in that papbe au-
thors formulate a domain-specific logic and proof systenatdhentication, show-
ing that protocols can be verified through simple logicah@ions. Other domain-
specific formal models exist in the areas of database regd88f and database
reliability [45].

A different body of related work involves generic framewstior modeling
computer systems. The well-known TLA framework [59] is amamyple. The I/O
automaton [8] is another such framework. While these fraonksvare general
enough to model most complex systems, their generalitysis alcurse; modeling
various aspects of a file system to the extent we have in tlpsrpés quite te-
dious with a generic framework. Tailoring the framework Isjng domain-specific
knowledge makes it simpler to reason about properties ubmdgramework, thus
significantly lowering the barrier to entry in terms of adagtthe framework [18].
Specifications and proofs in our logic take 10 to 20 lines mbast to the thousands
of lines that TLA specifications take [123]. However, autéedstheorem-proving

179

through model checkers is one of the benefits of using a geframework such as
TLA.

Previous work has also explored verification of the corressnof systenim-
plementationsThe recent body of work on using model checking to verify leap
mentations is one example [70, 121]. We believe that thig/lwddvork is com-
plementary to our logic framework; our logic framework canused to build the
model and the invariants that should hold in the model, whehimplementation
can be verified against.

180

Chapter 11

Conclusions and Future Work

“It's not even the beginning of the end, but it's, perhaps,
the end of the beginning.Winston Churchill, 1942

The philosophy of building systems as a hierarchy of laygmie of the oldest
and most influential in system design [26]. Each layer in sadystem commu-
nicates with the others through well-defined interfaces.il®Mayering has clear
advantages such as enabling independent innovation ahdiexaof system com-
ponents, it also has a cost: interfaces between layers ameiffisted based on im-
plicit assumptions about the layers, but as layers evolee time, they sometimes
invalidate those assumptions, thus making the interfacelete, sub-optimal, or
overly limiting. To keep up with evolving system layers drfices ideally need to
evolve as well, but practical concerns often preclude @rdeinterface evolution.
The problem of narrow interface to storage that we have addtkin this thesis is
one instance of this general problem with system evolution.

In this thesis, we have presented a new approach to integfasation by im-
plicit inference of information around fixed existing irfeezes. The implicit in-
terface evolution approach addresses the fundamentategming problem with
explicit interface change; by facilitating demonstratminbenefits due to a poten-
tial new interface without actual interface change, implicference techniques
can move industry more rapidly towards the new interfaces ttatalyzing an ex-
plicit interface change. Also, given the long time-scalewlaich explicit interface
changes occur, implicit techniques provide a way to innmiathe short term; for
example, with the SDS approach, a storage vendor can premidet functionality
today and ship the systems without waiting for industry tdoeme a new stor-
age interface. Of course, implicit interface evolution esmvith costs in terms of
added system complexity and a small amount of performaneehead; whether

181

182

these costs justify the benefits of a potential new functiynia a decision that can
now be taken on a case-by-case basis.

In the remainder of this chapter, we first outline some kegdas we learned
through the work presented in this thesis, and then explarmws avenues for
future research based on various aspects of this thesis.

11.1 Lessons Learned

In this section, we reflect on some of the key lessons we ldadoeng our expe-
rience designing and implementing semantically-smaiit gistems. We believe
that these lessons have a broader relevance beyond jusiemifictechniques and
case studies.

Limited knowledge within the disk does not imply limited functionality.

One of the main contributions of this thesis is a demonsinatif both the limits of
semantic knowledge that can be tracked underneath modesyétems, as well as
the “proof” via implementation that despite such limita$ interesting function-
ality can be built inside of a semantically-smart disk systéVe believe that any
semantic disk system must be careful in its assumptionst dibmaystem behavior,
and hope that our work can guide others who pursue a similaseo

Semantically-smart disks would be easier to build with soméelp from
above.

Because of the way file systems reorder, delay, and hide tipesarom disks,
reverse engineering exactly what they are doing at the S&@l is difficult. We
have found that small modifications to file systems could sutiglly lessen this
difficulty. For example, if the file system could inform thesklwhenever it believes
the file system structures are in a consistent on-disk staey of the challenges
in the disk would be lessened. Similarly, if the file systerndseful about when it
reuses blocks, it would avoid a significant source of ungastavithin the semantic
disk. In Chapter 7, we summarize various such useful dynanoigerties that hold
in certain file systems. In file systems that do not confornésé properties, such
small alterations could ease the burden of semantic disilolement.

183

Dependence on dynamic properties of the file system is a dowbkedged
blade.

While semantic disks can be significantly simplified if thegk®a assumptions on
dynamic ordering guarantees provided by the file systemh audependence on
dynamic properties might be more of a concern than just digrare on the static
on-disk layout of the file system. D-GRAID was very generaltinassumptions
(arbitrary reordering and delay of writes) and thus will lmbust to changes in
dynamic properties of the file system. However, an aggredsinctionality such
as secure deletion need to make more assumptions about idypesperties in
order to guarantee correctness. Given the added level ehdepce, one needs to
be careful in deciding if the extra functionality it enablesvorth the cost.

