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Abstract—We present NICE, a key-value storage system design that leverages new software-defined network capabilities to build cluster-
based network-efficient storage system. NICE presents novel techniques to co-design network routing and multicast with storage replication, 
consistency, and load balancing to achieve higher efficiency, performance, and scalability. 

We implement the NICEKV prototype. NICEKV follows the NICE approach in designing four essential network-centric storage 
mechanisms: request routing, replication, consistency, and load balancing. Our evaluation shows that the proposed approach brings 
significant performance gains compared with the current systems design: up to 7× put/get performance improvement, up to 2× reduction in 
network load, 3× to 9× load reduction on the storage nodes, and the elimination of scalability bottlenecks present in current designs.  
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1 INTRODUCTION 
he end-to-end design principle [1] pervades the design of 
virtually every distributed system [2, 3, 4, 5, 6]. In its extreme 

form, critical functionality is implemented solely in end hosts, with 
a relatively dumb and fast network to connect them. 

One locale that closely adheres to the end-to-end principle is 
distributed storage, including distributed file systems [7, 8, 9, 10, 
11, 12] and scalable key-value stores [13, 14, 15, 16, 17]. In these 
widely deployed and increasingly important systems, the network is 
used as a point-to-point communication medium, while storage 
logic and protocols are implemented entirely in client libraries and 
server code. 

Unfortunately, such Network-Oblivious (NOOB) storage systems 
are fundamentally inefficient. Consider, for example, the simple 
task of replicating a data block. To do so, a node first sends the 
block to one server, and then another, and then another; as a result, 
the same data redundantly traverses some number of network links 
and switches, increasing load on the network significantly. Even 
the simple task of locating a data item presents a significant 
challenge; for example, in protocols such as Chord [18], a 
logarithmic number of nodes must be contacted simply to discover 
the location of a particular key. 

In this paper, we propose an alternative approach in which we co-
design storage logic and networking support to realize more 
efficient, scalable, and reliable distributed storage. Such Network-
Integrated Cluster-Efficient (NICE) storage harnesses recent 
advances in Software-Defined Networks (SDNs) [19, 20] to 
optimize key aspects of modern distributed storage architectures. 
For example, NICE storage systems can replicate a block while 
generating the least possible network load, and it can forward a 
request to the proper node in a single hop. 

Two recent developments provide a unique opportunity to address 

NOOB inefficiencies and indicate that a network-integrated design 
paradigm that co-designs network and end-point functionality has a 
much higher chance of being successful today. First, recent 
advances in software-defined networks (SDNs) provide a standard 
interface for implementing in-network application specific 
optimizations, and for building a control mechanism that can 
orchestrate network and storage operations. The second 
development is the wide adoption of data centers as the main cloud-
computing platform. Having a single administration of the entire 
hardware/software stack and the ability to compartmentalize the 
infrastructure facilitates adopting custom solutions for different 
applications or subsystems. 

NICE uses SDN technology to virtualize the storage system. The 
client accesses a virtual storage system deployed on a range of 
virtual IP addresses. The NICE network controller modifies client 
packets and forwards them to the proper storage node. Having a 
network controller that is informed of the storage system metadata 
and has full control of the network decisions enables optimizing 
packet paths to improve four essential storage mechanisms, 
including: request routing, which directs requests from clients to 
storage nodes; replication, for preventing data loss when nodes or 
storage devices fail; load balancing, which dispatches client 
requests across replicas to handle workload variation. Finally, 
NICE virtualization simplifies building consistency protocols by 
making failed nodes, or nodes with inconsistent data, inaccessible. 

We implemented NICEKV, a key-value storage system following 
the NICE design. Our NICEKV prototype leverages the capabilities 
of the widely adopted OpenFlow standard. Our evaluation using 
synthetic and real workload benchmarks shows that NICEKV 
brings significant performance gains compared to a broad set of 
NOOB storage configurations and two production systems: Ceph 
and Swift. Our evaluation shows that NICEKV has a scalable 
membership maintenance mechanism, achieves single-hop request 
routing eliminating the need for deploying load balancer, and 
achieves network and storage optimal replication, effectively 
halving the network-generated load and reducing storage load by 
3× to 9×, depending on replication level. NICEKV load balancing 
effectively spreads client requests across servers without deploying 
dedicated load-balancing boxes. The combination of these 
optimizations is powerful; the NICEKV prototype can achieve up 
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to 7× put/get performance improvement as compared to the 
traditional network oblivious approach. 

Furthermore, we explored the potential of using the recent 
programmable switches [21] to build a storage-aware load 
balancing techniques. We implemented NICEKV-P4 a key-value 
storage system using the P4 programming language. Our evaluation 
shows demonstrates the flexibility of this approach. 

The rest of this paper is organized as follows. We present an 
overview of the NOOB systems design, and discuss the recent 
advances in software-defined networks (Section 2). In Section 3 we 
present the NICE architecture, detail the system design in Section 
4, present the implementation of the NICEKV prototype in Section 
5, and present our empirical evaluation in Section 6. We discuss 
related work in Section 7, and conclude in Section 8. 

2 BACKGROUND AND RELATED WORK  
In this section, we present an overview of a typical network-
oblivious storage systems design, and summarize the recent 
advances in software-defined networks. 

2.1  NOOB Storage System Design 
Current distributed key-value storage systems are fundamentally 
inefficient as they are network-oblivious (NOOB): the network is 
used as a black-box point-to-point communication medium without 
any application-informed optimization of its operations, while 
storage logic and protocols are implemented by end hosts. This 
NOOB approach for designing distributed system is inefficient for 
storage systems as many core storage operations are, in principle, 
network-level operations, e.g., replication or request routing. 

Many NOOB storage systems adopt a design based on consistent 
hashing [22]. In the original consistent-hashing design, the object 
hashing space represents a circular ring, all storage nodes are 
placed on the ring, and each node coordinates access to the objects 
in its part of the ring. Pastry [23] and Chord [18] were among the 
first to use consistent hashing to build a scalable peer-to-peer object 
storage system. They use, with high probability, O(log n) hops to 
route a request, while only storing O(log n) routing information on 
each node. While this approach scales well, it imposes additional 
latency.  

To reduce the latency of request routing, prominent NOOB storage 
systems adopt a full-membership model [13, 14, 15, 16, 17], in 
which every node maintains complete knowledge about all the 
nodes in the system and their contents; hence, nodes can route any 
request directly to the responsible node. When a node joins or fails, 
all the nodes in the system need to be updated. This update happens 
through contacting every node and updating its information using 
O(N) connections and messages [13], or through an epidemic 
protocol entailing O(log n) steps and over O(N) messages [24]. 

Access Mechanism. Current key-value storage systems employ 
one of four techniques to route client requests to the node 
maintaining the object. First is the Replica-Oblivious Gateway 
(ROG), uses an off-the-shelf load balancer to forward requests to 
randomly selected storage node. If the selected node does not have 
the requested key, the node will forward the request to the node that 
maintains the object. This approach is common in current systems 
[14, 16, 25] due to its ease of deployment and use of existing load 
balancers. Unfortunately, as the load balancer is oblivious to the 
replicas’ content, it will forward the majority of requests to a 

replica that does not maintain the object. Consequently, for the 
majority of requests this approach adds additional two hops for 
routing a request through the load balancer and the randomly-
selected storage node. 

The second approach, is the Replica-Aware Gateway (RAG). 
Similar to the previous approach, this approach uses a load 
balancer, but the load balancer is aware of the contents of each 
replica and can accurately forward the request to a replica that 
maintains the object. Consequently, this approach imposes one 
extra hop for routing a request.  

Third is the Replica-Aware Client (RAC), in which clients cache 
the storage IP address of previously accessed objects [26], and use 
it to route subsequent requests. This approach achieves single-hop 
routing as requests are directly sent from a client to the replica 
storing the object. This approach only works in deployments in 
which it is permissible for clients to obtain detailed data placement 
and replication information. For deployments in which the clients 
do not have access to storage internal information or are located 
behind a NAT [27] (e.g., shared cloud storage like Amazon S3), 
this approach is not viable. Finally, this approach hinders deploying 
advanced load balancers as each client accesses the replicas 
directly. 

The fourth approach is the Replica-Aware Proxy (or proxy for 
short). This approach uses a proxy node that is aware of the replica 
placement to forward the request [13]. Unlike the previous three 
approaches, the proxy node is on the data path for get and put 
operations. The data for get operations is sent to the proxy, which 
then sends it to the client. 

2.2  Software-Defined Networks 
The software-defined networking paradigm re-architects the 
network into two planes: data and control. The data plane is a 
packet-forwarding plane that uses the information available in the 
switch forwarding tables to forward packets. The control plane is a 
software based control logic, typically deployed on an external 
server (i.e., not on the switch). Recent technology advances enable 
customizing the control and data planes. 

Flexible Control Plane. The control plane enables application to 
control multiple switches by modifying the rules in the switches 
forwarding tables. To update a switch forwarding table, the 
controller uses the OpenFlow standard API [20], a widely popular 
standard interface used to communicate with SDN capable 
switches. OpenFlow [19] allows modifying (i.e., inserting or 
deleting) the forwarding rules of a single switch. Each forwarding 
entry includes a matching rule and an action list. Matching uses 
wildcard matching rules on any field in the packet standard 
headers, including IP and MAC addresses, and protocol and port 
numbers. If a packet matches a rule, the switch performs the actions 
associated with that rule. The action list may contain multiple 
actions that are performed in order. The current OpenFlow standard 
defines a set of actions including packet forwarding to a specific 
switch port, packet drop, forwarding a packet to the controller, or 
modifying fields in a packet. The possible modifications include 
changing the source/destination MAC/IP addresses.  

