
This paper is included in the Proceedings of the
13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’18).
October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-931971-47-8

Open access to the Proceedings of the
13th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Fault-Tolerance, Fast and Slow: Exploiting Failure
Asynchrony in Distributed Systems

Ramnatthan Alagappan, Aishwarya Ganesan, Jing Liu, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau, University of Wisconsin–Madison

https://www.usenix.org/conference/osdi18/presentation/alagappan

Fault-Tolerance, Fast and Slow:
Exploiting Failure Asynchrony in Distributed Systems

Ramnatthan Alagappan, Aishwarya Ganesan, Jing Liu,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

University of Wisconsin – Madison

Abstract
We introduce situation-aware updates and crash re-

covery (SAUCR), a new approach to performing repli-
cated data updates in a distributed system. SAUCR adapts
the update protocol to the current situation: with many
nodes up, SAUCR buffers updates in memory; when fail-
ures arise, SAUCR flushes updates to disk. This situation-
awareness enables SAUCR to achieve high performance
while offering strong durability and availability guaran-
tees. We implement a prototype of SAUCR in ZooKeeper.
Through rigorous crash testing, we demonstrate that
SAUCR significantly improves durability and availabil-
ity compared to systems that always write only to mem-
ory. We also show that SAUCR’s reliability improvements
come at little or no cost: SAUCR’s overheads are within
0%-9% of a purely memory-based system.

1 Introduction
The correctness and performance of a fault-tolerant sys-
tem depend, to a great extent, upon its underlying repli-
cation protocols. In the modern data center, these proto-
cols include Paxos [45], Viewstamped Replication [48],
Raft [57], and ZAB [39]. If these protocols behave incor-
rectly, reliability goals will not be met; if they perform
poorly, excess resources and cost will be incurred.

A key point of differentiation among these protocols
relates to how they store system state (§2). In one ap-
proach, which we call disk durable, critical state is repli-
cated to persistent storage (i.e., hard drives or SSDs)
within each node of the system [13, 14, 17, 37, 57]. In
the contrasting memory durable approach, the state is
replicated only to the (volatile) memory of each ma-
chine [48, 55]. Unfortunately, neither approach is ideal.

With the disk-durable approach, safety is paramount.
When correctly implemented, by committing updates
to disks within a majority of nodes, the disk-durable
approach offers excellent durability and availability.
Specifically, data will not be lost if the nodes crash and
recover; further, the system will remain available if a
bare majority of nodes are available. Unfortunately, the
cost of safety is performance. When forcing updates
to hard drives, disk-durable methods incur a 50× over-
head; even when using flash-based SSDs, the cost is high
(roughly 2.5×).

With the memory-durable approach, in contrast, per-
formance is generally high, but at a cost: durability. In
the presence of crash scenarios where a majority of nodes
crash (and then recover), existing approaches can lead to
data loss or indefinite unavailability.

The distributed system developer is thus confronted
with a vexing quandary: choose safety and pay a high
performance cost, or choose performance and face a
potential durability problem. A significant number of
systems [17, 41, 48, 55, 61] lean towards performance,
employing memory-durable approaches and thus risking
data loss or unavailability. Even when using a system
built in the disk-durable manner, performance concerns
can entice the unwary system administrator towards dis-
aster; for instance, the normally reliable disk-durable
ZooKeeper can be configured to run in a memory-
durable mode [5], leading (regrettably) to data loss [30].

In this paper, we address this problem by introducing
situation-aware updates and crash recovery or SAUCR

(§3), a hybrid replication protocol that aims to provide
the high performance of memory-durable techniques
while offering strong guarantees similar to disk-durable
approaches. The key idea underlying SAUCR is that the
mode of replication should depend upon the situation the
distributed system is in at a given time. In the common
case, with many (or all) nodes up and running, SAUCR

runs in memory-durable mode, thus achieving excellent
throughput and low latency; when nodes crash or become
partitioned, SAUCR transitions to disk-durable operation,
thus ensuring safety at a lower performance level.

SAUCR applies several techniques to achieve high
performance and safety. For example, a mode-switch
technique enables SAUCR to transition between the fast
memory-durable and the safe disk-durable modes. Next,
given that SAUCR can operate in two modes, a node re-
covering from a crash performs mode-aware crash re-
covery; the node recovers the data from either its local
disk or other nodes depending on its pre-crash mode. Fi-
nally, to enable a node to safely recover from a fast-mode
crash, the other nodes store enough information about the
node’s state within them in the form of replicated last-
logged entry (LLE) maps.

The effectiveness of SAUCR depends upon the simul-
taneity of failures. Specifically, if a window of time ex-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 391

ists between individual node failures, the system can de-
tect and thus react to failures as they occur. SAUCR takes
advantage of this window in order to move from its fast
mode to its slow-and-safe mode.

With independent failures, such a time gap between
failures exists because the likelihood of many nodes fail-
ing together is negligible. Unfortunately, failures can
often be correlated as well, and in that case, many
nodes can fail together [31, 35, 42, 64]. Although many
nodes fail together, a correlated failure does not neces-
sarily mean that the nodes fail at the same instant: the
nodes can fail either non-simultaneously or simultane-
ously. With non-simultaneous correlated failures, a time
gap (ranging from a few milliseconds to a few seconds)
exists between the individual failures; such a gap allows
SAUCR to react to failures as they occur. With simul-
taneous failures, in contrast, such a window does not
exist. However, we conjecture that such truly simulta-
neous failures are extremely rare; we call this the Non-
Simultaneity Conjecture (NSC). While we cannot defini-
tively be assured of the veracity of NSC, our analysis
(§2.3) of existing data [31, 33] hints at its likely truth.

Compared to memory-durable systems, SAUCR im-
proves reliability under many failure scenarios. Under
independent and non-simultaneous correlated failures,
SAUCR always preserves durability and availability, of-
fering the same guarantees as a disk-durable system; in
contrast, memory-durable systems can lead to data loss
or unavailability. Additionally, if NSC holds, SAUCR al-
ways provides the same guarantees as a disk-durable sys-
tem. Finally, when NSC does not hold and if more than a
majority of nodes crash in a truly simultaneous fashion,
SAUCR remains unavailable, but preserves safety.

We implement (§4) and evaluate (§5) a prototype of
SAUCR in ZooKeeper [4]. Through rigorous fault injec-
tion, we demonstrate that SAUCR remains durable and
available in hundreds of crash scenarios, showing its ro-
bustness. This same test framework, when applied to ex-
isting memory-durable protocols, finds numerous cases
that lead to data loss or unavailability. SAUCR’s reli-
ability improvements come at little or no performance
cost: SAUCR’s overheads are within 0%-9% of memory-
durable ZooKeeper across six different YCSB work-
loads. Compared to the disk-durable ZooKeeper, with
a slight reduction in availability in rare cases, SAUCR im-
proves performance by 25× to 100× on HDDs and 2.5×
on SSDs.

2 Distributed Updates and Recovery
In this section, we first describe the disk-durable and
memory-durable protocols. We then describe the char-
acteristics of different kinds of failures. Finally, we draw
attention to the non-reactiveness to failures and the static
nature of existing protocols.

Mode Avg. Latency (µs) Throughput (ops/s)
HDD

cluster1
fsync-s disabled 327.86 3050.1

disk durability 16665.18 (50.8× ↑) 60.0 (50.8× ↓)
SSD

cluster2
fsync-s disabled 461.2 2168.34

disk durability 1027.3 (2.3× ↑) 973.4 (2.3× ↓)

Table 1: Disk Durability Overheads. The table shows the over-
heads of disk durability. The experimental setup is detailed in §5.2.

2.1 Disk-Durable Protocols
Disk-durable protocols always update the disk on a cer-
tain number of nodes upon every data modification.
For example, ZooKeeper [4], etcd [24], and other sys-
tems [14,49,53,62] persist every update on a majority of
nodes before acknowledging clients.

With the exception of subtle bugs [2], disk-durable
protocols offer excellent durability and availability.
Specifically, committed data will never be lost under any
crash failures. Further, as long as a majority of nodes are
functional, the system will remain available. Unfortu-
nately, such strong durability and availability guarantees
come at a cost: poor performance.

Disk-durable protocols operate with caution and pes-
simistically flush updates to the disk (e.g., by invoking
the fsync system call [11, 60]). Such forced writes in
the critical path are expensive, often prohibitively so. To
highlight these overheads, we conduct a simple experi-
ment with ZooKeeper in the following modes: first, in
the disk-durable configuration in which the fsync calls
are enabled; second, with fsync calls disabled. A client
sends update requests in a closed loop to the leader which
then forwards the requests to the followers. We run the
experiment on a five-node cluster and thus at least three
servers must persist the data before acknowledgment.

As shown in Table 1, on HDDs, forced writes incur
a 50× performance overhead compared to the fsync-
disabled mode. Even on SSDs, the cost of forced writes
is high (2.3×). While batching across many clients may
alleviate some overheads, disk-durable protocols are fun-
damentally limited by the cost of forced writes and thus
suffer from high latencies and low throughput.

A disk-durable update protocol is usually accompa-
nied by a disk-based recovery protocol. During crash-
recovery, a node can immediately join the cluster just af-
ter it recovers the data from its disk. A recovering node
can completely trust its disk because the node would not
have acknowledged any external entity before persisting
the data. However, the node may be lagging: it may not
contain some data that other nodes might have stored af-
ter it crashed. Even in such cases, the node can imme-
diately join the cluster; if the node runs for an election,
the leader-election protocol will preclude this node from
becoming the leader because it has not stored some data
that the other nodes have [2, 57]. If a leader already ex-
ists, the node fetches the missed updates from the leader.

392 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

(i)

In
de

fin
ite

ly
 u

na
va

ila
bl

e1 2
1

1 2
1 2

1 2 In
de

fin
ite

ly
 u

na
va

ila
bl

e1 2
1
1

2
2
2 1 2

1 2
1 2
1 2

1 2
1 2
1 2
1 2
1 2

1 2
1 2
1 2
1 2
1 2

1 2
1 2

(ii)

2

1 2

1

1 2
(i)

fo
llo
w2

21

1
1 2

21

21
1 2
1 2
1 2
1 2

21
1 2
1 2
1 2
1 2

21
1 2
1 2
1 2
1 2

(ii)
1 2

21

(b) Loss-Aware Memory Durability

 (a) Oblivious Memory Durability

2

Figure 1: Problems in Memory-Durable Approaches. (a) and
(b) show how a data loss or an unavailability can occur with oblivious
and loss-aware memory durability, respectively. In (i), the nodes fail
simultaneously; in (ii), they fail non-simultaneously, one after the other.