Semantically-smart disks stress file systems in unexpectedys.

File systems were not built to operate on top of semanticsdist behave as D-
GRAID does, for example; specifically, they may not behavéiq@darly well when
part of a volume address space becomes unavailable. Pdrbeqsse of its her-
itage as an OS for inexpensive hardware, Linux file systemsllbaunexpected
conditions fairly well. However, the exact model for degliwith failure is incon-
sistent: data blocks could be missing and then reappeathéigame is not true
for inodes. As semantically-smart disks push new functignato storage, file
systems may potentially need to evolve to accommodate them.

Conservative techniques are crucial to working around funé@mental
uncertainty.

At various points in our work, we stumbled upon what appe#oduk a fundamen-
tal limitation in terms of semantic inference, but soon hesd it based on some
conservative technique or abstraction. The most prona@uegample of this was
in secure delete which had strong requirements on correstrimeit the semantic
information it had to be based on was fundamentally impesci&/ith the mech-

anism of conservative overwrites, we were able to solvedhjzarent limitation.

One of the crucial aspects to developing complex, espgaialirectness-sensitive
functionality within semantic disks is tolerance to unaenty through such conser-
vative mechanisms and abstractions.

184

Detailed traces of workload behavior are invaluable.

Because of the excellent level of detail available in the tdPds [89], we were able
to simulate and analyze the potential of D-GRAID under s#alisettings. Many
other traces do not contain per-process information, ongnée file references
to the extent that pathnames are not included in the tracktrars we could not
utilize them in our study. One remaining challenge for tngcis to include user
data blocks, as semantically-smart disks may be senditittetcontents. However,
the privacy concerns that such a campaign would encountgbméoo difficult to
overcome.

Domain specific formal models at the right granularity greatly simplify
reasoning.

Our logic framework for modeling file systems and semant&slpointed to us the
utility of formalizing complex systems. By making the fraw@k domain specific
and at a coarse granularity, equations and proofs in the &ygiextremely intuitive
to understand and conceivably accessible to real file sydesigners, in compar-
ison to generic, low-level frameworks such as TLA. We foulnat the framework
significantly helped in uncovering implicit assumptionatthve sometimes made,
and helped systematize the process of showing that a giver sechanisms pre-
cisely provides the guarantees it claims to. We believedimaitar frameworks that
use domain knowledge can significantly aid constructiortlidéiocomplex systems.

11.2 Future Work

In this section, we describe various extensions to the wedcibed in this thesis
that would be interesting to consider. These relate to gémgplications of the
overall implicit inference approach beyond semantic disksv directions with our
logic framework, and direct extensions to semantic diskrtietogy.

11.2.1 Implicit inference in other domains

While this thesis has explored implicit inference of seramiference underneath
modern file systems, the general philosophy and technigoigly # other layer
boundaries in the system stack that are subject to the prnobideing stuck with
obsolete or limiting interfaces. For instance, a similashpem occurs in the area
of virtual machine monitors [28, 114], where the VMM has ayearrow inter-
face to the guest operating systems. From the I/O perspectie VMM exports

185

a virtual disk to each guest operating system, and then wisd®dtock-level reads
and writes into this virtual disk, very much like a storagstsyn underneath SCSI.
Because of this narrow interface, the VMM has no informatmprioritize 1/O re-
guests from multiple guest operating systems; if the VMM distinguish between
foreground writes (on which some application within the u@S is waiting on)
and background delayed writes, scheduling can be much rifergiee. Similarly,
semantic knowledge can help in better disk space allocatititin the VMM by
compacting free space due to deleted files within guest tipgrsystems. One in-
teresting aspect of semantic inference within a VMM is thdike a storage system
underneath SCSI which could only passively observe reguihst VMM is a more
active entity; for example, the VMM can change memory caistéhat the guest
operating system observes, and can thus acti@hgrol the operating system.

Another application of semantic information within a VMM iis robust in-
trusion detection and tracing. Since virtual machines aradditional protection
boundary isolated from the operating system, they providatiractive vantage
point to perform tracing and analysis to detect intrusiovendn cases where the
operating system is compromised. Today, such intrusiotysisavithin the VMM
is fundamentally limited due to lack of semantic knowledgéth semantic infor-
mation, VMM-level tools could monitor changes to key fileghin the file system
or changes to registry contents, without being circumaébtethe intruder.

11.2.2 Integrating logic into implementation checkers

Our logic framework for modeling file systems presents agoiiteresting avenue
for future research. It would be interesting to explore howtsa framework can
augment existing techniques for verifying file system impdatations. For exam-
ple, the logic could be used to construct a set of preciseti@nts that the update
traffic from a file system should conform to, and then a layesoffivare underneath
the file system can verify online if those constraints ardaveal.

