REPRESENTATIVE, REPRODUCIBLE, AND PRACTICAL
BENCHMARKING OF FILE AND STORAGE SYSTEMS

by

Nitin Agrawal

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN-MADISON

2009

To my parents

ACKNOWLEDGMENTS

First and foremost | would like to thank my advisors, Andrea &emzi; | couldn’t
have asked for better. During our weekly meetings, morenafitan not, | went in with
a laundry list of frenzied thoughts and messy graphs, ancecaum with a refined idea.
Graciously, they made me feel as if | was the one responsibkiis outcome; | wish | had
been better prepared to get more out of our meetings.

Remzi showed me how someone could do serious research witiong oneself too
seriously, though it will be a lasting challenge for me to @anywhere close to how
effortlessly he does it. As an advisor, he genuinely caresifstudent’s well being. On
many occasions my spirits got refreshed after getting ae yau OK?” email from him.
Remzi not only provided a constant source of good adviceingnigom conference talk
tips to tennis racquet selection, but his ability to find italie” in my work when none
existed transformed a series of naive ideas into a disgsrtat

Most students would consider themselves lucky to have famedgood advisor, | was
privileged to have two. Andrea constantly raised the bar@rallenged me to do better;
the thesis is all the more thorough due to her persistenceaslaiways amazed how she
could understand in a few minutes the implications of my warkbeyond my own under-
standing. Andrea’s meticulous advising was the drivingéobehind the completion and
acceptance of much of my work.

| would like to thank my thesis committee members Mike SvKiru Sankaralingam
and Mark Craven, for their useful suggestions and questabosit my research during my

defense talk. | would especially like to thank Mike for his/a and interest in my work

throughout, and for giving me an opportunity to teach hisargcaduate operating systems
class.

During my six years in Wisconsin, | have had a wonderful sedieagues Leo Arulraj,
Lakshmi Bairavasundaram, John Bent, Nate Burnett, Tim Dgrdaryadi Gunawi, Todd
Jones, Shweta Krishnan, Andrew Krioukov, Joe Meehan, Rlor@ Popovici, Vijayan
Prabhakaran, Abhishek Rajimwale, Meenali Rungta, Mutl8amthanu, Sriram Subra-
manian, Swami Sundararaman, and Yupu Zhang; being the fid&tmzi and Andrea’s
pre-tenure hires, | perhaps overlapped with a larger thamlugroup of students to my
benefit. | will especially miss our late night chats in thellwaly and lunch outings to the
food carts. Muthian and Ina kindled my interest in the grong provided a patient ear to a
curious (and clueless) first year graduate student, | thaaktfor that. | also thank Leo for
taking over some of the work on Compressions while | was busyng my dissertation.
My officemates John, Todd, Shweta, and Swami have all beesame (even taking care
of my plants during my absence!).

| have greatly benefited from my internships at Microsoft&esh (Redmond and Sil-
icon Valley) and IBM Almaden; my internship work at MSR Redmddn fact became the
basis for my thesis itself. | thank my mentors and collead@id8olosky, John Douceur,
Jay Lorch at MSR Redmond, Ted Wobber at MSR Silicon Valleg, ¥img Chen at IBM
Almaden. | am grateful to John and Ted in particular for pdinvg a terrific internship
experience as mentors.

Gautham and Lakshmi, my roommates for five years, made myirstdpdison a most
pleasant one. Their friendship and camaraderie providedao during times when | felt
low, and a reason to celebrate even minor accomplishmentsll miss my discussions
with Gau on all things not related to work. Lakshmi had theeatidurden of being both a
friend and a colleague. He mentored my research in more iaaystte cares to remember.

| thank Anoop for being part of our Madison family during thesfitwo years. Having

Akash as roommate for the last year during a tough job markeesiow made the process
less stressful.

My stay in Madison wouldn’t have been the same without the gamy of wonderful
friends Ankit, Cindy, Jayashree, Neelam, Raman, Shwet&araini to name a few. | con-
stantly ignored Shweta and Neelam’s concern about my haatireating habits, but they
continued to provide food and friendship during their yelagse. Evening coffee breaks
with them became a daily stress buster, and our escapadeg @usummer internship in
California will always be memorable. Cindy not only provitleonstant company in the
department, but also pleasant musical interludes. HavimjtAive right next door made
his apartment my “third place”; movie and dinner nights g¢uaily gave way to more en-
tertaining ones playing Wii.

Mayur, and later on Priyank, played host to numerous easttd¢gps; knowing that
they will be close to Princeton is a comforting thought. Deshd and Siddhartha have
been good friends throughout these years. The company obomsirts in the US, Arvind,
Ashish, Saurabh and Shubha, provided me a feeling of homg faara home.

My sister Neha has always been the kind of loving sister whmase happy for my
accomplishments than | myself. Talking to her on phone ha&s lmy refuge from the
monotony of work and | have come to cherish the time that wetgeipend together.
Finally, I would like to thank my parents for their unconditial love and support; this
Ph.D. would not have been possible without them. They hawvays helped me see the
good in everything and shaped my perspective for the betféhenever | doubted my
abilities, their encouragement put me right back on tradie pride in their eyes on seeing

me graduate made it all seem worthwhile.

TABLE OF CONTENTS
Page
LISTOF TABLES IX
LISTOF FIGURES X
ABSTRACT . . . Xiv
1 Introduction 1
1.1 Representative and Reproducible File-System BendlinggBtate 3

1.1.1 Characteristics of File-System Metadata 4
1.1.2 Generating File-System BenchmarkingState 6
8

1.2 Practical Benchmarking for Large, Real Workloads

1.3 Representative, Reproducible and Practical Benchivarkloads 11

1.4 OVEIVIEW o e e e 13

Five Year Study of File System Metadata. 15

2.1 Methodology 18
2.1.1 Datacollection 18
2.1.2 Dataproperties e 19
2.1.3 Datapresentation 20
2.1.4 Limitations 22

2.2 Files . . . e 22
2.21 Filecountperfilesystem 22
222 Filesize e 23
223 Fileage e 28
2.2.4 File-nameextensions 29
2.25 Unwrittenfiles 32

2.3 Directories. e 34
2.3.1 Directory countperfilesystem 34
2.3.2 Directorysize e 35
2.3.3 Specialdirectories 38

2.3.4 Namespacetreedepth 39

2.4

2.5
2.6
2.7

3.2

3.3

3.4

3.5

Vi

Page

2.3.5 Namespacedepthmodel 45
SpaceUsage e e 47
241 Capacityandusage a7
24.2 Changesinusage i 49
Related Work 52
DISCUSSION o e e 54
Conclusion 56

Generating Realisticl mpressions for File-System Benchmarking. 57

3.1 Extended Motivation 16
3.1.1 Does File-System Structure Matter?61
3.1.2 Goalsfor GeneratingFSImages 3 6
3.1.3 Existing Approaches 64
The Impressions Framework 65
3.2.1 ModesofOperation 65
3.2.2 BasicTechniques 67
3.2.3 CreatingValidMetadata 68
3.2.4 Resolving Arbitrary Constraints 74
3.2.5 Interpolation and Extrapolation 80
3.26 FileContent. 84
3.2.7 Disk Layout and Fragmentation 5 8
3.2.8 Performance 86
Case Study: Desktop Search 87.
3.3.1 Representativelmages 87
3.3.2 Reproduciblelmages oL 91
Other Applications 49
3.4.1 Generating Realistic Rulesof Thumb 94
3.4.2 TestingHypothesis 94
Related Work 96
3.5.1 Tools for Generating File-SystemImages 96
3.5.2 Tools and Techniques for Improving Benchmarking 97
3.5.3 Models for File-System Metadata 98
Conclusion L 98

3.6

Vii

Page
4 Practical Storage System Benchmarking wittCompressions 100
4.1 Background 103
411 StorageStack 104
4.1.2 Storage Systems 105
4.2 The Compressions Framework 107
421 DesignGoals 107
4.2.2 Basic Architecture oo 108
4.2.3 Block Classification and Data Squashing 110
4.2.4 MetadataRemapping 115
4.2.5 Synthetic Content Generation 116
4.3 The StorageModel 119
4.3.1 Model ExpectationsandGoals 191
4.3.2 TheDeviceModel 120
4.3.3 Storage StackModel 124
4.4 Evaluation 126
4.4.1 Experimental Platform 712
4.4.2 Performance Evaluation 712
4.4.3 Fidelity Evaluation a3
4.5 Related Work 138
4.5.1 Storage System Modeling and Emulation 139
4.5.2 Synthetic Content Generation 140
4.6 Conclusion 141
5 Generating File-System Benchmark Workloads 142
5.1 Generating Realistic Synthetic Benchmarks with CodeMR 147
5.1.1 Experimental Platform 814
5.1.2 Micro-workloads and Microprofiles 149
5.1.3 Building Microprofiles L. as
5.1.4 Using Microprofiles for Deconstruction 157
5.2 Future Work 162
5.2.1 Workload Deconstruction 216
5.2.2 Workload Synthesis 165

5.3 Related Work 166

viii

Page
6 Conclusionsand Future Work o 168
6.1 Summary e e 168
6.1.1 Representative and Reproducible Benchmarking State. 168
6.1.2 Practical Benchmarking for Large, Real Workloads 172
6.1.3 Representative, Reproducible and Practical BendhWarkloads . 174
6.2 LessonsLearned 175
6.3 FutureWork 177
6.3.1 Empirical File-System Studies 178
6.3.2 Generating Realistic File System and Disk State 178
6.3.3 Benchmarking Storage Beyond Hard Drives179
6.3.4 Holistic Storage Benchmarking Platform 180
LISTOFREFERENCES e 181
APPENDIX Analytical Distributions L. 195

APPENDIX Statistical Techniques and Terminology 197

LIST OF TABLES

Table Page
2.1 Properties of eachyearsdataset«c..... 20
2.2 Filesystemtypesindatasets 21
2.3 File systems with snapshots in successiveyears 21
2.4 Typical usage of popular file extensions 30
3.1 Choice of file system parameters in priorresearch 58
3.2 Parameters and default values in Impressions 66
3.3 Statistical accuracy of generatedimages 74
3.4 Summary of resolving multiple constraints 76
3.5 Accuracy of interpolation and extrapolation 83
3.6 Performance of Impressions 86
4.1 Device Model Parameters in Compressions 122
4.2 Non-device Storage Model Parameters in Compressions 122
4.3 Accuracy ofruntimemodeling L. 136

5.1 Listof Micro-Workloads Tested 157

LIST OF FIGURES

Figure Page
2.1 CDFsoffile systemsbyfilecount 23
2.2 Histograms offilesbysize 24
2.3 CDFsoffileshbysize 4 2
2.4 Histograms of bytes by containing file size 25
2.5 CDFs of bytes by containing filesize 26
2.6 Contribution of file types to Figure 2.4 foryear2004 27
2.7 Histogramsoffilesbyage 28
2.8 CDFsoffilesbyage 29
2.9 Fraction of files with popularextensions 31
2.10 Fraction of bytes in files with popular extensions 32
2.11 Histograms of file systems by percentage of filesurgwritt 33
2.12 CDFs of file systems by percentage of files unwritten 33
2.13 CDFs of file systems by directorycount 34
2.14 CDFs of directories by filecount 36
2.15 CDFs of directories by subdirectorycount 36
2.16 CDFsof directoriesbyentrycount. 37

Xi

Figure Page
2.17 Fraction of files and bytes in special subtrees 38
2.18 Histograms of directories by namespacedepth 40
2.19 CDFs of directories by namespacedepth. 40
2.20 Histograms of files by namespace depth 41
2.21 CDFs of files by namespacedepth 42
2.22 Files per directory vs. namespacedepth 42

2.23 Contribution of special subtrees to histogram of 20i@4$ foy namespace depth 43

2.24 Histograms of bytes by namespacedepth 43
2.25 CDFs of bytes by namespacedepth 44
2.26 File size vs. namespacedepth 44
2.27 CDFs of file systems by storage capacity 47
2.28 CDFs of file systems by total consumedspace 48
2.29 CDFsoffilesystemsbyfullness 49
2.30 Histograms of file systems by 1-year fullnessincrease. 50
2.31 CDFs of file systems by 1-year fullnessincrease 51
3.1 Impactof directory tree structureo oL 62
3.2 Accuracy of Impressions in recreating file system proper. 71
3.3 Accuracy of Impressions in recreating file system proper. 72
3.4 Resolving Multiple Constraints 75

3.5 Piecewise Interpolationof FileSizes 81

Xii

Figure Page
3.6 Accuracy of Interpolation and Extrapolation. 82
3.7 Tree Depth and Completenessofindex 88
3.8 Debunking Application Assumptions 89
3.9 Impactoffilecontent 92
3.10 Reproducible images: impactofcontent 93
3.11 MetadataOverhead 95
41 Thestoragestack 103
4.2 Compressions OVerview o v i i i e e e 109
4.3 MetadataOverhead 111
4.4 Metadata Remapping and Data Squashing114
45 Disk SavingsforPostMark oL Lo 128
4.6 Executionspeedup forPostMark oo 128
4.7 Disk Savings fomkfs 129
4.8 Executionspeedupfakfs 130
4.9 Storage Model accuracy for Sequential and Random Reads... 131
4.10 Storage Model accuracy for Sequential and Random §vrite. 132
4.11 Storage Model accuracy for Postmark and Webserverloamk 133
4.12 Storage Model accuracy for Varmail and Tar workloads..... 134
4.13 Storage Model Accuracy fakfs 135
4.14 Storage Model overhead fiekfs Lo 135

Xiii

Figure Page
4.15 Storage Model accuracy fekfs oL 137
4.16 Storage Model accuracy for modeling request queudidogmkfs 138
5.1 Predictor Setfor SequentialReads 152
5.2 Predictor SetforRandomReads 153
5.3 Predictor SetforWriteso 154
5.4 AccuracyforCachedReads 155
5.5 Example of a Bad Predictor SetforReads156
5.6 Accuracy for Macro-Workloads L oL 158
5.7 Macro-workload Deconstruction 160
5.8 PostMark with Decreasing Cache Size 161

REPRESENTATIVE, REPRODUCIBLE, AND PRACTICAL
BENCHMARKING OF FILE AND STORAGE SYSTEMS
Nitin Agrawal
Under the supervision of Professors Andrea C. Arpaci-Daissad
Remzi H. Arpaci-Dusseau

At the University of Wisconsin-Madison

Benchmarks are crucial to assessing performance of file @nalge systems; by providing a com-
mon measuring stick among differing systems, comparisamshe made, and new techniques
deemed better or worse than existing ones. Unfortunatédyafid storage systems are currently
difficult to benchmark; there is little consensus regardimgworkloads that matter and insufficient
infrastructure to make it easy to run interesting workloaldss dissertation attempts to simplify the
task of file and storage system benchmarking by focusing i@etbf its important principles— de-
veloping an understanding of and creating solutiongdpresentativereproducibleandpractical
benchmarking state and benchmark workloads.

We first develop an understanding of file-system metadatacaprises much of the file-
system state by performing the first large-scale longitalditudy of file system snapshots. We then
develop means to recreate representative and reprodditystem state for benchmarking by
building Impressionsa framework to generate statistically accurate file-systaages with realis-
tic metadata and content. We develop a sysBampressionghat makes it practical to run large,
complex benchmarks on storage systems with modest camaithile also being faster in total
runtime if desired. We also develop an understanding tosvarelating representative, reproducible
and practical synthetic benchmark workloads, and desouipérst steps in creating “realistic syn-

thetic” benchmarks by building a tool call€bdeMRI

Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau

Xiv

ABSTRACT

Benchmarks are crucial to assessing performance of file tamdge systems; by pro-
viding a common measuring stick among differing systemspgarisons can be made,
and new techniques deemed better or worse than existing dgefrtunately, file and
storage systems are currently difficult to benchmark; therétle consensus regarding
the workloads that matter and insufficient infrastructurentake it easy to run interesting
workloads. This dissertation attempts to simplify the takkle and storage system bench-
marking by focusing on all three of its important principledeveloping an understanding
of and creating solutions faepresentativereproducibleandpractical benchmarking state
and benchmark workloads.

We develop an understanding of file-system metadata by ipeirig a large-scale lon-
gitudinal study of file system snapshots representativeogiarate PC systems. For five
years from 2000 to 2004, we collected annual snapshots efyffeem metadata from over
60,000 Windows PC file systems in a large corporation. In tunlys we use these snap-
shots to study temporal changes in file size, file age, file-iypquency, directory size,
namespace structure, file-system population, storageitgpad consumption, and degree
of file modification. We present a generative model that @rpléhe namespace structure
and the distribution of directory sizes. We find significagrporal trends relating to the
popularity of certain file types, the origin of file contertietway the namespace is used,
and the degree of variation among file systems, as well as peatestrian changes in sizes

and capacities.

XV

We develop means to recreatepresentativeand reproduciblefile-system state for
benchmarking. The performance of file systems and relatéd/a® depends on char-
acteristics of underlying file-system imagee(, file-system metadata and file contents).
Unfortunately, rather than benchmarking with realistiefslystem images, most system
designers and evaluators rely ad hocassumptions and (often inaccurate) rules of thumb.
To remedy these problems, we develappressionsa framework to generate statistically
accurate file-system images with realistic metadata anteogirwe present its design, im-
plementation and evaluation. Impressions is flexible, suppy user-specified constraints
on various file-system parameters using a number of statiggchniques to generate con-
sistent images. We find that Impressions not only accuraggintifies benchmark perfor-
mance, but also helps uncover application policies andnpiatebugs, making it a useful
for system developers and users alike.

We develop a system that makespiactical to run large, complex benchmarks on
storage systems with modest capacities. Typically, beackimy with such benchmarks
on large disks is a frequent source of frustration for filsteyn evaluators; the scale alone
acts as a strong deterrent against using larger albeistedtienchmarks. To address this
problem, we have developed Compressions, a benchmarkstgrsyhat makes it practical
to run benchmarks that were otherwise infeasible on a giystem, while also being faster
in total runtime. Compressions creates a “compressedioers the original file-system
image on disk by omitting all file data and laying out metadhatae efficiently; we present
the design, implementation and evaluation of Compressions

We develop an understanding towards creatgqgesentativereproducibleand prac-
tical synthetic benchmark workloads. Synthetic benchmarks@reped and widely used
as substitutes for more realistic and complex workloaddensfystems research, however,
they are largely based on the benchmark writer’s interpiceteof the real workload, and

how it exercises the system API. It is our hypothesis thavd torkloads execute roughly

XVi

the same set of function calls within the file system, thay thi# be roughly equivalent to
one another; based on this hypothesis, we describe ourtést 81 creating “realistic syn-
thetic” benchmarks by building a tool called CodeMRI. Cod@Meverages file-system
domain knowledge and a small amount of system profiling ireotd better understand

how the benchmark is stressing the system and to decongtuatrkload.

Chapter 1

Introduction

Everyone cares about data, from scientists running simouniato families storing pho-
tos and tax returns. Thus, the file and storage systems tbra ahd retrieve our data
play an essential role in our computer systems. To handlelifferent needs of various
user communities, many different file and storage systems haen developed, from the
Google File System [50], IBM GPFS [122] and NetApp Data ONTBiérage system [45]
in the enterprise segment, to local file systems such as NI®S pnd Linux ext3 [150].

Modern file systems are provisioned with features going Wejlond their primary ob-
jective of just reading and writing to storage media. Forregke, scalability has been a
focus for file system designers to support both large couhtdes and directories, and
large file sizes [111, 141]. Many have investigated ways ttdluseful search function-
ality within and outside the file system, making more sopteséd use of dynamic file
system usage information [52, 53, 126, 137]. Providing enhimanagement for shar-
ing digital media across administrative domains has be@toeed in the context of file
systems [48, 152]. Finally, reliability schemes to handledma failures both in desk-
top [106, 154] and enterprise systems [20] have also beeela®sd. With this growth
in file system functionality and correspondingly in complgxthe techniques to effec-
tively evaluate the performance of file and storage systeaws hecome increasingly more

relevant.

Unfortunately, file and storage systems are currently diffio benchmark [145]. There
is little consensus regarding the workloads that matter iasdfficient infrastructure to
make it easy to run interesting workloads. Years of researcthe design and implemen-
tation of file systems, and on applications using these fééesys, has led to an abundance
of innovations; however, approaches for benchmarkingjlatil behind. Benchmark per-
formance measurements are often uncorrelated with remissee real-world settings and
the results are hard to compare across systems due to latc&nofasdization and repro-
ducibility. This general state of disarray in file-systenmblemarking complicates matters
for system designers, evaluators, and users alike.

The objective of this dissertation is to simplify the taskbehchmarking by developing
tools and techniques that provide a thorough and easy toxjszience for file and stor-
age system benchmarking. To do so, we focus on three impggneaciples that systems

benchmarking should adhere to, and is currently lackingeindp
e Representative:of target usage scenario and real-world conditions
e Reproducible: to provide a common yardstick and enable fair comparison

e Practical: to encourage community-wide adoption and standardization

In order to meet the expectations defined by these pringiplehave set ourselves the
following goals: first, to examine the characteristics artgladlop an understanding of file
system metadata that forms much of the basis for representide system state; second, to
provide means to adopt and accurately reproduce the empmiormation about file sys-
tem metadata for experimental usage by creating repreasanteeproducible file-system
benchmarking state; third, to make it practical to run camplreal-world benchmarks
on realistic storage infrastructure; and finally, also depen understanding of workloads
used for file system benchmarking and provide means to createsentative, reproducible

and practical synthetic benchmark workloads.

We address the goals of this dissertation as follows. Rietanalyze the transverse
and longitudinal properties of file system metadata by cotidg a large-scale study of
file-system contents [8, 9]. Second, we develop a statidtiamework that allows one
to incorporate realistic characteristics of file systemadata and file data, and reproduce
them for benchmarking [6]. Third, we develop a practical denarking system that al-
lows one to run large, complex workloads with relatively rastistorage infrastructure [5].
Finally, we also outline a methodology to create synthegizdhmarks that are functionally
equivalent to and representative of real workloads [3, 4].

By freely contributing our data and software to the commynite encourage file-
system developers to use them as standardized resourdesifdrmarking and experimen-
tation. The ensuing sections explain in greater detail eddhese contributions of the

dissertation.

1.1 Representative and Reproducible File-System Benchmiang State

One of the primary objectives of benchmarking is to be ableuvaluate the perfor-
mance of a system under operating conditions that closégctehe real-world scenario in
which the system-under-test is going to be deployed. Amathportant objective is to al-
low comparison among competing systems; for a fair comparighe performance of two
or more systems should be measuvedier the same operating conditiorBy providing
a common measuring stick among differing systems, bendtsyamn quantifiably distin-
guish performance, and allow new techniques to be deeméel loetworse than existing
ones.

Thus, any benchmarking experiment must be preceded by #alization phase to
recreate the necessary state representative of the tesgge scenario. The state should
itself be reproducible, so as to enable different developeensure they are all comparing

performance of a system under the same conditions.

For file and storage systems, generating representativeepmatucible state for bench-
marking requires first an understanding of the file systertestdnich primarily consists
of the file-system metadata, and second, means to creatatiahfite-system image (or
benchmarking state) that is both representative of theaagédgproperties and reproducible
for experimentation. Throughout this document, we refea b@nchmarlas the combina-

tion of abenchmark workloadnd thebenchmark state

1.1.1 Characteristics of File-System Metadata

File systems store user data and its associatethdataor bookkeeping information
on a storage device such as a hard disk. Metadata is storedimteanal representation
to allow operations such as creation, look up, insertion@gldtion of user data. Then-
diskimage of the file system contains this information in a péesisdata structure; for
example, NTFS [135] and ReiserFS [111] use balanced B+,tAggde’s HFS [15] and
Reiser4 [79] use Btrees, while Ext3 [150] uses statically reserved block geoto store
metadata, similar to cylinder groups in the Berkeley FFS.[&3perations performed on
metadata heavily influence the overall performance of a fiktesn; metadata intensive
benchmarks are often considered a stress test for any filersys

Detailed knowledge of file-system metadata is thus esdéntidesigning file and stor-
age systems, and in our case, for creating representatidbeark state. Real world infor-
mation about the structure, organization and contentsed éihd directories stored in file
systems is crucial both to make informed design decisiodg@accurately evaluate these
systems. However useful, real world data is hard to collact analyze, forcing storage
system designers to rely on anecdotal information and aftedated rules of thumb.

In the past, there have been few empirical studies of filéesysnetadata [67, 94, 120,
128], and even fewer that involved any sizeable metadataatimn [41]. In this disserta-

tion, we present the first large-scale longitudinal studfflefsystem metadata. To perform

this study, every year from 2000 to 2004, we collected snefgsbf metadata from over
ten thousand file systems on Windows desktop computers abstitt Corporation. Our
resulting data sets contain metadata from 63,398 distilecsyistems, 6457 of which pro-
vided snapshots in multiple years. These systems contalhahlfiles totaling 700 TB of
file data, allowing us to understand various charactessifdile-system metadata and how
it evolves over a multi-year time period.

In particular, we studied temporal changes in the size, age type frequency of files,
the size of directories, the structure of the file-system esace, and various characteris-
tics of file systems, including file and directory populatistorage capacity, storage con-
sumption, and degree of file modification. Our measuremevisaled several interesting
properties of file systems and offered useful lessons. kgtudy we find significant tem-
poral trends relating to the popularity of certain file typ#se origin of file content, the
way the namespace is used, and the degree of variation anh®egdiems, as well as more
pedestrian changes in sizes and capacities.

One interesting discovery is the emergence of a second nnaitie iGigabyte range in
the distribution of bytes by containing file size. A few larjes, mainly video, database,
and blob files, are the dominant contributors to this secoadevand are responsible for an
increasing fraction of the total file-system usage. Thedasingly large fraction of content
in large files suggests that variable block sizes, as sugporst ZFS [24] and NTFS [136],
are becoming increasingly important.

Another interesting finding is our observation on file systesiness changes. Over
the course of our five-year study, despite a vast increaseaihaale file-system capacity
(roughly 500% increase in the arithmetic mean of availabfgecity), aggregate file system
fullness remained remarkably stable at 41% over all yead naean fullness dropped only
by 4%. Storage manufacturers can thus keep focusing efionaweasing capacity, because

customers will continue to place great value on capacityHerforeseeable future.

We have made our dataset available to the community via @&t Networking In-
dustry Association’s IOTA repository. To obtain it, visitd URLhttp://iotta.snia.
org/traces/tracesStaticSnapshot/. We hope this will help others use this dataset in

their own endeavors and also encourage more such studiesctinblucted in the future.

1.1.2 Generating File-System Benchmarking State

Armed with the information on file-system metadata, the sdaequirement in order
to generate file-system state for benchmarking is to devalegns to create an initial file-
system image that is both representative of the metadafgegires and reproducible for
experimentation.

In order for a benchmark execution to be comprehensiblesystem under test needs
to be brought to a known state before running the benchmarklead. Typically, this
initialization consists of a warm-up phase wherein the bemark workload is run on the
system for some time prior to the actual measurement phasexample of such a warm-
up phase is warming the caches prior to evaluating perfocaah memory organization
in processors [63], database systems [88] or file systenesidrs work has noted that the
contents of the cache during a test have significant impath@performance results [25,
38, 63]. Different systems may have additional requireméot the initialization phase,
but across systems, state is important when doing perfaenavaluation.

Several factors contribute to the file-system state, ingsaramongst them are the-
memorystate (contents of the file-system buffer cache),ahaliskstate (disk layout and
fragmentation) and the characteristics of fire system imaggiles and directories belong-
ing to the namespace and file contents).

Cache warm-up takes care of the in-memory state of file systéknother important
factor is the on-disk state of the file system, or the degrdeagimentationit is a measure

of how the disk blocks belonging to the file system are laidavutlisk. Previous work has

shown that fragmentation can adversely affect performarfi@efile system [132]. Thus,
prior to benchmarking, a file system should undesmgongby replaying a workload similar
to that experienced by a real file system over a period of tih32].

In the case of file and storage system benchmarking, theresgant for reproducibility
translates to the need for methodically recreating fildesyisstate prior to every benchmark
run. This would include warming up the caches, inducing appate fragmentation for
on-disk layout as mentioned before, and creatirfideasystem imageepresentative of the
target environment.

Surprisingly, the characteristics of the file-system imagekey contributor to file-
system state have been largely ignored in creating bendingastate; the properties of
file-system metadata and file content can have a significgradéhon the performance of
a system. Properties of file-system metadata includesnrd@ton on how directories are
organized in the file-system namespace, how files are orgariito directories, and the
distributions for various file attributes such as size, dephd extension type.

Much of this information can be obtained in limited formsrfrovarious empirical stud-
ies of file-system contents. Such studies focus on measamicignodeling different aspects
of file-system metadata by collecting snapshots of fileesystnages from real machines.
Collecting and analyzing this data provides useful infaioraon how file systems are used
in real operating conditions.

However, no clear methodology exists to incorporate thsedge in accurately and
reproducibly creating file-system images, failing whichgmamoften than not, benchmark-
ing resorts to arbitrary approaches for creating file-aystéate. The lack of standardization
and reproducibility of these choices makes it almost imids$o compare results, sacri-
ficing the utility of the benchmark itself. To address thislgem, we need a systematic
approach to creating benchmarking state for file systenth, peirticular emphasis given to

creating realistic and reproducible file-system images.

With the goal of simplifying the process of creating benchistate, we develofm-
pressionsa framework to generate statistically accurate file-syst@ages with realistic
file-system metadata and file content. Impressions is flexibhccommodating a number
of user-specified inputs and supports additional conggain various file-system parame-
ters, using a number of statistical techniques to genemtsistent file-system images.

A casual user looking to create a representative file-systeage without worrying
about selecting parameters can simply run Impressions itgittiefault settings; Impres-
sions will use pre-specified distributions from file-systsimdies to create a representative
image. A more sophisticated user has the power to indivigwaintrol the knobs for a
comprehensive set of file-system parameters; Impressidhsarefully work out the sta-
tistical details to produce a consistent and accurate imbmgleoth cases, Impressions en-
sures complete reproducibility of the image, by reportimg tised distributions, parameter
values, and seeds for random number generators.

In our experiences with Impressions, we found it effectind aasy to use for bench-
marking file systems and related software. In a case studgmdlpr desktop search tools
in Linux, Beagle and Google Desktop, Impressions allowetbwsccurately quantify and
compare the overhead in building the initial search index#&ious indexing schemes and
file-system images.

We believe Impressions will prove to be a useful tool for benarking and we have
made it publicly available; to obtain Impressions, visg tHRL http://www.cs.wisc.

edu/adsl/Software/Impressions/.

1.2 Practical Benchmarking for Large, Real Workloads

So far we have discussed two important challenges in fileesybenchmarking: recre-

ating benchmarking infrastructure representative of-vealld conditions, and ensuring

reproducibility of the benchmarking state to allow fair geanison. The time and effort re-
quired to ensure that the above conditions are met oftelmdiages developers from using
benchmarks that matter, settling instead for the ones teatasy to set up and use. These
deficiencies in benchmarking point to a thematic problem emibhcomes to actual usage,
ease of use and practicality often overshadow realism anaracy.

In practice, realistic benchmarks (and realistic configjares of such benchmarks) tend
to be much larger and more complex to set up than their trogainterparts. File system
traces €.g, from HP Labs [113]) are good examples of such workloadgnoliteing large
and unwieldy. In many cases the evaluator has access to aomigdast infrastructure,
making it harder still to employ large, real workloads.

Two trends further exacerbate this difficulty in file and stpe benchmarking. First,
storage capacities have seen a tremendous increase inghiewayears; Terabyte-sized
disks are now easily available for desktop computers; prigar systems are now frequently
dealing with Petabyte-scale storage. Second, popularcagiphs are taking increasingly
longer to execute. Examples of such applications includesfjistem integrity checkers like
fsck and desktop search indexing, each taking anywhere fronraldwaurs to a few days
to run on a Terabyte-sized patrtition.

Benchmarking with such applications on large patrtitiorsfisequent source of frustra-
tion for file-system evaluators; the scale alone acts a®agtieterrent against using larger
albeit realistic benchmarks [146]. Given the rate at whichage capacities are increasing,
running toy workloads on small disks is no longer a satisfgcalternative. One obvious
solution is to continually upgrade one’s storage infragniee. However, this is an expen-
sive, and perhaps an infeasible solution, especially tifyuhe costs and administrative
overheads solely for benchmarking.

In order to encourage developers of file systems and relatiare to adopt larger,

more realistic benchmarks and configurations, we need nteamsike them practical to

10

run on modest storage infrastructure. To address this enoplve have developed Com-
pressions, a “scale down” benchmarking system that allowesto run large, complex

workloads using relatively small storage capacities byisgalown the storage require-
ments transparent to the workload. Compressions makesatipal to experiment with

benchmarks that were otherwise infeasible to run on a giystes.

They key idea in Compressions is to create a “compressedioreof the original file-
system image for the purposes of benchmarking. In the casspceimage, unneeded user
data blocks are omitted and file system metadata blocks {eagles, directories and indi-
rect blocks) are laid out more efficiently on disk. To enshied eipplications and benchmark
workloads remain unaware of this interposition, Comp@ssisynthetically produces file
data using a suitably modified in-kernel version of Impressj and appropriately fetches
the redirected metadata blocks. Compressions then usaskaniel model of the disk and
storage stack to determine the runtime of the benchmarkla@adkon the original uncom-
pressed image. The storage model calculates the run tinadisrdividual requests as they
would have executed on the uncompressed image.

Depending on the workload and the underlying file-systengenéhe size of the com-
pressed image can range anywhere froto 10% of the original, a huge reduction in the
required disk size for benchmarking. Compressions alsoaesithe time taken to run the
benchmark by avoiding a significant fraction of disk I/O amskdeeks. The storage model
within Compressions is fairly accurate in spite of opergtin real-time, and imposes an
almost negligible overhead on the workload execution.

Compressions thus allows one to run benchmark workloadsehaire file-system im-
ages orders of magnitude larger than the available disk@nagint much faster than usual,
all this while still reporting the runtime as it would havekén on the original image; we

believe Compressions provides a practical approach toarge) real workloads with a

11

modest overhead and virtually no extra expense in frequeptjrading storage infrastruc-

ture for benchmarking.

1.3 Representative, Reproducible and Practical BenchmarkWorkloads

The other crucial requirement for benchmarking apart fromthienchmark state is the
benchmark workload: no benchmarking can proceed withoet onike benchmarking
state, the benchmark workload should also be represeatatithe target usage scenario,
in this case the real-world applications running on theaystWhile creating a benchmark
workload care must be taken to ensure that the workload jsteasproduce so as to enable
comparison across systems.

To evaluate the performance of a file and storage systemlapmrs have a few different
options, each with its own set of advantages and disadvesitag

e Real Applications: One option for evaluating a file or storage system is to dyect
measure its performance when running real 1/O-intensiydiegtions.

e Microbenchmarks of Application Kernels: A second option is to run application
kernels that are simplified versions of the full applicaidhemselves.

e Trace replay: A third option is to replay file system traces that have beeripusly
gathered at various research and industrial sites.

e Synthetic workloads: A final option is to run synthetic workloads that are designed
to stress file systems appropriately, even as technolobesge.

On the whole, synthetic benchmark workloads are much mopelpothan real work-
loads and trace replays, largely due to the ease of use witthwvglynthetic workloads can
be employed. Given the popularity of synthetic benchmarkkieads, we believe that
an ideal benchmark for file and storage systems combinesdbke of usef a synthetic

workload with therepresentativenessf a real workload.

12

The process of creating such a benchmark should capturesiemee of the original
workload in a way that the synthetic workload remains regnéative; the process should be
reproducible so that others can verify the authenticityhef benchmark workload without
having to rely on the interpretation of the benchmark wrigerd finally, creating synthetic
workloads should be practical and encourage developedot@omplex, real workloads
into mainstream benchmarking.

