
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MANUSCRIPT ID) 1

The Network-Integrated Storage System
Ibrahim Kettaneh, Ahmed Alquraan, Hatem Takruri, Suli Yang, Andrea C. Arpaci-Dusseau,

Remzi H. Arpaci-Dusseau, Samer Al-Kiswany

Abstract—We present NICE, a key-value storage system design that leverages new software-defined network capabilities to build cluster-
based network-efficient storage system. NICE presents novel techniques to co-design network routing and multicast with storage replication,
consistency, and load balancing to achieve higher efficiency, performance, and scalability.

We implement the NICEKV prototype. NICEKV follows the NICE approach in designing four essential network-centric storage
mechanisms: request routing, replication, consistency, and load balancing. Our evaluation shows that the proposed approach brings
significant performance gains compared with the current systems design: up to 7× put/get performance improvement, up to 2× reduction in
network load, 3× to 9× load reduction on the storage nodes, and the elimination of scalability bottlenecks present in current designs.

Index Terms—Key-value storage, software-defined networks, network-integrated design, network-system co-design, distributed storage

— — — — — — — — — — ◆ — — — — — — — — — —

1 INTRODUCTION
he end-to-end design principle [1] pervades the design of
virtually every distributed system [2, 3, 4, 5, 6]. In its extreme

form, critical functionality is implemented solely in end hosts, with
a relatively dumb and fast network to connect them.

One locale that closely adheres to the end-to-end principle is
distributed storage, including distributed file systems [7, 8, 9, 10,
11, 12] and scalable key-value stores [13, 14, 15, 16, 17]. In these
widely deployed and increasingly important systems, the network is
used as a point-to-point communication medium, while storage
logic and protocols are implemented entirely in client libraries and
server code.

Unfortunately, such Network-Oblivious (NOOB) storage systems
are fundamentally inefficient. Consider, for example, the simple
task of replicating a data block. To do so, a node first sends the
block to one server, and then another, and then another; as a result,
the same data redundantly traverses some number of network links
and switches, increasing load on the network significantly. Even
the simple task of locating a data item presents a significant
challenge; for example, in protocols such as Chord [18], a
logarithmic number of nodes must be contacted simply to discover
the location of a particular key.

In this paper, we propose an alternative approach in which we co-
design storage logic and networking support to realize more
efficient, scalable, and reliable distributed storage. Such Network-
Integrated Cluster-Efficient (NICE) storage harnesses recent
advances in Software-Defined Networks (SDNs) [19, 20] to
optimize key aspects of modern distributed storage architectures.
For example, NICE storage systems can replicate a block while
generating the least possible network load, and it can forward a
request to the proper node in a single hop.

Two recent developments provide a unique opportunity to address

NOOB inefficiencies and indicate that a network-integrated design
paradigm that co-designs network and end-point functionality has a
much higher chance of being successful today. First, recent
advances in software-defined networks (SDNs) provide a standard
interface for implementing in-network application specific
optimizations, and for building a control mechanism that can
orchestrate network and storage operations. The second
development is the wide adoption of data centers as the main cloud-
computing platform. Having a single administration of the entire
hardware/software stack and the ability to compartmentalize the
infrastructure facilitates adopting custom solutions for different
applications or subsystems.

NICE uses SDN technology to virtualize the storage system. The
client accesses a virtual storage system deployed on a range of
virtual IP addresses. The NICE network controller modifies client
packets and forwards them to the proper storage node. Having a
network controller that is informed of the storage system metadata
and has full control of the network decisions enables optimizing
packet paths to improve four essential storage mechanisms,
including: request routing, which directs requests from clients to
storage nodes; replication, for preventing data loss when nodes or
storage devices fail; load balancing, which dispatches client
requests across replicas to handle workload variation. Finally,
NICE virtualization simplifies building consistency protocols by
making failed nodes, or nodes with inconsistent data, inaccessible.

We implemented NICEKV, a key-value storage system following
the NICE design. Our NICEKV prototype leverages the capabilities
of the widely adopted OpenFlow standard. Our evaluation using
synthetic and real workload benchmarks shows that NICEKV
brings significant performance gains compared to a broad set of
NOOB storage configurations and two production systems: Ceph
and Swift. Our evaluation shows that NICEKV has a scalable
membership maintenance mechanism, achieves single-hop request
routing eliminating the need for deploying load balancer, and
achieves network and storage optimal replication, effectively
halving the network-generated load and reducing storage load by
3× to 9×, depending on replication level. NICEKV load balancing
effectively spreads client requests across servers without deploying
dedicated load-balancing boxes. The combination of these
optimizations is powerful; the NICEKV prototype can achieve up

T

• Ibrahim Kettaneh, Hatem Takruri, Ahmed Alquraan, and
Samer Al-Kiswany are with the Cheriton School of Computer
Science, University of Waterloo, 200 University Avenue West,
Waterloo, ON, N2L 3G1, Canada.

• Suli Yang, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, are with the Computer Sciences Department,
University of Wisconsin-Madison, 1210 W. Dayton St.,
Madison, WI, 53706, USA

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MANUSCRIPT ID) 2

to 7× put/get performance improvement as compared to the
traditional network oblivious approach.

Furthermore, we explored the potential of using the recent
programmable switches [21] to build a storage-aware load
balancing techniques. We implemented NICEKV-P4 a key-value
storage system using the P4 programming language. Our evaluation
shows demonstrates the flexibility of this approach.

The rest of this paper is organized as follows. We present an
overview of the NOOB systems design, and discuss the recent
advances in software-defined networks (Section 2). In Section 3 we
present the NICE architecture, detail the system design in Section
4, present the implementation of the NICEKV prototype in Section
5, and present our empirical evaluation in Section 6. We discuss
related work in Section 7, and conclude in Section 8.

2 BACKGROUND AND RELATED WORK
In this section, we present an overview of a typical network-
oblivious storage systems design, and summarize the recent
advances in software-defined networks.

2.1 NOOB Storage System Design
Current distributed key-value storage systems are fundamentally
inefficient as they are network-oblivious (NOOB): the network is
used as a black-box point-to-point communication medium without
any application-informed optimization of its operations, while
storage logic and protocols are implemented by end hosts. This
NOOB approach for designing distributed system is inefficient for
storage systems as many core storage operations are, in principle,
network-level operations, e.g., replication or request routing.

Many NOOB storage systems adopt a design based on consistent
hashing [22]. In the original consistent-hashing design, the object
hashing space represents a circular ring, all storage nodes are
placed on the ring, and each node coordinates access to the objects
in its part of the ring. Pastry [23] and Chord [18] were among the
first to use consistent hashing to build a scalable peer-to-peer object
storage system. They use, with high probability, O(log n) hops to
route a request, while only storing O(log n) routing information on
each node. While this approach scales well, it imposes additional
latency.

To reduce the latency of request routing, prominent NOOB storage
systems adopt a full-membership model [13, 14, 15, 16, 17], in
which every node maintains complete knowledge about all the
nodes in the system and their contents; hence, nodes can route any
request directly to the responsible node. When a node joins or fails,
all the nodes in the system need to be updated. This update happens
through contacting every node and updating its information using
O(N) connections and messages [13], or through an epidemic
protocol entailing O(log n) steps and over O(N) messages [24].

Access Mechanism. Current key-value storage systems employ
one of four techniques to route client requests to the node
maintaining the object. First is the Replica-Oblivious Gateway
(ROG), uses an off-the-shelf load balancer to forward requests to
randomly selected storage node. If the selected node does not have
the requested key, the node will forward the request to the node that
maintains the object. This approach is common in current systems
[14, 16, 25] due to its ease of deployment and use of existing load
balancers. Unfortunately, as the load balancer is oblivious to the
replicas’ content, it will forward the majority of requests to a

replica that does not maintain the object. Consequently, for the
majority of requests this approach adds additional two hops for
routing a request through the load balancer and the randomly-
selected storage node.

The second approach, is the Replica-Aware Gateway (RAG).
Similar to the previous approach, this approach uses a load
balancer, but the load balancer is aware of the contents of each
replica and can accurately forward the request to a replica that
maintains the object. Consequently, this approach imposes one
extra hop for routing a request.

Third is the Replica-Aware Client (RAC), in which clients cache
the storage IP address of previously accessed objects [26], and use
it to route subsequent requests. This approach achieves single-hop
routing as requests are directly sent from a client to the replica
storing the object. This approach only works in deployments in
which it is permissible for clients to obtain detailed data placement
and replication information. For deployments in which the clients
do not have access to storage internal information or are located
behind a NAT [27] (e.g., shared cloud storage like Amazon S3),
this approach is not viable. Finally, this approach hinders deploying
advanced load balancers as each client accesses the replicas
directly.

The fourth approach is the Replica-Aware Proxy (or proxy for
short). This approach uses a proxy node that is aware of the replica
placement to forward the request [13]. Unlike the previous three
approaches, the proxy node is on the data path for get and put
operations. The data for get operations is sent to the proxy, which
then sends it to the client.