A more ambitious goal would be to explore if one can start wilbgic spec-
ification of a file system’s interaction with the disk, andaugtically arrive at an
implementation that preserves the ordering guaranteesiogned in the specifica-
tion. Although the general problem of going from a logic toieplementation is
quite hard, it could be tractable if the logic is sufficientlgmain specific. Recent
research has demonstrated serious correctness bugs ily wighl file systems;
automating the implementation of file system consistencpagament can help
alleviate this problem.

186

11.2.3 More semantic disk functionality

While we have investigated a wide range of case studies srthigisis for demon-
strating the utility of semantic knowledge within a storaystem, there are plenty
of opportunities that we have left unexplored. For exampl®-GRAID, we built
most of the mechanisms required, but the policy space rentaigely uninvesti-
gated. There are various design points within D-GRAID whaeteresting policy
decisions arise. For example, deciding when to performssedeaven diffusion,
and exactly which blocks to diffuse is a difficult problem péeading on various
aspects such as update frequency, popularity of blockss@od. Deciding on the
degree of metadata replication is another example. Thdegrobf deciding the
degree of replication can perhaps be viewed as an optimizatoblem where the
utility of replicating a block depends on its importancer (@xample, how high in
the directory tree the block is); one could then arrive atoppigmal level of replica-
tion for each type of block given a fixed space budget or a peidoce tolerance.

Semantic knowledge could also be applied for other kindsioétionality en-
hancements within storage systems. For example, poweuggri®on is a critical
issue in many enterprise systems [21]. If the storage sybhsysemantic knowl-
edge, it could collocate active data in a smaller set of disksilar to D-GRAID),
and then spin down the remaining disks, thus conserving poemantic infor-
mation can also help the storage system to predict whictkblace likely to be
active in the near future, and pro-actively power up thoskglin anticipation. For
example, if a directory block is read, the disk system caicipatte that blocks be-
longing to inodes pointed to by the directory, or even tholes fn entirety could
be accessed, and thus perform the needful. Another furditipthat is possible in
semantic disks is consistent block-level snapshottingreimental snapshotting is
a popular feature in file server appliances today [116], lntkslevel storage sys-
tems cannot provide this functionality because they havmfoomation on when
the on-disk contents represents a consistent file systdm stdh semantic infer-
ence, storage systems can acquire this information. Ounging case study in
Chapter 5 detects consistent state underneath synchrfilosigstems; extending
this underneath general purpose asynchronous file systdhiienteresting.

11.2.4 Making semantic disks more semantic

Much of the work in this thesis pertained to inferring higherel knowledge about
the file system. A natural extension to this would be to usesivae approach to
infer even higher-level information. For example, in theeaf D-GRAID, the

collocation policy explored was quite straight-forwardtlimat it considered whole

187

files and directories. If the storage system was more aggeessits semantic
inference, it could have looked at file names and file contemerform more in-
teresting collocation. For example, if it identifies a filethvaht m extension, it
can look at the contents and place all embedded links wittdrsame fault bound-
ary. Similarly, if it looked at a file called Makefile, it coulgerhaps infer that the
entire source code base is related and collocate those Tites database-specific
storage work described in Chapter 8 is one instance of tinergéapproach. How-
ever, this direction of work has to be considered judicipusktending too far up
into the stack could result in dependencies on fragile aptions. Similar to our
work which drew a line on static format information that idikely to change, the
challenge will be on identifying stable dependencies thatarth creating.

11.3 Summary

Semantically-smart disk systems enable new classes didnatity and improve-
ments in storage by exploiting information about higheelayof the system. Prag-
matism has been one of the driving goals behind the SDS agiprdaployment of
innovative functionality is more likely to be successfultifs as less intrusive on
existing infrastructure as possible. By requiring no cleanig the storage interface
and in most cases, to the layers above, semantic disks aghmthat. We believe
that our general approach of implicit evolution of ossifiateifaces has value be-
yond the realm of file systems and storage, and can lead to avagwf thinking
about system evolution.

188

Bibliography

[1] A. Acharya, M. Uysal, and J. Saltz. Active Disks. Rtoceedings of the 8th

[2]

[3]

[4]

[5]

International Conference on Architectural Support for gramming Lan-
guages and Operating Systems (ASPLOS MV3#n Jose, California, Octo-
ber 1998.

R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippoccatlatabases. In
Proceedings of the 28th International Conference on Vergé®atabases
(VLDB 28) Hong Kong, China, August 2002.

G. A. Alvarez, W. A. Burkhard, and F. Cristian. Toleragimultiple fail-
ures in RAID architectures with optimal storage and unifatetiustering.
In Proceedings of the 24th Annual International Symposium om@lter
Architecture (ISCA '97)Denver, Colorado, May 1997.