While creating representative benchmark workloads is narairely solved problem,
significant steps have been taken towards this goal. Emapsiadies of file-system ac-
cess patterns [17, 58, 100] and file-system activity trat&8,[133] have led to work on
synthetic workload generators [12, 44] and methods foretraplay [14, 85]. However,
automated workload synthesizers are hard to write. Cumegihods for creating synthetic
benchmark workloads are largely based on the benchmar&nsnnterpretation of the real
workload, and how it exercises the system API. This is insugffit since even a simple op-
eration through the APl may end up exercising the file systenery different ways due
to effects of features such as caching and prefetching.

Determining whether or not two workloads stress a systerhénrsame way is a chal-
lenging question; certainly, the domain of the system unédst has a large impact on
which features of the two workloads must be identical forrdsulting performance to be
identical. We believe that in order to create an equivalgntteetic workload for file and
storage systems, one must mimic not the system calls, bfiiticgion callsexercised dur-
ing workload execution, in order to anctionally equivalentlt is our hypothesis that if
two workloads execute roughly the same set of function aaillsin the file system, that
they will be roughly equivalent to one another.

Towards this end, we develop a tool called CodeMRI (an “MR¥ ¢ode if you will),
that leverages file-system domain knowledge and a small apadusystem profiling in

order to better understand how a workload is stressing tsiesy, and eventually construct

13

a synthetic equivalent. Our initial experience with CodeMi&s shown promise in de-
constructing real workloads; we believe it can provide eakbuilding blocks towards

developing automated workload synthesizers that are septative of real workloads.

1.4 Overview

The rest of the dissertation is organized as follows.

e Representative and Reproducible Benchmarking StateChapter 2 presents our
five-year study of file-system metadata; we analyze botfcstat longitudinal prop-
erties of file-system metadata that are representative ofjewws PC systems in a
corporate environment; this study is used as an exemplaefoesentative metadata

properties throughout the rest of the dissertation.

Chapter 3 presents our design, implementation and evaiuati Impressions, a
framework to generate statistically accurate file-systarages with realistic meta-
data and content. Impressions is flexible, supporting sgecified constraints on
various file-system parameters using a number of statiggchniques to generate

consistent, reproducible images for benchmarking.

e Practical Large-Scale Benchmarking: Chapter 4 presents our design, implemen-
tation and evaluation of Compressions, a practical scakedsystem for running
large, complex benchmarks. Compressions makes it feasilslen workloads that
were otherwise infeasible to run with modest storage imfuasure, while also re-

ducing the time taken to run the benchmark.

e Representative, Reproducible and Practical Benchmark Wdtloads:

We discuss file-system benchmark workloads in Chapter Simewe first present

the requirements for generating representative synthethchmarks, then describe

14

our initial successes with deconstructing real workloads] finally discuss chal-

lenges in perfecting an automated benchmark workload sgizér.

e Conclusions and Future Work: Chapter 6 concludes this dissertation, first summa-
rizing the contributions of our work and discussing the tesslearned, and second,

outlining possible avenues for future research that opeinawp this dissertation.

15

Chapter 2

Five Year Study of File System Metadata

Detailed knowledge of file-system metadata is essentialdsigning and benchmark-
ing file and storage systems. Real world information aboeitstihucture, organization and
contents of files and directories stored in file systems isiafioth to make informed de-
sign decisions and to accurately evaluate these systemge\uéo useful, real world data is
hard to collect and analyze, forcing storage system desdoeely on anecdotal informa-
tion and often outdated rules of thumb.

In this chapter we present the first large-scale longitudgtady of file-system meta-
data. To perform this study, every year from 2000 to 2004, wkected snapshots of
metadata from over ten thousand file systems on Windows aleskimputers at Microsoft
Corporation. We gathered this data by mass-emailing a sogupmogram to Microsoft’'s
employees, and we had a 22% participation rate every yearrg3ulting datasets contain
metadata from 63,398 distinct file systems, 6457 of whiclviplexd snapshots in multiple
years.

This project was a longitudinal extension of an earlier gtperformed by the Microsoft
co-authors in 1998 [41], which was an order of magnitudedatgan any prior study of
file-system metadata. The earlier study involved a singiéura of file-system metadata,
and it focused on lateral variation among file systems at a embin time. By contrast, the

present study focuses on longitudinal changes in file systarar a five-year time span.

16

In particular, we study temporal changes in the size, agetygre frequency of files; the
size of directories; the structure of the file-system naraespand various characteristics of
file systems, including file and directory population, sgaapacity, storage consumption,
and degree of file modification.

The contributions of this work are threefold. First, we atimite the collected data set,
which we have sanitized and made available for general ys@[iis is the largest set of
file-system metadata ever collected, and it spans the lotiges period of any sizeable

metadata collection. Second, we contribute all of our ne$eabservations, including:

e The space used in file systems has increased over the coum& study from
year 2000 to 2004, not only because mean file size has incrdasen 108 KB
to 189 KB), but also because the number of files has increésed 80K to 90K).

e Eight file-name extensions account for over 35% of files, ané file-name exten-
sions account for over 35% of the bytes in files. The same deaigtensions have

remained popular for many years.

e The fraction of file-system content created or modified llychbs decreased over
time. In the first year of our study, the median file system Hags ®f its files created

or modified locally, and four years later this percentage 22t%.

e Directory size distribution has not notably changed overybars of our study. In
each year, directories have had very few subdirectoriessamddest number of en-
tries. 90% of them have had two or fewer subdirectories, &% 6f them have had

20 or fewer total entries.

e The fraction of file system storage residing in the namespabé&ree meant for user
documents and settings has increased in every year of ady, sttarting at 7% and
rising to 15%. The fraction residing in the subtree meantsfgstem files has also

risen over the course of our study, from 2% to 11%.

17

¢ File system capacity has increased dramatically duringtugy, with median capac-
ity rising from 5 GB to 40 GB. One might expect this to causesticareductions in
file system fullness, but instead the reduction in file systdiness has been modest.

Median fullness has only decreased from 47% to 42%.

e Over the course of a single year, 80% of file systems becortes arhd 18% become

less full.

Third, we contribute a generative, probabilistic modeliow directory trees are cre-
ated. Our model explains the distribution of directoriesdapth in the namespace tree,
and it also explains the distribution of the count of subctivees per directory. This is the
first generative model that characterizes the process bghifiie-system namespaces are
constructed.

We believe that analysis of longitudinal file system datafisiterest to many sets of

people with diverse concerns about file system usage. Famos:
e developers of file systems, including desktop, server, astdlolted file systems

e storage area network designers

e developers of file system utilities, such as backup, amtisyicontent indexing, en-

cryption, and disk space usage visualization
e storage capacity planners

o disk manufacturers, especially those using gray-box tecies to enable visibility

into the file system at the disk level [16]
e multitier storage system developers
Throughout this chapter, after discussing our findings ahdtwve consider to be the most

interesting summaries of these findings, we will presenteseramples of interesting im-

plications for the people enumerated above.

18

The rest of this chapter is organized as folloy.1 describes the methodology of our
data collection, analysis, and presentati@@.2, §2.3, ands2.4 present our findings on,
respectively, files, directories, and space usd@e5 surveys related work and compares
our study with others that have been conducted in the 3&s6 presents a discussion of

our findings and2.7 concludes the chapter.

2.1 Methodology

This section describes the methodology we applied to dotigcanalyzing, and pre-

senting the data.

2.1.1 Data collection

We developed a simple program that traverses the directeeydf each local, fixed-
disk file system mounted on a computer. The program recordsas$iot of all metadata
associated with each file or directory, including hiddersféed directories. This metadata
includes name, size, timestamps (file or directory creagimhmodification), and attributes.
The program also records the parent-child relationshipsoks in the namespace tree, as
well as some system configuration information. The progracords file names in an
encrypted form. We used this program to collect informafimm NTFS and FAT based
file systems. Apart from the file system information, the sgag program also records
some system configuration such as volume and user ID, nurflbgecs on the computer,
OS version and build, and information related to the promess the machine.

We also wrote automated tools that decrypt the file hamesdorpating aggregate
statistics, but for privacy reasons we do not look at theyjged file names directly, which
places some limits on our analyses. In post-processingemeve metadata relating to the
system paging file, because this is part of the virtual mensgstem rather than the file

system.

19

In the autumn of every year from 2000 to 2004, we distributexigcanning program
via emalil to a large subset of the employees of Microsofth\aitequest for the recipients
to run the program on their desktop machines. The snapshars eollected entirely at
Microsoft’s primary campus in Redmond, WA. The sample papah consists entirely of
Microsoft Windows machines with users ranging from develspsystem administrators,
non-technical staff and researchers.

As an incentive to participate, we held a lottery in whichleacanned machine counted
as an entry, with a single prize of a night’s stay at a nearlspntehotel. The specific
subset of people we were permitted to poll varied from yearetar based on a number of
factors; however, despite variations in user populatichiarother distribution particulars,
we observed approximately a 22% participation rate eveay.ye

We scanned desktops rather than servers because at Micfdssfare typically stored
on individual desktops rather than centralized serverscilected the data via voluntary
participation rather than random selection because theaagnonly permitted the former

approach; note that this voluntary approach may have pextiselection bias.

2.1.2 Data properties

Table 2.1 itemizes some properties of each year's dataatwlie The primary collec-
tion period ran between the listed start and end dates, whitk the beginning of our
emailing requests and the last eligible day for the lotteé®pme snapshots continued to
trickle in after the primary collection period; we used tb@s our analyses as well.

Table 2.2 itemizes the breakdown of each year's snapshotgding to file-system
type. 80% of our snapshots came from NTFS [136], the main ¥i&tesn for operating
systems in the Windows NT family; 5% from FAT [89], a 16-bikefifystem dating from
DOS; and 15% from FAT32 [89], a 32-bit upgrade of FAT develbfm Windows 95.

20

Year Period Users Machs FSsg

2000 13Sep—-29Sep 5396 6051 11,654
2001 8 Oct—-2 Nov 7539 9363 16,022
2002 30Sep—-1Nov 7158 9091 15,011
2003 13 Oct—14 Nov 7436 9262 14,633
2004 50ct—-12Nov 7180 8729 13,505

Table 2.1 Properties of each year's dataset

For some analyses, we needed a way to establish whether esgyfitem snapshots
from different years refer to the same file system. “Saménssmt actually a well-formed
notion; for example, it is not clear whether a file systemiistbte same after its volume is
extended. We defined two snapshots to refer to the same fiensyisand only if they have
the same user name, computer name, volume ID, drive letidri@al space. The need
for some of these conditions was not obvious at first. For eptapwe added drive letter
because some drives on some machines are multiply mappdjeaadded total space so
that a volume set would not be considered the same if a newneluere added to the
set. Based on this definition, Table 2.3 shows the numberagsots for which we have

consecutive-year information.

2.1.3 Data presentation

Many of our graphs have horizontal axes that span a largesrahgon-negative num-
bers. To represent these ranges compactly, we use a lagariticale for non-zero values,
but we also include an abscissa for the zero value, even bhrerg does not strictly belong
on a logarithmic scale.

We plot most histograms with line graphs rather than bar ligdgecause, with five or

more datasets on a single plot, bar graphs can become ditficidad. For each bin in the

21

Year NTFS FAT32 FAT Other Total

2000 7,015 2,696 1,943 0 11,654
2001 11,791 3,314 915 2 16,022
2002 12,302 2,280 429 0 15,011
2003 12,853 1,478 302 0 14,633
2004 12,364 876 264 1 13,505
Total 56,325 10,644 3,853 3 70,825

Table 2.2 File system types in datasets

Start 1 2 3 4 5

2000 11,654 950 234 63 18
2001 16,022 1,833 498 144 |-
2002 15,011 1,852 588 - |-
2003 14,633 1,901 - -

2004 13,505 - - - -

Total 70,825 6,536 1,320 207 18

Table 2.3File systems with snapshots in successive yeakumber of file systems for which
we have snapshots in theconsecutive years starting with each year. The numberssndhble are
cumulative for thex years. For instance, there are 1,852 file systems for whichave snapshots
from both 2002 and 2003, and 588 file systems for which we mapshots in the three years 2002,
2003 and 2004.

22

histogram, we plot a poirtr, y) wherex is the midpoint of the bin angl is the size of the
bin. We use the geometric midpoint when thaxis uses a logarithmic scale. We often plot
un-normalized histograms rather than probability derfsitctions (PDFs) for two reasons:
First, the graphs expose more data if we do not normalize ti8&oond, because the count
of files and directories per file system has grown substdntaker time, not normalizing
allows us to plot multiple years’ curves on the same chataeuit overlapping to the point
of unreadability.

Whenever we use the prefix K, as in KB, we mé&h Similarly, we use M foR*® and
G for 23,

2.1.4 Limitations

All our data comes from a relatively homogeneous sample afhim&s: Microsoft
desktops running Windows. Since past studies [116, 153¢ Is&aown that file system
characteristics can vary from one environment to anotherconclusions may not be ap-
plicable to substantially different environments. Fortamee, our conclusions are likely
not applicable to file system server workloads, and it is @acto what extent they can be
generalized to non-Windows operating systems. It may adsthat artifacts of Microsoft
policy, such as specific software distributions that are romm or disallowed, may yield

results that would not apply to other workloads.

2.2 Files
2.2.1 File count per file system

Figure 2.1 plots cumulative distribution functions (CDIes)file systems by count of
files. The count of files per file system has increased steadiy our five-year sample
period: The arithmetic mean has grown from 30K to 90K files #tredmedian has grown

from 18K to 52K files.

23

100

80 -

60

40

20

Cumulative % of file systems

2 16 128 1K 8K 64K 512K 4M
File count (log scale)

Figure 2.1 CDFs of file systems by file count

The count of files per file system is going up from year to yead, @as we will discuss
in §2.3.1, the same holds for directories. Thus, file systemgaess should ensure their
metadata tables scale to large file counts. Additionallycareexpect file system scans that
examine data proportional to the number of files and/or thmées to take progressively
longer. Examples of such scans include virus scans and atatadegrity checks follow-
ing block corruption. Thus, it will become increasingly tideto perform these checks

efficiently, perhaps by scanning in an order that minimizesement of the disk arm.

2.2.2 File size

This section describes our findings regarding file size. \Wemnehe size of actual con-
tent, ignoring the effects of internal fragmentation, filetadata, and any other overhead.
We observe that the overall file size distribution has chdrgjightly over the five years
of our study. By contrast, the majority of stored bytes anenfb in increasingly larger
files. Moreover, the latter distribution increasingly exits a double mode, due mainly to

database and blob (binary large object) files.

Files per file system

Cumulative % of files

12000
10000 -
8000 | : .
6000 | T — A —
4000 - 3 rrrrrrrr | <¢€ rrrrrrrrrrrrr 5~mmm€ rrrrrrrrrrrrr .
2000 § """""" e 3 é """"""" 7
0] i | | | g
0 8 128 2K 32K 512K 8M 128M
File size (bytes, log scale, power-of-2 bins)
Figure 2.2 Histograms of files by size
100

80

60

40

20

0 | i i i i
1 16 256 4K 64K 1M 16M 256M

File size (bytes, log scale)

Figure 2.3 CDFs of files by size

24

25

)

2 1800 T T T T T T
c 1600 F 2000 ——
& A R 5007
g 1400 5002
o 1200 ,,,,,,,,,,,,,,,,,,,,,,,, ,
B 1000 [2004 -
s o0
g 600 e
© 400 -

Q- T

& 200 ool N e :
3 512 4K 32K 256K 2M 16M128M 1G 8G 64G

Containing file size (bytes, log scale, power-of-2 bins)
Figure 2.4 Histograms of bytes by containing file size

Figure 2.2 plots histograms of files by size and Figure 2.3sptbe corresponding
CDFs. We see that the absolute count of files per file systenyioam significantly over
time, but the general shape of the distribution has not ocbdusggnificantly. Although it is
not visible on the graph, the arithmetic mean file size hasgroy 75% from 108 KB to
189 KB. In each year, 1-1.5% of files have a size of zero.

The growth in mean file size from 108 KB to 189 KB over four yeanggests that
this metric grows roughly 15% per year. Another way to estarthis growth rate is to
compare our 2000 result to the 1981 result of 13.4 KB obtame8atyanarayanan [120].
This comparison estimates the annual growth rate as 12% tNat this latter estimate is
somewhat flawed, since it compares file sizes from two ratifiereint environments.

Figure 2.4 plots histograms of bytes by containing file sedégrnately described as
histograms of files weighted by file size. Figure 2.5 plots GFthese distributions. We
observe that the distribution of file size has shifted to tgktrover time, with the median
weighted file size increasing from 3 MB to 9 MB. Also, the distition exhibits a double

mode that has become progressively more pronounced. Thesponding distribution in

26

100

80 -

60

40

20

Cumulative % of used space

ol
1K 8K 64K 512K 4M 32M256M 2G 16G 128G
Containing file size (bytes, log scale)

Figure 2.5 CDFs of bytes by containing file size

our 1998 study did not show a true second mode, but it did simowfkection point around
64 MB, which is near the local minimum in Figure 2.4.

To study this second peak, we broke out several categoriéesfaccording to file-
name extension. Figure 2.6 re-plots the 2004 data from Eigut as a stacked bar chart,
with the contributions of video, database, and blob filescaigd. We see that most of
the bytes in large files are in video, database, and blob filled,that most of the video,
database, and blob bytes are in large files.

Our finding that different types of files have different sizetdbutions echoes the find-
ings of other studies. In 1981, Satyanarayanan [120] fohisdkd be the case on a shared
file server in an academic environment. In 2001, Evans anahKing also noted this phe-
nomenon in their analysis of 22 machines running variousaipgy systems at Harvey
Mudd College and Marine Biological Laboratories [46]. Tlaetfthat this finding is con-
sistent across various different environments and timggests that it is fundamental.

There are several implications of the fact that a large nurabsmall files account for
a small fraction of disk usage, such as the following. Fitspay not take much space to

co-locate many of these files with their metadata. This mag tEasonable way to reduce

27

1800

1600

1400 1

1200 i

1000 | =

800 - B

600 -t HHHHHHH %—,—,

400

200 ifnnn *****.*I*-

512- 4K-8K 32K- 256K- 2M- 16M- 128M- 1G- 8G- 64G-
1K 64K 512K 4M 32M 256M 2G 16G 128G

Containing file size (bytes, log scale, power-of-2 bins)

Used space per FS (MB)

1 Others M Video (O DB O Blob

Figure 2.6 Contribution of file types to Figure 2.4 for year 2004. Video means files with
extensionavs, dps, mpeg, mpg, vob, Or wmv; DB means files with extensianif, mad, mdf, ndf,
ost, or pst; and Blob means files namedberfil. sys and files with extensiobak, bkf, bkp,
dmp, gho, iso, pq1, Tbf, Or vhd.

28

16000
14000
12000
10000
8000
6000
4000
2000

3.8hr 31hr 10d 81d 1.8y 14y

File age (log scale, power-of-2 bins)

Files per file system

Figure 2.7 Histograms of files by age

the disk seek time needed to access these files. Second,ystéenshat co-locates several
files in a single block, like ReiserFS [110], will have manyoptunities to do so. This will
save substantial space by eliminating internal fragmentaéspecially if a large block size
is used to improve performance. Third, designers of diskjesasualization utilities may

want to show not only directories but also the names of aeféage files.

2.2.3 File age

This subsection describes our findings regarding file agease file timestamps can
be modified by application programs [87], our conclusiornsuith be regarded cautiously.

Figure 2.7 plots histograms of files by age, calculated agldygsed time since the file
was created or last modified, relative to the time of the snaipsve use the most recent
timestamp from amongst the creation and modification tiamaps to calculate file age.
Figure 2.8 shows CDFs of this same data. The median file agesdretween 80 and 160
days across datasets, with no clear trend over time.

The distribution of file age is not memoryless, so the age déadfiuseful in predicting

its remaining lifetime. So, systems such as archival baskspems can use this distribution

29

100

" 2000 ——
@ g0 | 2001 -~
h 2002 ---------
°© 2003
s 60 2004 -----
] : : :
= 1 1 1
5 40 R S
3 : ,
% 20 [foocooeee
O

0 ‘ =

2hr 15.2hr 5d 41d 0.9y 7.1y

File age (log scale, power-of-2 hins)
Figure 2.8 CDFs of files by age

to make predictions of how much longer a file will be needeatas how old it is. Since
the distribution of file age has not appreciably changedssctbe years, we can expect
that a prediction algorithm developed today based on tlestalistribution will apply for

several years to come.

2.2.4 File-name extensions

This subsection describes our findings regarding populaityipes, as determined by
file-name extension. Although the top few extensions havemanged dramatically over
our five-year sample period, there has been some changestirgfle decline in the rel-
ative prevalence of web content and an increase in use efavimachines. The top few
extensions account for nearly half of all files and bytes mg$ystems.

In old DOS systems with 8.3-style file names, the extensiantiva zero to three char-
acters following the single dot in the file name. Although éws systems allow file
names of nearly arbitrary length and containing multiplesgmany applications continue
to indicate their file types by means of extensions. For oahees, we define an extension

as the five-or-fewer characters following the last dot inaridme. If a name has no dots or

Extension

Typical Usage

cpp

C++ source code

dll

Dynamic link library

exe

Executable

gif

Image in Graphic Interchange Form

h

Source code header

htm

File in hypertext markup language

jprg

Image in JPEG format

1lib

Code library

mp3

Music file in MPEG Layer Ill format

pch

Precompiled header

pdb

Source symbols for debugging

pst

Outlook personal folder

txt

Text

vhd

Virtual hard drive for virtual maching

wma

Windows Media Audio

at

Table 2.4 Typical usage of popular file extensions

has more than five characters after the last dot, we congidename to have no extension,

30

which we represent with the symbol @. As a special case, ieanime ends ingz, .bz?2,

and .z, then we ignore that suffix when determining extension. Wehikobecause these
are types of compressed files wherein the actual contenigyipdicated by the characters

prior to the compression extension. To understand the &ypisage of the file extensions

we discuss in this section, see Table 2.4.

31

50%

45% 1| Xt txt =
40% cPp exe [exe jpg P9 [
350 <Bp cpp exe exe
5% 1 @ @ cpp cpp
D 30% 2
o 30% htm htm @ @
= 25% | htm |
S ou h h htm htm
=) 0 1T
L h h h
15% - dll dll
dll
10% || dll (o] I
1| if if i . ||
5% ar gr gif gif gif
0%
2000 2001 2002 2003 2004

Figure 2.9 Fraction of files with popular extensions

Figure 2.9 plots, for the nine extensions that are the mgstilao in terms of file count,
the fraction of files with that extension. The fractions aletted longitudinally over our
five-year sample period. The most notable thing we obserfaithese extensions’ popu-
larity is relatively stable—the top five extensions have aamd the top five for this entire
time. However, the relative popularity gfif files andhtm files has gone down steadily
since 2001, suggesting a decline in the popularity of welierdrrelative to other ways to
fill one’s file system.

Figure 2.10 plots, for the ten extensions that are the mgstilpoin terms of summed
file size, the fraction of file bytes residing in files with theattension. Across all years,
dynamic link libraries {11 files) contain more bytes than any other file type. Extension
vhd, which is used for virtual hard drives, is consuming a rapidicreasing fraction of
file-system space, suggesting that virtual machine usecreasing. The null extension
exhibits a notable anomaly in 2003, but we cannot investitieg cause without decrypting

the file names in our datasets, which would violate our pyivaaicy.

32

50%
5% _vma
) Y
& 359 - Mp3 b If% > LLLES
S 309, | | PCN mp3 = lib |
= o pst pch Cpn lb mp3
© 2% 110 pst pst mp3 pCch
S 0f 1| pPSt [|
S 20% exe gxe A L
S 159% | [P0 | [Tpab | [exe | ==
S 10% |- s pdb pdb
506 | | dll dll dlil dll dil
0%

2000 2001 2002 2003 2004

Figure 2.10 Fraction of bytes in files with popular extension

Since files with the same extension have similar propertigs raquirements, some
file system management policies can be improved by inclusipggial-case treatment for
particular extensions. Such special-case treatment cémiliento the file system or au-
tonomically and dynamically learned [84]. Since nearlyfla¢ files, and nearly half the
bytes, belong to files with a few popular extensions, devatppuch special-case treatment
for only a few particular extensions can optimize perforecgfor a large fraction of the
file system. Furthermore, since the same extensions cantinibe popular year after year,
one can develop special-case treatments for today’s pogxtiansions and expect that they

will still be useful years from now.

2.2.5 Unwritten files

Figures 2.11 and 2.12 plot histograms and CDFs, respegtioEfile systems by per-
centage of files that have not been written since they wereedamto the file system. We
identify such files as ones whose modification timestampsarker than their creation

timestamps, since the creation timestamp of a copied filetisosthe time at which the

% of file systems

0 20 40 60 80 100
% of files unwritten (5-percentage-point bins)

Figure 2.11 Histograms of file systems by percentage of fitwgriiten

100 T I I l

Cumulative % of file systems

% of files unwritten

Figure 2.12 CDFs of file systems by percentage of files ursvritt

33

34

100 T T T — e

Cumulative % of file systems

Directory count (log scale, power-of-2 bins)

Figure 2.13 CDFs of file systems by directory count

copy was made, but its modification timestamp is copied froendriginal file. Over our

sample period, the arithmetic mean of the percentage ofiyogawritten files has grown

from 66% to 76%, and the median has grown from 70% to 78%. Tuggests that users
locally contribute to a decreasing fraction of their systegontent. This may in part be
due to the increasing amount of total content over time.

Since more and more files are being copied across file systatimsr than generated
locally, we can expect identifying and coalescing iderntixgpies to become increasingly
important in systems that aggregate file systems. Examplggstems with such support
are the FARSITE distributed file system [2], the Pastiche-pe@eer backup system [35],

and the Single Instance Store in Windows file servers [23].

2.3 Directories
2.3.1 Directory count per file system

Figure 2.13 plots CDFs of file systems by count of directoridse count of directories

per file system has increased steadily over our five-year Eapgriod: The arithmetic

35

mean has grown from 2400 to 8900 directories and the medisugtoavn from 1K to 4K
directories.

We discussed implications of the rising number of diree®mer file system earlier.
The count of and directories per file system is going up fromr ye year, and, as we dis-
cussed irg2.2.1, the same holds for files. Thus, file system designerslidlensure their
metadata tables scale not only to large file counts, but alskafge directory counts. Ad-
ditionally, we can expect file system scans that examine piataortional to the number
of files and/or directories to take progressively longer.afples of such scans include
virus scans and metadata integrity checks following blamkuption. Thus, it will become
increasingly useful to perform these checks efficientlye@rample is the XFS file sys-
tem [141] that promises to deliver fast response times, évedirectories with tens of

thousands of entries.

2.3.2 Directory size

This section describes our findings regarding directorg,sizeasured by count of con-
tained files, count of contained subdirectories, and tatélyecount. None of these size
distributions has changed appreciably over our sampl@gebut the mean count of files
per directory has decreased slightly.

Figure 2.14 plots CDFs of directories by size, as measureddoyt of files in the
directory. It shows that although the absolute count ofdages per file system has grown
significantly over time, the distribution has not changegdrapiably. Across all years, 23—
25% of directories contain no files, which marks a change fi®®8, in which only 18%
contained no files and there were more directories contgiomne file than those containing
none. The arithmetic mean directory size has decreasdttlglgnd steadily from 12.5 to

10.2 over the sample period, but the median directory sizadmmained steady at 2 files.

Cumulative % of directories

Cumulative % of directories

100 | - . —

Count of contained files

Figure 2.14 CDFs of directories by file count

100

80

60 1

40

20

2(|)O4 modelI +

0 2 4 6 8 10
Count of subdirectories

Figure 2.15 CDFs of directories by subdirectory count

36

37

100 ! ——— =

Cumulative % of directories

Count of entries

Figure 2.16 CDFs of directories by entry count

Figure 2.15 plots CDFs of directories by size, as measurecblpt of subdirectories
in the directory. It includes a model approximation we wikclss later ir§2.3.5. This
distribution has remained unchanged over our sample pefiosbss all years, 65—67% of
directories contain no subdirectories, which is similattte 69% found in 1998.

Figure 2.16 plots CDFs of directories by size, as measuretbhpt of total entries in
the directory. This distribution has remained largely waradped over our sample period.
Across all years, 46—49% of directories contain two or fearries.

Since there are so many directories with a small number o, fittwould not take
much space to co-locate the metadata for most of those filbstiose directories. Such
a layout would reduce seeks associated with file accessesefbhe, it might be useful to
preallocate a small amount of space near a new directoryltbehmodest amount of child
metadata. Similarly, most directories contain fewer thaertty entries, suggesting using

an on-disk structure for directories that optimizes fosttbmmon case.

38

20%

%)

[¢]

-

5‘15%*

5]

0,

mlO/o

Q@

— 5% -

——

o

X 0% - T T

IS 2 IS a
é’ S o c %) g S o = »
] o 2 g 2] o 2 g 2
= ou S S B 2 ou S S E
= o o) = a)
= S o = 3 w
[a))]
Files Bytes

@ 2000 @ 2001 m 2002 @ 2003 02004

Figure 2.17 Fraction of files and bytes in special subtrees

2.3.3 Special directories

This section describes our findings regarding the usage nfldws special directories.
We find that an increasing fraction of file-system storage ihe namespace subtree de-
voted to system files, and the same holds for the subtree etbvotuser documents and
settings.

Figure 2.17 plots the fraction of file-system files that reswlithin subtrees rooted
in each of three special directoriestindows, Program Files, and Documents and
Settings. This figure also plots the fraction of file-system bytes eamd within each
of these special subtrees.

For thewindows subtree, the fractions of files and bytes have both risen #e8% to
11% over our sample period, suggesting that an increasiagig fraction of file-system
storage is devoted to system files. In particular, we note\Wiadows XP was released
between the times of our 2000 and 2001 data collections.

For theProgram Files subtree, the fractions of files and bytes have trended in-oppo

site directions within the range of 12-16%. For hecuments and Settings subtree,

39

the fraction of bytes has increased dramatically while tiaetfon of files has remained
relatively stable.

The fraction of all files accounted for by these subtrees s rfrom 25% to 40%,
and the fraction of bytes therein has risen from 30% to 419%jgesting that application
writers and end users have increasingly adopted Windovesquiptive namespace organi-
zation [29].

Backup software generally does not have to back up systes) $iece they are static
and easily restored. Since system files are accounting farged and larger fraction of
used space, itis becoming more and more useful for backiywa@f to exclude these files.

On the other hand, files in the Documents and Settings foldet to be the most im-
portant files to back up, since they contain user-generaisteént and configuration infor-
mation. Since the percentage of bytes devoted to thesedilasreasing, backup capacity
planners should expect, surprisingly, that their capa@tyuirements will increastaster
than disk capacity is planned to grow. On the other hand, dregmtage of files is not
increasing, so they need not expect metadata storage eagnis to scale faster than disk
capacity. This may be relevant if metadata is backed up irparaée repository from the

data, as done by systems such as EMC Centera [61].

2.3.4 Namespace tree depth

This section describes our findings regarding the depthrettbries, files, and bytes in
the namespace tree. We find that there are many files deepnathespace tree, especially
at depth 7. Also, we find that files deeper in the namespacetérekto be orders-of-
magnitude smaller than shallower files.

Figure 2.18 plots histograms of directories by their deptlthie namespace tree, and
Figure 2.19 plots CDFs of this same data; it also includes denapproximation we will

discuss later ir§2.3.5. The general shape of the distribution has remainesdistent over

1600
1400
1200
1000
800
600
400
200

Average # of directories per FS

0 2 4 6 8 10 12 14 16
Namespace depth (bin size 1)

Figure 2.18 Histograms of directories by namespace depth

100

2004 ----- N
20(|)4 moollel |+

0 2 4 6 8 10 12 14 16
Namespace depth

Cumulative % of directories

Figure 2.19 CDFs of directories by hamespace depth

40

41

20000

15000

10000

5000

Average # of files per FS

0 2 4 6 8 10 12 14 16
Namespace depth (bin size 1)

Figure 2.20 Histograms of files by namespace depth

our sample period, but the arithmetic mean has grown fromt®.6.9, and the median
directory depth has increased from 5 to 6.

Figure 2.20 plots histograms of file count by depth in the repaee tree, and Fig-
ure 2.21 plots CDFs of this same data. With a few exceptiang) as at depths 2, 3, and
7, these distributions roughly track the observed distiiims of directory depth, indicating
that the count of files per directory is mostly independerdicéctory depth. To study this
more directly, Figure 2.22 plots the mean count of files pexadory versus directory depth.
There is a slight downward trend in this ratio with incregsdepth, punctuated by three
depths whose directories have greater-than-typical cfiftles: at depth 2 are files in the
Windows andProgram Files directories; at depth 3 are files in tBgstem andSystem32
directories; and at depth 7 are files in the web cache dinestor

Figure 2.23 replots the 2004 data from Figure 2.20 as a stiabke chart, with the
indicated contributions of the special namespace subttefased in the previous section.
Absent these specific types, the distribution of file countlbpth in the namespace tree
is closely approximated by a Poisson distribution with= 6.5, as shown, yielding an

MDCC of 1%. Figure 2.24 plots histograms of bytes by the depth of thamtaining files

Cumulative % of files

Mean # of files per directory

100

80

60

40

20

Namespace depth

Figure 2.21 CDFs of files by nhamespace depth

0 2 4 6 8 10 12 14 16

Namespace depth

Figure 2.22 Files per directory vs. namespace depth

42

43

Files per File System

0 T r— T T T T T T T 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Namsepsace Depth

—Other [W indows
Program Files s Documents and Settings

—— Model of Other

Figure 2.23 Contribution of special subtrees to histogr&@004 files by namespace depth

3,000

2,500 1 s \

2,000 - / VRN
1,500 | \
1,000 -|

500 {.”

Megabytes per File System

—--—- 2000

Figure 2.24 Histograms of bytes by namespace depth

Cum. Fraction of Bytes

Mean file size (bytes)

100%
90% -+
80%
70% -+
60%
50% -+
40% -
30%
20% -+
10%

0%

1 4 7 10 13
Namespace Depth

—--—- 2000 2001 — — = —2002 ------- 2003 —-—- - 2004

Figure 2.25 CDFs of bytes by namespace depth

1e+08

le+07

1le+06

100000

JUUUR N N N S N
0 2 4 6 8 10 12 14 16

Namespace depth

Figure 2.26 File size vs. namespace depth

44

45

in the namespace tree, and Figure 2.21 plots CDFs of this datae These distributions
do not closely track the observed distributions of file dejriparticular, files deeper in the
namespace tree tend to be smaller than shallower ones.

This trend is more obvious in Figure 2.26, which plots the migla size versus direc-
tory depth on a logarithmic scale. We see here that files deepee namespace tree tend
to be smaller. The mean file size drops by two orders of madaihetween depth 1 and
depth 3, and there is a drop of roughly 10% per depth levektfegr. This phenomenon
occurs because most bytes are concentrated in a small nofibege files (see Figures 2.2
and 2.4), and these files tend to reside in shallow levelssohtmespace tree. In particular,
the hibernation image file is located in the root.

Since many files and directories are deep in the namespageetficient path lookup
of deep paths should be a priority for file system designessiristance, in distributed file
systems where different servers are responsible for éiffigoarts of the namespace tree [2],
deep path lookup may be expensive if not optimized. The higgtldof many entries in
the namespace may also be of interest to designers of fileraydsualization GUIs, to
determine how much column space to allot for directory treake Furthermore, since the
fraction of files at high depths is increasing across thesyebour study, these lessons will
become more and more important as years pass.