2.2 Memory-Durable Protocols
Given the high overheads imposed by a disk-durable pro-
tocol, researchers and practitioners alike have proposed
alternative protocols [17,55], in which the data is always
buffered in memory, achieving good performance. We
call such protocols memory-durable protocols.

2.2.1 Oblivious Memory Durability
The easiest way to achieve memory “durability” is obliv-
ious memory durability, in which any forced writes in
the protocol are simply disabled, unaware of the risks of
only buffering the data in memory. Most systems provide
such a configuration option [8, 22, 27, 62]; for example,
in ZooKeeper, turning off the forceSync flag disables all
fsync calls [5]. Turning off forced writes increases per-
formance significantly, which has tempted practitioners
to do so in many real-world deployments [29, 38, 59].

Unfortunately, disabling forced writes might lead to a
data loss [5, 43] or sometimes even an unexpected data
corruption [68]. Developers and practitioners have re-
ported several instances where this unsafe practice has
led to disastrous data-loss events in the real world [7,30].

Consider the scenarios shown in Figure 1(a), in which
ZooKeeper runs with forceSync disabled. If a majority
of nodes crash and recover, data could be silently lost.
Specifically, the nodes that crash could form a major-
ity and elect a leader among themselves after recovery;
however, this majority of nodes have lost their volatile
state and thus do not know of the previously committed
data, causing a silent data loss. The intact copies of data
on other nodes (servers 4 and 5) can be overwritten by
the new leader because the followers always follow the
leader’s state in ZooKeeper [2, 57].

2.2.2 Loss-Aware Memory Durability
Given that naı̈vely disabling forced writes may lead to a
silent data loss, researchers have examined more careful

functional
 < majority

functional
 < majority

(c) Unavailability in Loss-Aware Memory Durability

failed
 >= majority

failed
 < majority

failed_crash >= majority

failed
 < majority

any no. of
nodes alive

(b) Data Loss in Oblivious Memory Durability

Available

failed >= majority

functional
>= majority

(a) Disk Durability

Temporarily
Unavailable

failed
 < majority

failed_crash
 >= majority

functional
 >= majority

failed >= majority &&
failed_crash< majority

Available

Temporarily
Unavailable

Data Loss
Available

Temporarily
Unavailable

Available

functional >= majority &&
functional_lagging < majority

failed
 >= majority

functional >= majority &&
functional_lagging >= majority

failed
 < majority

Permanently
Unavailable

functional
 < majority

Figure 2: Summary of Protocol Behaviors and Guarantees. The
figure shows how the disk-durable and memory-durable protocols be-
have under failures and the guarantees they provide.

approaches. In these approaches, a node, after a crash
and a subsequent reboot, realizes that it might have lost
its data; thus, a recovering node first runs a distinct re-
covery protocol. We call such approaches loss-aware
memory-durable approaches.

The view-stamped replication (VR) protocol [55] is
an example of this approach. Similarly, researchers at
Google observed that they could optimize their Paxos-
based system [17] by removing disk flushes, given that
the nodes run a recovery protocol. For simplicity, we use
only VR as an example for further discussion.

In VR, when a node recovers from a crash, it first
marks itself to be in a recovering state, in which the
node can neither participate in replication nor give votes
to elect a new leader (i.e., a view change) [48]. Then,
the node sends a recovery message to other servers. A
node can respond to this message if it is not in the re-
covering state; the responding node sends its data to the
recovering node. Once the node collects responses from
a majority of servers (including the leader of the latest
view), it can fix its data. By running a recovery protocol,
this approach prevents a silent data loss.

Unfortunately, the loss-aware approach can lead to un-
availability in many failure scenarios. Such an unavail-
ability event could be permanent: the system may re-
main unavailable indefinitely even after all nodes have
recovered from failures. For example, in Figure 1(b), a
majority of nodes crash and recover. However, after re-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 393

covering from the crash, none of the nodes will be able to
collect recovery responses from a majority of nodes (be-
cause nodes in the recovering state cannot respond to the
recovery messages), leading to permanent unavailability.
Protocols Summary. Figure 2 summarizes the behav-
iors of the disk-durable and memory-durable protocols.
A node either could be functional or could have failed
(crashed or partitioned). Disk-durable protocols remain
available as long as a majority are functional. The sys-
tem becomes temporarily unavailable if a majority fail;
however, it becomes available once a majority recover.
Further, the protocol is durable at all times.

The oblivious memory-durable protocol becomes tem-
porarily unavailable if a majority fail. After recovering
from a failure, a node could be lagging: it either recov-
ers from a crash, losing all its data, or it recovers from
a partition failure, and so it may not have seen updates.
If such functional but lagging nodes form a majority, the
system can silently lose data.

The loss-aware memory-durable approach becomes
temporarily unavailable if the system is unable to form
a majority due to partitions. However, the system be-
comes permanently unavailable if a majority or more
nodes crash at any point; the system cannot recover from
such a state, regardless of how many nodes recover.

2.3 Failures and Failure Asynchrony
Given that existing approaches compromise on either
performance or reliability, our goal is to design a dis-
tributed update protocol that delivers high performance
while providing strong guarantees. Such a design needs
a careful understanding of how failures occur in data-
center distributed systems, which we discuss next.

Similar to most distributed systems, our goal is to tol-
erate only fail-recover failures [34, 36, 45, 57] and not
Byzantine failures [16, 46]. In the fail-recover model,
nodes may fail any time and recover later. For instance,
a node may crash due to a power loss and recover when
the power is restored. When a node recovers, it loses
all its volatile state and is left only with its on-disk data.
We assume that persistent storage will be accessible af-
ter recovering from the crash and that it will not be cor-
rupted [32]. In addition to crashing, sometimes, a node
could be partitioned and may later be able to communi-
cate with the other nodes; however, during such partition
failures, the node does not lose its volatile state.

Sometimes, node failures are independent. For ex-
ample, in large deployments, single-node failure events
are often independent: a crash of one node (e.g., due
to a power failure) does not affect some other node. It
is unlikely for many such independent failures to occur
together, especially given the use of strategies such as
failure-domain-aware placement [3, 44, 50].

With independent failures, the likelihood that a ma-

jority of nodes fail together is negligible. Under such a
condition, designing a protocol that provides both high
performance and strong guarantees is fairly straightfor-
ward: the protocol can simply buffer updates in memory
always. Given that a majority will not be down at any
point, the system will always remain available. Further,
at least one node in the alive majority will contain all the
committed data, preventing a data loss.

Unfortunately, in reality, such a failure-independence
assumption is rarely justified. In many deployments, fail-
ures can be correlated [12,20,25,35,64,66]. During such
correlated crashes, several nodes fail together, often due
to the same underlying cause such as rolling reboots [31],
bad updates [54], bad inputs [26], or data-center-wide
power outages [42].

Given that failures can be correlated, it is likely that
the above naı̈ve protocol may lose data or become un-
available. An ideal protocol must provide good perfor-
mance and strong guarantees in the presence of corre-
lated failures. However, designing such a protocol is
challenging. At a high level, if the updates are buffered in
memory (aiming to achieve good performance), a corre-
lated failure may take down all the nodes together, caus-
ing the nodes to lose the data, affecting durability.

Although many or all nodes fail together, a correlated
failure does not mean that the nodes fail at the same
instant; the nodes can fail either non-simultaneously
or simultaneously. With non-simultaneous correlated
crashes, a time gap between the individual node failures
exists. For instance, a popular correlated-crash scenario
arises due to bad inputs: many nodes process a bad input
and crash together [26]. However, such a bad input is
not applied at exactly the same time on all the nodes (for
instance, a leader applies an input before its followers),
causing the individual failures to be non-simultaneous.

In contrast, with simultaneous correlated crashes, such
a window between failures does not exist; all nodes may
fail before any node can detect a failure and react to
it. However, we conjecture that such truly simultane-
ous crashes are extremely rare; we call this the Non-
Simultaneity Conjecture (NSC). Publicly available data
supports NSC. For example, a study of failures in Google
data centers [31] showed that in most correlated failures,
nodes fail one after the other, usually a few seconds apart.

We also analyze the time gap between failures in the
publicly available Google cluster data set [33]. This data
set contains traces of machine events (such as the times
of node failures and restarts) of about 12K machines over
29 days and contains about 10K failure events. From the
traces, we randomly pick five machines (without consid-
ering failure domains) and examine the timestamps of
their failures. We repeat this 1M times (choosing differ-
ent sets of machines). We find that the time between two
failures among the picked machines is greater than 50

394 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ms in 99.9999% of the cases. However, we believe the
above percentage is a conservative estimate, given that
we did not pick the machines across failure domains; do-
ing so is likely to increase the time between machine fail-
ures. Thus, we observe that truly simultaneous machine
failures are rare: a gap of 50 ms or more almost always
exists between the individual failures.

Given that in most (if not all) failure scenarios, a win-
dow of time exists between the individual failures, a sys-
tem can take advantage of the window to react and per-
form a preventive measure (e.g., flushing to disk). A sys-
tem that exploits this asynchrony in failures can improve
durability and availability significantly.

2.4 Non-Reactiveness and Static Nature
We observe that existing update protocols do not react to
failures. While it may be difficult to react to truly simul-
taneous failures, with independent and non-simultaneous
failures, an opportunity exists to detect failures and per-
form a corrective step. However, existing protocols do
not react to any failure.

For example, the oblivious memory-durable proto-
col can lose data, regardless of the simultaneity of the
failures. Specifically, a data loss occurs both in Fig-
ure 1(a)(i) in which the nodes crash simultaneously and
(a)(ii) in which they fail non-simultaneously. Similarly,
the loss-aware approach can become unavailable, regard-
less of the simultaneity of the failures (as shown in Fig-
ure 1(b)). This is the reason we do not differentiate si-
multaneous and non-simultaneous failures in Figure 2;
the protocols behave the same under both failures.

Next, we note that the protocols are static in nature:
they always update and recover in a constant way, regard-
less of the situation; this situation-obliviousness is the
cause for poor performance or reliability. For example,
the disk-durable protocol constantly anticipates failures,
forcing writes to disk even when nodes never or rarely
crash; this unnecessary pessimism leads to poor perfor-
mance. In contrast, when nodes rarely crash, a situation-
aware approach would buffer updates in memory, achiev-
ing high performance. Similarly, the memory-durable
protocol always optimistically buffers updates in mem-
ory even when only a bare majority are currently func-
tional; this unwarranted optimism results in poor durabil-
ity or availability. In contrast, when only a bare majority
are alive, a situation-aware approach would safely flush
updates to disk, improving durability and availability.

