
TOWARDS TRANSPARENT CPU SCHEDULING

by

Joseph T. Meehean

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2011

© Copyright by Joseph T. Meehean 2011
All Rights Reserved

i

ii

To
Heather for being my best friend

Joe Passamani for showing me what’s important
Rick and Mindy for reminding me
Annie and Nate for taking me out
Greg and Ila for driving me home

Acknowledgments

Nothing of me is original. I am the combined effort of everybody I’ve ever
known.

— Chuck Palahniuk (Invisible Monsters)

My committee has been indispensable. Their comments have been enlight-
ening and valuable. I would especially like to thank Andrea for meeting with
me every week whether I had anything worth talking about or not. Her insights
and guidance were instrumental. She immediately recognized the problems
we were seeing as originating from the CPU scheduler; I was incredulous.

My wife was a great source of support during the creation of this work. In
the beginning, it was her and I against the world, and my success is a reflection
of our teamwork. Without her I would be like a stray dog: dirty, hungry, and
asleep in afternoon.

I would also like to thank my family for providing a constant reminder of
the truly important things in life. They kept faith that my PhD madness would
pass without pressuring me to quit or sandbag. I will do my best to live up to
their love and trust.

The thing I will miss most about leaving graduate school is the people.
My support network of friends has been vast over my many years in graduate
school. In particular, I would like to thank Nate and Annie for their incredible

iii

generosity and for being so damn fun in general. Together they created a center
around which we built our Madison family. I would also like to thank Greg
and Ila for their steadfast loyalty. I know that wherever I am and whatever my
problem they will not hesitate to help. Trevor provided a constant reminder
that I was full of hot air, but never failed to help me generate more. Rush made
me laugh in unexpected and often absurd ways.

Special thanks to the Condor Team, in particular Ken Hahn, Steve Barnet,
Todd Miller, Greg Thain and Doug Thain. I would also like to thank the ADSL
group, especially Swami Sundararaman, Leo Arulraj, Haryadi Gunawi, and
Nitin Agrawal. This work was funded by the NSF under a variety of grants.

iv

Contents

Contents v

List of Tables ix

List of Figures xi

Abstract xv

1 Introduction 1
1.1 Importance of CPU Scheduling . 2
1.2 Opaque CPU Schedulers . 4
1.3 Increasing Transparency of CPU Scheduling 5
1.4 Organization . 7

I CPU Scheduling Background 9

2 CPU Scheduling 11
2.1 Environment . 12
2.2 CPU Scheduling . 14
2.3 Multiprocessor Scheduling . 20

v

2.4 Commodity Schedulers . 25
2.5 Summary . 29

3 Opaque CPU Scheduling 33
3.1 CPU Contention . 34
3.2 Application CPU Contention Policies 35
3.3 Barriers to Good Scheduling . 36
3.4 Limited Scheduling Interface . 38
3.5 Unpredictability of Best Effort Schedulers 43
3.6 Limited Scheduler Feedback . 45
3.7 Experimental Examples . 47
3.8 Commodity Approaches to Mitigate CPU Contention 52
3.9 Summary . 55

II CPU Futures 57

4 Scheduler support for application management of CPU contention 59
4.1 Requirements . 61
4.2 CPU Futures . 62
4.3 Scheduler-Agnostic Feedback . 66
4.4 Scheduler Models . 68
4.5 Implementation Details . 82
4.6 Evaluation . 84
4.7 Summary . 94

5 CPU Futures Controller Case Studies 95
5.1 CPU Future’s Controller . 97
5.2 Empathy . 99
5.3 Starvation Avoidance Shepherd . 105
5.4 Fair Throughput Shepherd . 110
5.5 Summary . 114

vi

III Harmony 117

6 Uncovering CPU Load Balancing Policies with Harmony 119
6.1 Harmony . 121
6.2 Multiprocessor Scheduling Policy Foundations 125
6.3 How Many Processes are Migrated? 128
6.4 Time to Resolve and Detect? . 132
6.5 Summary . 136

7 Load Balancing Non-Fungible Processes 137
7.1 Resolution of Intrinsic Imbalances? 138
7.2 Resolution of Mixed CPU Workloads? 143
7.3 Resolution of Priority Classes? . 155
7.4 Discussion . 160
7.5 Conclusion . 163

IV Context and Conclusions 165

8 Related Work 167
8.1 CPU Futures . 167
8.2 Harmony . 171

9 Conclusions 173
9.1 Summary . 174
9.2 Ideal Scheduling . 177
9.3 Lessons Learned . 178
9.4 Hindsight . 180

References 183

vii

List of Tables

4.1 SPECint2006 overhead results . 84
4.2 Time to query herald . 84
4.3 Accuracy and precision of predicted and potential allocation metrics 93

6.1 Imbalance Detection . 135

7.1 The Load-balancing Policies Extracted by Harmony 161

ix

List of Figures

2.1 Global vs. Distributed Queues . 23

3.1 CPU allocations given an increasing system workload 48
3.2 Break down of Apache worker throughput 50
3.3 Break down of starving requests by cause 52

4.1 CPU Futures architecture . 64
4.2 Desired allocation . 67
4.3 Timesharing model . 71
4.4 CPU Futures herald output . 83
4.5 The herald metrics illustration . 85
4.6 O(1) alternating priority . 86
4.7 O(1) alternating priority, detailed view 87
4.8 O(1) alternating priority with and without modeled starvation pre-

vention . 89
4.9 CFS alternating priority . 90
4.10 CFS alternating priority, detailed view 90
4.11 CFS alternating demand . 91
4.12 O(1) alternating demand . 92

xi

5.1 Example of feedback-controller search algorithm. 97
5.2 Empathy minimal interference experiment 100
5.3 Empathy-managed video conversion running simultaneously with

increasing Apache web server workload 103
5.4 Empathy video conversion running simultaneously with a fixed

Apache web server workload . 104
5.5 Average Apache starvation counts 107
5.6 CDF of response times for starving requests 108
5.7 Starvation counts for a variety of workload mixes 109
5.8 Normalized throughput for a variety of workloads 110
5.9 Jain fairness index for a fixed MPL Apache and Shepherd 111
5.10 CDF of the response times for starving requests 112
5.11 Jain index for a variety of workloads 113

6.1 O(1) Load Balancing Snippet . 123
6.2 Single-source and Single-target . 124
6.3 Timeline of Process Migrations for O(1), CFS, and BFS Schedulers . 126
6.4 Timeline of Run Queues for O(1) . 127
6.5 CPU allocations . 129
6.6 First Migration: O(1) and CFS . 131
6.7 Time to Resolve Imbalance . 133
6.8 Imbalance Detection . 135

7.1 Allocations with Intrinsic Imbalances 139
7.2 Migration Timeline with Intrinsic Imbalances 140
7.3 Run queue lengths for CFS with Intrinsic Imbalances 141
7.4 Allocation Timeline for CFS with Intrinsic Imbalances 142
7.5 Run Queue Timelines for Mixed CPU Workloads 145
7.6 Run Queue Match . 146
7.7 Sticky Priority Bonuses in O(1) . 147
7.8 Sticky Priority Bonuses Across Migration in O(1) 148
7.9 Losing Balance in CFS . 149
7.10 Migrations for Heavy/Light workload 150

xii

7.11 Run Queue Match . 152
7.12 CPU Allocations for Heavy Processes with O(1), CFS, and BFS . . . 154
7.13 Migrations for Mixed Priorities with BFS 156
7.14 O(1) and CFS Migrations for Mixed Priorities 157
7.15 CPU Allocations for High Priority Processes with O(1), CFS, and BFS159

xiii

Abstract

In this thesis we propose using the scientific method to develop a deeper under-
standing of CPU schedulers; we use this approach to explain and understand
the sometimes erratic behavior of CPU schedulers. This approach begins with
introducing controlled workloads into commodity operating systems and ob-
serving the CPU scheduler’s behavior. From these observations we are able
to infer the underlying CPU scheduling policy and create models that predict
scheduling behavior.

We have made two advances in the area of applying scientific analysis to CPU
schedulers. The first, CPU Futures, is a combination of predictive scheduling
models embedded into the CPU scheduler and user-space controller that steers
applications using feedback from these models. We have developed these
predictive models for two different Linux schedulers (CFS and O(1)), based
on two different scheduling paradigms (timesharing and proportional-share).
Using three different case studies, we demonstrate that applications can use our
predictive models to reduce interference from low-importance applications by
over 70%, reduce web server starvation by an order of magnitude, and enforce
scheduling policies that contradict the CPU scheduler’s.

Harmony, our second contribution, is a framework and set of experiments
for extracting multiprocessor scheduling policy from commodity operating
systems. We used this tool to extract and analyze the policies of three Linux

xv

Abstract

schedulers: O(1), CFS, and BFS. These schedulers often implement strikingly
different policies. At the high level, the O(1) scheduler carefully selects pro-
cesses for migration and strongly values processor affinity. In contrast, CFS
continuously searches for a better balance and, as a result, selects processes
for migration at random. BFS strongly values fairness and often disregards
processor affinity.

xvi

Chapter 1

Introduction

It is a habit of mankind to entrust to careless hope what they long for, and
to use sovereign reason to thrust aside what they do not desire.

— Thucydides

Best-effort CPU schedulers are currently regarded as a reliable black box
by applications, developers, and systems researchers. These schedulers are
depended upon to provide a low-level, but vital service. And in past decades,
the rapidly increasing performance of processors has supported this reliance
and image.

The end of ever-increasing single processor speeds means that these as-
sumptions should be revisited. Closer examination of CPU schedulers under
even moderate load indicates that they can provide capricious service and
implement resource contention policies that are in conflict with applications
that depend on them. This seemly erratic behavior has dire consequences
on the perceived reliability of applications; it can cause slow response times,
pathological behavior, and even application failure.

1

1. Introduction

In this work, we propose taking a scientific approach to understanding CPU
schedulers; we begin to demystify the CPU scheduler by collecting observations,
producing hypotheses, and generating predictive models. For example, closer
examination of CPU scheduling demonstrates that its sometimes erratic behav-
ior is not unpredictable, but simply the unfortunate combined result of several
well-intentioned policies. The observations and predictive models that result
from this approach make CPU scheduling more transparent to (and controllable
by) applications and enable researchers to improve or refine scheduling policy.

This dissertation discusses two advances we have made in our scientific anal-
ysis of CPU scheduling. In the first, CPU Futures, we create and demonstrate the
value of predictive models embedded into CPU schedulers. Applications use
these predictive models to actively steer two contemporary Linux CPU sched-
ulers towards their desired scheduling policy. In the second, we implement a
framework for collecting observations of multiprocessor CPU scheduling. We
then use this framework, called Harmony, to extract CPU scheduling policies
from three Linux CPU schedulers: O(1), CFS, and BFS.

This chapter presents a high-level overview of the philosophies that drive
this thesis. The first section discusses the increased importance of CPU schedul-
ing. The difficulties caused by black box CPU scheduling are presented in the
next section. This section is followed by a more expansive discussion using the
scientific method to increase the transparency of CPU schedulers. Finally, we
present an overview of the structure of this thesis.

1.1 importance of cpu scheduling

For the last 15 years, advances in CPU scheduling algorithms have been made
largely irrelevant by the rapidly increasing speed of processors (some exceptions
stand out [27, 48, 56, 65]). Many interesting works in the area of real-time
scheduling for multimedia applications were simply outpaced by the speed
of new processors [24, 25, 26, 28]. Every modern desktop computer can easily
play streaming media, and all without the help of research techniques designed
solely for that purpose. In fact, many of these desktops play real-time media
using timesharing scheduling technology developed in 80’s and early 90’s.

2

1.1. Importance of CPU Scheduling

Why, then, should the systems research community invest time and money in
scheduling research?

The answer is the free hardware ride is over; processor speeds peaked some
time in 2003 [63]. The current trend in hardware is more processors instead
of faster processors, and this means that CPU scheduling is relevant again.
Improved CPU scheduling is required to generate application performance
improvements from multicore processors.

Multicore processors do not automatically provide performance improve-
ments to applications the way faster processors did. Instead applications must
be redesigned to increase their parallelism. Similarly, CPU schedulers must be
redesigned to maximize the performance of this new application parallelism.
CPU scheduling policy (and in a large part mechanism) is unimportant to a
serial application running on its own machine. Now, however, an application
may be competing/cooperating with several concurrent instances of itself on
a single machine. In this scenario, CPU scheduling is vitally important. An
application may appear unresponsive, flaky, or even schizophrenic if some
portions of the application starve while others thrive.

CPU scheduling is mostly irrelevant if the CPU is underutilized; on an
underutilized CPU a scheduler can only really affect scheduling latency. One
initially expects that the increased number of processors per machine would
reduce the potential for CPU contention, and thereby the need for good CPU
scheduling. However, the increase in redundant hardware has occurred concur-
rently with an increase in server consolidation, which reintroduces the potential
for CPU contention.

To increase profits and improve throughput (of the cluster), server consoli-
dation may reduce an application’s hardware allocation until the application is
running at near its allocated hardware capacity. This close tailoring of resource
allocations shifts part of the scheduling problem to the application’s operating
system. Running at near capacity means that even small increases in load may
place the system in an overload state, and CPU scheduling becomes critical
when systems are overloaded. Under overload, the CPU scheduler must make
careful decisions about how to divide its limited resources.

3

1. Introduction

1.2 opaque cpu schedulers

Commodity CPU schedulers are incredibly opaque. In a running system, the
primary feedback from the CPU scheduler is simply the direct outcome of its
policy: how much CPU each application was allocated. While better than noth-
ing, this feedback conveys very little information. It provides no information on
why an application was given a certain allocation. Was that all the application
wanted? Was there CPU contention? How much slower is the application
running due to CPU contention? What would the application receive if it had a
better or worse priority?

This lack of transparency negatively affects users, applications, application
developers and system researchers. Users and applications are unable to deter-
mine how they are affected by CPU scheduling and contention. Given a slow
running application, a user may not even be able to tell whether the slowness
is caused by the CPU at all. Applications cannot determine whether the system
can support their current level of parallelism or whether they should increase
or decrease it or by what amount. This often leaves CPU schedulers appearing
unpredictable and inconsistent.

Offline analysis of CPU schedulers proves both more and less opaque. The
single processor scheduling policies of commodity operating systems are often
well documented, primarily in text books [20, 35, 88, 89, 108, 111]. However,
the multiprocessor scheduling policies of these operating systems are often
poorly documented or not documented at all; the mainline Linux scheduler is
distributed without any documentation about its multiprocessor scheduling
policy. Furthermore, the documentation of commodity single and multipro-
cessor scheduling policies are often implementation focused. This gives the
reader a fair idea of how a scheduler is built, but not how it will behave given a
specific workload.

Application developers cannot effectively build parallelism into their ap-
plications because they cannot predict how this parallelism will be managed
by the CPU scheduler. Instead, they must engineer their applications using
trial and error. This uncertainty adds an additional recursive debugging step
at the end of implementation instead of allowing application designers to build

4

1.3. Increasing Transparency of CPU Scheduling

applications based on well understood parameters of CPU schedulers.
Finally, scheduling improvements are difficult if system researchers do not

have a solid understanding of the current state of the art. The limited documen-
tation on commodity schedulers means that each researcher must start from
scratch to develop this understanding. Furthermore, without useful run-time
feedback, users and applications developers cannot provide detailed explana-
tions of the problems they are having with commodity CPU schedulers. These
limitations make it difficult for system researchers to change CPU schedulers
to more closely match the needs of applications and users.

The opaque nature of CPU schedulers leaves users, developers, and system
researchers with only speculation about why systems fail and how to improve
them. This “careless hope” is the antithesis of good science and engineering.

1.3 increasing transparency of cpu scheduling

The solution to the problem of opaque schedulers is not to simply expose their
inner workings, but rather to formulate a deep understanding of their behavior.
For example, it would do little good to export a CPU scheduler’s run queue to
user space because this micro-transparency only indicates the order in which
processes will run, not how large of an allocation each process will receive, or
how long the last process in the run queue will have to wait to be scheduled.
Nor would this simple transparency provide an indication of how these things
might change if a process modified its priority or behavior.

We argue that CPU schedulers should be studied in the same way natural
systems are: through the application of the scientific method. The first step
is to observe the scheduler’s behavior given a variety of workloads (stimuli).
We next make hypotheses about the behaviors observed. Then, using these
hypotheses as a basis, we generate predictive models. Finally, we compare
the predictive models’ results to the system under observation and refine our
hypotheses and models. The hypotheses and models created in this analysis
not only allow us to predict the behavior of CPU schedulers, but also create a
foundational understanding of the behaviors of the CPU scheduling policies.
This understanding, and predictive ability, transforms CPU schedulers from

5

1. Introduction

unintelligible, black boxes into comprehensible, transparent systems.
It is critical that we not only understand the policies implemented by CPU

schedulers, but also the implications of this policy on real workloads. Policies
are often created from a designer’s intuition about how to satisfy a high level
goal. To understand a scheduling policy, we must, in some cases, reverse en-
gineer the high level goal from the observed behavior of the CPU scheduler.
We can then analyze how well this policy satisfies the goal. It is also critical to
analyze any side-effects this policy may have. This too is based on observations
of a CPU scheduler’s behavior. Once we have achieved a deep level of under-
standing, we can begin to predict in advance how a scheduler will behave given
a specific workload.

The increased transparency created by these observations and predictive
models give system researchers and applications developers the ability to im-
prove performance and reliability. System researchers can use the observations
and hypotheses to propose improvements to scheduling policies. Applica-
tion developers can use the predictive models to guide development of their
applications; a developer can steer their applications towards the parts of a
CPU scheduler that work best while attempting to mitigate the scheduler’s
short-comings.

Embedding scheduling models into running systems provides much needed
feedback for users and applications. A user can tell exactly what performance
degradation they are experiencing due to CPU contention or a poorly selected
CPU scheduler. System administrators can use this information for performance
debugging or resource planning. Applications can also use this feedback to
closely monitor the performance of their concurrent work-flows and ensure
that each work-flow is making sufficient progress. Problems caused by CPU
contention can then be resolved by applications using application-specific logic
about the relative importance of each work-flow.

We have made two contributions towards this scientific analysis of CPU
scheduling: CPU Futures and Harmony. CPU Futures is the combination
of a set of predictive models embedded into the CPU scheduler and a user-
space controller to steer applications using feedback from these models. We
have created these predictive scheduling models for two general types of CPU

6

1.4. Organization

schedulers (timesharing and proportional-share) and implemented them for
two Linux schedulers (CFS and O(1)). Combining these models with a simple
user-space controller, we demonstrate their value for distributed applications
and low-importance background applications.

Harmony is an experimental framework for generating stimulus (synthetic
workloads) for CPU schedulers and observing the resulting behavior. This
framework requires only a small amount of low-level instrumentation and does
not rely on operating system documentation or source code. We have also
designed a set of experiments to extract multiprocessor scheduling policies
from commodity CPU schedulers. Using these experiments, we demonstrate
the value of Harmony and begin to illuminate the scheduling policies of three
Linux schedulers: O(1), CFS, and BFS.

1.4 organization

In the following two chapters, we provide background material on CPU schedul-
ing. In Chapter 2, we discuss the prevalent types of CPU schedulers and multi-
processor scheduling architectures. Chapter 3 provides a more in-depth analysis
of the problem of opaque CPU schedulers, including motivating experiments.

The next two chapters present CPU Futures, a set of predictive models for
CPU schedulers that allow applications to enforce their own scheduling policies.
Chapter 4 provides an overview of CPU Futures and discusses the scheduling
models in detail. In Chapter 5, we present three case studies that demonstrate
how to use CPU Futures feedback and illustrate the usefulness of embedded
scheduling models.

Harmony is presented in the next two chapters. Chapter 6 provides an
overview of Harmony and the results of using Harmony to extract basic policies
from three Linux schedulers: O(1), CFS, and BFS. More complex policies are
extracted from these same three schedulers in Chapter 7.

In the final two chapters, we discuss the context and contributions of this
dissertation. Works related to Harmony and CPU Futures are presented in
Chapter 8. In Chapter 9 we discuss our conclusion and summarize the contri-
butions of this work.

7

Part I

CPU Scheduling Background

9

Chapter 2

CPU Scheduling

Some have two feet
And some have four.
Some have six feet
And some have more.

— Dr Seuss (One Fish, Two Fish, Red Fish, Blue Fish)

The goal of CPU schedulers is to provide an illusion that each process or
thread has its own dedicated CPU. The mechanisms required to virtualize the
CPU are fairly simple. Creating a policy to divide the physical CPU amongst
competing processes and threads is a far more difficult problem. Understand-
ing this problem in some detail is critical to appreciating the importance of
increasing the transparency of CPU schedulers, whether through improved
interfaces or empirical observations.

CPU scheduling is not planning; there is not an optimal solution. Rather
CPU scheduling is about balancing goals and making difficult tradeoffs. Identi-
fying the underlying goals of a CPU scheduler is key to appreciating its complex
behavior. Appreciating the tradeoffs schedulers make to accomplish their goals

11

2. CPU Scheduling

is critical to understanding the evolution of commodity schedulers. A new
scheduler either places an emphasis on different goals, or provides a simpler
way to achieve the same goals as its predecessors. Understanding commodity
schedulers is the first step to improving them.

One must work hard to avoid applying value judgments to scheduling
policies. The only bad scheduling policy is one that trades something for
nothing, one that de-emphasizes one goal without an improvement in another.
For example, it can be tempting to dismiss commodity schedulers out-of-hand as
too complex. Butler Lampson once advocated returning to a simple three-level,
round-robin scheduler [85]. Lampson’s scheduler would not be better than
commodity schedulers; it would merely place a greater emphasis on simplicity.