The clear trend of decreasing file size with increasing n@aes tree depth suggests
a simple coarse mechanism to predict future file size at tifriibeocreation. File systems

might use such prediction to decide where on disk to placenefihe

2.3.5 Namespace depth model

We have developed a generative model that accounts for sebdition of directory
depth. The model posits that new subdirectories are créas@de an existing directory in

offset proportion to the count of subdirectories alreadghist directory.

46

In the study of file-system metadata by Douceur and Bolosky, fthey observed that
the distribution of directories by depth could be approxiedaby a Poisson distribution
with A = 4.38, yielding a maximum displacement of cumulative curves (MD©f 2%.
Poisson is also an acceptable approximation for the fivesdtgan the present study, with
A growing from 6.03 to 6.88 over the sample period, yielding ®Cs that range from 1%
to 4%. However, the Poisson distribution does not providexgtanation for the behavior;
it merely provides a means to approximate the result. Byreshtwe have developed a
generative model that accounts for the distribution of ey depths we have observed,
with accuracy comparable to the Poisson model.

The generative model is as follows. A file system begins witlempty root directory.
Directories are added to the file system one at a time. For pashdirectory, a parent
directory is selected probabilistically, based on the ¢airsubdirectories the parent cur-
rently has. Specifically, the probability of choosing eagkaat directory as a parent is
proportional toc(d) + 2, wherec(d) is the count of extant subdirectories of directaty
We used Monte Carlo simulation to compute directory depskrithutions according to this
generative model. Given a count of directories in a file systihe model produces a dis-
tribution of directory depths that matches the observettiligion for file systems of that
size. Figure 2.19 plots the aggregate result of the modedldile systems in the 2004
dataset. The model closely matches the CDF of observedatiystepths, with an MDCC
of 1%.

Our generative model accounts not only for the distribubbdirectory depth but also
for that of subdirectory size. Figure 2.15 shows this for2884 dataset. The model closely
matches the CDF, with an MDCC of 5%.

Intuitively, the proportional probability:(d) + 2 can be interpreted as follows: If a
directory already has some subdirectories, it has denmeatestithat it is a useful location

for subdirectories, and so it is a likely place for more subéctiories to be created. The

a7

100

80 -

60

Cumulative % of file systems

256M 1G 4G 16G 64G 256G
File system capacity (bytes)

Figure 2.27 CDFs of file systems by storage capacity

more subdirectories it has, the more demonstrably usefoadt been as a subdirectory
home, so the more likely it is to continue to spawn new sulotimges. If the probability
were proportional te:(d) without any offset, then an empty directory could never Ineeo
non-empty, so some offset is necessary. We found an offs2ttofmatch our observed
distributions very closely for all five years of our colledtdata, but we do not understand
why the particular value of 2 should be appropriate. One thygsis is that the value of 2

comes from the two default directories “.” and “..” that amegent in all directories.

2.4 Space Usage
2.4.1 Capacity and usage

Figure 2.27 plots CDFs of file system volumes by storage a¢gpadich has increased
dramatically over our five-year sample period: The arithimetean has grown from 8 GB
to 46 GB and the median has grown from 5 GB to 40 GB. The numbsmaill-capacity
file system volumes has dropped dramatically: Systems of oGIBss have gone from

43% to 4% of all file systems.

48

100

80 -

60

40

20

Cumulative % of file systems

0 -
4M 16M 64M 256M 1G 4G 16G 64G 256G

Used space (bytes)

Figure 2.28 CDFs of file systems by total consumed space

Figure 2.28 plots CDFs of file systems by total consumed spaceding not only file
content but also space consumed by internal fragmentdtiermetadata, and the system
paging file. Space consumption increased steadily over wenyar sample period: The
geometric mean has grown from 1 GB to 9 GB, the arithmetic ningesgrown from 3 GB
to 18 GB, and the median has grown from 2 GB to 13 GB.

Figure 2.29 plots CDFs of file systems by percentage of falhmeaning the consumed
space relative to capacity. The distribution is very neariform for all years, as it was in
our 1998 study. The mean fullness has dropped slightly fréf #o 45%, and the median
file system has gone from 47% full to 42% full. By contrast, #ggregate fullness of our
sample population, computed as total consumed space dibidital file-system capacity,
has held steady at 41% over all years.

In any given year, the range of file system capacities in tigamization is quite large.
This means that software must be able to accommodate a wide td capacities simulta-

neously existing within an organization. For instance, erfie-peer backup system must

49

100 T T T J =

Cumulative % of file systems

0 20 40 60 80 100
Fullness percentage

Figure 2.29 CDFs of file systems by fullness

be aware that some machines will have drastically more dyptan others. File sys-
tem designs, which must last many years, must accommodateneore dramatic capacity

differentials.

2.4.2 Changes in usage

This subsection describes our findings regarding how iddii file systems change in
fullness over time. For this part of our work, we examined @36 snapshot pairs that
correspond to the same file system in two consecutive yeaesal¥é examined the 1320
snapshot pairs that correspond to the same file system tws gpart. We find that 80% of
file systems become fuller over a one-year period, and thexnmeaease in fullness is 14
percentage points. This increase is predominantly duestation of new files, partly offset
by deletion of old files, rather than due to extant files chaggize.

When comparing two matching snapshots in different yeaganust establish whether
two files in successive snapshots of the same file system arsatne file. We do not
have access to files’ inode numbers, because collecting Wauid have lengthened our

scan times to an unacceptable degree. We thus instead ugdltiweng proxy for file

50

16
14 L 200010 2001 —
2001 to 2002

% 12 ~ 2002 to 2003 --------- " """"""""""""""" .

% 10 | 2003to 2004 N |

@ |

© 8 .

= B i N i

o

< 4k N 4
2kl I _
-100 -50 0 50 100

Fullness increase (percentage points, 5-percentage-point bins)
Figure 2.30 Histograms of file systems by 1-year fullnesssase

sameness: If the files have the same full pathname, they astdewed the same, otherwise
they are not. This is a conservative approach: It will juddiesto be two distinct files if it
or any ancestor directory has been renamed.

Figures 2.30 and 2.31 plot histograms and CDFs, respegtieglfile systems by
percentage-point increase in fullness from one year to the. nWe define this term by
example: If a file system was 50% full in 2000 and 60% full in 20@ exhibited a 10
percentage-point increase in fullness. The distributsosuibstantially the same for all four
pairs of consecutive years. Figure 2.31 shows that 80% o$ydtems exhibit an increase
in fullness and fewer than 20% exhibit a decrease. The me&aedse from one year to the
next is 14 percentage points.

We also examined the increase in fullness over two years.olled the mean increase
to be 22 percentage points. This is less than twice the catigeg/ear increase, indicating
that as file systems age, they increase their fullness atneslate. Because we have so
few file systems with snapshots in four consecutive yearslid/aot explore increases over

three or more years.

51

100

2000 to 2001 ——
80 | 2001 to 2002 ,,,,,,,,,,,,,,,,,,,] ,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
2002 t0 2003 - |

2003 t0 2004 - 7
60 [e e A e —

2}
£
)
(2
P
[%)]
2
© ‘ ‘
S '
A | R /S e .
=
c R S S i
€ |
3 0 '
-100 -50 0 50 100

Fullness increase (percentage points, 5-percentage-point bins)
Figure 2.31 CDFs of file systems by 1-year fullness increase

Since file systems that persist for a year tend to increase filllness by about 14
points, but the mean file-system fullness has dropped fro¥h #945% over our sample
period, it seems that the steadily increasing fullness dividual file systems is offset by
the replacement of old file systems with newer, emptier ones.

Analyzing the factors that contribute to the 14-point meaaryto-year increase in full-
ness revealed the following breakdown: Fullness increbge?8 percentage points due
to files that are present in the later snapshot but not in tHeeeane, meaning that they
were created during the intervening year. Fullness deesehyg 15 percentage points due
to files that are present in the earlier snapshot but not ilatee one, meaning that they
were deleted during the intervening year. Fullness als@ases by 1 percentage point due
to growth in the size of files that are present in both snashan insignificant fraction
of this increase is attributable to changes in system pdijes) internal fragmentation, or
metadata storage.

We examined the size distributions of files that were creaited of files that were

deleted, to see if they differed from the overall file-sizetdbution. We found that they

52

do not differ appreciably. We had hypothesized that userd te delete large files to make
room for new content, but the evidence does not support ffpsthesis.

Since deleted files and created files have similar size bligidns, file system designers
need not expect the fraction of files of different sizes tongeaas a file system ages. Thus,
if they find it useful to assign different parts of the disk tesiof different sizes, they can
anticipate the allocation of sizes to disk areas to not nadital change as time passes.

Many peer-to-peer systems use free space on computersréosstared data, so the
amount of used space is of great importance. With an unchetistg.of how this free space
decreases as a file system ages, a peer-to-peer system eativety plan how much it
will need to offload shared data from each file system to makenrtor additional local
content. Also, since a common reason for upgrading a commubecause its disk space
becomes exhausted, a peer-to-peer system can use a redictvhen a file system will

become full as a coarse approximation to when that file syst#irbecome unavailable.

2.5 Related Work

This research extends earlier work in measuring and moglélesystem metadata on
Windows workstations. In 1998, Douceur and Bolosky coéldcsnapshots of over ten
thousand file systems on the desktop computers at Micro$bjft The focus of the earlier
study was on variations among file systems within the sanafilef which were captured
at the same time. By contrast, the focus of the present stidy iongitudinal analysis,
meaning how file systems have changed over time.

Prior to that previous study, there were no studies of stidisystem metadata on Win-
dows systems, but there were several such studies in otkeatopy-system environments.
These include Satyanarayanan’s study of a Digital PDP-IOMID in 1981 [120], Mul-

lender and Tanenbaum’s study of a Unix system at Vrije Usiteit in 1984 [94], Irlam’s

53

study of 1050 Unix file systems in 1993 [67], and Sienkneclal &t study of 267 file sys-
tems in 46 HP-UX systems at Hewlett-Packard in 1994 [128]ofthese studies involved
snapshots taken at a single time, like our study in 1998. &' have also been longitudinal
studies of file-system metadata, but for significantly srotimes than ours: Bennegt
al.studied three file servers at the University of Western Ontaver a period of one day
in 1991 [22], and Smith and Seltzer studied 48 file system®anfile servers at Harvard
over a period of ten months in 1994 [131].

We are aware of only one additional collection of static filesstem metadata since
the previous study. In 2001, Evans and Kuenning capturepséimdis from 22 machines
running various operating systems at Harvey Mudd CollegkMarine Biological Lab-
oratories [46]. Their data collection and analysis focusgdnly, but not exclusively, on
media files. Their findings show that different types of filekibit significantly different
size distributions, which our results support.

Many studies have examined dynamic file-system tracesrréiba static file system
snapshots. These studies are complementary to ours, ldagdtings we cannot analyze
such as the rate at which bytes are read and written in a fitersysA few examples of such
studies are Ousterhoetal.s analysis of the BSD file system [101], Griblaeal’s analysis
of self-similarity in the dynamic behavior of various filestgms [58], Vogels’s analysis of
Windows NT [153], and Roselkt al.s analysis of HP-UX and Windows NT [116].

In addition to file-system measurement research, there é&s imuch work in model-
ing file-system characteristics, most notably related &odistribution of file sizes. Exam-
ples of work in this area include that of Satyanarayanan]jlBérford and Crovella [18],
Downey [42], and Mitzenmacher [91].

In 2001, Evans and Kuenning broke down measured file-sizeldisons according to
file type, and they modeled the sizes using log-lambda Higions [46]. They found that

video and audio files can significantly perturb the file-simgribution and prevent simple

54

size models from applying. We did not find this to be true foe Bizes in our sample
population. However, we did find video, database, and blek fitssponsible for a second
peak in the distribution of bytes by containing file size.

In the previous study by Douceur and Bolosky, directory Hepas modeled with a
Poisson distribution [41], but we have herein proposed aggive model in which the
attractiveness of an extant directafyas a location for a new subdirectory is proportional
to ¢(d) + 2, wherec(d) is the count of directory’s extant subdirectories. This is strikingly
similar to the rule for generating plane-oriented recugsinees, wherein the probability is
proportional tac(d) + 1 [80]. The generative model has the added advantage of basyg e

to implement computationally.

2.6 Discussion

Over a span of five years, we collected metadata snapshataviare than 63,000 dis-
tinct Windows file systems in a commercial environment, tigito voluntary participation
of the systems’ users. These systems contain 4 billion bleding 700 TB of file data. For
more than 10% of these file systems, we obtained snapshotsliipl®a years. Since these
snapshots from multiple years were from the same generallatgn, it enabled us to di-
rectly observe how these file systems have changed over thue measurements reveal
several interesting properties of file systems and offefull$essons.

One interesting discovery is the emergence of a second nmote iGB range in the
distribution of bytes by containing file size. It makes us denif at some future time a
third mode will arise. The increasingly large fraction ohtent in large files suggests that
variable block sizes, as supported by ZFS [24] and NTFS [1&8€]becoming increasingly
important. Since a few large files, mainly video, databasd,tdob files, are contributing
to an increasing fraction of file-system usage, these filerestbns are ideal candidates for

larger block sizes.

55

Although large files account for a large fraction of spacestfites are 4 KB or smaller.
Thus, it is useful to co-locate several small files in a sifmbek, as ReiserFS [110] does,
and to co-locate small file content with file metadata, as Nd@&&s. Our finding that most
directories have few entries suggests yet another posgibilo-locate small file content
with the file’s parent directory. An even more extreme salnis suggested by the fact that
in 2004, the average file system had only 52 MB in files 4 KB orlmé&Since this number
is becoming small relative to main memory sizes, it may so®piactical to avoid cache
misses entirely for small files by prefetching them all atttome and pinning them in the
cache.

Another noteworthy discovery is that the fraction of filegdtly modified decreases
with time, an effect significant enough to be observable ily @nfive-year sample. It
would appear that users’ ability to generate increasinguansof content is outstripped
by the phenomenal growth in their disks. If individuals cimygycontent from each other
becomes increasingly common, then applications like pe@eer backup will have in-
creasing amounts of inter-machine content similarity t@tage to obviate copying.

We were surprised to find a strong negative correlation betwemespace depth and
file size. Such a strong and temporally-invariant correlatin combination with the well-
known correlation between file extension and file size, cdp bhe make predictions of
file size at creation time. This may be useful, e.g., to debme many blocks to initially
allocate to afile.

We also discovered that a simple generative model can attanboth the distributions
of directory depth and the count of subdirectories per dingc The model we developed
posits that new subdirectories are created inside an egislirectory in offset proportion
to the count of subdirectories already in that directoryisTdehavior is easy to simulate,
and it produces directory-depth and directory-size dstions that closely match our ob-

servations.

56

Finally, it is remarkable that file system fullness over tlwurse of five years has
changed little despite the vast increase in file system dypaeer that same period. It
seems clear that users scale their capacity needs to tladialale capacity. The lesson for
storage manufacturers is to keep focusing effort on inengasapacity, because customers

will continue to place great value on capacity for the foezd®e future.

2.7 Conclusion

Developers of file systems and related software utilitiegdiently rely on information
about file system usage in real settings. Such informatiamveduable for designing and
evaluating new and existing systems. In this chapter weepted our longitudinal study of
file-system metadata wherein we find significant temporaldsaelating to the popularity
of certain file types, the origin of file content, the way therespace is used, and the degree
of variation among file systems, as well as more pedestriangds in sizes and capacities.
Wherever applicable, we gave examples of consequent le$sodesigners of file system
software.

We have made our traces available to the community via thea@oNetworking In-
dustry Association’s IOTTA repository. To obtain them,ivihie URL http://iotta.

snia.org/traces/tracesStaticSnapshot/.

57

Chapter 3

Generating Realistic Impressions for File-System Bench-
marking

One of the most important challenges in file-system benckimgrapart from creat-
ing representative benchmark workloads is to recreate lixsystemstatesuch that it is
representative of the target usage scenario. Severaksaobotribute to file-system state,
important amongst them are trememorystate (contents of the buffer cache), tredisk
state (disk layout and fragmentation) and the characiesisf thefile-system imag€iles
and directories belonging to the namespace and file contents

One well understood contributor to state is thanemorystate of the file system. Pre-
vious work has shown that the contents of the cache can hgadisant impact on the
performance results [38]. Therefore, system initialiaatduring benchmarking typically
consists of a cache “warm-up” phase wherein the workloadrigar some time prior to the
actual measurement phase. Another important factor isrha@iskstate of the file system,
or the degree dfragmentationit is a measure of how the disk blocks belonging to the file
system are laid out on disk. Previous work has shown thabhfeagation can adversely af-
fect performance of a file system [132]. Thus, prior to benatkimg, a file system should
undergoaging by replaying a workload similar to that experienced by a féalsystem
over a period of time [132].

Surprisingly, one key contributor to file-system state hasrblargely ignored — the

characteristics of théile-system image The properties of file-system metadata and the

58

Paper

Description

| Used to measure

HAC [55] File system with 17000 Time and space needed to create
files totaling 150 MB a Glimpse index
IRON [106] None provided Checksum and metadata replig
tion overhead; parity block over
head for user files
LBFS [95] 10702 files from| Performance of LBFS chunkin
/usr/local, total sizg algorithm
354 MB
LISFS [102] 633 MP3 files, 860 prot Disk space overhead; perfo
gram files, 11502 man mance of search-like activities:
pages UNIX find and LISFS lookup
PAST [117] 2 million files, mean size File insertion, global storage ut

86 KB, median 4 KB,
largest file size 2.7 GB
smallest O Bytes, total siz
166.6 GB

lization in a P2P system

1)

Pastiche [36]

File system with 1641
files, 109 dirs, 13.4 MB to-
tal size

store utilities

Performance of backup and r¢

137

Pergamum [139]

Randomly generated file
of “several” megabytes

sData transfer performance

Samsara [37]

File system with 1676 files Data transfer and querying pe

and 13 MB total size

formance, load during querying

ly

19%

Segank [134] 5-deep directory tree, 5 Performance of Segank: vo
subdirs and 10 8 KB files ume update, creation of read-on
per directory snapshot, read from new snapshot

SFS read- 1000 files distributed Single client/single server read

only [48] evenly across 10 directg- performance
ries and contain random
data

TFS [33] Files taken from /usr to get Performance with varying contri
“realistic” mix of file sizes| bution of space from local file

systems

WAFL 188 GB and 129 GB voli Performance of physical and log

backup [66] umes taken from the Engi- ical backup, and recovery strat
neering department gies

yFS [161] Avg. file size 16 KB, avg,| Performance under varioy

number of files per direc
tory 64, random file name

s tion)

+ benchmarks (file creation, dele

Table 3.1 Choice of file system parameters in prior research.

59

actual content within the files are key contributors to fjstem state, and can have a sig-
nificant impact on the performance of a system. Propertiéitee$ystem metadata includes
information on how directories are organized in the filetsgsnamespace, how files are or-
ganized into directories, and the distributions for vasidile attributes such as size, depth,
and extension type. Consider a simple example: the timentékea find operation to
traverse a file system while searching for a file name depend@smumber of attributes of
the file-system image, including the depth of the file-systesa and the total number of
files. Similarly, the time taken for grep operation to search for a keyword also depends
on the type of filesi(e., binary vs. others) and the file content.

File-system benchmarking frequently requires this sorhfifrmation on file systems,
much of which is available in the form of empirical studiesfibé-system contents [8,
41, 67, 94, 120, 128], such as the one presented in Chaptext 2vets conducted by us.
Such studies focus on measuring and modeling differentcéspé file-system metadata
by collecting snapshots of file-system images from real nmash The studies range from
a few machines to tens of thousands of machines acrossetiffeperating systems and
usage environments. Collecting and analyzing this dataiges useful information on
how file systems are used in real operating conditions.

In spite of the wealth of information available in file-systestudies, system designers
and evaluators continue to rely ad hocassumptions and often inaccurate rules of thumb.
Table 3.1 presents evidence to confirm this hypothesisnitatos a (partial) list of publica-
tions from top-tier systems conferences in the last tensydeat required a test file-system
image for evaluation. We present both the description ofiteesystem image provided in
the paper and the intended goal of the evaluation.

In the table, there are several examples where a new filersysta@pplication design
is evaluated on the evaluator’s personal file system witdestribing its properties in suf-

ficient detail for it to be reproduced [33, 66, 106]. In othalse description is limited to

60

coarse-grained measures such as the total file-systemrsilzeha number of files, even
though other file-system attributes.g, tree depth) are relevant to measuring performance
or storage space overheads [36, 37, 55, 95]. File systemalswesometimes generated
with parameters chosen randomly [139, 161], or chosen witegplanation of the signif-
icance of the values [48, 102, 134]. Occasionally, the patars are specified in greater
detail [117], but not enough to recreate the original filetegs

The important lesson to be learnt here is that there is naatdrtechnique to system-
atically include information on file-system images for espentation. For this reason,
we find that more often than not, the choices made are ampitsaited for ease-of-use
more than accuracy and completeness. Furthermore, thelat&ndardization and repro-
ducibility of these choices makes it near-impossible to para results with other systems.

To address these problems and improve one important aspéite system bench-
marking, we developmpressionsa framework to generate representative and statistically
accurate file-system images. Impressions gives the usdifigxto specify one or more
parameters from a detailed list of file system parameteesgfistem size, number of files,
distribution of file sizes, etc.). Impressions incorposaséatistical techniques (automatic
curve-fitting, resolving multiple constraints, interptitan and extrapolation, etc.) and uses
statistical tests for goodness-of-fit to ensure the acgusathe image.

We believe Impressions will be of great use to system dessgegaluators, and users
alike. A casual user looking to create a representativesfilgem image without worrying
about carefully selecting parameters can simply run Ingoes with its default settings;
Impressions will use pre-specified distributions from Blestem studies to create a repre-
sentative image. A more sophisticated user has the powediadually control the knobs

for a comprehensive set of file-system parameters; Immressuill carefully work out the

61

statistical details to produce a consistent and accurageémin both cases, Impressions en-
sures complete reproducibility of the image, by reportimg tised distributions, parameter
values, and seeds for random number generators.

In this chapter we present the design, implementation aaltiation of the Impressions

framework ¢3.2). Impressions is built with the following design goals:

e Accuracy:in generating various statistical constructs to ensureyh tegree of sta-

tistical rigor.

e Flexibility: in allowing users to specify a number of file-system disttidns and
constraints on parameter values, or in choosing defaultegal
e Representativenesby incorporating known distributions from file-system sesd

e Ease of useby providing a simple, yet powerful, command-line intedac

Using desktop search as a case study, we then demonstratsecfuiness and ease of use
of Impressions in quantifying application performanced anfinding application policies
and bugs43.3).

3.1 Extended Motivation

We begin this section by asking a basic question: does fdeesystructure really mat-
ter? We then describe the goals for generating realistiesfilgem images and discuss

existing approaches to do so.

3.1.1 Does File-System Structure Matter?

Structure and organization of file-system metadata mafibensorkload performance.
Let us take alook at the simple example of a frequently usetXUnlity: find. Figure 3.1
shows the relative time taken to ruaind /” searching for a file name on a test file system

as we vary some parameters of file-system state.

62

Time taken for "find" operation

1.6
14 ¢
1.2 ¢

08
0.6 r
04

Relative Overhead

Figure 3.1 Impact of directory tree structure. Shows impact of tree depth on time taken by
find. The file systems are created by Impressions using defatrifditions (Table 3.2). To exclude
effects of the on-disk layout, we ensure a perfect disk fayout scorel .0) for all cases except
the one with fragmentation (layout scaié5). Theflat treecontains all100 directories at depth

1; the deep trednas directories successively nested to create a tree ohdépt

The first bar represents the time taken for the run on thermaldest file system. Subse-
guent bars are normalized to this time and show performamca fun with the file-system
contents in buffer cache, a fragmented version of the samsyfdtem, a file system created
by flattening the original directory tree, and finally one l®eg@ening the original directory
tree. The graph echoes our understanding of caching aneh&maigtion, and brings out one
aspect that is often overlooked: structure really matterem this graph we can see that
even for a simple workload, the impact of tree depth on paréorce can be as large as that
with fragmentation, and varying tree depths can have siifi performance variations

(300% between the flat and deep trees in this example).

63

Assumptions about file-system structure have often tritkiéo file system design, but
no means exist to incorporate the effects of realistic fjistesm images in a systematic
fashion. As a community, we well understand that cachingemgtand have begun to
pay attention to fragmentation, but when it comes to file@ysstructure, our approach is

surprisinglylaissez faire

3.1.2 Goals for Generating FS Images

We believe that the file-system image used for an evaluationld berealisticwith re-
spect to the workload; the image should contain a sufficiegtek ofdetail to realistically
exercise the workload under consideration. An increasiegyee of detail will likely re-
quire more effort and slow down the process. Thus it is ugefbdhow the degree sufficient
for a given evaluation. For example, if the performance o&pplication simply depends
on the size of files in the file system, the chosen file-systeagershould reflect that. On
the other hand, if the performance is also sensitive to thetisn of binary files amongst
all files (e.g, to evaluate desktop search indexing), then the file-systege also needs to
contain realistic distributions of file extensions.

We walk through some examples that illustrate the diffedagrees of detail needed in

file-system images.

e At one extreme, a system could be completely oblivious td Iné¢tadata and con-
tent. An example of such a system is a mirroring scheme (RA[DO3]) underneath
a file system, or a backup utility taking whole-disk backug$e performance of

such schemes depends solely on the block traffic.

Alternately, systems could depend on the attributes of thesfistem image with different

degrees of detail:

64

e The performance of a system can depend on the amount of faglatnber of files
and directories, or the size of files and directories, or potlany given file system

(e.g, a backup utility taking whole file-system snapshots).

e Systems can depend on the structure of the file system naneeapd how files are

organized in it €.g, a version control system for a source-code repository).

¢ Finally, many systems also depend on the actual data stathohwhe files €.g, a

desktop search engine for a file system, or a spell-checker).

Impressions is designed with this goal of flexibility fronetbutset. The user is given
complete control of a number of file-system parameters, sipdovided with an easy to use

interface. Transparently, Impressions seamlessly easu@uracy and representativeness.

3.1.3 Existing Approaches

One alternate approach to generating realistic file-systeages is to randomly select a
set of actual images from a corpus, an approach popular er &iglds of computer science
such as Information Retrieval, Machine Learning and Natuaaguage Processing [97].
In the case of file systems the corpus would consist of a set@ivk file-system images.
This approach arguably has several limitations which makificult and unsuitable for
file systems research. First, there are too many parametgusred to accurately describe
a file-system image that need to be captured in a corpus. 8ewaamout precise control
in varying these parameters according to experimentals)abd evaluation can be blind
to the actual performance dependencies. Finally, the dasiamtaining and sharing any
realistic corpus of file-system images would be prohibitiféne size of the corpus itself
would severely restrict its usefulness especially as fitesys continue to grow larger.

Unfortunately, these limitations have not deterred regeans from using their personal

file systems as a (trivial) substitute for a file-system csrpu

65

3.2 The Impressions Framework

In this section we describe the design, implementation &alliation of Impressions: a
framework for generating file-system images with realisticl statistically accurate meta-
data and content. Impressions is flexible enough to creatsystem images with varying
configurations, guaranteeing the accuracy of images bypocating a number of statisti-
cal tests and techniques.

We first present a summary of the different modes of operatiohmpressions, and
then describe the individual statistical constructs iraggedetail. Wherever applicable, we

evaluate their accuracy and performance.

3.2.1 Modes of Operation

A system evaluator can use Impressions in different modepefation, with varying
degree of user input. Sometimes, an evaluator just wantsegtec a representative file-
system image without worrying about the need to carefullgcteparameters. Hence, in
the automatednode, Impressions is capable of generating a file-systergemath min-
imal input required from the usee(g, the size of the desired file-system image), relying
on default settings of known empirical distributions to geate representative file-system
images. We refer to these distributionsoaiginal distributions.

At other times, users want more control over the images, fangle, to analyze the
sensitivity of performance to a given file-system parameteto describe a completely
different file-system usage scenario. Hence, Impressiopga®ts auser-specifiecnode,
where a more sophisticated user has the power to indiviglaatitrol the knobs for a com-
prehensive set of file-system parameters; we refer to thesser-specified distributions.
Impressions carefully works out the statistical detailprioduce a consistent and accurate

image. In both the cases, Impressions ensures completedrepbility of the file-system

66

Parameter Default Model & Parameters
Directory count w/ depth Generative model

Directory size (subdirs) | Generative model

File size by count Lognormal-body

(01=0.99994, 11=9.48, 0=2.46)
Pareto-tail (k9.91,4,,=512MB)
File size by containing | Mixture-of-lognormals

bytes (Oé1:0.76, 11=14.83, 0,=2.35
@2=0.24, 115=20.93, 0,=1.48)
Extension popularity Percentile values

File count w/ depth Poisson §=6.49)

Bytes with depth Mean file size values

Directory size (files) Inverse-polynomial
(degreez2, offset=2.36)

File count w/ depth Conditional probabilities

(w/ special directories) | (biases for special dirs)
Degree of FragmentationLayout score (1.0)
or Pre-specified workload

Table 3.2 Parameters and default values in ImpressionsList of distributions and their
parameter values used in the Default mode.

image by reporting the used distributions, their parametdues, and seeds for random
number generators.

Impressions can use any dataset or set of parameterizeeksdantheoriginal distribu-
tions, leveraging a large body of research on analyzingsfiktem properties [8, 41, 67, 94,
120, 128]. For illustration, in this dissertation we use finelings presented in Chapter 2
from our study on file system metadata, and the corresporsfingshot dataset that was
made publicly available. To briefly summarize the study enésd in the previous chapter,
the snapshots of file-system metadata were collected ovee-gdar period representing
over 60,000 Windows PC file systems in a large corporation. These snapstere then

used to study distributions and temporal changes in filg §ieeage, file-type frequency,

67

directory size, namespace structure, file-system pojuasiorage capacity, and degree of
file modification. The study also proposed a generative megiglaining the creation of
file-system namespaces.

Impressions provides a comprehensive set of individuaytollable file system pa-
rameters. Table 3.2 lists these parameters along with deéault selections. For example,
a user may specify the size of the file-system image, the nuofliiges in the file system,
and the distribution of file sizes, while selecting defaeltings for all other distributions.
In this case, Impressions will ensure that the resultingdylstem image adheres to the
default distributions while maintaining the user-spedifievariants.

The default values listed in this table are derived from threesponding data presented
in Chapter 2 for the year 2004. The models for directory cawitihh depth and directory
size with subdirectories correspond to the generative mp@®iously discussed in Sec-
tion §2.3.5; the entries for file size by count and by containingebyefer to Figures 2.3
and 2.5; extension popularity is based on the Figures 2.4 the values for file count
with depth and bytes with depth are derived from the Figuré8 2nd 2.21; directory size
in the number of files is from the Figure 2.14; the biases ferddunts with depth including
special directories corresponds to data from the Figuré;2hk degree of fragmentation is
specified by the user arbitrarily, or according to pre-sfiediworkloads that execute a set

number of iterations of a known workload.

3.2.2 Basic Techniques

The goal of Impressions is to generate realistic file-sysi@ages, giving the user
complete flexibility and control to decide the extent of aexy and detail. To achieve this,
Impressions relies on a number of statistical techniques.

In the simplest case, Impressions needs to create stalligt@ccurate file-system im-

ages with default distributions. Hence, a basic functitypatquired by Impressions is to

68

convert the parameterized distributions into real samplees used to create an instance
of a file-system image. Impressions uses random samplirekeoa number of indepen-
dent observations from the respective probability distiidms. Wherever applicable, such
parameterized distributions provide a highly compact aagydo-reproduce representation
of observed distributions. For cases where standard piialyabstributions are infeasible,

a Monte Carlo method is used.

A user may want to use file system datasets other than theltefenice. To enable
this, Impressions provides automatic curve-fitting of emcpl data.

Impressions also provides the user with the flexibility tedfy distributions and con-
straints on parameter values. One challenge thus is toetisatrmultiple constraints spec-
ified by the user are resolved consistently. This requiratissical techniques to ensure
that the generated file-system images are accurate witlecesp both the user-specified
constraints and the default distributions.

In addition, the user may want to explore values of file syspamameters, not cap-
tured in any dataset. For this purpose, Impressions presdpeport for interpolation and
extrapolation of new curves from existing datasets.

Finally, to ensure the accuracy of the generated image,dsgwns contains a number
of built-in statistical tests, for goodness-of-& ¢, Kolmogorov-Smirnov, Chi-Square, and
Anderson-Darling), and to estimate erretd, Confidence Intervals, MDCC, and Standard
Error). Where applicable, these tests ensure that all efitra@proximations and internal

statistical transformations adhere to the highest degretatstical rigor desired.

3.2.3 Creating Valid Metadata

The simplest use of Impressions is to generate file-systeagaswith realistic meta-

data. This process is performed in two phases: first, theetdile-system namespace is

69

created; and second, the namespace is populated with fitdsroong to a number of file

and directory distributions.

3.2.3.1 Creating File-System Namespace

The first phase in creating a file system is to create the naaessgtructure or the
directory tree We assume that the user specifies the size of the file-systagel. The
count of files and directories is then selected based on theyfdtem size (if not specified
by the user). Depending on the degree of detail desired bygshe each file or directory
attribute is selected step by step until all attributes Hasen assigned values. We now
describe this process assuming the highest degree of.detail

To create directory trees, Impressions uses the generatidel proposed by Agrawal
et al.[8] to perform a Monte Carlo simulation. According to this deb, new directories are
added to a file system one at a time, and the probability of gingceach extant directory
as a parent is proportional ©d) + 2, whereC(d) is the count of extant subdirectories
of directoryd. The model explains the creation of the file system namespaceunting
both for the size and count of directories by depth, and the sf parent directories. The
input to this model is the total number of directories in tHe fiystem. Directory names
are generated using a simple iterative counter.

To ensure the accuracy of generated images, we compare tieeaged distributions
(i.e. created using the parameters listed in Table 3.2), witrd#wered distributionsie.,
ones obtained from the dataset discussed previously int€hapcorresponding to year
2004). Figures 3.2 and 3.3 show in detail the accuracy fdn step in the namespace and
file creation process. For almost all the graphs, the y-apsasents the percentage of files,
directories, or bytes belonging to the categories or birswshon the x-axis, as the case

may be.

70

Figures 3.2(a) and 3.2(b) show the distribution of diree®by depth, and directories
by subdirectory count, respectively. The y-axis in thisec&sthe percentage of directories
at each level of depth in the namespace, shown on the x-axétwo curves representing

the generated and the desired distributions match quitengetating good accuracy.

3.2.3.2 Creating Files

The next phase is to populate the directory tree with filesprassions spends most
of the total runtime and effort during this phase, as the lflits statistical machinery is
exercised in creating files. Each file has a number of ate#atich as its size, depth in the
directory tree, parent directory, and file extension. Samy, the choice of the parent direc-
tory is governed by directory attributes such as the courootained subdirectories, the
count of contained files, and the depth of the parent dirgctanalytical approximations
for file system distributions proposed previously [41] geddbur own models.