For packets that do not have a matching rule, the switch will 
forward the packet to the controller, which significantly increases 
packet latency. To avoid this inefficient path the switch caches the 
forwarding rules with a controller specified expiry period. 
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Limitations. While OpenFlow significantly increases the flexibility 
of the network its capabilities are limited. Mainly, its data plane is 
rigid and cannot be extended. OpenFlow can only support current 
standard packet headers (i.e., does not facilitate defining custom 
application headers), and the actions supported are fixed and 
limited. Finally, current switch that support OpenFlow only 
implement a subset of OpenFlow features (detailed in Section 5). 

Programmable Data Plane. To address the limitations of 
OpenFlow the research community developed a new generation of 
programmable switches that allow programming the data plane. 
Programmable switches allow the implementation of an 
application-specific packet-processing data plane that can process 
custom packet headers and is deployed on network devices and 
executed at line speed. While this technology did not yet garner 
wide adoption as OpenFlow, a number of vendors are already 
producing network-programmable ASICs, including Barefoot’s 
Tofino [28] and Cavium’s XPliant [29]. 

Figure 1(a) illustrates the basic data plane architecture of modern 
programmable switches. The data plane contains three main 
components: ingress pipelines, a traffic manager, and egress 
pipelines. A packet is first processed by an ingress pipeline before 
it is forwarded by the traffic manager to the egress pipeline that 
will finally emit the packet. 

Each pipeline is composed of multiple stages. At each stage, one or 
more tables match fields in the packet header or metadata; if a 
packet feild matches, the corresponding action is executed. 
Programmers can define custom per-packet headers as well as 
custom actions. Each stage has its own dedicated resources, 
including tables and register arrays (a memory buffer). Figure 1(b) 
shows a simple example of a pipeline that routes a request to a key-
value store based on the key, and Figure 1(c) shows the details of 
the KV routing stage in  Figure 1(b). The stage forwards the request 
based on the key in the packet’s custom L4 header. The 
programmer implements a forward() action that accesses the 
register array holding nodes’ IP addresses. An external controller 
can modify the register array and the entries in the table. 

Programmers use domain-specific languages like P4 [21] to define 
their own packet headers, define tables, implement custom actions, 
and configure the processing graphs. 

These recent advances in networking technology enable fine-
grained control of network operations and facilitate application-
optimized traffic engineering. In this paper we explore techniques 
to leverage these new OpenFlow and P4 capabilities to accelerate 
storage systems. 

3  NICE SYSTEM ARCHITECTURE 
NICE leverages software-defined networking capabilities to 
optimize storage system operations. We focus our attention to 
leveraging the OpenFlow capabilities due to the wide adoption of 
this technology. In Section 4 we extend our design to leverage the 
capabilities of P4-programmable switches. 

NICE exploits the OpenFlow flexibility and fine-grained control 
[19, 20] to co-design network and storage operations. The NICE 
design virtualizes the storage system. The client accesses a virtual 
storage system deployed on a range of virtual IP addresses. The 
metadata service (detailed next) maps the virtual storage system to 
the physical one. The NICE design optimizes this mapping to 
achieve low-latency routing, efficient multicasting, load-balancing, 
and improved fault tolerance. 

In the rest of this section, we first present the NICE architecture, 
then detail the two core techniques we propose: storage 
virtualization, and consistency-aware fault tolerance. The following 
section details how we extend these techniques to optimize 
replication, consistency, and load-balancing mechanisms. 

3.1  System Architecture 
Similar to the NOOB storage, NICE uses consistent hashing to 
partition the object space among the storage nodes. Nodes are 
placed in a consistent hashing ring, such that each node serves part 
of the ring. We call this the physical ring. Every storage node is the 
primary replica for one or more partitions, and can serve as a 
secondary replica for other partitions. 

The system is composed of three components (Figure 2): storage 
nodes, client nodes, and a metadata service, all connected with an 
OpenFlow-enabled switching fabric. The storage nodes serve put 
and get requests and implement the replication, consistency, and 
load-balancing protocols. The storage nodes send periodic 
heartbeats to the metadata service. The metadata service maintains 
storage system metadata. The metadata includes information about 
which storage nodes are participating in the system, and which 
range of the hash space (partition) each storage node is serving. 
The metadata service does not maintain per-object metadata. 

3.2  NICE Storage Virtualization 
The first goal of virtualizing the storage system is to enable 
storage-aware routing of client requests; that is, to have a routing 
technique that can route a client request to the proper storage node 
(i.e., routing based on the key hash value). Building a storage-
aware routing mechanism is challenging. While OpenFlow 
provides control over switch forwarding decisions, it only supports 
matching packets using information found in the packet headers 
(e.g., Ethernet, IP, UDP or TCP), not the packet payload data. 
Consequently, routing packets based on the key hash carried in the 
payload is not possible. Alternatively, allowing the client to know 

(a) Switch data plane. 
(b) Pipeline for routing based on a 

hash-based key 

 
(c) Simple match-action stage for routing based on a hash-based key for 

the KV routing table in subfigure (b) 

Figure 1. Switch data plane. 
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the physical-ring mapping and replica-placement inherits the 
NOOB RAC limitations. 

The NICE approach virtualizes the storage system; the client 
accesses a virtual storage system deployed on a set of virtual nodes 
(vnodes). The virtual addresses are organized in a virtual consistent 
hashing ring (vring). For instance, all the IP addresses in the range 
of 10.10.0.0 to 10.10.255.255 can be virtual nodes in a vring. The 
number of vnodes and their addresses are configurable and do not 
correspond to the physical ring configuration. To access the system, 
the client hashes the object name and finds the vnode responsible 
for serving the object. The client sends the put/get request to the 
vnode address using UDP. 

The metadata service maps the virtual ring to the physical ring. It 
maps a subset of virtual addresses to a single physical node 
address. While different mapping techniques are possible, we use 
simple IP prefix matching: we divide the virtual ring addresses into 
subgroups such that the number of vnodes per subgroup is a power 
of 2 (e.g., all vnodes in 10.10.1.0/24 form a subgroup). The 
metadata service maps any packets sent to a particular subgroup to 
a particular physical node. To this end, the switch will modify the 
destination IP and MAC addresses in the packet headers to be the 
IP and MAC addresses of the primary replica, then forward the 
packet to the switch port of the primary replica. 

This mapping technique achieves three benefits. First, it achieves 
low-latency single-hop routing, as the client requests are directly 
routed in the network to the responsible node at switching speed. 
Second, by decoupling the virtual ring from the physical ring this 
technique simplifies deployment, as clients never need to change 
their virtual ring configuration, even when the physical ring 
configuration changes. Finally, this approach allows for multiple 
vnodes to be mapped to a single physical node, improving 
performance and load balancing [18]. Compared with NOOB 
request routing, NICE routing achieves the optimal routing latency 
of the RAC approach without suffering from its limitations. 

3.3   Consistency-Aware Fault Tolerance 
To guarantee sequential consistency NOOB storage systems use 
complex consistency protocols like two-phase (2PC), three-phase 
commit [24], Paxos [30, 31], or Raft [32]. We illustrate in Figure 3 
the put operation using the 2PC protocol, as a representative of 

these protocols to simplify our discussion. 2PC is among the early 
proposed protocols that are still widely used [7, 33, 34, 35].  

Failure handling is a main differentiating factor between 
consistency protocols. The 2PC commit protocol is brittle in face of 
node failures during the put operation and may block if the primary 
node fails. To overcome the 2PC problems, Paxos uses a majority-
based (i.e., quorum) design, in which at least the majority (but not 
all) of the nodes need to participate in the put operation. The 
drawback of this approach is that failed nodes (or disconnected 
nodes) may have stale data when they join back; consequently, it is 
necessary to access the majority of the nodes during the get 
operation as well to guaranty consistency. This approach creates 
unnecessary high overhead during get operations. An alternative 
approach is to send get requests only to the primary (a.k.a. leader) 
node (e.g., Raft). Unfortunately, this approach does not scale 
because all put and get requests are served by a single node.  

We propose a consistency-aware fault tolerance mechanism. This 
mechanism solves the inefficiency problem found in current 
protocols by allowing any storage node with consistent data to 
serve get requests. The mechanism hides inconsistent nodes, 
including failed and newly joining nodes, until they have a 
consistent version of the data. To this end, when a node fails it is 
removed from the switch mapping, rendering the node inaccessible 
from the client’s point of view. When a node restarts, it joins the 
system in two phases. First, it is made accessible to other storage 
nodes and to client put requests only. During this phase the 
rejoining node will receive new objects and will fetch consistent 
versions of the objects that have been changed while the node was 
offline. Second, when the node has consistent data, it is made 
accessible for clients’ get requests. This approach simplifies 
building consistency protocols (as we will see next) by 
guaranteeing that clients can only access consistent nodes. 