Our approach, situation-aware updates and crash re-
covery or SAUCR, reacts to failures quickly with correc-
tive measures, and adapts to the current situation of the
system. Such reactiveness and situation-awareness en-
ables SAUCR to achieve high performance similar to a
memory-durable protocol while providing strong guar-
antees similar to a disk-durable protocol.

3 Situation-Aware Updates and Recovery
The main idea in SAUCR is that of situation-aware oper-
ation, in which the system operates in two modes: fast
and slow. In the common case, with many or all nodes
up, SAUCR operates in the fast mode, buffering updates
in memory and thus achieving high performance. When
failures arise, SAUCR quickly detects them and performs
two corrective measures. First, the nodes flush their data
to disk, preventing an imminent data loss or unavailabil-
ity. Second, SAUCR commits subsequent updates in slow
mode, in which the nodes synchronously write to disk,
sacrificing performance to improve reliability.

When a node recovers from a crash, it performs mode-
aware recovery. The node recovers its data either from its
local disk or from other nodes depending on whether it
operated in slow or fast mode before it crashed.

We first outline SAUCR’s guarantees (§3.1) and provide
an overview of SAUCR’s modes (§3.2). Next, we discuss
how SAUCR detects and reacts to failures (§3.3), and de-
scribe the mechanisms that enable mode-aware recovery
(§3.4). We then explain how crash recovery works and
show its safety (§3.5). Finally, we summarize SAUCR’s
key aspects and describe the guarantees in detail (§3.6).

3.1 Guarantees
We consider three kinds of failures: independent, cor-
related non-simultaneous, and correlated simultaneous
failures. SAUCR can tolerate any number of indepen-
dent and non-simultaneous crashes; under such failures,
SAUCR always guarantees durability. As long as a ma-
jority of servers eventually recover, SAUCR guarantees
availability. Under simultaneous correlated failures, if
a majority or fewer nodes crash, and if eventually a ma-
jority recover, SAUCR will provide durability and avail-
ability. However, if more than a majority crash simulta-
neously, then SAUCR cannot guarantee durability and so
will remain unavailable. However, we believe such truly
simultaneous crashes are extremely rare. We discuss the
guarantees in more detail later (§3.6).

3.2 SAUCR Modes Overview
We first describe some properties common to many
majority-based systems. We then highlight how SAUCR

differs from existing systems in key aspects.
Most majority-based systems are leader-based [6,57];

the clients send updates to the leader which then forwards
them to the followers. The updates are first stored in a
log and are later applied to an application-specific data
structure. A leader is associated with an epoch: a slice
of time; for any given epoch, there could be at most one
leader [6, 57]. Because only the leader proposes an up-
date, each update is uniquely qualified by the epoch in
which the leader proposed it and the index of the update
in the log. The leader periodically checks if a follower

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 395

e2 acked
in fast

e3 acked
in slow

S4,5 recover
& catch up

e1 acked
in fast

S1
L

S2
S3
S4
S5

e4 acked
in fast

time
fast fast slow fast fast

...

1
1
1
1
1

1 2
1 2
1 2
1 2

1 2 3
1 2 3
1 2 3

1 2 3
1 2 3
1 2 3
1 2 3
1 2 3

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

Figure 3: Saucr Modes. The figure shows how SAUCR’s modes
work. S1 is the leader. Entries in a white box are committed but are only
buffered (e.g., e1 and e2 in the first and second states). Entries shown
grey denote that they are persisted (e.g., e1 – e3 in the third state). In
fast mode, a node loses its data upon a crash and is annotated with a
crash symbol (e.g., S5 has lost its data in the second state).

is alive or not via heartbeats. If the followers suspect
that the leader has failed, they compete to become the
new leader in a new epoch. Most systems guarantee the
leader-completeness property: a candidate can become
the leader only if it has stored all items that have been
acknowledged as committed [2, 57]. SAUCR retains all
the above properties of majority-based systems.

In a memory-durable system, the nodes always buffer
updates in memory; similarly, the updates are al-
ways synchronously persisted in a disk-durable system.
SAUCR changes this fundamental attribute: SAUCR either
buffers the updates or synchronously flushes them to disk
depending on the situation. When more nodes than a
bare minimum to complete an update are functional, los-
ing those additional nodes will not result in an immediate
data loss or unavailability; in such situations, SAUCR op-
erates in fast mode. Specifically, SAUCR operates in fast
mode if more than a bare majority are functional (i.e.,
functional ≥ dn/2e+1, where n is the total nodes, typi-
cally a small odd number). If nodes fail and only a bare
majority (dn/2e) are functional, losing even one addi-
tional node may lead to a data loss or unavailability; in
such situations, SAUCR switches to the slow mode. Be-
cause the leader continually learns about the status of the
followers, the leader determines the mode in which a par-
ticular request must be committed.

We use Figure 3 to give an intuition about how
SAUCR’s modes work. At first, all the nodes are func-
tional and hence the leader S1 replicates entry e1 in fast
mode. The followers acknowledge e1 before persisting it
(before invoking fsync); similarly, the leader also only
buffers e1 in memory. In fast mode, the leader acknowl-
edges an update only after dn/2e+1 nodes have buffered
the update. Because at least four nodes have buffered
e1, the leader acknowledges e1 as committed. Now, S5
crashes; the leader detects this but remains in fast mode
and commits e2 in fast mode.

Next, S4 also crashes, leaving behind a bare major-
ity; the leader now immediately initiates a switch to slow

mode and replicates all subsequent entries in slow mode.
Thus, e3 is replicated in slow mode. Committing an en-
try in slow mode requires at least a bare majority to per-
sist the entry to their disks; hence, when e3 is persisted
on three nodes, it is committed. Further, the first entry
persisted in slow mode also persists all previous entries
buffered in memory; thus, when e3 commits, e1 and e2
are also persisted. Meanwhile, S4 and S5 recover and
catch up with other nodes; therefore, the leader switches
back to fast mode, commits e4 in fast mode, and contin-
ues to commit entries in fast mode until further failures.

3.3 Failure Reaction
In the common case, with all or many nodes alive, SAUCR

operates in fast mode. When failures arise, the system
needs to detect them and switch to slow mode or flush to
disk. The basic mechanism SAUCR uses to detect failures
is that of heartbeats.
Follower Failures and Mode Switches. If a follower
fails, the leader detects it via missing heartbeats. If the
leader suspects that only a bare majority (including self)
are functional, it immediately initiates a switch to slow
mode. The leader sends a special request (or uses an
outstanding request such as e3 in the above example) on
which it sets a flag to indicate to the followers that they
must respond only after persisting the request; this also
ensures that all previously buffered data will be persisted.
All subsequent requests are then replicated in slow mode.
When in fast mode, the nodes periodically flush their
buffers to disk in the background, without impacting the
client-perceived performance. These background flushes
reduce the amount of data that needs to be written when
switching to slow mode. Once enough followers recover,
the leader switches back to fast mode. To avoid fluctua-
tions, the leader switches to fast mode after confirming a
handful number of times that it promptly gets a response
from more than a bare majority; however, a transition to
slow mode is immediate: the first time the leader sus-
pects that only a bare majority of nodes are alive.
Leader Failures and Flushes. The leader takes care
of switching between modes. However, the leader it-
self may fail at any time. The followers quickly detect a
failed leader (via heartbeats) and flush all their buffered
data to disk. Again, the periodic background flushes re-
duce the amount of data that needs to be written.

3.4 Enabling Safe Mode-Aware Recovery
When a node recovers from a crash, it may have lost
some data if it had operated in fast mode; in this case, the
node needs to recover its lost data from other nodes. In
contrast, the node would have all the data it had logged
on its disk if it had crashed in slow mode or if it had
flushed after detecting a failure; in such cases, it recov-
ers the data only from its disk. Therefore, a recovering
node first needs to determine the mode in which it last

396 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

operated. Moreover, if a node recovers from a fast-mode
crash, the other nodes should maintain enough informa-
tion about the recovering node. We now explain how
SAUCR satisfies these two requirements.

3.4.1 Persistent Mode Markers
The SAUCR nodes determine their pre-crash mode as fol-
lows. When a node processes the first entry in fast mode,
it synchronously persists the epoch-index pair of that en-
try to a structure called the fast-switch-entry. Note that
this happens only for the first entry in the fast mode. In
the slow mode or when flushing on failures, in addition
to persisting the entries, the nodes also persist the epoch-
index pair of the latest entry to a structure called the
latest-on-disk-entry. To determine its pre-crash mode, a
recovering node compares the above two on-disk struc-
tures. If its fast-switch-entry is ahead1 of its latest-on-
disk-entry, then the node concludes that it was in the fast
mode. Conversely, if the fast-switch-entry is behind the
latest-on-disk-entry, then the node concludes that it was
in the slow mode or it had safely flushed to disk.

3.4.2 Replicated LLE Maps
Once a node recovers from a crash, it must know how
many entries it had logged in memory or disk before it
crashed. We refer to this value as the last logged entry
or LLE of that node. The LLE-recovery step is crucial
because only if a node knows its LLE, it can participate
in elections. Specifically, a candidate requests votes from
other nodes by sending its LLE. A participant grants its
vote to a candidate if the participant’s LLE and current
epoch are not ahead of the candidate’s LLE and current
epoch, respectively [57] (provided the participant had not
already voted for another candidate in this epoch).

In a majority-based system, as long as a majority of
nodes are alive, the system must be able to elect a leader
and make progress [10,57]. It is possible that the system
only has a bare majority of nodes including the currently
recovering node. Hence, it is crucial for a recovering
node to immediately recover its LLE; if it does not, it
cannot participate in an election or give its vote to other
candidates, rendering the system unavailable.

If a node recovers from a slow-mode crash, it can re-
cover its LLE from its disk. However, if a node recovers
from a fast-mode crash, it would not have its LLE on its
disk; in this case, it has to recover its LLE from other
nodes. To enable such a recovery, as part of the repli-
cation request, the leader sends a map of the last (po-
tentially) logged entry of each node to every node. The
leader constructs the map as follows: when replicating
an entry at index i in epoch e, the leader sets the LLE of
all the functional followers and self to e.i and retains the
last successful value of LLE for the crashed or partitioned

1An entry a is ahead of another entry b if (a.epoch > b.epoch) or
(a.epoch == b.epoch and a.index > b.index).

followers. For instance, if the leader (say, S1) is replicat-
ing an entry at index 10 in epoch e to S2, S3, and S4, and
if S5 has crashed after request 5, then the map will be
〈S1:e.10, S2:e.10, S3:e.10, S4:e.10, S5:e.5〉. We call this
map the last-logged entry map or LLE-MAP. In the fast
mode, the nodes maintain the LLE-MAP in memory; in
slow mode, the nodes persist the LLE-MAP to the disk.

