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Serverless Computing (FaaS): Popularity and Benefits

~/ Serverless is popular, AWS Lambda is used in 65% architectures’
i Relieve cloud users from managing servers

Fine-grained, pay-as-you-go billing

|. Cloudscape: A Study of Storage Services in Modern Cloud Architectures, Fast 25, Sambhav Satija et.al, University of Wisconsin Madison
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Pay-for-use Billing Model

Providers advertise “pay-for-use” model

o 0> Azure:"Pay-per-use”

. Q | GCP, AWS Lambda:“Pay only for what you use”

What does pay-for-use actually mean ?



What Does “Pay-for-Use” Actually Mean!?

. Intuitive definition

* You pay proportionally to area under the curves

Invocation 1: Small Input Invocation 2: Large Input
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What Does “Pay-for-Use” Actually Mean!?

\ In practice: you choose a memory limit

* Pay for execution time X memory limit (hopefully set to max usage)
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What Does “Pay-for-Use” Actually Mean!?

“\ In practice: you choose a memory limit
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What Does “Pay-for-Use” Actually Mean!?

“\ In practice: you choose a memory limit

* Pay for execution time X memory limit (hopefully set to max usage)
 All invocations share same limit

e Memory limit is linear with CPU reservation

* No discount for usage during low-demand time

Invocation 1: Small Input Invocation 2: Large Input

Memory
Memory

Time Time



What Does “Pay-for-Use” Actually Mean!?

“\ In practice: you choose a memory limit

* Pay for execution time X memory limit (hopefully set to max usage)
 All invocations share same limit

e Memory limit is linear with CPU reservation

* No discount for usage during low-demand time

Invocation 1: Small Input Invocation 2: Large Input

Memory
Memory

Time Time

10



What Does “Pay-for-Use” Actually Mean!?

3 In practlce you choose a memory limit

Pay for execution time X memory limit (hopefully set to max usage)

Statlc

AII invocations share same limit |

e Memory limit is linear with CPU reservation
* No discount for usage during low-demand time
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What Does “Pay-for-Use” Actually Mean!?

In practlce you choose a memory limit

. Pay for execution time X memory limit (hopefully set to max usage)

Statlc

e | All invocations share same limi¢ |

o [Memory limit is linear with CPU reservaton

| Linear

e No discount for usage durlng low-demand time
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What Does “Pay-for-Use” Actually Mean!?

In practlce you choose a memory limit

. Pay for execution time X memory limit (hopefully set to max usage)

o AII invocations share same limit

° Memory I|m|t 'S Ilnear Wlth CPU reservatlon B |
. No dlscount for usage durlng Iow demand tlme ‘

Invocation 1: Small Input

Memory
Memory
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Statlc

Linear
Interactive-only

Invocation 2: Large Input

Time
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What Does “Pay-for-Use” Actually Mean!?

In practlce you choose a memory limit Static Llnear Interactlve-only Model (SLIM)

. Pay for execution time X memory limit (hopefully set to max usage)

* |All invocations share same limit |
+ [Memory limit is linear with CPU reservation |
+ [No discount for usage during low-demand time |

Invocation 1: Small Input Invocation 2: Large Input

Memory
Memory

Time Time
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What Does “Pay-for-Use” Actually Mean!?

“\ In practice: you choose a memory limit

* Pay for execution time X memory limit (hopefully set to max usage)
 All invocations share same limit

e Memory limit is linear with CPU reservation

* No discount for usage during low-demand time

Y Customer side:

o Simple X Not true pay-for-use

Invocation 1: Small Input Invocation 2: Large Input
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Contribution: Better Billing Model and FaaS System to Support it

New model: Nearly-PFU

* Benefits both providers and customers

New system: Leopard
. & Linux techs: new cgroup APIls, modified CFS scheduler, customizable OOM killer
e X FaaS techs: improved admission controller, load balancer and sandbox evictor

Evaluation highlights

e % Provider throughput T 2.3x

e & Customer cost | 34% (interactive), | 59% (batch)
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Qutline

Nearly Pay-for-Use model

Leopard FaaS system

Evaluation highlights
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Goals to Build Better Serverless Billing Model

© Appropriate number of knobs
Billing function

* (Closely approximates ideal pay-for-use

 Maintains provider profitability
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Intuitions to Build Better Serverless Billing Model

. Break the limitations of static, linear interactive model (SLIM)

e Not linear
= Decouple CPU and memory knobs

* Not interactive-only
= Allow users to set urgency levels per resource subset

* Not static
= Allow users to lend idle-but-reserved resources to others for non-urgent needs
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CPU Knobs in Nearly-PFU

CPU-cap:
e Maximum number of CPUs a function is allowed to use

Spot-CPU:
e Subset of CPU-cap that a function does not need immediately

CPU-cap — spot-CPU = reserved-CPUs:
e (CPUs that a function need full, immediate access to when needed
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CPU Knobs in Nearly-PFU

CPU-cap:
e Maximum number of CPUs a function is allowed to use

Spot-CPU:
e Subset of CPU-cap that a function does not need immediately

CPU-cap — spot-CPU = reserved-CPUs:
e (CPUs that a function need full, immediate access to when needed

Full access

Time
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Memory Knobs in Nearly-PFU

Mem-cap:
e Maximum memory size a function is allowed to use

Preemptible-mem:
* Whether an instance can be preempted during execution
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CPU