 

 

Figure 2. System Architecture. The client sends the requests using two 
virtual rings (vrings). The requests are rerouted in the network to the 
responsible storage node. The metadata service receives heartbeats from 
the nodes and maintains the mapping information in the forwarding tables. 

 
(a) 

 
(b) 

Figure 3. Put protocol alternatives. The figure shows (a) the primary-
backup and (b) the 2PC put protocols. In the primary-backup design (solid 
arrows) the primary replica serves all put and get request. In the two-phase 
commit (2PC) design (dashed arrows), two rounds are needed to guarantee 
consistency. 
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4  SYSTEM DESIGN  
In this section we first detail the design of system metadata service, 
then we extend the core techniques of NICE to build an efficient 
replication mechanism, improve the consistency protocol 
efficiency, and provide in-network load balancing. 

4.1  Metadata Service Design 
The metadata service is the only component that maintains the 
system membership and metadata, i.e., it has complete knowledge 
of all storage nodes in the system and the physical ring partitions 
they serve. The metadata service is composed of two modules: the 
membership module and the SDN controller. The membership 
module monitors storage nodes via heartbeats and detects 
membership changes (joins and failures), while the SDN controller 
controls the OpenFlow switches and updates the forwarding tables 
on membership changes. The SDN controller implements a layer 3 
learning switch; it learns which storage node is connected to which 
switch port and uses this information to build unicast and 
multicasting forwarding rules.  

Storage nodes maintain partial membership information related to 
the ring partitions of which they are part. Every node only knows 
the secondary replicas for the partition it is the primary replica for, 
and knows the primary replicas of every partition it is serving as a 
secondary replica; resulting in only O(R) information maintained at 
every node where R is the replication level.  

When a node fails, the metadata service selects a handoff node to 
serve in lieu of the failing node (we detail the fault tolerance 
mechanism later). The metadata service updates the switch 
forwarding rules to correctly route requests destined to the failed 
node to the selected handoff node. The metadata service also 
informs the affected replicas of the membership change.  

On a node join, the metadata service selects which ring partitions 
the new node will serve as a primary or secondary. Similar to 
handling failures, the metadata service updates the switch and 
informs the affected replicas of the change.  

This membership maintenance design is scalable in terms of 
number of storage nodes. The membership service need to maintain 
switches forwarding tables which requires O(S), where S is the 
number of switches in the platform, and O(R) messages to inform 
the affected replicas of the membership change. Note that each 
storage node only knows about the replicas it shares data with 
(which is O(R) of nodes). R, the replication level (typically 3 or 5), 
is independent of the total number of nodes.  

The metadata server is logically centralized. While our system 
prototype uses a central metadata service, it can adopt known 
techniques for building a highly reliable distributed metadata 
services, including partitioning the key space among metadata 
service replicas, or having a hot standby replica. We are currently 
exploring the latter approach. Three workload characteristics make 
having a metadata hot standby: the stored metadata is small, 
changes to metadata are infrequent, and the load on the metadata 
service is low as it is mainly invoked on node or network failures. 

4.2  Replication 
Storage systems should not lose data when a node fails. The main 
data reliability approach adopted by the majority of NOOB storage 
systems is replication [13, 14, 15, 16, 17, 36] (with the other 
popular technique being erasure coding). 

Challenge. On a put request, a single node (known as the primary 
replica or the coordinator) replicates the new object on R-1 storage 
nodes through R-1 unicast TCP connections, enabling the system to 
tolerate R-1 replica failures without losing data. 

This approach, in principle, is network non-optimal as the same 
data will traverse some links multiple times, especially those close 
to the node replicating the object. Further, this approach creates a 
high load on the node replicating the object as it needs to 
send/receive R copies of the data on every put.  

To alleviate the load on the replicating node Renesse et. al. 
proposed chain replication [37]. In chain replication, nodes are 
organized in chains, and each node replicates the new object to the 
next node in the chain until the required number of replicas is 
created. While this approach may distribute the replication load 
across the nodes, it significantly increases the operation latency, 
and is equally network non-optimal, as it generates an equivalent 
amount of network traffic. 

NICE Design. NICE builds network- and storage-optimal 
replication mechanism by leveraging network-level multicasting. 
The consistency mechanism discussed next requires to precisely 
identify and control which nodes are part of a given multicast 
group. While one may consider using traditional IP-multicasting, 
the fact that it requires every node to separately join/leave any 
multicast group makes it significantly harder (if not impossible) to 
build and maintain hundreds of multicast groups in face of node 
join and failure and to precisely identify when a particular multicast 
group has converged. OpenFlow helps solve these issues by 
allowing direct and centralized control of all groups. 

NICE design divides storage nodes into overlapping replica sets; 
every physical node is, typically, a primary replica in one replica 
set and a secondary replica in R-1 other sets. 

To realize single-hop replication, NICE storage follows the virtual-
storage approach discussed earlier. The client has two virtual rings: 
a unicast ring (discussed in the previous subsection) and a multicast 
ring. Each ring uses a separate IP address range (e.g., 10.10.0.0/16 
for the unicast vring, and 10.11.0.0/16 for the multicast vring). As 
the name indicates, messages sent to an address in the multicast 
ring are multicasted to all replicas of an object, while the messages 
using the unicast ring are sent to one replica (the primary replica 
unless load balancing is used). The multicast ring is only used to 
send the put request and data.  

Similar to the unicast vring, the multicast vring is divided into 
subgroups with each subgroup mapped to a replication set. For any 
packet targeting a virtual multicast address, the switch will modify 
the destination IP address to be the IP multicast address of the 
target replication set, and forward the packet to all the switch ports 
of the target replicas.  

The proposed replication mechanism is optimal: first, it uses a 
single hop to route the put request; second, it uses optimal network 
paths for data replication (considering data center tree topology, the 
optimal path is equivalent to link-layer multicasting paths); third, it 
offloads the replication overhead from the primary replica to the 
network switch, achieving high performance and scalability. This 
approach is also optimal in terms of storage node load as each 
storage node only receives the data once. Finally, this replication 
approach is load balanced by design; the primary and secondary 
replicas send/receive almost an equal amount of data. 
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4.3  Consistency Mechanism 
Sequentially consistent storage systems should guarantee data 
consistency across replicas, even when nodes fail or are 
disconnected and later join back with inconsistent data. 

NOOB consistency protocols either face the possibility of blocking 
on node failure, require getting the object from the majority of 
nodes to resolve data inconsistency, or send all requests to a single 
node. 

NICE proposes a consistency-aware fault tolerance mechanism. 
Here we demonstrate how NICE uses this mechanism to improve 
2PC fault tolerance. The NICE-2PC mechanism (shown in       
Figure 4) follows the 2PC protocol design with two main 
differences. First, it leverages multicast-based replication to offload 
replication to the network, leading to load balanced and efficiently 
replication. Second, it improves the 2PC fault tolerance without 
requiring quorum-like protocols. 

During the put operation, the client request is multicasted by the 
switch to all of the replicas. Upon receiving a complete object, the 
secondary replicas lock the object, log the operation, and 
acknowledge the operation to the primary replica. The primary 
replica, upon receiving an acknowledgment from all secondary 
replicas, generates a time stamp and multicasts the time stamp to all 
replicas. The timestamp contains the following quadruplet: primary 
address, primary timestamp, client address, and client timestamp. 
The timestamp creates an order between put operations to the same 
object, even between retrials of the put operation by the same 
client. The secondary replicas store the object to persistent storage 
following the timestamps order, release the lock, and acknowledge 
the end of the operation to the primary replica, which in turn 
acknowledges the operation to the client. We detail the fault 
tolerance mechanism next. 

Get operations can be served by any replica. To avoid 
inconsistency, replicas lock operation during the put operation and 
only release the lock when the primary informs all nodes that the 
put operation completed successfully. Figure 4 show the blocking 

period in which read requests are queued until the concurrent put 
operation completes. 

4.4  Fault Tolerance 
Failure Model. NICE follows the failure model assumed by 
current NOOB systems: node failures are assumed to be transient, 
with permanent failures being handled by administrator 
intervention [13, 14, 16]. At the end of this section we discuss the 
procedure for adding and removing nodes from NICE. 
Consequently, when a node fails or is disconnected, the system 
does not automatically replicate the objects stored on that node, as 
these objects are still durably fully replicated. 

Failure Detection. NICE adopts two techniques for detecting node 
failure: heartbeats and notifications from other nodes. The metadata 
service will declare the node failed if it misses three heartbeats 
from the node, or if a node reports to the metadata service that 
another node is irresponsive (e.g., if a node time-outs twice while 
waiting for a reply from a particular node in the 2PC protocol). 
Node failure causes two main problems: First, when a failing node 
recovers/rejoins, it often contains old (inconsistent) versions of the 
objects, if any of the stored objects have changed while the node 
was offline/disconnected. Second, newly stored objects will be 
under-replicated. Next we discuss how we handle these problems. 

Failure Hiding. To handle the inconsistency problem of the failing 
nodes, on failure detection, the metadata service removes the 
failing node from the switch unicast and multicast vring mappings 
and informs the affected replicas. This effectively renders the node 
non-existent from the client point of view. When the node recovers, 
the switch mappings are updated only after the node is deemed 
consistent, as we will see next.  