2.2 Software-Defined Networks
The software-defined networking paradigm re-architects the
network into two planes: data and control. The data plane is a
packet-forwarding plane that uses the information available in the
switch forwarding tables to forward packets. The control plane is a
software based control logic, typically deployed on an external
server (i.e., not on the switch). Recent technology advances enable
customizing the control and data planes.

Flexible Control Plane. The control plane enables application to
control multiple switches by modifying the rules in the switches
forwarding tables. To update a switch forwarding table, the
controller uses the OpenFlow standard API [20], a widely popular
standard interface used to communicate with SDN capable
switches. OpenFlow [19] allows modifying (i.e., inserting or
deleting) the forwarding rules of a single switch. Each forwarding
entry includes a matching rule and an action list. Matching uses
wildcard matching rules on any field in the packet standard
headers, including IP and MAC addresses, and protocol and port
numbers. If a packet matches a rule, the switch performs the actions
associated with that rule. The action list may contain multiple
actions that are performed in order. The current OpenFlow standard
defines a set of actions including packet forwarding to a specific
switch port, packet drop, forwarding a packet to the controller, or
modifying fields in a packet. The possible modifications include
changing the source/destination MAC/IP addresses.

For packets that do not have a matching rule, the switch will
forward the packet to the controller, which significantly increases
packet latency. To avoid this inefficient path the switch caches the
forwarding rules with a controller specified expiry period.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MANUSCRIPT ID) 3

Limitations. While OpenFlow significantly increases the flexibility
of the network its capabilities are limited. Mainly, its data plane is
rigid and cannot be extended. OpenFlow can only support current
standard packet headers (i.e., does not facilitate defining custom
application headers), and the actions supported are fixed and
limited. Finally, current switch that support OpenFlow only
implement a subset of OpenFlow features (detailed in Section 5).

Programmable Data Plane. To address the limitations of
OpenFlow the research community developed a new generation of
programmable switches that allow programming the data plane.
Programmable switches allow the implementation of an
application-specific packet-processing data plane that can process
custom packet headers and is deployed on network devices and
executed at line speed. While this technology did not yet garner
wide adoption as OpenFlow, a number of vendors are already
producing network-programmable ASICs, including Barefoot’s
Tofino [28] and Cavium’s XPliant [29].

Figure 1(a) illustrates the basic data plane architecture of modern
programmable switches. The data plane contains three main
components: ingress pipelines, a traffic manager, and egress
pipelines. A packet is first processed by an ingress pipeline before
it is forwarded by the traffic manager to the egress pipeline that
will finally emit the packet.

Each pipeline is composed of multiple stages. At each stage, one or
more tables match fields in the packet header or metadata; if a
packet feild matches, the corresponding action is executed.
Programmers can define custom per-packet headers as well as
custom actions. Each stage has its own dedicated resources,
including tables and register arrays (a memory buffer). Figure 1(b)
shows a simple example of a pipeline that routes a request to a key-
value store based on the key, and Figure 1(c) shows the details of
the KV routing stage in Figure 1(b). The stage forwards the request
based on the key in the packet’s custom L4 header. The
programmer implements a forward() action that accesses the
register array holding nodes’ IP addresses. An external controller
can modify the register array and the entries in the table.

Programmers use domain-specific languages like P4 [21] to define
their own packet headers, define tables, implement custom actions,
and configure the processing graphs.

These recent advances in networking technology enable fine-
grained control of network operations and facilitate application-
optimized traffic engineering. In this paper we explore techniques
to leverage these new OpenFlow and P4 capabilities to accelerate
storage systems.

3 NICE SYSTEM ARCHITECTURE
NICE leverages software-defined networking capabilities to
optimize storage system operations. We focus our attention to
leveraging the OpenFlow capabilities due to the wide adoption of
this technology. In Section 4 we extend our design to leverage the
capabilities of P4-programmable switches.

NICE exploits the OpenFlow flexibility and fine-grained control
[19, 20] to co-design network and storage operations. The NICE
design virtualizes the storage system. The client accesses a virtual
storage system deployed on a range of virtual IP addresses. The
metadata service (detailed next) maps the virtual storage system to
the physical one. The NICE design optimizes this mapping to
achieve low-latency routing, efficient multicasting, load-balancing,
and improved fault tolerance.

In the rest of this section, we first present the NICE architecture,
then detail the two core techniques we propose: storage
virtualization, and consistency-aware fault tolerance. The following
section details how we extend these techniques to optimize
replication, consistency, and load-balancing mechanisms.

3.1 System Architecture
Similar to the NOOB storage, NICE uses consistent hashing to
partition the object space among the storage nodes. Nodes are
placed in a consistent hashing ring, such that each node serves part
of the ring. We call this the physical ring. Every storage node is the
primary replica for one or more partitions, and can serve as a
secondary replica for other partitions.

The system is composed of three components (Figure 2): storage
nodes, client nodes, and a metadata service, all connected with an
OpenFlow-enabled switching fabric. The storage nodes serve put
and get requests and implement the replication, consistency, and
load-balancing protocols. The storage nodes send periodic
heartbeats to the metadata service. The metadata service maintains
storage system metadata. The metadata includes information about
which storage nodes are participating in the system, and which
range of the hash space (partition) each storage node is serving.
The metadata service does not maintain per-object metadata.

3.2 NICE Storage Virtualization
The first goal of virtualizing the storage system is to enable
storage-aware routing of client requests; that is, to have a routing
technique that can route a client request to the proper storage node
(i.e., routing based on the key hash value). Building a storage-
aware routing mechanism is challenging. While OpenFlow
provides control over switch forwarding decisions, it only supports
matching packets using information found in the packet headers
(e.g., Ethernet, IP, UDP or TCP), not the packet payload data.
Consequently, routing packets based on the key hash carried in the
payload is not possible. Alternatively, allowing the client to know

(a) Switch data plane.
(b) Pipeline for routing based on a

hash-based key

(c) Simple match-action stage for routing based on a hash-based key for

the KV routing table in subfigure (b)

Figure 1. Switch data plane.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MANUSCRIPT ID) 4

the physical-ring mapping and replica-placement inherits the
NOOB RAC limitations.

The NICE approach virtualizes the storage system; the client
accesses a virtual storage system deployed on a set of virtual nodes
(vnodes). The virtual addresses are organized in a virtual consistent
hashing ring (vring). For instance, all the IP addresses in the range
of 10.10.0.0 to 10.10.255.255 can be virtual nodes in a vring. The
number of vnodes and their addresses are configurable and do not
correspond to the physical ring configuration. To access the system,
the client hashes the object name and finds the vnode responsible
for serving the object. The client sends the put/get request to the
vnode address using UDP.

The metadata service maps the virtual ring to the physical ring. It
maps a subset of virtual addresses to a single physical node
address. While different mapping techniques are possible, we use
simple IP prefix matching: we divide the virtual ring addresses into
subgroups such that the number of vnodes per subgroup is a power
of 2 (e.g., all vnodes in 10.10.1.0/24 form a subgroup). The
metadata service maps any packets sent to a particular subgroup to
a particular physical node. To this end, the switch will modify the
destination IP and MAC addresses in the packet headers to be the
IP and MAC addresses of the primary replica, then forward the
packet to the switch port of the primary replica.

This mapping technique achieves three benefits. First, it achieves
low-latency single-hop routing, as the client requests are directly
routed in the network to the responsible node at switching speed.
Second, by decoupling the virtual ring from the physical ring this
technique simplifies deployment, as clients never need to change
their virtual ring configuration, even when the physical ring
configuration changes. Finally, this approach allows for multiple
vnodes to be mapped to a single physical node, improving
performance and load balancing [18]. Compared with NOOB
request routing, NICE routing achieves the optimal routing latency
of the RAC approach without suffering from its limitations.

3.3 Consistency-Aware Fault Tolerance
To guarantee sequential consistency NOOB storage systems use
complex consistency protocols like two-phase (2PC), three-phase
commit [24], Paxos [30, 31], or Raft [32]. We illustrate in Figure 3
the put operation using the 2PC protocol, as a representative of

these protocols to simplify our discussion. 2PC is among the early
proposed protocols that are still widely used [7, 33, 34, 35].

Failure handling is a main differentiating factor between
consistency protocols. The 2PC commit protocol is brittle in face of
node failures during the put operation and may block if the primary
node fails. To overcome the 2PC problems, Paxos uses a majority-
based (i.e., quorum) design, in which at least the majority (but not
all) of the nodes need to participate in the put operation. The
drawback of this approach is that failed nodes (or disconnected
nodes) may have stale data when they join back; consequently, it is
necessary to access the majority of the nodes during the get
operation as well to guaranty consistency. This approach creates
unnecessary high overhead during get operations. An alternative
approach is to send get requests only to the primary (a.k.a. leader)
node (e.g., Raft). Unfortunately, this approach does not scale
because all put and get requests are served by a single node.