Cost =

Billing in Nearly-PFU

Reserved-CPUtime x Cr € Base cost
Lower price for using spot-CPUs

+ B d-CPUtime x Cs <+—
oo e > than reserved-CPUs

— Lent-CPUtime x Cs

|

Give discounts when sharing
your “allocated-but-idle” CPUs
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Benefits of Nearly-PFU

Closely approximate ideal pay-for-use

* No more static, linear interactive-only constraints

Maintain provider profitability

* Lent resource discounts are paid by the borrower
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Qutline

Leopard FaaS system

Evaluation highlights
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¥ “A leopard can’t change its spots”,

but our Leopard can!
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Typical FaaS Implementation

O o °
,>\/ “ Faas plathI‘m implementation: & LanX I(ernel |mp|ementatlon2
e |oad balancer e cgroup APIs
Routes invocations to physical nodes Enforces CPU and memory limits for

o function instances
e Admission controller

Decides when to admit queued * CFS scheduler
invocations Handles CPU time allocation and
balances tasks across cores

Find or create a sandbox’
e OOM Killer

Terminates overcommitted processes
when memory exceeds limits

e Sandbox evictor
Decides when to evict cached sandboxes

Sandboxes to execute functions can be Docker, Firecracker, Kubernetes pods, OpenLambda’s SOCK, etc.
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Key Requirements to Support Nearly-PFU

& Requirements for FaaS platform:

e | oad balancer and admission controller: schedule non-linear, QoS aware instances

* Sandbox evictor: firstly kill preemptible instances during heavy memory

A Requirements for the Linux:
L3
e CPU reservation: full access on reserved-CPU and best-effort sharing on spot-CPUs

 Linux OOM Kkiller: give control to the user-space sandbox evictor when OOM
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Key Requirements to Support Nearly-PFU

"% Requirements for Faa$S platform:

e | oad balancer and admission controller: schedule non-linear, QoS aware instances

* Sandbox evictor: firstly kill preemptible instances during heavy memory

A Reqmrements for the Lmux

', e CPU reservation: fuII access on reserved CPU and best- effort sharlng on spot CPUs

e Linux OOM killer: glve control to the user—space sandbox evictor when OOM

See Leopard’s solution for other requirements in the paper!
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Why Linux Cannot Support Efficient CPU Reservation?

CPU pinning

Weighted sharing Sharing-friendly

Example: Fl and F2 runs on a 32-CPU worker
Fl:32 long-running threads, “paid” to reserve |6 CPUs
F2: | thread, fans out to |6 threads, ‘paid” to reserve 16 CPUs

CPU pinning: Pin functions to their reserved CPUs

CPU ID

28 24 2016 12 8 4 0

Time

CPU ID

Provides exclusive CPU access X Disallows sharing

X Incorrect reservation

Weighted sharing: Give Fl and F2 equal share

K| #ﬂ.l".".’mw
YAFRRRRE: fm

None
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Leopard’s Solution

New cgroup interface

e cpu.resv_cpuset specifies reserved CPUs for a cgroup

Requirements for the Linux CPU scheduler

* Highest priority access to CPUs in a cgroup’s cpu.resv_cpuset
e Non-exclusive on CPUs outside the resv cpuset

Modified CFS scheduler
* No longer relies on fairness to achieve isolation

* Allows flexible policies on different cores

Full access on reserved-CPUs and best-effort sharing on spot-CPUs
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Outline

Introduction

Nearly Pay-for-Use model

Leopard FaaS system

Evaluation highlights
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Experiment Setup

Workloads
* |nvocations with CPU/memory usage changes overtime
Billing Models:
e Static Linear Interactive-only Model(SLIM): cost = duration x (C memory limit*®)
e Static Interactive-only Model(SIM): cost = duration % (C; memory limit® + C; CPU limit*®)
e Strict-PFU(SPFU): cost = duration x ( C; avg memory + C; avg CPU )
* Nearly-PFU(NPFU): 4 knobs, used/lent billing function

Cluster set:

| client node and 9 Leopard nodes
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How Does Leopard (w Nearly-PFU) Perform on Provider Side?

The throughput for SLIM, SIM, and Nearly-PFU billing models
NPFU

“SLIM ™ SIM (or SPFU). * NPFU

SIM
Ml -..“

0 25 50 75 100 125 150 175
Time (minute)

5000

Invocations
per seconds

* Going from SLIM to SIM leads to a |.3x increase in throughput
e Switching to Nearly-PFU provides an additional |.6x improvement

> One function’s idle resources can be used to satisfy another’s non-urgent demand
= higher overall utilization
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Can Leopard (w Nearly-PFU) Save Customer Cost!?

Fix provider revenue and only compare customer cost

The CDF of invocation cost relative to those running with SLIM

— 2100 SIM SP-FU NP.FU
©0 : E :
oS >0 - Jj _ JI Interactive
=S o- SRR — jBatch
oE 005 1 15 20 05 1 15 2 0 05 1 15 2
CheaPer Cost Relative Cost Relative Cost Relative
to SLIM to SLIM to SLIM

* With SIM, approximately 50% of invocations save money
* For SPFU, some functions cost more than 50%
* Nearly-PFU reduces the cost of nearly every invocation

> Give discount on idle or non-urgent resources without effecting the provider revenue

More detailed experiments in the paper! -



Conclusion

4 We found

 Current serverless billing models are not real pay-for-use
< We designed Nearly Pay-for-use

* For customers: approximate ideal PFU closer
* For providers:as profitable as today’s models

% We built Leopard

e Support Nearly-PFU billing model
e Kernel-level changes and platform-level changes on OpenLambda

= Billing models should be considered not as an afterthought,

but as a central part of system design
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