First, for each file, the size of the file is sampled from a hyldistribution describing
file sizes. The body of this hybrid curve is approximated bygnbrmal distribution,
with a Pareto tail distribution (K91, X,,=512MB) accounting for the heavy tail of files
with size greater than 512 MB. The exact parameter values fas¢hese distributions are
listed in Table 3.2. These parameters were obtained bydfithie respective curves to file
sizes obtained from the file-system dataset previouslhyudsed in Chapter 2. Figure 3.2(c)
shows the accuracy of generating the distribution of filesibg. We initially used a simpler
model for file sizes represented solely by a lognormal distion. While the results were
acceptable for files by size (Figure 3.2(c)), the simpler etddiled to account for the
distribution of bytes by containing file size; coming up wahmodel to accurately capture
the bimodal distribution of bytes proved harder than we haticgated. Figure 3.2(d)
shows the accuracy of the hybrid model in Impressions in igeimg the distribution of

bytes. The pronounced double mode observed in the digtibaf bytes is a result of the

71

(a) (b)
Directories by Namespace Depth 3 Directories by Subdirectory Count
0.18 S S 100
» 016 s D S
2 014 7N G e = 907
S 012 2
S %8 ’ E il
S 006 e 9
o 0.04 N = 60 D ——
S 002+ = [p—
0 = - g 50 —_—
0 2 4 6 8 10 12 14 16 3 0 2 4 6 8 10 12 14 16
Namespace depth (bin size 1) Count of subdirectories
(©) (d)
Files by Size Files by Containing Bytes
0.12 5 0.12 5
0.1 a G 0.1
% 008 g o008
£ 006 2 006
o ©
£ 0.04 s 004
002 | 0.02
O \ X W O
0 8 2K 512K 512M 64G 0 8 2K 512K 512M128G
File Size (bytes, log scale, power-of-2 bins) File Size (bytes, log scale, power-of-2 bins)

Figure 3.2 Accuracy of Impressions in recreating file system propertis. Shows the
accuracy of the entire set of file system distributions mextibl Impressions. D: the desired distri-
bution; G: the generated distribution. Impressions is guitcurate in creating realistic file system
state for all parameters of interest shown here. We includpezial abscissa for the zero value on
graphs having a logarithmic scale.

72

(e) ()
Top Extensions by Count Files by Namespace Depth
1 0.16 ‘
0.14 | RO
@ 08 w 012 |)
£ thers Qo 0.1+
° 06 '% 0.08 |
g (=] 006 [
§ 0.4 ull > 0.04 |
- ,h,?“ 0.02 |
0.2 0 L L
e
0 Iﬁp 0 2 4 6 8 10 12 14 16
Namespace depth (bin size 1)
(9) (h)
Bytes by Namespace Depth Files by Namespace Depth
‘ (with Special Directories)
2 , 0.25 5
_ MB L
[} L
S-% 768KB | g 02 G
B 256KB | = 05y
;‘ o> B 01l x
c2 64KB | < - e N
S 005
s 16KB |] 0

0 2 4 6 8 10 12 14 16
Namespace depth (bin size 1)

0 2 4 6 8 101214 16
Namespace depth (bin size 1)

Figure 3.3 Accuracy of Impressions in recreating file system propertis. Shows the
accuracy of the entire set of file system distributions mextibl Impressions. D: the desired distri-
bution; G: the generated distribution. Impressions is guitcurate in creating realistic file system
state for all parameters of interest shown here. We includpexial abscissa for the zero value on
graphs having a logarithmic scale.

73

presence of a few large files; an important detail that ismtlse missed if the heavy-tail
of file sizes is not accurately accounted for.

Once the file size is selected, we assign the file name andsésterimpressions keeps
a list of percentile values for popular file extensions.(top 20 extensions by count, and
by bytes). These extensions together account for roughly 6Dfiles and bytes in a file
system ensuring adequate coverage for the important eatens he remainder of files are
given randomly generated three-character extensionsre@ly filenames are generated
by a simple numeric counter incremented on each file creatibgure 3.3(e) shows the
accuracy of Impressions in creating files with popular egiemns by count.

Next, we assign file depth, which requires satisfying two criteria: the distribution
of files with depth, and the distribution of bytes with depffthe former is modeled by a
Poisson distribution, and the latter is represented by thamiile sizes at a given depth.
Impressions uses a multiplicative model combining the triteiga, to produce appropriate
file depths. Figures 3.3(f) and 3.3(g) show the accuracy megaing the distribution of
files by depth, and the distribution of bytes by depth, respely.

The final step is to select a parent directory for the file, ledat depthl — 1, according
to the distribution of directories with file count, modelesing an inverse-polynomial of
degree2. As an added feature, Impressions supports the notion c#cidy directories
containing a disproportionate number of files or byteg(“Program Files” folder in the
Windows environment). If required, during the selectiorntad parent directory, a selection
bias is given to these special directories. Figure 3.3(bywshthe accuracy in supporting
special directories with an example afypical Windows file system having files in the web
cache at deptf, in Windows andProgram Files folders at deptl2, andSysten files at

depth3.

74

Parameter MDCC
Directory count with depth 0.03
Directory size (subdirectories) 0.004
File size by count 0.04
File size by containing bytes 0.02
Extension popularity 0.03
File count with depth 0.05
Bytes with depth 0.12 MB*
File count w/ depth w/ special dirs 0.06

Table 3.3 Statistical accuracy of generated images. Shows average accuracy of gener-
ated file-system images in terms of the MDCC (Maximum Disphent of the Cumulative Curves)
representing the maximum difference between cumulatimeswof generated and desired distri-
butions. Averages are shown 20 trials. (*) For bytes with depth, MDCC is not an appropriate
metric, we instead report the average difference in meaasper file (MB). The numbers corre-
spond to the set of graphs shown in Figure 3.3 and reflectfaicturate images.

Table 3.3 shows the average difference between the gedenatiedesired images from
Figure 3.3 for20 trials. The difference is measured in terms of the MDCC (Maxin Dis-
placement of the Cumulative Curves). For instance, an MD&Gevof 0.03 for directories
with depth, implies anaximundifference of 3% on an average, between the desired and
the generated cumulative distributions. Overall, we firat the models created and used
by Impressions for representing various file-system patara@roduce fairly accurate dis-
tributions in all the above cases. While we have demonstithie accuracy of Impressions
for the Windows dataset, there is no fundamental restndiriting it to this dataset. We
believe that with little effort, the same level of accura@nde achieved for any other

dataset.

3.2.4 Resolving Arbitrary Constraints

One of the primary requirements for Impressions is to allexiBility in specifying

file system parameters without compromising accuracy. f@ans that users are allowed

75

Process of Convergence

m ‘
IS 90K m—
& ;
L 60K [
O o
£ Desired Sum ——
0 5% error line -~
30K PR
0 200 400 600 800 21000
Number of Oversamples
Accuracy of Constrained Distribution
0.15 o i
g C oo
s 01
o
c
i)
3] 0.05
o
LL
8 2K 512K 8M
File Size (bytes, log scale)
Accuracy of Constrained Distribution
0.2 o
" 015 C
()
5
2 01
o
S 005
0

8 2K 512K 8M
File Size (bytes, log scale, power-of-2 bins)

Figure 3.4 Resolving Multiple Constraints. (a) Shows the process of convergence of a set
of 1000 file sizes to the desired file system size of 90000. lEéeh line represents an individual
trial. A successful trial is one that converges to the 5% eliree in less than 1000 oversamples.
(b) Shows the difference between the original distributibfiles by size, and the constrained dis-
tribution after resolution of multiple constraints in (a: Original; C: Constrained. (c) Same as
(b), but for distribution of files by bytes instead.

76

Num. files| File sizes sum Avg. 5 | Avg. 6 | Avg. a | Avg. D | Avg. D | Success
N S (bytes) Initial | Final Count | Bytes
1000 30000 21.55%| 2.04% | 5.74% | 0.043 | 0.050 | 100%
1000 60000 20.01%| 3.11% | 4.89% | 0.032 | 0.033 | 100%
1000 90000 34.35%| 4.00% | 41.2% | 0.067 | 0.084 | 90%

Table 3.4 Summary of resolving multiple constraints. Shows average rate and accuracy
of convergence after resolving multiple constraints fdfedent values of desired file system size
generated with a lognormal file size distributi@y (1:=8.16, 0=2.46). (3: % error between the
desired and generated sum; % of oversamples required) is the test statistic for the K-S test
representing the maximum difference between generatedesiced empirical cumulative distri-
butions. Averages are fa0 trials. Success is the number of trials having figak 5%, and D
passing the K-S test.

to specify somewhat arbitrary constraints on these paemsiednd it is the task of Impres-
sions to resolve them. One example of such a set of constramild be to specify a large
number of files for a small file system, or vice versa, given @ dize distribution. Im-
pressions will try to come up with a sample of file sizes that la@proximates the desired
distribution, while still maintaining the invariants sugal by the user, namely the number
of files in the file system and the sum of all file sizes being etpuéhe file system used
space.

Multiple constraints can also be implicité., arise even in the absence of user-specified
distributions). Due to random sampling, different sampaés 0of the same distribution
are not guaranteed to produce exactly the same result, arsbgoently, the sum of the
elements can also differ across samples. Consider thegueexample of file sizes again:
the sum of all file sizes drawn from a given distribution neetladd up to the desired file
system size (total used space) each time. More formallg, éhample is represented by

the following set of constraints:

77

N = {Constant, V x : x € Dy(z)}

S = {Constanty V x : x € Dy(x)}

N (3.1)
F={z:xeDs(mpo)l | Y Fi-S|<pxS
=0

where\ is the number of files in the file systens; is the desired file system used
space;F is the set of file sizes; and is the maximum relative error allowed. The first
two constraints specify that/ and S can be user specified constants or sampled from
their corresponding distributior’®; andD,. Similarly, F is sampled from the file size
distributionD5. These attributes are further subject to the constraintkigasum of all file
sizes differs from the desired file system size by no more tharallowed error tolerance,

specified by the user. To solve this problem, we use the fatiguwo techniques:

e If the initial sample does not produce a result satisfyirigted constraints, wever-
sampleadditional values ofF from D3, one at a time, until a solution is found, or the
oversampling facton /N reaches\ (the maximum oversampling factor).is the count of
extra samples drawn from;. Upon reaching\ without finding a solution, we discard the

current sample set and start over.

e The number of elements i during the oversampling stage i¢ + a. For every
oversampling, we need to find if there exists,,, a subset ofF with A/ elements, such
that the sum of all elements &g, (file sizes) differs from the desired file system size by

no more than the allowed error. More formally stated, we find i

78

3 Fouw ={X : X CP(F), |X[=N, |F| =N +a,

«

N
|Z?¢—S|gﬁ*5,aeNAN

1=0

<A} (3.2)

The problem of resolving multiple constraints as formuliaédove, is a variant of the
more general “Subset Sum Problem” which is NP-complete. [84]r solution is thus an
approximation algorithm based on an existg: log n) solution [107] for the Subset Sum
Problem.

The existing algorithm has two phases. The first phase ralydonooses a solution
vector which is valid (the sum of elements is less than therelsum), and maximal
(adding any element not already in the solution vector valise the sum to exceed the
desired sum). The second phase perfolmeal improvementfor each element in the so-
lution, it searches for the largest element not in the carsetution which, if replaced with
the current element, would reduce the difference betweerdésired and current sums.
The solution vector is updated if such an element is found the algorithm proceeds with
the next element, until all elements are compared.

Our problem definition and the modified algorithm differ frahre original in the fol-
lowing ways:

e First, in the original problem, there is no restriction o thumber of elements in the
solution subsefFs,;. In our case,Fs,;, can have exactlyy elements. We modify the first
phase of the algorithm to set the initial,;, as the first random permutation.&f elements

selected frongF such that their sum is less th&n

e Second, the original algorithm either finds a solution omi@ates without success. We
use an increasing sample size after each oversampling tcedtie error, and allow the

solution to converge.

79

e Third, it is not sufficient for the elements i, to have a numerical sum close to
the desired sun®, but the distribution of the elements must also be close ecotiginal
distribution in 7. A goodness-of-fit test at the end of each oversampling stéprees
this requirement. For our example, this ensures that thefsi#e sizes generated after

resolving multiple constraints still follow the originaisdribution of file sizes.

The algorithm terminates successfully when the differdret&veen the sums, and between
the distributions, falls below the desired error levelse Buccess of the algorithm depends
on the choice of the desired sum, and th@ectedsum (the sum due to the choice of
parameterse.g, 1 ando); the farther the desired sum is from the expected sum, gseie
are the chances of success.

Consider an example where a user has specified a desired dtensgize 000000
bytes, a lognormal file size distributiop%8.16, 0=2.46), and 1000 files. Figure 3.4(a)
shows the convergence of the sum of file sizes in a sample t@held with this distribu-
tion. Each line in the graph represents an independent steaiting at a y-axis value equal
to the sum of its initially sampled file sizes. Note that irstexample, the initial sum differs
from the desired sum by more than a 100% in several cases.-akis xepresents the num-
ber of extra iterationsaversamplesperformed by the algorithm. For a trial to succeed, the
sum of file sizes in the sample must converge to within 5% ofiib&red file system size.
We find that in most casesranges betweet and0.1 (i.e., less than 0% oversampling);
and in almost all caseg, < 1.

The distribution of file sizes iFg,, must be close to the original distribution jA.
Figure 3.4(b) and 3.4(c) show the difference between thgirai and constrained distri-
butions for file sizes (for files by size, and files by bytes), doe successful trial from
Figure 3.4(a). We choose these particular distributionsasnples throughout this paper
for two reasons. First, file size is an important parametenve want to be particularly

thorough in its accuracy. Second, getting an accurate sioapee bimodal curve of files

80

by bytes presents a challenge for Impressions; once we gééchniques to work for this
curve, we are fairly confident of its accuracy on simplerrisitions.

We find that Impressions resolves multiple constraints tisfyethe requirement on the
sum, while respecting the original distributions. Tabk @ives the summary for the above
example of file sizes for different values of the desired fflgtem size. The expected sum of
1000 file sizes, sampled as specified in the table, is clo§8G00. Impressions successfully
converges the initial sample set to the desired sum with arage oversampling rateless
than 5%. The average difference between the desired anevachsuns is close to 3%.
The constrained distribution passes the two-sample KiStehe(.05 significance level,
with the difference between the two distributions beinglyasmall (the D statistic of the
K-S test is around 0.03, which represents the maximum éiffez between two empirical
cumulative distributions).

We repeat the above experiment for two more choices of fileegysizes, one lower
than the expected mean (30K), and one higher (90K); we findetren when the desired
sum is quite different from the expected sum, our algoritrerfgrms well. Only for2 of
the 20 trials in the 90K case, did the algorithm fail to converger feese extreme cases,

we drop the initial sample and start over.

3.2.5 Interpolation and Extrapolation

Impressions requires knowledge of the distribution of fystem parameters necessary
to create a valid image. While it is tempting to imagine tmapitessions has perfect knowl-
edge about the nature of these distributions for all possialues and combinations of
individual parameters, it is often impossible.

First, the empirical data is limited to what is observed iy given dataset and may
not cover the entire range of possible values for all paramet Second, even with an

exhaustive dataset, the user may want to explore regionarafigeter values for which no

81

Piecewise Interpolation

0.14 -
012 - oo Interpolation: Segment 19 —+100 GB
3005 ——50 GB
0.1 A 50.04
» %0'03 +10 GB
[] 3 0.02
S 0.08 1 o
2 0+ T T
S
(o] 006 E 0 50 100
°\o File System Size (GB)
0.04 - Segment 19
0.02 -
0 I T T T T
O N 00 NN © N ¥ ¥ ¥ ¥ Y
SYXEE5EEEZETL99
ALY ® o= ®© o

File Size (bytes, log scale, power-of-2 bins)

Figure 3.5 Piecewise Interpolation of File Sizes. Piece-wise interpolation for the distribu-
tion of files with bytes, using file systems of 10 GB, 50 GB afda®. Each power-of-two bin on
the x-axis is treated as an individuségmentor interpolation (inset). Final curve is the composite
of all individual interpolated segments.

data point exists, especially for “what if” style of analysihird, from an implementation
perspective, it is more efficient to maintain compact repngstions of distributions for a
few sample points, instead of large sets of data. Finalthhd@fempirical data is statistically
insignificant, especially for outlying regions, it may netrge as an accurate representation.
Impressions thus provides the capability for interpolatamd extrapolation from available
data and distributions.

Impressions needs to generate complete new curves froingxanes. To illustrate
our procedure, we describe an example of creating an integmb curve; extensions to
extrapolation are straightforward. Figure 3.5 shows howrgssions usegiece-wise in-

terpolationfor the distribution of files with containing bytes. In thissmple, we start with

82

(a) (b)
Interpolation (75 GB) Interpolation (75 GB)
0.12 0.12
0.1 R| " 0.1 R|
S 008 2 008 /
< 0.06 2 0.06
[S) 5 k
e 0.04 - 0.04
(=) N A
0.02 °© 0.02
0 be= 0
8 2K 512K 128M 32G 8 2K 512K 128M 32G
File Size (bytes, log scale, power-of-2 bins) File Size (bytes, log scale, power-of-2 bins)
(©) (d)
Extrapolation (125 GB) Extrapolation (125 GB)
0.12 0.12 R
0.1 " 0.1 | g e
()]
o 0.08 £ 0.8
« 0.06 L2 0.06
© ©
e 0.04 - 0.04
S >
0.02 0.02
O - 0
8 2K 512K 128M 32G 8 2K 512K 128M 32G

File Size (bytes, log scale, power-of-2 bins) File Size (bytes, log scale, power-of-2 bins)

Figure 3.6 Accuracy of Interpolation and Extrapolation. Shows results of applying piece—
wise interpolation to generate file size distributions (loyiiet and by bytes), for file systems of size
75 GB (a and b, respectively), and 125 GB (c and d, respewgjivel

83

Distribution FS Region D K-S Test
(I/E) Statistic| (0.05)

File sizes by count 75GB (I) 0.054 | passed
File sizes by count 125GB (E)| 0.081 | passed
File sizes by bytes 75GB (1) 0.105 | passed
File sizes by byteg 125GB (E)| 0.105 | passed

Table 3.5 Accuracy of interpolation and extrapolation. Impressions produces accurate
curves for file systems of size 75 GB and 125 GB, using intetipal (I) and extrapolation (E),
respectively.

the distribution of file sizes for file systems of size 10 GB,®B and 100 GB, shown in
the figure. Each power-of-two bin on the x-axis is treatedrasdividualsegmentand the
available data points within each segment are used as inpypidce-wise interpolation;
the process is repeated for all segments of the curve. Imiprescombines the individual
interpolated segments to obtain the complete interpolatiee.

To demonstrate the accuracy of our approach, we interpaladeextrapolate file size
distributions for file systems of sizes 75 GB and 125 GB, resypely. Figure 3.6 shows
the results of applying our technique, comparing the gdadrdistributions with actual
distributions for the file system sizes (we removed this dlata the dataset used for inter-
polation). We find that the simpler curves such as Figurea3 &fd (c) are interpolated and
extrapolated with good accuracy. Even for more challenginyes such as Figure 3.6(b)
and (d), the results are accurate enough to be useful. Tab8tains the results of con-
ducting K-S tests to measure the goodness-of-fit of the géskcurves. All the generated

distributions passed the K-S test at the5 significance level.

84

3.2.6 File Content

Actual file content can have substantial impact on the perémce of an application.
For example, Postmark [70], one of the most popular file sgdenchmarks, tries to
simulate an email workload, yet it pays scant attentionéamtiganization of the file system,
and is completely oblivious of the file data. Postmark fillsthé “email” files with the
same data, generated using the same random seed. The ievataatllts can range from
misleading to completely inaccurate, for instance in tteea# content-addressable storage
(CAS). When evaluating a CAS-based system, the disk-bladka and the corresponding
performance will depend only on the unique content — in tasedbelonging to the largest
file in the file system. Similarly, performance of Desktop i®8aand Word Processing
applications is sensitive to file content.

In order to generate representative file content, Impresssapports a number of op-
tions. For human-readable files such.ast, .html files, it can populate file content with
random permutations of symbols and words, or with more siaited word-popularity
models. Impressions maintains a list of the relative pajiylaf the most popular words
in the English language, and a Monte Carlo simulation geesnaords for file content ac-
cording to this model. However, the distribution of word pigrity is heavy-tailed; hence,
maintaining an exhaustive list of words slows down conteartegation. To improve per-
formance, we use a word-length frequency model [129] to ggadhe long tail of words,
and use the word-popularity model for the body alone.

According to the word-length frequency model the observesdjidencies of word
lengths is approximated by a variant of the gamma distrioytand is of the general form:
f.., =a*L"*ck, where f,, is the observed frequency for word-length L, and (a,b,c) are
language-specific parameters.

The user has the flexibility to select either one of the modekntirety, or a specific

combination of the two. Itis also relatively straightfomddo add extensions in the future to

85

generate more nuanced file content. An example of such ansateis one that carefully
controls the degree of content similarity across files.

In order to generate content for typed files, Impressiortseeitontains enough infor-
mation to generate valid file headers and footers itselfatis into a third-party library or
software such as Id3v2 [96] fap3; GraphApp [57] forgif, jpeg and other image files;
Mplayer [93] formpeg and other video files; asciidoc fatml; and ascii2pdf foPDF files.

3.2.7 Disk Layout and Fragmentation

To isolate the effects of file system content, Impressionsweasure the degree of on-
disk fragmentation, and create file systems with user-defilegree of fragmentation. The
extent of fragmentation is measured in termdayfout score[132]. A layout score ofl
means all files in the file system are laid out optimally on disk, all blocks of any given
file are laid out consecutively one after the other), whilayout score of) means that no
two blocks of any file are adjacent to each other on disk.

Impressions achieves the desired degree of fragmentayiosshing pairs of tempo-
rary file create and delete operations, during creationgile files. When experimenting
with a file-system image, Impressions gives the user complattrol to specify the overall
layout score. In order to determine the on-disk layout ofsfilere rely on the informa-
tion provided by debugfs. Thus currently we support layoeasurement only for Ext2
and Ext3. In future work, we will consider several alteraa$ for retrieving file layout
information across a wider range of file systems. On Linug, BBBMAP and FIEMAP
ioctl()s are available to map a logical block to a physical block [€3her file system-
specific methods exist, such as the XEEBZ_GETBMAP ioctl for XFS.

The previous approach however does not account for difteenn fragmentation
strategies across file systems. Impressions supports emnatk specification for the de-

gree of fragmentation wherein it runs a pre-specified wa#lland reports the resulting

86

layout score. Thus if a file system employs better strategies/oid fragmentation, it is
reflected in the final layout score after running the fragratoh workload.

There are several alternate techniques for inducing maleste fragmentation in file
systems. Factors such as burstiness of 1/O traffic, outrdéonrites and inter-file layout
are currently not accounted for; a companion tool to Impoessfor carefully creating

fragmented file systems will thus be a good candidate foréutesearch.

Time taken (seconds)
FS distribution (Default) Image; Images

Directory structure 1.18 1.26
File sizes distribution 0.10 0.28
Popular extensions 0.05 0.13
File with depth 0.064 0.29
File and bytes with depth 0.25 0.70
File content (Single-word) | 0.53 1.44
On-disk file/dir creation 437.80| 1394.84
Total time 473.20| 1826.12
(8 mins) | (30 mins)
File content (Hybrid model) 791.20 -
Layout score {.98) 133.96 -

Table 3.6 Performance of Impressions. Shows time taken to create file-system images with
break down for individual featured:mage;: 4.55 GB,20000 files,4000 dirs. Images: 12.0 GB,
52000 files,4000 dirs. Other parameters are default. The two entries for 8ddal parameters are
shown only forfmage; and represent times in addition to default times.

3.2.8 Performance

In building Impressions, our primary objective was to gaterrealistic file-system im-

ages, giving top priority to accuracy, instead of perforegnNonetheless, Impressions

87

does perform reasonably well. Table 3.6 shows the breakadwme taken to create a de-
fault file-system image of 4.55 GB. We also show time takerstone additional features
such as using better file content, and creating a fragmerieedystem. Overall, we find

that Impressions creates highly accurate file-system isiam@ reasonable amount of time

and thus is useful in practice.

3.3 Case Study: Desktop Search

In this section, we use Impressions to evaluate desktoglsearapplications. Our
goals for this case study are two-fold. First, we show howpdnit is to use Impressions
to create either representative images or images acroshwalsingle parameter is varied.
Second, we show how future evaluations should report thangetof Impressions so that
results can be easily reproduced.

We choose desktop search for our case study because itsmarnice and storage re-
guirements depend not only on the file system size and steydbut also on the type of
files and the actual content within the files. We evaluate tegktbp search applications:
open-source Beagle [21] and Google’s Desktop for Linux (G[34]. Beagle supports a
large number of file types usirig search-filters; it provides several indexing options,trad
ing performance and index size with the quality and featigieness of the index. Google
Desktop does not provide as many options: a web interfaceallisers to select or exclude
types of files and folder locations for searching, but dogspnavide any control over the

type and quality of indexing.

3.3.1 Representative Images

Developers of data-intensive applications frequentlydniemake assumptions about
the properties of file-system images. For example, file systand applications can of-

ten be optimized if they know properties such as the relgtnggortion of meta-data to

88

Deep Trees: Nested Dirs

©
X 100
2 75
8 50}
L 25, GDL
S 0 Beagle - |
> 1 10 100 1000
Number of Directories
Flat Trees: All Dirs at Depth 1
©
X 100 ‘ ‘
2 75} \
8 50|]
L 25, GDL —
S 0 Beagle - |
> 1 10 100 1000
Number of Directories
Regular File System Trees
©
X 100 ‘ ——
2 75
8 50
L 25, GDL —
S 0 Beagle - |
> 1 10 100 1000

Number of Directories

Figure 3.7 Tree Depth and Completeness of IndexShows the percentage of files indexed
by Beagle and GDL with varying directory tree depths in a gifike-system image

89

App Parameter & Value | Comment on Validity

GDL File content< 10 deep | 10% of files and 5% of bytes 10 deep
(content in deeper namespace is growing)
GDL | Textfile sizes< 200 KB | 13% of files and 90% of bytes 200 KB
Beagle| Text file cutoff< 5 MB | 0.13% of files and 71% of bytes 5 MB
Beagle| Archive files< 10 MB | 4% of files and 84% of bytes 10 MB
Beagle| Shell scripts< 20 KB | 20% of files and 89% of bytes 20 KB

Figure 3.8 Debunking Application Assumptions. Examples of assumptions made by Beagle
and GDL, along with details of the amount of file-system aariteat is not indexed as a conse-
quence.

data in representative file systems. Previously, devetopauld infer these numbers from
published papers [8, 41, 120, 128], but only with considieragffort. With Impressions,
developers can simply create a sample of representativgeisnand directly measure the
properties of interest.

Table 3.8 lists assumptions we found in GDL and Beagle Ingithe search indexing
to partial regions of the file system. However, for the repreative file systems in our data
set, these assumptions omit large portions of the file syskEmexample, GDL limits its
index to only those files less than ten directories deep; palyais of typical file systems
indicates that this restriction causes 10% of all files to lesed.

Figure 3.7 shows one such example: it compares the peraeofages indexed by
Beagle and GDL for a set of file-system images. The topmogihgshows the results
for deepfile-system trees created by successively nesting a newtdiyein the parent
directory; a file system withD directories will thus have a maximum depth bf The
y-axis shows the % of files indexed, and the x-axis shows thmebewu of directories in
the file system. We find that GDL stops indexing content afegtid 10, while Beagle
indexes 100% of the files. The middle graph repeats the expeti on flat trees, with

all directories at depth. This time, GDL's percentage completeness drops off onee th

90

number of directories exceeds 10. For regular file systeesirehown in the lowermost
graph, we find that both Beagle and GDL achieve near 100% caipmmss. Since the
percentage of user-generated content deeper in the naocedspgowing over the years, it
might be useful to design search indexing schemes whichedtertsuited for deeper name
spaces.

This strange behavior further motivates the need for a tikel Impressions to be a
part of any application designer’s toolkit. We believe timstead of arbitrarily specifying
hard values, application designers should experiment kmtressions to find acceptable
choices for representative images.

We note that Impressions is useful for discovering theséeaipn assumptions and for
isolating performance anomalies that depend on the fileesysnage. Isolating the impact
of different file system features is easy using Impressienaluators can use Impressions
to create file-system images in which only a single paramistearied, while all other
characteristics are carefully controlled.

This type of discovery is clearly useful when one is usingsebbsource code, such as
GDL. For example, we discovered the GDL limitations by camging file-system images
across which a single parameter is variedg(file depth and file size), measuring the
percentage of indexed files, and noticing precipitous dinopisis percentage. This type of
controlled experimentation is also useful for finding ndndous performance interactions
in open-source code. For instance, Beagle usemthtdy mechanism [68] to track each
directory for change; since the default Linux kernel pr@gd192 watches, Beagle resorts
to manually crawling the directories once their count exised 92. This deterioration in
performance can be easily found by creating file-system @sagth varying numbers of

directories.

91

3.3.2 Reproducible Images

The time spent by desktop search applications to crawl ayiem image is significant
(i.e., hours to days); therefore, it is likely that different deymers will innovate in this area.
In order for developers to be able to compare their resuiley; must be able to ensure they
are using the same file-system images. Impressions alloegmprecisely control the
image and report the parameters so that the exact same iraadpe ceproduced.

For desktop search, the type of filese(their extensions) and the content of files has
a significant impact on the time to build the index and its .sk& imagine a scenario in
which the Beagle and GDL developers wish to compare indessizo make a meaning-
ful comparison, the developers must clearly specify thedjlstem image used; this can
be done easily with Impressions by reporting the size of tinegie, the distributions listed
in Table 3.2, the word model, disk layout, and the random s&¢el anticipate that most
benchmarking will be done using mostly default values, ogaly the number of Impres-
sions parameters that must be specified.

An example of the reporting needed for reproducible ressltshown in Figure 3.9.
In these experiments, all distributions of the file systemlapt constant, but only either
text files (containing either a single word or with the defambrd model) or binary files
are created. These experiments illustrate the point tleatdihtent significantly affects the
index size; if two systems are compared using different filetent, obviously the results
are meaningless. Specifically, different file types chavga ¢he relative ordering of index
size between Beagle and GDL.: given text files, Beagle creal@ger index; given binary
files, GDL creates a larger index.

Figures 3.10 gives an additional example of reporting Irapi@ns parameters to make
results reproducible. In these experiments, we discuse@asio in which different de-

velopers have optimized Beagle and wish to meaningfully mama their results. In this

92

Index Size Comparison

© Text (1 Word)
= Text (Model) ——
%) 0.1 Binary mmmm |
u .
I
N
N
o)
o 001}]
=

Beagle GDL

Size of filedata written (GB)

Figure 3.9 Impact of file content. Compares Beagle and GDL index time and space for word-
models and binary files. Google has a smaller index for wodig) but larger for binary. Uses
Impressions default settings, with FS size 4.55 GB, 200€€) 000 dirs.

scenario, the original Beagle developers reported regult®ur different images: the de-
fault, one with only text files, one with only image files, angeowith only binary files.
Other developers later create variants of BeadkxtCachdo display a small portion of
every file alongside a search hHjsDir to disable directory indexing, ardisFilter to in-
dex only attributes. Given the reported Impressions patarsethe variants of Beagle can
be meaningfully compared to one another.

In summary, Impressions makes it extremely easy to create camtrolled and rep-
resentative file-system images. Through this brief casdystwaluating desktop search
applications, we have shown some of the advantages of usipgessions. First, Impres-
sions enables developers to tune their systems to the fileraysharacteristics likely to be
found in their target user populations. Second, it enaldesldpers to easily create images

where one parameter is varied and all others are carefuliyraited; this allows one to

93

Beagle: Time to Index

Default ———
Text -

Noow

H
oOUIF U1N U1 W O

o

Relative Time Overhead

Beagle: Index Size

Default 1

Text m—
Image
Binary ===

I’ ¥ H

Noow

H
oOUIF U1N U1 W O

o

Relative Index Size

5 X

Figure 3.10 Reproducible images: impact of content.Using Impressions to make results
reproducible for benchmarking search. Vertical bars reqmet file systems created with file content
as labeled. Th®efaultfile system is created using Impressions default settimgsfike system size
4.55 GB, 20000 files, 4000 dirs. Index options: Original —addtfBeagle index. TextCache — build
text-cache of documents used for snippets. DisDir — dordtd@icectories to the index. DisFilter —
disable all filtering of files, only index attributes.

94

assess the impact of a single parameter. Finally, Impnes®aables different developers
to ensure they are all comparing the same image; by repdrtipgessions parameters, one

can ensure that benchmarking results are reproducible.

3.4 Other Applications

Besides its use in conducting representative and reprbtubenchmarking, Impres-
sions can also be handy in other experimental scenarioshigrséction we present two
examples, the usefulness of Impressions in generatingtieaules of thumb, and in test-

ing soundness of hypothesis.

3.4.1 Generating Realistic Rules of Thumb

In spite of the availability of Impressions, designers @ fi/stems and related software
will continue to rely on rules of thumb to make design deaisiolnstead of relying on old
wisdom, one can use Impressions to generate realisticofithsmb. One example of such
arule of thumb is to calculate the overhead of file-systenandegt — a piece of information
often needed to compute the cost of different replicati@nitp or check summing schemes
for data reliability. Figure 3.11 shows the percentage @icgptaken by metadata in a file
system, as we vary the distribution of file sizes. We find thatdverhead can vary between
2 and 14% across the file size distributions in this examplail&ly, Impressions can be

used to compute other rules of thumb for different metadespgrties.

3.4.2 Testing Hypothesis

In our experience, we found Impressions convenient andlsihopuse for testing hy-
pothesis regarding application and file system behavidingiaway the statistical com-
plexity of the experiment from the end-user. To illustrdtest we describe our experience

with afailed experiment.

95

Metadata Overhead

14 | I Block Siée 1K I
© -
s 12 - x\(7.534, 2.483) AK e I
% 8K - Xoooeos
> - \ L
3 10 \x\ .
3 8 1 A ", -
7] 6 - |
(D)
(@)
IS 4 - L
[
(D)
o 2
8

0 T T T T

1 4 8 16 32

Size written (GB)

Figure 3.11 Metadata Overhead. Shows the relative space overhead of file-system metadata
with varying file-size distribution, modeled by, ¢) parameters of a lognormal distribution (shown
in parentheses for the two extremes).

It was our hypothesis that the distribution of bytes and tigsiamespace depth would
affect the time taken to build the search index: indexingddatent in deeper namespace
would be slower. To test our hypothesis, all we had to do waslugpressions to create
file-system images, and measure the time taken by Beagléltbtbe index, varying only
a single parameter in the configuration file for each triad Xtvalue governing the Poisson
distribution for file depth. Although our hypothesis was rmatidated by the results.¢.,
we didn’t find significant variation in indexing time with diyp, we found Impressions to

be suitable and easy to use for such experimentation.

96

3.5 Related Work

We discuss previous research in three related areas. Warsdjscuss existing tools for
generating file-system images; second, we present priearels on improving file sys-
tem benchmarking; finally, we discuss existing models f@i@xing file system metadata

properties.

3.5.1 Tools for Generating File-System Images

We are not aware of any existing system that generates fi@isyimages with the level
of detail that Impressions delivers; here we discuss soois that we believe provide some
subset of features supported by Impressions.

FileBench, a file system workload framework for measuring emmparing file system
performance [112] is perhaps the closest to Impressioresing of flexibility and attention
to detail. FileBench generates test file system images wiplpart for different directory
hierarchies with namespace depth and file sizes accordistatistical distributions. We
believe Impressions includes all the features providedil@BEnch and provides additional
capabilities; in particular, Impressions allows one totdbate newer datasets and makes
it easier to plug in distributions. FileBench also does namivjgle support for allowing
user-specified constraints.

The SynRGen file reference generator by Ebling and Satygaaid44] generates syn-
thetic equivalents for real file system users. Tb&umesor images in their work make use
of simplistic assumptions about the file system distrimgias their focus is on user access
patterns.

File system and application developers in the open-sounceraunity also require file-
system images to test and benchmark their systems, tookdiioh are developed in-house,

often customized to the specific needs of the system beingjajssd.