We propose a consistency-aware fault tolerance mechanism. This
mechanism solves the inefficiency problem found in current
protocols by allowing any storage node with consistent data to
serve get requests. The mechanism hides inconsistent nodes,
including failed and newly joining nodes, until they have a
consistent version of the data. To this end, when a node fails it is
removed from the switch mapping, rendering the node inaccessible
from the client’s point of view. When a node restarts, it joins the
system in two phases. First, it is made accessible to other storage
nodes and to client put requests only. During this phase the
rejoining node will receive new objects and will fetch consistent
versions of the objects that have been changed while the node was
offline. Second, when the node has consistent data, it is made
accessible for clients’ get requests. This approach simplifies
building consistency protocols (as we will see next) by
guaranteeing that clients can only access consistent nodes.

Figure 2. System Architecture. The client sends the requests using two
virtual rings (vrings). The requests are rerouted in the network to the
responsible storage node. The metadata service receives heartbeats from
the nodes and maintains the mapping information in the forwarding tables.

(a)

(b)

Figure 3. Put protocol alternatives. The figure shows (a) the primary-
backup and (b) the 2PC put protocols. In the primary-backup design (solid
arrows) the primary replica serves all put and get request. In the two-phase
commit (2PC) design (dashed arrows), two rounds are needed to guarantee
consistency.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MANUSCRIPT ID) 5

4 SYSTEM DESIGN
In this section we first detail the design of system metadata service,
then we extend the core techniques of NICE to build an efficient
replication mechanism, improve the consistency protocol
efficiency, and provide in-network load balancing.

4.1 Metadata Service Design
The metadata service is the only component that maintains the
system membership and metadata, i.e., it has complete knowledge
of all storage nodes in the system and the physical ring partitions
they serve. The metadata service is composed of two modules: the
membership module and the SDN controller. The membership
module monitors storage nodes via heartbeats and detects
membership changes (joins and failures), while the SDN controller
controls the OpenFlow switches and updates the forwarding tables
on membership changes. The SDN controller implements a layer 3
learning switch; it learns which storage node is connected to which
switch port and uses this information to build unicast and
multicasting forwarding rules.

Storage nodes maintain partial membership information related to
the ring partitions of which they are part. Every node only knows
the secondary replicas for the partition it is the primary replica for,
and knows the primary replicas of every partition it is serving as a
secondary replica; resulting in only O(R) information maintained at
every node where R is the replication level.

When a node fails, the metadata service selects a handoff node to
serve in lieu of the failing node (we detail the fault tolerance
mechanism later). The metadata service updates the switch
forwarding rules to correctly route requests destined to the failed
node to the selected handoff node. The metadata service also
informs the affected replicas of the membership change.

On a node join, the metadata service selects which ring partitions
the new node will serve as a primary or secondary. Similar to
handling failures, the metadata service updates the switch and
informs the affected replicas of the change.

This membership maintenance design is scalable in terms of
number of storage nodes. The membership service need to maintain
switches forwarding tables which requires O(S), where S is the
number of switches in the platform, and O(R) messages to inform
the affected replicas of the membership change. Note that each
storage node only knows about the replicas it shares data with
(which is O(R) of nodes). R, the replication level (typically 3 or 5),
is independent of the total number of nodes.

The metadata server is logically centralized. While our system
prototype uses a central metadata service, it can adopt known
techniques for building a highly reliable distributed metadata
services, including partitioning the key space among metadata
service replicas, or having a hot standby replica. We are currently
exploring the latter approach. Three workload characteristics make
having a metadata hot standby: the stored metadata is small,
changes to metadata are infrequent, and the load on the metadata
service is low as it is mainly invoked on node or network failures.

4.2 Replication
Storage systems should not lose data when a node fails. The main
data reliability approach adopted by the majority of NOOB storage
systems is replication [13, 14, 15, 16, 17, 36] (with the other
popular technique being erasure coding).

Challenge. On a put request, a single node (known as the primary
replica or the coordinator) replicates the new object on R-1 storage
nodes through R-1 unicast TCP connections, enabling the system to
tolerate R-1 replica failures without losing data.

This approach, in principle, is network non-optimal as the same
data will traverse some links multiple times, especially those close
to the node replicating the object. Further, this approach creates a
high load on the node replicating the object as it needs to
send/receive R copies of the data on every put.

To alleviate the load on the replicating node Renesse et. al.
proposed chain replication [37]. In chain replication, nodes are
organized in chains, and each node replicates the new object to the
next node in the chain until the required number of replicas is
created. While this approach may distribute the replication load
across the nodes, it significantly increases the operation latency,
and is equally network non-optimal, as it generates an equivalent
amount of network traffic.

NICE Design. NICE builds network- and storage-optimal
replication mechanism by leveraging network-level multicasting.
The consistency mechanism discussed next requires to precisely
identify and control which nodes are part of a given multicast
group. While one may consider using traditional IP-multicasting,
the fact that it requires every node to separately join/leave any
multicast group makes it significantly harder (if not impossible) to
build and maintain hundreds of multicast groups in face of node
join and failure and to precisely identify when a particular multicast
group has converged. OpenFlow helps solve these issues by
allowing direct and centralized control of all groups.

NICE design divides storage nodes into overlapping replica sets;
every physical node is, typically, a primary replica in one replica
set and a secondary replica in R-1 other sets.

To realize single-hop replication, NICE storage follows the virtual-
storage approach discussed earlier. The client has two virtual rings:
a unicast ring (discussed in the previous subsection) and a multicast
ring. Each ring uses a separate IP address range (e.g., 10.10.0.0/16
for the unicast vring, and 10.11.0.0/16 for the multicast vring). As
the name indicates, messages sent to an address in the multicast
ring are multicasted to all replicas of an object, while the messages
using the unicast ring are sent to one replica (the primary replica
unless load balancing is used). The multicast ring is only used to
send the put request and data.

Similar to the unicast vring, the multicast vring is divided into
subgroups with each subgroup mapped to a replication set. For any
packet targeting a virtual multicast address, the switch will modify
the destination IP address to be the IP multicast address of the
target replication set, and forward the packet to all the switch ports
of the target replicas.

The proposed replication mechanism is optimal: first, it uses a
single hop to route the put request; second, it uses optimal network
paths for data replication (considering data center tree topology, the
optimal path is equivalent to link-layer multicasting paths); third, it
offloads the replication overhead from the primary replica to the
network switch, achieving high performance and scalability. This
approach is also optimal in terms of storage node load as each
storage node only receives the data once. Finally, this replication
approach is load balanced by design; the primary and secondary
replicas send/receive almost an equal amount of data.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MANUSCRIPT ID) 6

4.3 Consistency Mechanism
Sequentially consistent storage systems should guarantee data
consistency across replicas, even when nodes fail or are
disconnected and later join back with inconsistent data.

NOOB consistency protocols either face the possibility of blocking
on node failure, require getting the object from the majority of
nodes to resolve data inconsistency, or send all requests to a single
node.

NICE proposes a consistency-aware fault tolerance mechanism.
Here we demonstrate how NICE uses this mechanism to improve
2PC fault tolerance. The NICE-2PC mechanism (shown in
Figure 4) follows the 2PC protocol design with two main
differences. First, it leverages multicast-based replication to offload
replication to the network, leading to load balanced and efficiently
replication. Second, it improves the 2PC fault tolerance without
requiring quorum-like protocols.

During the put operation, the client request is multicasted by the
switch to all of the replicas. Upon receiving a complete object, the
secondary replicas lock the object, log the operation, and
acknowledge the operation to the primary replica. The primary
replica, upon receiving an acknowledgment from all secondary
replicas, generates a time stamp and multicasts the time stamp to all
replicas. The timestamp contains the following quadruplet: primary
address, primary timestamp, client address, and client timestamp.
The timestamp creates an order between put operations to the same
object, even between retrials of the put operation by the same
client. The secondary replicas store the object to persistent storage
following the timestamps order, release the lock, and acknowledge
the end of the operation to the primary replica, which in turn
acknowledges the operation to the client. We detail the fault
tolerance mechanism next.

Get operations can be served by any replica. To avoid
inconsistency, replicas lock operation during the put operation and
only release the lock when the primary informs all nodes that the
put operation completed successfully. Figure 4 show the blocking

period in which read requests are queued until the concurrent put
operation completes.

4.4 Fault Tolerance
Failure Model. NICE follows the failure model assumed by
current NOOB systems: node failures are assumed to be transient,
with permanent failures being handled by administrator
intervention [13, 14, 16]. At the end of this section we discuss the
procedure for adding and removing nodes from NICE.
Consequently, when a node fails or is disconnected, the system
does not automatically replicate the objects stored on that node, as
these objects are still durably fully replicated.