3.5 Crash Recovery
In a disk-durable system, a node recovering from a crash
performs three distinct recovery steps. First, it recovers
its LLE from its disk. Second, it competes in an election
with the recovered LLE. The node may either become the
leader or a follower depending on its LLE’s value. Third,
the node recovers any missed updates from other nodes.
If the node becomes the leader after the second step, it is
guaranteed to have all the committed data because of the
leader-completeness property [2, 57], skipping the third
step. If the node becomes a follower, it might be lagging
and so fetches the missed updates from the leader.

In SAUCR, a node recovering from a crash could have
operated either in slow or fast mode before it crashed. If
the node was in slow mode, then its recovery steps are
identical to the disk-durable recovery described above;
we thus do not discuss slow-mode crash recovery any
further. A fast-mode crash recovery, however, is more
involved. First, the recovering node would not have its
LLE on its disk; it has to carefully recover its LLE from
the replicated LLE-MAPs on other nodes. Second, it has
to recover its lost data irrespective of whether it becomes
the leader or a follower. We explain how a node performs
the above crash-recovery steps.
Max-Among-Minority. A SAUCR node recovering from
a fast-mode crash recovers its LLE using a procedure that
we call max-among-minority. In this procedure, the node
first marks itself to be in a state called recovering and
then sends an LLE query to all other nodes. A node may
respond to this query only if it is in a recovered (not re-
covering) state; if it is not, it simply ignores the query.
Note that a node can be in the recovered state in two
ways. First, it could have operated in fast mode and not
crashed yet; second, it could have last operated in slow
mode and so has the LLE-MAP on its disk. The recover-
ing node waits to get responses from at least a bare mi-
nority of nodes, where bare-minority = dn/2e−1; once
the node receives a bare-minority responses, it picks the
maximum among the responses as its LLE. Finally, the
node recovers the actual data up to the recovered LLE. For
now, we assume that at least a bare minority will be in
recovered state; we soon discuss cases where only fewer
than a bare minority are in the recovered state (§3.6).

We argue that the max-among-minority procedure
guarantees safety, i.e., it does not cause a data loss. To
do so, let us consider a node N that is recovering from a

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 397

<2,2,2,2,2><1, 1, 1, 1, 1> 2

S*
1

S2

S3

S5

S4

<2,2,2,2,2>

<1, 1, 1, 1, 1>

(a)(i) Lʹ > L

<1, 1, 1, 1, 1>

<1, 1, 1, 1, 1>

<1, 1, 1, 1, 1>

<1, 1, 1, 1, 1>

<2,2,2,2,2>

<2,2,2,2,2>

<2,2,2,2,2>

<2,2,2,2,2>

<1, 1, 1, 1, 1>

<1, 1, 1, 1, 1>

<1, 1, 1, 1, 1>

<1, 1, 1, 1, 1>

<1, 1, 1, 1, 1>

<2,2,2,2,2>

<1, 1, 1, 1, 1>

<1, 1, 1, 1, 1>

1

1

1

1

1

1 2

1 2

1 2

1 2

1 <1, 1, 1, 1, 1>

<2,2,2,2,2>

<2,2,2,2,2>

<2,2,2,2,2>

<2,2,2,2,2>

1 2

1 2

1 2

1 2

1

1

1

1

1

1 2

1 2

1 2 <2,2,2,2,2>

1

1

<2,2,2,2,2>1 2

<2,2,2,2,2>1 2

<1, 1, 1, 1, 1>

<1, 1, 1, 1, 1>

1

1

1 2
CN L

S3’s log just before it crashes

(a)(ii) Lʹ < L

1 committed S3 crashes when
leader is replicating 2

S3 recovers its LLE
S2,4 down

1 committed S4,5 partition when
leader is replicating 2

 S3 crashes and recovers
S1,2 down

S4,5 partition heals

<2,2,2,2,2>

<1, 1, 1, 1, 1>

(b) CN is not the latest committed

<1, 1, 1, 1, 1>

<1, 1, 1, 1, 1>

<1, 1, 1, 1, 1>

<2,2,2,2,2>1

1

1

1

1

1 2

1 2

1

1

<3,3,2,3,3>1 2

1 2

1

1

2

1 committed S3 crashes when
leader is replicating 2

2 is not yet committed

leader commits 2,3
after S3 crashes, CN is 2,
and latest committed

In the system is 3

<1, 1, 1, 1, 1>

<1, 1, 1, 1, 1>

1

2

3

3

3

3

<3,3,2,3,3>

<3,3,2,3,3>

<3,3,2,3,3>

Figure 4: LLE Recovery. The figure shows how L′ may not be
equal to L. For each node, we show its log and LLE-MAP. The leader
(S1) is marked *; crashed nodes are annotated with a crash symbol;
nodes partitioned are shown in a dotted box; epochs are not shown.

fast-mode crash and let its actual last-logged entry (LLE)
be L. When N runs the max-among-minority procedure,
it retrieves L′ as its LLE and recovers all entries up to L′.

If N recovers exactly all entries that it logged before
crashing (i.e., L′=L), then it is as though N had all the
entries on its local disk (similar to how a node would re-
cover in a disk-durable protocol, which is safe). There-
fore, if the retrieved L′ is equal to the actual last-logged
entry L, the system would be safe.

However, in reality, it may not be possible for N to re-
trieve an L′ that is exactly L. If N crashes after the leader
sends a replication request but before N receives it, N
may retrieve an L′ that is greater than L. For example,
consider the case shown in Figure 4(a)(i). The leader
(S1) has successfully committed entry-1 in fast mode and
now intends to replicate entry-2; hence, the leader popu-
lates the LLE-MAP with 2 as the value for all the nodes.
However, S3 crashes before it receives entry-2; conse-

quently, its LLE is 1 when it crashed. However, when S3
recovers its LLE from LLE-MAPs of S1 and S5 using the
max-among-minority algorithm, the recovered L′ will be
2 which is greater than 1. Note that if L′ is greater than L,
it means that N will recover additional entries that were
not present in its log, which is safe. Similarly, it is pos-
sible for N to retrieve an L′ that is smaller than L. For
instance, in Figure 4(a)(ii), S3 has actually logged two
entries; however, when it recovers, its L′ will be 1 which
is smaller than the actual LLE 2. L′ < L is the only case
that needs careful handling.

We now show that the system is safe even when the
recovered L′ is smaller than L. We first establish a lower
bound for L′ that guarantees safety. Then, we show that
max-among-minority ensures that the recovered L′ is at
least as high as the established lower bound.
Lower bound for L′. Let N’s log when it crashed be
D and let CN be the last entry in D that is committed.
For example, in Figure 4(a)(ii), for S3, D contains entries
1 and 2, and the last entry in D that was committed is
1. Note that CN need not be the latest committed entry;
the system might have committed more entries after N
crashed but none of these entries will be present in N’s
log. For example, in Figure 4(b), for S3, CN is 2 while
the latest committed entry in the system is 3.

For the system to be safe, all committed entries must
be recovered, while the uncommitted entries need not be
recovered. For example, in Figure 4(a)(ii), it is safe if S3
does not recover entry-2 because entry-2 is uncommit-
ted. However, it is unsafe if N does not recover entry-1
because entry-1 is committed. For instance, imagine that
S3 runs an incorrect recovery algorithm that does not re-
cover entry-1 in Figure 4(a)(ii). Now, if S1 and S2 also
run the incorrect algorithm, then it is possible for S1, S2,
and S3 to form a majority and lose committed entry-1.
Therefore, if the recovery ensures that N recovers all the
entries up to CN , committed data will not be lost, i.e., L′

must be at least as high as the last entry in N’s log that is
committed. In short, the lower bound for L′ is CN . Next,
we show that indeed the L′ recovered by max-among-
minority is equal to or greater than CN .
Proof Sketch for L′≥CN . We prove by contradiction.
Consider a node N that is recovering from a fast-mode
crash and that CN is the last entry in N’s log that was
committed. During recovery, N queries a bare minority.
Let us suppose that N recovers an L′ that is less than CN .
This condition can arise if a bare minority of nodes hold
an LLE of N in their LLE-MAPs that is less than CN . This
is possible if the bare minority crashed long ago and re-
cently recovered, or they were partitioned. However, if
a bare minority had crashed or partitioned, it is not pos-
sible for the remaining bare majority to have committed
CN in fast mode (recall that a fast-mode commitment re-
quires at least bare-ma jority+1 nodes to have bufferred

398 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

failed
< bare minority any node

fails

failed
= bare minority

failed_crash in fast mode
> bare majority

possible only with
simultaneous failures

failed_crash in fast mode
= bare majority

possible only with
simultaneous failures

Available
FAST

Permanently
Unavailable

Available
SLOW

Temporarily
Unavailable

recovered
>= bare majority

fast-mode switch
condition met

1

7

2

3

6

45

bare ma jority = dn/2e, bare minority = dn/2e−1

Figure 5: SAUCR Summary and Guarantees. The figure summa-
rizes how SAUCR works under failures and the guarantees it provides.

CN and updated their LLE-MAPs). Therefore, CN could
have either been committed only in slow mode or not
committed at all. However, if CN was committed in slow
mode, then N would be recovering from a slow-mode
crash which contradicts the fact that N is recovering from
a fast-mode crash. The other possibility that CN could
not have been committed at all directly contradicts the
fact that CN is committed. Therefore, our supposition
that L′ is less than CN must be false.

Once a node has recovered its LLE, it can participate
in elections. If an already recovered node or a node that
has not failed so far becomes the leader (for example, S1
or S5 in Figure 4(a)(i)), it will already have the LLE-MAP,
which it can use in subsequent replication requests. On
the other hand, if a recently recovered node becomes the
leader (for example, S3 in Figure 4(a)(i)), then it needs to
construct the LLE-MAP values for other nodes. To enable
this construction, during an election, the voting nodes
send their LLE-MAP to the candidate as part of the vote re-
sponses. Using these responses, the candidate constructs
the LLE-MAP value for each node by picking the maxi-
mum LLE of that node from a bare-minority responses.
Data recovery. Once a node has successfully recovered
its LLE, it needs to recover the actual data. If the recov-
ering node becomes the follower, it simply fetches the
latest data from the leader. In contrast, if the recovering
node becomes the leader, it recovers the data up to the
recovered LLE from the followers.