97

Genbackupdata is one such tool that generates test dafarseesformance testing of
backup software [155]. Like Impressions, but in a much sifigal fashion, it creates a
directory tree with files of different sizes. Since the tao$pecifically designed for backup
applications, the total file system size and the minimum aagimum limits for file sizes
are configurable, but not the file size distribution or othgpexts of the file system. The
program can also modify an existing directory tree by creptmew files, and deleting,
renaming, or modifying existing files, inducing fragmerdaton disk.

Another benchmarking system that generates test file sgstestching a specific pro-
file is Fstress [12]. However, it does contain many of theuest found standard in Im-
pressions, such as popularity of file extensions and fileezdngeneration according to
file types, supporting user-specified distributions for &ilestem parameters and allowing

arbitrary constraints to be specified on those parameters.

3.5.2 Tools and Techniques for Improving Benchmarking

A number of tools and techniques have been proposed to iraph®sstate of the art
of file and storage system benchmarking. Chen and Patterspoged a “self-scaling”
benchmark that scales with the 1/0 system being evaluabestyeéss the system in mean-
ingful ways [32]. Although useful for disk and 1/0 systemise tself-scaling benchmarks
are not directly applicable for file systems.

TBBT is a NFS trace replay tool that derives the file-systenage underlying a
trace [162]. It extracts the file system hierarchy from a giwece in depth-first order
and uses that during initialization for a subsequent trepéay. While this ensures a con-
sistent file-system image for replay, it does not solve theengeneral problem of creating
accurately controlled images for all types of file systemdbenarking.

The Auto-Pilot tool [159] provides an infrastructure fonning tests and analysis tools

to automate the benchmarking process. Auto-Pilot can helgpenchmarks with relative

98

ease by automating the repetitive tasks of running, meaguand analyzing a program

through test scripts.

3.5.3 Models for File-System Metadata

Several models have been proposed to explain observedy$iters phenomena.
Mitzenmacher proposed a generative model, called the RieeuForest File model [90]
to explain the behavior of file size distributions. The madelynamic as it allows for the
creation of new files and deletion of old files. The model aotetor the hybrid distribu-
tion of file sizes with a lognormal body and Pareto tail.

Downey’s Multiplicative File Size model [43] is based on #esumption that new files
are created by using older files as templates e.g., by copgtiting or filtering an old file.
The size of the new file in this model is given by the size of thiefibe multiplied by an
independent factor.

The HOT (Highly Optimized Tolerance) model provides anralé¢e generative model
for file size distributions. These models provide an ingitinderstanding of the underly-
ing phenomena, and are also easier for computer simuldtidature, Impressions can be

enhanced by incorporating more such models.

3.6 Conclusion

File system benchmarking is in a state of disarray. One kpg@asof this problem is
generating realistic file-system state, with due emphasengo file-system metadata and
file content. To address this problem, we have developeddssjons, a statistical frame-
work to generate realistic and configurable file-system iesagmpressions provides the
user flexibility in selecting a comprehensive set of file sgsparameters, while seamlessly

ensuring accuracy of the underlying images, serving asfalygatform for benchmarking.

99

In our experience, we find Impressions easy to use and wa#dior a number of
tasks. It enables application developers to evaluate areltheir systems for realistic file
system characteristics, representative of target usagesos. Impressions also makes it
feasible to compare the performance of systems by starailagdand reporting all used
parameters, a requirement necessary for benchmarking.elisé Impressions will prove
to be a valuable tool for system developers and users ali&diave made it publicly avail-
able for download. Please visit the URlttp://www.cs.wisc.edu/adsl/Software/

Impressions/ to obtain a copy.

100

Chapter 4

Practical Storage System Benchmarking withCompressions

File and storage systems are currently difficult to benctm@o far we have discussed
two important challenges in file-system benchmarking:eating benchmarking state rep-
resentative of real-world conditions, and ensuring repoaloility of the benchmarking state
to allow fair comparison. The time and effort required toumesthat the above conditions
are met often discourages developers from using benchntizaksnatter, settling instead
for the ones that are easy to set up and use. These deficiam&dieachmarking point to
a thematic problem — when it comes to actual usage, ease aingseracticality often
overshadow realism and accuracy.

In practice, realistic benchmarks (and realistic configares of such benchmarks) tend
to be much larger and more complex to set up than their trooainterparts. File system
traces €.g, from HP Labs [113]) are good examples of such workloadgroffteing large
and unwieldy. In many cases the evaluator has access to anydast storage capacity,
making it harder still to employ large, real workloads.

Two trends further exacerbate the problems in file and seotsnchmarking. First,
storage capacities have seen a tremendous increase inghiewayears; Terabyte-sized
disks are now easily available for desktop computers; priger systems are now frequently
working with Petabyte-scale storage. The problem withgitange file-system images for
experimentation is that creating and running workloadshamt can be time consuming.

Second, real applications and benchmarks that developéergwaluators care about are

101

taking increasingly longer to run. Examples of such appiliee include file-system in-
tegrity checkers likesck, desktop search indexing, and backup software, taking hagav
from several hours to a few days to run on a Terabyte-sizetitipar

Benchmarking with such applications on large storage @svis a frequent source of
frustration for file-system evaluators; the scale alons asta strong deterrent against us-
ing larger albeit realistic benchmarks [146]. Given therat which storage capacities are
increasing, running toy workloads on small disks is no lorgeatisfactory alternative.
One obvious solution is to continually upgrade one’s steregpacity. However, this is an
expensive, and perhaps an infeasible solution, espetjlystify the costs and adminis-
trative overheads solely for benchmarking.

In order to encourage developers of file systems and relatiare to adopt larger,
more realistic benchmarks and configurations, we need nteamsike them practical to
run on modest storage infrastructure. To address this enoblve have developed Com-
pressions, a “scale down” benchmarking system that allowesto run large, complex
workloads using relatively small storage capacitiessbgling downthe storage require-
ments transparent to the workload. Compressions makesgétipal to experiment with
benchmarks that were otherwise infeasible to run on a giystes.

Our observation is that in many cases, the user does not baxg the contents of
individual files, but only about the structure and propertié¢ the metadata that is being
stored on disk. In particular, for the purposes of benchingrkmany applications do not
write or read file contents at alé(g, fsck); the ones that do, often do not care what the
contents are as long asmevalid content is made available.g, a backup software). Since
file data constitutes a significant fraction of the total fjstem size, ranging anywhere
from 90 to 99% depending on the actual file-system image (&h&p, avoiding the need to

store file data has the potential to save a lot of time andgéxspace during benchmarking.

102

The key idea in Compressions is to create a “compressedioveds the original file-
system image for the purposes of benchmarking. In the casspceimage, unneeded user
data blocks are omitted and file system metadata blocks {eayles, directories and in-
direct blocks) are laid out more efficiently on disk; in thenpiest case, metadata blocks
are written out consecutively from the beginning of the diSk ensure that applications
and benchmark workloads remain unaware of this intergositvhenever necessary, Com-
pressions synthetically produces file data using a suitalolglified version of Impressions;
metadata reads and writes are redirected and accessegagialy. Compressions uses an
in-kernel model of the disk and storage stack to determieaditime of the benchmark
workload on the original uncompressed image. The storagéehualculates the run times
of all individual requests as they would have executed outttompressed image.

In our evaluation of Compressions with workloads like PostiImkfs (a tool to build
a file system on a storage device) and other microbenchmaekénd that Compressions
delivers on its promise and reduces the required storageasid the runtime. Depending
on the workload and the underlying file-system image, the sfzhe compressed image
can range anywhere fromto 10% of the original, a huge reduction in the required disk
size for benchmarking. Compressions also reduces the aikentto run the benchmark
by avoiding a significant fraction of disk I/O and disk seeR$e storage model within
Compressions is fairly accurate in spite of operating in-teae, and imposes an almost
negligible overhead on the workload execution.

Compressions supports two modes of operation — in the firstemihie storage model
returns instantaneously after computing the time takemimaine benchmark workload on
the uncompressed disk; in the second mode, Compressionslsrtbd runtime and intro-
duces an appropriate delay before returning to the apmitaCompressions thus allows

one to run benchmark workloads that require file-system esagders of magnitude larger

103

than the available disk, and to run much faster than usuaetiad, all this while still re-
porting the runtime as it would have taken on the originalgetave believe Compressions
provides a practical approach to run large, real workloadh & modest overhead and
virtually no extra expense in frequently upgrading storaf@structure for benchmarking.

In this chapter we present the design, implementation aatliation of the Compres-
sions benchmarking system. We start with a background osttitage stack and modeling
storage systems igd.1 and then present the design details of Compressiogé.?) the
storage model developed for Compressions is discussedselyan §4.3. We present the
evaluation results for Compressionssh4, discuss related researchgh5, and conclude
in §4.6.

4.1 Background

Generic File System
Specific File System

Generic Block 1/0
Device Driver
Device Controller

> Transport {

Firmware

Electrical
Mechanical

v 3

 ———

Host

Cache

T
Storage Subsystem

Disk

Figure 4.1 The storage stack.We present a schematic of the entire storage stack. At the top
is the file system; beneath are the many layers of the storalggystem. Gray shading implies
software or firmware, whereas white (unshaded) is hardware.

104

This section provides a background on the components otthhage stack and how to
model each of them. We first provide a brief overview of theage stack in a computer

system, and then present an overview on modeling disk damdghe storage stack.

4.1.1 Storage Stack

A storage stack consists of many different layers each ginogian abstraction of the
layer beneath to the layer above. Figure 4.1 shows the siaiagk in a typical computer
system with the disk drive at the bottom of the stack. Theedcan be a traditional rotating
hard disk, or a solid-state disk [10]. A hard disk containgnetic storage media which
stores the data and numerous other electrical and mechaamaonents to provide access
to the media for reading and writing data. Most disks alsetesmall amount of on-board
cache serving as a buffer for writes and for prefetching se&wblid-state disks (SSDs) are
constructed using some form of cell-based non-volatile mrgmuch as NAND or NOR
flash as the storage media. In addition, SSDs also contaie sonount of RAM and a
controller to maintain logical to physical mappings andgass requests.

Another important component present in disk drives is thaviare: complex embed-
ded code to control and manage the disk, and provide higivet-functions. A transport
medium connects the drive to the host. SCSI, IDE and SATA angescommon forms of
bus transport protocols.

At the host, a hardware device controller provides a compation pathway to the
external device. Higher up in the storage hierarchy arexso# components starting with
the device driver that controls the hardware. The file systeththe generic block I/O layer
form the next set of layers. The generic block I/O layer pded functionality common to
all (or several) file systems, such as prefetching, blockdexng and even some error
handling. The file system sits on top of the block I/O layerhaging its internal data

structures and providing specific functionalities. A gendite system layer is commonly

105

used to provide a standard interface to the applicationgubie file systemg.g, POSIX).
The generic file system layer maps generic operations to ygéem specific operations

through another standardized interfaeeg(Vnode/VFS [73]).

4.1.2 Storage Systems

When evaluators wish to benchmark a system for which a prp&tioes not exist or
one that is otherwise difficult to obtain and set up, a moddhef system can be used
instead. In order to model any system we must first understamehavior. In this section
we present a brief overview of storage systems . Since thesfotthis dissertation is on
evaluating performance and not other aspects of a systemasueliability, the discussions
on modeling a storage system are geared towards the contgcarah features that are
crucial for measuring performance. We start with a primeda@k drives and then briefly

discuss the remainder of the storage stack.

4.1.2.1 Disk Drives

Modern disk drives are extremely complex; modeling a diskedrequires a thorough
understanding of its internal structure and interactioasMeen various components. A
typical hard disk consists of magnetic media, electrical avechanical components. In
addition, most disks have a small amount of memory, and fimaw@manage the disk. A
hard disk contains one or mopdattersof magnetically coated media to record data, with
each platter having two surfaces to hold data. A dedicatad/veite head is provisioned
for each surface of a platter. An arm assembly moves the weel/heads into position
for individual request, with an actuator servo mechanisavigling precise control over the
placement of the head.

Data is laid out on the platter in concentric circular trackssingle platter may contain

tens of thousands of tracks, each further subdividedsetdors the smallest addressable

106

unit of data storage. Sectors are usually 512 bytes in s@eever their real physical size
is sometimes expanded (520 bytes) to provide some extra gpagtore error correcting
codes (ECC). The outer tracks in modern disk drives are demsktherefore have higher
transfer rate than the inner tracks. This phenomenon is\afédled diskzoningand is
utilized to improve performance by laying out frequentlg@ssed data on the outer tracks.
To the host system the disk appears as a linear array of addesblocks. The file

system can choose the block size at the time of volume creatid is usually between 512
and 4096 bytes. Each individual block is identified by a lag@ddress (block number)

and the disk internally maintains a mapping to correspandisk sectors.

4.1.2.2 Storage Stack

The disk drive is perhaps the single most complex entity td@ho the storage stack
but other components of the stack also need to be modeledéoalbaccuracy. Important
amongst them from a performance perspective are the trarespd the request queues at
each layer in the storage stack.

The transport is usually a bus protocol for lower-end systéeg, ATA or SCSI),
whereas networks are common in higher-end systengs FibreChannel). Modeling the
transport requires modeling the bus transfer bandwidthitsrtbmmand and communica-
tion protocol.

Each block device driver in a system also maintaimeguest queuéhat contains the
list of all requests pending submission to the correspandievice. The request queues
act as containers for performing 1/0 scheduling operatilikes request re-ordering and
request merging to improve disk performance. A newly cre@#® request is not serviced

immediately but instead gets added to the appropriate stqueue.

107

4.2 The Compressions Framework

In this section we present the design and implementationoofij@essions: a bench-

marking system that makes it practical to run large, reakoads using a relatively mod-

est storage capacity. We first present the design goals forp@essions, then discuss its

overall architecture, and finally describe in detail alldtnstituent subsystems.

4.2.1 Design Goals

The design of Compressions is influenced by the followindgoa

Scalability: Running large, real benchmarks with a modest storage dgpaquires
Compressions to maintain additional data structures anuaseveral operations on

its own; our goal is to ensure that Compressions works weldislscapacities scale.

Accuracy: Compressions needs to model a large number of I/Os cond¢usiém
workload execution; our goal is to be able to accurately ioteapplication runtime

without slowing the system down.

No application modification: In building Compressions our goal is to avoid the need
to change applications or benchmarks. A benchmark workébadlid be able to run
unmodified on Compressions without knowing that the stomgtem underneath

has significantly less capacity than advertised.

Easy to use:In our experience with developing and benchmarking fileeaysand
storage technologies we have observed that the importanease of use is often
under-estimated. In designing Compressions, one of ous g®#o provide an intu-

itive, easy to use interface to the user.

Speedier benchmarking: System design is often an iterative process and bench-

marking the systems can be time consuming. If the applicatiader test does not

108

have strict timing dependencies, Compressions can spegdikioad execution if

desired and act as a catalyst for benchmarking.

4.2.2 Basic Architecture

Compressions consists of four primary components: a mestmeior block classifica-
tion and elimination of writes to data blocks; the MetaMapréamapping metadata blocks,
the DataGenerator for generating synthetic file contert,tha Storage Model to compute
the actual runtime of an application on a storage systemaiteh

The different components of Compressions are used in taholatow large workloads
to run on a storage system with limited capacity. First, Coeapions intercepts and dis-
cards all non-essential writeisd,, writes to file data blocks) to reduce the amount of storage
space and I/O traffic to the disk. Second, a small fractionritea to essential blocks.¢.,
metadata blocks) are passed on to the real device. Thess\arié suitably remapped so
as to lay them out more efficiently on disk, requiring a smradterage capacity. Third, in
order to deliver accurate timing statistics, a model of thderlying storage stack and disk
is maintained. Finally, synthetic content is generatedrdenpto service read requests to
data blocks that were previously discarded.

Figure 4.2 shows the basic architecture of Compressiongtapthcement in the stor-
age stack as a software layer directly beneath the file syateihabove the storage disk
(i.e., as a pseudo-device). This pseudo-device appears as ard@h to the file system
and interposes on all /0 requests to the real storage device

The pseudo-device driver is responsible for classifyingcké addressed in a request
as data or metadata and preventing 1/0 requests to datasdilmek going to the real disk
(i.e., squashing). The pseudo-device driver intercepts allewitio data blocks, records the
block address if necessary, and discards the actual wrilerelquests to metadata blocks

are passed on to the MetaMap.

109

File System

Pseudo—-Device o
> N 7 N 7 : %

w) =)

D @ o ||

D Q B

© = a || 3

@ Q C || 9,

o | ° || 5109

2 S || @

- L O\ CD J

-

J
~

~

Device Driver

Transport<
>

Figure 4.2 Compressions OverviewThe figure presents the architecture of Compressions.

-

J

110

The MetaMap module is responsible for laying out metadaieks more efficiently on
the disk. It intercepts all write requests to metadata dpglenerates a remapping for the
set of blocks addressed in the request, and writes out thaedaket blocks to the remapped
locations. The remapping is stored in the MetaMap to sersutesequent reads to these
metadata blocks.

By performing the above mentioned tasks, the pseudo-devicer and the MetaMap
modify the original I/0 request stream by altering the lomaiof metadata blocks on disk
and discarding data blocks altogether. These modificatiotise disk traffic substantially
change the application runtime, rendering it less usefubfnchmarking. The Storage
Model in Compressions provides an extrication from thisdprament by carefully simu-
lating a potentially different storage subsystem undegm&amodel the time taken to run.
By doing so in an online fashion with little overhead, ther&ge Model makes it feasible
to run large workloads in a space and time-efficient manner.

Writes to data blocks are not saved on disk, but reads to tiiesks could still be issued
by the application; in order to allow applications to runnsparently, the DataGenerator
is responsible for generating synthetic content to sersidesequent reads to data blocks
that were written earlier during benchmarking and discdrdéhe DataGenerator contains
a number of built-in schemes to generate different kindsasftent and also allows the
application to provide hints to generate more tailored eotit

The details of the individual components are discussedinekis section, except the

disk model, which is discussed separately in Section 4.3.

4.2.3 Block Classification and Data Squashing

One of the primary requirements for Compressions to opesdtee ability to classify

a block as metadata or data. Compressions leverages pritiramoSemantically-smart

111

Metadata Overhead

14 1 1 1 |
3 Block Size 1K ——
g 12 x57.534, 2.483) i |
S 1o - ‘ B
O “\x\ ‘V“
8 8 7) * |
n 6 - . I
()
[@)]
8 4 - i
c
()
o 2
q

0 : : . .

1 4 8 16 32

Size written (GB)

Figure 4.3 Metadata Overhead. Shows the relative space overhead of file-system metadata
with varying file-size distribution, modeled by, ¢) parameters of a lognormal distribution (shown
in parentheses for the two extremes).

Disk Systems [130] to implement block classification inditepseudo-device driver; each
block read or written to the pseudo-device can be classifiathta or metadata.

For file systems belonging to the FFS family, such as Ext2 a«8,Ehe majority of the
blocks are statically assigned for a given file system sizicanfiguration at the time of file
system creation; the allocation for the statically assiginlecks doesn’t change during the
lifetime of the file system. Blocks that fall in this categanglude the super block, group
descriptors, inode and data bitmaps, inode blocks and blbekonging to the journal.
Dynamically allocated blocks include directory, indirésingle, double, or triple indirect)
and data blocks. Unless all blocks contain some self-itieation information, in order
to accurately classify a dynamically allocated block, tiistem needs to track the inode

that points to the particular block and infer its currentgsa Compressions tracks writes to

112

inode blocks, inode bitmaps and data bitmaps to infer whele afidirectory is allocated
and deallocated; it uses the content of the inode to enueératindirect and directory
blocks that belong to a particular file or directory. Thissd#dication is used subsequently
to either squash or remap a given block itype-awarefashion [106] based on its current
status as a data or metadata block.

There are two benefits to data squashing. First, the totedgocapacity required in
absence of data blocks is substantially lower than befoeeo&d, avoiding writes to data
blocks reduces the number of disk 1/0Os and correspondimglylisk seeks, improving the
runtime.

Figure 4.3 shows the relative ratio of metadata to data Ilslacith varying file-size
distributions. As seen in the figure, file systems typicabiydna much higher percentage
of data blocks as compared to metadata, ranging anywheme 9to 99%; the higher
the ratio of data writes, the greater the advantages of dptashing. Having such a high
fraction of blocks as data makes data squashing an espyeai@fictive feature to have for
benchmarking applications where file contents are not rebdesjuent to being written. A

good example of such an application is a file system integhcker such agsck.

4.2.3.1 Data Cache

In Compressions the classification of dynamically alloddtcks depends on observ-
ing a write to the corresponding inode entry. It is often theecthat the blocks pointed to
by an inode are written out before the corresponding inodelylif a classification attempt
is made at this time, an indirect or directory block will beselassified as an ordinary data
block. Eventually the inode block is written, such as due peaodic flush of the buffer
cache, and the misclassification can be rectified. This isaggable for Compressions

since a transient error leads to the “data” block being ddé prematurely and could

113

cause irreparable damage to the file system. For exampldjrnéetory or indirect block is
accidentally discarded, it could lead to file system coliarpt
To rectify this problem, Compressions temporarily buffalisdata blocks in thd®ata

Cacheuntil an accurate classification can be made or a pre-spetifiee quanta expires,
whichever happens first. The design of the Data Cache isvelastraightforward — all
dynamically allocated blocks for which a correspondingd@@ntry has not yet been writ-
ten are added to the Data Cache. When an inode does get whitbeks that are classified
as directory or indirect are passed on to the MetaMap for pgnmg and are written out to
persistent storage, whereas blocks classified as datasuardieéd at that time; all entries
corresponding to that inode are then removed. To preveiat llacks from indefinitely
occupying space, the Data Cache periodically cleans oatldatk entries for which no
inode write has been observed for some time; this time quaniaually set equal to or
greater than the frequency with which contents of the fildesysbuffer cache are flushed

out to disk which is typically less than a minute.

114

e
(R
AARARS
X%

X
2
%
W

- Metadata block L Data block Unoccupied

Figure 4.4 Metadata Remapping and Data SquashingThe figure presents how metadata
gets remapped and data blocks are squshed in Compressioasligk image above Compressions
is the one visible to the application and the one below it disghe compressed disk image.

115

4.2.4 Metadata Remapping

With data squashing turned on, disk 1/O is issued only foradata blocks and leads
to sparse block allocation over the entire disk. In order tkenefficient use of the avail-
able storage, Compressions reclaims the space meant feurthsed) data block locations
through the MetaMap, wherein metadata blocks are remapeeddntiguous region of the
disk, typically starting at the beginning of the disk paatit. Figure 4.4 shows how Com-
pressions makes use of metadata remapping to free up a largenpage of the required
disk space; a much smaller disk can now service the requetiis benchmark workload.

Compressions creates a remap entry for each metadata l@agks(per block, indi-
rect block etc) or range of metadata blocksy group descriptors, inode block table etc)
in the MetaMap; by allowing an arbitrary range of blocks torbeapped together, the
MetaMap provides an efficient translation service for blaikcation, lookup and deallo-
cation. Range remapping also preserves sequentialityeoblihcks on disk. In addition,
aremap bitmaps maintained to keep track of block allocation and dealiocafor the
compressed disk image represented by the MetaMap; the reitmagp supports allocation
both of a single remapped block and a range of remapped bl&ckshe Ext3 file system,
since most of the blocks are statically allocated, the rgrimapfor these blocks can also
be done statically. Subsequent writes to other metadatk®kare remapped dynamically;
when metadata blocks are deallocated, correspondingsritom the MetaMap and the
remap bitmap are removed.

The MetaMap thus has the following two advantages. Firstdmgpacting the sparsely
allocated blocks, a large portion of the disk space is frgggaving the way for a smaller
disk to suffice the requirements. Second, by laying out natalllocks more efficiently
on disk €.g, sequentially), MetaMap improves performance of metadgerations by

requiring fewer disk seeks.

116

4.2.5 Synthetic Content Generation

Compressions services the requirements of systems oldivfile content with data
squashing and metadata remapping alone. However, mangppétations and bench-
marks care about file content; the DataGenerator comporigbdmpressions is respon-
sible for generating synthetic content to service read estputo data blocks that were
previously discarded. Different systems can have differegquirements for the file content
and the DataGenerator has various options to choose from.

Many systems (or benchmarks) that read back previouslyemrlata do not care about
the specificcontent within the files as long as theressmecontent €.g, a file-system
backup utility, or the Postmark benchmark). For such systéns sufficient to return
garbage or randomly generated content in lieu of what wagraily written; the simplest
data generation schema in Compressions does precisely that

Systems can read file contents and expect it to have valiaswamd semantics; the per-
formance of these systems depend on the actual content tegidd.g, a desktop search
engine for a file system, or a spell-checker). For such systemive content generation
would either crash the application or give poor benchmaykesults. Compressions lever-
ages our prior work on building the Impressions frameworfg¢aerate suitable file content,
using a number of existing analytical models for naturagjlaage content as discussed ear-
lier in Chapter 3; Compressions contains a very limited enrlel port of the file content
generation capabilities of Impressions.

Finally, systems can expect to read back data exactly asntag earlier {.e., a read-
after-write or RAW dependency) or expect a precise strgcthat cannot be generated
arbitrarily (e.g, a binary file). We have provided additional support to rumememanding
applications as well; thBRAW cacherovides the necessary functionality to service appli-
cations with strict RAW requirements for file data, and Brefile Storesupports means for

applications to select or download a custom content probézisying how Compressions

117

should generate content suitable for the current apptinatiWe next discuss the RAW

cache and the profile store in greater detail.

4.25.1 The RAW Cache

While Compressions is best suited for applications that aoread file data at all or
require data to be read back but not necessarily match wisatwten, we provide support
to run applications that require more precise semanticsl&ba blocks. We term these
applications as having a read-after-write (RAW) depengémocdata blocks; Compressions
provides a cache for storing some or all data belonging tdiegipns that have a RAW
dependency.

The RAW cache is implemented as a fixed-size circular on4digkthe size of which
can be specified by the application during initializationbSequently, writes to data blocks
with RAW dependency are not squashed but instead writtehedRAW cache; reads to
these data blocks are serviced from the RAW cache insteadiog Isynthetically gener-
ated.

The RAW cache is designed as a cooperative resource visiliteetuser and config-
urable to suit the needs of different applications. In otdetecide which blocks need to be
stored in the RAW cache, the application has several optmoblose from with different

tradeoffs for space requirement and performance:

e All Data: If the largest working set of the application is small enloug fit in the
RAW cache inits entirety, all data blocks are written to t&¥Rcache. Note that this
is not the same as allowing all data writes to go through talitle(.e., no squashing)
since the size of the RAW cache is fixed and data blocks do gepped, reusing
the circular log over the course of the workload executitis ts the default option

in Compressions.

118

e Memoization: An optimization over the previous approach isiiemoizer remem-
ber what previously written blocks looked liked, a conceppwplar in Al systems
and compilers wherein the results of a set of calculatioesa@bulated to avoid re-
peating those calculations [82]. A “memoizing” DataGen@ratores the contents
of previously read or written data blocks and uses them teicefuture requests.
Memoization works best when a small set of data blocks canierantarger set of
data blocks as used by the application to reduce the sizeeoR#&W cache. For
example, if all binary files used by an application have a lsimnternal structure,
saving all the blocks corresponding to one file can help regea blocks for all other

files.

e Modified Applications: If the application requires complete control over the fileeda
blocks that need to be stored, it can specify so to Compnesgiher by providing
the relevant block addresses or by placing a knemagic numbeiin the contents
of the relevant data blocks. This approach provides effggien storing only the
data blocks that are deemed relevant at the cost of modityieagpplication. For
example, repeated in-house benchmarking of an applicatinrget the most benefit

out of Compressionsthrough a one-time cost of customizatio

4.25.2 The Profile Store

Applications can require precisely structured data blagikbout necessarily requiring
the block being read to be exactly the same as the one wriesimples include applica-
tions working with file types that have a well defined struettirat is publicly known€.g,
HTML, XML, audio and video files), or ones that are specifichie application under test.
In both these cases the profile store can contain a profileidesgthe structure of the

particular file type, either selected from a built-in set offdes, or as downloaded by the

119

application prior to the start of benchmarking; the Data€ator interprets the profile and

generates file content accordingly.

4.3 The Storage Model

Not having access to the real storage system requires Cesipns to precisely capture
the behavior of the entire storage stack with all its depanigs through a model. In this
section we first discuss the design goals of the model andphegent the details of our

disk and storage stack model.

4.3.1 Model Expectations and Goals

The usage scenario in Compressions has strongly influemeedeavelopment of our

storage model; we focused on the following design goals:

e Accuracy: The foremost requirement for the model is to accurately iptguerfor-
mance for a storage device. The model should not only creraetthe physical
characteristics of the disk drive and other hardware corapts) but also the interac-

tions of these components under different workload pagtern

e Model overhead: Equally important to being accurate is the requirement that
model imposes minimal overhead; since the model is in theatipg system kernel

and runs concurrently with workload execution, it is reqdito be fairly fast.

e Portability: The model should also be reasonably portable across diffelisks
and storage systems. Having a generic model applicable hy different systems
is hard, instead we aimed for one that required minimal metouéng when porting

across disk systems.

As a general design principle, to support low-overhead riogievithout compromis-

ing accuracy, we avoided using any technique that eithesren storing empirical data

120

to compute statistics or requires table-based approacheetict performance [13]; the
overheads for such methods are directly proportional t@theunt of runtime statistics be-
ing maintained which in turn depends on the size of the disktelad, wherever applicable,
we adopted and developed analytical approximations tlthhdi slow the system down;
our resulting models are sufficiently lean while still befagly accurate.

The Storage Model is designed to run as a separate threaéait®n concurrent with
the workload execution; calls to the model are non-blocking return immediately so as
to not stall the foreground workload. The Storage Model hases idle CPU cycles to
perform model computations in the background.

To ensure portability of our models, we have refrained fromkimg device specific
optimizations to improve accuracy. We believe our currentleis are fairly accurate for
classes of disks and are adaptive enough to be easily cogdidorr changes in disk drives

and other parameters of the storage stack.

4.3.2 The Device Model

The device model in Compressions takes into account thewolly drive components
and mechanisms based on a detailed model of disk drives gedploy Ruemmler and
Wilkes [119]:

e Seek, rotation and transfer from disk media

e Disk caches (track prefetching, write-through and writesl)

Throughout the rest of this chapter, we will refer to the mqateposed by Ruemmler

and Wilkes as the RW model.

121

4.3.2.1 Drive Parameter Extraction

The device model requires a number of drive-specific pararaeis input, for example,
the disk size, rotational speed and number of cylinderslelélid contains a list of param-
eters modeled in the device model of Compressions. Mosteopénameters are extracted
from the drive itself by running a suite of carefully contesd microworkloads. When
available, the drive manual serves as a useful resourcetbatbrroborate our parameter
extraction process and to get accurate values for parasigtar are hard to obtain using
microworkloads; we try to keep the reliance on the manualrtoramum.

Note that the above mentioned process is applicable onlyhe original higher ca-
pacity disk is available to the evaluator; Compressionavssgoned for use in environments
when the originally desired drive itself may not be avaiighther a smaller capacity drive
is used as a substitute. In the latter case, it is left to thiiator to supply the configuration

of the original drive to the device model.

4.3.2.2 Modeling Seek, Rotation and Transfer

We model disk seeks, rotation time and transfer times mud¢hersame way as pro-
posed in the RW model. A seek in the device model is composadmgeduphase, where
the disk arm accelerates from the source track until it readialf of the seek distance, a
coastphase for long seeks, where the disk arm moves at a consteed,spslowdown
phase, where the arm comes to a rest near the destinationracikafter deceleration,
and finally asettlephase, where the disk controller settles the disk head dwetaesired
location.

As per the RW model, very short seeks (few cylinders) are readasing only the
settle time, and short seeks (few hundred seeks) are mogealedrily by the constant
speedup phase. The time for short seeks is proportionaktsdhare root of the distance

between the source and destination cylinders plus theedétie. The actual parameter

Parameter Value
Disk size 80 GB
Rotational Speed 7200 RPM
Number of cylinders 88283
Number of zones 30
Blocks per track 56710 1170
Cylinders per zone 1444 t0 1521
On-disk cache size 2870 KB
Disk cache segment size 260 KB
Disk cache number of segments 11
Disk cache read/write partition Varies
Transfer bandwidth 133 MBps
Seek profile (long seeks; cd 14000) | 3800 + (cyl * 116)/1000
Seek profile (short seeks; cyl 14000)| 300 +/(cyl x 2235)
Head switch time 1.4ms
Cylinder switch time 1.6 ms

122

Table 4.1 Device Model Parameters in CompressionsList of important parameters used
to model a disk drive extracted from the drive or pre-confégliny the user.

Parameter

Value

Device driver request queue size
Request scheduling policy
Delay period for timeout

128 to 160 requests

FIFO (can vary across workload

3ms

2}
N

Table 4.2 Non-device Storage Model Parameters in Compressiond.ist of important
parameters used to model other parameters in the storagk statained through microbenchmarks
or pre-configured by the user.

123

values defining the above properties are specific to a drilgchwwe refer to as theeek
profile of a disk drive.

For an available disk, our device model determines the astek profile by running
a series of controlled reads to different locations on disét measures the time taken to
complete the read, varying the source and destination ssighar each time in a stepwise
fashion. To account for time spent in rotation, we delay taet ®f a subsequent read until
it matches the time taken to perform one full rotation, whhkubtracted out to determine
the contribution of seek alone.

Rotation time is controlled by the disk rotational speed PMR(rotations per minute);
the transfer bandwidth is based on the time taken to read atelane sector from the disk
media. For most cases involving random I/O, seek times dataithe rotation and transfer

times; sustained transfer bandwidth becomes more relévasgquential reads and writes.

4.3.2.3 Disk Cache Modeling

The device model also incorporates the cache resident odiskedrive. The drive
cache is usually small (few hundred KB to a few MB at most irenir drives) and serves
to cache reads from the disk media to service future reads, lmrffer writes.

The disk drive can also “pre-fetch” disk blocks into the cathservice anticipated read
requests through read-ahead from the currently read mtalisk caching can dramati-
cally alter the timing for a disk request since the requestamaserviced almostimmediately
as compared to an expensive seek; modeling the read cacbriga component of a disk
model. Unfortunately, the drive cache is one of the leastifipd components as well; the
cache management logic is low-level firmware code which tseagy to model.

To model the disk cache (a segmented cache), we found oututihber and size of
segments in the disk drive cache and the number of disk seided slots in each segment

using a set of simple microbenchmarks. By writing an indreasmumber of sectors to

124

spatially separated locations, and observing when the taken to complete the writes
shows a sharp increase, we can identify the number of ing@lidegments in the cache.
By writing to spatially adjacent locations, and again imsiag the number of writes till

a sharp increase in time is observed, we can identify thedizn individual segment.

Partitioning of the cache segments into read and write cadheany, can be found out
similarly by issuing a controlled mix of read and write opéras.

We model the read cache as one with a least-recently-usetiogvpolicy. The disk
cache can also serve as a write buffer to temporarily holdriming write requests before
being written to the media.€., a write-back cache). However, since the cache is volatile,
the contents of the cache are subject to being lost on a pailard. For this reason,
most system administrators prefer to turn off write buffgyri or use write-through caches
instead, where a write is written to the buffer but not repdrtomplete until it is written to
the media; the write buffer in that case can service futuagsevithout reading it from the
media.

To model the effects of write caching in the device model, wantain statistics on
the current size of writes pending in the cache and the tineglee to flush these writes
out to the media. Write buffering is simulated by periodigamptying a fraction of the
contents of the write cache during idle periods in betweeatesssive foreground requests;
the amount of writes flushed in any iteration are modeled aoatance with the statistics

on the flush rate and the available idle time.