K. Amiri, D. Petrou, G. R. Ganger, and G. A. Gibson. Dynaniiunc-

tion Placement for Data-intensive Cluster ComputingPtaceedings of the
USENIX Annual Technical Conference (USENIX ;08an Diego, Califor-
nia, June 2000.

D. Anderson, J. Chase, and A. Vahdat. Interposed RedResting for
Scalable Network StoragdCM Transactions on Computer Syste23(1),
2002.

[6] A. Arpaci-Dusseau and R. Arpaci-Dusseau. Informatiom £ontrol in

Gray-Box Systems. IfProceedings of the 18th ACM Symposium on Op-
erating Systems Principles (SOSP 'OBanff, Canada, October 2001.

[7] A. C. Arpaci-Dusseau, D. E. Culler, and A. Mainwaring. h&duling with

Implicit Information in Distributed Systems. IRroceedings of the 1998
Joint International Conference on Measurement and ModaethComputer
Systems (SIGMETRICS/PERFORMANCE ;98adison, Wisconsin, June
1998.

189

190

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

P. C. Attie and N. A. Lynch. Dynamic Input/Output Autoraata Formal
Model for Dynamic Systems. IACM Symposium on Principles of Dis-
tributed Computingpages 314-316, 2001.

L. Bairavasundaram, M. Sivathanu, A. C. Arpaci-Dussead R. H. Arpaci-
Dusseau. X-RAY: A Non-lnvasive Exclusive Caching Mecheamnifor
RAIDs. In Proceedings of the 31st Annual International Symposium on
Computer Architecture (ISCA '04Munich, Germany, June 2004.

S. Bauer and N. B. Priyantha. Secure Data Deletion foukiFile Systems.
In Proceedings of the 10th USENIX Security SymposAugust 2001.

S. Best. JFS Overview. www.ibm.com/developerwoiksdry/I-jfs.html,
2004.

D. Bitton and J. Gray. Disk shadowing. Rroceedings of the 14th Inter-
national Conference on Very Large Data Bases (VLDB pdpes 331-338,
Los Angeles, California, August 1988.

H. Boehm and M. Weiser. Garbage Collection in an Uncoaipes Envi-
ronment. Software—Practice and ExperiencE8(9):807-820, September
1988.

H. Boral and D. J. DeWitt. Database Machines: An Idea ¥¢hdime has
Passed? IBrd International Workshop on Database Machin3s83.

J. Brown and S. Yamaguchi. Oracle’s Hardware Assistedilient Data
(H.A.R.D.). Oracle Technical Bulletin (Note 158367,2002.

W. Burkhard and J. Menon. Disk Array Storage Systemaddity. In Pro-
ceedings of the 23rd International Symposium on FaultféoieComputing
(FTCS-23) pages 432-441, Toulouse, France, June 1993.

N. C. Burnett, J. Bent, A. Arpaci-Dusseau, and R. Ardaasseau. Exploit-
ing Gray-Box Knowledge of Buffer-Cache Contents.Hroceedings of the
USENIX Annual Technical Conference (USENIX ;0@pnterey, California,
June 2002.

M. Burrows, M. Abadi, and R. Needham. A Logic of Authatiion. In
Proceedings of the 12th ACM Symposium on Operating Systanies
(SOSP '89) Litchfield Park, Arizona, December 1989.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

191

C. Chao, R. English, D. Jacobson, A. Stepanov, and Xkealil Mime: A
high performance parallel storage device. Technical RépBL-CSP-92-9,
HP Labs, 1992.

J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teadpand A. Gupta.
Hive: Fault Containment for Shared-Memory Multiprocessdn Proceed-
ings of the 15th ACM Symposium on Operating Systems P@asc{{@OSP
'95), Copper Mountain Resort, Colorado, December 1995.

J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Ddylanaging en-
ergy and server resources in hosting centerBratceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSR B#jon Landing
(Lake George), New York, October 2003.

P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.tBeton. RAID:
High-performance, Reliable Secondary Storag&M Computing Surveys
26(2):145-185, June 1994.

W. de Jonge, M. F. Kaashoek, and W. C. Hsieh. The Logidsk DA New
Approach to Improving File Systems. Rroceedings of the 14th ACM Sym-
posium on Operating Systems Principles (SOSP, '88heville, North Car-
olina, December 1993.

T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-8asmli. Bridg-
ing the Information Gap in Storage Protocol StacksPtaceedings of the
USENIX Annual Technical Conference (USENIX ;0@pnterey, California,
June 2002.

T. E. Denehy, J. Bent, F. I. Popovici, A. C. Arpaci-Duase and R. H.
Arpaci-Dusseau. Deconstructing Storage Arrayioceedings of the 11th
International Conference on Architectural Support for gramming Lan-
guages and Operating Systems (ASPLOS pdyes 59-71, Boston, Mas-
sachusetts, October 2004.