Maintaining Replication Level during Temporary Failures. 
When a node failure is detected the metadata service selects a 
handoff node to serve as a secondary replica in the hash region of 
the failing node [16]. Any storage node in the system that is not 
already part of the effected replication set can serve as a handoff 
node. The handoff node temporarily serves the object range until 
the failing node comes back. To simplify recovery, the handoff 
node stores the newly stored objects in a separate directory. If the 
handoff node receives a get request for an old object that it does not 
have, the handoff node will forward the request to the primary 
replicas. After selecting the handoff node, the metadata service 
updates the switch forwarding tables for both virtual rings and 
informs the affected replicas. When the original node comes back, 
it will discover the handoff node through contacting the metadata 
service and retrieve all the new objects. Primary node failure is 
discussed below. The system can handle multiple failures as long as 
at least one node in every region is an original node (not a handoff 
node) in the region. 

Node Recovery. When a node recovers from failure, it contacts the 
metadata service to rejoin the system. Rejoining the system takes 
three steps: First, the metadata service adds the rejoining node to 
the multicast vring mapping, and the node will start receiving put 
requests. Second, the recovering node contacts the primary node to 
get all updates received during its downtime. Finally, the node 
informs the metadata service that it has consistent data. The 
metadata service will add the node to the unicast vring mapping, 
making the node available to get requests, and inform the affected 
replicas. 

 
Figure 4. Consistency Mechanism. Timeline of the message sent in put 
operation in NICE storage. The switch performs modify and forward 
(M+F) for client packets to map the virtual address to the multicast group. 
(+L) is when a node logs the operation. (-L) is when the log entry is 
deleted. (W) is when the node writes the new object to the persistent 
storage. Gray boxes denote forced writes, and bold arrows denote 
multicasting. Object locks are only maintained in memory. 
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Failures during Put Operation. If a node fails during a put 
operation the operation will fail and the client will retry.  

If a secondary node fails during a put operation (i.e., before sending 
the last ack to the primary replica in Figure 4), the primary node 
will detect the failure through missing either of the two ack 
messages from the node. The primary node will abort the operation 
and inform the client. The primary node will also inform the 
metadata service of the failure, starting the process for hiding the 
failure as detailed above. 

If the primary node fails before sending the final acknowledgment 
to the client, the client will time-out and retry the operation. If the 
primary node fails before sending the “timestamp” message in the 
2PC protocol in Figure 4, the secondary nodes will detect the 
failure by timing out and will inform the metadata service starting 
the failure-handling process detailed above. When a primary node 
fails, the metadata service selects one of the secondary nodes to act 
as a primary node. The new primary will contact the secondary 
nodes to identify all the objects that are locked on any secondary 
node. If an object is locked on any node, this means that node did 
not receive the timestamp message from the old primary. For 
locked objects, the primary does the following: if the object is 
committed on any secondary node, then this means the object was 
committed by the old primary. The primary will commit and unlock 
the object. If an object is locked on all secondary nodes, then the 
new primary will abort the operation. In case of a complete cluster 
failure, in which all in-memory locks are lost, the persistent logs on 
the nodes will identify the latest put operations. The new primary 
will check them all using the rules above. 

Ring Re-Configuration. Occasionally, administrators may need to 
reconfigure the system to add or remove nodes. To permanently 
remove a node, the administrator updates the system configuration 
and informs the metadata of the node removal. The metadata 
removes all the forwarding rules related to the removed node, and 
updates all the effected replicas of the membership change. The 
metadata service handles adding a new node in a similar way to a 
re-joining a node after a temporary failure. The metadata updates 
the forwarding rules to add the new node to put vring and informs 
the other replicas of the change in the membership. Then, the new 
node contacts the primary replica to retrieve all keys stored in the 
hash range. Once the new node has consistent data the metadata 
service adds the node to the get vring making it available for 
serving get requests. 

4.5  Load Balancing 
While consistent hashing distributes the objects evenly across 
storage nodes, objects’ popularity rarely follows a uniform 
distribution, leading to a skewed distribution in which a subset of 
objects is highly popular [38, 39]. In this case, storage systems use 
load balancing to distribute the get/put load on all the replicas of a 
given object.  

Challenge. Current systems deploy a load-balancing node as a 
gateway to forward client requests using the ROG or RAG 
approach (§2). This deployment adds additional latency and 
requires provisioning load-balancers to avoid creating a system 
bottleneck. Latency-sensitive systems eschew load balancing and 
adopt the primary-backup design [26, 40]. Alternatively, if a 
weaker consistency is an option, a client-side load balancing can be 
adopted (e.g., the client can randomly pick one of the replicas). 

NICE Design. The NICE metadata service implements a workload-
informed consistency- and replica-aware load balancer. Unlike the 
NOOB storage design, our multicast-based put operations are load 
balanced by design; consequently, our load-balancing technique 
focuses only on get requests. While previous effort explored SDN-
based load balancing [41, 42] our approach advances the previous 
approaches by using the storage metadata to build consistency- and 
replica-aware load balancer.  

To perform workload-informed load-balancing, the metadata 
service collects periodic workload statistics. The statistics include 
the range of client IP addresses accessing each partition, and the 
size of the request queue. The statistics are piggybacked on the 
periodic heartbeats nodes send to the metadata service. 

The metadata service divides the client address space into R 
divisions, such that each division size is a power of 2. Requests 
coming from each division will be forwarded to a different replica. 
The metadata service alters the switch forwarding rules to match 
both the packet source and destination IP addresses. The 
destination IP determines which physical ring partition the request 
is targeting, while the source IP determines which replica to 
forward the request to. For requests coming from IP addresses that 
are not covered by these divisions, the metadata service forwards 
them to the primary replica. When an administrator adds a new 
node to a replica set the metadata server reparations the client 
address space to utilize the new replica for get requests. 

Compared with NOOB load balancing, NICE builds an in-network 
load balancing without increasing the latency or deploying extra 
resources.  

This approach increases the number of forwarding entries per 
partition of the unicast vring from 1 to R entries, each forwarding a 
subset of client requests to one of the replicas. 

This load balancing approach is coarse grained as it assigns clients 
to replicas without accounting for differences in client request rate. 
A few clients with high request rate can imbalance the load across 
replicas. In Section 4.5 we present a solution to this shortcoming. 

4.6  Switch Scalability 
The proposed approach can scale to support large storage systems. 
Without load balancing, each physical partition requires one entry 
in the switch forwarding table for the unicast vring mapping and 
one entry for the multicast vring mapping. This leads to a total of 
2N entries in the forwarding table. Where N is the number of 
storage nodes. If load balancing is enabled, it uses R entries per 
partition (Where R is the replication level), leading to a total of    (R 
+ 1)N entries. Current switches include forwarding tables that can 
support 128K forwarding rules or more which makes them capable 
of supporting storage systems with 64K storage nodes without load 
balancing. With load balancing enabled and with a replication level 
of 3 they can support up to 32K storage nodes. 

4.6  Leveraging Programmable Switches 
To make NICE design deployable on current commodity switches, 
we constrained the design to only use the capabilities of current 
OpenFlow standard. Unfortunately, OpenFlow limitations restricted 
some design decisions in NICE. In particular, NICE load balancing 
design is brittle in face of skewed workloads or heterogeneous 
infrastructure. The NICE load balancing technique (Section 4.5) 
partitions the clients into R groups and assigns a subset of clients to 
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each replica. This approach is not efficient if clients vary in their 
level of activity. If a small set of clients generate most of the load, a 
typical scenario in many applications (e.g., active tweeter users), 
the load will be skewed across replicas. Similarly, if the replicas are 
deployed on heterogeneous hardware, assigning equal load on all 
replicas is inefficient. 

To address this challenge we implemented a flexible load balancer 
using the P4 programming language. The load balancer implements 
weighted load balancing techniques in which the controller assigns 
weights to replicas and configures the switch to distributed the load 
following these weights. 

Following this approach, we changed the NICE design to use the 
P4 capabilities. The new design is identical to the OpenFlow design 
with the exception of leveraging the P4 capabilities to implement 
the weighted load balancing technique.  

P4-based Load Balancing Design. Figure 5 shows the design of the 
load balancing stage. Every packet will be processed using the 
action in the load balancing table. The table has a single entry and a 
single action. The action randomly selects a number. The selected 
number is then used as an index to the IP addresses table.  

To implemented the weighted load balancing technique, replicas 
report the length of the request queue in a periodic heartbeat. Every 
second, the controller calculates the average queue length for each 
replica and assigns proportional weights to each replica. The leader 
updates the list of random number in the load balancing table to 
reflect these weights. For instance, if replica 1 should receive 
double the load of any other replica, the action in figure 5 will be 
rand(1, 1, 2, 3), doubling the chance replica 1 is selected.  

5    IMPLEMENTATION DETAILS 
We implemented the NICEKV prototype following the NICE 
design. NICEKV is implemented in 14K lines of C++ code. The 
controller is implemented using 1K lines of python using the Ryu 
framework [43].  

The rest of the section discusses implementation details of the 
network centric operations, and summarizes our experience with 
the state-of-the-art switches. 

Clients. NICEKV is accessed through a client library with a simple 
interface for read, write, and delete operations. Read (get) and write 
(put) operations read or write entire objects. The library computes 
the hash of the requested key and maps it to the virtual IP address, 
then it will send the request to that virtual IP address.  