4.3.3 Storage Stack Model

The drive is perhaps the single most complex component toduehad in the storage
stack, but by no means is the only component that needs to belaetb As discussed
previously, the storage stack contains a number of hardarzdesoftware layers; every /0

request must flow through these layers before reaching steditive. Our Storage Model

125

includes support for modeling a few other performance @ltcomponents of the stack
such as the transport, and software components such astegpeeies. Table 4.2 contains
a list of parameters modeled outside the device model intiv@&e Model.

The transport is modeled rather simplistically using a tamstransfer speed for the bus
protocol connecting the device to the host controller. Tl “handshake” or connection
setup as in SCSI is modeled using a constant time overheade &iost drives transfer
data at a slower rate than the maximum supported by the wanépe transport is rarely a
performance bottleneck.

While developing the Storage Model, we found that the bedrani the request queue
in the storage stack is crucial to performance, and espetieky to model correctly. For
applications that issue bursty 1/0, the time spent by a refguethe request queue can
outweigh the time spent at the disk by several orders of ntadei

We followed two approaches to model request queues. Theafwstoach emulates
a queue simply by maintaining the free and busy times for ikk drive as it serves a
stream of request; the free and busy times are computed tierdevice model discussed
previously. The second approach maintains a replica reéquesie structure, similar to the
one inside a real storage stack. We discuss the two appre@ach®ore detail next.

In the first approach, which we call the time based appro&erdquest queue is mod-
eled by maintaining timing information for free and busyipds. By keeping track of
when the disk will be free to service the next request in theugy we can model the wait
and service times for that request. The next free periodHerdisk is computed using
the set of requests the disk has seen so far and computimgritieidual service times as
modeled by the device model. Since we know when every requeges at the disk, once
we know when the disk will be free to service a particular egjuwe can compute the wait

time and service time for that request.

126

We found that this approach works well for FIFO-based scheduwf I/O request,
and for cases when the request stream is already optimaligee=d prior to arrival at
the request queue. The simple approach is also extremetyeetfi requiring only a few
arithmetic operations to model the wait times.

In the second approach, which we call the replica queue appraa replica request
gueue structure in the Storage Model mimics the actual squesue. In this approach, the
requests that arrive at the Storage Model are enqueuedimteplica queue, and eventually
get dispatched to the device model to obtain the disk setwvice The replica request queue
uses the same request scheduling policy as the originakgaed also supports “merging”
of several requests into one, a common optimization foundast storage systems.

One important aspect to model a request queue accuratebtestml congestion of
requests. The model maintains a list of read and write ragust are waiting to be
serviced; these requests are the ones that were issuedjaebhsd¢o the request queue
getting filled up. The list of waiting requests contains tthef the process that originally
submitted a given request along with the time of the requéstngssion. When the request
gueue is deemed available, the requests from the waitingriesssubmitted to the request
gueue in order of their original arrival according to the suthing process.

Both the approaches are available as part of the Storage IModecan be selected
according to the needs of the experiment; the replica quppach is more generic and
models request queues more accurately than the time-bppeabah, while the time-based

approach is relatively light weight and imposes little dwesad.

4.4 Evaluation

In this section we evaluate the performance and fidelity ah@@ssions. We seek to
answer two important questions about Compressions. Rihgt are the savings in terms of

storage space and application runtime for benchmark wadd® Second, how accurately

127

does the Storage Model predict the runtime and what is theheae of storage modeling?

Before proceeding with the evaluation, we first describeesyoerimental platform.

4.4.1 Experimental Platform

To prototype Compressions, we develop a pseudo-devicerdiat is inserted into
the kernel; the pseudo-device driver exports itself as gula™” disk and interposes on all
traffic between the file system and the underlying hard di8iace the driver appears as a
regular device, a file system can be created and mounted on it.

We have developed Compressions for the Linux operatingesystith ext3 as
the default file system. The hard disks that we currently rhade Hitachi deskstar
HDS721010KLA330 and HDS728040PLAT20 with 7200 RPM and aaceyp of 1 TB
and 80 GB respectively.

The Storage Model in Compressions leverages prior work aldibg a detailed disk

simulator based on the RW model [74].

4.4.2 Performance Evaluation

We start the evaluation by answering the first question — \a@hathe space and time
savings with Compressions? The workloads that we use ferefmluation are a few mi-
crobenchmarkspkfs, and PostMark. All the experiments described next wereoperéd
on the 80 GB Hitachi disk.

We first present the results of a simple experiment using tdst\Park benchmark. The
configuration of PostMark chosen for this experiment wribes roughly one Gigabyte
of data and metadata. Figure 4.5 shows the savings in st required to sustain
the workload; we find that the compressed file-system imageiges a 10-fold reduction
over the original image. Figure 4.6 shows the savings iniegibn runtime for the same

experiment; PostMark runs about 30% faster with remappiogea and about 75% faster

Storage Space Required (MB)

Time taken (s)

Disk Space Savings for Postmark
1200

Storage Spacé I
1000 r

800 r
600 [
400 r
200

0]

Original Compressed

Figure 4.5 Disk Savings for PostMark.

Execution Speedup for Postmark

20 ;
Original
Remap ——
15 | Remap+Squash
10 ¢
5 L
0

Total Transactions

Figure 4.6 Execution speedup for PostMark.

128

129

Disk Space Savings for mkfs

16 ; :
o Disk Size s
(D 14 B 7
S 12 |]
o
g 10 L _
g 8 -
) 6 1
N
) 4t §
5 5l |
2

0

Original Compressed

Figure 4.7 Disk Savings formkfs.

when both remapping and data squashing are turned on. THzaiwan the figure represent
the total time taken by PostMark and the time spent in PodkMansactions alone.

Our second set of experiments usefs as the benchmark workloadukfs is a file
system utility to create a linux file system on a disk panitiove measure the time and
storage space required to create Ext3 file systems on emgiiyques, both with and with-
out Compressions.

Figure 4.7 shows the size of the compressed disk partitiquired to sustain the cre-
ation of a 15 GB file system with Compressions providing samisal savings in storage
space. Compressions exports a “fake” partition size am#fdnkfs into creating a file
system larger than the available disk capacity.

Figure 4.8 shows the time taken to nakf s with and without Compressions. Th&fs
workload represents the worst case scenario for Compres&o two reasons. Firstkfs

writes only metadata blocks and not any file data; applioatiat write to data blocks

130

Execution Speedup for mkfs

N
o

Time Taken (é) —

Time taken (S)
= =
o ol

ol

Original Compressed

Figure 4.8 Execution speedup fomkfs.

can expect significant savings in runtime. Secatikfs does not read back metadata;
the sequentially laid out remapped metadata blocks thusotprovide any performance
improvement for thenkfs workload, in spite of already having incurred the cost ofdilo

classification and remapping in Compressions.

4.4.3 Fidelity Evaluation

In the second part of the evaluation, we answer the followungstion — how accurately
does the Storage Model predict the runtime and what is theheae of storage modeling?

In order to provide accurate results for benchmarking, Casgions models the time
taken to run a workload on the original system. We call theadime taken by the work-
load to run without Compressions as thréginal or measuredime, and the time predicted
by Compressions as thmodeledtime. Figures 4.9 and 4.10 show the accuracy of mod-

eling the runtimes by the Storage Model for four microwodds: sequential and random

131

Sequential Read Workload

1 P —

§ 0.8 |

‘S 0.6

c

2 04}

(@)

©

L 0.2 Original +
0 B | | queleql ffffff -

O 50 100 150 200 250 300 350
Time in units of 100 us
Random Read Workload

1

§ 0.8

‘S 0.6

c

2 04}

(@)

©

L 02y Original -
0 | queleql -

0O 50 100 150 200 250 300 350
Time in units of 100 us

Figure 4.9 Storage Model accuracy for Sequential and Random Read3he graph shows
the cumulative distribution of original and modeled timasSequential (top) and Random (bottom)
reads.

132

Sequential Write Workload

1 —r
H
§ 0.8 r
“ 06 [
c .
S 04|
Q n
© .7
L 02 - Original -
OJ - | - Modeled -
O 50 100 150 200 250 300 350
Time in units of 100 us
Random Write Workload
1
§ 0.8
5 0.6
c
S 04} .
(@)
9 +
w02y ; Original -
0 N Modeled .

0O 50 100 150 200 250 300 350
Time in units of 100 us

Figure 4.10 Storage Model accuracy for Sequential and Random Writes.The graph
shows the cumulative distribution of original and modeietkts for Sequential (top) and Random

(bottom) writes.

133

Postmark Workload

1
§ 0.8
5 0.6
c
2 04}
(@)
©
w02 Original -
0 | | ‘Model‘ed .
0 50 100 150 200 250 300
Time in units of 10000 us
Filebench Webserver Workload
1
§ 0.8 r
s 0.6 __-}*
c "
2 04
(@) =
© .
- 02y Original -
O! | | ‘Model‘ed .
0 50 100 150 200 250 300

Time in units of 10000 us

Figure 4.11 Storage Model accuracy for Postmark and Webserver workload. The
graph shows the cumulative distribution of original and raledl times for Postmark (top) and

Webserver (bottom) workloads.

134

FileBench Varmail Workload

1

§ 0.8 i{

‘S 0.6 rz

= !

S 04

Q u

9 "

- 027¢ Original -
ol | | ‘Model‘ed .

0 50 100 150 200 250 300
Time in units of 10000 us
Tar Workload

1

§ 0.8

5 06 F

5 oalf

% 0.4 |

: i

w024 Original -
O? | | Modeled =

0 50 100 150 200 250 300

Time in units of 10000 us

Figure 4.12 Storage Model accuracy for Varmail and Tar workloads. The graph shows
the cumulative distribution of original and modeled timess\Warmail (top) and Tar (bottom) work-

loads.

Time taken (s)

Time taken (s)

Model Accuracy for mkfs

20 .
Time Taken (s)
15 +
10 ¢
5
0
Original Modeled
Figure 4.13 Storage Model Accuracy formkfs.
Model Overhead for mkfs
20 .
Time Taken s
15 ¢
10 ¢
5
0

Original w/ Model

Figure 4.14 Storage Model overhead formkfs.

135

136

| Workload | Original (sec)| Modeled (sec)

Sequential Read 0.96 30.8

Random Read 133.7 139.1
Sequential Write 28.6 15.7
Random Write 74.6 75.9
Postmark 72 72
FileBench Webserver 130 130
FileBench Varmail 139 139
Tar 57 58

Table 4.3 Accuracy of runtime modeling. The table shows the accuracy of modeling the
total runtime of a workload. Listed here are the original mesed and modeled runtimes for micro
and macro workloads.

reads, and sequential and random writes, respectivelytwbdédines on each graph repre-
sent the cumulative distribution of runtimes as measureth® original workload, and as
modeled by Compressions. We find that the Storage Model pesfquite well for simple
workloads.

Figures 4.11 and 4.12 show the accuracy of modeling the mastiby the Stor-
age Model for four different macro workloads and applicatlernels: Postmark, web-
server (generated using FileBench [112]), Varmail (maiVeeworkload generated using
FileBench), and a Tar workload (copy and untar of the linunkéof size 46MB).

The FileBench Varmail workload is a NFS mail server emulatiollowing the work-
load of postmark, but multi-threaded instead. The Varmaitlkload consists of a set of
open/read/close, open/append/close and deletes in & slivgttory, in a multi-threaded
fashion. The FileBench webserver workload comprises of xa afiiopen/read/close of
multiple files in a directory tree. In addition, to simulatevabserver style log, a file ap-
pend operation is also issued. The configuration of the wakiconsists of 100 threads

issuing 16 KB appends to the web-log for every 10 reads.

137

Overall, we find that storage modeling inside Compressisnguite accurate for all
workloads used in our evaluation. The total modeled time el &s the distribution of
the modeled times during workload execution are close tobserved total time and the
distribution of the observed times. Table 4.3 compares thasured and modeled runtimes
for the workloads described above; except for sequentadseand writes, all workload
runtimes are predicted fairly accurately. The reason ferittaccuracy in our sequential
workloads is a limitation of the Storage Model’s disk cachedeling; we expect to resolve
this issue in future versions of the Storage Model.

We now present results fatkfs as the workload. Figure 4.13 compares the actual
runtime ofmkfs measured without Compressions with the one predicted bystbeage
Model; Figure 4.14 shows the overhead of the Storage Modelfit We find that the
Storage Model of Compressions provides high fidelity madpbf benchmark workloads

and imposes an almost negligible overhead.

Mkfs Individual Request Times
2.5e+06 -

O'riginal +

2e+06 | .Modeled -

+ +
+++t+++

i+
+
N

1.5e+06 |
le+06 +

Time in us

500000

ey

0 - - .
20K 40K 60K 80K

Request Number

Figure 4.15 Storage Model accuracy formkfs. The graph shows the accuracy of modeling
individual requests fomk fs

138

Mkfs Request Queue Length

200 , . |

Original —
Modeled ————

£ 150 | |

m ’r

o dils i b

El) T it Y i A

()] 100 I / |

>

S

@4 50 _

0

20K 40K 60K 80K
Request Number

Figure 4.16 Storage Model accuracy for modeling request queue length fankfs. The

graph shows the accuracy of modeling the amount of requesteghuilt-up during workload exe-
cution.

Finally, we show the accuracy of modeling individual regedsrmkfs. We investigate
the Storage Model one step further by comparing individegliests instead of aggregate
times; Figure 4.15 shows the time taken by each individugiest, and the corresponding
modeled time. Although the goal of Compressions is to pteitiie total runtime of the
application workload on the original storage system, eadhividual request is also mod-
eled fairly consistently by the Storage Model. Figure 4.h6vgs the accuracy of modeling
the request queues; Compressions not only accurately sitiaetotal runtime but also the

time spent in individual components of the storage stack.
4.5 Related Work

In this section we discuss related research in two areagaggsystem modeling and

emulation, and synthetic content generation.

139

4.5.1 Storage System Modeling and Emulation

The classic text on disk drive modeling by Ruemmler and V¥ilKiel 9] describes the
different components of a disk drive in detail, and evalsdke ones that are necessary to
model in order to achieve a high level of accuracy. While diske technology and ca-
pacity have changed a lot since the paper was originallyigiid, much of the underlying
phenomena discussed then are still relevant.

Extraction of disk drive parameters has also been the subjgarevious research to
facilitate more accurate storage emulation. Skippy [1d8}eloped by Talagakt al., is a
tool for microbenchmark-based extraction of disk chanasties. Skippy linearly increases
the stride while writing to the disk to factor out rotatioreffects, and thereby extracts a
more accurate profile for seeks. Our device model uses asgitathnique but is optimized
to run for large disks by introducing artificial delays beemesuccessive requests; a linear
increase in stride is unacceptably slow for extracting pexiers of large disks.

Worthingtonet al. describe techniques to extract disk drive parameters stitiesseek
profile, rotation time, and detailed information about degout and caching [158]. How-
ever, their techniques and the subsequent tool DIXtracahtmmates the process, rely on
the SCSI command interface [121], a limitation that is nategtable since the majority of
high capacity drives today use non-SCSI interfaces like, IBEA and SATA.

An orthogonal approach for disk modeling is to maintain nonat statistics in the form
of a table, and use the information on past performance tdigiréhe service times for
future requests [13]. Popovigt al. develop the Disk Mimic [104], a table-based disk
simulator that is embedded inside the 1/0O scheduler; inrmmake informed scheduling
decisions, the I/O scheduler performs on-line simulatibtme underlying disk. One major
drawback of table-based approaches is the amount of gtatisat need to be maintained

in order to deliver acceptable accuracy of prediction.

140

Memulator is a “timing-accurate” storage emulator from CNB9]; timing-accurate
emulation allows a simulated storage component to be ptligdge a real system running
real applications. Memulator can use the memory of eitheetavorked machine or the
local machine as the storage media of the emulated disk]iegdhll system evaluation
of hypothetical storage devices; Compressions can bengfit fhe networked emulation
capabilities of the Memulator in scenarios when either thst Imachine has limited CPU
and memory resources, or when the interference of runninggessions on the same
machine competing for the same resources is unacceptable.

Similar to our emulation of scale in a storage system, Gaptal. from UCSD pro-
pose a technique calle@ne dilationfor emulating network speeds orders of magnitude
faster than available [62]. Time dilation allows one to expent with unmodified applica-
tions running on commodity operating systems by subjedtiegn to much faster network

speeds than actually available.

4.5.2 Synthetic Content Generation

Much in the same way as Compressions generates values & t@@valid disk lo-
cation, failure-oblivious computing uses the concept oftsgtically generating values to
service reads to invalid memory, while ignoring invalid tes [115]. The usage scenario
is entirely different for failure-oblivious computing — @bling computer programs to re-
main oblivious to memory errors and continue unaffectecattempt is made to inform the
program that an error occurred upon memory access.

The importance of accurately generating synthetic test tat also been recognized
in the database community. Houkjasral. develop a relational data generation tool for
databases [64]. Their tool can generate realistic data EGFQOLAP and streaming ap-
plications using a graph model to represent the databasersghsatisfying inter-table and

intra-table relationships while producing synthetic rawdaolumn entries.

141

Aboulnagaet al. develop a data generator for synthetic complex-structiddl data
that allows for a high level of control over the charactecsiof the generated data; their
tool allows the user to specify a wide range of charactesshy varying a number of
input parameters [1]. Other examples of generating syittldeta include the Wisconsin
benchmark [40], TPC-C and TPC-H benchmarks [148, 149], gnthstic data from the
OO07 benchmark for object-oriented databases [27].

4.6 Conclusion

Motivated by our own experience (and consequent frustmatio doing large-scale,
realistic benchmarking, we have developed Compressidmsnehmarking system that al-
lows one to run large, complex workloads using relativel\aler storage capacities. Com-
pressions makes it practical to experiment with benchmiudiswere otherwise infeasible
to run on a given system by transparently scaling down theageocapacity required to
run the workload. The required disk size under Compresstansoe orders of magnitude
smaller than the original while also allowing the benchmtarkxecute much faster. Com-
pressions ensures the accuracy of benchmarking resultsibg a model of the disk and
the storage system to compute the runtime of an applicatiothe original unmodified

system.

142

Chapter 5

Generating File-System Benchmark Workloads

Another crucial requirement for benchmarking apart frora benchmark state is the
benchmark workload, without which no benchmarking can geac Like benchmarking
state, the benchmark workload should also be represeatatithe target usage scenario,
in this case the real-world applications running on theaystWhile creating a benchmark
workload, care must be taken to ensure that the workloadsg tareproduce so as to
enable comparison across systems.

To evaluate the performance of a file and storage systemlapmrs have a few different
options, each with its own set of advantages and disadvesitag

e Real Applications: One option for evaluating a file or storage system is to diyect
measure its performance when running real I/O-intensiypdiegtions. The obvious advan-
tage of benchmarking with real applications is that theqgrentince results can correspond
to actual scenarios in which the system will be used and tbatsucare about. However,
the problem is that real 1/0O-intensive applications caniffecdlt to obtain, to setup, and to
configure correctly [144].

Some systems have used production workloads to evaludi@mance, mostly ones
developed in large corporate environments where prodaatiorkloads are available in-
house. Examples of such systems include the Google File®y&l], IBM GPFS [122]
and NetApp Data ONTAP GX [45]. Often system evaluators campse by running “real

applications” that they are the most familiar with, such asipiling an operating system

143

kernel or untarring a source tree. While these workloadsasger to setup, they may not
be fully representative of the end applications.

e Microbenchmarks of Application Kernels: A second option is to run application
kernels instead of the full applications themselves. Fangxe, instead of configuring and
stressing a mail server, one can instead run the PostMatlbgf@chmark, which attempts
to produce the same file system traffic as a real mail servenerGixamples of kernels
include the original [65] and modified Andrew Benchmarks][99PC-1,2 [138], and the
TPC Suite [147, 148]. The disadvantage of using kernelsaddss of representativeness.
While these kernels are simpler to run, they have the funddahproblem that their simpli-
fications both may make them no longer representative ofrigenal workload and enable
system designers to artificially optimize to specific kesnel

e Trace replay: Athird optionis to replay file system traces that have beewipusly
gathered at various research and industrial sites. Exangflé&races include file system
traces from HP Labs [114] and a collection of I/O and file systeaces available through
SNIAs IOTTA Repository [133]. Replaying file system traadsninates the need to setup
and recreate the original applications. Trace replay hewkas challenges of its own.

In particular, replaying the trace while accurately presey the original timing [14]
and accounting for dependencies across /O requests [85ha@um-trivial problems. In
addition, traces are often large, unwieldy, and difficultse.

e Synthetic workloads: A final option is to run synthetic benchmark workloads that
are designed to stress file systems appropriately, everchsd®gies change. Synthetic
workloads, such as 10Zone [98], SPECsfs97 [157], SynRG&h fdtress [12], and Chen’s
self-scaling benchmark [31], contain a mix of POSIX file ggemns that can be relatively

scaled to stress different aspects of the system.

144

The major advantages of synthetic applications is how rtipty are to run and that
they can be adapted as desired. However, the major drawbiainthetic workloads is
that they may not be representative of any real workloadsuers care about.

In practice, we find that evaluators often use a combinatfatifferent types of work-
loads and that there is significant diversity in the choidesletailed survey of file system
benchmarks used in publications from top systems confesesach as SOSP, OSDI and
FAST was conducted by Traegetral.[145]; the survey contains details on benchmark us-
age, including descriptions of the workload charactersséind their configurations. Here
we summarize some of the important findings from the survey.

On the whole, synthetic benchmark workloads are much mopelpothan using real
applications or trace replay. We suspect that this can bibuatd to the ease of use
with which synthetic workloads can be employed. The mostufapindividual bench-
mark workload according to the survey is PostMark [70], tentat Network Appliance.
PostMark strives to measure performance for email, netravwiksweb-based commerce
applications. Other popular benchmarks include the Andsemchmark and its variants,
first developed in 1988 at CMU; and the Cello disk traces [Id8lected at HP Labs in
early 90’s. Benchmarks from the TPC suite [147, 148] reldarsel990 and 1992, and
specSFS [157] from 1993 are also used often.

Any synthetic benchmark workload referred to in the survay ne or more of the fol-
lowing drawbacks: the benchmark workload can be obsoledenahrepresentative of any
real application the user cares about, the benchmark waxdki® not easily reproducible,
the parameters for various workload properties can be recbor outdated, and finally, the
default or primary configuration of the benchmark workloa ®e unsuitable or mislead-
ing.

As noted earlier, most of the popular benchmark workloagseapng in this survey

were written over a decade ago, for different operating remments. Usage and access

145

patterns evolve over time and also vary with different eswments [77, 116, 153]; im-
provements need to be made to these workloads to reflect @mgehk. In general, it is hard
to maintain the authenticity of a benchmark workload oncgdteployed. A periodic over-
haul of the workload is needed to prevent it from getting ated; no automated means
exist to keep a given synthetic workload in-sync with itd emunterpart.

Benchmark workloads can also be hard to reproduce, muchHhikelifficulty in gen-
erating reproducible file-system images for benchmarkifigice replays and production

applications used as benchmark workloads are especialtlytbaeproduce; they require

preserving the original timing information and accountfogdependencies across 1/O re
quests. lll-defined and incompletely specified workloads @so not accurately repro-
ducible.

Additionally, distributions for commonly used file systemiridoutes like file sizes have
changed over time as well; most benchmark workloads havekeyatt pace with recent
trends. One example is the Postmark benchmark workloadhgesihreaded application
that works on many short-lived, relatively small files. Therktoad consists of several
transactionsvhere each transaction is one of a file create or delete; o eefild or append
operation. The benchmark begins by creating a random potéxbffiles with uniform
distribution of sizes between high and low bounds. The fikats operation creates a
new file and writes random text to it. File delete operatiofetds a randomly chosen
file. File read reads a random file in its entirety and a file eveppends a random amount
of data to a randomly chosen file. Distribution of email filees has changed over the
years. One indicator of this trend is the size of Personala§t Table (or.pst) files in
Microsoft Windows used to store Outlook messages locaflyplaserved in our metadata
study (Chapter 2); PostMark has not kept pace with this trend

Finally, a poor workload configuration is often the causerfosleading results. Given

a choice of workload, it is left to the evaluator to choose afiguration suitable for the

146

benchmarking experiment. The configuration can contrabverparameters of the work-
load such as its working set size, number of 1/0O operatiorisamisactions, options for 1/0
modes €.g, buffered and non-buffered), and number of concurrentttise A poor config-
uration choice can defeat the purpose of benchmarking erenvforkload that is perfectly
reasonable otherwise. Synthetic workloads and applicétonels are especially prone to
misconfiguration. A continuing example of such a workloaBastmark. Through our own
evaluation and as noted by others [125, 145], we find thatNPar&thas several shortcom-
ings. One glaring example is the default configuration oftMask. Not only it is obsolete,
the amount of I/O traffic generated is not nearly enough sstmodern computer and 1/0
systems, the entire working set easily fitting in memory foy enodern machine.

Given the popularity of synthetic benchmarks and their egnent misuse in staking
claims about performance, we believe that the ideal bendhifoa file and storage sys-
tems combines thease of usef synthetic benchmarks with threpresentativeness real
workloads. While we have not perfected a complete systeraldapf creating realistic
benchmark workloads, we have made a promising start. Thieofjdlais chapter is to de-
scribe how one might create realistic synthetic benchmasksy our proposed technique.

Specifically, our approach is to provide a tool that enables create a synthetic
benchmark that is functionally equivalent to a given realeation or a workload com-
prising of a mix of applications; that is, the synthetic blemark stresses the underlying
system in the same way as the original set of applications.

In this chapter, we first describe our initial steps in thigediion by building a tool,
CodeMRI (an “MRI” for Code, if you will) in Section 5.1, and @and, in Section 5.2,
we discuss future work in designing automated workload genes using CodeMRI as a

building block. To bring the chapter to an end, we discussteel work in Section 5.3.

147

5.1 Generating Realistic Synthetic Benchmarks with CodeMR

Determining whether or not two workloads stress a systerhénsime way is a chal-
lenging question; certainly, the domain of the system uteldhas a large impact on which
features of the two workloads must be identical for the r@sglperformance to be iden-
tical. For example, if the system under test is a hardwaréesathen the two workloads
might need to have identical addresses for all issued ictsbns and referenced data; on
the other hand, if the system under test is a network protdbel two workloads might
need to have the same timing between requests to/from the isanote nodes. Therefore,
the specific features of the real workload that must be cagthy the synthetic benchmark
depend on the system. For file and storage systems, one naligndothat an equivalent
synthetic workload could be created by simply mimicking slgstem calls through the file
system API €.g, read, write, open, close, delete, mkdir, rmdir). Given tioals such as
strace [140] already exist to collect system call tracesating such a synthetic workload
would be relatively straight-forward. The problem is thgstem calls that appear identical
(i.e.,, have the exact same parameters) can end up exercisingethgdiem in very different
ways and having radically different performance.

File systems are complex pieces of system code containindrads of thousands of
lines of code spread across many modules and source fileserldite systems contain
code to perform caching, prefetching, journaling, storaljgcation, and even failure han-
dling; predicting which of these features will be employgdéabgiven system call is not
straight-forward. Furthermore, the storage devices trephysically storing the data have
complex performance characteristics; accesses to seglglocks have orders of magni-
tude better performance than accesses to random blocks.

Consider the example ofmead operation issued through the API. This read might be
serviced from the file-system buffer cache, it might be p&m sequential stream to the

disk or a random stream, or could involve reading additidit@lsystem meta-data from

148

the disk. Similarly, avrite operation might allocate new space, overwrite existingdat
update file-system metadata, or be buffered as part of aydelarite”. In each of these
cases, the exercised code and the resulting performanideensignificantly different.

Our hypothesis is that to create an equivalent synthetichoeark for file and storage
systems, one must mimic not the system calls, bufiinetion callsexercised in the file
system during workload execution, in order to be functignaguivalent. We believe that
if two workloads execute roughly the same set of functiotsoalthin the file system, that
they will be roughly equivalent to one another.

CodeMRI uses detailed analysis of the source code for thesydéem under test to
understand how a workload is stressing it. Specifically, €ddBI measures function-call
invocation patterns and counts to identify internal systeghavior. Our initial results in
applying CodeMRI to macro-workloads and benchmarks sucRastMark [70] on the
Linux ext3 [150] file system are promising.

First, CodeMRI is able to deconstruct complex workloads micro-workloads; each
micro-workload contains system calls.g, read and write) with known internal behavior
(e.g, hitting in the file buffer cache or causing sequential versundom disk accesses). In
other words, with good accuracy, we are able to identify thateal” workload, such as
PostMark, performs the same set of file system function ealla combination of system
calls with certain parameters. Second, to a limited exteatare able to predict the runtime

of the workload based on this set of constituent micro-waakis.

5.1.1 Experimental Platform

CodeMRI was developed and tested on a dual core Intel Pentitieon machine
with 512K Cache and 1GB of main memory with Ext3 as the tessfilgem on the Linux
operating system. The hard drive was an IBM 9LZX SCSI diskwitrotational speed of
10000 RPM, on-disk cache of 4MB, and a capacity of 9GB.

149

CodeMRI requires tracing function invocations during wodd execution, we
used a statically instrumented version of the linux kerneinpiled using thegcc
-finstrument-functions option. The instrumentation inseti®oksto special profiling
functions for each entry and exit point of a function in the fédlystem. The hook func-
tions are called with the addresses of the caller and calieetibns, a timestamp, and any

additional information that needs to be captured at runtime

5.1.2 Micro-workloads and Microprofiles

The goal of CodeMRI is to be able to construct synthetic emjaivts of real workloads,
but there are two challenges in solving this problem. Firg,need to accurately decon-
struct real workloads into constituemicro-workloads A micro-workload is a simple, easy
to understand workload such as thed system call in its many forms, each with the same
behavior (cached or not, sequential or random). Second,eed to be able to use the set
of micro-workloads to compose a synthetic equivalent ofahginal workload.

We plan to approach this problem by leveraging two sourcesfofmation. First, we
leverage domain knowledge about the system under testn8ega@ use tracing to obtain
useful information about the workload execution and théesyisunder test.

Domain knowledge about file systems consists of basic krdyd@bout the different
features that it provides, such as caching and prefetcHihg is useful to know because
different workloads can exercise different system feattinat CodeMRI needs to identify.
The domain knowledge guides the tracing of execution pofide micro-workloads. For
example, we need to have an execution profile foaehed read The execution profile is
simply a list of unique functions and their invocation caduring a particular workload

execution.

150

For tracing the workload execution, we believe functiorocation patterns and invoca-
tion counts provide the amount of detail necessary to utaeishe benchmark workload
and the functionality that it exercises. This constitubeseixecution profil®f the workload.

In order to address the first challenge — to breakdown redtiwads into simpler micro-
workloads, we compare the execution profile of a real worttlaéh the set of execution
profiles of individual micro-workloads. We call the exeautiprofile of a micro-workload
amicroprofile To address the second challenge — to synthesize a syntigeiivalent, we
intend to compose the microprofiles together, along withrtgrand ordering information.

Microprofiles are thus the building blocks for achievinglbour objectives.

5.1.3 Building Microprofiles

The first step in building CodeMRI is to identify a comprehgasset of micro-
workloads and build their microprofiles. We achieve this bgning all the system calls
through the file system API, under the effect of various filstem features. For example,
in the case of aead system call, we identify two features that matter: whetherread is
cached or not, and whether it is random or sequential; weltrednat all four combinations
of the workload as a function of the request size and buildopiofiles for uncached read,
cached read, sequential read, and random read.

Through our experiments we find that keeping track of setsiioétion invocations and
their counts, during a workload execution, allows us todaitcurate microprofiles. We
also observe that it is cumbersome and unnecessary to keemtine execution profile —
instead we select a small set of function invocations thajuely characterize a micropro-
file. We call this thepredictor setof a microprofile, and consequently the corresponding
micro-workload. A predictor set typically consists of oreefew tens of function calls,
depending on the number of micro-workloads. The intuitiehibd this approach is that

each function contributes towards completion of a higheellevorkload such as aead.

151

Each function thus serves as the smallest unit of “usefukivorhe goal is to identify a
set of functions that uniquely represent the higher levakioad.

For example, in the absence of any other workloatkzl system call can be identified
simply by observing calls to theys_read function. However, if we need to distinguish
between sequential and random reads, thenread will be shared by both and useless
to distinguish; in that case, an extra function calt3_readpages helps us differentiate
the two. The reason behind that is sequential reads triggek Iprefetching and a fraction
of blocks do not need to be explicitly requested for from th&kdhereby altering the
invocation count of the function for the two workload patter

The larger the number of micro-workloads, the greater thealmer of predictor sets
needed to differentiate amongst them; consequently, #eeddithe predictor set is directly
proportional to the number of micro-workloads that need ¢oskparately accounted for.
In order to identify the set of function calls that consttie predictor set for a workload
from amongst all the possible functions that contribute,deéine some metrics to help
automate the task.

We have three quantitative metrics associated with a pi@dset —slope uniqueness
andstability. Two of these, uniqueness and stability (both on a scaletofl), are used
in the selection of predictor sets. Each member function prelictor set has alope
which characterizes the rate of change of invocation coutfit ghange in some workload
parameter (such as request size). We defineutiguenes®f a predictor set towards a
micro-workload (such asead) as its affinity with the micro-workload. A uniqueness of
1 implies that the particular predictor set is invoked exslely during this workload’s
execution, while0.5 implies that it has an equal affinity with another workloadd&®
makes it irrelevant for that workload. Theability of a predictor set is a measure of the
variability of function-invocation counts as some workligaarameter is varied. A perfectly

stable predictor set (i.e., with stability equal tpwill scale proportional to theslope as

152

Predictor Set for Sequential Reads

eX‘t3_b|OCk‘_to_path‘ |
ext3_read pages

s
"

N Wk~ 01O

o’
o’
tids
tids
.
LT
o
o
o
e
tis
-
L=
.-

i

Attt

Scaling of Predictor Set

200 400 600 800 1000 1200
Request Count (# Blocks)

Figure 5.1 Predictor Set for Sequential Reads. Having two member functions with scaling
slopes equal t6.85 and0.895, uniquenessf 1, andstability very close tal

the request size of the workload is increased, for instaAcgtability of 0 means that the
predictor set scales in a completely uncorrelated fashioriswuseless for prediction. Thus,
an ideal predictor set for a given workload is one having hutigueness and stability equal
to 1.

Figure 5.1 shows a simple example of the predictor set fousetigl reads having
two member functions with scalinglopesequal t00.85 and0.895, uniquenes®f 1, and
stability very close tal. This makes it a good candidate for being a predictor setantity
sequential reads.

To compute the slope for member functions in a predictorwetkeep track of their
invocation counts, as we vary a workload parameter. Thirgedor a small “training
range” to create a model. For example, in Figure 5.1, thaitrgirange for the request
size model is from200 to 1200 file system blocks. Figure 5.2 repeats the experiment for

random reads. Notice that the slope of the invocation caanraihdom reads is different as

153

Predictor Set for Random Reads

6 I I I I
2 ext3_block_to_path -]
s 5 - ext3_readpages - e
— ‘,./'
o L
3 4 e
S ._,,-o
a P
5 3] P
o P
= 2 L
© -~
(&) Lo
0N 1 e

200 400 600 800 1000 1200
Request Count (# Blocks)

Figure 5.2 Predictor Set for Random Reads. Having two member functions with scaling
slopes equal t6.98 and0.97, uniquenessf 1, andstability very close tal

compared to sequential, and is used to distinguish the twguré& 5.3 shows accuracy of
prediction for writes.

In our (limited) experimental evaluation, we found that gredictor sets identified by
CodeMRI are stable beyond the training-model range. Intpecstability can be affected
by “cliffs” for different regimes of workload execution wheslinear interpolation will be
insufficient.