E. W. Dijkstra. The Structure of the THE Multiprogranmgi System Com-
munications of the ACML1(5):341-346, May 1968.

I. Dowse and D. Malone. Recent Filesystem Optimisation FreeBSD.
In Proceedings of the USENIX Annual Technical Conference BNRE
Track), Monterey, California, June 2002.

192

[28] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, |. Rrak. Warfield,
P. Barham, and R. Neugebauer. Xen and the Art of Virtuabmpati In
Proceedings of the 19th ACM Symposium on Operating Systanies
(SOSP '03) Bolton Landing (Lake George), New York, October 2003.

[29] EMC Corporation. Symmetrix Enterprise Informationofige Systems.
http://www.emc.com, 2002.

[30] R. M. English and A. A. Stepanov. Loge: A Self-Organgiisk Controller.
In Proceedings of the USENIX Winter Technical Conference (UXEVin-
ter '92), San Francisco, California, January 1992.

[31] G. R. Ganger. Blurring the Line Between Oses and Stoiagéces. TR
SCS CMU-CS-01-166, Dec. 2001.

[32] G. R. Ganger, M. K. McKusick, C. A. Soules, and Y. N. Pagoft Up-
dates: A Solution to the Metadata Update Problem in Filee3gst ACM
Transactions on Computer Systerh8(2), May 2000.

[33] G. R. Ganger and Y. N. Patt. Metadata Update Performané¢gle Sys-
tems. InProceedings of the 1st Symposium on Operating SystemsrDesig
and Implementation (OSDI '94Monterey, California, November 1994.

[34] G.R. Ganger, B. L. Worthington, R. Y. Hou, and Y. N. P&itsk Subsystem
Load Balancing: Disk Striping vs. Conventional Data Plaeem InHICSS
'93, 1993.

[35] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google Bij/stem. In
Proceedings of the 19th ACM Symposium on Operating Systancpgres
(SOSP '03) pages 29-43, Bolton Landing (Lake George), New York, Octo-
ber 2003.

[36] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chanig. Gobioff,
C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka. A Costdiiffe, High-
Bandwidth Storage Architecture. IRAroceedings of the 8th International
Conference on Architectural Support for Programming Laagges and Op-
erating Systems (ASPLOS V]I§an Jose, California, October 1998.

[37] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, H. GolioE. Riedel,
D. Rochberg, and J. Zelenka. Filesystems for Network-AttdcSecure
Disks. Technical Report CMU-CS-97-118, Carnegie Mellonversity,
1997.

193

[38] R. A. Golding, P. Bosch, C. Staelin, T. Sullivan, and JIRé5. Idleness
is not sloth. InProceedings of the USENIX Winter Technical Conference
(USENIX Winter '94)pages 201-212, 1995.

[39] J. Gray. Why Do Computers Stop and What Can We Do About It?
6th International Conference on Reliability and DistribdtDatabasesJune
1987.

[40] J. Gray, B. Horst, and M. Walker. Parity Striping of Diécrays: Low-
cost Reliable Storage with Acceptable Throughput.Proceedings of the
16th International Conference on Very Large Data Bases (BlB) pages
148-159, Brisbane, Australia, August 1990.

[41] S. D. Gribble. Robustness in Complex Systems.Thhe Eighth Workshop
on Hot Topics in Operating Systems (HotOS Vghloss Elmau, Germany,
May 2001.

[42] E. Grochowski. Emerging Trends in Data Storage on M#grig¢ard Disk
Drives. Datatech September 1999.

[43] H. S. Gunawi, N. Agrawal, A. C. Arpaci-Dusseau, R. H. AcpDusseau,
and J. Schindler. Deconstructing Commodity Storage Qisista Proceed-
ings of the 32nd Annual International Symposium on Comphteitecture
(ISCA '05) Madison, Wisconsin, June 2005.

[44] P. Gutmann. Secure Deletion of Data from Magnetic aniiState Mem-
ory. In Proceedings of the Sixth USENIX Security Sympaosiuy 1996.

[45] V. Hadzilacos. A Theory of Reliability in Database Sysis. Journal of the
ACM, 35(1):121-145, 1988.

[46] R. Hagmann. Reimplementing the Cedar File System Ukogging and
Group Commit. InProceedings of the 11th ACM Symposium on Operating
Systems Principles (SOSP '8Austin, Texas, November 1987.

[47] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online Aggtion. InPro-
ceedings of the 1997 ACM SIGMOD International Conferenc®anage-
ment of Data (SIGMOD '97)Tucson, Arizona, May 1997.

[48] M. Holland, G. Gibson, and D. Siewiorek. Fast, on-liadure recovery in
redundant disk arrays. Iroceedings of the 23rd International Symposium
on Fault-Tolerant Computing (FTCS-23ljoulouse, France, June 1993.

194

[49] H.-I. Hsiao and D. DeWitt. Chained Declustering: A Newaflability Strat-
egy for Multiprocessor Database Machines6th International Data Engi-
neering Conferengel 990.