Failure Detection. NICE adopts two techniques for detecting node
failure: heartbeats and notifications from other nodes. The metadata
service will declare the node failed if it misses three heartbeats
from the node, or if a node reports to the metadata service that
another node is irresponsive (e.g., if a node time-outs twice while
waiting for a reply from a particular node in the 2PC protocol).
Node failure causes two main problems: First, when a failing node
recovers/rejoins, it often contains old (inconsistent) versions of the
objects, if any of the stored objects have changed while the node
was offline/disconnected. Second, newly stored objects will be
under-replicated. Next we discuss how we handle these problems.

Failure Hiding. To handle the inconsistency problem of the failing
nodes, on failure detection, the metadata service removes the
failing node from the switch unicast and multicast vring mappings
and informs the affected replicas. This effectively renders the node
non-existent from the client point of view. When the node recovers,
the switch mappings are updated only after the node is deemed
consistent, as we will see next.

Maintaining Replication Level during Temporary Failures.
When a node failure is detected the metadata service selects a
handoff node to serve as a secondary replica in the hash region of
the failing node [16]. Any storage node in the system that is not
already part of the effected replication set can serve as a handoff
node. The handoff node temporarily serves the object range until
the failing node comes back. To simplify recovery, the handoff
node stores the newly stored objects in a separate directory. If the
handoff node receives a get request for an old object that it does not
have, the handoff node will forward the request to the primary
replicas. After selecting the handoff node, the metadata service
updates the switch forwarding tables for both virtual rings and
informs the affected replicas. When the original node comes back,
it will discover the handoff node through contacting the metadata
service and retrieve all the new objects. Primary node failure is
discussed below. The system can handle multiple failures as long as
at least one node in every region is an original node (not a handoff
node) in the region.

Node Recovery. When a node recovers from failure, it contacts the
metadata service to rejoin the system. Rejoining the system takes
three steps: First, the metadata service adds the rejoining node to
the multicast vring mapping, and the node will start receiving put
requests. Second, the recovering node contacts the primary node to
get all updates received during its downtime. Finally, the node
informs the metadata service that it has consistent data. The
metadata service will add the node to the unicast vring mapping,
making the node available to get requests, and inform the affected
replicas.

Figure 4. Consistency Mechanism. Timeline of the message sent in put
operation in NICE storage. The switch performs modify and forward
(M+F) for client packets to map the virtual address to the multicast group.
(+L) is when a node logs the operation. (-L) is when the log entry is
deleted. (W) is when the node writes the new object to the persistent
storage. Gray boxes denote forced writes, and bold arrows denote
multicasting. Object locks are only maintained in memory.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MANUSCRIPT ID) 7

Failures during Put Operation. If a node fails during a put
operation the operation will fail and the client will retry.

If a secondary node fails during a put operation (i.e., before sending
the last ack to the primary replica in Figure 4), the primary node
will detect the failure through missing either of the two ack
messages from the node. The primary node will abort the operation
and inform the client. The primary node will also inform the
metadata service of the failure, starting the process for hiding the
failure as detailed above.

If the primary node fails before sending the final acknowledgment
to the client, the client will time-out and retry the operation. If the
primary node fails before sending the “timestamp” message in the
2PC protocol in Figure 4, the secondary nodes will detect the
failure by timing out and will inform the metadata service starting
the failure-handling process detailed above. When a primary node
fails, the metadata service selects one of the secondary nodes to act
as a primary node. The new primary will contact the secondary
nodes to identify all the objects that are locked on any secondary
node. If an object is locked on any node, this means that node did
not receive the timestamp message from the old primary. For
locked objects, the primary does the following: if the object is
committed on any secondary node, then this means the object was
committed by the old primary. The primary will commit and unlock
the object. If an object is locked on all secondary nodes, then the
new primary will abort the operation. In case of a complete cluster
failure, in which all in-memory locks are lost, the persistent logs on
the nodes will identify the latest put operations. The new primary
will check them all using the rules above.

Ring Re-Configuration. Occasionally, administrators may need to
reconfigure the system to add or remove nodes. To permanently
remove a node, the administrator updates the system configuration
and informs the metadata of the node removal. The metadata
removes all the forwarding rules related to the removed node, and
updates all the effected replicas of the membership change. The
metadata service handles adding a new node in a similar way to a
re-joining a node after a temporary failure. The metadata updates
the forwarding rules to add the new node to put vring and informs
the other replicas of the change in the membership. Then, the new
node contacts the primary replica to retrieve all keys stored in the
hash range. Once the new node has consistent data the metadata
service adds the node to the get vring making it available for
serving get requests.

4.5 Load Balancing
While consistent hashing distributes the objects evenly across
storage nodes, objects’ popularity rarely follows a uniform
distribution, leading to a skewed distribution in which a subset of
objects is highly popular [38, 39]. In this case, storage systems use
load balancing to distribute the get/put load on all the replicas of a
given object.

Challenge. Current systems deploy a load-balancing node as a
gateway to forward client requests using the ROG or RAG
approach (§2). This deployment adds additional latency and
requires provisioning load-balancers to avoid creating a system
bottleneck. Latency-sensitive systems eschew load balancing and
adopt the primary-backup design [26, 40]. Alternatively, if a
weaker consistency is an option, a client-side load balancing can be
adopted (e.g., the client can randomly pick one of the replicas).

NICE Design. The NICE metadata service implements a workload-
informed consistency- and replica-aware load balancer. Unlike the
NOOB storage design, our multicast-based put operations are load
balanced by design; consequently, our load-balancing technique
focuses only on get requests. While previous effort explored SDN-
based load balancing [41, 42] our approach advances the previous
approaches by using the storage metadata to build consistency- and
replica-aware load balancer.

To perform workload-informed load-balancing, the metadata
service collects periodic workload statistics. The statistics include
the range of client IP addresses accessing each partition, and the
size of the request queue. The statistics are piggybacked on the
periodic heartbeats nodes send to the metadata service.

The metadata service divides the client address space into R
divisions, such that each division size is a power of 2. Requests
coming from each division will be forwarded to a different replica.
The metadata service alters the switch forwarding rules to match
both the packet source and destination IP addresses. The
destination IP determines which physical ring partition the request
is targeting, while the source IP determines which replica to
forward the request to. For requests coming from IP addresses that
are not covered by these divisions, the metadata service forwards
them to the primary replica. When an administrator adds a new
node to a replica set the metadata server reparations the client
address space to utilize the new replica for get requests.

Compared with NOOB load balancing, NICE builds an in-network
load balancing without increasing the latency or deploying extra
resources.

This approach increases the number of forwarding entries per
partition of the unicast vring from 1 to R entries, each forwarding a
subset of client requests to one of the replicas.

This load balancing approach is coarse grained as it assigns clients
to replicas without accounting for differences in client request rate.
A few clients with high request rate can imbalance the load across
replicas. In Section 4.5 we present a solution to this shortcoming.

4.6 Switch Scalability
The proposed approach can scale to support large storage systems.
Without load balancing, each physical partition requires one entry
in the switch forwarding table for the unicast vring mapping and
one entry for the multicast vring mapping. This leads to a total of
2N entries in the forwarding table. Where N is the number of
storage nodes. If load balancing is enabled, it uses R entries per
partition (Where R is the replication level), leading to a total of (R
+ 1)N entries. Current switches include forwarding tables that can
support 128K forwarding rules or more which makes them capable
of supporting storage systems with 64K storage nodes without load
balancing. With load balancing enabled and with a replication level
of 3 they can support up to 32K storage nodes.

4.6 Leveraging Programmable Switches
To make NICE design deployable on current commodity switches,
we constrained the design to only use the capabilities of current
OpenFlow standard. Unfortunately, OpenFlow limitations restricted
some design decisions in NICE. In particular, NICE load balancing
design is brittle in face of skewed workloads or heterogeneous
infrastructure. The NICE load balancing technique (Section 4.5)
partitions the clients into R groups and assigns a subset of clients to

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MANUSCRIPT ID) 8

each replica. This approach is not efficient if clients vary in their
level of activity. If a small set of clients generate most of the load, a
typical scenario in many applications (e.g., active tweeter users),
the load will be skewed across replicas. Similarly, if the replicas are
deployed on heterogeneous hardware, assigning equal load on all
replicas is inefficient.

To address this challenge we implemented a flexible load balancer
using the P4 programming language. The load balancer implements
weighted load balancing techniques in which the controller assigns
weights to replicas and configures the switch to distributed the load
following these weights.

Following this approach, we changed the NICE design to use the
P4 capabilities. The new design is identical to the OpenFlow design
with the exception of leveraging the P4 capabilities to implement
the weighted load balancing technique.

P4-based Load Balancing Design. Figure 5 shows the design of the
load balancing stage. Every packet will be processed using the
action in the load balancing table. The table has a single entry and a
single action. The action randomly selects a number. The selected
number is then used as an index to the IP addresses table.

To implemented the weighted load balancing technique, replicas
report the length of the request queue in a periodic heartbeat. Every
second, the controller calculates the average queue length for each
replica and assigns proportional weights to each replica. The leader
updates the list of random number in the load balancing table to
reflect these weights. For instance, if replica 1 should receive
double the load of any other replica, the action in figure 5 will be
rand(1, 1, 2, 3), doubling the chance replica 1 is selected.