 

Mapping Service. The SDN controller implements a layer 3 
learning switch. If the controller receives a packet destined to a not-
yet-seen IP address, the controller will check if the address is a 
vnode address and update the switch to map the address to its 
physical counterpart, else the controller will buffer the packet and 
broadcast an ARP request for the unknown address. On receiving 
an ARP reply, the controller will update the forwarding tables and 
forward the buffered packets. The controller keeps a list of recently 
ARPed addressed to avoid flooding the network with ARP 
requests.  

Request Routing. We use UDP to send client requests and TCP for 
all other communications, i.e., the client sends the put/get request 
to the vnode IP address using UDP and waits for the reply on a 
client-side TCP socket. This design decision allows mapping 
multiple vnode addresses to a single physical address without 
worrying about handling the reverse mapping required for TCP, 
i.e., mapping the physical node address to multiple vnodes. Further, 
UDP is required for IP multicasting.  

Replication. For large objects, replication requires a reliable 
transport for data dissemination. NICEKV builds a simple reliable 
UDP-based multicast transport layer that uses primitive flow and 
congestion control techniques. Data is divided into multiple 
chunks, each less than a single network MTU (1400 bytes). The 
protocol uses NACKs to inform the client of missing packets, and 
the client sends the missing packets using a unicast connection. 
ACKs are used for flow control.  

We implemented a version of the reliable multicast protocol for 
quorum protocols. We optimized the quorum implementation by 
pushing the quorum design down to the multicast transport layer. 
To this end, we designed a reliable any-k multicasting protocol. For 
flow control, the protocol tracks a window of transmitted packets 
and advances the window when any k of the recipients 
acknowledges receiving the packets. The protocol returns when any 
k of the nodes fully receives the data. After returning, the protocol 
keeps supporting straggling nodes until they finish or timeout. 

P4 implementation. We implemented NICEKV-P4, a version of 
NICEKV with a P4 network protocol implementation. The switch 
data plane is written in P4 v14 [21, 44] and is compiled for 
Barefoot’s Tofino ASIC [28], with Barefoot’s P4Studio software 
suite [45]. Our P4 code uses less than 5% of the on-chip memory 
available in the Tofino ASIC, leaving ample resources to support 
other switch functionalities. 

5.1  Deployment Experience 
We experimented with three testbeds that are provisioned with 
three models of switches. Unfortunately, we found that the current 
switches lag in terms of the supported OpenFlow features. All 
switches supported only a subset of the OpenFlow standard. 
Efficiently modifying packet headers, in particular, was rarely 
supported. Only one switch supported this feature, but in software, 
resulting in three orders of magnitude slower switching speed if the 
switch is tasked with modifying a field in the header.  

The CloudLab [46] Utah cluster, which we use, uses Comware 
switches which supports a subset of OpenFlow features; in 
particular, it supports forwarding the packets to multicast addresses 
but does not support modifying the packet IP destination address. 

 
Figure 5. Logical view of the load balancing logic. The load balancing 
entry generates an index of the selected destination’s IP address. Using 

the index, the IP address table sets the destination’s IP address. 
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Modifying the packet IP destination addresses is necessary for 
mapping virtual addresses to physical addresses.  

To address this challenge, we deployed Open vSwitch [47] on 
every client machine. Open vSwitch is a software-based 
OpenFlow-enabled virtual switch. Further, we extended the 
NICEKV SDN controller to control multiple switches (i.e., multiple 
Open vSwitches and a single hardware switch). The controller 
installs the rules to modify packet headers (mapping virtual to 
physical addresses) on the client side Open vSwitches, and installs 
forwarding and multicasting rules on the hardware switch. Our 
evaluation shows that our new deployment leads to less than 4% 
performance loss compared to the same deployment without using 
Open vSwitch.  

6   EVALUATION 
We evaluated NICE using synthetic as well as real world 
benchmarks using the Yahoo YCSB benchmark [39]. We 
empirically compare NICE with three object storage systems: Ceph 
[12], OpenStack Swift [13], and NOOB, our in-house key-value 
systems. We choose Ceph and Swift as these are production-quality 
widely-used NOOB storage systems, the NOOB prototype allows 
us to compare NICE with range of NOOB designs and 
configurations. We compared the performance of quorum based 
design. The results of those experiments are available here [48]. 

Ceph. Ceph adopts a primary-backup approach in which all client 
put and get operations are received and processed by the primary 
replica. Clients send their put requests directly to the primary, 
which replicates the data, then replies to the clients. The primary 
does not serve concurrent put or get requests until the current put 
operation completes. 

OpenStack Swift. Swift adopts a proxy-based design; client put and 
get requests are sent to a proxy node, that sends the request to the 
responsible storage node, then the proxy replies to the client. The 
proxy node is on the data path for both put and get operations. 

NOOB prototype is a highly configurable storage system that 
implements three common access mechanisms, and two replication 
techniques. NOOB facilitates comparing NICE with wider design 
choices. The NOOB system implements the three common access 
mechanisms: RAC with client side caching, RAG with a replica-
aware load balancer, and ROG with a randomized load balancer. 
Furthermore, NOOB prototype implements two 
replication/consistency mechanisms: two-phase commit (2PC) and 
primary-backup. The NOOB prototype allows us to compare NICE 
with range of NOOB designs and configurations.  

Platform. We use a cluster of 30 nodes on the CloudLab [46] Utah 
site. Each node has an 8-core ARMv8 2.4 GHz processor, 64GB 
memory, 120GB SATA3 Micron SSD disk and 1 Gbps NIC. The 
nodes are connected to an OpenFlow enabled switch that supports 
OpenFlow 1.3.1. While the evaluation uses a single hardware 
switch the controlled switching topology (including Open 
vSwitches software switches) is much more complex. Further, 
NICE can readily support multi-switch platforms, as the controller 
will install the same rules on all participating switches. 

Deployment Configuration. Unless otherwise specified, we 
deploy the systems on 16 nodes (one mapping node and 15 storage 
nodes), 14 nodes for clients and load balancers, and configure the 
system with replication level of 3.  

6.1  Request Routing Evaluation 
We evaluate the performance of request routing in four systems: 
NICE, Ceph, Swift, and NOOB storage prototype. For NOOB 
storage we evaluate three configurations: ROG, RAG, and RAC. 
The workload used consists of get-only requests issued by a single 
client. The object size varies from 4 bytes to 1MB. Figure 6 shows 
the average of 1000 get operations. 

 
Figure 6. Request Routing Performance. The average time of the get 
operation. Note the log scaled y-axis. The lines for NICE, Ceph, and 
NOOB-RAC overlap. 
 
Figure 6 compares the performance of the four systems. Systems 
that use a single-hop request routing (i.e., direct access from client 
to the primary replica of an object), including NICE, Ceph, and 
NOOB+RAC, achieve the lowest latency and have comparable 
performance. For object sizes less than 64KBs NICE, Ceph, and 
NOOB+RAC systems achieve 1.5× performance improvement 
compared to NOOB+RAG, and 2× improvement compared to 
NOOB+ROG. This improvement is due to eliminating the request 
routing delay imposed by RAC and RAG designs. Swift achieves 
the lowest performance: NICE achieves over 30× improvement 
compared with Swift. The benefits are not as pronounced with large 
data sizes, as transfer time dominates. Nevertheless, Swift 
performance lags (by over 2.5×) even with large data sizes. The 
main reason for Swift low performance is that Swift completely 
hides storage nodes, and clients only interact with the proxy nodes. 
Consequently, to serve a get request to a client, instead of sending 
the get response directly from a storage node to the client, Swift 
transfers data from storage nodes, to proxy nodes, then to clients, 
which introduced additional latency, increases system load, and 
reduced throughput.  

6.2  Replication Evaluation 
We evaluate the performance of the replication mechanism and 
compare it across the four systems: NICE, Ceph, Swift, and NOOB 
with primary-backup design. We evaluate the three request routing 
mechanisms in NOOB: ROG, RAG, and RAC. We compare these 
systems in terms of replication time, network load, and ratio of load 
of the primary replica to the secondary replicas. The workload used 
consists of put-only requests issued by a single client. The object 
size varies from 4 bytes to 1MB. Figure 6 shows the average of 
1000 get operations.  

Replication time. Figure 7 compares the replication time of all 
evaluated systems. The results show that NICE achieves the best 
performance across object sizes. NICE achieves: up to 4.3× 
compared to NOOB+ROG, up to 3.4× compared to NOOB+RAG, 
up to 2.6× compared to NOOB+RAC, up to 2.6× compared to 
Ceph, and over 40× compared to Swift which uses the Replica-
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aware proxy design. NICE achieves this significant performance 
improvement by using optimal multicast-based replication and 
through eliminating request routing overhead using single-hop 
routing.  

Network load. We evaluated the network load generated by the 
put operation on all tested systems (Figure 8). We measure the 
network load as the total amount of data transferred on every link 
in the network (i.e., a 1KB bject traversing two links count as 2KB 
of network load). NICE significantly reduces the network load 
compared to the other systems. This improvement holds regardless 
of object size. NICE generates between 1.7× to 3.5× less network 
load compared to the other systems. 