System designers create CPU scheduling policies to match a particular
environment. Each tradeoff in a scheduling policy reflects assumptions about
workloads and hardware configurations. Therefore, a CPU scheduler can only
be evaluated with respect to how well it works in a given environment. It
is important to note that general-purpose is an environment choice; it merely
encapsulates all other choices.

We begin this chapter by describing the hardware, operating systems, and
applications that make up a typical distributed computing environment. We
then categorize CPU schedulers, discussing how each category achieves their
primary goal and at what cost. Next, we explain how multiprocessors systems
introduce a new set of conflicting scheduling goals. We also introduce two cat-
egories of multiprocessor scheduler in this section. We finish with an overview
of CPU scheduling policies in commodity operating systems, with an emphasis
on Linux.

2.1 environment

No CPU scheduling policy can be evaluated outside of the context of a schedul-
ing environment; without understanding the targeted hardware configuration
and software stack it is impossible to understand the value of a given CPU
scheduling policy.

Modern computing relies heavily on distributed systems, which in turn rely

12

2.1. Environment

on large server-class machines and clusters to provide computing power for
tens of thousands of users. These machines tend to have multiple micropro-
cessors each containing several homogeneous processing cores. The memory
architecture in these machines is often Non-Uniform Memory Access (NUMA).
These NUMA architectures are more tightly-coupled (faster) than their “big
iron” counterparts from previous decades; memory nodes are located on a
single motherboard and remote node access occurs through a special processor-
to-processor bus [23, 46, 50, 133].

These servers and clusters run many operating systems, including Windows,
Linux, FreeBSD, and Solaris. This dissertation focuses primarily on Linux for
three reasons. First, it is popular: over 41% of web servers [96] and 91% of
“TOP500” most powerful computer systems in the world [117] run Linux. The
grid computing software that analyzes data from the Large Hadron Collider,
one of the most expensive scientific instruments ever built, runs exclusively on
Linux. Second, the Linux community is actively thinking about and developing
CPU schedulers. There were over 323 patches to a single Linux scheduler
in 2010, an average of a single patch every 27 hours. This indicates a keen,
community interest in improving Linux CPU scheduling. Finally, Linux is
open-source, making it easier to prototype and publish scheduling research.

Distributed systems are composed of multiple multifaceted distributed
services: long-lived entities, often servicing multiple requests and users concur-
rently. These services process multiple user requests and perform background
processing simultaneously. This complex system of concurrent processing is
supported using one of three design architectures. It is important to note that
each architecture allows a variable amount of concurrency, can assign a vari-
able level of importance to each unit of work, and depends on long-running
processes or threads.

The first architecture manages concurrency using multiple processes. For
example, the Dovecot IMAP server forks a new worker process each time a
user logs into the mail server; after login, this worker process handles all of the
user’s mail requests [6].

Multiple concurrent requests are handled in the second architecture using
threads. The Tomcat application server, an application framework used to create

13

2. CPU Scheduling

web services, uses a thread-based architecture. When web requests arrive, a
thread is selected from a pre-created pool to service it [8].

The final architecture, commonly referred to as event driven, is based on
using a single, non-blocking process to handle multiple requests serially. As an
example, the Tornado web server uses a single process to handle incoming web
requests; this single process switches between multiple concurrent requests,
either at well-defined boundaries or when a request is blocked on a resource
other than CPU [9].

Some applications are designed using a blend of these architectures. For
example, the Condor Batch System’s job scheduler is implemented primarily
as a event-driven service, but it also forks processes to handle some tasks that
may block or require too much of the job schedulers time [90].

The large amount of concurrency and wide variety of request types these
services provide creates an environment where resource demand can increase
quickly and unexpectedly. Services may also be overloaded by unexpected
increases in the number users. For example, a relatively low traffic web page
may suddenly become a Internet hot spot after being linked to by a news
aggregating web page such as Slashdot.

2.2 cpu scheduling

CPU schedulers provide the illusion of multiple virtual CPUs to applications;
each application appears to have its own CPU. The primary job of a CPU sched-
uler, then, is to safely and optimally divide CPU resources amongst competing
tasks 1. Safety is provided by the kernel’s context-switching mechanism and the
division of kernel code into portions that allow or disallow context-switching.
Optimality is more difficult because the best way to divide CPU resources can
vary between applications. Therefore, each CPU scheduler needs a system-
specific policy that defines how to share the processor. This policy encapsulates
the broad scheduling goals of the system, and reflects the system’s expectations
regarding its workloads.

1Task, for the purposes of this dissertation, is used as a general term meaning process or
thread.

14

2.2. CPU Scheduling

Scheduling policy is a balancing act between competing goals. Modern
scheduling policies make tradeoffs between three primary goals: fairness, low
latency, and progress. Other goals exist, but these three are often the most
important. Fairness concerns how CPU cycles are divided over some time scale
(e.g., one second, one minute, one hour). A task’s portion of cycles over a given
time period is called its CPU allocation. There is no quantitative definition
of fairness; rather each policy defines and enforces its own model for fair
allocations. A policy’s fairness can be measured in how closely and at what
time scale it matches a desired allocation; the smaller the time scale the greater
the perceived fairness.

Scheduling latency is how long a task must wait before it is given control of
the CPU. Latency is most important for interactive tasks because high latencies
result in frustrated users. Progress measures the work a task can accomplish in
a given time period. In the extreme case, called starvation, a task may make no
progress at all.

A scheduling policy must make tradeoffs between these goals. For example,
a scheduling policy that prioritizes interactive tasks to reduce latency may
provide unfair allocations that also lead to starvation. As another example,
a scheduler that provides fair allocations over a small time scale may hurt
progress by increasing the number of context switches.

CPU schedulers fall into two broad categories: real-time and best-effort.
Schedulers in the real-time category provide guarantees about how long it will
take to respond to an event; these schedulers ensure the application-defined
deadlines are always met. Real-time schedulers are typically found in environ-
ments requiring latency guarantees, like robotics and embedded systems. To
provide these guarantees, real-time schedulers need to know the CPU allocation
and latency requirements of all applications. If the scheduler cannot provide
the low latency guarantees an application requires, the application is not run.
This admission control policy limits the concurrency of real-time systems.

Application CPU latency and allocation requirements can be gathered using
two techniques. In the first, the user must specify these values prior to starting
an application. These CPU requirements are different for each application,
hardware configuration, and input. Therefore, determining these requirements

15

2. CPU Scheduling

is difficult even for media players that deliver a fixed number of frames every
second [28].

Other real-time schedulers eliminate the burden on the user by automatically
detecting allocation and latency requirements [25, 26, 52, 130]. It is unclear
whether this alternate technique will work in all situations [28], and as yet, it is
not found in commodity operating systems.

Best-effort schedulers, in contrast, provide no guarantees; their primary goal
is ease-of-use. Because they provide only best-effort service, they require no a
priori knowledge of application latency or allocation requirements. Best-effort
schedulers also do not have admission control mechanisms to prevent CPU
contention. These schedulers are found in all commodity operating systems
and used by both desktop and server-class machines. Because this is our target
environment, the remainder of this work will focus on best-effort schedulers.

Best-effort schedulers are commonly divided into three groups: timesharing,
proportional-share, and batch. The following sections discuss timesharing and
proportional-share in detail. Batch scheduling is not common in our target
environment and is ignored for brevity.

Timesharing Schedulers

The primary goal of timesharing schedulers is to provide low latency for inter-
active tasks. This is accomplished by automatically dividing tasks into classes
based on their level of interactivity. The more interactive a task, the sooner
it is scheduled. In these schedulers, CPU usage is the primary measurement
of interactivity; the more CPU a task demands the less interactive it is. Note
the correlation between CPU usage and interactivity is an assumption made
by timesharing schedulers; this assumption often does not hold for modern
applications (e.g., video games).

Fairness is also important to timesharing schedulers. Instead of a fairness
model, these schedulers have a fairness ideology. The core of this ideology is
that tasks that have used the least CPU should get the most. Supplementing
this core belief, timesharing ideology often allows user-input in the form of
user-assigned priorities. Tasks with the best priority are allocated as much CPU

16

2.2. CPU Scheduling

as they can use. The next best priority takes its allocation out of the remainder
and so on. These user-assigned priorities are, of course, subject to the primary
goal of reducing latency of interactive tasks. Timesharing schedulers often use
them as suggestions. For example, given a CPU-intensive task with a better
user-assigned priority than an interactive task, the scheduler may still provide
better service to the interactive task.

The least important goal to timesharing scheduler is progress. The single
caveat to the timesharing fairness ideology is that no tasks should be allowed
to starve. Like all parts of this ideology, this is a vague idea with no concrete
definition. Each scheduler is free to interpret what starvation means and how to
prevent it. For example, Solaris’s timesharing scheduler attempts to ensure that
each task runs once per second to prevent starvation [88]. In contrast, Linux’s
timesharing scheduler may ignore tasks for well over a minute [35]. Because
of the vague nature of starvation prevention and the limited importance of
progress in timesharing schedulers, starvation prevention is often provided by
an ad hoc mechanism that works with, but is outside of, the core scheduling
mechanics.

Timesharing schedulers are often implemented using multiple run queues.
There is a single queue for each scheduler-assigned priority; scheduler-assigned
priorities are computed by combining user-assigned priorities, task interactivity,
and fairness goals. Because tasks can move between queues, this architecture
is called a multilevel feedback queue.

Tasks can move between queues in two different fashions. In the classic
approach, each queue has its own scheduling quantum and better priority
queues have a smaller quantum. Tasks are initially assigned a queue and quan-
tum matching their user-assigned priority. If the task consumes its quantum
without yielding the CPU, it is moved to a worse priority and assigned a large
quantum. In this way, each task is assigned a scheduling priority based on its
CPU burst behavior and user-assigned priority [20].

The decay-usage approach to multilevel feedback queue scheduling, on
the other-hand, monitors a task for longer than a single quantum. A task
is assigned a scheduling priority based on its long-term CPU consumption.
This CPU consumption is periodically decayed to prevent a task from being

17

2. CPU Scheduling

penalized indefinitely for a single large burst of CPU activity. In practice, a task
is charged each time it runs on the CPU. Then once every decay period (defined
by the scheduler), the scheduler divides each task’s total CPU consumption
by a policy-defined number (> 1). Each time the scheduler enqueues a task, it
converts the task’s total CPU consumption into a scheduler assigned priority;
smaller consumption result in better priority [60, 71, 76].

Proportional-Share Schedulers

The fundamental goal of proportional-share schedulers is to provide fair alloca-
tions. Fairness in proportional-share schedulers is defined by the generalized
processor-sharing (GPS) model [101]. Intuitively, the GPS model attempts to
provide the illusion that each task has its own CPU. These virtual, per-task
CPUs run slower in direct proportion to the number of tasks in the system. For
example, in a system with three tasks and a 3GHz processor, each task would
make progress as though it had its own 1GHz processor. This model is, of
course, impossible to achieve in the real-world where the processor can only
be assigned to a single task at a time and very small scheduling quanta result
in poor cache performance. Therefore, this model is interpreted as defining
the relative CPU allocations given to tasks. If all tasks are equal, then all tasks
should receive the same CPU allocation over a given period of time.

This intuitive model has a mathematical counterpart that allows for an
uneven distribution of CPU allocations. Given a set of tasks P with associated
weights in set W, the CPU allocation ci ∈ C a task pi receives matches the
formula

ci =
wi∑
W w

∗
∑
C

c (2.1)

This mathematical model allows CPU resources to be arbitrarily partitioned
amongst competing tasks. For example, one task can be given 70% of the CPU,
another 20%, and a third 10%. Guaranteeing CPU partitions is difficult, if not
impossible, in timesharing systems. Resource partitioning is a requirement for
minimizing interference amongst competing users.

18

2.2. CPU Scheduling

The GPS model does not specify how to deal with tasks that are not CPU-
bound. Therefore, proportional-share schedulers differ in their ranking of low
latency and progress.

Schedulers whose secondary goal is to provide low latency for interactive
tasks use a task’s historical behavior to determine its immediate scheduling
priority. These schedulers often interpret the GPS model to mean that in the
long run all tasks should receive their GPS share regardless of whether the
task was waiting for CPU or not. In essence, these scheduler’s give IO-bound
tasks better service when they are eligible for CPU to make up for the cycles an
I/O-bound task missed when it was ineligible. This preferential service is called
I/O compensation. Depending on the implementation of I/O compensation,
CPU-bound tasks may wait for a long time before being scheduled.

Other schedulers value progress more than low latency. These schedulers
provide GPS fair allocations only to processes that are waiting for CPU; they
do not collect historical scheduling information. That is, each task receives an
allocation based only on the number of tasks currently eligible to run on the
CPU. Tasks recently returned from I/O are not shifted to the front of the run
queue. This policy ensures that every task is scheduled frequently, and all tasks
make steady progress.

Proportional-share schedulers are implemented using either a stochastic
or deterministic approach. In a typical stochastic approach [125], each task is
assigned a number of lottery tickets corresponding to its scheduling weight.
Each time the scheduler needs to select a new task to run, it selects a random
lottery ticket number. The task that holds the winning ticket is the next to run.
Over a sufficient period of time this should yield the desired CPU allocations.
This approach is quite costly because its algorithm requires generating random
numbers for each scheduling decision.

In the deterministic approach, each task is assigned a scheduling value that
represents the difference between its current CPU allocation and its optimal
GPS allocation [48, 56, 65, 126]. The tasks are stored in a single run queue
sorted on by this allocation difference; the head of the queue is the task most
behind its optimal GPS allocation. The scheduler dequeues and runs this task,
incrementing its allocation, until it is no longer the furthest behind its optimal

19

2. CPU Scheduling

allocation. The scheduler requeues this task and selects the new head of the
queue. Typically, each task is guaranteed a minimum timeslice to prevent a
context switch at every cycle.

2.3 multiprocessor scheduling

Prior to 2004 processor clock speeds doubled roughly every 18-24 months as a
side effect of Moore’s Law [94]. After 2004, however, shrinking transistors no
longer resulted in significantly faster processors [63]. There are many causes
for this performance wall, but perhaps the most compelling is that the power
and cooling requirements of continuing frequency scaling were untenable [62].

This failure of frequency scaling led to the introduction of multicore chips.
Multicore chips feature two or more independent processing units per die. This
allowed computer engineers to increase perceived performance without increas-
ing clock speeds. Instead of upgrading to a faster processor, consumers could
upgrade to more processors. Multicore architectures create continued hardware
performance improvements, provided that applications and operating systems
are able to parallelize their workloads.

There are two fundamental approaches to achieve this parallelization. The
simplest approach is statically partition the work. In this approach each pro-
cessing core behaves as though it were an independent machine. For example,
instead of running a single Apache web server per machine, a system ad-
ministrator would run one web server per core. An application-specific load
balancing mechanism then distributes requests to the different core-specific
server instances. CPU scheduling would remain relatively unchanged as each
core could be managed by a traditional single core scheduler.

One drawback of static partitioning is that it can result in uneven perfor-
mance. Work may be divided unevenly across the partitioned cores. In our
Apache example, several heavy CPU demand requests may be assigned to the
same core-specific server. Other users assigned to the same core-specific server
may receive slow service. Additionally, each core may experience a different
level of interference from other programs running on the machine. A single
Apache server instance may share a core with an indexing program or an ad-

20

2.3. Multiprocessor Scheduling

ministrative terminal program. Again, users assigned to this server would
experience poor performance compared to users assigned to other servers.

Static partitioning also creates more work for system administrators. In our
Apache example, a system administrator would need to configure, monitor,
and periodically update many Apache web servers per machine.

A dynamic parallelization approach also increases concurrency to take
advantage of multiple cores, but in this approach load balancing occurs in
the operating system instead of at the application layer. In our web server
example, Apache would simply create more processes to handle incoming web
requests and the operating system would divide these processes between all
of the processing cores. Using this approach requires more advanced CPU
schedulers.

The primary advantage to this approach is that the operating system can dy-
namically and transparently migrate tasks between cores. Dynamic migration
prevents the kind of uneven performance seen in static partitioning. Moreover,
operating systems have low-level knowledge of each task’s resource demands.
Using this knowledge, operating systems can make smart decisions about when
to migrate tasks.

Multiprocessor Scheduling Goals

To support dynamic parallelization, multiprocessor schedulers must contend
with new difficulties that require a different set of goals. The first of these goals
is matching single processor scheduling outcomes using multiple processors.
Users inherently expect that eight cores should result in an eight fold perfor-
mance improvement. Multiprocessor schedulers need to provide the illusion
that eight cores are identical to a single, eight times faster core. Scalability is
the second multiprocessor scheduling goal. The number of cores per system is
expected to continue increasing. Schedulers must ensure that more cores contin-
ues to result in more useful computation. The third multiprocessor scheduling
goal is efficient use of hardware features. Lots of work has been done in the ar-
chitecture community to improve processor performance. In particular, on-chip
memory caches allow tasks to execute very quickly. Migrating tasks between

21

2. CPU Scheduling

cores reduces the usefulness of these caches and can hurt performance.
The distributed nature of managing multiple processors makes enforcing the

fairness, low latency, and progress guarantees from single processor scheduling
policies more difficult. Ideally, one would be able to translate a single processor
scheduling policy into a compatible multiprocessor scheduling policy. That is,
given enough parallel tasks in an application, the application’s performance
is identical on both an eight core machine and a single core machine with an
eight times faster processor. This symmetric performance would indicate a
multiprocessor scheduling policy that perfectly matches its single processor
scheduling policy. Symmetric performance means that developers do not need
to care whether their software runs on one or eight cores; the resulting behavior
will be the same. It also means that all of the work put into developing single
core scheduling policies will not go to waste. These policies are the result of
decades of computer science research.

Limitations in parallelism and the physical realities of multiprocessor sys-
tems, however, can make matching single processor policy impossible. For
example, proportional-share scheduler with a two tasks, one that is supposed
to get 80% and another that is supposed to get 20% is impossible to match on a
dual core system. Each task would receive 50% of the total available CPU.

Scalability is also important when designing multiprocessor schedulers.
Current, high-end commodity server systems come with 40 cores spread across
four chips [10], and this number is expected to continue rising [2, 21]. Schedul-
ing architectures must be designed to handle this high level of parallelism.
Multiplicative increases in overhead could cause CPU schedulers to spend
more time deciding what to run next than actually running application code.
Reducing overhead requires smart choices in architecture design and data struc-
ture selection. Additional cores are of little use if the scheduler cannot translate
them into increased performance.

Getting the most out of hardware features like caches requires multipro-
cessor schedulers to carefully consider the costs involved in migrating tasks
between cores. Modern processors have several layers of memory caching,
some dedicated to individual cores. Tasks that are continually scheduled on
the same processor are likely find their data still in that processor’s memory

22

2.3. Multiprocessor Scheduling

CPU

0

CPU

1

CPU

0

CPU

1

Global Queue Distributed Queues

CPU

2

CPU

3

CPU

2

CPU

3

Figure 2.1: Global vs. Distributed Queues. The figure depicts the two basic architec-
tures employed by modern multiprocessor schedulers. On the left is the single, global queue
approach; on the right, the distributed queues approach.

cache. These tasks run faster, due to faster data and instruction access, than
tasks that frequently migrate between processors [77]. A task’s preference for a
give processor is referred to as cache or processor affinity. Processor affinity
means that task migration results in a performance penalty, and therefore, task
migration is not as transparent as initially presented.

The two primary multiprocessor scheduling architectures (see Figure 2.1),
discussed next, show that these multiprocessor scheduling goals often conflict.
Similar to the single processor scheduling policies, multiprocessor schedulers
must prioritize their goals.

Global Queue Architectures

In the first multiprocessor scheduling architecture, a global run queue is shared
amongst all of the processors in the system [43, 48, 56, 65]. Each processor
selects a task to run from this global queue. When a task finishes its quantum,
or is preempted, it is returned to this queue and another is selected.

This scheme is conceptually simple; the scheduling policy is centralized
allowing each processor access to the full global state. This centralization
allows the scheduler to closely match a single processor scheduling policy. In

23

2. CPU Scheduling

other words, because each processor shares the same scheduling state and
executes the same scheduling policy code, it is easy to uniformly enforce a
high-level scheduling policy like proportional-share or timesharing. Global
queue architectures can also naturally enforce work conserving policies as any
idle processor has access to all eligible tasks.

One drawback of this approach is that operations on the global run queue
must be synchronized amongst processors. Because each processor must pe-
riodically determine whether to preempt its currently running process, these
operations occur quite frequently. As the number of processors increase, so
too does the likelihood that multiple processors will attempt to access the run
queue at the same time. Since only one processor can modify the run queue at
any given time, this lock contention will result in wasted cycles and increased
overheads. Even if the processors never attempt to access the global run simul-
taneously, this approach can result in contention at the hardware level. Serial
modifications to the same shared data structures across multiple processors
activates expensive hardware cache coherency protocols [44, 64]..

Another shortcoming of this scheme is that it requires a separate mechanism
to manage processor affinity. If each processor is free to select any task, a task
may be inadvertently migrated between several processors. An additional
mechanism must be provided to ensure that tasks are assigned to their desired
processor. Providing processor affinity, however, may conflict with enforcing
high-level scheduling policies (and the reverse).

Distributed Queue Architectures

The second approach to multiprocessor scheduling is to provide each processor
with its own run queue [35, 83, 88, 107]. In this distributed run queue scheme,
each processor executes processes only from its own run queue; new processes
are assigned to an individual processor by a load-balancing mechanism. If pro-
cessor run queues become unbalanced, the load balancing mechanism migrates
processes between processors.