[50] W. C. Hsieh, D. Engler, and G. Back. Reverse-Engineggetimstruction
Encodings. InProceedings of the USENIX Annual Technical Conference
(USENIX '01) Boston, Massachusetts, June 2001.

[51] G. Hughes. Personal communication, 2004.

[52] G. Hughes and T. Coughlin. Secure Erase of Disk DriveaDdDEMA
Insight Magazine, 2002.

[53] IBM. ServeRAID - Recovering from multiple disk failuse
http://www.pc.ibm.com/qgtechinfo/MIGR-39144.html, 200

[54] M. Ji, E. Felten, R. Wang, and J. P. Singh. Archipelagor I18land-Based
File System For Highly Available And Scalable Internet Sexs. In4th
USENIX Windows Symposiyugust 2000.

[55] J. Katcher. PostMark: A New File System Benchmark. NgtA R-3022,
October 1997.

[56] K. Keeton and J. Wilkes. Automating data dependabilityProceedings of
the 10th ACM-SIGOPS European Workshppges 93-100, Saint-Emilion,
France, September 2002.

[57] J. Kistler and M. Satyanarayanan. Disconnected Ojoerat the Coda File
System.ACM Transactions on Computer Systeth®(1), February 1992.

[58] D. Kuo. Model and Verification of a Data Manager Based dRIBS. ACM
Transactions on Database Systetd$(4):427—-479, 1996.

[59] L. Lamport. The Temporal Logic of ActionsACM Transactions on Pro-
gramming Language and Systeri§(3):872-923, 1994.

[60] E. K. Lee and C. A. Thekkath. Petal: Distributed Virtiikks. InProceed-
ings of the 7th International Conference on Architecturapfort for Pro-
gramming Languages and Operating Systems (ASPLOS Gdimbridge,
Massachusetts, October 1996.

[61] Z.Li, Z.Chen, S. M. Srivivasan, and Y. Zhou. C-miner:mtig block corre-
lations in storage systems. Rroceedings of the 3rd USENIX Symposium on

195

File and Storage Technologies (FAST 'Oppges 173—-186, San Francisco,
California, April 2004.

[62] C. Lumb, J. Schindler, and G. Ganger. Freeblock SclimglDutside of
Disk Firmware. InProceedings of the 1st USENIX Symposium on File and
Storage Technologies (FAST 'Q2)Jonterey, California, January 2002.

[63] M. Carey et. al. Shoring up persistent applications. Phoceedings of
the 1994 ACM SIGMOD International Conference on Manageroebata
(SIGMOD '94) Minneapolis, Minnesota, May 1994.

[64] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, abdZhou. Box-
wood: Abstractions as the Foundation for Storage Infrasire. InPro-
ceedings of the 6th Symposium on Operating Systems Desifimgate-
mentation (OSDI '04)pages 105-120, San Francisco, California, December
2004.

[65] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. Adt File
System for UNIX.ACM Transactions on Computer Syste@(8):181-197,
Aug. 1984.

[66] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry.cks The UNIX
File System Check Program. Unix System Manager's ManuaB B&D
Virtual VAX-11 Version, April 1986.

[67] J. Menon and D. Mattson. Comparison of Sparing Altewestfor Disk Ar-
rays. InProceedings of the 19th Annual International Symposium am-C
puter Architecture (ISCA '92)Gold Coast, Australia, May 1992.

[68] J.C. Mogul. A Better Update Policy. lrroceedings of the USENIX Summer
Technical Conference (USENIX Summer ;98dston, Massachusetts, June
1994,

[69] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and Pw&ch. ARIES:
A Transaction Recovery Method Supporting Fine-Granyldriicking and
Partial Rollbacks Using Write-Ahead Logging.ACM Transactions on
Database System$7(1):94-162, March 1992.

[70] M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler, and D. LIIDCMC: A
pragmatic approach to model checking real codePraceedings of the 5th
Symposium on Operating Systems Design and Implement&isbIi('02),
Boston, Massachusetts, December 2002.

196

[71] J. Nugent, A. C. Arpaci-Dusseau, and R. H. Arpaci-DasseControlling
your PLACE in the File System with Gray-box TechniquesPhceedings
of the USENIX Annual Technical Conference (USENIX, fayes 311-324,
San Antonio, Texas, June 2003.

[72] Oracle. The Self-managing Database: Automatic Perémce Diagnosis.
https://www.oracleworld2003.com/pub-lished/40092d2.doc, 2003.

[73] C. U. Orjiand J. A. Solworth. Doubly Distorted Mirrorén Proceedings of
the 1993 ACM SIGMOD International Conference on Manageroebiata
(SIGMOD '93) Washington, DC, May 1993.

[74] J. K. Ousterhout. Why Aren’t Operating Systems Getfiagter as Fast as
Hardware? InProceedings of the USENIX Summer Technical Conference
(USENIX Summer '90)June 1990.