Storage Load Ratio. We evaluate the load imbalance between the 
storage nodes as the ratio between the amount of data processed 
(sent or received) by the primary replica to the amount of data 
processed by the secondary replicas (Figure 9). Figure 9 shows that 
NICE load balances the workload between the primary and 
secondary with both achieving the optimal load of 1 (i.e., receiving 
the object once only). Ceph and all NOOB configurations impose 
3× more work on the primary than on the secondary (this load 
imbalance is proportional to the replication level). In Swift, the 
proxy node has 4× more load than any other replica. 

6.3  Consistency Mechanism Evaluation 
Storage systems may replicate an object to meet high demand. We 
evaluate the put operation efficacy while varying the replication 
level. We evaluate NICE, Ceph, Swift, and the best configuration 
for NOOB system, namely NOOB+RAC. We evaluate two 
configurations for NOOB+RAC: primary-backup and 2PC. The 
evaluation uses small 4-byte objects and large 1MB objects.  

With 4-byte objects (Figure 10) NICE achieves the highest 
performance: up to 1.3× better performance than NOOB-2PC. 
NICE achieves comparable performance to NOOB primary-backup 
replication. Although NICE has an extra phase of communication 

compared to the primary only design, its use multicast-based 
replication reduces the data transfer time and eliminates the 
overhead of creating 8 TCP connections. We note that the 
performance of all systems degrades with higher replication levels, 
due to the increased overhead of the consistency protocol that 
dominates small object performance. The primary-backup design 
achieves better performance than NOOB-2PC due to 2PC protocol 
overheads. 

Figure 11 shows the put operation time with 1MB objects. NICE 
achieves up to 5.5× better performance than NOOB systems. The 
primary-backup and 2PC achieve comparable performance since, 
with large objects; performance is dominated by replication cost. 
While NOOB performance degrades considerably: by 7× when 

 
Figure 7. Replication Performance. The average time of the put operation. 
Note the log scaled y-axis  

 
Figure 8. Network Link Load. The total network link load of the put 
operation. 

 
Figure 9. Storage Load Ratio. The ratio of the primary replica (or proxy 
node in case of Swift) to secondary replica load in terms of amount of data 
sent/received during the put operation. 

 
Figure 10. Consistency Mechanism Performance with 4-byte objects while 
varying the replication level. Error bars represent standard deviation. For 
clarity we truncate the figure to 5ms. Switft completes the workload in 
24ms with 1 replica and in 47ms with 9 replicas. 

 
Figure 11. Consistency Mechanism Performance with 1MB objects while 
varying the replication level. Error bars represent standard deviation. 
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increasing the replication from 1 to 9, NICE performance degrades 
slightly when increasing the replication level (by 17% when 
increasing the replication from 1 to 9). 

NICE achieves up to 5× and 23× performance gain with 4-byte 
objects and up 5× and 6.5× with 1MB objects compared to Ceph 
and Swift, respectively. This is mainly due to the use of inefficient 
replication and due to the added overhead of the proxy nodes on the 
data path in Swift. 

6.4  Load Balancing 
To evaluate systems ability to load balance requests across replicas 
of the same object we designed a weak scaling experiment: we test 
the systems while increasing the number of replicas and 
proportionally increase the load (i.e., the number of clients). The 
experiment measures systems ability to efficiency utilize the added 
resources to serve proportionally equivalent load. We evaluate the 
performance of NICE, Ceph, Swift, and two NOOB storage 
configurations: primary-backup and 2PC. The experiment measures 
the systems performance when serving highly-popular frequently-

updated objects. In each configuration 1 client puts a shared object 
1000 times, while R-1 clients each gets the shared object 1000 
times. 

We ran the experiment with 4-byte (Figure 13) and 1MB (Figure 
14) objects. The results show that NICE achieves higher 
performance than NOOB, Ceph and Swift under all replication 
levels. NICE achieves up to 7.5× better than the primary-backup 
configuration, and up to 5.5× better than the 2PC configuration in 
both object sizes.  

To understand the impact of contention between put and get 
requests we compare the results to get-only workload. The dark line 
markers on the bars in Figure 12 and Figure 13 show the 
performance of R-1 clients issuing get operations without any put 
operation. The figures show that NICE and 2PC are able to load 
balance the get requests across replicas, while the primary-backup 
design performance degrades with the increased workload as no 
load balancing is used. Comparing the black marker to the top of 
the bar shows the added overhead due to the contention of the put 
and get requests. The figure shows that data consistency 
mechanism adds significant overhead to NOOB systems.  

Figure 12 and Figure 13 show that NOOB storage system 
performance degrades considerably when increasing the replication 
level and the number of clients. NOOB primary-backup 
performance degrades by 10× with small objects and 3.5× with 
1MB object, and the 2PC configuration degrades by 2.6× with both 
sizes. This indicates that NOOB design is not weakly scalable and 
generates high overhead under heavy demand. NOOB is unable to 
meet the increasing demand despite the proportional increase in the 
allocated resources. Significant replication costs (dominant in large 
objects) and consistency-protocol overhead (dominant in small 
object) are the reason why. NICE storage performance degrades 
slightly when increasing the replication level and the number of 
clients (only by 20% with 1MB objects and by 80% with 4-byte 
objects). 

6.5  Fault Tolerance Evaluation 
This experiment demonstrates the system fault tolerance 
mechanism. The experiment fails and recovers a replica while the 
system is consistently being accessed by three clients. The clients 
generate a continues stream of put and get requests with a ratio of 
20/80 of put/get requests and with a key size of 1KB. All objects 
are in the same partition.  

Figure 14 shows the number of put and get requests served per 
second. At the 30s mark, a secondary replica (node 2) fails. The 
following put operation will fail and the primary node will detect 
the replica failure. The primary node will inform the metadata 
service. The metadata service executes the fault tolerance steps:  it 
removes the failed node from the switch mappings and adds the 
handoff node to the replica set. This process takes less than 2 
seconds during this process the partition is unavailable for put 
operations (Figure 14 second 31). Client put requests during this 
period will fail and the client will retry after waiting for 2 seconds, 
in which case the operations will succeed. We are working on 
shortening this down time through allowing put operations to 
succeed even if one node fails (i.e., having R-1 replicas) and by 
creating, in the background, one more replica on the handoff node 
when it joins the replica set. 

 
Figure 12. Load balancing evaluation with 4-byte objects. The systems 
performance under the load balancing workload while varying the 
replication level and number of clients. Bold markers show the 
performance of the get-only workload. Error bars represent standard 
deviation. For clarity, we truncate Swift bars, Swift finishes in 35ms with 3 
replicas, and in 70ms with 9 replicas. 

 
Figure 13. Load balancing evaluation with 1MB objects. The systems 
performance under the load balancing workload while varying the 
replication level and number of clients. Bold markers show the 
performance of the get-only workload. Error bars represent standard 
deviation. 
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For get operations, the client selects, in a uniform random fashion, 
one of the recently put objects to get. When the handoff node starts 
serving client requests (second 31), it does not have any of the 
requested objects. In this case, it forwards all get requests to the 
primary replica. As more objects are stored at the handoff node less 
get requests are forwarded to the primary node. 

At 90s mark, the failed node joins back, and starts retrieving the 
objects it missed. This is represented by the spike in put requests 
(and get requests at the handoff node). At the 95 second mark the 
returning node completes its recovery and has a consistent set of 
objects, the metadata service adds the node to the unicast switch 
mapping and removes the handoff node. 

6.6  Real Workload Evaluation 
We evaluate NICE and NOOB systems under real application 
workload generated using the Yahoo cloud serving benchmark 
(YCSB) [39]. We use two workloads from the YCSB benchmark 
suit: a read-only workload (YCSB-C) and the read-modify-write 
workload (YCSB-F) with 50% put requests. As in the majority of 
the Yahoo workloads, these two have a zipf popularity distribution.  

We evaluate NICE and NOOB with primary-backup and 2PC 
configuration. The workload used consists of 10 clients each 
generating 20K requests generated using the YCSB workload 

discussed earlier. We use the default YCSB object size of 1KB. 

The experiment results (Figure 15) shows that NICE achieves the 
best performance under the two workloads. NICE achieves 1.6× 
and 2.3× better than primary-backup configuration under workload 
C and F, respectively. This improvement is due to the lack of load 
balancing in the primary-backup configuration. Compared with 
2PC configuration, NICE achieves 1.25× and 1.5× better 
performance under workload C and F, respectively. 2PC 
configurations lags NICE due to the added latency by the load 
balancer (using the RAG request routing) and consistency-protocol 
overhead. 

6.7  Evaluation with the Programmable Switch 
We empirically compare two load balancing approaches: client 
partitioning (CP) which partitions the clients among replicas based 
on their IP address. This is the approach implemented in the 
OpenFlow-based NICEKV), and weighted replica (WR) in which 
the controller sets a weight for each replica and the switch 
assignments load to replicas proportional to it weight. This is the 
technique implemented in the P4-based implementation. 

For these experiments we used a different cluster with a P4-
programmable switch and 13 nodes. Each node has an Intel Xeon 
Silver 10-core CPU, 48GB of RAM, and 100Gbps Mellanox NIC. 
The nodes are connected to an Edgecore Wedge 100 ×32BF switch 
with 32 100Gbps ports. The switch has Barefoot’s Tofino ASIC, 
which is P4 programmable. In all of our experiments, three 
machines ran the server code, while the other 10 machines 
generated the workload. Each client node is running 100 client 
threads. Each thread is generating read requests following the read-
only YCSB workload C benchmark. The key size is 24 bytes and 
the value is 1KB. 