A distributed run queue approach has some advantages over a global run
queue architecture. Local, per-processor run queues are inherently more scal-

24

2.4. Commodity Schedulers

able. Synchronization is only required periodically to ensure that the load is
balanced evenly across processors; the remainder of the time each processor
works independently. This scheme also naturally provides processor affinity. A
task is clearly assigned to a particular processor; as a result, task migration is
deliberate and never occurs as a byproduct of the scheduler design.

The major drawback of a distributed run queue architecture is that it re-
quires a load balancing mechanism and attending policy. This policy is given
the difficult task of matching single processor scheduling policies without dam-
aging processor affinity or scalability. For example, a policy that quickly detects
load imbalances would more closely match a single processor policy. Quickly
detecting imbalances, however, requires frequent synchronization amongst
processors, which reduces scalability. As another example, an exhaustive load
balancing policy could check every single combination of tasks and processors
to find the distribution that most closely matches its single processor policy.
Nevertheless, overall performance would be severely damaged by the large
number of process migration to find this optimal task distribution.

Distributed run queue architectures also require extra effort to be work
conserving; if a processor has no eligible processes in its local run queue it may
need to steal processes from another processor. This creates even more policy
decisions for the load balancer.

It is important to note that other multiprocessor scheduling approaches
exist [44], but have yet to become popular in commodity systems. As a result it
is difficult to compare them to the more common architectures discussed above.

2.4 commodity schedulers

As stated previously, this dissertation is primarily focused on Linux. In this
section, we discuss the three different CPU schedulers commonly found in
Linux distributions: O(1), CFS, and BFS. We will also present a high level
overview of the CPU schedulers found in Window, Solaris, OS X, and FreeBSD.

25

2. CPU Scheduling

O(1) Scheduler

The most stable of these three schedulers is the O(1) scheduler [35], so named
because selecting the next task to run occurs in constant time. This scheduler is
found in kernel versions 2.6 through 2.6.22; it was under active development
from 2003 until 2007. Despite its age, Red Hat intends to support this scheduler,
under its Enterprise Linux 5 distribution, until at least 2014 [1]. The O(1)
scheduler was also used internally by Google through at least 2009 [51].

The O(1) scheduler is a timesharing scheduler implemented using a priority-
based, decay-usage mechanism. O(1) has 100 ‘real-time’ priorities and 40 ‘nor-
mal’ priorities (Linux terms, not mine). Tasks assigned real-time priorities are
not subject to decay-usage scheduling and can never be preempted by lower
priority tasks. Decay-usage interactivity bonuses and penalties are reserved
for tasks assigned normal priorities. The O(1) scheduler applies these bonuses
or penalties as a modifier to user-assigned priorities. The resulting priority,
known as a task’s dynamic priority, is used to assign timeslices and defines a
task’s effective scheduling priority. Timeslices range from 5ms to 800ms. Unlike
classic multilevel feedback queue architectures, the O(1) scheduler gives larger
timeslices to interactive tasks. This scheduler also strictly enforces dynamic
priorities, i.e., a task with a worse priority is only run if there are no processes
at a higher priority.

Interactivity is measured by a combination of how often a process is blocked
on other resources and on what type of resources it is blocked. For example, a
process that is often blocked waiting for input from the terminal will receive
a large interactivity bonus, whereas, a process often blocked on page faults
will not. CPU-bound processes receive large penalties against their dynamic
priority.

The O(1) scheduler provides starvation protection using timeslice expiration.
Each time a task becomes eligible to use the CPU (unblocks) it is assigned a new
timeslice. The first process to consume its entire timeslice starts the expiration
timer. Each task that consumes its timeslice is repeatedly given another timeslice
until the timer goes off. Afterward, a task that consumes its timeslice is moved
from the active run queue to an expired run queue; tasks on the expired run

26

2.4. Commodity Schedulers

queue are not allowed to run. Tasks remain on the expired run queue until the
active run queue is empty.

The value of the expiration timer is calculated based on the demand for
CPU. Specifically, for each task in the run queue the timer runs for one second;
on a heavily loaded machine, this timer can run for tens if not hundreds of
seconds.

The O(1) scheduler manages multiple processors using a distributed run
queue architecture. Periodically, each processor checks to ensure that the load is
evenly balanced. If the load is imbalanced, an underloaded processor migrates
processes from an overloaded processor. The documentation states that it
should also be work conserving and that processes “should not bounce between
CPUs too frequently” [93]. This statement is essentially the only documentation
on the O(1)’s load balancing policy.

Completely Fair Scheduler

The Completely Fair Scheduler (CFS) [97] is a proportional-share scheduler
currently under active development in the Linux community. CFS is the official,
main-line replacement for the O(1) scheduler and is found in kernel versions
2.6.23 through the 2.6.39 (the newest kernel at the time of writing). For the
past several years this scheduler has been found primarily in desktop Linux
distributions like Fedora and Ubuntu. Although, in 2010 Red Hat included
CFS in its Enterprise Linux distribution, a distribution aimed squarely at server
systems.

CFS is implemented using a deterministic, sorted run queue approach. It
supports the same range of user-assigned priorities as O(1), but it translates
these priorities into fixed GPS weights. Each task maintains a counter of its
total run time. When running, this counter increases at a rate based on the
task’s weight. Heavier task’s counters increase more slowly. CFS’s run queue is
sorted so that the task with the smallest run time counter is at the head. Newly
created tasks are given a fake run time counter that places them at the end of
the run queue, regardless of their weight. This means that new, high priority
tasks must wait for even the lowest priority task to run first. CFS also provides

27

2. CPU Scheduling

I/O compensation by moving tasks to the front of the run queue if they have
been blocked (performing I/O, sleeping, or servicing a page fault) for longer
than a single timeslice.

Like O(1), multiprocessor scheduling in CFS is implemented using a dis-
tributed queue architecture. Each processor periodically compares its load
to the other processors. If its load is too small, it migrates processes from a
processor with a greater load. The documentation provides no description of
the policy that drives this mechanism [92].

BFS

BFS is a proportional-share scheduler, designed for desktops and mobile de-
vices [79, 80]. It is found in the ZenWalk [134] and PCLinuxOS [102] distri-
butions, as well as the CyanogenMod [3] aftermarket firmware upgrade for
Android. BFS has been in active development since 2009.

BFS’s implementation is loosely based on the Earliest Eligible Virtual Dead-
line First (EEVDF) scheduler [116]. BFS assigns each task a timeslice and a
deadline in the future; the task with the earliest deadline is scheduled first. The
better a task’s user-assigned priority (like CFS weights are translated from user-
assigned priorities), the sooner its deadline. Tasks are assigned new deadlines
and timeslices only after they consume their current timeslice. In this way, BFS
provides mild I/O compensation; a task that does not complete its timeslice
before blocking will have a very early deadline (perhaps even in the past) when
it returns from I/O. BFS does not use a sorted run queue; selecting the next
task to run requires an O(n) look up.

Unlike O(1) and CFS, BFS uses a global queue architecture. Its documenta-
tion provides details about its processor affinity mechanism [78]. The scheduler
records the last CPU on which a task was run. If a task’s previous CPU shares
a memory node, but not a memory cache, with the CPU currently selecting a
task, the task’s virtual deadline is doubled. If the task’s previous CPU is located
on a different memory node, the task’s virtual deadline is quadrupled. This
mechanism provides some processor affinity; however, it is unclear how these
low-level details translate into a high-level policy.

28

2.5. Summary

Other Commodity Schedulers

Although this dissertation is primarily focused on Linux, the ideas presented
are directly transferable to other operating systems, as the design of commodity
schedulers is similar across operating systems. They all either implement a
version of timesharing or proportional-share using a global or distributed queue
architecture. To illustrate this point, we have compiled a brief description of
other operating system schedulers.

The Solaris operating system is shipped with both a timesharing and pro-
portional-share scheduler [88]. Both schedulers are implemented as policies
running over a table-driven global scheduler. The proportional-share policy is
enforced using a somewhat complex decay-usage mechanism, and the timeshar-
ing policy is enforced using a classic multilevel queue feedback policy. That is,
a task’s priority is determined by its single quantum CPU usage. Solaris has
60 timesharing priorities, with timeslices ranging from 20ms to 200ms. Solaris
performs multiprocessor scheduling using a heavily configurable distributed
run queue mechanism.

Windows provides a timesharing scheduler implemented as a multilevel
feedback queue with temporary priority boosts for specific events [108]. Prior
to Server 2003, Windows used a global run queue architecture, but since has
changed to a per-processor run queue approach.

OS X uses a priority-based decay-usage scheduler to provide a timesharing
policy. This policy is enforced on multiprocessor systems using a distributed
run queue architecture.

FreeBSD’s ULE scheduler implements a timesharing policy using a decay-
usage mechanism to differentiate between interactive and non-interactive tasks.
This timesharing policy is enforced in multiprocessor systems using a dis-
tributed run queue approach and a push/pull load balancing mechanism.

2.5 summary

In this chapter we have provided an overview of distributed computing envi-
ronments, discussed the new challenges presented by multiprocessor systems,

29

2. CPU Scheduling

and presented an overview of commodity schedulers.
Distributed computing environments are characterized by multicore, mul-

tisocket, NUMA hardware. These systems commonly run some version of
the Linux operating system. The primary goal of these systems is supported
long-lived, multi-user services. Distributed services often have bursty resource
demands due to the fickle nature of users and the wide variety of functionality
these services provide.

CPU schedulers in distributed computing environments provide a best-
effort level of service, requiring no a priori knowledge of application resource
requirements. These schedulers must make difficult tradeoffs between the
competing goals.

• Fairness: There are many different, and equally valid, definitions of fair-
ness. A scheduler’s fairness can be evaluated by measuring how closely
and at what granularity its division of CPU between tasks matches the
desired fair distribution.

• Low latency: Latency is a measure of how quickly a task is scheduled
after becoming eligible (e.g., returning from I/O).

• Progress: Progress ensures that a task moves towards completing its work.
Each scheduling policy must decide how much or how little progress to
guarantee.

There are two common categories of best-effort schedulers: timesharing and
proportional-share. Timesharing schedulers are primarily focused on providing
low latency for interactive tasks; whereas proportional-share schedulers are
concerned with enforcing fairness.

The multicore, multisocket hardware found in distributed computing envi-
ronments introduces additional challenges in CPU scheduling.

• Matching Single Processor Policy: Matching single processor policy pro-
vides the illusion that a multiprocessor machine is actually a really fast
single processor machine. That is, given eight processing cores a system
should perform as though it had one processor that was eight time faster

30

2.5. Summary

than a single core. Physics can make supporting this illusion impossible;
the division of scheduling decisions across multiple processors can make
it difficult.

• Scalability: The number of processors in a single system is expected to
continue to grow [2, 21]. Scheduling algorithms must be able to translate
these additional cores into additional performance.

• Maximize Hardware Features: On-chip caches allow tasks to run quickly
by minimizing there off-chip memory accesses. Frequently migrating
tasks reduces the performance improvement provided by these caches.
Schedulers must use hardware features like caching efficiently to avoid
causing performance degradation.

There are two primary multiprocessor scheduling architectures that make
different tradeoffs regarding these goals. The global queue multiprocessor
architecture places all tasks in a single memory location, shared by all processors.
This architecture makes it easy to match single processor policy, up to the limits
of physics, but limits scalability and makes it more difficult to efficiently use
hardware caches.

In contrast, the distributed queue architecture assigns tasks to individual
processors. This architecture maximizes scalability by allowing processors to
operate mostly independently. It also makes efficient use of hardware caching
because a task is more likely to run on the same processor multiple times. The
limited communication between processors in this architecture makes it difficult
to match a single processor scheduling policy.

Commodity schedulers implement both proportional-share and timeshar-
ing scheduling policies using both global and distributed multiprocessor ar-
chitectures. The three contemporary Linux schedulers provide a very good
representative set of these scheduling policies and architectures. Using Linux
as a single test bed for multiple schedulers allows us to eliminate some of the
other variables that would be introduced when trying to compare schedulers
across different operating systems.

31

Chapter 3

Opaque CPU Scheduling and
Application Objectives

There ought not to be anything in the whole universe that man can’t poke
his nose into - that’s the way we’re built and I assume there’s some reason
for it.

— Robert A. Heinlein (Methuselah’s Children)

Both applications and CPU schedulers must deal with CPU contention
as a result of system overload. Without a policy to manage CPU contention,
applications risk failure or unresponsiveness. Unfortunately, an information
barrier exists between applications and CPU schedulers that makes mitigating
the effects of CPU contention difficult. This chapter examines this barrier and
its effects on application reliability when systems are overloaded.

33

3. Opaque CPU Scheduling

3.1 cpu contention

Systems do not perform well when resources are fully utilized. The results can
be stark: starvation, poor performance, and even complete system failure are
the manifestations of system overload. For example, a recent surge in postings
at online retailer Ebay brought down the entire site, resulting in untold financial
losses [100]. Similar problems have arisen elsewhere, including the North Car-
olina unemployment benefits website [16] and repeated availability problems
in China due to high demand on the Olympics ticketing web page [110].

CPU overload is an important contributor to system misbehavior. Best-effort
applications such as web, mail, and file servers all have minimal acceptable CPU
allocations per thread; when these minimums are not delivered, the system
appears to have failed or deadlocked [19].

One could attempt to avoid overload through over-provisioning [49, 121].
However, such an approach is flawed in two fundamental ways. First, pur-
chasing too much CPU is costly; as we transition toward the new Cloud era
where CPUs are rented by the hour [13], such costs are quite real. Second, with
virtually any amount of CPU resource, overload due to high demand is certainly
still possible; sudden surges of popularity are often unpredictable [58] and thus
could exceed any planned for resource purchases.

The poor behavior displayed by systems under load is not necessarily caused
by poorly implemented CPU schedulers, but rather because schedulers must
make difficult, uninformed decisions about how to deal with resource shortages.
The complexity of modern schedulers means that the effect CPU contention will
have on a given application is unknown in advance. Similarly, the complexity
of modern applications ensures that the best strategy for dealing with CPU
contention varies by application. Operating systems unaware of service-level
objectives combined with applications’ inability to predict the outcome of
CPU contention can result in undetected conflicts between operating-system-
level CPU contention policy and application-level objectives. These conflicts
ultimately lead to poor application performance and, sometimes, complete
failure.

For example, a file server may wish to delay archiving tasks when under

34

3.2. Application CPU Contention Policies

heavy load to ensure latency-sensitive requests, like reads, complete quickly.
Currently, these different task sets are indistinguishable to the CPU scheduler
and the file server application has no way of knowing how CPU contention
is affecting its latency-sensitive requests. It is, therefore, impossible for the
scheduler to meet high-level file server objectives and similarly impossible for
the file server to modify its behavior in response to CPU contention.

3.2 application cpu contention policies

Multifaceted services, such as web and mail servers, handle a wide variety of
user-requests and background tasks simultaneously; it is only natural that they
have distinct policies regarding CPU allocations amongst these concurrent tasks.
Robust applications should also include policies to mitigate the problem of CPU
contention. By taking relatively simple actions in response to CPU contention an
application may be able to avoid failure. Although specific contention policies
can vary greatly, it is likely that most policies will fit into one of three categories:
reduce concurrency, prioritize tasks, or egalitarian.

A concurrency reduction policy lowers an application’s level of parallelism
in response to CPU contention. For example, an overloaded web server may
reduce the number of requests it processes at the same time or a mail server may
prematurely terminate some user sessions. In some cases, this approach actually
reduces load, as in the mail server example. In others, it merely serializes the
workload. A web server that reduces it concurrency level will eventually process
each request, just not all at the same time. Reducing the parallelism simply
smooths out the bursty nature of independently arriving requests.

A policy that prioritizes tasks ranks each piece of functionality from mission
critical to best effort. As load increases it suspends some tasks, reducing func-
tionality until only mission critical tasks are running. For example, the Dovecot
IMAP server may wish to ensure that common user requests like fetching mail
are scheduled immediately at the cost of less common or more resource inten-
sive requests like searching a mailbox. The Condor Batch job scheduler may
prefer to start new jobs at the expense of maintaining currently running jobs or
the very opposite.

35

3. Opaque CPU Scheduling

Some applications are composed of tasks that must all complete to provide
any useful functionality. These applications must implement an egalitarian
policy. Under this policy, each task should be treated equally by the CPU
scheduler; no task is more important than any other and all tasks are essential.
Take, for example, a simple multimedia player that uses one thread to decode
video frames and another to display the frames. If either thread is starved, the
video stalls and the player is useless.

Particularly robust applications may utilize all three policy types. A file
server may begin serializing requests to deal with moderate, bursty load. If the
overload becomes sustained, the server may suspend background activities like
archiving to ensure that reads and writes are handled quickly. Finally, if CPU
contention persists, the file server must switch to an egalitarian policy; a file
server that cannot handle reads and writes is indistinguishable from a crashed
file server.

3.3 barriers to good scheduling

In a perfect system, a scheduling oracle would be able to perfectly match CPU
scheduling decisions to application CPU contention policy. The oracle could
predict the effects of CPU contention on each application task and would have
a precise understanding of an application’s CPU contention policy. Using
the effects of CPU contention as input, the scheduling oracle could reduce
concurrency, prioritize work, or enforce egalitarian CPU allocations based on
an individual application’s CPU contention policy.

The information an oracle requires is divided between application-space
and kernel-space; any solution to this problem needs to move information from
one to the other1. One approach is to implement an interface to CPU schedulers
that allows applications to express their CPU contention policy in a rich, useful
manner. Assuming CPU schedulers can monitor CPU contention per task, the
CPU scheduler can then enforce the application’s CPU scheduling policy. This
approach explicitly transfers knowledge from application-space to the CPU
scheduler.

1This problem is similar to the one addressed by Scheduler Activations [14]. Scheduler

36

3.3. Barriers to Good Scheduling

Alternatively, CPU schedulers could be engineered to be predictable under
varying levels of CPU demand. Using a simple, readily-available CPU con-
tention metric, like load average, applications could predict the effect on their
currently running tasks. With this knowledge, applications could enforce their
CPU contention policies using the simple scheduling interfaces already found
in commodity operating systems. This approach creates a knowledge transfer
(feedback) loop between the kernel and applications. Applications implicitly
infer CPU contention per task and then explicitly inform the scheduler how to
schedule tasks using a more limited interface.

As a third option, CPU schedulers could monitor and export the CPU con-
tention experienced by each application task. Similar to the previous approach,
applications could then enforce their CPU contention policies using simple
scheduling interfaces. This approach also creates a feedback loop between
applications and the kernel, but the knowledge transfer is explicit in both direc-
tions.

In commodity systems, there is no scheduling oracle. CPU schedulers are
unpredictable and opaque, and applications are complex and susceptible to
demand spikes.

There is a wall between CPU schedulers and applications; knowledge trans-
fer between these two spaces is limited to a small and ineffective (under over-
load) interface. The CPU scheduler, then, must guess an application’s policy
using a limited interface of weights or priorities. Applications must also guess
at the effect of CPU contention on their tasks. Useful CPU scheduling policies
like timesharing and proportional-share are complex to implement and this
leads to unpredictable behavior under load. Applications can detect CPU con-
tention using limited scheduler feedback like load average, but because of this
unpredictability, they cannot determine the effect measured CPU contention
has on their tasks. Applications are then unable to modify their behavior to
enforce a particular CPU contention policy because they are unable to measure
the level of CPU contention they are experiencing.

The limited amount of information exchange between applications and

Activations unified kernel and user-level thread scheduling, whereas this work focuses kernel
and user-level CPU contention policies.

37

3. Opaque CPU Scheduling

CPU schedulers leads to application-scheduler CPU contention policy conflicts.
These policy conflicts can result in CPU starved tasks that in turn cause ser-
vices to crash or become unresponsive. Starvation is often defined in terms of
processes or other OS abstractions, but for a given service or user, starvation
means waiting an unacceptable amount of time for a task to complete. This
expected time of completion may be arbitrary, but nonetheless defines a unique
starvation threshold for each and every task. Starvation for the purposes of
this dissertation will be defined as an unacceptable allotment of CPU resources
over a given period of time, defined per task.

The complexity and concurrency of service-style applications, coupled with
capricious demand, provides an ideal environment for scheduling conflicts
to occur between an application and the OS. These conflicts are particularly
difficult to detect and diagnose in distributed systems. The user of a distributed
service has no idea about the quality of service being delivered to other users;
even if a majority of tasks are handled without conflict, a handful of starved
tasks can make a service appear unresponsive and unreliable.

The following sections detail the nature of the limited communication be-
tween applications and CPU schedulers, commodity practices in dealing with
CPU contention, and consequences of policy conflicts.

3.4 limited scheduling interface

The CPU contention-scheduling interface provided by most commodity operat-
ing systems is mostly limited to setting a task’s priorities or weights and starting
or stopping a task. This limited interface severely constrains applications ability
to express their CPU contention policy. At the very best these interfaces allow
an application to specify actions based on a single, unknown level of CPU
contention and at the worst they ignore CPU contention all together.

Scheduling Priorities and Weights

Applications often communicate their high-level service objectives to the CPU
scheduler using priorities or weights. This limited interface does not prevent

38

3.4. Limited Scheduling Interface

starvation or policy-conflicts because it does not take into account the variable
level of CPU contention. For example, it is impossible to specify a task should
have a weight of five under limited CPU contention and a weight of zero under
heavy contention.

Priorities are the standard scheduling interface for timesharing systems.
Applications running on a timesharing systems can suffer from task starvation
due to inflexible starvation-prevention mechanisms and priority increases for
interactive behavior. Unfortunately, time-sharing starvation-prevention mecha-
nisms are built directly into the scheduler with no capacity for application input.
This rigid design means under heavy, high-priority load an application has
limited control over the allocation given to lower-priority processes. Moreover,
time-sharing schedulers often give priority-bonuses to interactive processes.
These priority adjustments mean an application intending equal allocations for
all its tasks may have some of its tasks starved due to non-interactive behavior.