5 IMPLEMENTATION DETAILS
We implemented the NICEKV prototype following the NICE
design. NICEKV is implemented in 14K lines of C++ code. The
controller is implemented using 1K lines of python using the Ryu
framework [43].

The rest of the section discusses implementation details of the
network centric operations, and summarizes our experience with
the state-of-the-art switches.

Clients. NICEKV is accessed through a client library with a simple
interface for read, write, and delete operations. Read (get) and write
(put) operations read or write entire objects. The library computes
the hash of the requested key and maps it to the virtual IP address,
then it will send the request to that virtual IP address.

Mapping Service. The SDN controller implements a layer 3
learning switch. If the controller receives a packet destined to a not-
yet-seen IP address, the controller will check if the address is a
vnode address and update the switch to map the address to its
physical counterpart, else the controller will buffer the packet and
broadcast an ARP request for the unknown address. On receiving
an ARP reply, the controller will update the forwarding tables and
forward the buffered packets. The controller keeps a list of recently
ARPed addressed to avoid flooding the network with ARP
requests.

Request Routing. We use UDP to send client requests and TCP for
all other communications, i.e., the client sends the put/get request
to the vnode IP address using UDP and waits for the reply on a
client-side TCP socket. This design decision allows mapping
multiple vnode addresses to a single physical address without
worrying about handling the reverse mapping required for TCP,
i.e., mapping the physical node address to multiple vnodes. Further,
UDP is required for IP multicasting.

Replication. For large objects, replication requires a reliable
transport for data dissemination. NICEKV builds a simple reliable
UDP-based multicast transport layer that uses primitive flow and
congestion control techniques. Data is divided into multiple
chunks, each less than a single network MTU (1400 bytes). The
protocol uses NACKs to inform the client of missing packets, and
the client sends the missing packets using a unicast connection.
ACKs are used for flow control.

We implemented a version of the reliable multicast protocol for
quorum protocols. We optimized the quorum implementation by
pushing the quorum design down to the multicast transport layer.
To this end, we designed a reliable any-k multicasting protocol. For
flow control, the protocol tracks a window of transmitted packets
and advances the window when any k of the recipients
acknowledges receiving the packets. The protocol returns when any
k of the nodes fully receives the data. After returning, the protocol
keeps supporting straggling nodes until they finish or timeout.

P4 implementation. We implemented NICEKV-P4, a version of
NICEKV with a P4 network protocol implementation. The switch
data plane is written in P4 v14 [21, 44] and is compiled for
Barefoot’s Tofino ASIC [28], with Barefoot’s P4Studio software
suite [45]. Our P4 code uses less than 5% of the on-chip memory
available in the Tofino ASIC, leaving ample resources to support
other switch functionalities.

5.1 Deployment Experience
We experimented with three testbeds that are provisioned with
three models of switches. Unfortunately, we found that the current
switches lag in terms of the supported OpenFlow features. All
switches supported only a subset of the OpenFlow standard.
Efficiently modifying packet headers, in particular, was rarely
supported. Only one switch supported this feature, but in software,
resulting in three orders of magnitude slower switching speed if the
switch is tasked with modifying a field in the header.

The CloudLab [46] Utah cluster, which we use, uses Comware
switches which supports a subset of OpenFlow features; in
particular, it supports forwarding the packets to multicast addresses
but does not support modifying the packet IP destination address.

Figure 5. Logical view of the load balancing logic. The load balancing
entry generates an index of the selected destination’s IP address. Using

the index, the IP address table sets the destination’s IP address.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MANUSCRIPT ID) 9

Modifying the packet IP destination addresses is necessary for
mapping virtual addresses to physical addresses.

To address this challenge, we deployed Open vSwitch [47] on
every client machine. Open vSwitch is a software-based
OpenFlow-enabled virtual switch. Further, we extended the
NICEKV SDN controller to control multiple switches (i.e., multiple
Open vSwitches and a single hardware switch). The controller
installs the rules to modify packet headers (mapping virtual to
physical addresses) on the client side Open vSwitches, and installs
forwarding and multicasting rules on the hardware switch. Our
evaluation shows that our new deployment leads to less than 4%
performance loss compared to the same deployment without using
Open vSwitch.

6 EVALUATION
We evaluated NICE using synthetic as well as real world
benchmarks using the Yahoo YCSB benchmark [39]. We
empirically compare NICE with three object storage systems: Ceph
[12], OpenStack Swift [13], and NOOB, our in-house key-value
systems. We choose Ceph and Swift as these are production-quality
widely-used NOOB storage systems, the NOOB prototype allows
us to compare NICE with range of NOOB designs and
configurations. We compared the performance of quorum based
design. The results of those experiments are available here [48].

Ceph. Ceph adopts a primary-backup approach in which all client
put and get operations are received and processed by the primary
replica. Clients send their put requests directly to the primary,
which replicates the data, then replies to the clients. The primary
does not serve concurrent put or get requests until the current put
operation completes.

OpenStack Swift. Swift adopts a proxy-based design; client put and
get requests are sent to a proxy node, that sends the request to the
responsible storage node, then the proxy replies to the client. The
proxy node is on the data path for both put and get operations.

NOOB prototype is a highly configurable storage system that
implements three common access mechanisms, and two replication
techniques. NOOB facilitates comparing NICE with wider design
choices. The NOOB system implements the three common access
mechanisms: RAC with client side caching, RAG with a replica-
aware load balancer, and ROG with a randomized load balancer.
Furthermore, NOOB prototype implements two
replication/consistency mechanisms: two-phase commit (2PC) and
primary-backup. The NOOB prototype allows us to compare NICE
with range of NOOB designs and configurations.

Platform. We use a cluster of 30 nodes on the CloudLab [46] Utah
site. Each node has an 8-core ARMv8 2.4 GHz processor, 64GB
memory, 120GB SATA3 Micron SSD disk and 1 Gbps NIC. The
nodes are connected to an OpenFlow enabled switch that supports
OpenFlow 1.3.1. While the evaluation uses a single hardware
switch the controlled switching topology (including Open
vSwitches software switches) is much more complex. Further,
NICE can readily support multi-switch platforms, as the controller
will install the same rules on all participating switches.

Deployment Configuration. Unless otherwise specified, we
deploy the systems on 16 nodes (one mapping node and 15 storage
nodes), 14 nodes for clients and load balancers, and configure the
system with replication level of 3.

6.1 Request Routing Evaluation
We evaluate the performance of request routing in four systems:
NICE, Ceph, Swift, and NOOB storage prototype. For NOOB
storage we evaluate three configurations: ROG, RAG, and RAC.
The workload used consists of get-only requests issued by a single
client. The object size varies from 4 bytes to 1MB. Figure 6 shows
the average of 1000 get operations.

Figure 6. Request Routing Performance. The average time of the get
operation. Note the log scaled y-axis. The lines for NICE, Ceph, and
NOOB-RAC overlap.

Figure 6 compares the performance of the four systems. Systems
that use a single-hop request routing (i.e., direct access from client
to the primary replica of an object), including NICE, Ceph, and
NOOB+RAC, achieve the lowest latency and have comparable
performance. For object sizes less than 64KBs NICE, Ceph, and
NOOB+RAC systems achieve 1.5× performance improvement
compared to NOOB+RAG, and 2× improvement compared to
NOOB+ROG. This improvement is due to eliminating the request
routing delay imposed by RAC and RAG designs. Swift achieves
the lowest performance: NICE achieves over 30× improvement
compared with Swift. The benefits are not as pronounced with large
data sizes, as transfer time dominates. Nevertheless, Swift
performance lags (by over 2.5×) even with large data sizes. The
main reason for Swift low performance is that Swift completely
hides storage nodes, and clients only interact with the proxy nodes.
Consequently, to serve a get request to a client, instead of sending
the get response directly from a storage node to the client, Swift
transfers data from storage nodes, to proxy nodes, then to clients,
which introduced additional latency, increases system load, and
reduced throughput.

6.2 Replication Evaluation
We evaluate the performance of the replication mechanism and
compare it across the four systems: NICE, Ceph, Swift, and NOOB
with primary-backup design. We evaluate the three request routing
mechanisms in NOOB: ROG, RAG, and RAC. We compare these
systems in terms of replication time, network load, and ratio of load
of the primary replica to the secondary replicas. The workload used
consists of put-only requests issued by a single client. The object
size varies from 4 bytes to 1MB. Figure 6 shows the average of
1000 get operations.

Replication time. Figure 7 compares the replication time of all
evaluated systems. The results show that NICE achieves the best
performance across object sizes. NICE achieves: up to 4.3×
compared to NOOB+ROG, up to 3.4× compared to NOOB+RAG,
up to 2.6× compared to NOOB+RAC, up to 2.6× compared to
Ceph, and over 40× compared to Swift which uses the Replica-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MANUSCRIPT ID) 10

aware proxy design. NICE achieves this significant performance
improvement by using optimal multicast-based replication and
through eliminating request routing overhead using single-hop
routing.

