Making Serverless Pay-For-Use
a Reality with Leopard

Tingjia Cao,
Andrea C.Arpaci-Dusseau,

Remzi H.Arpaci-Dusseau, and

WISCONSIN Tyler Caraza-Harter

IIIIIIIIIIIIIIIIIIIIIIIIIIII

Making Serverless Pay-For-Use
a Reality with Leopard

Tingjia Cao,
Andrea C.Arpaci-Dusseau,

Remzi H.Arpaci-Dusseau, and

WISCONSIN Tyler Caraza-Harter

IIIIIIIIIIIIIIIIIIIIIIIIIIII

Serverless Computing (FaaS): Popularity and Benefits

~/ Serverless is popular, AWS Lambda is used in 65% architectures’
i Relieve cloud users from managing servers

Fine-grained, pay-as-you-go billing

|. Cloudscape: A Study of Storage Services in Modern Cloud Architectures, Fast 25, Sambhav Satija et.al, University of Wisconsin Madison
3

Pay-for-use Billing Model

Providers advertise “pay-for-use” model

o 0> Azure:"Pay-per-use”

. Q | GCP, AWS Lambda:“Pay only for what you use”

What does pay-for-use actually mean ?

What Does “Pay-for-Use” Actually Mean!?

. Intuitive definition

* You pay proportionally to area under the curves

Invocation 1: Small Input Invocation 2: Large Input

Memory
Memory

Time Time

What Does “Pay-for-Use” Actually Mean!?

\ In practice: you choose a memory limit

* Pay for execution time X memory limit (hopefully set to max usage)

Invocation 1: Small Input Invocation 2: Large Input

Memory
Memory

Time Time

What Does “Pay-for-Use” Actually Mean!?

\ In practice: you choose a memory limit

* Pay for execution time X memory limit (hopefully set to max usage)
 All invocations share same limit

Invocation 1: Small Input Invocation 2: Large Input
- N -
g All invocation g
O, imi O,
= share same limit =

Time Time

What Does “Pay-for-Use” Actually Mean!?

“\ In practice: you choose a memory limit

* Pay for execution time X memory limit (hopefully set to max usage)
 All invocations share same limit
e Memory limit is linear with CPU reservation

Invocation 1: Small Input Invocation 2: Large Input
AN
-, mem limit linear <,
O to CPU limit O
= =
O, O,
= =

Time Time

What Does “Pay-for-Use” Actually Mean!?

“\ In practice: you choose a memory limit

* Pay for execution time X memory limit (hopefully set to max usage)
 All invocations share same limit

e Memory limit is linear with CPU reservation

* No discount for usage during low-demand time

Invocation 1: Small Input Invocation 2: Large Input

Memory
Memory

Time Time

What Does “Pay-for-Use” Actually Mean!?

“\ In practice: you choose a memory limit

* Pay for execution time X memory limit (hopefully set to max usage)
 All invocations share same limit

e Memory limit is linear with CPU reservation

* No discount for usage during low-demand time

Invocation 1: Small Input Invocation 2: Large Input

Memory
Memory

Time Time

10

What Does “Pay-for-Use” Actually Mean!?

3 In practlce you choose a memory limit

Pay for execution time X memory limit (hopefully set to max usage)

Statlc

AII invocations share same limit |

e Memory limit is linear with CPU reservation
* No discount for usage during low-demand time

Invocation 1: Small Input

Memory
Memory

Time

Invocation 2: Large Input

Time

10

What Does “Pay-for-Use” Actually Mean!?

In practlce you choose a memory limit

. Pay for execution time X memory limit (hopefully set to max usage)

Statlc

e | All invocations share same limi¢ |

o [Memory limit is linear with CPU reservaton

| Linear

e No discount for usage durlng low-demand time

Invocation 1: Small Input

Memory
Memory

Time

Invocation 2: Large Input

Time

10

What Does “Pay-for-Use” Actually Mean!?

In practlce you choose a memory limit

. Pay for execution time X memory limit (hopefully set to max usage)

o AII invocations share same limit

° Memory I|m|t 'S Ilnear Wlth CPU reservatlon B |
. No dlscount for usage durlng Iow demand tlme ‘

Invocation 1: Small Input

Memory
Memory

Time

Statlc

Linear
Interactive-only

Invocation 2: Large Input

Time

10

What Does “Pay-for-Use” Actually Mean!?