To demonstrate the flexibility of the P4 based load balancing we 
compared the operation latency under two scenarios. 

Scenario I: skewed client workload. A workload in which clients 
vary in the amount of requests they generate. 

In this experiment the first 3 out of the 10 client nodes generate 
50% of the requests. Figure 16 shows the latency of requests of the 
two approaches under this workload. NICEKV-WR achieves up to 
50% lower latency than NICEKV-CP. This is mainly because 
NICEKV-CP partitions the clients across replicas based on their IP 
address, leading to all highly active clients being assigned to one 
replica. The selected replica received over 50% of the total load in 
the system while the other two replicas received less than 25% of 
the load each. The NICEKV-WR assigns equal weights to all 
replicas hence it uniformly distributes the client load across 
replicas leading to better load balancing and lower overall latency. 
Figure 16 shows that 50% of the requests experience significantly 
higher latency with CP compared to WR.   

Scenario II: heterogeneous replicas. In this experiment we 
artificially slow the CPU of one of the replicas by 40% to emulate 
a platform with heterogeneous nodes.  

In this experiment all clients generate the same amount of requests. 
Figure 17 shows the latency of requests of the two approaches 
under this workload. We notice for NICEKV-CP that 40% of 
requests experience significantly higher latency. NICEKV-WR 
balances the load among replicas proportional to their capabilities: 
it increases the load on the two capable nodes (hence a bit higher 

 
Figure 14. Fault Tolerance Evaluation. Secondary node 2 fails at 30s mark, 
triggering the fault tolerance mechanism, and 90s the node recovers, 
retrieves the missed objects from the handoff node, and starts serving client 
requests. 

 
Figure 15. Yahoo Benchmark Evaluation. The three systems performance 
under two Yahoo benchmarks: read-only (C), and read-modify-write (F). 

Error bars represent standard deviation. 
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latency for the bottom 60% of requests) and reduces the latency on 
the slow node (hence up to 50% lower latency for the top 40% of 
requests). 

 
Figure 16. The latency CDF of NICEKV with client partitioning (CP) load 
and Weighted replicas (WR) load balancing under a skewed client 
workload. 

 
Figure 17. The latency CDF of NICEKV with client partitioning (CP) load 
and Weighted replicas (WR) load balancing with heterogeneous hardware. 

 

7   OTHER RELATED WORK 
Request Routing. Beehive [49] proposes a different approach for 
achieving, on average, single-hop request routing for special 
workloads: workloads with highly skewed power-law popularity 
distribution. Beehive replicates each object based on its popularity, 
with the extremely popular objects replicated on every node, hence 
accessible in a single-hop. Due to the network and storage overheads, 
this approach is only feasible for highly skewed workloads of 
infrequently updated objects.  
SDN Optimized Systems. Recent research projects utilize SDN 
capabilities to provide load balancing [41, 42], access control [50], 
seamless VM migration [51], and to improve system security, 
virtualization and network efficiency [52]. These systems still use 
the network as a separate entity and use SDN to optimize its 
operations. Unlike current efforts, we co-design network and 
system operations and protocols to achieve significant benefits. 

Recently, a number of projects explored techniques to leverage the 
new SDN capabilities. MOM [53], NOPaxos [54], Eris [55] build 
consistency protocols by relying on the network to order 
operations. SwitchKV [56] builds a key-value storage with a tier of 
caching nodes. SwitchKV uses the SDN-capability to optimize 
request routing for get requests from the cache. MBalancer [57] and 
Trajano et al. [58] leverage the SDN capabilities to build 
application aware load balancers. sRoute [59] uses SDN to 
optimize gather and scatter communication patterns in storage 
systems. Unlike these projects, we propose a new complete system 

architecture that co-designs network and storage support and 
optimizes a range of mechanisms including load balancing, 
replication, and consistency. 

Leveraging Programmable Switches. Recently a number of 
projects started exploring techniques to leverage the capabilities of 
programmable switches to improve distributed systems. NetCache 
[60] implements a caching service in a single switch. The controller 
keeps track of the most popular objects and controls the cached 
objects in the switch. NetChain [61] optimizes vertical Paxos [62] 
by implementing chain replication on a chain of programmable 
switches. NetPaxos [63] considers moving the Paxos protocol to 
the network switches, such that one switch serves as a coordinator 
and other switches serve as replicas. The proposed approach 
requires implementing a substantial part of the protocol in switches 
and storing a potentially large protocol state. NetChain and 
NetPaxos are suitable for systems that store only a few megabytes 
of data (e.g., 8MB in the current NetChain prototype). 

8   CONCLUSION AND FUTURE WORK 
We present network-integrated cluster-efficient (NICE) storage, 
which co-designs storage logic and networking support to realize a 
more efficient, scalable, and reliable distributed storage. Our 
prototype evaluation shows that this approach can realize 
significant benefits: up to 7× performance improvement, substantial 
network-load reduction (up to 50%), and improved load balancing 
and scalability. While we focus the discussion on key-value storage 
systems, the proposed techniques for virtualization and 
consistency-aware fault tolerance are widely applicable.  

Our future work will focus on two directions. First we plan to 
investigate building SDN-optimized storage systems that can 
support more complex key-value queries. Second, NICE design 
focused on improving replication-based storage system. The second 
popular reliability technique is the use of erasure coding. We plan 
to investigate techniques to accelerate storage systems using 
erasure coding. 

ACKNOWLEDGMENT 
We thank Ajay Bakre, Alvin Lam, and Emalayan Vairavanathan 
from NetApp Vancouver technical center (VTC) for their support and 
early feedback, Aaron Gember-Jacobson for his help with Openflow 
deployment issues, Thanumalayan S. Pillai for his help with the 
Yahoo benchmark experiment, and Robert Ricci and the CloudLab 
team for their support at CloudLab. This material was supported by 
funding from an NSERC Discovery grant, NSERC Engage grant, 
Canada Foundation for Innovation (CFI) grant, NSF grants CNS-
1419199, CNS-1421033, CNS-1319405, and CNS-1218405, as well 
as in-kind support from NetApp VTC, Canada. Any opinions, 
findings, and conclusions or recommendations expressed in this 
material are those of the authors and may not reflect the views of 
NSERC, NSF, or other institutions. 

REFERENCES 
[1] J.H. Saltzer, D.P. Reed, and D.D. Clark, End-to-end arguments in system design. 

ACM Transactions in Computer Systems, 1984. 2(4): p. 277-288. 
[2] Amazon Elastic Compute Cloud (EC2).  [cited 2010; Available from: 

http://aws.amazon.com/ec2/. 
[3] Google app engine.  [cited 2015; Available from: https://appengine.google.com. 
[4] Microsoft Azure: Cloud computing platform and services.  [cited 2016; 

Available from: https://azure.microsoft.com/. 

http://aws.amazon.com/ec2/
https://appengine.google.com/
https://azure.microsoft.com/


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MANUSCRIPT ID)                                                             14 

 

[5] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large 
Clusters. in USENIX Symposium on Operating Systems Design and 
Implementation (OSDI). 2004. 

[6] Spark lighting fast cluster computing.  [cited 2019; Available from: 
http://spark.apache.org/. 

[7] B. Calder, J. Wang, A. Ogus, et al. Windows azure storage: A highly available 
cloud storage service with strong consistency. in ACM Symposium on Operating 
Systems Principles (SOSP). 2011. 

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. in 
SOSP'03. 2003. Lake George, NY. 

[9] J.H. Howard, M.L. Kazar, S.G. Menees, et al., Scale and Performance in a 
Distributed File System. ACM Transactions on Computer Systems, 1988. 6(1). 

[10] K. Gupta, R. Jain, I. Koltsidas, et al., GPFS-SNC: An enterprise storage 
framework for virtual-machine clouds IBM Journal of Research and 
Development 2011. 

[11] R. Sandberg, D. Goldberg, S. Kleiman, et al., Design and Implementation of the 
Sun Network Filesystem, in Proc. Summer USENIX. June 1985. p. 119--130. 

[12] S. Weil, S.A. Brandt, E.L. Miller, et al. Ceph: A Scalable, High-Performance 
Distributed File System. in Proceedings of the 7th Conference on Operating 
Systems Design and Implementation (OSDI '06). 2006. 

[13] OpenStack Cloud Platform: OpenStack Swift.  [cited 2015; Available from: 
http://docs.openstack.org/developer/swift/overview_architecture.html. 

[14] Basho. Riak cloud storage.  [cited 2015; Available from: http://basho.com/riak-
cloud-storage/. 

[15] Voldemort project.  [cited 2015; Available from: http://www.project-
voldemort.com/voldemort/design.html. 

[16] G. DeCandia, D. Hastorun, M. Jampani, et al. Dynamo: Amazon's Highly 
Available Key-value Store. in SOSP07. 2007. 

[17] A. Lakshman and P. Malik, Cassandra: A decentralized structured storage 
system. SIGOPS Operating Systems Review, 2010. 44(2): p. 35-40. 

[18] I. Stoica, R. Morris, D. Karger, et al. Chord: A Scalable Peer-to-Peer Lookup 
Service for Internet Applications. in SIGCOMM Conference. 2001. ACM. 