Network load. We evaluated the network load generated by the
put operation on all tested systems (Figure 8). We measure the
network load as the total amount of data transferred on every link
in the network (i.e., a 1KB bject traversing two links count as 2KB
of network load). NICE significantly reduces the network load
compared to the other systems. This improvement holds regardless
of object size. NICE generates between 1.7× to 3.5× less network
load compared to the other systems.

Storage Load Ratio. We evaluate the load imbalance between the
storage nodes as the ratio between the amount of data processed
(sent or received) by the primary replica to the amount of data
processed by the secondary replicas (Figure 9). Figure 9 shows that
NICE load balances the workload between the primary and
secondary with both achieving the optimal load of 1 (i.e., receiving
the object once only). Ceph and all NOOB configurations impose
3× more work on the primary than on the secondary (this load
imbalance is proportional to the replication level). In Swift, the
proxy node has 4× more load than any other replica.

6.3 Consistency Mechanism Evaluation
Storage systems may replicate an object to meet high demand. We
evaluate the put operation efficacy while varying the replication
level. We evaluate NICE, Ceph, Swift, and the best configuration
for NOOB system, namely NOOB+RAC. We evaluate two
configurations for NOOB+RAC: primary-backup and 2PC. The
evaluation uses small 4-byte objects and large 1MB objects.

With 4-byte objects (Figure 10) NICE achieves the highest
performance: up to 1.3× better performance than NOOB-2PC.
NICE achieves comparable performance to NOOB primary-backup
replication. Although NICE has an extra phase of communication

compared to the primary only design, its use multicast-based
replication reduces the data transfer time and eliminates the
overhead of creating 8 TCP connections. We note that the
performance of all systems degrades with higher replication levels,
due to the increased overhead of the consistency protocol that
dominates small object performance. The primary-backup design
achieves better performance than NOOB-2PC due to 2PC protocol
overheads.

Figure 11 shows the put operation time with 1MB objects. NICE
achieves up to 5.5× better performance than NOOB systems. The
primary-backup and 2PC achieve comparable performance since,
with large objects; performance is dominated by replication cost.
While NOOB performance degrades considerably: by 7× when

Figure 7. Replication Performance. The average time of the put operation.
Note the log scaled y-axis

Figure 8. Network Link Load. The total network link load of the put
operation.

Figure 9. Storage Load Ratio. The ratio of the primary replica (or proxy
node in case of Swift) to secondary replica load in terms of amount of data
sent/received during the put operation.

Figure 10. Consistency Mechanism Performance with 4-byte objects while
varying the replication level. Error bars represent standard deviation. For
clarity we truncate the figure to 5ms. Switft completes the workload in
24ms with 1 replica and in 47ms with 9 replicas.

Figure 11. Consistency Mechanism Performance with 1MB objects while
varying the replication level. Error bars represent standard deviation.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MANUSCRIPT ID) 11

increasing the replication from 1 to 9, NICE performance degrades
slightly when increasing the replication level (by 17% when
increasing the replication from 1 to 9).

NICE achieves up to 5× and 23× performance gain with 4-byte
objects and up 5× and 6.5× with 1MB objects compared to Ceph
and Swift, respectively. This is mainly due to the use of inefficient
replication and due to the added overhead of the proxy nodes on the
data path in Swift.

6.4 Load Balancing
To evaluate systems ability to load balance requests across replicas
of the same object we designed a weak scaling experiment: we test
the systems while increasing the number of replicas and
proportionally increase the load (i.e., the number of clients). The
experiment measures systems ability to efficiency utilize the added
resources to serve proportionally equivalent load. We evaluate the
performance of NICE, Ceph, Swift, and two NOOB storage
configurations: primary-backup and 2PC. The experiment measures
the systems performance when serving highly-popular frequently-

updated objects. In each configuration 1 client puts a shared object
1000 times, while R-1 clients each gets the shared object 1000
times.

We ran the experiment with 4-byte (Figure 13) and 1MB (Figure
14) objects. The results show that NICE achieves higher
performance than NOOB, Ceph and Swift under all replication
levels. NICE achieves up to 7.5× better than the primary-backup
configuration, and up to 5.5× better than the 2PC configuration in
both object sizes.

To understand the impact of contention between put and get
requests we compare the results to get-only workload. The dark line
markers on the bars in Figure 12 and Figure 13 show the
performance of R-1 clients issuing get operations without any put
operation. The figures show that NICE and 2PC are able to load
balance the get requests across replicas, while the primary-backup
design performance degrades with the increased workload as no
load balancing is used. Comparing the black marker to the top of
the bar shows the added overhead due to the contention of the put
and get requests. The figure shows that data consistency
mechanism adds significant overhead to NOOB systems.

Figure 12 and Figure 13 show that NOOB storage system
performance degrades considerably when increasing the replication
level and the number of clients. NOOB primary-backup
performance degrades by 10× with small objects and 3.5× with
1MB object, and the 2PC configuration degrades by 2.6× with both
sizes. This indicates that NOOB design is not weakly scalable and
generates high overhead under heavy demand. NOOB is unable to
meet the increasing demand despite the proportional increase in the
allocated resources. Significant replication costs (dominant in large
objects) and consistency-protocol overhead (dominant in small
object) are the reason why. NICE storage performance degrades
slightly when increasing the replication level and the number of
clients (only by 20% with 1MB objects and by 80% with 4-byte
objects).

6.5 Fault Tolerance Evaluation
This experiment demonstrates the system fault tolerance
mechanism. The experiment fails and recovers a replica while the
system is consistently being accessed by three clients. The clients
generate a continues stream of put and get requests with a ratio of
20/80 of put/get requests and with a key size of 1KB. All objects
are in the same partition.

Figure 14 shows the number of put and get requests served per
second. At the 30s mark, a secondary replica (node 2) fails. The
following put operation will fail and the primary node will detect
the replica failure. The primary node will inform the metadata
service. The metadata service executes the fault tolerance steps: it
removes the failed node from the switch mappings and adds the
handoff node to the replica set. This process takes less than 2
seconds during this process the partition is unavailable for put
operations (Figure 14 second 31). Client put requests during this
period will fail and the client will retry after waiting for 2 seconds,
in which case the operations will succeed. We are working on
shortening this down time through allowing put operations to
succeed even if one node fails (i.e., having R-1 replicas) and by
creating, in the background, one more replica on the handoff node
when it joins the replica set.

Figure 12. Load balancing evaluation with 4-byte objects. The systems
performance under the load balancing workload while varying the
replication level and number of clients. Bold markers show the
performance of the get-only workload. Error bars represent standard
deviation. For clarity, we truncate Swift bars, Swift finishes in 35ms with 3
replicas, and in 70ms with 9 replicas.

Figure 13. Load balancing evaluation with 1MB objects. The systems
performance under the load balancing workload while varying the
replication level and number of clients. Bold markers show the
performance of the get-only workload. Error bars represent standard
deviation.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MANUSCRIPT ID) 12

For get operations, the client selects, in a uniform random fashion,
one of the recently put objects to get. When the handoff node starts
serving client requests (second 31), it does not have any of the
requested objects. In this case, it forwards all get requests to the
primary replica. As more objects are stored at the handoff node less
get requests are forwarded to the primary node.

At 90s mark, the failed node joins back, and starts retrieving the
objects it missed. This is represented by the spike in put requests
(and get requests at the handoff node). At the 95 second mark the
returning node completes its recovery and has a consistent set of
objects, the metadata service adds the node to the unicast switch
mapping and removes the handoff node.

6.6 Real Workload Evaluation
We evaluate NICE and NOOB systems under real application
workload generated using the Yahoo cloud serving benchmark
(YCSB) [39]. We use two workloads from the YCSB benchmark
suit: a read-only workload (YCSB-C) and the read-modify-write
workload (YCSB-F) with 50% put requests. As in the majority of
the Yahoo workloads, these two have a zipf popularity distribution.

We evaluate NICE and NOOB with primary-backup and 2PC
configuration. The workload used consists of 10 clients each
generating 20K requests generated using the YCSB workload

discussed earlier. We use the default YCSB object size of 1KB.

The experiment results (Figure 15) shows that NICE achieves the
best performance under the two workloads. NICE achieves 1.6×
and 2.3× better than primary-backup configuration under workload
C and F, respectively. This improvement is due to the lack of load
balancing in the primary-backup configuration. Compared with
2PC configuration, NICE achieves 1.25× and 1.5× better
performance under workload C and F, respectively. 2PC
configurations lags NICE due to the added latency by the load
balancer (using the RAG request routing) and consistency-protocol
overhead.

6.7 Evaluation with the Programmable Switch
We empirically compare two load balancing approaches: client
partitioning (CP) which partitions the clients among replicas based
on their IP address. This is the approach implemented in the
OpenFlow-based NICEKV), and weighted replica (WR) in which
the controller sets a weight for each replica and the switch
assignments load to replicas proportional to it weight. This is the
technique implemented in the P4-based implementation.