Because timesharing schedulers are so widely varied, it can be helpful to
look at a specific example of timesharing task starvation. Starvation can occur
in the O(1) scheduler in two ways: priority starvation and expiration starvation.
In priority starvation, a task’s dynamic priority is too low for it to receive any
CPU time. This may be because an application set the task’s priority low, or it
may have received an interactivity penalty. Although timeslice expiration is
designed to prevent this kind of starvation, in practice it is ineffective because
the expiration timer is dependent on the load. Under heavy load, a low priority
task may not receive a CPU allocation for tens to hundreds of seconds. The O(1)
scheduler’s starvation-prevention policy is not broken; it simply ensures the
best performance for high priority tasks.

Expiration starvation occurs when a task gets stuck in the expiration queue
indefinitely (see Ch. 2.4). This can occur when a task consumes its timeslice
out-of-sync with the other processes in the active queue. If the remaining tasks
have nearly full timeslices when a task is moved to the expired queue, this
expired task must wait for all of the tasks to complete their timeslices before it
can run again. Additionally because expiration happens independently on each
processor, tasks with full timeslices may be migrated to a core with expired
tasks at any time. In practice we have observed high-priority tasks stuck in the

39

3. Opaque CPU Scheduling

expiration state for over ten seconds.
Proportional-share schedulers use weights as the primary scheduling in-

terface (and model). In commodity proportional-share systems, application-
assigned scheduling priorities are converted into GPS weights; these weights
are then converted into shares of the CPU. Applications using weights to convey
scheduling policy preferences can suffer from policy conflicts and starvation
due to unregulated task admission and concurrency control.

Looking at Linux again, we see that neither Linux proportional-share sched-
ulers provide admission control, new tasks can be added to the system indefi-
nitely. Each new task increases the total weight of the system, and therefore,
devalues the shares of all the currently running tasks. Effectively, as load
increases, each task’s CPU share decreases, eventually leading to starvation.

Unregulated concurrency control within applications can also cause starva-
tion in proportional-share systems. Proportional-share schedulers often allow
tasks to be allocated a share as a group. This allows applications to compete
for CPU allocations fairly, regardless of how many tasks each application runs
concurrently. Unfortunately, an application’s share may not be large enough to
support all of its concurrent tasks. These under-allocations may be acceptable
under light to moderate CPU utilization as potentially starving tasks can steal
unused cycles to make up the difference. Under heavy load, however, these
short portions can induce starvation. Additionally, increased user-demand
on an application may increase the number of tasks sharing the application’s
CPU share, further reducing individual task shares. In short, changes in CPU
contention may require changes in CPU proportioning.

Multiprogramming Level

Many applications use the scheduling interface to create and destroy (suspend
and resume) tasks, limiting the number of concurrently active tasks (reduce con-
currency). Limited concurrency is a common and long-standing technique to
manage resource contention [54, 67]. By limiting the number of tasks competing
for a resource, an application can ensure that these tasks receive the allocations
they need. This is commonly referred to as managing the multiprogramming

40

3.4. Limited Scheduling Interface

level, or MPL.

This technique works well for resource contention that does not scale well,
like lock contention [45] and memory contention [54]. A resource that scales
well produces a linear decrease in performance in response to a linear increase
in load. Perfect scaling is very difficult; there is often some additional overhead
that accompanies increases in concurrency. For example, increasing the number
active processes results not only in more thinly divided CPU allocations, but
also overhead in the form of expensive context switches. Therefore, a simple
round-robin scheduling policy would result in good, but not perfect, scaling.

Perhaps one of the most surprising results in this dissertation is that com-
modity CPU schedulers do not scale well (see Section 3.7 and Chapter 5). The
primary goal of these schedulers is often not scalability (despite their author’s
claims), but rather features like low latency and priority scheduling. These
added features increase complexity, and complexity is often the enemy of scala-
bility.

Managing MPL helps resolve CPU contention by making the CPU sched-
uler’s job easier. When CPU resources are scarce, the CPU scheduler must
make tough decisions about how to divide them up amongst competing pro-
cesses. Controlling the number of competing tasks limits the pressure on CPU
resources and reduces the CPU scheduler’s options to a more manageable level.
If taken to the extreme, limiting MPL removes contention entirely. Without
CPU contention, the CPU scheduler cannot enforce a CPU contention policy
that may conflict with the applications.

Despite being very common, this technique has the drawback that setting
an MPL for all circumstances is difficult. A correct MPL for one workload may
be less than optimal for another workload. Setting the MPL too low wastes
resources when workloads are not CPU-intensive, and setting it too high runs
the risk of starvation if a workload suddenly demands more resources. For
example, an IMAP server may have hundreds of concurrent sessions, but on
average only a few are active at any one time. A high MPL allows this common
case, but risks resource contention if a spike occurs in the number of active
sessions.

41

3. Opaque CPU Scheduling

Contention Interface

The scheduling outcome of all of the previously discussed interfaces and tech-
niques are directly affected by CPU contention; however, none of these interfaces
allow CPU contention levels to be specified, nor does the scheduler provide
any indication of how it will handle CPU contention given the application’s
scheduling preferences.

The effect CPU contention will have on a task, ignoring hardware caching
effects, can be expressed in latency and CPU slowdown. Latency is how long a
newly eligible (i.e., not blocking on I/O or sleeping) task will wait before being
scheduled initially. CPU slowdown is how much slower the hardware appears
due to CPU contention. CPU scheduling is supposed to provide the illusion of
running on dedicated hardware. CPU contention breaks this illusion in that
tasks must now wait to run on the CPU. Amortizing this waiting cost sustains
the illusion of dedicated hardware, but makes the hardware appear slower. For
example, a 3x CPU slowdown means that it appears to a given task that it is
running on a 3x slower CPU.

CPU slowdown and latency are related, but different. CPU slowdown
measures the sum cost of waiting for CPU every time a task is scheduled;
whereas latency measures the initial time spent waiting after a task becomes
eligible. To illustrate the difference, a simple, overloaded round robin scheduler
can reduce scheduling latency by reducing each task’s timeslice, but the CPU
slowdown will remain constant.

An application can control its MPL and the priority/weight of each of its
tasks, but it cannot specify that these values should change based on CPU con-
tention. Scheduling interfaces provide no conditional statements. For example,
a file server cannot specify that its archiving task should have a weight of five
when the latency of a read task is less than 10ms and a weight of zero when
read task latencies are higher. What good is a priority or weight if it does not
mean anything? If the scheduling outcome is partially based on another hidden,
independent variable?

Neither does the scheduler provide an indication of CPU contention when
an application creates a new task. An application can continue to add tasks

42

3.5. Unpredictability of Best Effort Schedulers

that overload the system and the scheduler provides no warning. Conversely,
applications may cease creating new tasks long before contention becomes an
issue. What use is concurrency if there is no way to measure its effectiveness at
run time?

3.5 unpredictability of best effort schedulers

One expects a best effort scheduler to provide smaller allocations as load in-
creases; it is part of their definition. If CPU schedulers provided these smaller
allocations in a predictable manner, applications could use this predictability
as implicit feedback about the effects of CPU contention on their tasks. With
this knowledge, applications could modify their behavior to mitigate CPU
contention. Applications could even implement their own gray-box CPU con-
tention detectors [17, 55]. An application could create a simple task whose
completion time on a idle system is known. Periodically running this task and
comparing its completion time to the ideal would give an accurate estimate of
CPU contention, if CPU schedulers were predictable.

Unfortunately, given a fixed level of CPU contention, a single CPU scheduler
can still provide a wide variety CPU allocations to an application’s tasks. Further,
different schedulers implementing the same scheduling policy can have very
different scheduling outcomes.

The CPU allocations an application’s tasks receive during CPU contention
can vary greatly, even amongst themselves. In practice, all three Linux sched-
ulers provide some bonus for I/O-bound tasks. This means that an application’s
tasks each suffer from the effects of CPU contention differently. Even if an appli-
cation’s tasks are all identical, schedulers that attempt to automatically divide
processes into high-importance and low-importance groups may make mistakes.
This results in variable CPU allocations amongst nearly identical processes.
Therefore, an application cannot infer some constant CPU contention cost, but
must instead guess at the cost for each task.

At the high-level, scheduling policy is about maximizing some goals at the
cost of others. The tradeoff each scheduler makes along these lines is particular
to its own implementation. That is to say, the CPU allocation a task receives

43

3. Opaque CPU Scheduling

may differ between two schedulers that claim to implement the same policy.
This means that the effect of CPU contention on an application’s tasks can
vary from operating system to operating system, even if the operating systems
all implement, for example, a timesharing policy. This is a rather obvious
observation, but one that has important consequences for applications that are
deployed on multiple operating systems. Applications that rely on implicit CPU
contention feedback from the CPU scheduler would need a separate implicit
model for each different CPU scheduler. This greatly increases developer effort.

A concrete example of the difficulty in relying on implicit assumptions about
scheduling behavior can be found in the difficulties some applications had in
the transition between Linux’s O(1) and CFS schedulers [15, 51]. Multitasking
applications, particularly those that implement user-space locking, rely on
sched_yield to transfer control of the CPU between cooperating tasks. These
applications assume that when a task yields the CPU all other processes with
the same priority will run before the yielding task is scheduled again. This
assumption was supported by the O(1) scheduler, but not the CFS scheduler.
The implementation of CFS did not allow it to easily provide the functionality
previously found in O(1) and assumed by applications. After migrating to CFS,
these multitasking applications suffered livelock and performance degradation.
Relying on implicit feedback can be dangerous when implementations change
or applications must run on many systems.

The unpredictability of best effort CPU schedulers makes the effects of
CPU contention difficult, if not impossible, for applications to anticipate. With-
out knowing the effects of CPU contention on their tasks, applications cannot
respond to mitigate it. The result is an entire generation of distributed, multi-
faceted applications that are not robust in the face of CPU contention.

3.6 limited scheduler feedback

Some CPU schedulers provide explicit feedback about CPU contention. Unfor-
tunately, this information is often of little use because it lacks necessary details.
Linux provides explicit CPU contention feedback through the /proc file sys-
tem. The scheduler exports CPU contention information using two interfaces:

44

3.6. Limited Scheduler Feedback

system-wide load average and per-task scheduler statistics.
Linux’s load average is an exponential moving average of the number of

tasks waiting for CPU or I/O over the last one, five, and ten minutes. This
number is useless for determining the effect of CPU contention on an appli-
cation’s tasks for two reasons. First, this is a system-wide measure of CPU
contention. From the previous section we know that the results of system-wide
CPU contention can vary from task to task. An application’s tasks may be
completely unaffected even with a very high load average or its task may starve
completely with small load average. For example, an application composed of
a handful of bursty, high priority tasks may be completely unaffected by 100
low-priority CPU-bound tasks, but the load average would be very high.

Second, the Linux load average includes tasks that are waiting on I/O. This
number is completely irrelevant for CPU contention. Even if CPU schedulers
were predictable enough that an individual task’s CPU contention could be
derived from the number of tasks waiting for CPU, the load average would be
useless.

Linux does export CPU contention information for every task in the system,
but this information is missing critical components. For each task, the scheduler
exports a running sum of the number of times its was scheduled, the time
it spent waiting to run, and the time it spent running. Unfortunately, these
numbers do not convey very much useful information about CPU contention.
Average latency cannot be calculated because the waiting sum includes all the
time a task spent waiting, not just the time it spent waiting after initially becom-
ing eligible. To calculate CPU slowdown, one needs both the CPU allocation
a task received under contention as well as the CPU allocation it would have
received on an idle machine. A task’s average CPU allocation can be computed
by sampling the scheduling statistics, but CPU slowdown cannot be calculated
because the scheduler provides no indication of a task’s idle-machine CPU
allocation.

A simple solution would be to embed the CPU allocation a task would
receive on an idle machine into the application. It is difficult, however, for
developers or applications to determine the CPU allocation a task would receive
on an idle machine. A task’s idle-machine CPU allocation depends on the type

45

3. Opaque CPU Scheduling

of task, inputs to the task, and the speed of the processor; changes in any of these
variables may result in changes in the desired CPU allocation. For example, a
web server workload consisting of only static page requests would likely require
a smaller CPU allocation than a workload requiring dynamically generated
content. Or to take a common real-time example, a media player would need a
larger allocation to decode a video frame on a slower CPU than it would on a
faster CPU.

Not only is it difficult for applications to detect scheduling policy conflicts at
run-time, it can also be difficult for system administrators to detect scheduling
conflicts after the fact. A system administrator may detect poor performance
through application monitoring or user feedback, but determining that this
poor performance is due to a mismatch between the application’s scheduling
policy and the operating system’s can be exceptionally difficult. Without know-
ing the CPU allocations a set of application tasks wanted, it is impossible to
determine how their performance was affected by examining how much CPU
they received.

Linux’s per-task scheduling statistics also provide no indication of the CPU
allocation a task will receive next. Predicting CPU allocations is difficult. Even
the CPU scheduler does not know what allocations it will give in the near future,
primarily because the set of tasks eligible for CPU is constantly changing: tasks
exit, fork, sleep, block on I/O, and unblock. CPU schedulers make immediate
scheduling decisions based on their scheduling policy and the current set of
eligible tasks. Without this information, applications can never proactively
avoid CPU contention, they must always respond once contention is already
occurring.

Falling back to a more implicit (and oft suggested) approach, an application
may be able to determine the effect heavy load has on individual tasks by mea-
suring the time for each task to complete. Long completion times would indicate
CPU contention. Unfortunately, for many tasks the completion time depends
on the same things as its idle-machine CPU allocation: the task type, inputs,
and underlying hardware. Put succinctly, it is difficult to tell the difference
between a starving short-lived task and a healthy long one.

CPU schedulers provide enough information to determine that the system

46

3.7. Experimental Examples

is suffering from CPU contention, but not enough information to measure the
effect CPU contention is having on individual tasks. Without this information,
in some detail, neither applications nor system administrators can effectively
respond to CPU contention.

3.7 experimental examples

In this section, we present a pair of experiments that demonstrate the limited
use of commodity scheduling interfaces and the unpredictable nature of best
effort schedulers. Both experiments are performed on a machine with 24GB of
RAM and a pair of 2.53GHz Intel Xeon E5540 quad-core processors.

Prioritize Tasks

The first experiment shows how difficult it is to prioritize tasks using com-
modity scheduling interfaces; it also illustrates the difference in scheduling
outcomes amongst similar schedulers. In this experiment, we measure the CPU
allocations a single unchanging, high priority process receives on a variety of
CPU schedulers as low priority processes are continually added to the system.
The high priority (nice value: -5) process is started on an idle machine, and ev-
ery second we add a new low-priority process (nice value: 0). The low priority
tasks each consume roughly 10% of the CPU; whereas the high priority task is
completely CPU-bound. All tasks are bound to a single core to show the effects
of extreme CPU contention with fewer tasks.

We repeat this experiment for three different operating systems and sched-
ulers. The first is the O(1) scheduler running in Linux version 2.6.18-194.3.el5
as distributed by Red Hat Enterprise Linux version 5.5. The results of this
timesharing scheduler can be directly compared to the second timesharing
scheduler in this experiment, SunOS 5.10 (as distributed by Solaris 10). To
compare O(1) with its replacement Linux scheduler, we also ran this experi-
ment on CFS (Linux version 2.6.32.16-150.fc12.x86_64 as distributed by Fedora
12). The difference in priorities in CFS amounts to the high priority process
having a scheduling weight greater than three times the low priority processes’

47

3. Opaque CPU Scheduling

Time (sec.)
0 10 20 30 40 50 60 70 80 90 100

C
P

U
 %

0

20

40

60

80

100
Linux O(1)

Linux CFS

SunOS 5.10

Figure 3.1: CPU allocations given an increasing system workload. The x-axis
is the time and number of competing processes, a single low priority process is added every
second. The y-axis is the CPU% allocated to the high priority process.

scheduling weights.

As shown in Figure 3.1, the high-priority process receives a wide range of
CPU allocations and the scheduling outcomes differ across all three schedulers.
Despite using the scheduling priority interface to inform each scheduler that
the first task is more important than the following tasks, all three schedulers
continually reduce the high-important process’s allocation as low priority load
increases. When load reaches 99 low priority processes, all of the schedulers
reduce the high priority process’s allocation to below 6%, with O(1) allocating
the process less than 2%.

The difference in behavior between the high and low priority processes may
account for the ill-treatment of high priority task under the timesharing sched-
ulers; CPU-bound behavior is typically penalized by timesharing schedulers.
However, this penalty conflicts with the application’s clear specification that
this task was more important than the others.

CFS also penalizes CPU-bound tasks, but reduced allocations for the high

48

3.7. Experimental Examples

priority process is most likely caused by the unchecked growth of the total GPS
weight in this instance. Each new process increases the total system’s GPS, in
effect, devaluing the larger weight of the high priority task. Without admission
control, proportional-share schedulers cannot ensure good allocations for high
priority tasks.

The difference in CPU allocations amongst schedulers is most pronounced
between Linux O(1) and SunOS 5.10, differing by up to 45%. This is surprising
since both implement a timesharing policy that rewards non-CPU intensive
tasks. The closest two policies were SunOS and CFS; also surprising because
they implement wholly different scheduling policies.

This simple experiment clearly illustrates the limits of best-effort priority
or weight-based scheduling interfaces. It also shows that CPU schedulers
that implement the same policy may still have drastically different scheduling
behaviors.

Egalitarian Policy

This next experiment demonstrates the unpredictable nature of commodity CPU
schedulers. In this experiment, we attempt to enforce an egalitarian application-
level scheduling policy in an Apache web server. We configure Apache to use
its prefork multitasking architecture. In this architecture, incoming web requests
are dispatched to worker processes selected from a preforked pool. After
completing a request, the worker process is returned to the pool. Apache does
not modify the priority of these worker requests, which implies an egalitarian
policy. Because all of these workers are identical, under a predictable CPU
scheduler each worker should receive roughly the same CPU allocation and
achieve the same throughput.

An Apache web server is run on the machine from the previous experiment
using Linux version 2.6.18-194.3.1.el5 (distributed as Red Hat Enterprise Linux
5.3) with the O(1) scheduler. The web clients are distributed across two ma-
chines each with dual socket Intel Xeon 2.67 GHz processors and over 20GB of
RAM. The Apache server (version 2.2.13) is configured to use a pool of 250 pro-
cesses. The server is driven by a workload created by 250 clients simulated by

49

3. Opaque CPU Scheduling

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e

s
ts

/s
e

c
.)

0

50

100

150

200

250
Somewhat Interactive

0

50

100

150

200

250
Interactive

Figure 3.2: Break down of Apache worker throughput. The x-axis is sorted by
throughput, y-axis is the throughput per worker. The Somewhat Interactive portion contains
workers the scheduler provided a modest interactivity bonus. The Interactive portion displays
workers who received the maximum interactivity bonus. The dashed line is the mean throughput
per worker.

ApacheBench (version 2.3). Half of the clients request the same 25KB static file
and the other half request a random lottery number from a Perl script. Clients
are not bound to a particular Apache worker process; a worker that completes a
static file request may pick up a lottery number request next. The Apache server
is configured to use mod_perl so that each worker process actually generates
the lottery numbers using the code from the Perl script rather than creating a
separate Perl interpreter process. In this experiment, we run the client workload
for five minutes and record the throughput of all 250 Apache workers.

Figure 3.2 shows a breakdown of Apache worker throughput. Because
roughly four static file requests can complete in the time it takes to respond
to a single lottery number request (on an idle machine), the throughput in
this graph has been normalized to static file request throughput. Workers that
received the largest interactivity bonus achieve high throughput, well above the
mean; whereas, workers categorized as less interactive tend to fall well below

50

3.7. Experimental Examples

Priority
115 116 117 118 119 120

S
ta

rv
e
d
 R

e
q
u
e
s
ts

0

20

40

60

80

100

120
Both

Blocked

Expired

Priority

Figure 3.3: Break down of starving requests by cause. X-axis is scheduler-assigned
priority of the Apache worker process servicing the request (lower priority is better priority).
Priority shading shows requests not scheduled because low-priority. Expired shading indicates
requests starved due to an expired timeslice. Blocked shading corresponds to requests blocked on
non-CPU resources. Both shading shows requests that were both expired and blocked.

the mean. It is important to note that most, if not all, requests to a web server are
interactive. Clearly, the O(1) mis-categorized some workers as less interactive
than others. The results of this experiment make it quite clear that the O(1)
scheduler does not provide predictable allocations under CPU contention; the
contention is not spread evenly across nearly identical processes.

Examining individual web requests provides some details about why some
workers achieve such poor throughput. Over 200 individual requests took
longer than 10 seconds in the experiment, some took as long as four minutes.
Figure 3.3 provides a detailed breakdown of the causes of this starvation. Over

51

3. Opaque CPU Scheduling

70 requests (Priority) starved because they incurred interactive penalties to their
priorities due to perceived CPU-intensive behavior. An additional 113 requests
(Expired) were starved by the operating system’s own starvation protection
mechanism; their timeslices were expired by the scheduler and they did not
receive new ones for over ten seconds. Six more requests (Both) starved from a
combination of contention for other resources and being expired by the operat-
ing system’s starvation protection mechanism. Finally, six additional requests
(Blocked) starved strictly due to contention for resources other than CPU. These
starving requests represent a direct violation of goal egalitarian policy and in a
real system would correspond to unhappy users. The vast majority of starving
web requests were caused by erratic scheduling behavior, incorrect interactivity
bonuses or brittle a starvation prevention mechanism.