In practlce you choose a memory limit Static Llnear Interactlve-only Model (SLIM)

. Pay for execution time X memory limit (hopefully set to max usage)

* |All invocations share same limit |
+ [Memory limit is linear with CPU reservation |
+ [No discount for usage during low-demand time |

Invocation 1: Small Input Invocation 2: Large Input

Memory
Memory

Time Time

10

What Does “Pay-for-Use” Actually Mean!?

“\ In practice: you choose a memory limit

* Pay for execution time X memory limit (hopefully set to max usage)
 All invocations share same limit

e Memory limit is linear with CPU reservation

* No discount for usage during low-demand time

Y Customer side:

o Simple X Not true pay-for-use

Invocation 1: Small Input Invocation 2: Large Input

o
—~
O
<.
al
M
=
L
al
L
Memory
Memory

. Profitable

Time Time

11

Contribution: Better Billing Model and FaaS System to Support it

New model: Nearly-PFU

* Benefits both providers and customers

New system: Leopard
. & Linux techs: new cgroup APIls, modified CFS scheduler, customizable OOM killer
e X FaaS techs: improved admission controller, load balancer and sandbox evictor

Evaluation highlights

e % Provider throughput T 2.3x

e & Customer cost | 34% (interactive), | 59% (batch)

12

Qutline

Nearly Pay-for-Use model

Leopard FaaS system

Evaluation highlights

13

Goals to Build Better Serverless Billing Model

© Appropriate number of knobs
Billing function

* (Closely approximates ideal pay-for-use

 Maintains provider profitability

14

Intuitions to Build Better Serverless Billing Model

. Break the limitations of static, linear interactive model (SLIM)

e Not linear
= Decouple CPU and memory knobs

* Not interactive-only
= Allow users to set urgency levels per resource subset

* Not static
= Allow users to lend idle-but-reserved resources to others for non-urgent needs

15

CPU Knobs in Nearly-PFU

CPU-cap:
e Maximum number of CPUs a function is allowed to use

Spot-CPU:
e Subset of CPU-cap that a function does not need immediately

CPU-cap — spot-CPU = reserved-CPUs:
e (CPUs that a function need full, immediate access to when needed

10

CPU Knobs in Nearly-PFU

CPU-cap:
e Maximum number of CPUs a function is allowed to use

Spot-CPU:
e Subset of CPU-cap that a function does not need immediately

CPU-cap — spot-CPU = reserved-CPUs:
e (CPUs that a function need full, immediate access to when needed

t 2t 3t 4t 5t 6t Time

10

CPU Knobs in Nearly-PFU

CPU-cap:

e Maximum number of CPUs a function is allowed to use
Spot-CPU:

e Subset of CPU-cap that a function does not need immediately

CPU-cap — spot-CPU = reserved-CPUs:
e (CPUs that a function need full, immediate access to when needed

t 2t 3t 4t 5t 6t Time

10

CPU Knobs in Nearly-PFU

CPU-cap:
e Maximum number of CPUs a function is allowed to use

Spot-CPU:
e Subset of CPU-cap that a function does not need immediately

CPU-cap — spot-CPU = reserved-CPUs:
e (CPUs that a function need full, immediate access to when needed

Full access

Time

10

Memory Knobs in Nearly-PFU

Mem-cap:
e Maximum memory size a function is allowed to use

Preemptible-mem:
* Whether an instance can be preempted during execution

17

CPU

Cost =

Billing in Nearly-PFU

Reserved-CPUtime x Cr € Base cost
Lower price for using spot-CPUs

+ B d-CPUtime x Cs <+—
oo e > than reserved-CPUs

— Lent-CPUtime x Cs

|

Give discounts when sharing
your “allocated-but-idle” CPUs

18

Benefits of Nearly-PFU

Closely approximate ideal pay-for-use

* No more static, linear interactive-only constraints

Maintain provider profitability

* Lent resource discounts are paid by the borrower

19

Qutline

Leopard FaaS system

Evaluation highlights

-

< ';.‘".‘.
=N
gy
-‘0“
v
e

CAZR
b
8
.. '

R

[

J
¢
2
3
U
.

¥ “A leopard can’t change its spots”,

but our Leopard can!

20

Typical FaaS Implementation

O o °
,>\/ “ Faas plathI‘m implementation: & LanX I(ernel |mp|ementatlon2
e |oad balancer e cgroup APIs
Routes invocations to physical nodes Enforces CPU and memory limits for

o function instances
e Admission controller

Decides when to admit queued * CFS scheduler
invocations Handles CPU time allocation and
balances tasks across cores

Find or create a sandbox’
e OOM Killer

Terminates overcommitted processes
when memory exceeds limits

e Sandbox evictor
Decides when to evict cached sandboxes

Sandboxes to execute functions can be Docker, Firecracker, Kubernetes pods, OpenLambda’s SOCK, etc.