3.6 Summary and Guarantees
We use Figure 5 to summarize how SAUCR works and the
guarantees it offers; a node fails either by crashing or by
becoming unreachable over the network. We guide the
reader through the description by following the sequence
numbers shown in the figure. 1 At first, we assume all
nodes are in recovered state; in this state, SAUCR operates
in the fast mode; when nodes fail, SAUCR stays in the fast
mode as long as the number of nodes failed is less than

a bare minority. 2 After a bare minority of nodes fail,
SAUCR switches to slow mode. 3 Once in slow mode,
if one or more nodes recover and respond promptly for a
few requests, SAUCR transitions back to fast mode. 4 In
slow mode, if any node fails, SAUCR becomes temporar-
ily unavailable. 5 Once a majority of nodes recover, the
system becomes available again.

To explain further transitions, we differentiate non-
simultaneous and simultaneous crashes and network par-
titions. In the presence of non-simultaneous crashes,
nodes will have enough time to detect failures; the leader
can detect follower crashes and switch to slow mode and
followers can detect the leader’s crash and flush to disk.
Thus, despite any number of non-simultaneous crashes,
SAUCR always transitions through slow mode. Once in
slow mode, the system provides strong guarantees.

However, in the presence of simultaneous crashes,
many nodes could crash instantaneously while in fast
mode; in such a scenario, SAUCR cannot always transi-
tion through slow mode. 6 If the number of nodes that
crash in fast mode does not exceed a majority, SAUCR

will only be temporarily unavailable; in this case, at least
a bare minority will be in recovered state or will have
previously crashed in slow mode making crash recovery
possible (as described in §3.5). 7 In rare cases, more
than a bare majority of nodes may crash in fast mode, in
which case, crash recovery is not possible: the number
of nodes that are in recovered state or previously crashed
in slow mode will be less than a bare minority. Dur-
ing such simultaneous crashes, which we believe are ex-
tremely rare, SAUCR remains unavailable.

In the presence of partitions, all nodes could be alive,
but partitioned into two; in such a case, the minority par-
tition would be temporarily unavailable while the other
partition will safely move to slow mode if a bare major-
ity are connected within the partition. The nodes in the
minority partition would realize they are not connected to
the leader and flush to disk. Both of these actions guar-
antee durability and prevent future unavailability.

4 Implementation
We have implemented situation-aware updates and crash
recovery in Apache ZooKeeper (v3.4.8). We now de-
scribe the most important implementation details.
Storage layer. ZooKeeper maintains an on-disk log
to which the updates are appended. ZooKeeper also
maintains snapshots and meta information (e.g., current
epoch). We modified the log-update protocol to not issue
fsync calls synchronously in fast mode. Snapshots are
periodically written to disk; because the snapshots are
taken in the background, foreground performance is un-
affected. The meta information is always synchronously
updated. Fortunately, such synchronous updates hap-
pen rarely (only when the leader changes), and thus do

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 399

not affect common-case performance. In addition to the
above structures, SAUCR maintains the fast-switch-entry
in a separate file and synchronously updates it the first
time when the node processes an entry in the fast mode.
In slow mode, the LLE-MAP is synchronously persisted.
SAUCR maintains the map at the head of the log file. The
latest-on-disk-entry for a node is its own entry in the per-
sistent LLE-MAP (LLE-MAP is keyed by node-id).
Replication. We modified the QuorumPacket [9] (which
is used by the leader for replication) to include the mode
flag and the LLE-MAP. The leader transitions to fast mode
after receiving three consecutive successful replication
acknowledgements from more than a bare majority.
Failure Reaction. In our implementation, the nodes
detect failures through missing heartbeats, missing re-
sponses, and broken socket connections. Although
quickly reacting to failures and flushing or switching
modes is necessary to prevent data loss or unavailability,
hastily declaring a node as failed might lead to instability.
For example, if a follower runs for an election after miss-
ing just one heartbeat from the leader, the system may
often change leader, affecting progress. SAUCR’s imple-
mentation avoids this scenario as follows. On missing
the first heartbeat from the leader, the followers suspect
that the leader might have failed and so quickly react to
the suspected failure by flushing their buffers. However,
they conservatively wait for a handful of missing heart-
beats before declaring the leader as failed and running
for an election. Similarly, while the leader initiates a
mode switch on missing the first heartbeat response, it
waits for a few missing responses before declaring the
follower as failed. If a majority of followers have not re-
sponded to a few heartbeats, the leader steps down and
becomes a candidate.
Recovery Protocol. We modified the leader election
protocol so that a node recovering from a fast-mode crash
first recovers its LLE before it can participate in elections.
A responding node correctly handles LLE-query from a
node and replication requests from the leader that arrive
concurrently. If a node that recovers from a fast-mode
crash becomes the leader, it fetches the data items up to
its LLE from others. However, due to the background
flushes, several items might already be present on the
disk; the node recovers only the missing items. The re-
sponding node batches several items in its response.

5 Evaluation
We now evaluate the durability, availability, and perfor-
mance of our SAUCR implementation.

5.1 Durability and Availability
To evaluate the guarantees of SAUCR, we developed a
cluster crash-testing framework. The framework first
generates a graph of all possible cluster states as shown

12345

1234 1235 13451245 2345

123 124 125 . . . 345

12 13 14 . . . 45

1 2 3 4 5

crash 5

crash 4

crash 3

crash 2

example sequence : 12345→345→45→1245→1→13→12345

. . .

. . .

recover 4

recover 3

recover 2

recover 5 crash 1,2

cr
as

h
3

cr
as

h
2,

4,
5

recover 3

recover 2,4,5

recover 1,2

Figure 6: Cluster-State Sequences. The figure shows the possible
cluster states for a five-node cluster and how cluster-state sequences
are generated. One example cluster-state sequence is traced.

in Figure 6. Then, it generates a set of cluster-state se-
quences. For instance, 12345→ 345→ 45→ 1245→
1→ 13→ 12345 is one such sequence. In this sequence,
at first, all five nodes are alive; then, two nodes (1 and 2)
crash; then, 3 crashes; next, 1 and 2 recover; then 2, 4, 5
crash; 3 recovers; finally, 2, 4, 5 recover. To generate a
sequence, we start from the root state where all nodes are
alive. We visit a child with a probability that decreases
with the length of the path constructed so far, and the dif-
ference in the number of alive nodes between the parent
and the child. We produced 1264 such sequences (498
and 766 for a 5-node and 7-node cluster, respectively).

The cluster-state sequences help test multiple update
and recovery code paths in SAUCR. For example, in the
above sequence, 12345 would first operate in fast mode;
then 345 would operate in slow mode; then 1245 would
operate in fast mode; 1 would flush to disk on detecting
that other nodes have crashed; in the penultimate state, 3
would recover from a slow-mode crash; in the last state,
2, 4, and 5 would recover from a fast-mode crash.

Within each sequence, at each intermediate cluster
state, we insert new items if possible (if a majority of
nodes do not exist, we cannot insert items). 12345a →
345b → 45→ 1245c → 1→ 13→ 12345d shows how
entries a-d are inserted at various stages. In the end, the
framework reads all the acknowledged items. If the clus-
ter does not become available and respond to the queries,
we flag the sequence as unavailable for the system un-
der test. If the system silently loses the committed items,
then we flag the sequence as data loss.

We subject the following four systems to the cluster-
crash sequences: memory-durable ZK (ZooKeeper with
the forceSync flag turned off), VR (viewstamped repli-
cation), disk-durable ZK (ZooKeeper with forceSync
turned on), and finally SAUCR. Existing VR implementa-
tions [65] do not support a read/write interface, prevent-
ing us from directly applying our crash-testing frame-
work to them. Therefore, we developed an ideal model
of VR that resembles a perfect implementation.

400 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

System Nodes

Non-simultaneous Simultaneous

To
ta

l

C
or

re
ct

U
na

va
ila

bl
e

D
at

a
lo

ss

Scenario To
ta

l

C
or

re
ct

U
na

va
ila

bl
e

D
at

a
lo

ss

ZK-mem
5 498 248 0 250 n/a 498 248 0 250
7 766 455 0 311 n/a 766 455 0 311

VR-ideal
5 498 28 470 0 n/a 498 28 470 0
7 766 189 577 0 n/a 766 189 577 0

ZK-disk
5 498 498 0 0 n/a 498 498 0 0
7 766 766 0 0 n/a 766 766 0 0

SAUCR

5 498 498 0 0
other 475 475 0 0

!min-rec 23 0 23 0

7 766 766 0 0
other 725 725 0 0

!min-rec 41 0 41 0

Table 2: Durability and Availability. The table shows the durabil-
ity and availability of memory-durable ZK (ZK-mem), VR (VR-ideal),
disk-durable ZK (ZK-disk), and SAUCR. !min-rec denotes that only less
than a bare minority are in recovered state.

5.1.1 Non-simultaneous Crashes

We first test all sequences considering that failures are
non-simultaneous. For example, when the cluster tran-
sitions from 12345 to 345, we crash nodes 1 and 2 one
after the other (with a gap of 50 ms). Table 2 shows the
results. As shown, the memory-durable ZK loses data
in about 50% and 40% of the cases in the 5-node and
7-node tests, respectively. The ideal VR model does not
lose data; however, it leads to unavailability in about 90%
and 75% of the cases in the 5-node and 7-node tests, re-
spectively. As expected, disk-durable ZooKeeper is safe.
In contrast to memory-durable ZK and VR, SAUCR re-
mains durable and available in all cases. Because fail-
ures are non-simultaneous in this test, the leader detects
failures and switches to slow mode; similarly, the follow-
ers quickly flush to disk if the leader crashes, leading to
correct behavior.

5.1.2 Simultaneous Crashes

We next assume that failures are simultaneous. For ex-
ample, if the cluster state transitions from 124567 to 12,
we crash all four nodes at the same time, without any
gap. Note that during such a failure, SAUCR would be
operating in fast mode and suddenly many nodes would
crash simultaneously, leaving behind less than a bare mi-
nority. In such cases, less than a bare minority would be
in the recovered state; SAUCR cannot handle such cases.
Table 2 shows the results. As shown, memory-durable
ZK loses data in all cases in which it lost data in the non-
simultaneous test. This is because memory-durable ZK
loses data, irrespective of the simultaneity of the crashes.
Similarly, VR is unavailable in all the cases where it was
unavailable in the non-simultaneous crash tests. As ex-
pected, disk-durable ZK remains durable and available.
SAUCR remains unavailable in a few cases by its design.