[75] J. Padhye and S. Floyd. On Inferring TCP Behavior. Phaceedings of
SIGCOMM '01, San Diego, California, August 2001.

[76] A. Park and K. Balasubramanian. Providing fault tore@ in parallel
secondary storage systems. Technical Report CS-TR-05P@6ceton,
November 1986.

[77] D. Patterson, G. Gibson, and R. Katz. A Case for Redundemays of In-
expensive Disks (RAID). IfProceedings of the 1988 ACM SIGMOD Con-
ference on the Management of Data (SIGMOD ;88hicago, lllinois, June
1988.

[78] D. A. Patterson. Availability and Maintainability>> Performance: New
Focus for a New Century. Key Note at FAST '02, January 2002.

[79] A. Pennington, J. Strunk, J. Griffin, C. Soules, G. Gargsand G. Ganger.
Storage-based Intrusion Detection: Watching StorageviétiFor Suspi-
cious Behavior. InProceedings of the 12th USENIX Security Symposium
2003.

[80] G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rirg and
G. Thiel. LOCUS: A Network Transparent, High Reliability €hiibuted
System. InProceedings of the 8th ACM Symposium on Operating Systems
Principles (SOSP '81)Pacific Grove, California, December 1981.

[81] Postgres. The PostgreSQL Database. http://www. pesggcom.

197

[82] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arfiacsseau. Analysis
and Evolution of Journaling File Systems. Pnoceedings of the USENIX
Annual Technical Conference (USENIX '0%naheim, California, April
2005.

[83] R-Undelete. R-Undelete File Recovery Software. Hitpyw.r-
undelete.com/.

[84] A.L.N.Reddy and P. Banerjee. Gracefully DegradablskArrays. InPro-
ceedings of the 21st International Symposium on FaultrdnteComputing
(FTCS-21) pages 401-408, Montreal, Canada, June 1991.

[85] J. Regehr. Inferring Scheduling Behavior with Housgla InProceedings
of the USENIX Annual Technical Conference (FREENIX Tradonterey,
California, June 2002.

[86] H. Reiser. ReiserFS. www.namesys.com, 2004.

[87] Restorer2000. Restorer 2000 Data Recovery Software.
http://www.bitmart.net/.

[88] E. Riedel, G. Gibson, and C. Faloutsos. Active Storagd arge-Scale Data
Mining. In Proceedings of the 24th International Conference on Vergéa
Databases (VLDB 24New York, New York, August 1998.

[89] E. Riedel, M. Kallahalla, and R. Swaminathan. A Framewfor Evaluating
Storage System Security. Rroceedings of the 1st USENIX Symposium on
File and Storage Technologies (FAST '02jonterey, California, January
2002.

[90] D. Roselli, J. R. Lorch, and T. E. Anderson. A Comparigbririle System
Workloads. InProceedings of the USENIX Annual Technical Conference
(USENIX '00) San Diego, California, June 2000.

[91] M. Rosenblum and J. Ousterhout. The Design and Impléatien of a Log-
Structured File SystemACM Transactions on Computer Systef¥(1):26—
52, February 1992.

[92] A. Rowstron and P. Druschel. Storage Management andi@@an PAST,
A Large-scale, Persistent Peer-to-peer Storage Utilityprbceedings of the
18th ACM Symposium on Operating Systems Principles (SQISPBanff,
Canada, October 2001.

198

[93] C. Ruemmler and J. Wilkes. Disk Shuffling. Technical BeplPL-91-156,

Hewlett Packard Laboratories, 1991.

[94] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalimga Taming ag-

[99]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

gressive replication in the Pangaea wide-area file systefArdceedings of
the 5th Symposium on Operating Systems Design and ImpktmneriOSDI
'02), Boston, Massachusetts, December 2002.

S. Savage and J. Wilkes. AFRAID — A Frequently Redundamtay of
Independent Disks. IRroceedings of the USENIX Annual Technical Con-
ference (USENIX '96)pages 27—-39, San Diego, California, January 1996.

J. Schindler and G. R. Ganger. Automated Disk Drive @birization. TR
CMU-CS-99-176, 1999.

J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Gangerack-aligned
Extents: Matching Access Patterns to Disk Drive Charasties. InPro-
ceedings of the 1st USENIX Symposium on File and Storagendlecfes
(FAST '02) Monterey, California, January 2002.

P. Selinger and M. Winslett. Pat Selinger Speaks G&iGMOD Record
32(4):93-103, December 2003.

P. Seshadri and M. Paskin. PREDATOR: An OR-DBMS with &mted
Data Types. IProceedings of the 1997 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD ’'971ucson, Arizona, May
1997.

M. Sivathanu, A. C. Arpaci-Dusseau, and R. H. ArpacisBeau. Evolving
RPC for Active Storage. IiProceedings of the 10th International Confer-
ence on Architectural Support for Programming Languaged @perating
Systems (ASPLOS X)ages 264-276, San Jose, California, October 2002.