These results indicate that applications cannot infer reduced performance of
a single task to mean that other tasks will also suffer performance degradation.
It also means that applications cannot infer the effect CPU contention will
have on its tasks from monitoring the system-wide load average. Despite the
heavy load, some of the Apache workers perform quite well. These results are
particularly troubling for distributed services that provide concurrent access
by assigning an individual process or thread to each unique user. In these
systems, the perceived system responsiveness could vary greatly from user
to user. Some users may believe the system is crashed while others enjoy
uninterrupted access.

3.8 commodity approaches to mitigate cpu contention

Modern applications are not completely ignorant of the problem of CPU con-
tention. Clever applications attempt to deal with CPU contention by carefully
selecting an operating system, using the limited scheduling interfaces and feed-
back, or dynamically adding more hardware through a cloud infrastructure.
This section addresses commodity approaches; research solutions are discussed
in Chapter 8.

An application developer may choose to distribute an application only on
operating systems that implement a compatible scheduling policy. For example,

52

3.8. Commodity Approaches to Mitigate CPU Contention

an application that desires a task prioritizing approach to dealing with overload
could choose an operating system that strictly enforces priorities. This approach
severely limits the number of operating systems on which an application can
run. For example, Oracle Database 10g supports 11 operating systems and
Apache supports 10. It would be a distinct business disadvantage to limit
support to only CPU schedulers that exactly matched an application’s CPU
contention policy.

Even finding a single operating system or CPU scheduler that matches all
of an applications needs can be difficult. For example, Google needs specific
semantics for sched_yield found in the O(1) scheduler, but also needs oper-
ating system support for new devices found in newer versions of the kernel
with the CFS scheduler [51]. To resolve this conflict, Google forward-ported
the O(1) scheduler into newer kernel versions. This outcome is not ideal for
either Google or developers of general purpose operating systems.

More complex applications may have dynamic scheduling policies that
also make selecting a single operating system scheduling policy difficult. The
ideal policy for a given application may change with demand. For example,
an application may desire an egalitarian policy under light to moderate load.
However, under heavy load this same application may wish to keep critical
tasks running using a prioritized policy. Similar policy changes may result
from changes in workload mix or even time of day.

Another approach to dealing with CPU contention is to statically assign task
priority/weights or set application MPL at compile or start-up time and hope
for the best. This approach is commonly used by distributed applications to set
their MPL value [4, 5, 6]. For example, Apache suggests system administrators
set the MPL using this formula: “determine the size of your average Apache
process, by looking at your process list via a tool such as top, and divide this
into your total available memory, leaving some room for other processes.” Not
very useful for avoiding the CPU contention we saw in the previous section, or
memory contention either for that matter.

This approach relies heavily on the limited CPU scheduling interface. It all
but ignores CPU contention; at the very best it provides some basic hints to
the operating system about how to handle overload. The experiments in the

53

3. Opaque CPU Scheduling

previous section demonstrate how little effect these hints have on scheduling
outcomes. This approach is nearly useless in the constantly changing environ-
ment of distributed systems.

A less common, but more flexible technique is to set task priorities/weights
or the application MPL based on the detected load on the machine. A common
example of an application that uses this technique is the Sendmail SMTP server.
Sendmail monitors the load average value exported by Linux. If this value
exceeds a fixed threshold, Sendmail temporarily ceases mail delivery until the
load is reduced [7].

This technique uses the limited scheduling feedback provided by the operat-
ing system. To summarize Section 3.6, using this feedback allows applications to
detect that CPU contention is occurring, but not whether it is affecting its tasks
in any meaningful way. Applications that take action using this information
may reduce their concurrency or deschedule low-important tasks unnecessarily.
This can adversely affect the application performance and user happiness.

A relatively new technique for preventing resource contention is to dynami-
cally scale hardware with load. Cloud computing environments [13, 128] are
designed to allow this dynamic scaling. Because cloud users are charged by
hardware use per hour, each additional cloud node increases the cost of run-
ning an application. Therefore, an application must decide whether its current
level of CPU contention warrants an increased cost. Unfortunately, the limited
feedback provided by commodity CPU schedulers makes it impossible to mea-
sure the level of CPU contention an application is experiencing. Without this
information, administrators cannot define cost-benefit policies to determine
when to expand their cloud hardware allocation.

Each of the commodity techniques presented in this section demonstrate
that developers cannot build CPU contention-resistant applications because of
limited scheduling interfaces and feedback (implicit and explicit). Currently,
developers make due with the tools they have, but these limited techniques
leaves important applications vulnerable to demand spikes.

54

3.9. Summary

3.9 summary

CPU schedulers and applications must have policies in place to deal with CPU
contention if they want to avoid failure and unresponsiveness. In an ideal
system, a CPU contention scheduling oracle would combine an application’s
CPU contention policy with system-wide scheduling goals to create a schedule
that meets the goals of both.

In reality, there is an artificial barrier between applications and CPU sched-
ulers. Due to a limited scheduling interface, applications are unable to specify
rich, complex CPU contention scheduling policies. This means that CPU sched-
ulers must guess at an application’s CPU contention policy and service-level
objects from the simple hints an application can provide using the minimal
interface of priorities or weights. This invariably leads to conflicts between the
scheduler’s CPU contention policy and the application’s.

Applications may have CPU contention policies, but they cannot measure
the effect of CPU contention at run-time. The unpredictability of commodity
CPU schedulers and the uninformative CPU contention feedback they provide
means that applications are unable to accurately measure the performance
degradation they are experiencing due to CPU contention. Without a clear
understanding of the effects CPU contention, an application cannot begin to
mitigate or resolve this contention.

Commodity applications make the best of the limited scheduling interface
and feedback to manage CPU contention, but without better operating system
support these applications will be susceptible to failure and unresponsiveness.

55

Part II

CPU Futures

57

Chapter 4

Scheduler support for
application management of CPU
contention

When confusion takes place in ones surroundings, it can be dissolved with
the power of undisturbable Simplicity.

— Tao Teh Ching

In this chapter, we introduce CPU Futures, a novel combination of improved
scheduler feedback and user-level CPU contention policy that together enable
applications to remain responsive during periods of overload. The improved
scheduler feedback portion of CPU futures embeds small models within the
CPU scheduler; we call this component the herald. Without any knowledge
of application workload or characteristics, the herald tracks current usage,
and (more importantly) predicts optimal and future CPU allocations. With

59

4. Scheduler support for application management of CPU contention

such information, applications can avoid or mitigate performance degradation
according to their own policies and goals.

Applications dictate CPU contention scheduling policy with aid of the sec-
ond component of CPU Futures, a user-level feedback controller. The controller
monitors in-kernel scheduler information provided by the herald and helps to
implement the application’s policy to react to overload scenarios. Although a
stock controller is provided (see Chapter 5), applications are free to modify said
controller to suit their specific needs. Thus, through the combination of the
in-kernel herald and the user-level feedback controller, applications can both
properly detect and react to overload conditions gracefully.

To demonstrate the ease of adding the in-kernel herald to modern CPU
schedulers, we have implemented the herald within two different systems, the
Linux O(1) [35] and CFS [97] schedulers. These two schedulers represent two
common commodity approaches to best-effort scheduling, timesharing and
proportional-share respectively. The code changes required to build the herald
into each scheduler are minimal, giving us confidence that a wide range of
schedulers could be enhanced in this manner.

Our measurements reveal that CPU Futures adds little overhead under
normal operating conditions, and greatly increases an application’s ability to
react to CPU overload. By predicting future allocations, CPU Futures allows
applications to quickly detect and react promptly to pending problems, thus
increasing availability and enabling graceful behavior even under extreme load.

This chapter discusses the general philosophy behind CPU Futures, includ-
ing an analysis of the scheduling requirements and design goals that drive
this work. It also gives a detailed description of the type of feedback provided
by the in-kernel herald and the models we created to generate this feedback.
An evaluation of the precision and accuracy of this feedback concludes this
chapter. We present a detailed description of CPU Futures controllers in the
next chapter.

60

4.1. Requirements

4.1 requirements

The artificial information barrier between applications and best effort CPU
schedulers can result in performance degradation and even application failure.
To build a robust application that handles CPU overload gracefully, two key
elements are required. First, an application must be able to detect the overload,
by determining whether worker tasks are obtaining enough CPU to meet de-
sired service-level objectives. Ideally, the detection should take place as soon as
possible, perhaps even just before the overload condition fully manifests. Second,
an application must be able to react to overload conditions quickly; by reduc-
ing concurrency, prioritizing tasks, or taking other reactionary measures, the
application can thus remain responsive during overload and increase overall
availability of the system.

Specifically, improvements in the feedback provided by CPU schedulers
should enable the following behaviors.

• An application should be able to dynamically determine its CPU resource
requirements at run-time. An ideal solution should require no prior
knowledge of the application, its expected performance, or the system’s
hardware configuration.

• Applications should be able to anticipate and avoid performance degra-
dation due to CPU contention. An approach that cannot predict perfor-
mance degradation runs the risk of the application crashing or becoming
unresponsive before it can take corrective action.

• The policy for managing CPU contention should be adaptable for each
application. This allows applications to implement their own CPU con-
tention policies that meet their particular goals and use-cases.

• An ideal solution should be applicable to a variety of schedulers. Many
applications and users have a preferred operating system or scheduling
algorithm.

61

4. Scheduler support for application management of CPU contention

4.2 cpu futures

CPU Futures is a combination of improved CPU scheduler feedback and user-
level application controllers to enable applications to better manage CPU con-
tention. The in-kernel portion of CPU Futures, called the herald, is an extension
to CPU schedulers to advise applications of their past, desired, predicted, and
potential CPU allocations. The herald extends traditional scheduler feedback
to give applications the ability to determine their resource requirements and
anticipate performance degradation due to CPU contention. The techniques
used by the herald require no prior knowledge of the applications and are
generally applicable for a variety of popular commodity operating systems.

The user-level portion of CPU Futures, the controller, encapsulates an appli-
cation’s policy for managing CPU contention. The controller’s primary respon-
sibility is translating high-level application policy into low-level commands to
the CPU scheduler; the limited nature of the scheduling interface provided by
commodity CPU schedulers necessitates this translation. The controller relies
on the information provided by the herald. If application performance goals
will not be met, the controller resolves this conflict using application-specific
policies.

Enhanced Scheduler Feedback

Applications need a technique to measure the effect CPU contention is having on
their perceived performance. Unlike real-time processes, these applications do
not have regular, periodic CPU requirements or deadlines; they cannot measure
CPU contention in missed deadlines. We propose using a metric we have termed
CPU slowdown as an indicator of degraded CPU performance. Intuitively, this
is how much slower the CPU appears to a task; e.g., a 5x CPU slowdown is
equivalent to running on a machine with a 5x slower CPU. We believe this
provides a natural way to think about CPU performance degradation for best-
effort applications. CPU slowdown can easily be derived from the allocation
information provided by the herald.

The herald exports four metrics (desired, actual, predicted, and potential

62

4.2. CPU Futures

allocations) for each task over 1 second and 100 second intervals; each allocation
is specified as a rate in milliseconds per second (or 100s). The latency between
updates of these metrics is determined by the sample period of the herald
implementation (100ms in our implementations).

Desired allocation: The CPU allocation a task would have received on an
idle machine during the previous time interval. A task’s desired allocation
provides a reference to compare its actual, predicted, and potential allocations.

Actual allocation: The CPU allocation a task received during the previous
time interval. This allows an application to determine how CPU contention
affected its performance most recently. A task’s past CPU slowdown is deter-
mined by dividing its actual allocation by its desired allocation.

Predicted allocation: The CPU allocation a task is expected to receive in the
next time interval (1s or 100s). Knowing a task’s predicted allocation allows an
application to prevent problems rather than simply respond to them. A task’s
future CPU slowdown is determined by dividing its predicted allocation by its
desired allocation. This metric assumes that the task’s behavior and the overall
system workload remain the same. The predicted allocation does not assume
that a task’s priority has remained constant. Changes in a task’s scheduler
and/or user-assigned priority result in immediate changes in its predicted
allocation. This ensures rapid response to changes caused by the user-level
controller or CPU scheduler interactivity bonuses.

Potential allocation: The maximum CPU allocation a task could receive in
the next time interval. This allows bursty applications to ensure there is a large
potential allocation to deal with its demand spikes. A task’s potential future
CPU slowdown is its potential allocation divided by its desired allocation. This
metric assumes that the task becomes completely CPU-bound while the system
workload remains constant. Similar to the predicted allocation, changes to a
task’s priority result in immediate changes to its potential allocation.

Encapsulating Application Policy

CPU Futures gives applications the ability to replace the static, generic in-kernel
CPU contention policy with their own dynamic, application-specific policies.

63

4. Scheduler support for application management of CPU contention

Application

CPU Scheduler

Allocation
Information

Contention Policy

CPU Scheduler

Application

CPU Futures

Kernel

Userspace

Interface
Scheduler

Contention Policy

Controller
Feedback

Figure 4.1: CPU Futures architecture.

These policies are encapsulated in an application’s user-level CPU Futures
controller (see Figure 4.1). The controller monitors the scheduler feedback
provided by the herald and enforces the application’s CPU contention policy
by reducing concurrency, prioritizing work, or ensuring egalitarian allocations.

Additional Benefits of CPU Futures

CPU Futures also allow applications to run in an unobtrusive low-interference
mode, audit cloud computing services, and perform low-cost performance
analysis.

CPU futures enable low-importance applications to cooperatively run in the
background without disturbing other more important programs. Programs like
SETI@Home and Condor want to harvest unused desktop CPU cycles without
interfering with a machine owner’s currently running applications. The limited
feedback provided by commodity scheduler means that these applications
must be either overly cautious, wasting valuable cycles, or obliviously trust-
ing of the CPU scheduler, resulting in reduced performance for the machine
owner’s applications. CPU Futures enables these low-importance applications

64

4.2. CPU Futures

to carefully and accurately monitor their effect on other applications. Using this
enhanced feedback, these applications can ensure they do not interfere with
high-importance, machine owner tasks.

The accurate accounting provided by CPU Futures makes it ideal for audit-
ing quality of service in cloud computing [13, 128] which is useful for estab-
lishing trust between cloud providers and customers [68]. A cloud computing
client should know if they paid for one level of service and received another.
Similarly, if cloud providers are to maintain the illusion of infinite resources
they must monitor applications for slowdown due to resource shortages. An
accurate picture of application resource requirements and subsequent penalties
for server consolidation is vital to managing a cloud computing environment.

Performance analysis and debugging can be difficult in complex systems [47,
91, 106]; CPU futures provides an important first step in isolating performance
bottlenecks. Performance may suffer for dozens of reasons, narrowing the
problem to resource contention still leaves plenty of resources to investigate. In
a CPU-Futures-enhanced-system, the top system utility can easily be modified
to display the CPU slowdown of each process. System administrators can use
this modified utility to determine the cause of performance problems, as well
as guide infrastructure adjustments to resolve these problems. During develop-
ment, programmers can use CPU futures to isolate and resolve performance
bugs. CPU futures can be viewed as a low-cost, first-step in isolating these bugs
before using resource-intensive, low-level instrumentation.

CPU Futures Design Goals

The design of CPU Futures is motivated by the following four goals.
Low overhead: Our interest is primarily in systems suffering under heavy

load. These systems are already facing resource shortages, any solution to this
problem should incur small resource costs.

Minimal scheduler modifications: Limiting the modifications required to
implement the in-kernel portion of CPU Futures increases the likelihood of
adoption into commodity operating systems.

Small modifications to applications: Minimizing the modifications re-

65

4. Scheduler support for application management of CPU contention

quired to integrate a CPU Futures controller into an application prevents desta-
bilizing the software we are attempting to improve.

Accuracy: Accurate scheduler feedback allows more refined control over
CPU allocations and enables adoption by a wide-variety of applications, includ-
ing those with stringent CPU requirements.

These design goals are reflected in the simplicity of our in-kernel models
and feedback controller design. We developed a single desired allocation model
for all scheduler types and a separate predicted and potential allocation model
for timesharing and proportional-share schedulers.

4.3 scheduler-agnostic feedback

A task’s actual and desired allocation can be calculated in the same way regard-
less of the CPU scheduler.

Actual Allocation

Calculating a task’s actual allocation does not require a model; it is sufficient
to simply measure the CPU allocation a task received. The accuracy of these
measurements are determined solely by the granularity of scheduler instru-
mentation provided in the implementation.

Desired Allocation Model

Determining a task’s desired allocation is a matter of divining its intentions
rather than simply measuring the outcome of CPU scheduling. Fortunately,
the CPU scheduler is in a unique position to gather the statistics required.
When CPU is otherwise idle, a task’s desired allocation is equal to its actual
allocation. Under contention, the delay experienced by a task due to queuing
for CPU reduces its actual allocation. A task’s desired allocation for a given time
period is computed by multiplying the task’s CPU utilization, in the absence of
queuing, by the time period (1s or 100s):

66

4.3. Scheduler-Agnostic Feedback

Run IOWait Run IO

IO

Wait

RunRun IO Run IO Run IO

Run IO Run IO

wait_time

time_period

Time Period

Figure 4.2: Desired allocation. A 40% CPU-bound task suffering from 2x CPU
slowdown. Wait represents the task waiting for CPU, Run represents it running on the CPU,
and IO represents the task sleeping or blocked on IO.

cpu_allocation
time_period−wait_time

∗ time_period (4.1)

(also see Figure 4.2).

Calculating desired allocation in this way has two possible drawbacks. First,
special care must be taken when computing the desired allocation for tasks
that have large wait times. Long wait times reduce the amount of behavioral
information available about a task. As wait times become longer the estimate
of a task’s behavior becomes less precise. To mitigate this problem, our imple-
mentation uses 100 second utilization information if a task’s wait time is longer
than 900ms per second.

67

4. Scheduler support for application management of CPU contention

Our technique for computing desired allocation may be inaccurate for tasks
with periodic, time-based workloads. This technique assumes each task has
a fixed CPU allocation it desires regardless of CPU load. Tasks with a fixed
amount of work to do every second may receive inaccurate desired allocation
predictions under heavy load. These task are good candidates for real-time
schedulers.

4.4 scheduler models

In CPU Futures, we generate CPU allocation predictions using relatively simple
models with input from the scheduler. Perhaps the most interesting, and
difficult, portion of CPU Futures is its ability to predict the future using only
these simple models. This is not an accident, but rather a fundamental principle
of this work. We dismissed many early ideas on generating these predictions
because they were too complex or non-intuitive.

An obvious, but flawed, alternative approach would be to build a full CPU
scheduling simulator. Unlike our simple models, we would need a completely
different simulator for each scheduler, even if two schedulers were of the same
type. A simulator also would be too slow to use at run-time, so applications
would need to either predict the workload they expect or run a simulation
for every possible workload mix. Additionally, a simulator would very likely
require a more detailed set of inputs to produce accurate results; capturing this
information at run-time would have been expensive.

In CPU Futures, we have pared away any irrelevant inputs and reduced
the problem to the simple models that provide accurate results. Our approach
in developing these models was to start with a simple intuition and develop
that into a model. We incrementally increased the complexity of these initial
models until they produced accurate results.

This section discusses the general timesharing and proportional-share mod-
els we developed and then provides details about the additional complexity
we added to match the specific policies of the O(1) and CFS schedulers. We
limited this customization to the minimum required to achieve an accurate
result. These models generate the predicted and potential allocations exported

68

4.4. Scheduler Models

by the in-kernel CPU Futures herald.
An important feature of both our timesharing and proportional-share mod-

els is that increasing or decreasing a task’s user-provided or scheduler-provided
priority results in an immediate update of both its predicted and potential allo-
cations. Without this feature, our models would be inaccurate when the CPU
Futures controller uses the scheduling interface to ensure application policy.

Timesharing Predicted Allocation

Priority-based timesharing schedulers adjust user-provided task priorities
based on the level of CPU demand each task exhibits; more demand results in
worse priority. This mechanism divides the population of tasks into distinct,
related groups indexed by a scheduler-defined dynamic priority. The behavior
of a task defines its dynamic priority and similar tasks have similar dynamic
priorities.

From this fundamental property we derive the hypothesis that defines the
CPU Futures timesharing model: the CPU allocation given to each dynamic-
priority group remains relatively constant in the short-term. Individual tasks
may move between these groups, either through changes in their behavior or
user-defined priority, but the groups themselves retain a persistent behavior.
This consistent behavior results in a consistent CPU allocation from the sched-
uler. Therefore, a priority group’s near future allocation is likely very similar to
its near past allocation, even if an individual task’s allocation is not.

The first step, then, in predicting a task’s allocation is to predict the CPU
allocation that will be allotted to the task’s priority group. Because timesharing
schedulers are primarily priority-based, the total allocation available to any
given priority is a function of the allocation desired by its superior priorities.
This requires our model to predict the desired allocation of a priority group.
Our model calculates the desired allocation of a priority group in a similar
way to a task’s desired allocation. Except, because a priority group can be
composed of many tasks, a priority’s desired allocation can exceed 100% CPU
utilization. If the CPU was idle in the past sampling period, our model assumes
that demand did not exceed 100% CPU and uses the same model as a task’s

69

4. Scheduler support for application management of CPU contention

desired allocation to compute priority group i’s desired allocation:

desiredi =
cpu_allocationi

time_period−wait_timei
∗ time_period. (4.2)

Wait time, in this case, refers to time in the last sample period where the CPU
was executing a process from a different priority group. If there was no idle
time in the last sample period, our model assumes the total desired allocation
could be as large as qi ∗ time_period, where qi is the average queue length
for priority i. In practice, the timesharing model uses a more conservative
prediction for a priority’s desired allocation when there are no idle cycles:

desiredi = qi ∗ cpu_allocationi. (4.3)

This equation may under-predict the desired allocation for a priority, but if
there are no idle cycles it is sufficient to predict that this priority was allocated
less CPU than it desired. This effectively declares that there is no CPU available
for worse priorities.