0

4

8

12

16

20

24

28

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

e
c
)

No. of clients
1 2 4 8 16

0
.9

5 0
.9

2

0
.9

6

0
.9

1 0
.9

1

0
.0

2

0
.0

1

0
.0

1

0
.0

1

0
.0

1

memory-durable ZK
SAUCR
disk-durable ZK

(a) HDD (cluster-1)

0

4

8

12

16

20

24

28

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

e
c
)

No. of clients
1 2 4 8 16

0
.9

3

0
.9

1

0
.9

5

0
.9

1

0
.9

3

0
.4

5

0
.4

8

0
.3

6 0
.3

6

0
.4

4

memory-durable ZK
SAUCR
disk-durable ZK

(b) SSD (cluster-2)

Figure 7: Micro-benchmarks. (a) and (b) show the update
throughput on memory-durable ZK, SAUCR, and disk-durable ZK on
HDDs and SSDs, respectively. Each request is 1KB in size. The num-
ber on top of each bar shows the performance normalized to that of
memory-durable ZK.

5.2 Performance
We conducted our performance experiments on two clus-
ters (cluster-1: HDD, cluster-2: SSD), each with five ma-
chines. The HDD cluster has a 10 Gb network, and each
node is a 20-core Intel Xeon CPU E5-2660 machine with
256 GB memory running Linux 4.4, with a 1-TB HDD.
The SSD cluster has 10 Gb network, and each node is
a 20-core Intel E5-2660 machine with 160 GB mem-
ory running Linux 4.4, with a 480-GB SSD. Numbers
reported are the average over five runs.

5.2.1 Update Micro-benchmark
We now compare SAUCR’s performance against memory-
durable ZK and disk-durable ZK. We conduct this exper-
iment for an update-only micro-benchmark.

Figure 7(a) and (b) show the results on HDDs and
SSDs, respectively. As shown in the figure, SAUCR’s
performance is close to the performance of memory-
durable ZK (overheads are within 9% in the worst case).
Note that SAUCR’s performance is close to memory-
durable ZK but not equal; this small gap exists because,
in the fast mode, SAUCR commits a request only after
four nodes (majority + 1) acknowledge, while memory-
durable ZK commits a request after three nodes (a bare
majority) acknowledge. Although the requests are sent
to the followers in parallel, waiting for acknowledgment
from one additional follower adds some delay. Com-
pared to disk-durable ZK, as expected, both memory-
durable ZK and SAUCR are significantly faster. On
HDDs, they are about 100× faster. On SSDs, however,

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 401

0

8

16

24

32

40

48
T

h
ro

u
g
h
p
u
t
(K

o
p
s
/s

e
c
)

Workload
LOAD A B C D F

0
.9

1 0
.9

4

0
.9

8

1
.0

1

0
.9

6

0
.9

6

0
.0

1

0
.0

1

0
.0

4

1
.0

3

0
.0

4

0
.0

1

memory-durable ZK
SAUCR
disk-durable ZK

(a) HDD (cluster-1)

0

8

16

24

32

40

48

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

e
c
)

Workload
LOAD A B C D F

0
.9

1 0
.9

2 0
.9

9

1
.0

1

0
.9

6

0
.9

3

0
.3

6

0
.3

4

0
.6

7

1
.0

1

0
.6

7

0
.3

8

memory-durable ZK
SAUCR
disk-durable ZK

(b) SSD (cluster-2)

Figure 8: Macro-benchmarks. The figures show the throughput
under various YCSB workloads for memory-durable ZK, SAUCR, and
disk-durable ZK for eight clients. The number on top of each bar shows
the performance normalized to that of memory-durable ZK.

the performance gap is less pronounced. For instance,
with a single client, memory-durable ZK and SAUCR are
only about 2.1× faster than disk-durable ZK. We found
that this inefficiency arises because of software over-
heads in ZooKeeper’s implementation that become dom-
inant atop SSDs.

5.2.2 YCSB Workloads
We now compare the performance of SAUCR against
memory-durable ZK and disk-durable ZK across the fol-
lowing six YCSB [23] workloads: load (all writes),
A (w:50%, r:50%), B (w:5%, r:95%), C (only reads),
D (read latest, w:5%, r:95%), F (read-modify-write,
w:50%, r:50%). We use 1KB requests.

Figure 8(a) and (b) show the results on HDDs and
SSDs, respectively. For all workloads, SAUCR closely
matches the performance of memory-durable ZK; again,
the small overheads are a result of writing to one ad-
ditional node. For write-heavy workloads (load, A, F),
SAUCR’s performance overheads are within 4% to 9%
of memory-durable ZK. For such workloads, memory-
durable ZK and SAUCR perform notably better than disk-
durable ZK (about 100× and 2.5× faster on HDDs and
SSDs, respectively). For workloads that perform mostly
reads (B and D), SAUCR’s overheads are within 1% to 4%
of memory-durable ZK. For such read-heavy workloads,
memory-durable ZK and SAUCR are about 25× and 40%
faster than disk-durable ZK on HDDs and SSDs, respec-
tively. For the read-only workload (C), all three systems
perform the same on both HDDs and SSDs because reads
are served only from memory.

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140

slow mode
bare minority crash

nodes recover

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

e
c
)

Time (seconds)

Figure 9: Performance Under Failures. The figure shows SAUCR’s
performance under failures; we conduct this experiment with eight
clients running an update-only workload on SSDs.

5.2.3 Performance Under Failures
In all our previous performance experiments, we showed
how SAUCR performs in its fast mode (without failures).
When failures arise and if only a bare majority of nodes
are alive, SAUCR switches to the slow mode until enough
nodes recover. Figure 9 depicts how SAUCR detects fail-
ures and switches to slow mode when failures arise.
However, when enough nodes recover from the failure,
SAUCR switches back to fast mode.

5.3 Heartbeat Interval vs. Performance
SAUCR uses heartbeats to detect failures. We now exam-
ine how varying the heartbeat interval affects workload
performance. Intuitively, short and aggressive intervals
would enable quick detection but lead to worse perfor-
mance. Short intervals may degrade performance for two
reasons: first, the system would load the network with
more packets; second, the SAUCR nodes would consider
a node as failed upon a missing heartbeat/response when
the node was merely slow and thus react spuriously by
flushing to disk or switching to slow mode.

To tackle the first problem, when replication requests
are flowing actively, SAUCR treats the requests them-
selves as heartbeats; further, we noticed that even when
the heartbeat interval is lower than a typical replication-
request latency, the additional packets do not affect the
workload performance significantly. The second prob-
lem of spurious reactions can affect performance.

For the purpose of this experiment, we vary the heart-
beat interval from a small (and unrealistic) value such
as 1 µs to a large value of 1 second. We measure three
metrics: throughput, the number of requests committed
in slow mode (caused by the leader suspecting follower
failures), and the number of flushes issued by a follower
(caused by followers suspecting a leader failure). Fig-
ure 10 shows the result. As shown, when the interval is
equal to or greater than 1 ms, the workload performance
remains mostly unaffected. As expected, with such rea-
sonably large intervals, even if the nodes are slow oc-
casionally, the likelihood that a node will not receive a
heartbeat or a response is low; thus, the nodes do not re-
act spuriously most of the times. As a result, only a few
spurious flushes are issued by the followers, and very few

402 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.001 0.01 0.1 1 10 100 1000
 2

 4

 6

 8

 10

 12

 14

 16

 18
F

lu
s
h

e
s
/s

e
c
 o

r
S

lo
w

-m
o

d
e

-o
p

s
/s

e
c

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

e
c
)

Heartbeart interval (ms)

throughput
#spurious flushes
#slow-mode ops

Figure 10: Heartbeat Interval vs. Performance. The figure
shows how varying the heartbeat interval affects performance. The
left y-axis shows the average number of flushes issued by a follower
per second or the average number of requests committed in slow mode
by the leader per second. We measure the performance (right y-axis)
by varying the heartbeat interval (x-axis). We conduct this experiment
with eight clients running the YCSB-load workload on SSDs.

requests are committed in slow mode. In contrast, when
the interval is less than 1 ms, the SAUCR nodes react more
aggressively, flushing more often and committing many
requests in slow mode, affecting performance. In sum-
mary, for realistic intervals of a few tens of milliseconds
(used in other systems [28]) or even for intervals as low
as 1 ms, workload performance remains unaffected.

Finally, although the nodes react aggressively (with
short intervals), they do not declare a node as failed be-
cause there are no actual failures in this experiment. As
a result, we observe that the leader does not step down
and the followers do not run for an election.

5.4 Correlated Failure Reaction
We now test how quickly SAUCR detects and reacts to a
correlated failure that crashes all the nodes. On such a
failure, if at least a bare minority of nodes flush the data
to disks before all nodes crash, SAUCR will be able to
provide availability and durability when the nodes later
recover. For this experiment, we use a heartbeat interval
value of 50 ms. We conduct this experiment on a five-
node cluster in two ways.

First, we crash the active leader and then successively
crash all the followers. We vary the time between the
individual failures and observe how many followers de-
tect and flush to disk before all nodes crash. For each
failure-gap time, we run the experiment five times and
report the average number of nodes that safely flush to
disk. Figure 11 shows the result: if the time between the
failures is greater than 30 ms, then at least a bare minority
of followers always successfully flush the data, ensuring
availability and durability.

Second, we crash the followers, one after the other. In
this case, the leader detects the failures and switches to
slow mode. As shown in the figure, if the time between
the individual failures is greater than 50 ms, the system
will be available and durable after recovery. As we dis-
cussed earlier (§2.3), in a real deployment, the time be-

 0

 1

 2

 3

 4

 10 100 1000

A
v
e

ra
g

e
 n

o
.

o
f

n
o

d
e

s

Time between individual failures (ms)

bare minority
leader crash detection + flush

follower crash detection + mode switch

Figure 11: Correlated Failure Reaction. The figure shows how
quickly SAUCR reacts to correlated failures; the y-axis denotes the num-
ber of nodes that detect and flush to disk before all nodes crash when
we vary the time between the individual failures (x-axis). We conduct
this experiment on SSDs.

tween individual failures is almost always greater than
50 ms; therefore, in such cases, with a heartbeat interval
of 50 ms, SAUCR will always remain safe.

Note that we run this experiment with a 50-ms heart-
beat interval; shorter intervals (such as 1 ms used in Fig-
ure 10) will enable the system to remain durable and
available (i.e., a bare minority or more nodes would
safely flush or switch to slow mode) even when the fail-
ures are only a few milliseconds apart.