M. Sivathanu, L. Bairavasundaram, A. C. Arpaci-Dasseand R. H. Arpaci-
Dusseau. Life or Death at Block Level. Rroceedings of the 6th Symposium
on Operating Systems Design and Implementation (OSD] jf&ges 379—
394, San Francisco, California, December 2004.

M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseand R. H. Arpaci-
Dusseau. Improving Storage System Availability with D-GRA In Pro-
ceedings of the 3rd USENIX Symposium on File and Storagen®kagies
(FAST ’'04) pages 15-30, San Francisco, California, April 2004.

199

[103] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Blepy A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Semantically-Smakt 8jistems. In
Proceedings of the 2nd USENIX Symposium on File and Storegjen®lo-
gies (FAST '03)San Francisco, California, April 2003.

[104] D. Slotnick.Logic Per Track Devicesrolume 10, pages 291-296. Academic
Press, 1970.

[105] SourceForge. SRM: Secure File Deletion for POSIX &yst
http://srm.sourceforge.net, 2003.

[106] SourceForge. Wipe: Secure File Deletion. http:/evourceforge.net, 2003.
[107] SourceForge. The Linux NTFS Project. http:/linuksrsf.net/, 2004.

[108] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. lBsuand G. R.
Ganger. Self-Securing Storage: Protecting Data in ComjgexirSystems.
In Proceedings of the 4th Symposium on Operating SystemsrDasipim-
plementation (OSDI '0Q)San Diego, California, October 2000.

[109] K. Swartz. The Brave Little Toaster Meets UsenetLIBA '96, pages 161—
170, Chicago, lllinois, October 1996.

[110] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A &bé Distributed
File System. IrProceedings of the 16th ACM Symposium on Operating Sys-
tems Principles (SOSP '97pages 224-237, Saint-Malo, France, October
1997.

[111] T.Ts'oand S. Tweedie. Future Directions for the EXRilesystem. IriPro-
ceedings of the USENIX Annual Technical Conference (FREENcK)
Monterey, California, June 2002.

[112] S. C. Tweedie. EXT3, Journaling File System.
http://olstrans.sourceforge.net/release/OLS2008/%tS2000-ext3.html,
July 2000.

[113] VMWare. VMWare Workstation 4.5. http://www.vmwacem/products/,
2004.

[114] C. A. Waldspurger. Memory Resource Management in VK&WBSX
Server. InProceedings of the 5th Symposium on Operating SystemsrDesig
and Implementation (OSDI '02Boston, Massachusetts, December 2002.

200

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

R. Wang, T. E. Anderson, and D. A. Patterson. VirtuafjiBased File Sys-
tems for a Programmable Disk. Proceedings of the 3rd Symposium on
Operating Systems Design and Implementation (OSDI, 'Bi@w Orleans,
Louisiana, February 1999.

N. Wilhelm-Olsen, J. Desai, G. Melvin, and M. FedertisData protection
strategies for network appliance storage systems. Net&ppriical Report
TR3066, 2003.

J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. THie AutoRAID Hierar-
chical Storage System\CM Transactions on Computer Systef#(1):108—
136, February 1996.

J. L. Wolf. The Placement Optimization Problem: A Rieal Solution to
the Disk File Assignment Problem. Froceedings of the 1989 ACM SIG-
METRICS Conference on Measurement and Modeling of ComByttems
(SIGMETRICS '89)pages 1-10, Berkeley, California, May 1989.

T. Wong and J. Wilkes. My Cache or Yours? Making Storktyee Exclu-
sive. InProceedings of the USENIX Annual Technical Conference (USE
'02), Monterey, California, June 2002.

B. Worthington, G. Ganger, Y. Patt, and J. Wilkes. Gnéd_Extraction of
SCSI Disk Drive Parameters. Iroceedings of the 1995 ACM SIGMET-
RICS Conference on Measurement and Modeling of ComputenBy$SIG-
METRICS '95) Ottawa, Canada, May 1995.

J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Usingddl Checking
to Find Serious File System Errors. Bioceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSDI ‘84 Francisco,
California, December 2004.

X. Yu, B. Gum, Y. Chen, R. Wang, K. Li, A. Krishnamurthgnd T. Ander-
son. Trading Capacity for Performance in a Disk Array.Phoceedings of
the 4th Symposium on Operating Systems Design and ImplainertOSDI

'00), San Diego, California, October 2000.

Y. Yu, P. Manaolios, and L. Lamport. Model Checking TL/pecifications.
Lecture Notes in Computer Scien¢g703):54-66, 1999.

Y. Zhou, J. F. Philbin, and K. Li. The Multi-Queue Reptanent Algorithm
for Second Level Buffer Caches. Rroceedings of the USENIX Annual
Technical Conference (USENIX 'QBoston, Massachusetts, June 2001.