Given a desired allocation for each priority, our model can compute a pri-
ority’s potential allocation using the following simple intuition: the potential
allocation available for priority group j is the difference between the total possi-
ble allocation and the sum of the desired allocation of all priorities i where i is
a better priority than j.

potentiali = time_period−
∑
J

desiredj (4.4)

As we discuss the timesharing model further, it will be important to remem-
ber that potentiali can be negative.

Using the above equations, our model can calculate the desired and potential
allocations for each priority. With these two values, it is simple to compute a
priority’s predicted CPU allocation. A priority cannot be allocated more CPU
than is potentially available, nor will a priority group use more CPU than it
desires. Therefore:

70

4.4. Scheduler Models

0ms 1000ms 0ms 1000ms−1000ms 0ms 1000ms

500ms

500ms

750ms

250ms

250ms 1000ms

750ms

750ms

250ms

−250ms

−1000ms

500ms

250ms

250ms

Worst

Worse

Bad

Good

Better

Best

0ms

PotentialDesired Predicted

0ms

0ms

0ms

Figure 4.3: Timesharing model. This figure represents a system with 9 25% CPU-
bound tasks. 1 task has the best priority, 2 tasks have good priority, 2 tasks have bad priority, 3
tasks have worse priority, and 1 task has the worst priority. In this example, the best priority task
leaves only 750ms for tasks with a worse priority. The two good priority tasks take an additional
500ms, leaving only 250ms for bad through worst. And so on. Taking the minimum of the
desired and potential columns (with a special case for negative potential) gives the predicted
priority allocations: the tasks with worse and worst priorities starve completely, the tasks with
bad priority receive only half the CPU allocation they desire, and the tasks with good and best
priority receive full allocations.

predictedi = min(desiredi,potentiali). (4.5)

The results of this equation should be modified to ensure that predictedi is
greater than or equal to zero, even if potentiali is negative. That is, an artificial
range of [0,time_period] should be enforced for this value. See Figure 4.3 for an
example.

Next our model translates this per-priority predicted allocation into a per-
task allocation. In this model, we assume that each task is allocated a portion of
its priority’s CPU allocation based purely on how often it is eligible to execute.

71

4. Scheduler support for application management of CPU contention

To say it differently, each task receives a CPU allocation according to its needs.
A task that competes for CPU 50% of the time will receive half the allocation a
task that is constantly competing for the CPU will receive. The competitiveness
of a task is calculated by how often it is eligible for the CPU. Let st be the time
that task t was eligible out of a scheduling interval S (1s or 100s). Then task t’s
eligible fraction can be calculated using the following formula:

et =
st

S
. (4.6)

Using eligibility as the metric, the total competition for CPU cycles at a
given priority is simply the average queue length at that priority (qi). So a task
twith priority i has a predicted allocation that is proportionally to its eligibility
and the predicted allocation for priority i:

predictedt =
et

qi
∗ predictedi. (4.7)

This probably seems like a lot of work to calculate a predicted allocation
that is likely very similar to a task’s previous allocation. However, with small
modifications this model can predict the allocation a task will receive for any
priority. That is, given a task’s behavior at priority i, our model can also predict
its allocation for any other priority k. This is particularly useful for providing
accurate herald predictions immediately after a CPU Futures controller changes
a task’s priority.

If a task t changes from priority i to priority k, the new potential allocation
for priority k is

potential ′k = potentialk + desiredt, (4.8)

if k is a worse priority than i. A task that was previously at a better priority
introduced demand at the better priority. Now that the task is moving to a
worse priority there is the potential for larger allocations at the worse priorities.
This is why it is important that potentialk can be negative. If the demand is
too large at better priorities, allocation will not increase at worse priorities even
if a single task moves from a good to a bad priority. For example, if there are

72

4.4. Scheduler Models

five 100% CPU-bound tasks at a good priority and one task moves to a worse
priority, that task will starve. The priority-changing task’s allocation will be
divided amongst the good priority tasks instead of filtering down to the worse
priority. Similarly, if k is a better priority than i, then k’s potential allocation
remains the same.

A task changing priorities also modifies the desired allocation at its new
priority:

desired ′
k = desiredk + desiredt. (4.9)

Then priority k’s predicted allocation, given that task t changes to priority
k is

predicted ′
k = min(desired ′

k,potential ′k). (4.10)

The task’s predicted allocation equation also needs to change as the new
priority does not include competition from the priority-changing task:

predicted ′
t =

et

qk + et
∗ predicted ′

k. (4.11)

Timesharing Potential Allocation

Timesharing schedulers provide priority bonuses to tasks that use little CPU
and priority penalties for tasks that consume a lot of CPU. Using this property,
we can easily extend our timesharing model to created potential allocation
predictions. Effectively, a task’s potential allocation is simply its predicted
allocation at priority w, where w is the worst priority the scheduler will assign
this task when it becomes fully CPU bound.

From our initial predicted allocation equation,

predicted ′
t =

et

qw + et
∗ predicted ′

w, (4.12)

we make some changes given that task t will be 100% CPU bound.
A CPU bound task’s eligibility fraction (et) is 1; it is always competing for

73

4. Scheduler support for application management of CPU contention

CPU. A priority group that contains a CPU bound task consumes its entire
potential allocation; so priorityw’s potential allocation will become its predicted
allocation if t becomes CPU bound. The resulting equation is

potentialt =
potential ′w
qw + 1

. (4.13)

O(1) Specifics

Each CPU scheduler has its own implementation-specific details that require
small modifications to our general-purpose timesharing model. For the O(1)
scheduler (and likely other timesharing schedulers as well), these modifications
concern its starvation prevention policy. As discussed in Ch 2.4, the O(1) sched-
uler uses timeslice expiration to provide starvation prevention. After a cyclical
timer goes off, this scheduler temporarily stops assigning new timeslices to
tasks until there are no runnable tasks. This ensures that each task t is allocated
at least a single timeslice of CPU time each and every expiration cycle. A task’s
starvation allocation is

starvation_allocationt = timeslice ∗ et ∗ cycle_frequency, (4.14)

where cycle_frequency is the number of expiration cycles per time period
(1s or 100s). A task’s starvation allocation is reduced by its eligibility fraction
because a task may block before fully consuming its timeslice. This equation
assumes that the task’s micro-IO-behavior matches its macro-IO-behavior. That
is, if it consumes roughly 20% of the CPU every second, it will also consume
only 20% of its timeslice.

This starvation prevention mechanism, in many ways, overrides the priority
scheduling aspects of the O(1) scheduler. Therefore, the sum of these starvation
prevention allocations are removed from the potential allocation of even the
best priority group. The total CPU allocation used to prevent starvation can be
calculated using the following formula:

74

4.4. Scheduler Models

starvation_allocation =
∑
I

qi ∗ timeslice ∗ cycle_frequency. (4.15)

In the O(1) scheduler, tasks that are deemed non-interactive are assigned
only a single timeslice per expiration cycle. The predicted allocation for a
non-interactive task nit is

predicted ′′
nit = starvation_allocationnit. (4.16)

Interactive tasks, on the other hand, are assigned new timeslices until the
expiration timer goes off. They receive at least a single timeslice, plus whatever
allocation they can compete for until the timer expires. The predicted allocation
for a interactive task it is then

predicted ′′
it = predicted

′
it + starvation_allocationit. (4.17)

Proportional-share Predicted Allocation

Many proportional-share schedulers are based on the GPS model. Therefore,
the proportional-share CPU Futures model is based on modifications we have
made to this standard model to more closely match commodity proportional-
share schedulers [101]. GPS states that given a set of tasks T with associated
weights in setW, the CPU allocation ct ∈ C a task t receives matches is

ct =
wt∑
W w

∗
∑
C

c, (4.18)

provided t is continuously eligible to use the CPU (i.e., not blocked).
Unfortunately, even in the short-term many tasks are not continuously

eligible. In order to compute predicted CPU allocations, we extend this simple
model to include non-continuously eligible tasks. The core idea behind our
extension is that the weight contributed by each task to the overall system
weight is proportional to the amount of time an individual task is eligible.

75

4. Scheduler support for application management of CPU contention

Therefore, each task receives a portion of the CPU based on its contributed
weight and the sum of contributed task weights.

More formally, our extension to the GPS model is as follows. Let st be
the time t was eligible out of a scheduling interval S (1s or 100s). Then the
normalized weight w ′

t ∈W ′ is

w ′
t = wt ∗

st

S
. (4.19)

The GPS model also assumes that every task desires a larger allocation then
it will receive. That is, if a task is assigned a weight that yields 50% of the CPU,
GPS assumes it will use 50% of the CPU. If this task only requires 20% of the
CPU, the GPS model does not properly handle distributing the remaining 30%.
The other tasks in the system should split this 30% proportionally, based on
their weights, but the GPS model does not predict this behavior. This remaining
CPU allocation is effectively lost.

We have extended the GPS model to handle this problem in a fashion similar
to Chandra et al. [48]. In this work, the authors observe that the GPS model
is flawed when handling multiple processors, leading to infeasible weights.
In our model, we extend this notion of infeasible weights to tasks that are
allocated more CPU than they desire. Specifically, if a task is assigned a weight
that would yield a larger CPU allocation than the task can use, its weight is
considered infeasible. More formally, the following property must hold for all
tasks:

w ′
t∑

W ′ w ′ 6
desiredt∑

C c
. (4.20)

In the proportional-share CPU Futures model, we enforce this property by
detecting infeasible weights and scaling them down:

w ′′
t =

desiredt∑
C c

∗
∑
W ′′

w ′′, (4.21)

where w ′′
t is the largest feasible weight for task t that does not violate the

feasible weight property. Any task with an infeasible weight is guaranteed to

76

4.4. Scheduler Models

receive its full desired allocation. This scaling simply modifies an infeasible-
weighted task so that its weight is exactly the correct proportion for the task to
get its full desired allocation. This reduction lowers the total system weight so
that the remaining feasible weight tasks are assigned the unwanted portion of
the infeasible task’s CPU allocation (the remaining 30% CPU from our initial
infeasible example).

A task t predicted future CPU allocation ft ∈ F can then be calculated using
the following formula:

ft =
w ′′

t∑
W ′′ w ′′ ∗

∑
C

c (4.22)

Example 1: Take as an example three tasks: t1, t2, and t3. t1 is eligible
for 400ms out of every 1s and has a weight of 10. t2 is eligible for 500ms out
of every 1s and has a weight of 8, and t3 is eligible for 1000ms of out every
1s and has a smaller weight of 2. For a one second time period, the resulting
eligibility normalized weights for these tasks are: w ′

1 = 4, w ′
2 = 4, and

w ′
3 = 2. The sum of these weights (

∑
W ′ w ′) is 10 and all of the weights are

feasible. The CPU will be fully utilized (
∑

C c = 1000 ms/s) thanks to t3.
Substituting these values into Eq. 4.22 for each task results in the following
values: f1 = 400 ms/s or 40% of the CPU, f2 = 400 ms/s, and f3 = 200 ms/s.
Notice how this differs from the GPS model that does not take eligibility
into account: gps(t1) = 500 ms/s, gps(t2) = 400 ms/s, and gps(t3) = 100
ms/s. Our model predicts that t3 will receive a larger allocation because t1

and t2 are not always eligible to run on the CPU.

Generating Feasible Weights

To ensure implementations of our model work with infeasible weights, we
created an algorithm to translate infeasible weights into feasible weights. The
first step in this algorithm is to find all tasks with infeasible weights and assign
them their full desired allocation. The CPU allocation remaining after all the

77

4. Scheduler support for application management of CPU contention

infeasible-weighted tasks have been assigned their desired allocations is given
to the feasible-weighted tasks using∑

Aw
′
a∑

W ′′ w ′′ =
remaining∑

C c
, (4.23)

where A is the set of feasible tasks and remaining is the allocation left after
the infeasible tasks were assigned their desired allocations. Substituting in
the summed weight of all of the feasible tasks and the allocation assigned to
feasible tasks yields the new total weight

∑
W ′′ w ′′.∑

B

w ′′
b =

∑
W ′′

w ′′ −
∑
A

w ′
a (4.24)

gives the sum of the infeasible weights after they are translated to feasible
values, where B is the set of tasks with infeasible weights and

∑
Bw

′′
b is the

sum of these tasks new feasible weights.
Given the total weight for the newly translated feasible weights, each infea-

sible task is assigned a weight proportionally based on it desired allocation:

w ′′
b =

∑
B

w ′′
b ∗

desiredb∑
B desiredb

. (4.25)

Example 2: Two tasks t1 and t2 have weights 1,000 and 10 respectively.
t1 has a desired allocation of 100 ms/s and is eligible for the same (due to its
large weight). t2 is entirely CPU-bound and is, therefore, eligible for 1000
ms/s. Because t2 is CPU-bound the CPU is fully utilized (

∑
C c = 1000

ms/s). Normalizing for eligibility t1 and t2 have weights (w ′
t) 100 and 10,

respectively. The sum of these weights (
∑

W ′ w ′) is 110, which means that
w ′

1 is infeasible (100
110 >

desired1∑
C c

). The largest feasible weight (w ′′
t) for t1

is 1.1. Substituting these values into Eq. 4.22 for each task results in the
following values: f1 = 100 ms/s and f2 = 900 ms/s. Notice how this differs
from a model that uses the infeasible weights: f1 = 900 ms/s and f2 = 100
ms/s.

78

4.4. Scheduler Models

Changing Weights

Unlike simply predicting that a task will receive the same allocation in the next
scheduling interval that it received in the last, the proportional-share prediction
allocation model can make predictions about what allocation a task would
receive if its weight changed. This is useful for providing accurate CPU Future
herald predictions immediately after the controller changes a task’s priority.

Our model can easily predict a task’s new allocation after its weight has
changed using metrics collected while the task had its previous weight. Given
a new weight n and a previous weight w for task t, our model removes t’s
previous contribution to the total system weight and adds its new weight:

ft =
n ′′
t∑

W ′′ w ′′ −w ′′
t + n ′′

t

∗
∑
C

c. (4.26)

This allows our model to calculate the allocation a task would receive for
any possible weight.

Proportional-share Potential Allocation

Calculating a task’s potential allocation is very similar to calculating its pre-
dicted allocation with a different weight. A task’s potential allocation is simply
the allocation it would receive if it was continuously eligible for the entire
scheduling interval. Therefore, a task’s potential allocation is calculated using
its full, unmodified weight. Like the predicted allocation with a new weight, the
potential allocation model subtracts the task’s previous contribution to system
weight and substitutes it with a new weight (the task’s full weight). The total
CPU allocation (

∑
C c) also needs to change, as there will always be at least one

eligible task. Let cmax,S be the maximum total CPU allocation for a scheduling
interval S and bt ∈ B be the best allocation task t can receive in S, then

bt = cmax,S ∗
wt∑

W ′′ w ′′ −w ′′
t +wt

. (4.27)

79

4. Scheduler support for application management of CPU contention

Example 3: Take the same three tasks from Example 1: t1, t2, and t3. t1

is eligible for 400 ms/s and has a weight of 10. t2 is eligible for 500 ms/s
and has a weight of 8, and t3 is eligible for 1000 ms/s and has a weight
of 2. All of the eligibility normalized weights are feasible and the sum of
these weights (

∑
W ′′ w ′′) is 10. For a one second interval cmax,S is 1000ms.

w ′
1’s current normalized weight is 4, but if it becomes fully CPU-bound its

weight would be the un-normalized value of 10. Substituting these values
into Eq. 4.27 for each task t1 results in potential allocation (b1) of 625 ms/s.

CFS Specifics

To provide low latency to interactive tasks, CFS places newly unblocked tasks
at the front of the run queue (sometimes even giving them larger timeslices).
This creates a mismatch between our pure GPS-motivated model and the CFS
implementation. In our CFS implementation of this model we made some small
changes to increase the accuracy of its predictions. It should be noted that
many proportional-share schedulers do not provide this interactivity bonus
and would, therefore, more closely match our model.

We modified our CFS model to combine two distinct models, an interactive
model and a pure proportional-share model. The interactive model records
the allocation each task received from jumping to the front of the run queue.
It predicts that each task receives roughly the same interactive allocation each
scheduling interval. The pure proportional-share model is based on the model
described above.

It should be noted that many tasks (including those in our experiments)
received both interactive and proportional-share allocations during the same
scheduling interval. For example, a task may return from I/O and jump to the
front of the queue, but fail to block again before it is preempted and inserted into
the proportional-share sorted run queue. This task is governed by both models
and its predicted allocation is the combination of its interactive allocation and
its proportional-share allocation.

80

4.4. Scheduler Models

Unfortunately, the proportional-share model experiences side-effects caused
by interactive tasks. The fundamental problem is that tasks jumping to the
front of the run queue cause the proportional-share tasks to wait longer in the
run queue. This artificially increases the eligibility-normalized weight of the
proportional-share tasks. The increased the weight of proportional-share tasks
also increases the total system proportional-share weight. To compensate for
this increased weight, our CFS proportional-share model reduces the system
weight proportionally based on the total allocation given to proportional-share
tasks:

∑
W ′′

w ′′ =
∑
W ′′

w ′′ ∗
∑

C c

cmax,S
. (4.28)

∑
C c includes only the proportional-share allocations, not interactive alloca-

tions.
Individual task weights also need to be reduced to compensate for the extra

wait time:

w ′′
t = w ′′

t ∗
pst

S
, (4.29)

where pst is the time task twas eligible for a proportional-share allocation (not
jumping to the front).

Combining a task’s previous interactive allocation (interactivet) with these
updated variables the model can easily predict a task’s future allocation:

ft = interactivet +
w ′′

t∑
W ′′ w ′′ ∗

∑
C

c. (4.30)

A task’s potential CPU allocation is also affected by interactive tasks. The
total potential allocation available for a fully CPU-bound task is reduced by
the sum of the interactive allocations. However, a task that becomes fully
CPU-bound will forfeit any interactive allocation it previously received. The
maximum available allocation for a CPU-bound proportional share task is then

cmax,S =
∑
C

c+ interactivet + idle, (4.31)

81

4. Scheduler support for application management of CPU contention

where idle is the system-wide unused CPU allocation.
Substituting the modified cmax,S variable, along with the modified task

weight (w ′′
t), into the proprtional-share potential equation (Eq. 4.27) yields a

CFS matching potential allocation.

4.5 implementation details

We have implemented the CPU Futures models in two Linux schedulers: O(1)
(Linux 2.16.18) and CFS (Linux 2.6.32.16-150). Implementing these models
requires adding a modest amount of additional instrumentation to the statis-
tics gathering code already found in many CPU schedulers. Specifically, we
instrument the code that updates individual task statistics every scheduler tick
and code that adds or removes tasks from the run queue. This instrumentation
supplies an accurate estimate of the amount of CPU allocated to each task and
priority-group, as well as the weight and length of the run queue. These sam-
ples are aggregated into a moving average every 100 milliseconds to produce a
one second or 100s estimate of each value.

The key to implementing useful scheduler feedback is efficiently gathering
the inputs required by our models. Individual task statistics are efficient to
gather as values are simply updated when tasks change state. System-wide
statistics are more difficult to collect efficiently. Average queue lengths (qi)
and weights (

∑
W ′ w ′) are gathered by instrumenting inserts and removes

from the run queue. Our initial implementation sampled these values, but
we found averages calculated this way were often incorrect. Priority group
CPU allocations (cpu_allocationi) and unused cycles (idle) are collected by
instrumenting the scheduling interrupt. At each interrupt a counter is increased
for the priority of the task executing (or idle).

Our O(1) model extrapolates expected expiration cycle frequency
(cycle_frequency) using a combination of the immediately previous expira-
tion cycle and knowledge about changes in a task’s priority. The O(1) scheduler
assigns larger timeslices to better priorities; these larger timeslices reduce the
expiration cycle frequency as it takes longer for every task to use a single times-
lice.

82

4.5. Implementation Details

...
2077 1000 832 799 798 100000 82409 82409 78878
2078 1000 816 725 788 100000 82398 82398 78813
2079 1000 822 762 790 100000 82471 82471 79088
...
2082 1000 329 317 288 100000 32665 32665 29060
2083 675 326 296 285 74744 32754 32754 29067
2084 787 332 300 294 85262 32743 32743 29062
...

Figure 4.4: CPU Futures herald output. This figure depicts the truncated results of
reading the herald’s proc file. The values of the columns from left to right: pid, 1s potential,
1s desired, 1s predicted, 1s actual, 100s potential, 100s desired, 100s predicted, 100s actual.
All allocations are given in milliseconds. Six tasks are shown in two groups. The first group
contains three processes that are 80% CPU-bound (pids 2077-2079). The second group contains
three processes that are 30% CPU-bound (pids 2082-2084). This experiment was conducted on
an eight core machine. Processes 2083 and 2084 are the only processes that share a core. This
explains why the have smaller potential allocations.

In the proportional-share model, infeasible weights are collected and stored
by the instrumentation. Feasible weights are only generated when the CPU
Futures herald is creating predictions. This ensures that sampling is fast and
efficient.

The CFS and O(1) CPU Futures herald exports scheduler feedback using a
single virtual file in the proc file system. This file contains a row for each task in
the system and a column each for the potential, desired, predicted, and actual
CPU allocations (see Figure 4.4). The herald calculates these values from the
scheduling statistics each time this file is read. This ensures that the overhead
of executing the models only occurs if someone is actually interested in the
results.