6 Discussion
We now discuss two concerns related to SAUCR’s adop-
tion in practice. First, we examine whether SAUCR will
offer benefits with the advent of faster storage devices
such as non-volatile memory (NVM). Second, we dis-
cuss whether applications will be tolerant of having low
throughput when SAUCR operates in slow mode.
Faster Storage Devices. The reliability of memory-
durable approaches can be significantly improved if ev-
ery update is forced to disk. However, on HDDs or
SSDs, the overhead of such synchronous persistence is
prohibitively expensive. New storage devices such as
NVMe-SSDs and NVM have the potential to reduce the
cost of persistence and thus improve reliability with low
overheads. However, even with the advent of such faster
storage, we believe SAUCR has benefits for two reasons.

First, although NVMe-SSDs are faster than HDDs
and SSDs, they are not as fast as DRAM. For example,
a write takes 30 µs on Micron NVMe-SSDs which is
two orders of magnitude slower than DRAM [19] and
thus SAUCR will have performance benefits compared
to NVMe-SSDs. While NVM and DRAM exhibit the
same latencies for reads, NVM writes are more expen-
sive (roughly by a factor of 5) [40, 67]. Further, writing
a few tens of kilobytes (as a storage system would) will
be slower than published numbers that mostly deal with
writing cachelines. Hence, even with NVMs, SAUCR
will demonstrate benefit.

Second, and more importantly, given the ubiquity of
DRAM and their lower latencies, many current systems

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 403

and deployments choose to run memory-only clusters
for performance [17, 43], and we believe this trend is
likely to continue. SAUCR would increase the durability
and availability of such non-durable deployments signif-
icantly without affecting their performance at no addi-
tional cost (i.e., upgrading to new hardware).
Low Performance in Slow Mode. Another practical
concern regarding SAUCR’s use in real deployments is
that of the low performance that applications may ex-
perience in slow mode. While SAUCR provides low per-
formance in slow mode, we note that this trade-off is a
significant improvement over other existing methods that
can either lead to permanent unavailability or lose data.
Further, in a shared-storage setting, we believe many ap-
plications with varying performance demands will coex-
ist. While requests from a few latency-sensitive appli-
cations may time out, SAUCR allows other applications
to make progress without any hindrance. Furthermore,
in slow mode, only update requests pay the performance
penalty, while most read operations can be served with-
out any overheads (i.e., at about the same latency as in the
fast mode). Finally, this problem can be alleviated with a
slightly modified system that can be reconfigured to in-
clude standby nodes when in slow mode for a prolonged
time. Such reconfiguration would enable the system to
transition out of the slow mode quickly. We believe this
extension could be an avenue for future work.

7 Related Work
We now discuss how prior systems and research efforts
relate to various aspects of our work.
Situation-Aware Updates. The general idea of dynam-
ically transitioning systems between different modes is
common in real-time systems [15]. Similarly, the idea of
fault-detection-triggered mode changes has been used in
cyber-physical distributed systems [18]. However, we do
not know of any previous work that dynamically adapts a
distributed update protocol to the current situation. Many
practical systems statically define whether updates will
be flushed to disk or not [8, 22, 27, 62]. A few systems,
such as MongoDB, provide options to specify the dura-
bility of a particular request [51]. However such dynam-
icity of whether the request will be persisted or buffered
is purely client-driven: the storage system does not au-
tomatically make any such decisions, depending on the
current failures.
Recovery. RAMCloud [58,64] has a similar flavor to our
work. However, the masters always construct their data
from remote backups, unlike SAUCR, which performs
mode-specific recovery. SAUCR’s recovery is similar to
VR’s recovery [48]. However, SAUCR’s recovery differs
from that of VR in two ways. First, in VR, a recovering
node waits for a majority responses before it moves to the
recovered state, while in SAUCR, a recovering node has

to wait only for a bare minority responses. Second, and
more importantly, in VR, a responding node can readily
be in the recovered state only if it has not yet crashed. In
contrast, in SAUCR, a node can readily be in the recov-
ered state in two ways: either it could have operated in
fast mode and not failed yet, or it might have operated in
slow mode previously or flushed to disk. These differ-
ences improves SAUCR’s availability. SAUCR’s recovery
is also similar to how replicated-state-machine (RSM)
systems recover corrupted data from copies [1].
Performance Optimizations in RSM systems. Sev-
eral prior efforts have optimized majority-based RSM
systems by exploiting network properties [47, 61]; other
optimizations have also been proposed [41, 52]. How-
ever, to our knowledge, most of these systems are only
memory-durable. SAUCR can augment such systems to
provide stronger guarantees while not compromising on
performance. A few systems [14, 21, 56] realize that
synchronous disk writes are a major bottleneck; these
systems have proposed techniques (e.g., batching) that
make disk I/O efficient. SAUCR’s implementation in-
cludes such optimizations in its slow mode.

8 Conclusion
Fault-tolerant replication protocols are the foundation
upon which many data-center systems and applications
are built. Such a foundation needs to perform well, yet
also provide a high level of reliability. However, exist-
ing approaches either suffer from low performance or can
lead to poor durability and availability. In this paper, we
have presented situation-aware updates and crash recov-
ery (SAUCR), a new approach to replication within a dis-
tributed system. SAUCR reacts to failures and adapts to
current conditions, improving durability and availability
while maintaining high performance. We believe such a
situation-aware distributed update and recovery protocol
can serve as a better foundation upon which reliable and
performant systems can be built.

Acknowledgments
We thank Andreas Haeberlen (our shepherd) and the
OSDI reviewers for their thoughtful suggestions that im-
proved the presentation of the content significantly. We
thank the members of ADSL for their valuable feed-
back. We also thank CloudLab [63] for providing a great
environment for running our experiments. This mate-
rial was supported by funding from NSF grants CNS-
1421033, CNS-1218405, and CNS-1838733, DOE grant
DE-SC0014935, and donations from EMC, Huawei, Mi-
crosoft, NetApp, and VMware. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and may not reflect the
views of NSF, DOE, or other institutions.

404 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Ramnatthan Alagappan, Aishwarya Ganesan, Eric
Lee, Aws Albarghouthi, Vijay Chidambaram, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Protocol-Aware Recovery for Consensus-
Based Storage. In Proceedings of the 16th
USENIX Conference on File and Storage Technolo-
gies (FAST ’18), Oakland, CA, February 2018.

[2] Ramnatthan Alagappan, Aishwarya Ganesan, Yu-
vraj Patel, Thanumalayan Sankaranarayana Pillai,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Correlated Crash Vulnerabilities. In Pro-
ceedings of the 12th USENIX Conference on Op-
erating Systems Design and Implementation (OSDI
’16), Savannah, GA, November 2016.

[3] Amazon Elastic Compute Cloud. Re-
gions and Availability Zones. https:
//docs.aws.amazon.com/AWSEC2/
latest/UserGuide/using-regions-
availability-zones.html.

[4] Apache. ZooKeeper. https://zookeeper.
apache.org/.

[5] Apache. ZooKeeper Configuration Parameters.
https://zookeeper.apache.org/doc/
r3.1.2/zookeeperAdmin.html#sc_
configuration.

[6] Apache. ZooKeeper Leader Activation.
https://zookeeper.apache.org/doc/
r3.2.2/zookeeperInternals.html#sc_
leaderElection.

[7] Apache Accumulo Users. Setting ZooKeeper
forceSync=no. http://apache-
accumulo.1065345.n5.nabble.com/
setting-zookeeper-forceSync-no-
td7758.html.

[8] Apache Cassandra. Cassandra Wiki: Durability.
https://wiki.apache.org/cassandra/
Durability.

[9] Apache ZooKeeper. QuorumPacket Class. http:
//people.apache.org/˜larsgeorge/
zookeeper-1075002/build/docs/dev-
api/org/apache/zookeeper/server/
quorum/QuorumPacket.html.

[10] Apache ZooKeeper. ZooKeeper Overview.
https://zookeeper.apache.org/doc/
r3.5.0-alpha/zookeeperOver.html.

[11] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books, 1.0 edition, May 2015.

[12] Mehmet Bakkaloglu, Jay J Wylie, Chenxi Wang,
and Gregory R Ganger. On Correlated Failures
in Survivable Storage Systems. Technical Re-
port CMU-CS-02-129, School of computer science,
Carnegie-Mellon University, 2002.

[13] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan
Prabhakaran, Ted Wobber, Michael Wei, and
John D. Davis. CORFU: A Shared Log Design for
Flash Clusters. In Proceedings of the 9th Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI ’12), San Jose, CA, April 2012.

[14] William J. Bolosky, Dexter Bradshaw, Randolph B.
Haagens, Norbert P. Kusters, and Peng Li. Paxos
Replicated State Machines As the Basis of a High-
performance Data Store. In Proceedings of the 8th
Symposium on Networked Systems Design and Im-
plementation (NSDI ’11), Boston, MA, April 2011.

[15] Alan Burns. System Mode Changes - General
and Criticality-Based. In Proc. of 2nd Workshop
on Mixed Criticality Systems (WMC), pages 3–8,
2014.

[16] Miguel Castro and Barbara Liskov. Practical
Byzantine Fault Tolerance. In Proceedings of
the 3rd Symposium on Operating Systems Design
and Implementation (OSDI ’99), New Orleans,
Louisiana, February 1999.

[17] Tushar D Chandra, Robert Griesemer, and Joshua
Redstone. Paxos Made Live: An Engineering Per-
spective. In Proceedings of the 26th ACM Sympo-
sium on Principles of Distributed Computing, Port-
land, OR, August 2007.

[18] Ang Chen, Hanjun Xiao, Andreas Haeberlen, and
Linh Thi Xuan Phan. Fault Tolerance and the Five-
second Rule. In Proceedings of the 15th USENIX
Conference on Hot Topics in Operating Systems
(HOTOS’15), Kartause Ittingen, Switzerland, May
2015.

[19] Chris Mellor. Storage with the speed of
memory? XPoint, XPoint, that’s our plan.
https://www.theregister.co.uk/
2016/04/21/storage_approaches_
memory_speed_with_xpoint_and_
storageclass_memory/.

[20] Asaf Cidon, Stephen M. Rumble, Ryan Stutsman,
Sachin Katti, John Ousterhout, and Mendel Rosen-
blum. Copysets: Reducing the Frequency of Data

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 405

Loss in Cloud Storage. In Proceedings of the
USENIX Annual Technical Conference (USENIX
’13), San Jose, CA, June 2013.