For these experiments we used a different cluster with a P4-
programmable switch and 13 nodes. Each node has an Intel Xeon
Silver 10-core CPU, 48GB of RAM, and 100Gbps Mellanox NIC.
The nodes are connected to an Edgecore Wedge 100 ×32BF switch
with 32 100Gbps ports. The switch has Barefoot’s Tofino ASIC,
which is P4 programmable. In all of our experiments, three
machines ran the server code, while the other 10 machines
generated the workload. Each client node is running 100 client
threads. Each thread is generating read requests following the read-
only YCSB workload C benchmark. The key size is 24 bytes and
the value is 1KB.

To demonstrate the flexibility of the P4 based load balancing we
compared the operation latency under two scenarios.

Scenario I: skewed client workload. A workload in which clients
vary in the amount of requests they generate.

In this experiment the first 3 out of the 10 client nodes generate
50% of the requests. Figure 16 shows the latency of requests of the
two approaches under this workload. NICEKV-WR achieves up to
50% lower latency than NICEKV-CP. This is mainly because
NICEKV-CP partitions the clients across replicas based on their IP
address, leading to all highly active clients being assigned to one
replica. The selected replica received over 50% of the total load in
the system while the other two replicas received less than 25% of
the load each. The NICEKV-WR assigns equal weights to all
replicas hence it uniformly distributes the client load across
replicas leading to better load balancing and lower overall latency.
Figure 16 shows that 50% of the requests experience significantly
higher latency with CP compared to WR.

Scenario II: heterogeneous replicas. In this experiment we
artificially slow the CPU of one of the replicas by 40% to emulate
a platform with heterogeneous nodes.

In this experiment all clients generate the same amount of requests.
Figure 17 shows the latency of requests of the two approaches
under this workload. We notice for NICEKV-CP that 40% of
requests experience significantly higher latency. NICEKV-WR
balances the load among replicas proportional to their capabilities:
it increases the load on the two capable nodes (hence a bit higher

Figure 14. Fault Tolerance Evaluation. Secondary node 2 fails at 30s mark,
triggering the fault tolerance mechanism, and 90s the node recovers,
retrieves the missed objects from the handoff node, and starts serving client
requests.

Figure 15. Yahoo Benchmark Evaluation. The three systems performance
under two Yahoo benchmarks: read-only (C), and read-modify-write (F).

Error bars represent standard deviation.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MANUSCRIPT ID) 13

latency for the bottom 60% of requests) and reduces the latency on
the slow node (hence up to 50% lower latency for the top 40% of
requests).

Figure 16. The latency CDF of NICEKV with client partitioning (CP) load
and Weighted replicas (WR) load balancing under a skewed client
workload.

Figure 17. The latency CDF of NICEKV with client partitioning (CP) load
and Weighted replicas (WR) load balancing with heterogeneous hardware.

7 OTHER RELATED WORK
Request Routing. Beehive [49] proposes a different approach for
achieving, on average, single-hop request routing for special
workloads: workloads with highly skewed power-law popularity
distribution. Beehive replicates each object based on its popularity,
with the extremely popular objects replicated on every node, hence
accessible in a single-hop. Due to the network and storage overheads,
this approach is only feasible for highly skewed workloads of
infrequently updated objects.
SDN Optimized Systems. Recent research projects utilize SDN
capabilities to provide load balancing [41, 42], access control [50],
seamless VM migration [51], and to improve system security,
virtualization and network efficiency [52]. These systems still use
the network as a separate entity and use SDN to optimize its
operations. Unlike current efforts, we co-design network and
system operations and protocols to achieve significant benefits.

Recently, a number of projects explored techniques to leverage the
new SDN capabilities. MOM [53], NOPaxos [54], Eris [55] build
consistency protocols by relying on the network to order
operations. SwitchKV [56] builds a key-value storage with a tier of
caching nodes. SwitchKV uses the SDN-capability to optimize
request routing for get requests from the cache. MBalancer [57] and
Trajano et al. [58] leverage the SDN capabilities to build
application aware load balancers. sRoute [59] uses SDN to
optimize gather and scatter communication patterns in storage
systems. Unlike these projects, we propose a new complete system

architecture that co-designs network and storage support and
optimizes a range of mechanisms including load balancing,
replication, and consistency.

Leveraging Programmable Switches. Recently a number of
projects started exploring techniques to leverage the capabilities of
programmable switches to improve distributed systems. NetCache
[60] implements a caching service in a single switch. The controller
keeps track of the most popular objects and controls the cached
objects in the switch. NetChain [61] optimizes vertical Paxos [62]
by implementing chain replication on a chain of programmable
switches. NetPaxos [63] considers moving the Paxos protocol to
the network switches, such that one switch serves as a coordinator
and other switches serve as replicas. The proposed approach
requires implementing a substantial part of the protocol in switches
and storing a potentially large protocol state. NetChain and
NetPaxos are suitable for systems that store only a few megabytes
of data (e.g., 8MB in the current NetChain prototype).

8 CONCLUSION AND FUTURE WORK
We present network-integrated cluster-efficient (NICE) storage,
which co-designs storage logic and networking support to realize a
more efficient, scalable, and reliable distributed storage. Our
prototype evaluation shows that this approach can realize
significant benefits: up to 7× performance improvement, substantial
network-load reduction (up to 50%), and improved load balancing
and scalability. While we focus the discussion on key-value storage
systems, the proposed techniques for virtualization and
consistency-aware fault tolerance are widely applicable.

Our future work will focus on two directions. First we plan to
investigate building SDN-optimized storage systems that can
support more complex key-value queries. Second, NICE design
focused on improving replication-based storage system. The second
popular reliability technique is the use of erasure coding. We plan
to investigate techniques to accelerate storage systems using
erasure coding.

ACKNOWLEDGMENT
We thank Ajay Bakre, Alvin Lam, and Emalayan Vairavanathan
from NetApp Vancouver technical center (VTC) for their support and
early feedback, Aaron Gember-Jacobson for his help with Openflow
deployment issues, Thanumalayan S. Pillai for his help with the
Yahoo benchmark experiment, and Robert Ricci and the CloudLab
team for their support at CloudLab. This material was supported by
funding from an NSERC Discovery grant, NSERC Engage grant,
Canada Foundation for Innovation (CFI) grant, NSF grants CNS-
1419199, CNS-1421033, CNS-1319405, and CNS-1218405, as well
as in-kind support from NetApp VTC, Canada. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and may not reflect the views of
NSERC, NSF, or other institutions.

REFERENCES
[1] J.H. Saltzer, D.P. Reed, and D.D. Clark, End-to-end arguments in system design.

ACM Transactions in Computer Systems, 1984. 2(4): p. 277-288.
[2] Amazon Elastic Compute Cloud (EC2). [cited 2010; Available from:

http://aws.amazon.com/ec2/.
[3] Google app engine. [cited 2015; Available from: https://appengine.google.com.
[4] Microsoft Azure: Cloud computing platform and services. [cited 2016;

Available from: https://azure.microsoft.com/.

http://aws.amazon.com/ec2/
https://appengine.google.com/
https://azure.microsoft.com/

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (MANUSCRIPT ID) 14

[5] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. in USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 2004.

[6] Spark lighting fast cluster computing. [cited 2019; Available from:
http://spark.apache.org/.

[7] B. Calder, J. Wang, A. Ogus, et al. Windows azure storage: A highly available
cloud storage service with strong consistency. in ACM Symposium on Operating
Systems Principles (SOSP). 2011.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. in
SOSP'03. 2003. Lake George, NY.

[9] J.H. Howard, M.L. Kazar, S.G. Menees, et al., Scale and Performance in a
Distributed File System. ACM Transactions on Computer Systems, 1988. 6(1).

[10] K. Gupta, R. Jain, I. Koltsidas, et al., GPFS-SNC: An enterprise storage
framework for virtual-machine clouds IBM Journal of Research and
Development 2011.

[11] R. Sandberg, D. Goldberg, S. Kleiman, et al., Design and Implementation of the
Sun Network Filesystem, in Proc. Summer USENIX. June 1985. p. 119--130.

[12] S. Weil, S.A. Brandt, E.L. Miller, et al. Ceph: A Scalable, High-Performance
Distributed File System. in Proceedings of the 7th Conference on Operating
Systems Design and Implementation (OSDI '06). 2006.

[13] OpenStack Cloud Platform: OpenStack Swift. [cited 2015; Available from:
http://docs.openstack.org/developer/swift/overview_architecture.html.

[14] Basho. Riak cloud storage. [cited 2015; Available from: http://basho.com/riak-
cloud-storage/.

[15] Voldemort project. [cited 2015; Available from: http://www.project-
voldemort.com/voldemort/design.html.

[16] G. DeCandia, D. Hastorun, M. Jampani, et al. Dynamo: Amazon's Highly
Available Key-value Store. in SOSP07. 2007.