The predictor set allows us to accurately predict the extd#nthe corresponding
micro-workload. For example, if we observe a call to the figitext3_readpages and
ext3_block_to_path a certain number of times, we can infer the correspondinggt
random read being performed. Similarly the predictor setéxhed reads will correspond,
as shown in Figure 5.4, to the amount of bytes being serviwed the buffer cache during

aread operation.

154

Predictor Set for Writes

generic_make_request
ext3_new_block -

N Wk~ 01O

Scaling of Predictor Set

200 400 600 800 1000 1200
Request Count (# Blocks)

Figure 5.3 Predictor Set for Writes. Having two member functions with scaling slopes equal
t0 0.97 and0.93, uniquenessf 1, andstability very close td

In Figure 5.5 we show few function calls that are not good jmteds for the above
example,i.e. distinguishing amongst sequential and random reads. eThestions are
either not invoked at all during a read call, or are invoketltheir invocation count does
not change predictably with the amount of data being reamleeng them useless.

The choice of a predictor set for any workload is not constdfir a single micro-
workload, it is easy to find a predictor set with uniquenessétp 1. However, for a real,
complex workload, consisting of potentially tens to humdre@f micro-workloads, there
can be significant overlap in the set of function invocatiansongst the different micro-
workloads, such that finding a predictor set for each of themat straightforward. The
size of the predictor sets depends on the number of micrédeads to be deconstructed
from the real workload. The more complex the real worklode, greater the number of

functions required to construct predictor sets for eacthefrhicro-workload.

155

Prediction Accuracy - Caching Data

[9)] 12 | ! — !

§ Cached Sequential Reads

c 10 - 100 % Accurate -~

o 8+ =

g -

g °]

o 4

g 2

S0

o

D_ -2 T T T T
0 2 4 6 8 10
Actual Accesses to Cache (X * 100 Blocks)

Prediction Accuracy - Caching Data

[9)] 10 . . .

§ Cached Random Reads

S g 100 % Accurate -~z

<

©

2 6

[&]

©

@) 4 -

i®)

Q

o 2

©

o

o 0

0 2 4 6 8 10
Actual Accesses to Cache (X * 100 Blocks)

Figure 5.4Accuracy for Cached Reads. Figure shows the predicted and actual reads serviced
from the cache during sequential and random read workloads.

156

Bad Predictor Set

ext3_free_branches
ext3_get_inode_block -

Scaling of Predictor Set

B OoORNM®WAOGAO®

200 400 600 800 1000 1200
Request Count (# Blocks)

Figure 5.5 Example of a Bad Predictor Set for Reads. Invocation of function
ext3free_branches does not change with request and getdnodeblock does not get invoked
very much at all. Slopes for both predictors equal$taniqguenessf 0, andstability very close to
1

CodeMRI consists of an algorithm based on linear-programyniLP) to select predic-
tor sets, attempting to maximize the uniqueness for eacheofrticro-workloads. The LP
problem constraints are in the form of minimum acceptablaesfor slope and stability,
wherein the predictor set consists of the top-K functiors satisfy the given criteria, with
K being the number of micro-workloads under consideratiorthe absence of any func-
tion that satisfies the given slope and stability criteriee tonditions are relaxed until a
match is found.

During our experiments with the micro-workloads and in wstending the structure
of the file system source code, we find that in practice, mieookloads exhibit a natural
division of function invocations, making it feasible to set predictor sets even for a mix
of applications; if each workload is run in isolation it idaBvely straightforward to select
a good quality predictor, but as more workloads get addetiéaix, finding predictors
becomes harder. We have not tested CodeMRI for complex wadkl and it is likely that

our techniques will need refinement for use in such scenarios

157

Micro Workload | Variations Parameter Extent or Count
Read sequential or random| degree of randomness
cached or not cached degree of caching
Write sequential or random| degree of randomness
POSIX open, mkdir, rmdir, | count
calls create, delete, close
cached calls degree of caching
e.g., open after create

Table 5.1 List of Micro-Workloads Tested. The table lists the various micro-workloads and
their variations that were deconstructed with CodeMRInglavith the parameter of interest that
was successfully predicted.

5.1.4 Using Microprofiles for Deconstruction

We now describe the use of microprofiles to deconstruct veaidks. We present our
discussion with increasing complexity of benchmark wogkls:
e micro-workload, such assead orwrite
e macro-workload consisting of micro-workloads
e macro-workload under caching
e application kernel: PostMark

Table 5.1 shows the list of micro-workloads that we have @rpented with and are
able to predict with good accuracy.

The accuracy continues to be good for macro-workloads.rEi§L6 shows the accuracy
of prediction for a macro-workload consisting péads, writes and system calls such
asopen andclose, as we vary the request size. The leftmost graph shows theaec
prediction of random writes, and the middle one shows the i@t writes to sequential
and random reads as predicted. The rightmost graph in Figérehows the accuracy of
prediction of reads under caching. In these graphs, the ‘@dithe represents the training

range on which the slope for prediction was computed.

158

Prediction Accuracy for Macro-Workload

4 | Random Writes
Model s

Predicted Request Size
N

0 05 1 15 2 25 3 35 4 45
Actual Request Size (# 1000 Blocks)

Prediction Accuracy for Macro-Workload

10

WRIRR

o g {WRIRS
= Mode| s P
04
o 61
a8
s 4 A
o =
o 2

0 ‘ ‘ ‘ ‘

0 2 4 6 8 10
Actual Request Ratio
Prediction Accuracy under Caching
3 10 : ‘
® 9 { Cached Reads
8 8 | Mode|
Q
< 7
£ 2]
S a4
o 3 1
()
S %]
5 |
()
z O ‘ ‘ ‘ ‘
0 2 4 6 8 10

Actual Cache Accesses (# 100 Blocks)

Figure 5.6 Accuracy for Macro-Workloads. The leftmost graph shows the accurate pre-
diction of random writes in a macro-workload consisting aftes and reads (both random and
sequential). The middle graph shows the ratio of randomesrit:VR) to read sequential (RS) and
random (RR) as predicted by CodeMRI. These ratios showtthaietative counts across workloads
are also accurate. The rightmost graph shows the shows thigracy of prediction under caching.
The Model line represents the training range on which theshlvas computed.

159

CodeMRI is thus able to accurately identify workloads welybnd the small training
range of request sizes for which the slope model was comp@sly for larger deviations
from this range do we observe inaccuracy.

In order to verify whether this deconstructed workload hag eorrelation with actual
performance, we use it to predict performance and compdtethe actual measured per-
formance. The hypothesis is that if the deconstruction @eate, then the sum of time
taken by the individual micro-workloads should be closehi® actual measured time. To
predict performance once we have identified the set of mid<oads, we simply add
the time it takes to run them individually. This is a coarseéneate, as it does not take into
account dependencies amongst the micro-workloads.

Figure 5.7 shows an example of this for a macro-workload isting of random and
sequential readsikdir, create, anddelete operations. The left graph highlights that
the primary contributor(s) to performance can be differgoi the expected ones, and
CodeMRI can identify the real contributors. The “issuedragiens” are the ones issued
through the file system API. The “actual operations” are thesobeing actually issued by
the file system to the disk, and not serviced from cache. Thedipted operations” are the
ones identified through CodeMRI.

In order to predict the runtime, we need to know the time ietako run the individ-
ual micro-workloads (or the predicted operations in thise)athis timing information is
collected during the initial fingerprinting phase of evericro-workload as it is run with
varying request sizes. To compute the predicted runtimesiwgply add the individual
runtimes of all micro-workloads.

In this example, random reads contribute much less to dweratime than sequential
reads and mkdir. The stacked bar graph on the right showsrdtigbed runtime contri-
butions from individual micro-workloads. We see that thedicted cumulative runtime

matches closely with the measured runtime, demonstratimgc¢curacy of CodeMRI.

160

Workload Breakdown

14000 : ‘ — ‘
” Issued Operations =—=
S 12000 - Actual Operations mm
8 10000 - Predicted Operations ==
()
o i
o 8000
© 6000 -
é 4000 -
3 2000 - -
0 . o (N | ... (TEH
R_seq Mkdir Create R_rand Delete
Contribution of Individual Micro-Workloads
2000
S delete
8 1500 L rand read
< create
C -
2 1000 ¢ mkdir
©
=
o
S 500 |
0

Actual Predicted

Figure 5.7 Macro-workload Deconstruction. The macro-benchmark consists m#dir,
create, delete, repeated random reads to a small file, and sequential readslarge file, re-
sulting in random reads hitting the cache. The graph on tliesleows the deconstruction of this
macro-workload by CMRI which identifies the effective (i@tl) count of random reads. The “is-
sued operations” are the ones issued through the file systeimTAe “actual operations” are the
ones being actually issued by the file system to the disk,atre®nviced from cache. The “predicted
operations” are the ones identified through CodeMRI. Theppran the right shows the individual
contribution of different micro-workloads towards theabtuntime, as predicted by CodeMRI.

161

Postmark Workload with Varying Cache Size

)
45 : : - -
3 S Open
X 40 Close
5 35 Delote -
= Seq Reads Lookup
% U R B Create
g 25 - Rmdir
% Mkdir -~
S 20 1 Cache Reads
S 15 - Seq Reads
g Cache Reads Rand Reads ==
10 fueem SR E AR,
“E 5) 1 L
é 0 , . ~mmem———Rand Reads
o 600 400 200 0
Cache Size (MB)
Postmark Workload with Varying Cache Size
Total Time =—e——
Time in Transactions =
mn
o
o 10 - L
c
)
4
©
|_
QO 5 - |
£
|_
O T T T T

Cache Size (MB)

Figure 5.8 PostMark with Decreasing Cache Size.The postmark configuration is 1000 files,
200 sub-directories, 4K block size, 1000 transactiond) wiher parameters as default. CodeMRI
accurately deconstructs the effective workload and thal tatntime is in accordance with the
predicted workload. Important micro-workloads are in tec lines.

162

CodeMRI thus not only deconstructs workloads accurateiythe deconstructed work-
load is useful in predicting performance. We find that theialkctuntime of the workload is
in accordance with the predicted workload.

We next deconstruct a popular file-system benchmark, Pakt\@]. Figure 5.8 shows
the breakdown of PostMark’s workload under varying cackessiIn the top graph, as the
size of cache decreases, CodeMRI is able to identify thetedie the workload; the pre-
dicted operations contain fewer cached reads and thedracti random reads starts to
increase as well. In the bottom graph, we see the correspordaf the increased ran-
dom reads and fewer cached reads on the runtime. The totaheiof the benchmark is

proportional to the predicted workload, making it a usefeitfprmance indicator.

5.2 Future Work

Creating useful synthetic benchmarks is a hard problem. &Ve Ipresented our first
steps in building CodeMRI — a tool that enables the constmabf realistic synthetic
benchmarks from real workloads and file-system traces. @itiali results in applying
CodeMRI to simple workloads have been promising; we intencbintinue improving its
accuracy for more real-world workloads. In this section wioe possible future work in

deconstructing real workloads and synthesizing theiisgalequivalents using CodeMRI.

5.2.1 Workload Deconstruction

Our initial attempts in deconstructing simple workloads bdamonstrated the applica-
bility of CodeMRI. However, several challenges remain taalddressed in deconstructing
more complex real workloads. We discuss some future aveiouagorove CodeMRI.

First, our current implementation is meant to illustrate thenefits of CodeMRI and
is not optimized for production environments. In practiae find that the small amount

of tracing doesn’t slow down the system appreciably, butnoigitions for performance

163

and accuracy are certainly possible. One possible apptiedchieduce the code paths that
need to be instrumented. The instrumentation overheald ¢tse be substantially reduced
by tracing only the necessary minimum predictors. Sincenauieique predictors serve as
accurate indicators of a workload characteristic, beirlgcéize in tracing their execution
profile can improve runtime performance. In future, heiogstor predictor selection can
be developed and applied.

Once the size of the instrumented code base is reduced, tapf@s exist for im-
proving the accuracy of CodeMRI's deconstruction by cditex more information per
instrumentation point. For example, CodeMRI currentlysloet trace the different flows
possible within a function body. In practice, we find thatesdt in open-source systems,
the code base is fairly modular and most of the functionadityroken down into separate
routines. However, depending on predicate values, the same&on might behave in dif-
ferent ways and in the extreme case, have all the code fogéedimnctionality contained
within. Fine-grained instrumentation for each predictayuld allow us to capture these
flows within a function.

Second, CodeMRI currently relies on information obtaine@agh runtime profiling.
An orthogonal approach would be to make greater use of siatitysis techniques. Static
analysis alone would not capture all possible regimes ofaifm, but together with run-
time tracing, can provide stronger guarantees on code ageailuring the execution of a
particular workload.

Currently, CodeMRI is oblivious to the task performed by ecd@redictors. It operates
solely on matching a given workload with sets of micro-wogdls without understanding
the overall nature of the workload. Static analysis has thiergial to capture semantic
information about a particular predictor function whicmdaelp CodeMRI understand at

a higher level what the workload is trying to get done. Thisimation will be invaluable

164

later on in constructing a synthetic workload which matctinesdesired real workload not
only in terms of the execution profile, but also in its “intént

Third, in its current form, CodeMRI needs source code forysigs, which can some-
what limit its scope. However, there is nothing fundamedwpiahiting CodeMRI to require
instrumented source code, and in future work, CodeMRI caméde to work on executa-
bles. In order to collect the execution profile of a worklotals such as Kerninst [143] can
be used. These tools have the advantage of tracing unmobdifiades, without requiring
source code access.

Fourth, the degree of domain knowledge needed to apply C&ledpecially to a
broader domain than file systems, is of particular concerhil&\inderstanding the domain
is critical to constructing a benchmark that is represérgaif real workloads, obtaining
the necessary domain knowledge can be challenging, plaritor new systems.

One approach is to use standard tools, such as strace, tostartka typical system
better before building the benchmark. However, it is imantto profile a number of exist-
ing systems so that the benchmark is generic, and applit@blew systems. In future, we
need to extend CodeMRI to work well without explicit depemcke on domain knowledge
for new systems.

Finally, factors such as configuration parameters, harewettings and real-time traffic
can also affect the performance of a system. Large and irapioserver applications, such
as DB2, are quite complicated, and their performance or lwatkpatterns are dependent
not only on the application, but also on these external factdhese factors cannot be
captured by analyzing the application source code alon&utime, CodeMRI needs to be
able to identify the contribution to performance from nooritoad elements in the running
system.

In addition, in order to minimize runtime variability due ¢concurrent activity and non-

reproducible events (e.g., interrupts), CodeMRI needstoeBilient to noise and be able

165

to filter out the contribution of all factors extraneous te tvorkload. In future, we can
explore use of statistical techniques similar to ones usdalig isolation [78] to improve

accuracy and stability of predictions.

5.2.2 Workload Synthesis

The eventual goal of workload deconstruction is to providewgh information to con-
struct realistic synthetic benchmarks. The microprofilevusly deconstructed now need
to be used in automatically synthesizing an equivalent i@ak Such a synthesis is not
straightforward for several reasons. In addition to buigdihe microprofiles, we now need
to preserve timing and ordering information. DependenmegO requests also need to
be preserved. Although accurately determining the deparelbetween the timing of I/0Os
can be a problem for trace-driven emulations, it can be dexngé for CodeMRI as well,
because micro-workloads also need to be grouped togetltness the system, at a differ-
ent granularity.

Combining the microbenchmarks, in general, to make up tiahenchmark is perhaps
the greatest challenge in making CodeMRI useful. The queste seek to ask in future
is whether any standard mathematical techniques can bedpplcompose benchmarks.
One approach would be to use some type of standard struatalgebra to describe the
possible ways of combining the micro-workloads, since théy allow the reconstruction
problem to be converted into an optimization problem. Hasveene requirement of this
approach is that the different parts of the model, in thigctse micro-workloads, be com-
posable, which is not always the case; for example, if oneaniorkload is a foreground
write, while another is a daemon that periodically writes ditty buffers €.g, pdflush).

The reconstruction of workloads from the micro-workloas€omplex because of the
interactions of the different components of a file-systespeeially in multi-threaded en-

vironments. One limitation of the method of deconstructddrworkloads used to create

166

the micro-workloads in the current approach is its simplif'sssumption of the existence
of linear models to select the subset of predictors. Mudtipireads, caching and applica-
tions may create non-linear dependencies in the workloadtions that are exercised. In
future, these restrictions need to be relaxed to make CodeMifRe broadly applicable in

constructing composable benchmark workloads.

5.3 Related Work

In CodeMRI we leverage system profiling and file system dorkaowledge to under-
stand internal system behavior during execution of realki¥eads, and use that to create
synthetic equivalents of the workload. Several tools alyeexist for instrumenting and
profiling systems, such as, Kerninst [143], Dtrace [26], IBRRational PurifyPlus [108]
and gprof [56]. These include features for memory corruptietection, application perfor-
mance profiling, code coverage analysis and threading de@sour analysis, we needed
a simple tracing functionality and the level of instrumeiua provided by static instru-
mentation was sufficient since almost all of CodeMRI’s lolgs outside of the tracing
infrastructure. In the future, more sophisticated progjlinols can be integrated.

An alternate approach to CodeMRI as previously mentionaalavoe to use tools such
as strace [140] to collect system calls for real applicatiand replay the trace. This alone
will not be useful, since similar calls through the API camlemp exercising the file system
in very different ways and have radically different perf@amnce due to effects of caching
and prefetching.

A more effective solution will be to obtain both system cadbladisk traces to account
for file system policies and mechanisms. But there is a limoitato that approach as
well. First, it is no less intrusive as compared to CodeMRic&@d, correlating strace
and disk trace information is not entirely straightforwalge to timing issues, especially

in presence of buffering and journaling. Furthermore, tiek d/O might be reordered

167

or delayed, and be affected by file system daemons sugldfdsish. Semantic Block

Analysis [105] is another means to infer file system levelawatr, but requires detailed
file system knowledge. CodeMRI has the added advantage o loélivious of the file

system in question.

Similar to our work, performance debugging of complex dlstred systems [11, 19,
30] also uses tracing at various points to infer causal pdihgnose and tune performance
bottlenecks, and even to detect failures using runtime pattysis. In addition, a num-
ber of tools have been developed to understand, deconsindatiebug complex software
systems such as Simpoint [127] and Shear [39]. Delta dehgdgianother technique that
uses an automated testing framework to compare programanohaccess the state of an
executable program to prove the causes of program faild&3] [

Mesnieret al. have proposed “relative fitness” models for predicting perfance dif-
ferences between a pair of storage devices [86]. A relativdehcaptures the workload-
device feedback, and the performance and utilization ofd@wice can be used in predict-
ing the performance of another device. This shifts the gabirom identifying workload
characteristics to device characteristics. In the futiirejll be interesting to explore the
use of CodeMRI together with relative fithess models.

Finally, in outlining the limitations of current benchmasiorkloads, we benefited from
opinions expressed in previously published position paparsystems benchmarking [92,
124).

168

Chapter 6

Conclusions and Future Work

In this chapter, we first summarize each of the three compsranour work, then

discuss general lessons learned, and finally outline diresfor future research.

6.1 Summary

In this section we summarize the important contributionshed dissertation. First,
we discuss our findings from the five-year study of file-systeetadata, and demonstrate
its necessity in generating representative and reprotkibgnchmarking state. Second, we
review our methodology to allow large, real benchmark woakls to be run in practice with
a modest storage infrastructure. Finally, we discuss ehg#s in generating representative,
reproducible, and practical file-system benchmark wortt$o@nd present our initial steps

in creating an automated workload synthesizer.

6.1.1 Representative and Reproducible Benchmarking State

Developers of file systems and data-centric applicatioeguently need to make as-
sumptions about the properties of file-system images. Fameke, file systems and appli-
cations can often be optimized if they know properties swgkha relative proportion of
metadata to data or the frequency of occurrence of varioei$yfdes, in representative file
systems. Getting pertinent information about represatéite systems requires access to

usage information about file-system metadata.

169

To develop an understanding of file-system metadata in dpstédmputers, we ana-
lyzed the static and longitudinal properties of metadatadryducting a large-scale study
of file-system contents. To generate file-system imagestieatepresentative of such real-
world characteristics in a reproducible fashion, we depetba statistical framework that

allows one to incorporate realistic characteristics ofgiystem metadata and file data.

6.1.1.1 Characteristics of File-System Metadata

For five years, from 2000 to 2004, we collected annual snapsifdile-system meta-
data from over 60,000 Windows PC file systems at MicrosofiGration. We used these
snapshots to study temporal changes in file size, file agayplkefrequency, directory size,
namespace structure, file-system population, storageitgpad consumption, and degree
of file modification. We presented a generative model thaleexpthe namespace structure
and the distribution of directory sizes. We found significeemporal trends relating to the
popularity of certain file types, the origin of file contertietway the namespace is used,
and the degree of variation among file systems, as well as psatestrian changes in sizes
and capacities. We gave examples of consequent lessonsdigneérs of file systems and

related software. Here, we summarize again the importasgmations from our study:

e The space used in file systems has increased over the counse study, not only
because mean file size has increased (from 108 KB to 189 KB#l&w because the

mean number of files has increased (from 30K to 90K).

e Eight file-name extensions account for over 35% of files, ané file-name exten-
sions account for over 35% of the bytes in files. The same $etg@nsions including
cpp, d11, exe, gif, h, htm, jpg, 1ib, mp3, pch, pdb, pst, txt, vhd, andwma have

remained popular for many years.

170

e The fraction of file-system content created or modified llychbs decreased over
time. In the first year of our study, the median file system Hags ®f its files created

or modified locally, and four years later this percentage 22t%.

e Directory size distribution has not notably changed overybars of our study. In
each year, directories have had very few sub directoriesaambdest number of
entries. 90% of them have had two or fewer sub directoried, %% of them have

had 20 or fewer total entries.

e The fraction of file system storage residing in the namespab&ree meant for user
documents and settings has increased in every year of ady, sttarting at 7% and
rising to 15%. The fraction residing in the subtree meantsfgstem files has also

risen over the course of our study, from 2% to 11%.

e File system capacity has increased dramatically duringtudy, with median capac-
ity rising from 5 GB to 40 GB. One might expect this to causesticareductions in
file system fullness, but instead the reduction in file sydtdiness has been modest.

Median fullness has only decreased from 47% to 42%.

e Over the course of a single year, 80% of file systems becortex aid 18% become

less full.

Our measurements revealed several interesting propetile systems and offered
useful lessons. While the present study offers a thorouglyais of metadata represen-
tative of one corporate desktop environment, it is anythingrepresentative of the many
different usage scenarios in the field. We certainly hopeitleacourages others to collect
and analyze data sets in different environments, contriguhem to a public repository
such as the one maintained by SNIA [133]; our understandinfjessystem metadata
properties and trends from this study certainly providesdithpetus, and much of the basis

for our work on Impressions.

171

6.1.1.2 Generating File-System Benchmarking State

Motivated by the knowledge gained from our metadata studydevelopedmpres-
sions a framework to generate statistically accurate file-systaages with realistic meta-
data and content. Impressions is flexible, supporting sgecified constraints on vari-
ous file-system parameters using a number of statisticahtgues to generate consistent
images. In this dissertation, we presented the designeimg@htation and evaluation of
Impressions.

Developers frequently require representative file-sysimages to test a new feature
or make comparisons with existing ones. Previously no taisted that allowed creation
of file-system images with accurate approximation of reah@dand attention to statistical
details; developers often ended up writing limited in-r®wersions for generating test
cases, something that Impressions strives to standardize.

Impressions makes it extremely easy to create both coatt@hd representative file-
system images. First, Impressions enables developerséaleir systems to the file sys-
tem characteristics likely to be found in their target usepylations. Second, it enables
developers to easily create images where one parameterad aad all others are carefully
controlled; this allows one to assess the impact of a singlarpeter. Finally, Impressions
enables different developers to ensure they are all comg#ne same image; by reporting
Impressions parameters, one can ensure that benchmaesualgsrare reproducible.

Impressions also proved useful in discovering applicabiehavior. For example, we
found that Google Desktop for Linux omits certain contentirindexing based on spec-
ified hard values for file depth in the file system tree; contantssion also happens for
varying organizations of the file system tree. This strangiealvior further motivates the
need for a tool like Impressions to be a part of any applicatiesigner’s toolkit. We
believe that instead of arbitrarily specifying hard valuagplication designers should ex-

periment with Impressions to find acceptable choices foresgntative images. We note

172

that Impressions is useful for discovering these appbcatissumptions and for isolating
performance anomalies that depend on the file-system image.

In informal conversations with developers of open-souroéwsare, and with re-
searchers and academicians, we found that Impressions fvilasnediate benefit to the
file and storage community. In particular, open-source libgvaent projects on desktop
search [21] and data backup [156], commercially availablecarrent visioning file sys-
tem [71] and software for management of SAN storage in zgalienvironments [81], and
several academic research groups [49, 72, 76, 109, 123163] have expressed interest
in the Impressions framework for conducting their testing aenchmarking; we hope and

expect it to evolve into a useful platform for benchmarking.

6.1.2 Practical Benchmarking for Large, Real Workloads

Motivated by our own experience (and consequent frustmatindoing large-scale, re-
alistic benchmarking, we developed Compressions, a “stalen” benchmarking system
that allows one to run large, complex workloads using red¢dyismaller storage capacities.
Compressions makes it practical to experiment with bencksithat were otherwise infea-
sible to run on a given system by transparently scaling ddwerstorage capacity required
to run the workload.

In practice, realistic benchmarks (and realistic configares of such benchmarks) tend
to be much larger and more complex to set up than their trooainterparts. File system
traces €.g, from HP Labs [113]) are good examples of such workloadgroffteing large
and unwieldy. In many cases the evaluator has access to aomigdast infrastructure,
making it harder still to employ large, real workloads.

We started with the hypothesis that evaluators would ajpgeetaving the means to
run benchmarks without having to spend time, effort and egp@n continually upgrading

their storage capacities for benchmarking. In building @ogssions, we soon realized that

173

since our compressed version could run much faster thanatieenworkload execution

on the original storage system, we could actually speedeptthtime of the benchmark
itself without sacrificing the authenticity of the benchinakperiment. The storage model
within Compressions interposes on all I/O requests and cbespthe time taken to run
the benchmark on the original system. We believe this is ulfsature since most large
benchmarks also take a long time to run (often several haudsyys) which reduces their
practical application.

There were two primary challenges we faced in developing @essions. First, having
a model instead of the real system required us to precisgijuca the behavior of the
entire storage stack with all its complex dependenciesceSour model is in line with
workload execution, it needed to be extremely fast so as tslow down the workload
itself. Second, Compressions discards writes to file daththuns needs to synthetically
generate it for subsequent reads while adhering to the dersar the application issuing
the 1/Os.

We have addressed both these challenges in Compressitsobr model framework
is sufficiently lean while still being fairly accurate. Inilding the model, we stayed away
from any table-based approaches that required us to maintatime statistics. Instead
wherever applicable, we adopted and developed analyppabaimations that did not slow
the system down and still maintained accuracy. Secondhstintcontent generation in
Compressions leverages our prior work in building Impressj we use a combination of
built-in content generation modules with some hints from dpplication where necessary
to generate suitably tailored file content.

With storage capacity growth showing no signs of levelinfj ofe expect the trend
towards larger benchmarks and application working settdicue. Compressions can
serve as an effective substitute to capacity upgrades awidera test bed for answering

guestions about performance that were previously inféasib

174

6.1.3 Representative, Reproducible and Practical Benchmla Work-
loads

Apart from the file-system image, benchmark workloads aesdther important re-
quirement for a benchmark. To evaluate the performance deaafid storage system,
developers have a few different options including real mjapilons, microbenchmarks of
application kernels, trace replay, and synthetic work$y@éch choice comes with its own
set of advantages and disadvantages.

In a survey of benchmark workloads conducted by us, we fobhatidynthetic bench-
marks are the ones most popular in the file systems commusytythetic workloads are
designed to stress file systems appropriately, containinmgxaof POSIX file operations
that can be relatively scaled to stress different aspectieofystem; some examples in-
clude I0Zone [98], SPECsfs97 [157], SynRGen [44], fstrd®3,[and Chen’s self-scaling
benchmark [31]. The major advantages of synthetic appbisatis how simple they are
to run and that they can be adapted as desired. However, floe dnawback of synthetic
workloads is that they may not be representative of any regkMads that users care about.

Given the popularity of synthetic benchmark workloads, vetidved that an ideal
benchmark for file and storage systems combines#se of usef a synthetic workload
with therepresentativenessf a real workload; our hypothesis was that if two workloads
execute roughly the same set of function calls within the difstem, that they will be
roughly equivalent to one another.

While creating representative benchmark workloads is nadrtirely solved problem,
significant steps have been taken by others towards this déabpirical studies of file-
system access patterns [17, 58, 100] and file-system gdtiaites [113, 133] have had led
to work on synthetic workload generators [12, 44] and meshfod trace replay [14, 85].

However, automated workload synthesizers are hard to wZierent methods for creating

175

synthetic benchmark workloads were largely based on theteark writer’s interpreta-
tion of the real workload, and how it exercised the system.API

We believed that in order to create an equivalent syntheticklwad for file and stor-
age systems, one must mimic not the system calls, buutiion callsexercised during
workload execution, in order to Hanctionally equivalentWith this approach in mind, we
developed CodeMRl, a tool to create synthetic benchmasgisatie functionally equivalent
to and representative of real workloads.

Our initial experiences with CodeMRI were positive; we wabde to deconstruct some-
what complex workloads into simpler micro-workloads arsbadccurately predict perfor-
mance. CodeMRI's eventual success depends on its abildgdonstruct complex, real
workloads, and more importantly to be able to create an et synthetic workload; we

outlined steps for future work on CodeMRI in Chapter 5.

6.2 Lessons Learned

In this section, we briefly discuss the general lessons wadelawhile working on this

thesis; we classify them into two broad categories:

Principles and Design

Benchmarks are crucial, yet overlooked

Benchmarks are crucial to the file and storage system contynlowii the amount of
time and effort spent in developing benchmarking techne®s not commensurate.
It is often concluded that research on benchmarking is fe¢wsn measurement and

not on system building, and thus not enough system develmosisider participat-

ing.

176

While working on this thesis, we found that several chalesgh benchmarking
require new systems to be designed and built for carryingtleeitbenchmarking,

much in the same way a new file or storage system is built.

Real-world statistics are hard to get, but invaluable

Statistics on real-world usage of file and storage systemari$to obtain. Often the
underlying data is hard to collect as system administratmggparanoid about setting
up probes in production systems (perhaps rightfully sopther times, the data is

relatively easy to collect, but privacy concerns prevefrbiin being publicly visible.

By provisioning the storage systems with externally visiptobe points, and by de-
veloping techniques to ensure that the collected data ysteahare without compro-
mising privacy, we believe storage developers can gainsscteevaluable statistics
on how their systems actually get used. We learnt a lot fronfiga-year study of

file-system metadata and encourage others to follow suit.

We can all be better practitioners
Current benchmarks and tools for benchmarking are not pieitfat as users of these
technologies, we are responsible for judiciously usingrthe get the best possible

results.

By using relevant configurations for benchmarks, by repgréll benchmark param-
eters in detail, and by making the resulting software ancergental data publicly
available, we can improve the quality of benchmarking evéh the available re-

sources.

Ease of use cannot be underestimated
However naive it might seem, ease of use is often a criticdbfan the popularity
and adoption of a benchmark; we have thus built our tools withe of use as a

primary objective.

177

Long-term Sustainability

No benchmark can be future proof

Technology trends, new applications, and changes in usaterps can all render
a benchmark irrelevant over time. Improvements need to begieally applied to
any benchmark to account for such changes; benchmarks thsisha made freely

available with the source code.

Postmark is a classic example of a benchmark that when writes perhaps an
adequate representation of mail-server workloads, butadequate by any current
standards. In order to keep Postmark relevant, one needsdtwnia for changes in
mail-server usage, the different storage schema availabgtoring emails, and sizes

for the email files.

Community involvement is critical

For a benchmark to be authentic and remain such, communiv@ment is critical.
The file and storage community needs to define a broader satddlges on how to
use a given benchmark including appropriate set of configur@arameters, develop
best practices to be followed while benchmarking, and nmagirtantly encourage
participation of the community in following the standarelizguidelines; more details

on some recent initiatives are available elsewhere [28126].

6.3 Future Work

In this section, we outline various avenues for future rededrirst, we discuss possible
studies of various file-system attributes. Second, we rmifiuture extensions to Impres-
sions in generating file system and disk state. Third, weuds@xtending Compressions
to include storage models for storage devices such as SSalyFFwe propose our vision

towards a unified benchmarking platform.

178

6.3.1 Empirical File-System Studies

Future efforts to understand different properties of fiystem metadata, file content,
and on-disk layout can augment our own findings and answestigns that our study does
not focus on.

File content is an interesting and complex attribute to wtubh our work we have
used analytical language models and dictionary-basedappes for generating natural
language content. A large-scale study of file content woeldainly be useful to ex-
tend Impressions and Compressions, particularly to addyesstions on data redundancy,
content-addressability, and compressability.

Another interesting study would be to look at fragmentatiomeal systems. While
fragmentation can definitely affect performance, how muabgrentation really is there in
current disk-based systems? How would this change withdkerd of solid-state storage
that does not suffer from fragmentation in the same way asading disk?

The findings from our metadata study are bound to get outdatéuke future, if not
already. Repeats of such a study will help keep the infownaip-to-date. While our study
focused on one corporate environment, in the future, simstladies can be performed in

other environments of interest such as data-centers, tsitiyéaboratories and home users.

6.3.2 Generating Realistic File System and Disk State

Impressions currently provides minimal support for layiogt the files on disk in a
realistic fashion; in particular, fragmented file systemesgenerated by creating and delet-
ing temporary files during the creation of the long-term filés future, more work can
be done to induce realistic fragmentation by consideringodtorder file writes, or writes
with long delays between them. Another factor affectingyfn@ntation is that, in many

cases, the majority of the file system is created all at ontikeaystem creation time (e.g.,

179

during OS installation), while the rest is written more slpwand burstily. Dividing file
system creation into two phases with separate parametensiwe helpful.

One more factor for fragmentation is that many file systertteate blocks differently
if the writes come all at once, as in quick creation of file spsimages, or trickle slowly, as
aresult of delayed allocation. Approximation of this effean be achieved by interspersing
syncs during creation. All this can perhaps be part of a companomh to Impressions,
aptly namedepressions

Impressions itself can be extended in many ways, we lisethmgortant ones here.
First, Impressions currently supports creation of local §iystems on a single machine; in
future, support for creation of distributed file systems ditel systems for other storage
devices such as SSDs can also be included. Second, contemagen in Impressions is
rather simplistic and does not capture application requénets for more complex file data
and file types; support for more realistic content generat@n be developed in the future,
somewhat along the lines of the profile store and RAW cacheomi@essions. Third, a
desirable feature in Impressions is to allow it to traversexsting file system and generate
the necessary statistics on-the-fly to be used later onyigpdevelopers to easily share

the details of their file-system images.

6.3.3 Benchmarking Storage Beyond Hard Drives

Although our work on Impressions and Compressions has &itos developing sys-
tems that are applicable for rotating hard drives and fildesyis developed for these de-
vices, it is not fundamentally limited to benchmark hardsds alone.

In future, Compressions can certainly be augmented withatsolhr more complex
storage systems such as RAID arrays and storage clusteesuriderlying device itself
can be replaced by a flash-based solid state drive (SSD); alrfaxcan SSD can be built

into Compressions by leveraging our previous work on urtdading the properties of

180

such devices [10]. The policies for the metadata layout &edsynthetic generation of
file content in Compressions can also be extended to inclodeoaments that use SSDs

instead.