The modifications to the O(1) and CFS schedulers were minor. The code
to insert additional instrumentation, compute moving averages, and export
allocation metrics to user-space totaled roughly 400 lines in O(1) and 600 lines in
CFS; this is less than a 4% and 6% increase in the scheduler code respectively.

83

4. Scheduler support for application management of CPU contention

Benchmark O(1) Overhead% CFS Overhead%
perlbench 0.2 0.2
bzip2 0.4 0.2
gcc 1.0 0.0
mcf 1.7 0.0
gobmk 0.5 0.5
hmmer 0.0 0.0
sjeng 0.0 0.0
libquantum 0.0 0.0
h264ref 0.0 0.2
omnetpp 0.4 0.0
astar 3.1 0.0
xalancbmk 0.3 0.6
Mean 0.6 0.0

Table 4.1: SPECint2006 overhead results. The overhead imposed by CPU Futures
instrumentation is expressed as a percentage overhead compared to an unmodified scheduler.
The Mean row contains the mean slowdown for the entire benchmark suite.

Query Response (µs)
O(1) 481
CFS 419

Table 4.2: Time to query herald.

4.6 evaluation

We performed a variety of experiments to evaluate the overhead and correct-
ness of our kernel modifications. We measured the overhead of our kernel
instrumentation using the SPECint2006 benchmark suite (see Table 4.1). For
this and later experiments the hardware was a machine with a pair of quad-core
Intel Xeon processors and over 20GB of memory. The base slowdown of the
entire SPECint2006 suite was roughly 0.5% for the O(1) scheduler, with a worst
benchmark slowdown of 3%. The CFS version of CPU Futures did slightly
better with a negligible entire benchmark slowdown and a worst benchmark
slowdown of less than 1%.

Microbenchmarks reading the herald proc file indicate that the cost to ap-

84

4.6. Evaluation

Time (sec.)
0 30 60 90 120 150 180 210 240 270 300

C
P

U
 A

llo
c
 (

m
s
/s

)

0

200

400

600

800

1000
Potential

Desired

Predicted
Actual

Figure 4.5: The herald metrics illustration. The x-axis represents the experiment
time; the y-axis the CPU allocation given to the target process in milliseconds per second. Note
the predicted and actual lines are nearly indistinguishable. This graph shows the experiment on
the CFS implementation of CPU Futures.

plications monitoring CPU Futures is minimal (Table 4.2). The average query
to the O(1) version of the herald takes just under 500µs; the CFS version takes
slightly over 400µs. Since these metrics are only updated once per 100ms, this
represents a nominal overhead.

To demonstrate the correctness of our desired allocation model, we per-
formed an experiment on our CFS implementation using simple synthetic tasks.
These synthetic tasks alternate between sleeping and performing a tight loop.
The percentage of CPU each task consumes is configurable. Starting with an idle
machine, we introduced an approximately 40% CPU-bound synthetic process
and added another one every 30s. In this experiment, and all following, all of
the synthetic processes were bound to a single CPU. This allows us to introduce
CPU contention with a smaller number of processes. Figure 4.5 shows the four
1s herald metrics of the first process over the lifetime of the experiment. The
desired allocation of the first process should and does remain constant despite
the increasing load.

85

4. Scheduler support for application management of CPU contention

Time (sec.)
0 20 40 60 80 100 120

C
P

U
 A

llo
c
 (

m
s
/s

)

0

200

400

600

800

1000
Predicted Actual

Figure 4.6: O(1) alternating priority. A single run of the O(1) alternating priority
experiment. Note the predicted allocation at time x, represents the model’s guess at the actual
allocation received at time x+1.

The other CPU Futures metrics are also displayed on this graph to illustrate
how these metrics relate to one another. Matching our expectations the potential
allocation starts much higher than the desired allocation because the machine
is initially idle. Note that even with 10 concurrent processes, the first process
could still receive a larger allocation simply by competing for CPU more often.
The predicted allocation correctly matches the actual allocation and both drop
every 30s as the system load increases. Later experiments deal specifically with
the accuracy of the predicted and potential allocations.

To determine the precision and accuracy of the potential and predicted
allocation, we performed two experiments. In the first, we create several 100%
CPU-bound synthetic processes and then alternate the priority of the first pro-
cess between normal, high, and low. In the O(1) version of this experiment we
used five processes to better illustrate the accuracy of our starvation prevention
modeling. In the CFS version, we used 20 processes.

Figure 4.6 shows a time line of the predicted and actual allocation (sampled

86

4.6. Evaluation

Time (sec.)
60 65 70 75 80 85

C
P

U
 A

llo
c
 (

m
s
/s

)

0

200

400

600

800

1000
Predicted

Actual

Figure 4.7: O(1) alternating priority, detailed view. Provides a magnified view of
Figure 4.6 from 60 to 85 seconds. Notice how the predicted allocation increases and decreases
prior to the actual allocation.

once per second) for the O(1) run of this experiment. Note that in this exper-
iment we recorded the herald’s predictions immediately after changing the
process’s priority. The O(1) implementation does well at predicting changes
in allocation due to changes in priority, see Figure 4.7 for detailed view of a
single set of priority changes. From this graph, it is clear that the O(1) CPU
Futures herald can often accurately predict the allocation a task will receive
even immediately after a priority change.

Our model occasionally overestimates the allocation the process will receive
immediately after its priority is increased. This inaccuracy is caused by a delay
in predicting the change in the expiration cycle frequency caused by the change
in priority. Recall that task’s with better priorities receive larger timeslices.
Since each task is guaranteed a single timeslice per expiration cycle, changing a
task’s priority necessarily increases or decreases the expiration cycle frequency.

Accurately predicting expiration cycles is difficult because the scale is much
larger than our other predictions (on the order of 1 expiration per second).

87

4. Scheduler support for application management of CPU contention

We compensate for this difficulty by trying to recognize when changes have
occurred and weight newer information more heavily. In this case, our model
assumes that the first expiration cycle after a task’s priority changes represents
the new expiration cycle frequency. However, if expiration occurs immediately
after the process’s priority is increased, it may include the task’s old timeslice
size, and therefore it is inaccurate. An inaccurate expiration cycle prediction
reduce the accuracy of the predicted allocation.

Modeling starvation prevention is important to getting accurate results.
Compare the top graph of Figure 4.8, identical to Figure 4.6, to the bottom
graph of Figure 4.8, a run of this experiment without starvation prevention
modeling. The model without starvation prevention overreacts to each change
in priority, predicting full CPU utilization and starvation for high and low
priorities respectively. Without starvation prevention, a high priority task
really would receive the entire CPU allocation, and similarly a low priority
task would receive nothing. Notice that the model stop overreacting after one
or two predictions at the new priority. Once the workload stabilizes, the per-
priority predictions are no longer speculative; the monitored task has built a
history at its new priority. This history implicitly includes the outcome of the
starvation prevention mechanism, and therefore, increases the accuracy of the
per-task predictions. In contrast, our O(1) tailored timesharing model includes
a predictive model for starvation prevention that anticipates the outcome of
starvation prevention, creating more accurate predictions during workload
transitions.

Figure 4.9 shows the results of running this same experiment using our
CFS implementation of the CPU Futures herald. From this graph, our CFS
implementation appears to do slightly better than O(1) at predicting future
allocations (see Table 4.3 for a side-by-side comparison of their accuracy). Fig-
ure 4.10 provides a magnified view containing a single ten second window of
each priority the process was assigned during this experiment; note again how
the CPU Futures herald predicts the changes in allocation caused by a change in
priority. A simple model that predicts a task will receive the same allocation in
the next interval that it received in the previous interval is incapable of making
these kinds of predictions.

88

4.6. Evaluation

Time (sec.)
0 20 40 60 80 100 120

C
P

U
 A

llo
c
 (

m
s
/s

)

0

200

400

600

800

1000
Predicted Actual

Time (sec.)
0 20 40 60 80 100 120

C
P

U
 A

llo
c
 (

m
s
/s

)

0

200

400

600

800

1000
Predicted Actual

Figure 4.8: O(1) alternating priority with and without modeled starvation
prevention. The top graph shows a run of the alternating priority experiment using the
O(1) predictive model with starvation prevention. The bottom graph shows the results of the
same experiment without modeled starvation prevention.

89

4. Scheduler support for application management of CPU contention

Time (sec.)
0 20 40 60 80 100 120

C
P

U
 A

llo
c
 (

m
s
/s

)

0

50

100

150

200
Predicted Actual

Figure 4.9: CFS alternating priority. A single run of the CFS alternating priority
experiment. Note the predicted allocation at time x, represents the model’s guess at the actual
allocation received at time x+1.

Time (sec.)
30 35 40 45 50 55 60 65

C
P

U
 A

llo
c
 (

m
s
/s

)

0

50

100

150

200
Predicted

Actual

Figure 4.10: CFS alternating priority, detailed view. Provides a magnified view of
Figure 4.9 from 30 to 65 seconds. Notice how the predicted allocation increases and decreases
prior to the actual allocation.

90

4.6. Evaluation

Time (sec.)
0 20 40 60 80 100 120

C
P

U
 A

llo
c
 (

m
s
/s

)

0

200

400

600

800

1000

Potential Desired Actual

Figure 4.11: CFS alternating demand. The task initially requires 30% of the CPU, but
every ten seconds it becomes fully CPU-bound (as indicated by the desired line). The potential
allocation metric accurately estimates the allocation the task will receive during its CPU-bound
periods.

We used a second experiment to determine the accuracy of the potential
allocations. In this experiment, five approximately 30% CPU-bound synthetic
processes are started on a single CPU. Every ten seconds the first synthetic
process increases its CPU demand to 100%; it runs fully CPU-bound for another
ten seconds and then reduces its demand back to 30%. We then compare the
potential allocation exported by the CPU Futures herald in low demand periods
to the actual allocation received by the process in the high demand periods.
This comparison gives an indication of the accuracy of the herald’s potential
allocation.

Figure 4.11 depicts a time line of the CFS run of this experiment. The
desired allocation alternates between 30% and 100% CPU-bound as expected.
In contrast, the actual allocation alternates between an approximate 15% CPU
allocation during low demand and close to a 40% CPU allocation during high

91

4. Scheduler support for application management of CPU contention

Time (sec.)
0 20 40 60 80 100 120

C
P

U
 A

llo
c
 (

m
s
/s

)

0

200

400

600

800

1000
Potential

Desired

Actual

Figure 4.12: O(1) alternating demand. The task initially requires 30% of the CPU, but
every ten seconds it becomes fully CPU-bound (as indicated by the desired line). The inaccuracy
of these results is due to a bug in the instrumentation.

demand. The CPU contention caused by the other four processes means that the
monitored process will not receive its desired allocation. Note that the potential
allocation stays relatively constant. The allocation a task would receive if it were
100% CPU-bound should remain constant whether the task is 100% CPU-bound
or not. This graph indicates that the CFS implementation of potential allocation
is accurate (see Table 4.3 for the quantitative results).

Unfortunately, the O(1) implementation of the potential allocation provides
inaccurate predictions. The problem is a bug in the O(1) scheduler’s instru-
mentation points for adding and removing tasks from the run queue; these
instrumentation points miss some task enqueues and dequeues related to star-
vation prevention. As a result, when the monitored task transitions to 100%
CPU-bound, it appears as though it does not wait in the run queue at all. This
bug causes the task to appear to be receiving its full desired allocation, even
though it is getting less than half of what it wants. This error propagates through
the model and greatly damages the accuracy. It should be noted that this bug

92

4.6. Evaluation

SMAPE RMSE% Bias% High% Low%
Alternating Priority
O(1) 5.61 29.56 3.44 42.86 30.25
CFS 3.42 11.02 -0.86 27.73 40.34
Alternating Demand
O(1) 13.75 31.89 31.89 78.33 21.67
CFS 3.42 18.88 -1.80 23.21 76.79

Table 4.3: Accuracy and precision of predicted and potential allocation met-
rics. SMAPE stands for symmetric mean absolute percent error. RMSE% is the root mean
squared error as a percent of the mean allocation. Bias is the predictions bias as a percentage of
the mean allocation. High% is the percentage of predictions that were too large and Low% is
the number of the predictions that were too small. High% and Low% should give the reader an
idea as to whether the predictions were median-unbiased.

does not only affect our model; it also causes the kernel’s own accounting to be
inaccurate. CFS resolved this bug by requiring all enqueues and dequeues to
go through a single pair of functions.

The results of running the alternating demand experiment using the O(1)
scheduler with broken instrumentation is shown in Figure 4.12. For clarity,
the processes in the O(1) version of the experiment are 50% CPU-bound and a
single process alternates to 100% CPU-bound. With a 30% CPU low demand,
the resulting time lines tended to intermingle and overlay one another on the
graph. The desired allocation is accurate (near 50%) in low demand periods
(the initial ten seconds and every other ten second window thereafter). In the
high demand periods, however, the instrumentation bug causes the model to
incorrectly report that the desired allocation is not 1000ms/s, but is instead
identical to the actual allocation. This bug propagates through our model and
causes the potential allocation to drop to nearly zero during the high demand
periods. Although it causes inaccurate graphs, this bug does not invalidate the
potential allocation prediction in the low demand periods. Comparing the low
demand potential allocation to the high demand actual allocation we see that
our model is accurate to within roughly 15%. Table 4.3 presents a more detailed
view of the accuracy and precision of this model (despite the bug).

The results of these three experiments indicate that the CPU Futures herald

93

4. Scheduler support for application management of CPU contention

is able to give accurate estimates of a task’s desired, predicted, and potential
allocations. Combined with the overhead experiments, this indicates that the
CPU Futures herald is both cheap and accurate. In the next chapter, we provide
experiments that show these metrics are also useful.

4.7 summary

The CPU Futures herald provides better scheduler feedback in the form of
actual, desired, predicted, and potential CPU allocations. Using these values
an application can easily determine its current, predicted, and bursty CPU
slowdown without a a priori knowledge of its workload, hardware configuration,
or typical resource usage.

Calculating these values requires more than simple in-kernel measurement
(except the actual allocation which is simple in-kernel measurement). We
have developed an intuitive CPU-scheduler agnostic model to determine the
CPU allocation a task would receive on a completely idle machine. We also
created models to predict CPU allocation a task will receive in the next one or
100 seconds; this allows applications to anticipate performance degradation
due to CPU contention. These models are also applicable to a wide variety of
schedulers, although there is a separate model for timesharing and proportional-
share schedulers.

Given this improved scheduling feedback, applications can now create and
enforce CPU contention policies that prevent unresponsiveness and failure.
These policies are encapsulated in a CPU Futures controller. An application’s
CPU Futures controller monitors the herald’s scheduling feedback and trans-
lates the application’s CPU contention policy into the low-level CPU scheduling
commands, like suspending a task or modifying its priority.

Our feedback controller design is easier to discuss in next chapter, in the
context of application case studies. These case studies also provide an evaluation
of the accuracy of the CPU Futures herald.

94

Chapter 5

CPU Futures Controller Case
Studies

None loves the messenger who brings bad news.

— Sophocles (Antigone)

In this chapter, we examine a pair of CPU Futures controllers in the con-
text of three case studies using real applications. These controllers encapsu-
late application-specific CPU contention policies and enforce these policies
by suspending/resuming tasks, modifying task priorities, or changing the
application’s concurrency level.

This chapter develops a template for creating CPU Futures controllers. The
target environment for these controllers is cooperative. That is, these controllers
are intended to be deployed into an environment with a single system adminis-
trator who has high level business goals. These systems may host a either single
application or multiple cooperative applications. Cooperative applications do
not compete, but rather attempt to meet high level goals set by the machine
owner.

95

5. CPU Futures Controller Case Studies

This type of environment requires only a single CPU Futures controller
to manage concurrency with a clear policy. The controllers presented in this
chapter are autocratic; they are not meant to be run concurrently with other
feedback controllers. Previous progress-based resource contention manage-
ment techniques, like MsManners [55], also make this assumption. Building a
feedback controller that can coexist with others is an important area of research.
It is, however, beyond the scope of this work. In short, our goal in this project
is to create better feedback, and our goal in this chapter is to demonstrate the
use of this feedback. Our goal is not to build better feedback controllers.

The case studies presented here are focused primarily on web servers. We
chose web servers for our evaluation of CPU Futures because web frameworks
provide numerous applications to users: mail, calendars, word processing,
streaming multimedia, etc. CPU Futures is applicable to many other modern
applications, including file servers, mail servers, and batch computing services
like Condor and SETI@home. The key aspect of these applications is that
under load they must detect and manage CPU contention for a wide variety of
request-types with different resource requirements and user expectations.

The case studies presented in this chapter demonstrate that CPU Futures
can manage CPU contention caused by low-importance applications, increase
the responsiveness of a distributed system under heavy load, and provide
proportionally-fair throughput to multiple job classes in an overloaded server.
In the Empathy case study (Section 5.2), a CPU Futures controller limits the
performance degradation suffered by a web server when run concurrently with
a low-importance video conversion program. This case study is performed
using the CFS version of the CPU Futures herald. The Shepherd case study
(Section 5.3) features a CPU Futures controller embedded in an Apache web
server. This controller drastically reduces the number starving web requests. In
a third case study, we create a second policy for this CPU Futures-enhanced web
server that divides throughput fairly between two different job classes under
heavy user-demand (Section 5.4). Both of these embedded Apache controller
case studies use the O(1) version of the CPU Futures herald.

96

5.1. CPU Future’s Controller

Time(s)
40 45 50 55

T
a
s
k
 P

ri
o
ri
ty

0

5

10

15

20
Goal Priority Feedback Controller

Figure 5.1: Example of feedback-controller search algorithm.. The x-axis is a
portion of the experiment time; the y-axis is the process priority. Between 41 and 43 seconds
the controller is searching for a new optimal setting. The time between 43s and 51s shows the
minimal interference mode and the increased distance between checking the other candidate
priority.

5.1 cpu future’s controller

The controller for each of these case studies is remarkably similar, following
roughly the same design. In the first case study, the controller is searching for
the optimal priority for a low-importance application; in the second and third,
the controller must determine the correct level of concurrency in an Apache
web server.

In each case study, the appropriate setting is unknown in advance and the
only information that can be inferred is that the current setting is either too low
or too high. The controller uses a search algorithm to find the correct setting.
If the current setting is too large or small, the search algorithm decrements or
increments the value a small amount respectively. Each successive measurement
in which the setting remains incorrect in the same direction (high or low) results
in the increment or decrement being doubled. Changes in direction between

97

5. CPU Futures Controller Case Studies

two successive measurements, high to low or low to high, result in halving the
distance between the current and the previous setting.

The optimal setting may be impossible, e.g. 3.5 concurrent workers. There-
fore, this algorithm must be able to determine that it has found a setting as close
to optimal as possible. The search algorithm determines that it has reached the
optimal setting when it begins to oscillate between two consecutive settings. It
selects the better of these two settings and ceases searching.

The optimal setting may change with shifts in the workload. Thus the search
algorithm must periodically recheck the other candidate setting, if it is better
the search algorithm begins again. If not, the search algorithm changes the
setting back to the previous value and doubles the time until it compares the
two candidate settings again (up to 1s). We refer to this interval as minimal
interference mode.

It is important to note that the algorithm described here is entirely metric
agnostic. It can be used to define any policy that is search for an optimal
value. The algorithm only requires a metric that can determine whether the
current value is “too low” or “too high.” In the case studies presented in
this chapter we use actual slowdown and predicted slowdown as compared
to administrator-requested slowdown. This algorithm could, as easily, use
throughput or response time as its metric (although these metrics would not
demonstrate the value of CPU Futures in-kernel herald).

To demonstrate this algorithm, we created a simple simulation in which
a task’s optimal priority is selected randomly (independent of the CPU con-
tention). The task’s optimal priority, once selected, does not change for 10s;
at which point, another random optimal priority is selected. The controller
algorithm itself does not know the optimal value and attempts to find it using
the algorithm described above. The portion of the controller code that normally
queries the in-kernel herald has been replaced with a simulation module that
responds either “too high” or “too low” based on the priority of the task under
observation. This simulation is intended to demonstrate the aspects of the CPU
Futures feedback algorithm outside of the entropy that is found in an actual
system. Figure 5.1 shows a portion of the time line of this simulation, selected to
highlight both the searching and minimal interference phases of this algorithm.

98

5.2. Empathy

In designing the CPU Futures controller algorithm, we assumed that the
makeup of server workloads remains relatively constant. This implies that the
correct priority or MPL is a steady state variable that can change, but does so
infrequently. Given this assumption, this algorithm is designed to limit the
damaged caused to server throughput by overreacting to CPU contention. The
algorithm initially makes small, incremental changes to its current setting in
the face of new CPU contention. Compare this to TCP’s congestion avoidance
algorithm where a single lost packet results in a multiplicative decrease.

In this context, the herald’s predicted allocation is not quite as important.
CPU contention does not result in an immediate and drastic attempt at avoid-
ance, and as such, predicting it early is not as useful. This is not an indication
that predicted allocation is not valuable, only that it is of limited use given the
choices we made in designing our CPU Futures controller. A different controller
that strove to avoid CPU contention, regardless of the cost in throughput, would
find the predicted allocation immensely useful. As an example (as we will see in
Section 5.3), our Apache web server case study reduces the number of starving
web requests at very little cost to throughput using our current controller. It
does not, however, completely eradicate starving web requests. A controller
that wanted to ensure there were no starving requests could use the predicted
allocation with an aggressive, TCP-style strategy.

The desired allocation, on the other hand, is immensely important in these
case studies. Without this metric it is impossible to craft intuitive policies or, in
fact, detect CPU contention at all.