[17] A. Lakshman and P. Malik, Cassandra: A decentralized structured storage
system. SIGOPS Operating Systems Review, 2010. 44(2): p. 35-40.

[18] I. Stoica, R. Morris, D. Karger, et al. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. in SIGCOMM Conference. 2001. ACM.

[19] The Open Networking Foundation: Openflow switch specification. Version
1.5.0. 2014.

[20] N. McKeown, T. Anderson, H. Balakrishnan, et al., Openflow: Enabling
innovation in campus networks. SIGCOMM Computer Communication Review,
2008. 32(2): p. 69-74.

[21] P. Bosshart, D. Daly, G. Gibb, et al., P4: programming protocol-independent
packet processors. SIGCOMM Comput. Commun. Rev., 2014. 44(3): p. 87-95.

[22] D.R. Karger, E. Lehman, F.T. Leighton, et al. Consistent Hashing and Random
Trees: Distributed Caching Protocols for Relieving Hot Spots on the World
Wide Web. in Symposium on Theory of Computing. 1997. ACM.

[23] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. in IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware). 2001. Heidelberg,
Germany.

[24] A.S. Tanenbaum and M.V. Steen, Distributed Systems: Principles and
Paradigms. 2 ed. 2006: Prentice Hall.

[25] The Apache Cassandra Project. 2012; Available from:
http://cassandra.apache.org/.

[26] D. Ongaro, S.M. Rumble, R. Stutsman, et al., Fast crash recovery in
RAMCloud, in Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles. 2011, ACM: Cascais, Portugal. p. 29-41.

[27] J. Technologies, Network Protocols Handbook. 2005: Javvin Technologies Inc.
[28] Barefoot Tofino. 2019; Available from:

https://www.barefootnetworks.com/products/brief-tofino/.
[29] Cavium / XPliant. 2019; Available from: https://origin-

www.marvell.com/documents/netpxrx94dcdhk8sksbp/.
[30] L. Lamport, The part-time parliament. ACM Transactions on Computer Systems

(TOCS), 1998. 16 (2): p. 133-169.
[31] L. Lamport, Paxos Made Simple. ACM SIGACT News, 2001. 32(4).
[32] D. Ongaro and J. Ousterhout. In search of an understandable consensus

algorithm. in USENIX Annual Technical Conference (USENIX ATC). 2014.
[33] Mongodb. Available from: https://www.mongodb.org/.
[34] Postgresql. 2019; Available from: http://www.postgresql.org/.
[35] M.K. Aguilera, A. Merchant, M. Shah, et al., Sinfonia: a new paradigm for

building scalable distributed systems, in Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles. 2007, ACM: Stevenson,
Washington, USA. p. 159-174.

[36] J. Ousterhout, A. Gopalan, A. Gupta, et al., The RAMCloud Storage System.
ACM Transactions on Computer Systems, 2015. 33(3): p. 7:1-7:55.

[37] R.v. Renesse and F.B. Schneider. Chain replication for supporting high
throughput and availability. in Symposium on Opearting Systems Design &
Implementation (OSDI). 2004. San Francisco, CA.

[38] B. Atikoglu, Y. Xu, E. Frachtenberg, et al., Workload analysis of a large-scale
key-value store, in Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international conference on Measurement
and Modeling of Computer Systems. 2012, ACM: London, England, UK. p. 53-
64.

[39] B.F. Cooper, A. Silberstein, E. Tam, et al., Benchmarking cloud serving systems
with YCSB, in Proceedings of the 1st ACM symposium on Cloud computing.
2010, ACM: Indianapolis, Indiana, USA. p. 143-154.

[40] D. Terry, V. Prabhakaran, R. Kotla, et al., Consistency-based service level
agreements for cloud storage, in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. 2013, ACM: Farminton,
Pennsylvania. p. 309-324.

[41] N. Handigol, M. Flajslik, S. Seetharaman, et al. Aster*x: Loadbalancing as a
network primitive. in GENI Engineering Conference (Plenary). 2010.

[42] R. Wang, D. Butnariu, and J. Rexford. Openflow-based server load balancing
gone wild. in USENIX Conference on Hot Topics in Management of Internet,
Cloud, and Enterprise Networks and Services (Hot-ICE). 2011.

[43] Ryu sdn framework. [cited 2019; Available from: http://osrg.github.io/ryu/.
[44] Programming protocol-independent packet processors (P4). [cited 2019;

Available from: https://p4.org.
[45] Barefoot P4 Studio. [cited 2019; Available from:

https://www.barefootnetworks.com/products/brief-p4-studio/.
[46] Cloudlab. [cited 2019; Available from: http://www.cloudlab.us/.
[47] OpenvSwitch: Production quality, multilayer open virtual switch. [cited 2019;

Available from: http://openvswitch.org/.
[48] S. Al-Kiswany, S. Yang, A.C. Arpaci-Dusseau, et al. NICE: Network-Integrated

Cluster-Efficient Storage. in ACM International Symposium on High
Performance Parallel and Distributed Computing (HPDC). 2017.

[49] V. Ramasubramanian and E.G. Sirer. Beehive: O(1) Lookup Performance for
Power-Law Query Distributions in Peer-to-Peer Overlays. in NSDI. 2004. San
Francisco, CA.

[50] A.K. Nayak, A. Reimers, N. Feamster, et al. Resonance: Dynamic access
control for enterprise networks. in ACM Workshop on Research on Enterprise
Networking (WREN). 2009.

[51] A.J. Mashtizadeh, M. Cai, G. Tarasuk-Levin, et al. Xvmotion: Unified virtual
machine migration over long distance. in USENIX Annual Technical Conference
(USENIX ATC). 2014.

[52] A. Lara, A. Kolasani, and B. Ramamurthy, Network innovation using openflow:
A survey. IEEE Communications Society, 2014. 16(1): p. 493 - 512.

[53] D.R.K. Ports, J. Li, V. Liu, et al. Designing distributed systems using
approximate synchrony in data center networks. in Symposium on Networked
Systems Design and Implementation (NSDI). 2015.

[54] J. Li, E. Michael, N.K. Sharma, et al. Just say no to paxos overhead: replacing
consensus with network ordering. in USENIX conference on Operating Systems
Design and Implementation (OSDI) 2016.

[55] J. Li, E. Michael, and D.R.K. Ports. Eris: Coordination-Free Consistent
Transactions Using In-Network Concurrency Control. in Symposium on
Operating Systems Principles (SOSP). 2017.

[56] X. Li, R. Sethi, M. Kaminsky, et al. Be Fast, Cheap and in Control with
SwitchKV. in USENIX Symposium on Networked Systems Design and
Implementation (NSDI) 2016.

[57] A. Bremler-Barr, D. Hay, I. Moyal, et al. Load balancing memcached traffic
using software defined networking. in IFIP Networking Conference. 2017.

[58] A. Trajano and M. Fernandez. Two-phase load balancing of In-Memory Key-
Value Storages through NFV and SDN. in IEEE Symposium on Computers and
Communication (ISCC). 2016.

[59] I. Stefanovici, B. Schroeder, G. O'Shea, et al. sRoute: Treating the Storage Stack
Like a Network. in USENIX File and Storage Technologies (FAST). 2016.

[60] X. Jin, X. Li, H. Zhang, et al. NetCache: Balancing Key-Value Stores with Fast
In-Network Caching. in Proceedings of the Symposium on Operating Systems
Principles (SOSP). 2017. Shanghai, China: ACM.

[61] X. Jin, X. Li, H. Zhang, et al. Netchain: scale-free sub-RTT coordination. in
Proceedings of the USENIX Conference on Networked Systems Design and
Implementation (NSDI). 2018. Renton, WA, USA: USENIX Association.

[62] L. Lamport, D. Malkhi, and L. Zhou. Vertical paxos and primary-backup
replication. in Proceedings of the ACM symposium on Principles of distributed
computing. 2009. Calgary, AB, Canada: ACM.

[63] H.T. Dang, D. Sciascia, M. Canini, et al. NetPaxos: consensus at network speed.
in Proceedings of the ACM SIGCOMM Symposium on Software Defined
Networking Research. 2015. Santa Clara, California: ACM.

http://spark.apache.org/
http://docs.openstack.org/developer/swift/overview_architecture.html
http://basho.com/riak-cloud-storage/
http://basho.com/riak-cloud-storage/
http://www.project-voldemort.com/voldemort/design.html
http://www.project-voldemort.com/voldemort/design.html
http://cassandra.apache.org/
https://www.barefootnetworks.com/products/brief-tofino/
https://origin-www.marvell.com/documents/netpxrx94dcdhk8sksbp/
https://origin-www.marvell.com/documents/netpxrx94dcdhk8sksbp/
https://www.mongodb.org/
http://www.postgresql.org/
http://osrg.github.io/ryu/
https://p4.org/
https://www.barefootnetworks.com/products/brief-p4-studio/
http://www.cloudlab.us/
http://openvswitch.org/