6.3.4 Holistic Storage Benchmarking Platform

In this dissertation we designed and developed three sgstenpressions, Compres-
sions, and CodeMRI, with the goal of simplifying file and stge benchmarking; we be-
lieve our attempts have been fruitful and encouraging. Gsiom is to combine these, or
other incarnations of such systems into a unified benchma@ngiatform that serves as a
community resource. While this vision might be too granddbieve in the short term, we

believe it is in the right direction.

181

LIST OF REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Ashraf Aboulnaga, Jeffrey F. Naughton, and Chun Zhangen&sating synthetic
complex-structured xml data. WebDB pages 79-84, 2001.

Atul Adya, William Bolosky, Miguel Castro, Gerald CerrkaRonnie Chaiken, John
Douceur, Jon Howell, Jacob Lorch, Marvin Theimer, and Rdgewattenhofer.
FARSITE: Federated, available, and reliable storage faneompletely trusted en-
vironment. InProceedings of the Fifth USENIX Symposium on Operatinge8ysst
Design and Implementation (OSDpages 1-14, Boston, MA, December 2002.

Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi HpAci-Dusseau. Towards
Realistic File-System Benchmarks with CodeMRI.Hrst Workshop on Hot Topics
in Measurement and Modeling of Computer Systems (ACM Hatded8), An-
napolis, MD, June 2008.

Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi HpAci-Dusseau. Towards
realistic file-system benchmarks with codem8IGMETRICS Perform. Eval. Rev.
36(2):52-57, 2008.

Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi Hpaci-Dusseau. Com-
pressions: Enabling File System Benchmarking at Scal@réparation for submis-
sion to a top-tier systems conferen2€09.

Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi HpAci-Dusseau. Generat-
ing Realistic Impressions for File-System BenchmarkingPtoceedings of the 7th
Conference on File and Storage Technologies (FAST, 88y Francisco, California,
February 2009.

Nitin Agrawal, William J. Bolosky, John R. Douceur, andcdb R. Lorch. A five-
year study of file-system metadata: Microsoft longitudiotefasethttp: //iotta.
snia.org/traces/list/Static.

182

[8] Nitin Agrawal, William J. Bolosky, John R. Douceur, andcdb R. Lorch. A Five-
Year Study of File-System Metadata. Pmoceedings of the 5th Conference on File
and Storage Technologies (FAST '0%pan Jose, California, February 2007.

[9] Nitin Agrawal, William J. Bolosky, John R. Douceur, andcdb R. Lorch. A Five-
Year Study of File-System MetadatACM Transactions on Storagd(3), October
2007.

[10] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, JohnDavis, Mark Manasse,
and Rina Panigrahy. Design Tradeoffs for SSD PerformantPrdceedings of the
Usenix Annual Technical Conference (USENIX ;@)ston, MA, June 2008.

[11] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wienemtick Reynolds, and
Athicha Muthitacharoen. Performance Debugging for Distied Systems of Black
Boxes. InProceedings of the 19th ACM Symposium on Operating Systants-P
ples (SOSP '03)Bolton Landing, New York, October 2003.

[12] Darrell Anderson and Jeff Chase. Fstress: A flexiblemoek file service bench-
mark. INTR, Duke University, May 2002.

[13] Eric Anderson. Simple table-based modeling of stordgydces. Technical Report
HPL-SSP-2001-04, HP Laboratories, July 2001.

[14] Eric Anderson, Mahesh Kallahalla, Mustafa Uysal, arairRSwaminathan. But-
tress: A toolkit for flexible and high fidelity 1/0O benchmanky. In Proceedings
of the 3rd USENIX Symposium on File and Storage TechnoldBfeST '04) San
Francisco, California, April 2004.

[15] Apple. Technical Note TN1150. http://developer.appbm/technotes/tn/tn1150.html,
March 2004.

[16] Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusséaformation and control
in gray-box systems. IfProceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSPBages 43-56, Banff, Canada, October 2001.

[17] Mary Baker, John Hartman, Martin Kupfer, Ken Shirrdfyd John Ousterhout. Mea-
surements of a Distributed File System.RAroceedings of the 13th ACM Symposium
on Operating Systems Principles (SOSP ;999ges 198-212, Pacific Grove, Cali-
fornia, October 1991.

[18] Paul Barford and Mark Crovella. Generating represevgaveb workloads for net-
work and server performance evaluation.Aroceedings of the 1998 Joint Interna-
tional Conference on Measurement and Modeling of Computstegs (SIGMET-
RICS) pages 151-160, Madison, WI, June 1998.

183

[19] Paul Barham, Rebecca Isaacs, Richar Mortier, and DarghyNarayanan. Magpie:
Real-Time Modeling and Performance-Aware SystemsTHa Ninth Workshop on
Hot Topics in Operating Systems (HotOS, IXihue, Hawaii, May 2003.

[20] Wendy Bartlett and Lisa Spainhower. Commercial Faoletance: A Tale of Two
Systems. IEEE Transactions on Dependable and Secure Compufi(i):87-96,
January 2004.

[21] Beagle Project. Beagle Desktop Searshtp: //www.beagle-project.org/.

[22] J. Michael Bennett, Michael A. Bauer, and David Kinchl€haracteristics of files
in NFS environments. IRroceedings of the 1991 ACM SIGSMALL/PC Symposium
on Small Systempages 33—-40, Toronto, Ontario, June 1991.

[23] William J. Bolosky, Scott Corbin, David Goebel, and 4dR. Douceur. Single in-
stance storage in Windows 2000. Pnoceedings of the 4th USENIX Windows Sys-
tems Symposiunseattle, WA, August 2000.

[24] Jeff Bonwick. Zfs: The last word in file systems. Availabat http://www.
opensolaris.org/os/community/zfs/docs/zfs_last.pdf.

[25] Anita Borg, R. E. Kessler, Georgia Lazana, and David ValIW Long address
traces from risc machines: Generation and analysis. TeahReport 89/14, Digital
Equipment Western Research Laboratory Research Rep8A, 19

[26] Bryan Cantrill, Michael W. Shapiro, and Adam H. LeveathDynamic instrumen-
tation of production systems. WSENIX '04 pages 15-28.

[27] Michael J. Carey, David J. DeWitt, and Jeffrey F. Nawght The 007 benchmark.
In SIGMOD '93: Proceedings of the 1993 ACM SIGMOD internaticcenference
on Management of datpages 12—-21, New York, NY, USA, 1993. ACM.

[28] Erez Zadok (Chair). File and storage systems benchimgkkorkshop. UC Santa
Cruz, CA, May 2008.

[29] Greg Chapman. Why does Explorer think |1 only want to see documents?
Available at http://pubs.logicalexpressions.com/Pub0009/LPMArticle.
asp?ID=1809.

[30] Mike Y. Chen, Anthony Accardi, Emre Kiciman, Dave Pastan, Armando Fox, and
Eric Brewer. Path-Based Failure and Evolution ManagemerRroceedings of the
1st Symposium on Networked Systems Design and Implemar(td&DI '04) San
Francisco, California, March 2004.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

184

Peter M. Chen and David A. Patterson. A New Approach @ Ferformance
Evaluation—Self-Scaling 1/0 Benchmarks, Predicted I/@&dtemance. INSIGMET-
RICS '93

Peter M. Chen and David A. Patterson. A New Approach @ Ferformance
Evaluation—Self-Scaling I1/0 Benchmarks, Predicted I/@dmance. InProceed-
ings of the 1993 ACM SIGMETRICS Conference on Measuremdritladeling of
Computer Systems (SIGMETRICS ’983ages 1-12, Santa Clara, California, May
1993.

James Cipar, Mark D. Corner, and Emery D. Berger. Tfgaadparent file system
for contributory storage. IHFAST '07 pages 28-28, Berkeley, CA, USA, 2007.
USENIX Association.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rjvesd Clifford Stein.
Introduction to Algorithms MIT Press and McGraw-Hill, second edition, 2001.
35.5: The subset-sum problem.

Landon P. Cox, Christopher D. Murray, and Brian D. NoblPastiche: Making
backup cheap and easy. Rroceedings of the Fifth USENIX Symposium on Op-
erating Systems Design and Implementation (OSdyes 285-298, Boston, MA,
December 2002.

Landon P. Cox, Christopher D. Murray, and Brian D. NoblPastiche: making
backup cheap and easyIGOPS Oper. Syst. Re86, 2002.

Landon P. Cox and Brian D. Noble. Samsara: honor amoiegdh in peer-to-peer
storage. ISOSP '03: Proceedings of the nineteenth ACM symposium oratyge
systems principlepages 120-132, New York, NY, USA, 2003. ACM.

Michael D. Dahlin, Randolph Y. Wang, Thomas E. Andersamd David A. Patter-
son. Cooperative Caching: Using Remote Client Memory torowe File System
Performance. IrProceedings of the 1st Symposium on Operating SystemsrDesig
and Implementation (OSDI '94Monterey, California, November 1994.

Timothy E. Denehy, John Bent, Florentina I. Popovicndkea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Deconstructing Storage Arréty Proceedings of
the 11th International Conference on Architectural Sugor Programming Lan-
guages and Operating Systems (ASPLOSpéyes 59-71, Boston, Massachusetts,
October 2004.

185

[40] David J. DeWitt. The wisconsin benchmark: Past, presamd future. In Jim Gray,
editor, The Benchmark Handbook for Database and Transaction Sgg&md Edi-
tion). Morgan Kaufmann, 1993.

[41] John R. Douceur and William J. Bolosky. A large-scaledst of file-system con-
tents. InProceedings of the 1999 Joint International Conference maddirement
and Modeling of Computer Systems (SIGMETR]@apes 59-70, Atlanta, GA,
May 1999.

[42] Allen B. Downey. The structural cause of file size distions. InProceedings of
the 2001 Joint International Conference on Measurementdodeling of Computer
Systems (SIGMETRICS)ages 328—-329, Cambridge, MA, June 2001.

[43] Allen B. Downey. The structural cause of file size distions. InNinth MAS-
COTS’01 Los Alamitos, CA, USA, 2001.

[44] Maria R. Ebling and M. Satyanarayanan. Synrgen: annsxbée file reference gen-
erator. INSIGMETRICS '94: Proceedings of the 1994 ACM SIGMETRICSeconf
ence on Measurement and modeling of computer sysiéens York, NY, 1994.

[45] Michael Eisler, Peter Corbett, Michael Kazar, DanielN§gdick, and Christopher
Wagner. Data ontap gx: a scalable storage clusteFAIBT'07: Proceedings of
the 5th conference on USENIX Conference on File and Storagenblogiespages
23-23, Berkeley, CA, USA, 2007. USENIX Association.

[46] Kylie M. Evans and Geoffrey H. Kuenning. A study of irtdgrities in file-size dis-
tributions. InProceedings of the 2002 International Symposium on Pediaoa
Evaluation of Computer and Telecommunication Systems @3BE San Diego,
CA, July 2002.

[47] David Freedman, Robert Pisani, and Roger Pun&tistics W. W. Norton and
Company Inc, New York, NY, first edition, 1978.

[48] Kevin Fu, M. Frans Kaashoek, and David Mazieres. Fast secure distributed
read-only file systemACM Trans. Comput. SysR0(1):1-24, 2002.

[49] Simson Garfinkel. 'Request for using Impressions.’. rs@aal Communication,
20009.

[50] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leurtge Google File System.
In SOSP '03

186

[51] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leurtte Google File System.
In Proceedings of the 19th ACM Symposium on Operating Systencgifes (SOSP
'03), pages 29-43, Bolton Landing, New York, October 2003.

[52] Dominic GiampaoloPractical File System Design with the Be File Systéhorgan
Kaufmann, 1999.

[53] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, add James W. O'Toole.
Semantic File Systems. Rroceedings of the 13th ACM Symposium on Operating
Systems Principles (SOSP '9Pacific Grove, California, October 1991.

[54] Google Corp. Google Desktop for Linukttp://desktop.google.com/linux/
index.html.

[55] Burra Gopal and Udi Manber. Integrating content-baaecess mechanisms with
hierarchical file systems. 1©SDI '99: Third symposium on Operating Systems
Design and Implementatioi999.

[56] Gprof. http://www.gnu.org/software/binutils/maadigprof-2.9.1/gprof.html. 1998.
[57] GraphApp. GraphApp Toolkitattp://enchantia.com/software/graphapp/.

[58] Steven D. Gribble, Gurmeet Singh Manku, Drew S. RosEllic A. Brewer, Timo-
thy J. Gibson, and Ethan L. Miller. Self-similarity in file sgms. InProceedings
of the 1998 Joint International Conference on MeasuremadtModeling of Com-
puter Systems (SIGMETRIC$pages 141-150, Madison, WI, June 1998.

[59] John Linwood Griffin, Jiri Schindler, Steven W. SchlegsJohn S. Bucy, and Gre-
gory R. Ganger. Timing-accurate Storage Emulation.Ptoceedings of the 1st
USENIX Symposium on File and Storage Technologies (FASTMiihterey, Cali-
fornia, January 2002.

[60] P. G. Guest. Numerical Methods of Curve FittingCambridge University Press,
Cambridge, UK, 1961.

[61] Haryadi S. Gunawi, Nitin Agrawal, Andrea C. Arpaci-Bigsau, Remzi H. Arpaci-
Dusseau, and Jiri Schindler. Deconstructing commodityagi clusters. IiPro-
ceedings of the 32nd International Symposium on Computericture (ISCA)
pages 60-71, Madison, WI, June 2005.

[62] Diwaker Gupta, Kenneth Yocum, Marvin McNett, Alex C.dmen, Amin Vahdat,
and Geoffrey M. Voelker. To infinity and beyond: time-warpestwork emulation.
In NSDI'06: Proceedings of the 3rd conference on Networkede8ysDesign &
Implementationpages 7—7, Berkeley, CA, USA, 2006. USENIX Association.

187

[63] John L. Hennessy and David A. Patterson, edit@emputer Architecture: A Quan-
titative Approach, 3rd editionMorgan-Kaufmann, 2002.

[64] Kenneth Houkjaer, Kristian Torp, and Rico Wind. Simpl&d realistic data genera-
tion. InVLDB '06: Proceedings of the 32nd international conferenné/ery large
data basespages 1243-1246. VLDB Endowment, 2006.

[65] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyayanan, R. Sidebotham,
and M. West. Scale and Performance in a Distributed FileeByst

[66] Norman C. Hutchinson, Stephen Manley, Mike Federwisatny Harris, Dave Hitz,
Steven Kleiman, and Sean O’Malley. Logical vs. Physica BYystem Backup. In
Proceedings of the 3rd Symposium on Operating Systemsiasdyimplementa-
tion (OSDI '99) New Orleans, Louisiana, February 1999.

[67] Gordon Irlam. Unix file size survey — 1993. Availablemattp: //www.base.com/
gordoni/ufs93.html.

[68] John McCutchan and Robert Love. inotify for linuxttp: //www.linuxjournal.
com/article/8478.

[69] Jonathan Corbet. LWN Article: SEEKOLE or FIEMAP? http://lwn.net/
Articles/260795/.

[70] Jeffrey Katcher. PostMark: A New File System Benchmar&chnical Report TR-
3022, Network Appliance Inc., October 1997.

[71] Pramod Khakural. 'Request for using Impressions.’.rsBeal Communication,
20009.

[72] Richa Khandelwal. 'Request for using Impressions.erd®dnal Communication,
20009.

[73] Steve R. Kleiman. Vnodes: An Architecture for Multipféle System Types in
Sun UNIX. InProceedings of the USENIX Summer Technical ConferenceNUSE
Summer '86)pages 238-247, Atlanta, Georgia, June 1986.

[74] David Kotz, Song Bac Toh, and Sriram Radhakrishnan. titedl simulation model
of the HP 97560 disk drive. Technical Report TR94-220, Darth College, 1994.

[75] Geoff Kuenning and Bruce Worthington. Trace collentand sharing. IfJSENIX
FAST BIRDS-OF-A-FEATHER SESSI(4n Jose, CA, February 2008.

188

[76] Vivek Lakshmanan. 'Request for using Impressions.erd®nal Communication,
2009.

[77] Andrew W. Leung, Shankar Pasupathy, Garth GoodsonFinan L. Miller. Mea-
surement and Analysis of Large-Scale Network File Systemkivads. InProceed-
ings of the USENIX Annual Technical Confereri8eston, MA, June 2008.

[78] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Mhael I. Jordan. Scal-
able statistical bug isolation. IALDI '05.

[79] Joshua MacDonald, Hans Reiser, and Alex Zarochentcev.
http://www.namesys.com/txn-doc.html, 2002.

[80] Hosam M. Mahmoud. Distances in random plane-orienéednsive treesJournal
of Computational and Applied Mathematidd.:237-245, 1992.

[81] Angelo Masci. 'Request for using Impressions.’. PeeldCommunication, 2009.

[82] J. Mayfield, T. Finin, and M. Hall. Using automatic memaiion as a software
engineering tool in real-world ai system@rtificial Intelligence for Applications,
Conference 00:87, 1995.

[83] Marshall K. McKusick, William N. Joy, Sam J. Leffler, aftbbert S. Fabry. A Fast
File System for UNIX. ACM Transactions on Computer Syster€3):181-197,
August 1984.

[84] Michael Mesnier, Eno Thereska, Gregory R. Ganger, BlaBilard, and Margo
Seltzer. File classification in self-* storage systemsPtaceedings of the 1st Inter-
national Conference on Autonomic Computing (ICAS3w York, NY, May 2004.

[85] Michael P. Mesnier, Matthew Wachs, Raja R. Sambasiyaln Lopez, James Hen-
dricks, Gregory R. Ganger, and David O’Hallaron. trace:afial trace replay with
approximate causal events. Rroceedings of the 5th USENIX Symposium on File
and Storage Technologies (FAST '0%an Jose, California, February 2007.

[86] Michael P. Mesnier, Matthew Wachs, Raja R. Sambasiydice X. Zheng, and
Gregory R. Ganger. Modeling the relative fithess of stordgeé?roceedings of the
2007 ACM SIGMETRICS Conference on Measurement and Mod#li@gmputer
Systems (SIGMETRICS 'QBan Diego, California, June 2007.

[87] Microsoft. SetFileTime. Available at MSDNhttp://msdn.microsoft.
com/library/default.asp?url=/library/en-us/wcecoreos5/html/
wcebOlrfsetfiletime. asp.

189

[88] Microsoft. Sql server 2000 resource kit. Microsoft TechNetOctober 2006.
[89] Stan Mitchell.Inside the Windows 95 file systef@’Reilly and Associates, 1997.

[90] Michael Mitzenmacher. Dynamic models for file sizes auwdible pareto distribu-
tions. Ininternet Mathematic2002.

[91] Michael Mitzenmacher. Dynamic models for file sizes aodible Pareto distribu-
tions. Internet Mathematicsl(3):305-333, 2004.

[92] Jeffrey C. Mogul. Brittle metrics in operating systemsearch. IHotOS '99
[93] Mplayer. The MPlayer movie playetttp://www.mplayerhq.hu/.

[94] Sape J. Mullender and Andrew S. Tanenbaum. Immedi&t® Bloftware—Practice
and Experiencel4(4):365-368, April 1984.

[95] Athicha Muthitacharoen, Benjie Chen, and David Mae& A Low-Bandwidth
Network File System. IrProceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP-Dfpages 174-187, Banff, Canada, October 2001.

[96] Myers Carpenter. 1d3v2: A command line editor for id3@®s. http://id3v2.
sourceforge.net/.

[97] NIST. Text retrieval conference (trec) datasets. Hiiec.nist.gov/data, 2007.
[98] William Norcutt. The 10zone Filesystem Benchmark.pbtwvww.iozone.org/.

[99] John K. Ousterhout. Why Aren’t Operating Systems @Ggtftaster as Fast as Hard-
ware? InProceedings of the 1990 USENIX Summer Technical Conferémze
heim, CA, June 1990.

[100] John K. Qusterhout, Herve Da Costa, David HarrisohnJd. Kunze, Mike Kupfer,
and James G. Thompson. A Trace-Driven Analysis of the UNXBISD File Sys-
tem. InProceedings of the 10th ACM Symposium on Operating Systemiples
(SOSP '85)pages 15-24, Orcas Island, Washington, December 1985.

[101] John K. Ousterhout, Hervé Da Costa, David HarrisohnJA. Kunze, Mike Kupfer,
and James G. Thompson. A trace-driven analysis of the UNBXBED file sys-
tem. InProceedings of the 10th ACM Symposium on Operating Systentsgfes
(SOSP)pages 15-24, Orcas Island, WA, December 1985.

[102] Yoann Padioleau and Olivier Ridoux. A logic file systeimUSENIX Annual Tech-
nical ConferenceSan Antonio, Texas, June 2003.

190

[103] David Patterson, Garth Gibson, and Randy Katz. A Cas®&édundant Arrays of
Inexpensive Disks (RAID). I®roceedings of the 1988 ACM SIGMOD Conference
on the Management of Data (SIGMOD '8®pnges 109-116, Chicago, lllinois, June
1988.

[104] Florentina I. Popovici, Andrea C. Arpaci-Dusseaud &emzi H. Arpaci-Dusseau.
Robust, Portable I/0O Scheduling with the Disk Mimic. Rroceedings of the
USENIX Annual Technical Conference (USENIX ;g3ages 297-310, San Anto-
nio, Texas, June 2003.

[105] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, aeath® H. Arpaci-Dusseau.
Analysis and Evolution of Journaling File Systems.Froceedings of the USENIX
Annual Technical Conference (USENIX '0bpges 105-120, Anaheim, California,
April 2005.

[106] Vijayan Prabhakaran, Lakshmi N. BairavasundararinMigrawal, Haryadi S. Gu-
nawi, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-DusséBON File Sys-
tems. InProceedings of the 20th ACM Symposium on Operating Systentsdres
(SOSP '05)pages 206—220, Brighton, United Kingdom, October 2005.

[107] Bartosz Przydatek. A Fast Approximation Algorithnr the Subset-sum Problem.
International Transactions in Operational Researéi):437-459, 2002.

[108] PurifyPlus. http://www-306.ibm.com/software/awodls/purifyplus/. 2005.
[109] Alex Rasmussen. 'Request for using Impressionsfséteal Communication, 2009.

[110] Hans Reiser. Three reasons why ReiserFS is great for yavailable athttp:
//www.namesys.com/.

[111] Hans Reiser. ReiserFS. www.namesys.com, 2004.
[112] Richard McDougall. Filebench: Application level fégstem benchmark.

[113] Erik Riedel, Mahesh Kallahalla, and Ram SwaminathfaRramework for Evaluat-
ing Storage System Security. Rroceedings of the 1st USENIX Symposium on File
and Storage Technologies (FAST '0pages 14—-29, Monterey, California, January
2002.

[114] Erik Riedel, Mahesh Kallahalla, and Ram SwaminathfaRramework for Evaluat-
ing Storage System Security. Rroceedings of the 1st USENIX Symposium on File
and Storage Technologies (FAST 'OR)onterey, California, January 2002.

191

[115] Martin Rinard, Christian Cadar, Daniel Dumitran, DelrM. Roy, Tudor Leu, and
Jr. William S. Beebe. Enhancing Server Availability and &&g Through Failure-
Oblivious Computing. IfProceedings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI 'Q&8an Francisco, California, December 2004.

[116] Drew Roselli, Jacob R. Lorch, and Thomas E. Andersoicomparison of file sys-
tem workloads. IfProceedings of the 2000 USENIX Annual Technical Conference
pages 41-54, San Diego, CA, June 2000.

[117] Antony Rowstron and Peter Druschel. Storage Manageared Caching in PAST,
A Large-scale, Persistent Peer-to-peer Storage UtilityPrioceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSPBanhff, Canada, Oc-
tober 2001.

[118] Chris Ruemmler and John Wilkes. Unix disk access pagteln USENIX Wintey
pages 405-420, 1993.

[119] Chris Ruemmler and John Wilkes. An Introduction to IDRrive Modeling. IEEE
Computer27(3):17-28, March 1994.

[120] M. Satyanarayanan. A study of file sizes and functidifetimes. InProceedings of
the 8th ACM Symposium on Operating Systems Principles (5@&ges 96—-108,
Pacific Grove, CA, December 1981.

[121] J. Schindler and G. Ganger. Automated disk drive attar&zation. Technical Re-
port CMU-CS-99-176, Carnegie Mellon University, Novemhég9.

[122] Frank Schmuck and Roger Haskin. Gpfs: A shared-disksfjistem for large com-
puting clusters. IMFAST '02: Proceedings of the 1st USENIX Conference on File
and Storage Technologiepage 19, Berkeley, CA, USA, 2002. USENIX Associa-
tion.

[123] Margo Seltzer. 'Request for using Impressions.’.s8aal Communication, 2009.

[124] Margo I. Seltzer, David Krinsky, Keith A. Smith, andatilan Zhang. The case for
application-specific benchmarking. HotOS 1999.

[125] Sam Shah and Brian D. Noble. A study of e-mail patter8seftw., Pract. Exper.
37(To Appear), 2007.

[126] Sam Shah, Craig A. N. Soules, Gregory R. Ganger, andnBl. Noble. Using
provenance to aid in personal file searchlUBENIX Annual Technical Conference
pages 171-184, Santa Clara, CA, June 2007.

192

[127] Timothy Sherwood, Erez Perelman, Greg Hamerly, aratiBZalder. Automatically
characterizing large scale program behaviorABPLOS '02

[128] Tracy F. Sienknecht, Rich J. Friedrich, Joe J. Madinknd Peter M. Friedenbach.
The implications of distributed data in a commercial enmireent on the design of hi-
erarchical storage managemeRerformance Evaluatigr20(1-3):3—-25, May 1994.

[129] Bengt Sigurd, Mats Eeg-Olofsson, and Joost van deaNeijord length, sentence
length and frequency — Zipf revisite@tudia Linguistica58(1):37-52, 2004.

[130] Muthian Sivathanu, Vijayan Prabhakaran, FlorentinaPopovici, Timothy E.
Denehy, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Bauss Semantically-
Smart Disk Systems. IRroceedings of the 2nd USENIX Symposium on File and
Storage Technologies (FAST '03)ages 73-88, San Francisco, California, April
2003.

[131] Keith Smith and Margo Seltzer. File layout and file gystperformance. Technical
Report TR-35-94, Harvard University, 1994.

[132] Keith Smith and Margo |. Seltzer. File System Aging.Rroceedings of the 1997
Sigmetrics Confereng&eattle, WA, June 1997.

[133] SNIA. Storage network industry association: lottpasitory. http://iotta.snia.org,
2007.

[134] Sumeet Sobti, Nitin Garg, Fengzhou Zheng, Junwen Y#ie Shao, Chi Zhang,
Wilisha Ziskind, and Arvind Krishnamurthy. Segank: A Dibtrited Mobile Stor-
age System. IrProceedings of the 3rd USENIX Symposium on File and Storage
Technologies (FAST '04pages 239-252, San Francisco, California, April 2004.

[135] David A. Solomon.nside Windows N.TMicrosoft Programming Series. Microsoft
Press, 2nd edition, May 1998.

[136] David A. Solomonlinside Windows N-TMicrosoft Press, 2nd edition, 1998.

[137] Craig A. N. Soules and Gregory R. Ganger. Connectiosgg context to enhance
file search. IlSOSR pages 119-132, Brighton, United Kingdom, October 2005.

[138] SPC. Storage performance council. http://www.gjeerformance.org/, 2007.

[139] Mark W. Storer, Kevin M. Greenan, Ethan L. Miller, andlédhar Voruganti. Perga-
mum: replacing tape with energy efficient, reliable, diglséd archival storage. In
FAST’08: Proceedings of the 6th USENIX Conference on Fild &torage Tech-
nologies pages 1-16, Berkeley, CA, USA, 2008. USENIX Association.

193

[140] strace. http://linux.die.net/man/1/strace. 2008.

[141] Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderddike Nishimoto, and
Geoff Peck. Scalability in the XFS File System. Bmoceedings of the USENIX
Annual Technical Conference (USENIX '96an Diego, California, January 1996.

[142] Nisha Talagala, Remzi H. Arpaci-Dusseau, and DaveeRain. Microbenchmark-
based Extraction of Local and Global Disk Characteristizchnical Report CSD-
99-1063, University of California, Berkeley, 1999.

[143] Ariel Tamches and Barton P. Miller. Fine-Grained Dgme Instrumentation of
Commodity Operating System Kernels. Rnoceedings of the 3rd Symposium on
Operating Systems Design and Implementation (OSDI,'payes 117-130, New
Orleans, Louisiana, February 1999.

[144] Doug Thain, John Bent, Andrea C. Arpaci-Dusseau, RémArpaci-Dusseau, and
Miron Livny. Pipeline and Batch Sharing in Grid Workloads.Rroceedings of the
12th IEEE International Symposium on High Performance fiisted Computing
(HPDC 12) pages 152-161, Seattle, Washington, June 2003.

[145] A. Traeger, N. Joukov, C. P. Wright, and E. Zadok. A nyear study of file system
and storage benchmarking. Accepted for publication, ETAr&ary 2008.

[146] Avishay Traeger and Erez Zadok. How to cheat at benckim@ In USENIX FAST
BIRDS-OF-A-FEATHER SESSIQOSan Francisco, CA, February 2009.

[147] Transaction Processing Council. TPC Benchmark B c&teth Specification, Revi-
sion 3.2. Technical Report, 1990.

[148] Transaction Processing Council. TPC Benchmark Cd&ahSpecification, Revi-
sion 5.2. Technical Report, 1992.

[149] Transaction Processing Council. TPC Benchmark H &teth Specification, Revi-
sion 2.8. Technical Report, 1992.

[150] Stephen C. Tweedie. Journaling the Linux ext2fs Filst&m. InThe Fourth Annual
Linux Expg Durham, North Carolina, May 1998.

[151] Ruey-Yuan Ryan Tzeng. 'Request for using Impressioiersonal Communica-
tion, 2009.

194

[152] Kaushik Veeraraghavan, Andrew Myrick, and Jasonrkli@obalt: separating con-
tent distribution from authorization in distributed filestsgms. INFAST '07: Pro-
ceedings of the 5th USENIX conference on File and Storagendéagies pages
29-29, Berkeley, CA, USA, 2007. USENIX Association.

[153] Werner Vogels. File system usage in Windows NT 4.0Ptaceedings of the 17th
ACM Symposium on Operating Systems Principles (SQfiges 93—-109, Kiawah
Island, SC, December 1999.

[154] Glenn Weinberg. The Solaris Dynamic File System.
http://members.visi.net/thedave/sun/DynFS.pdf, 2004.

[155] Lars Wirzenius. ’'Genbackupdata: tool to generatekbpctest data’. http:
//braawi.org/genbackupdata.html, 2009.

[156] Lars Wirzenius. 'Request for using Impressions.r98@al Communication, 2009.

[157] M. Wittle and Bruce E. Keith. LADDIS: The next genewtiin NFS file server
benchmarking. INSENIX Summepages 111-128, 1993.

[158] Bruce L. Worthington, Gregory R. Ganger, Yale N. Pattd John Wilkes. On-
line extraction of SCSI disk drive parameters. Technicghd®e CSE-TR-323-96,
Carnegie Mellon University, 19 1996.

[159] C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, arid. Zadok. Auto-pilot: A
platform for system software benchmarking.Rrmoceedings of the Annual USENIX
Technical Conference, FREENIX Traénaheim, CA, April 2005.

[160] Andreas Zeller. Isolating cause-effect chains froomputer programs. 1i0th
ACM SIGSOFT symposium on Foundations of software engimgg@002.

[161] zZhihui Zhang and Kanad Ghose. yfs: A journaling fileteys design for handling
large data sets with reduced seekingFAST '03: Proceedings of the 2nd USENIX
Conference on File and Storage Technologiesges 59-72, Berkeley, CA, USA,
2003. USENIX Association.

[162] Ningning Zhu, Jiawu Chen, and Tzi-Cker Chiueh. Tblotlable and accurate trace
replay for file server evaluation. IRroceedings of the 4th conference on USENIX
Conference on File and Storage Technologiesges 24—-24, Berkeley, CA, USA,
2005. USENIX Association.

[163] Liu Zhuo. 'Request for using Impressions.’. Persd@ammunication, 2009.

APPENDIX
Analytical Distributions

A.1 Continuous Distributions

Binary log-normal, x> 0O:

1 —(lgz—p)?
=gz —p)”

T, 0) = ——¢€ 2
Sl p.o) oV 2miln2

Inverse-polynomial of degre®, offseta, x > 0O:
fo(x; N, o) = (N — Do Yo 4 a)™

R-stage hyperexponential % 0:

Pareto, k< x:

A.2 Discrete Distributions

Poisson, n> 0:
Ae™A
Generalized Zipf, K n < N:
_1\0
£.(n5 N, b,0) = (=LT) (n+6)"*

S WED(h+1) - WE-D(N + b+ 1)

195

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

196

Generalized Lotka, & 1:
f.(n;0) = ——pn? (A.7)

197

APPENDIX
Statistical Techniques and Terminology

Some of the following are derived from standard statis&ocs books [47, 60].

Generative Model: Model for randomly generating observable data typicallyegi
some hidden parameters. Generative models specify a jobiapility distribution over

observed values.

Monte Carlo Method: Class of computational algorithms that rely on repeated
random sampling to compute their results, often used whanlation is being performed
by a computer due to their need for repeateded generatioseaido-random numbers.

Particularly useful when deterministic solutions are adible.

Null hypothesis: The hypothesis that an observed difference (such as onesbptw
observed and modeled values, or between two sets of obsemitezk) just reflects chance

variation.

Alternative hypothesis: The hypothesis that the observed difference is rieal, the

opposite of the null hypothesis.

198

Test statistic: Used to measure the difference between observed data ardbeted

data under the null hypothesis.

P-value: For a hypothesis test, the p-value is the probability comgwinder the null
hypothesis. In other words it is the chance of getting thestagistic as extreme as or more

extreme than the observed one [47].

Goodness-of Fit:Quantitative means to describe how well a statistical mdatibu-
tion fits observed data. A distance metric {est statistif usually specifies the discrepancy

between observed and modeled values.

Kolmogorov-Smirnov test: Goodness-of-fit test for checking whether a given distri-
bution is not significantly different from a hypothesizedtdibution, used for continuous
probability distributions. The test is as follows:

If X, X,,...,X,, be independent and identically-distributed random véemlbdrom a
continuous cumulative density function F, 18}, be the empirical cumulative density
function.

D, (F) = supger|(Fn.(x) — F(x)| is the distance betwedn, and F,p.(F,,, F').

D, is the test statistic for the K-S test and is small if the nulpéthesis is true,
Hy: F = F,.

Tests of the formD,,(Fy) > ¢ where null hypothesis is rejected if the D statistic is geeat

than c are called Kolmogorov-Smirnov tests.

Chi-Square test: Goodness-of-fit test for checking whether a given distrdutis
not significantly different from a hypothesized distrilmrj used for discrete probability

distributions. The test is as follows:

199

Let (01,0, ...,0,) and (E1, E,, ..., E,) be observed and expected frequencies. The test

statistic

2 = Eﬁo (OTEiE)Q which cannot be negative. Larger values)dfindicate a greater
discrepancy between the observed and expected distnisuti®@imilar to the K-S test,
a p-value is computed under the null hypothesis to test vendtie hypothesis can be

rejected.

Linear Interpolation: For known coordinates given ly:o, yo) and(xy,y1), a linearly
interpolated value for y for > (zo, z1) is given by:y = yo + (z — z9) 222
Heavy-tailed distribution: The distribution of a random variable X with distribution

function F is said to be heavy-tailedlifn, .., e’ Pr[X > 2] = 0o forall A > 0