21

Key Requirements to Support Nearly-PFU

& Requirements for FaaS platform:

e | oad balancer and admission controller: schedule non-linear, QoS aware instances

* Sandbox evictor: firstly kill preemptible instances during heavy memory

A Requirements for the Linux:
L3
e CPU reservation: full access on reserved-CPU and best-effort sharing on spot-CPUs

 Linux OOM Kkiller: give control to the user-space sandbox evictor when OOM

22

Key Requirements to Support Nearly-PFU

"% Requirements for Faa$S platform:

e | oad balancer and admission controller: schedule non-linear, QoS aware instances

* Sandbox evictor: firstly kill preemptible instances during heavy memory

A Reqmrements for the Lmux

', e CPU reservation: fuII access on reserved CPU and best- effort sharlng on spot CPUs

e Linux OOM killer: glve control to the user—space sandbox evictor when OOM

See Leopard’s solution for other requirements in the paper!

22

Why Linux Cannot Support Efficient CPU Reservation?

CPU pinning

Weighted sharing Sharing-friendly

Example: Fl and F2 runs on a 32-CPU worker
Fl:32 long-running threads, “paid” to reserve |6 CPUs
F2: | thread, fans out to |6 threads, ‘paid” to reserve 16 CPUs

CPU pinning: Pin functions to their reserved CPUs

CPU ID

28 24 2016 12 8 4 0

Time

CPU ID

Provides exclusive CPU access X Disallows sharing

X Incorrect reservation

Weighted sharing: Give Fl and F2 equal share

K| #ﬂ.l".".’mw
YAFRRRRE: fm

None

23

Leopard’s Solution

New cgroup interface

e cpu.resv_cpuset specifies reserved CPUs for a cgroup

Requirements for the Linux CPU scheduler

* Highest priority access to CPUs in a cgroup’s cpu.resv_cpuset
e Non-exclusive on CPUs outside the resv cpuset

Modified CFS scheduler
* No longer relies on fairness to achieve isolation

* Allows flexible policies on different cores

Full access on reserved-CPUs and best-effort sharing on spot-CPUs

24

Outline

Introduction

Nearly Pay-for-Use model

Leopard FaaS system

Evaluation highlights

25

Experiment Setup

Workloads
* |nvocations with CPU/memory usage changes overtime
Billing Models:
e Static Linear Interactive-only Model(SLIM): cost = duration x (C memory limit*®)
e Static Interactive-only Model(SIM): cost = duration % (C; memory limit® + C; CPU limit*®)
e Strict-PFU(SPFU): cost = duration x (C; avg memory + C; avg CPU)
* Nearly-PFU(NPFU): 4 knobs, used/lent billing function

Cluster set:

| client node and 9 Leopard nodes

20

How Does Leopard (w Nearly-PFU) Perform on Provider Side?

The throughput for SLIM, SIM, and Nearly-PFU billing models
NPFU

“SLIM ™ SIM (or SPFU). * NPFU

SIM
Ml -..“

0 25 50 75 100 125 150 175
Time (minute)

5000

Invocations
per seconds

* Going from SLIM to SIM leads to a |.3x increase in throughput
e Switching to Nearly-PFU provides an additional |.6x improvement

> One function’s idle resources can be used to satisfy another’s non-urgent demand
= higher overall utilization

27

Can Leopard (w Nearly-PFU) Save Customer Cost!?

Fix provider revenue and only compare customer cost

The CDF of invocation cost relative to those running with SLIM

— 2100 SIM SP-FU NP.FU
©0 : E :
oS >0 - Jj _ JI Interactive
=S o- SRR — jBatch
oE 005 1 15 20 05 1 15 2 0 05 1 15 2
CheaPer Cost Relative Cost Relative Cost Relative
to SLIM to SLIM to SLIM

* With SIM, approximately 50% of invocations save money
* For SPFU, some functions cost more than 50%
* Nearly-PFU reduces the cost of nearly every invocation

> Give discount on idle or non-urgent resources without effecting the provider revenue

More detailed experiments in the paper! -

Conclusion

4 We found

 Current serverless billing models are not real pay-for-use
< We designed Nearly Pay-for-use

* For customers: approximate ideal PFU closer
* For providers:as profitable as today’s models

% We built Leopard

e Support Nearly-PFU billing model
e Kernel-level changes and platform-level changes on OpenLambda

= Billing models should be considered not as an afterthought,

but as a central part of system design

29