[21] Allen Clement, Manos Kapritsos, Sangmin Lee,
Yang Wang, Lorenzo Alvisi, Mike Dahlin, and Tay-
lor Riche. Upright Cluster Services. In Proceedings
of the 22nd ACM Symposium on Operating Systems
Principles (SOSP ’09), Big Sky, Montana, October
2009.

[22] CockroachDB. CockroachDB Cluster Settings.
https://www.cockroachlabs.com/
docs/stable/cluster-settings.html.

[23] Brian F. Cooper, Adam Silberstein, Erwin Tam,
Raghu Ramakrishnan, and Russell Sears. Bench-
marking Cloud Serving Systems with YCSB. In
Proceedings of the ACM Symposium on Cloud
Computing (SOCC ’10), Indianapolis, IA, June
2010.

[24] CoreOS. etcd Guarantees. https://coreos.
com/blog/etcd-v230.html.

[25] DataCenterKnowledge. Lightning Dis-
rupts Google Cloud Services. http:
//www.datacenterknowledge.com/
archives/2015/08/19/lightning-
strikes-google-data-center-
disrupts-cloud-services/.

[26] Jeffrey Dean and Luiz André Barroso. The Tail at
Scale. Communications of the ACM, 56(2):74–80,
2013.

[27] Elasticsearch. Translog Settings. https://www.
elastic.co/guide/en/elasticsearch/
reference/current/index-modules-
translog.html#_translog_settings.

[28] Etcd. Etcd Tuning. https://coreos.com/
etcd/docs/latest/tuning.html.

[29] Flavio Junqueira. Transaction Logs and Snapshots.
https://mail-archives.apache.org/
mod_mbox/zookeeper-user/201504.
mbox/%3CDA045626-54A4-4F8A-96C0-
69DA574D9807@yahoo.com%3E.

[30] Flavio Junqueira. [ZooKeeper-user] forceSync=no.
http://grokbase.com/p/zookeeper/
user/126g0063x4/forcesync-no.

[31] Daniel Ford, François Labelle, Florentina I.
Popovici, Murray Stokely, Van-Anh Truong, Luiz
Barroso, Carrie Grimes, and Sean Quinlan. Avail-
ability in Globally Distributed Storage Systems. In

Proceedings of the 9th Symposium on Operating
Systems Design and Implementation (OSDI ’10),
Vancouver, Canada, December 2010.

[32] Aishwarya Ganesan, Ramnatthan Alagappan, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Redundancy Does Not Imply Fault Toler-
ance: Analysis of Distributed Storage Reactions to
Single Errors and Corruptions. In Proceedings of
the 15th USENIX Conference on File and Storage
Technologies (FAST ’17), Santa Clara, CA, Febru-
ary 2017.

[33] Google. Google Cluster Data. https://
github.com/google/cluster-data.

[34] Google Code University. Introduction to Dis-
tributed System Design. http://www.hpcs.
cs.tsukuba.ac.jp/˜tatebe/lecture/
h23/dsys/dsd-tutorial.html.

[35] Andreas Haeberlen, Alan Mislove, and Peter Dr-
uschel. Glacier: Highly Durable, Decentralized
Storage Despite Massive Correlated Failures. In
Proceedings of the 2nd Symposium on Networked
Systems Design and Implementation (NSDI ’05),
Boston, MA, May 2005.

[36] Henry Robinson. Consensus Protocols: Paxos.
http://the-paper-trail.org/blog/
consensus-protocols-paxos/.

[37] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira,
and Benjamin Reed. ZooKeeper: Wait-free Coor-
dination for Internet-scale Systems. In Proceed-
ings of the USENIX Annual Technical Conference
(USENIX ’10), Boston, MA, June 2010.

[38] Jay Kreps. Using forceSync=no in Zookeeper.
https://twitter.com/jaykreps/
status/363720100332843008.

[39] Flavio P. Junqueira, Benjamin C. Reed, and Marco
Serafini. Zab: High-performance Broadcast for
Primary-backup Systems. In Proceedings of the
International Conference on Dependable Systems
and Networks (DSN ’11), Hong Kong, China, June
2011.

[40] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska,
Andrea Arpaci-Dusseau, and Remzi Arpaci-
Dusseau. Redesigning LSMs for Nonvolatile
Memory with NoveLSM. In Proceedings of the
USENIX Annual Technical Conference (USENIX
’18), Boston, MA, July 2018.

406 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[41] Manos Kapritsos, Yang Wang, Vivien Quema,
Allen Clement, Lorenzo Alvisi, and Mike Dahlin.
All About Eve: Execute-verify Replication for
Multi-core Servers. In Proceedings of the 10th
Symposium on Operating Systems Design and Im-
plementation (OSDI ’12), Hollywood, CA, October
2012.

[42] Kimberley Keeton, Cipriano Santos, Dirk Beyer,
Jeffrey Chase, and John Wilkes. Designing for Dis-
asters. In Proceedings of the 3rd USENIX Sympo-
sium on File and Storage Technologies (FAST ’04),
San Francisco, CA, April 2004.

[43] Ken Birman. What we can learn about specifi-
cations from ZooKeeper’s asynchronous mode,
and its unsafe ForceSync=no option? http:
//thinkingaboutdistributedsystems.
blogspot.com/2017/09/what-we-can-
learn-from-zookeepers.html.

[44] Madhukar Korupolu and Rajmohan Rajaraman.
Robust and Probabilistic Failure-Aware Placement.
In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, pages
213–224. ACM, 2016.

[45] Leslie Lamport. Paxos Made Simple. ACM Sigact
News, 32(4):18–25, 2001.

[46] Leslie Lamport, Robert Shostak, and Marshall
Pease. The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Sys-
tems (TOPLAS), 4(3):382–401, 1982.

[47] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adri-
ana Szekeres, and Dan R. K. Ports. Just Say No to
Paxos Overhead: Replacing Consensus with Net-
work Ordering. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Im-
plementation (OSDI ’16), Savannah, GA, Novem-
ber 2016.

[48] Barbara Liskov and James Cowling. Viewstamped
Replication Revisited. Technical Report MIT-
CSAIL-TR-2012-021, MIT CSAIL, 2012.

[49] LogCabin. LogCabin. https://github.com/
logcabin/logcabin.

[50] Microsoft Azure. Azure Availability Sets.
https://docs.microsoft.com/en-
us/azure/virtual-machines/
windows/tutorial-availability-
sets#availability-set-overview.

[51] MongoDB. MongoDB Write Concern.
https://docs.mongodb.com/manual/
reference/write-concern/.

[52] Iulian Moraru, David G. Andersen, and Michael
Kaminsky. There is More Consensus in Egalitarian
Parliaments. In Proceedings of the 24th ACM Sym-
posium on Operating Systems Principles (SOSP
’13), Nemacolin Woodlands Resort, Farmington,
Pennsylvania, October 2013.

[53] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd,
and Jinyang Li. Extracting More Concurrency from
Distributed Transactions. In Proceedings of the
11th Symposium on Operating Systems Design and
Implementation (OSDI ’14), Broomfield, CO, Oc-
tober 2014.

[54] Suman Nath, Haifeng Yu, Phillip B. Gibbons, and
Srinivasan Seshan. Subtleties in Tolerating Corre-
lated Failures in Wide-area Storage Systems. In
Proceedings of the 3rd Symposium on Networked
Systems Design and Implementation (NSDI ’06),
San Jose, CA, May 2006.

[55] Brian M Oki and Barbara H Liskov. Viewstamped
Replication: A New Primary Copy Method to
Support Highly-Available Distributed Systems. In
Proceedings of the Seventh Annual ACM Sympo-
sium on Principles of Distributed Computing, ON,
Canada, August 1988.

[56] Diego Ongaro. Consensus: Bridging Theory and
Practice. PhD thesis, Stanford University, 2014.

[57] Diego Ongaro and John Ousterhout. In Search of an
Understandable Consensus Algorithm. In Proceed-
ings of the USENIX Annual Technical Conference
(USENIX ’14), Philadelphia, PA, June 2014.

[58] Diego Ongaro, Stephen M. Rumble, Ryan
Stutsman, John Ousterhout, and Mendel Rosen-
blum. Fast Crash Recovery in RAMCloud. In
Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP ’11), Cascais,
Portugal, October 2011.

[59] Parsely Inc. Streamparse: Configuring Zookeeper
with forceSync = no. https://github.com/
Parsely/streamparse/issues/168.

[60] Thanumalayan Sankaranarayana Pillai, Vijay
Chidambaram, Ramnatthan Alagappan, Samer
Al-Kiswany, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. All File Systems Are
Not Created Equal: On the Complexity of Crafting
Crash-consistent Applications. In Proceedings of
the 11th Symposium on Operating Systems Design
and Implementation (OSDI ’14), Broomfield, CO,
October 2014.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 407

[61] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr
Sharma, and Arvind Krishnamurthy. Design-
ing Distributed Systems Using Approximate Syn-
chrony in Data Center Networks. In Proceedings
of the 12th Symposium on Networked Systems De-
sign and Implementation (NSDI ’15), Oakland, CA,
May 2015.

[62] RethinkDB. RethinkDB Settings - Durabil-
ity. https://rethinkdb.com/docs/
consistency/.

[63] Robert Ricci, Eric Eide, and CloudLab Team. In-
troducing CloudLab: Scientific infrastructure for
advancing cloud architectures and applications.
USENIX ;login:, 39(6), 2014.

[64] Ryan Scott Stutsman. Durability and Crash Re-
covery in Distributed In-Memory Storage Systems.
PhD thesis, Stanford University, 2013.

[65] UWSysLab. VR Implementation. https:
//github.com/UWSysLab/NOPaxos/
tree/master/vr.

[66] Hakim Weatherspoon, Tal Moscovitz, and John Ku-
biatowicz. Introspective Failure Analysis: Avoid-
ing Correlated Failures in Peer-to-Peer Systems. In
Proceedings of the 21st IEEE Symposium on Re-
liable Distributed Systems, pages 362–367. IEEE,
2002.

[67] Jian Xu and Steven Swanson. NOVA: A Log-
structured File System for Hybrid Volatile/Non-
volatile Main Memories. In Proceedings of the 14th
USENIX Conference on File and Storage Technolo-
gies (FAST ’16), Santa Clara, CA, February 2016.

[68] Zookeeper User Mailing List. Unavailabil-
ity Issues due to Setting forceSync=no in
ZooKeeper. http://zookeeper-user.
578899.n2.nabble.com/forceSync-
no-td7577568.html.

408 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