[19] The Open Networking Foundation: Openflow switch specification. Version 
1.5.0. 2014. 

[20] N. McKeown, T. Anderson, H. Balakrishnan, et al., Openflow: Enabling 
innovation in campus networks. SIGCOMM Computer Communication Review, 
2008. 32(2): p. 69-74. 

[21] P. Bosshart, D. Daly, G. Gibb, et al., P4: programming protocol-independent 
packet processors. SIGCOMM Comput. Commun. Rev., 2014. 44(3): p. 87-95. 

[22] D.R. Karger, E. Lehman, F.T. Leighton, et al. Consistent Hashing and Random 
Trees: Distributed Caching Protocols for Relieving Hot Spots on the World 
Wide Web. in Symposium on Theory of Computing. 1997. ACM. 

[23] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and 
routing for large-scale peer-to-peer systems. in IFIP/ACM International 
Conference on Distributed Systems Platforms (Middleware). 2001. Heidelberg, 
Germany. 

[24] A.S. Tanenbaum and M.V. Steen, Distributed Systems: Principles and 
Paradigms. 2 ed. 2006: Prentice Hall. 

[25] The Apache Cassandra Project. 2012; Available from: 
http://cassandra.apache.org/. 

[26] D. Ongaro, S.M. Rumble, R. Stutsman, et al., Fast crash recovery in 
RAMCloud, in Proceedings of the Twenty-Third ACM Symposium on Operating 
Systems Principles. 2011, ACM: Cascais, Portugal. p. 29-41. 

[27] J. Technologies, Network Protocols Handbook. 2005: Javvin Technologies Inc. 
[28] Barefoot Tofino. 2019; Available from: 

https://www.barefootnetworks.com/products/brief-tofino/. 
[29] Cavium / XPliant. 2019; Available from: https://origin-

www.marvell.com/documents/netpxrx94dcdhk8sksbp/. 
[30] L. Lamport, The part-time parliament. ACM Transactions on Computer Systems 

(TOCS), 1998. 16 (2): p. 133-169. 
[31] L. Lamport, Paxos Made Simple. ACM SIGACT News, 2001. 32(4). 
[32] D. Ongaro and J. Ousterhout. In search of an understandable consensus 

algorithm. in USENIX Annual Technical Conference (USENIX ATC). 2014. 
[33] Mongodb. Available from: https://www.mongodb.org/. 
[34] Postgresql. 2019; Available from: http://www.postgresql.org/. 
[35] M.K. Aguilera, A. Merchant, M. Shah, et al., Sinfonia: a new paradigm for 

building scalable distributed systems, in Proceedings of twenty-first ACM 
SIGOPS symposium on Operating systems principles. 2007, ACM: Stevenson, 
Washington, USA. p. 159-174. 

[36] J. Ousterhout, A. Gopalan, A. Gupta, et al., The RAMCloud Storage System. 
ACM Transactions on Computer Systems, 2015. 33(3): p. 7:1-7:55. 

[37] R.v. Renesse and F.B. Schneider. Chain replication for supporting high 
throughput and availability. in Symposium on Opearting Systems Design & 
Implementation (OSDI). 2004. San Francisco, CA. 

[38] B. Atikoglu, Y. Xu, E. Frachtenberg, et al., Workload analysis of a large-scale 
key-value store, in Proceedings of the 12th ACM 
SIGMETRICS/PERFORMANCE joint international conference on Measurement 
and Modeling of Computer Systems. 2012, ACM: London, England, UK. p. 53-
64. 

[39] B.F. Cooper, A. Silberstein, E. Tam, et al., Benchmarking cloud serving systems 
with YCSB, in Proceedings of the 1st ACM symposium on Cloud computing. 
2010, ACM: Indianapolis, Indiana, USA. p. 143-154. 

[40] D. Terry, V. Prabhakaran, R. Kotla, et al., Consistency-based service level 
agreements for cloud storage, in Proceedings of the Twenty-Fourth ACM 
Symposium on Operating Systems Principles. 2013, ACM: Farminton, 
Pennsylvania. p. 309-324. 

[41] N. Handigol, M. Flajslik, S. Seetharaman, et al. Aster*x: Loadbalancing as a 
network primitive. in GENI Engineering Conference (Plenary). 2010. 

[42] R. Wang, D. Butnariu, and J. Rexford. Openflow-based server load balancing 
gone wild. in USENIX Conference on Hot Topics in Management of Internet, 
Cloud, and Enterprise Networks and Services (Hot-ICE). 2011. 

[43] Ryu sdn framework.  [cited 2019; Available from: http://osrg.github.io/ryu/. 
[44] Programming protocol-independent packet processors (P4).  [cited 2019; 

Available from: https://p4.org. 
[45] Barefoot P4 Studio.  [cited 2019; Available from: 

https://www.barefootnetworks.com/products/brief-p4-studio/. 
[46] Cloudlab.  [cited 2019; Available from: http://www.cloudlab.us/. 
[47] OpenvSwitch: Production quality, multilayer open virtual switch.  [cited 2019; 

Available from: http://openvswitch.org/. 
[48] S. Al-Kiswany, S. Yang, A.C. Arpaci-Dusseau, et al. NICE: Network-Integrated 

Cluster-Efficient Storage. in ACM International Symposium on High 
Performance Parallel and Distributed Computing (HPDC). 2017. 

[49] V. Ramasubramanian and E.G. Sirer. Beehive: O(1) Lookup Performance for 
Power-Law Query Distributions in Peer-to-Peer Overlays. in NSDI. 2004. San 
Francisco, CA. 

[50] A.K. Nayak, A. Reimers, N. Feamster, et al. Resonance: Dynamic access 
control for enterprise networks. in ACM Workshop on Research on Enterprise 
Networking (WREN). 2009. 

[51] A.J. Mashtizadeh, M. Cai, G. Tarasuk-Levin, et al. Xvmotion: Unified virtual 
machine migration over long distance. in USENIX Annual Technical Conference 
(USENIX ATC). 2014. 

[52] A. Lara, A. Kolasani, and B. Ramamurthy, Network innovation using openflow: 
A survey. IEEE Communications Society, 2014. 16(1): p. 493 - 512. 

[53] D.R.K. Ports, J. Li, V. Liu, et al. Designing distributed systems using 
approximate synchrony in data center networks. in Symposium on Networked 
Systems Design and Implementation (NSDI). 2015. 

[54] J. Li, E. Michael, N.K. Sharma, et al. Just say no to paxos overhead: replacing 
consensus with network ordering. in USENIX conference on Operating Systems 
Design and Implementation (OSDI) 2016. 

[55] J. Li, E. Michael, and D.R.K. Ports. Eris: Coordination-Free Consistent 
Transactions Using In-Network Concurrency Control. in Symposium on 
Operating Systems Principles (SOSP). 2017. 

[56] X. Li, R. Sethi, M. Kaminsky, et al. Be Fast, Cheap and in Control with 
SwitchKV. in USENIX Symposium on Networked Systems Design and 
Implementation (NSDI) 2016. 

[57] A. Bremler-Barr, D. Hay, I. Moyal, et al. Load balancing memcached traffic 
using software defined networking. in IFIP Networking Conference. 2017. 

[58] A. Trajano and M. Fernandez. Two-phase load balancing of In-Memory Key-
Value Storages through NFV and SDN. in IEEE Symposium on Computers and 
Communication (ISCC). 2016. 

[59] I. Stefanovici, B. Schroeder, G. O'Shea, et al. sRoute: Treating the Storage Stack 
Like a Network. in USENIX File and Storage Technologies (FAST). 2016. 

[60] X. Jin, X. Li, H. Zhang, et al. NetCache: Balancing Key-Value Stores with Fast 
In-Network Caching. in Proceedings of the Symposium on Operating Systems 
Principles (SOSP). 2017. Shanghai, China: ACM. 

[61] X. Jin, X. Li, H. Zhang, et al. Netchain: scale-free sub-RTT coordination. in 
Proceedings of the USENIX Conference on Networked Systems Design and 
Implementation (NSDI). 2018. Renton, WA, USA: USENIX Association. 

[62] L. Lamport, D. Malkhi, and L. Zhou. Vertical paxos and primary-backup 
replication. in Proceedings of the ACM symposium on Principles of distributed 
computing. 2009. Calgary, AB, Canada: ACM. 

[63] H.T. Dang, D. Sciascia, M. Canini, et al. NetPaxos: consensus at network speed. 
in Proceedings of the ACM SIGCOMM Symposium on Software Defined 
Networking Research. 2015. Santa Clara, California: ACM. 

http://spark.apache.org/
http://docs.openstack.org/developer/swift/overview_architecture.html
http://basho.com/riak-cloud-storage/
http://basho.com/riak-cloud-storage/
http://www.project-voldemort.com/voldemort/design.html
http://www.project-voldemort.com/voldemort/design.html
http://cassandra.apache.org/
https://www.barefootnetworks.com/products/brief-tofino/
https://origin-www.marvell.com/documents/netpxrx94dcdhk8sksbp/
https://origin-www.marvell.com/documents/netpxrx94dcdhk8sksbp/
https://www.mongodb.org/
http://www.postgresql.org/
http://osrg.github.io/ryu/
https://p4.org/
https://www.barefootnetworks.com/products/brief-p4-studio/
http://www.cloudlab.us/
http://openvswitch.org/