5.2 empathy

This case study illustrates a CPU Futures controller’s ability to manage inter-
ference caused by low-importance background tasks. In this case, an Apache
web server is the high-importance application running concurrently with a low-
importance video format conversion program. The flexibility of CPU Futures
allows a wide variety of application-specific interference policies. As such, this
case study presents two scenarios to highlight different interference policies.
In both of these scenarios the high-importance and low-importance task are

99

5. CPU Futures Controller Case Studies

Time (sec.)
0 50 100 150 200 250 300

T
h
ro

u
g
h
p
u
t

0

10

20

30

40

50

60

70

80

No Interference

Empathy

Unmanaged

Time (sec.)
0 50 100 150 200 250 300

A
llo

c
a

ti
o

n
 (

m
s
/s

)

0

50

100

150

200

250

300

350

Figure 5.2: Empathy minimal interference experiment. The top graph shows
Apache throughput with an alternating heavy/light workload. The x-axis is the experiment time;
the y-axis is Apache request throughput. The No Interference line represents Apache running
on an otherwise idle machine. The Empathy line is when Apache is run concurrently with an
Empathy managed video conversion. The Unmanaged line is Apache running concurrently
with a non-CPU Futures managed video conversion running at the lowest priority. The bottom
graph depicts the CPU allocation to Empathy managed video conversion while Apache server
experiences alternating load.

100

5.2. Empathy

executing on behalf of the same system administrator. As such, the goal is to use
CPU Futures to allow these applications to cooperate rather than compete. All
experiments in this case study use the CFS version of the CPU Futures herald.

This first scenario demonstrates the responsiveness of CPU Futures to
changes in system workload. In this scenario, the web site administrator wishes
to perform video conversion only when it does not interfere with serving web
requests; the video conversion program should only consume CPU cycles that
would have otherwise gone unused. To ensure the video conversion program
does not degrade web server performance in this scenario, the CPU Futures
herald must provide accurate information about CPU contention.

To support this scenario, we developed an external CPU Futures controller
to manage the multithreaded video conversion program. This controller, called
Empathy, monitors the CPU contention experienced by other tasks and sus-
pends video conversion if this contention exceeds 5%. Empathy measures CPU
contention using the actual and desired allocations provided by the CPU Fu-
tures herald to calculate the CPU slowdown other tasks experienced in the
previous second. A suspended video conversion is periodically resumed using
the minimal interference mode discussed in the previous section. Although, not
a terribly complex policy it is still impossible to accomplish without the desired
allocation model (a more complex policy is presented in the next scenario).

To test this scenario, we ran the Apache web server with a workload that
alternates between a heavy and light load. Under heavy load there are no idle
cycles in this experiment, but during light load there are relatively idle periods.
An Empathy-managed video conversion should be able to run in the light load
periods without affecting the overall throughput of the Apache web server.
Empathy should also quickly respond to the transition from light to heavy load
allowing web server throughput to increase rapidly.

The top graph of Figure 5.2 depicts the results of three typical runs of this
experiment. In the first run of this experiment, the Apache web server is run
independently, without an interfering video conversion. In the second run of
this experiment, the Apache web server is run alongside an unmanaged video
conversion. We ran this video conversion at the worst possible priority to cause
as little CPU contention as possible to the web server. This approach represents

101

5. CPU Futures Controller Case Studies

the closest a non-CPU Futures enabled low-importance video conversion can
come to achieving the desired policy. Empathy limits the interference of the
video conversion in the third run of this experiment.

Compared to the “no interference” run, the unmanaged video conversion
results in a consistent 25% reduction in the light load Apache throughput and
up to an 11% drop during the heavy load periods, with an average reduction
in throughput of over 13%. The larger degradation in the light load periods is
due to the smaller number of active Apache worker processes caused by the
lower load.

In contrast, the Empathy-managed video conversion inflicts a worst case
throughput degradation of less than 9%, with an average reduction of 3%. The
quick transition from low to high throughput indicates that Empathy is able to
quickly detect CPU contention and suspend the video conversion application
reducing interference to the web server. The low-importance program still
receives an average CPU allocation of 16ms/s; a time line of its allocation is
show in the bottom graph of Figure 5.2.

In the second scenario, a system administrator would like to ensure a video
conversion does not take an indefinite amount of time to complete. They would
still like to limit the interference with the web server, but at the same time pre-
vent the video conversion from starving. Using CPU Futures, the administrator
can set a limit on the CPU slowdown experienced by the video conversion
application. This ensures that the video conversion completes in a reasonable
amount of time, while minimizing the interference with the web server.

This policy requires a more complex controller, so we modified Empathy
to monitor the desired and predicted allocations of multiple tasks performing
a video conversion. Empathy employs the full search algorithm from the Sec-
tion 5.1 to determine the ideal priority for the video conversion tasks to meet
the administrator’s desired CPU slowdown. This scenario also calculates CPU
slowdown using the herald’s desired and actual allocation metrics.

To test this scenario, we ran the Apache web server with a steadily increasing
workload; starting out idle, the workload increased incrementally every 30s.
We ran Empathy concurrently with a policy to ensure the video conversion
suffered no greater than a five times CPU slowdown. Early in the experiment

102

5.2. Empathy

Time (sec.)
0 50 100 150 200 250 300

A
llo

c
a

ti
o

n
 (

m
s
/s

)

0

100

200

300

400

500

600

700

800

EmpathyGoal Unmanaged

Figure 5.3: Empathy-managed video conversion running simultaneously
with increasing Apache web server workload. The Goal line is minimum allo-
cation the video conversion program must receive to suffer less than a 5x CPU slowdown. This
value of this line is calculated by dividing the sum of the video conversions programs’s task’s
desired allocation by five. This line is often near 200ms/s because the video conversion often
needs 100% of the CPU.

Empathy is not required to intervene as there is little CPU contention. As
the workload increases, Empathy increases the video conversion’s priority to
meet this goal. Like the previous scenario, we repeated this experiment with a
non-CPU Futures managed video conversion running at the worst priority.

As shown in Figure 5.3, Empathy is able to enforce the administrator’s CPU
slowdown limit. As predicted, between 0 and 60s the CPU contention is not
large enough to require Empathy to increase the video conversion’s priority.
After 60s the web server’s CPU demand is large enough that the unmanaged
video conversion’s CPU slowdown is beyond the acceptable limit. Despite
the increasing CPU contention, Empathy is able to keep the video conversion
program’s total CPU allocation near a 5x slowdown for the remainder of the
experiment. In contrast, the unmanaged low-priority video conversion receives
less than 35 milliseconds of CPU time per second after the first 90s, eventually

103

5. CPU Futures Controller Case Studies

Desired Slowdown
2 3 4 5 6 7 8 9 10

R
u
n
ti
m

e
 (

s
e
c
.)

0

50

100

150

200

250

300

Figure 5.4: Empathy video conversion running simultaneously with a fixed
Apache web server workload. The solid line is the ideal completion time, given a
slowdown limit.Each different slowdown limit is represented by a box plot, centered on the
mean; the box forms the standard deviation and the whiskers are the max and min. Each box
represents at least 5 runs.

trailing off to less than 10ms/s (a 328x slowdown).
To test the range of the Empathy controller, we performed a similar experi-

ment with a variety of video conversion slowdown limits. In this experiment
we do not increase the Apache workload, but instead start with and main-
tain a heavy web-user demand. Figure 5.4 show the results of varying the
administrator-specified CPU slowdown limits from 2 to 10. On average Empa-
thy is able to match the specified slowdown to within 5%. In the worst case,
Empathy is still within 12% of the desired CPU slowdown. Further analysis of
this experiment revealed that it is the limited granularity of CFS priorities that
prevents Empathy from accurately matching the administrator-specified limits.
Empathy must often choose between too large or too small an allocation. In the
vast majority of the runs Empathy errs on the side of larger allocations (better
performance) for the low-importance application; it rarely exceeds the specified
CPU slowdown limit. This experiment indicates that the Empathy controller

104

5.3. Starvation Avoidance Shepherd

can provide performance guarantees for a range of CPU slowdown limits.
Both of these scenarios clearly demonstrate the value of CPU Futures in

creating a cooperative user-level policy between applications. With CPU Futures
a system administrator can develop a wide variety of consolidation policies
that accurately manage the CPU contention between different applications

Without CPU Futures it would be difficult to enforce the administrators
wishes in either scenario. Neither O(1) nor CFS supports a job class that con-
sumes only idle cycles. Also, it is impossible to accurately enforce a CPU
slowdown limit without knowing a task’s desired allocation.

5.3 starvation avoidance shepherd

This case study examines a CPU Futures controller’s ability to manage CPU
contention caused by too much concurrency within a single application, namely
a web server. The goal of this case study is to examine a CPU Futures’ con-
troller’s ability to minimize the number of starving web requests. This case
study demonstrates that a CPU Futures controller is able to find the correct
number of concurrent Apache workers to reduce web request starvation. All
experiments in this case study use our enhanced O(1) scheduler.

For this case study, we configured an Apache web server to service web re-
quests using a pool of worker processes (provided by the Apache mpm_prefork
multiprocessing module). When a request arrives, a worker process is selected
from the pool to service it. After this request has been completed the worker
process is returned to the pool. An Apache master process maintains this pool.

Determining how large to make this worker pool is difficult. If this value is
too large resources are spread too thin; too small and resources go unutilized.
In a standard Apache web server the pool size is set statically via a configuration
variable.

Additionally, under CPU contention the CPU scheduler may enforce policy
decisions that conflict with the overall goals of the Apache web server. Recall
the Egalitarian Policy experiment from Section 3.7 in which an Apache web
server handled continuous request from 250 clients. The Apache workers
servicing these clients received a wide range of CPU allocations that resulted

105

5. CPU Futures Controller Case Studies

in a unbalanced throughput, despite each worker having the same priority.
We embedded our CPU Futures controller into the Apache master process to

control the size of the worker pool. Using the algorithm described in Section 5.1,
this controller increases or decreases the pool size based on the level of CPU
contention experienced by each Apache worker. These modifications should
allow the CPU Futures enabled Apache web server to enforce a wide variety of
CPU contention policies. We call this modified Apache server Shepherd because
it keeps watch over the flock of Apache worker tasks.

In this case study, we suppose a website administrator wants to ensure that
web requests do not starve. In other words, under heavy load no user waits
significantly longer then they would have if the server were idle. To enforce
this policy, we configured Shepherd to reduce the MPL if any Apache worker
were predicted to suffer greater than a 50x CPU slowdown. For each Apache
worker, Shepherd monitors its desired and predicted allocation every second
to ensure this slowdown threshold is not breached.

We choose this policy with the intention of allowing some slowdown, but
not enough that a user would notice. Both web request types in this case study
can complete in less than a millisecond on an idle machine, and it’s unlikely
the average user would be able to tell the difference between a 50ms and a
1ms response time for a web request. In our experiments, this well-intentioned
policy turned out to be rather arbitrary as the O(1) scheduler tends to either
provide an allocation that well exceeds 50x slowdown or completely starve a
process for several seconds. A 50x slowdown could easily be replaced with a
100x, 200x, or infinite slowdown. This does not mean that the actual or predicted
allocation are the only useful metrics in this case study. Under low load (not
shown in this case study) an Apache process may receive no CPU allocation
because it is currently not required to handle client requests. Without desired
allocation it is difficult to tell the difference between these two states.

Given that all of the web requests in this study should complete in less than
one second, it is natural to wonder why we cannot simply measure response
time to detect CPU contention. In some respects, we do just that. In evaluating
the effectiveness of the Shepherd controller, we assume that any web request
that takes over ten seconds was starved. This response time metric, however, is

106

5.3. Starvation Avoidance Shepherd

Worker Pool Size
0 25 50 75 100 125 150 175 200 225 250

S
ta

rv
e

d
 R

e
q

u
e

s
ts

0

50

100

150

200

250

300

350

400

Static

Apache

Shepherd

S
h

e
p

h
e

rd
(C

o
n

c
u

rr
e

n
c
y
)

Figure 5.5: Average Apache starvation counts. The Static line represents Apache
with a statically configured worker pool size. The Default line is an Apache server using the
default worker pool size. The Shepherd line shows the number of starving requests when using
a CPU Futures enable web server. The Shepherd (Concurrency) line shows the average worker
pool size selected by Shepherd.

an (engineered) luxury of our experimental setup. In a production web server,
it would be impossible to tell whether a web request was starving by measuring
its response time. Take, as an example, a web application that allows clients
to apply for a student loan. After the applicant has supplied their identifying
information, the web server must contact a credit reporting company for the
applicant’s credit score. Depending on the mood of the reporting company,
this could take anywhere from hundreds of milliseconds to many minutes, or
even days. The slow response time experienced by users in this example is due
to problems at the credit reporting company, not CPU contention on the loan
application web server.

To create overload in this case study, we ran 250 clients, half generating
uninterrupted static web requests (job class S) and the other half generating
uninterrupted dynamic web requests (job class D). For evaluation purposes,
any web request taking longer than ten seconds is considered to have starved.

107

5. CPU Futures Controller Case Studies

Log−scale ResponseTime (sec.)
10 30 60 90 120 180 240

0%
10
20
30
40
50
60
70
80
90

100

Apache

S
h

e
p

h
e

rd

Figure 5.6: CDF of response times for starving requests. The y-axis is the percent
of starving requests that were completed in a time less than or equal to the corresponding value
on the x-axis. Note the log-scale on the x-axis. The Apache line represents a default configured
Apache.

Shepherd does not measure response times and is unaware of the response
time limit. To ensure that starvation could be prevented by managing MPL,
we first ran this experiment with a non-CPU-Futures-enabled Apache and a
variety of fixed worker pool sizes including the default value, 256 workers. For
all experiments presented the results are an average over five runs, each run
taking five minutes.

As shown in Figure 5.5, Shepherd is able to minimize the number of starved
web requests within the limits allowable by modifying the concurrency level.
Shepherd has on average only 35 starving requests per run, a nearly order-
of-magnitude reduction when compared to the default Apache configuration.
During the experiment, Shepherd dynamically increases or decreases the pool
size based on the current mix of running requests; some mixes create more
CPU contention. This dynamic behavior accounts for Shepherd having fewer

108

5.3. Starvation Avoidance Shepherd

% Job Class S
0 10 20 30 40 50 60 70 80 90 100

S
ta

rv
e

d
 R

e
q

u
e

s
ts

0

50

100

150

200

250

300

350

400
Apache

Shepherd

Figure 5.7: Starvation counts for a variety of workload mixes. The x-axis is the
percent of the workload drawn from job class S; the remaining workload is drawn from job class
D. Each job class had a peak concurrency of 125 clients.

starved requests than the optimal statically configured pool size.

Shepherd also reduces the magnitude of starvation when compared to a de-
fault Apache server (Figure 5.6). All of Shepherd’s starving requests completed
within 22s, whereas 30% of Apache’s 328 starving requests took over a minute
to complete. A handful even took as long as four minutes.

We performed a similar experiment in which we varied the mix of web
requests drawn from job classes S and D to ensure Shepherd works for a variety
of workloads. Figure 5.7 illustrates that Shepherd reduces starvation by at least
half and in some cases by nearly ten fold when compared to an unmanaged
(a fixed 256 workers) Apache. In the majority of workload mixes Shepherd
limits starvation to less than 20 requests. In contrast, Apache with a default
configuration starves over 300 requests at its worst, and even starves 60 requests
with a simple, homogeneous workload.

It is important to note that the optimal concurrency level changes depending
on the workload mix, from 20 to nearly 80. An non-CPU Futures enabled,

109

5. CPU Futures Controller Case Studies

% Job Class S
0 10 20 30 40 50 60 70 80 90 100

%
 M

a
x
.

T
h

ro
u

g
h

p
u

t

0
10
20
30
40
50
60
70
80
90

100

Apache D

D Ideal

Apache S

S Ideal

Figure 5.8: Normalized throughput for a variety of workloads. The y-axis is
the percentage of maximum throughput relative to each job class. Apache D and S represent
the D and S job class throughput as run by an unmodified Apache, respectively. S and D Ideal
represent the ideal results for a fair throughput policy.

statically configured Apache would need a configuration update every time
the workload changed.

The results of this scenario demonstrate the CPU Futures can increase the
perceived responsiveness of distributed applications.

5.4 fair throughput shepherd

This case study also uses the Shepherd controller but with a different purpose
and corresponding policy. In contrast to the previous case study, this case
study is primarily concerned with providing proportionally-fair throughput. A
fair-minded web server or system administrator may wish to provide service in
direct proportion to the percent of the total workload a job class comprises. For
example, if job class S comprises 20% of the workload, it should receive 20%
of the peak throughput of that job class. In this way, the burden of resource
contention is spread fairly across all job classes.

110

5.4. Fair Throughput Shepherd

MPL
0 25 50 75 100 125 150 175 200 225 250

J
a

in
 I

n
d

e
x

0.5

0.6

0.7

0.8

0.9

1

Static MPL

Apache

Shepherd

S
h

e
p

h
e

rd
(M

P
L

)

Figure 5.9: Jain fairness index for a fixed MPL Apache and Shepherd. The
Static MPL line represents the throughput fairness for given a fixed MPL. The Shepherd line
represent the Jain fairness index achieved with Shepherd. Shepherd MPL is the mean MPL
chosen by Shepherd.

Figure 5.8 illustrates the policy conflict between the Linux O(1) scheduler
and our fair throughput goal. Using 250 clients total, this experiment varies
the workload mix in a fashion similar to the variable workload experiment
conducted for the starvation-avoidance case study. The scheduler’s bias towards
job class S is evident as it increases the throughput of job class S at the expense
of job class D. This bias is most evident at roughly 50% S where job class D
receives less than 25% of its peak throughput while job class S gets over 85%.

This policy conflict occurs because O(1) provides a bonus to tasks it deems
interactive. In this scenario, job class D consumes more CPU per web request
than job class S and this results in a job class S receiving a larger interactivity
bonus. Similar to the previous scenario, carefully managing CPU contention
should result in the policy we desire. With fewer competing tasks, each task is
scheduled more quickly, even if it does not have a large interactivity bonus.

To evaluate how effective managing MPL is at providing proportionally fair
throughput, we ran 125 clients generating S requests and 125 clients generating

111

5. CPU Futures Controller Case Studies

Log−scale ResponseTime (secs)
10 30 60 90 120 180 240

0%
10
20
30
40
50
60
70
80
90

100

Apache
Shepherd

Figure 5.10: CDF of the response times for starving requests. Similar to Fig-
ure 5.6, except the Shepherd line in this graph represents Shepherd with a fair throughput
policy.

D requests. Figure 5.9 uses Jain’s fairness index to illustrate the ability of MPL
management to control job class throughput ratios. Jain’s fairness index uses
the difference between a job class’s proportionally fair throughput and the
throughput it actually received to calculate a fairness rating [73]. For two job
classes, this rating ranges from 0.5 to 1.0, with 1.0 being entirely fair. In this
experiment, a fixed MPL of 90 receives a perfect Jain’s fairness index of 1.0. As
expected, the optimal MPL value for fair throughput is quite large, resulting in
over 70 starving requests (refer to previous Figure 5.5).

Therefore, our starvation-avoidance policy of limiting Apache worker CPU
slowdown to less than 50x will not work here. We must provide a new policy
tailored to ensure fair throughput. The CPU slowdown policy for this fair
throughput case study allows a single worker to suffer a 50x predicted CPU
slowdown (using predicted and desired allocation) for up to eight consecutive
seconds before it is considered a policy conflict. As before, policy conflicts

112

5.4. Fair Throughput Shepherd

% Job Class S
0 10 20 30 40 50 60 70 80 90 100

J
a

in
 I

n
d

e
x

0.5

0.6

0.7

0.8

0.9

1

Apache

Shepherd

Figure 5.11: Jain index for a variety of workloads. The x-axis is the portion of the
workload from job class S.

result in reductions of MPL.
Referring again to Figure 5.9, we see our fair throughput Shepherd comes

close to generating the optimal job class throughput ratio. It achieves a Jain’s
fair index value of 0.99, compared to 0.75 for vanilla Apache. The average MPL
selected by Shepherd is slightly higher than the optimal fixed MPL at roughly
98 workers; however, this did not appear to significantly affect the fairness
index.

Furthermore, our fair throughput policy strikes a better balance between
request starvation and job class throughput ratios than Apache (see Figure 5.10).
Shepherd was able to achieve a near perfect proportional division of throughput
without sacrificing responsiveness to static requests. Over 90% of Shepherd’s
starving requests still completed within 30 seconds; Apache can only state the
same for 40% of its requests. All starving requests in Shepherd completed in
under a minute compared to over 4 minutes for Apache.

As in the starvation-avoidance case study, Shepherd works well for a va-
riety of workload mixes (see Figure 5.11). Shepherd performs better than the

113

5. CPU Futures Controller Case Studies

unmodified Apache between 15 and 80% S, and noticeably better between 30
and 70%. It has a slightly worse fairness index with small percentages of S and
D; although, Shepherd never performs worse than 0.88.

This scenario illustrates that CPU-futures-enabled applications can enforce
scheduling policies in direct conflict with the underlying operating system
scheduling policy. Using CPU futures a web server is able to define and en-
force a proportional-share scheduling policy on a time-sharing scheduler. This
result was achieved with only small modifications to both the kernel and the
application.

A quick note on the policy employed in this case study: this specific policy
is a product of lessons learned in the previous scenario combined with some
minor tuning. Specifically, to a certain extent greater concurrency allows greater
throughput, and by increasing the starvation window from 1s to 8s, we achieve
greater concurrency through less detected conflicts. Increasing the concurrency
too much, however, may cause starvation of not just a single request but an
entire stream of requests assigned to a starving process. An 8s limit on process
starvation ensures quick processing of a stream of requests while allowing some
individual requests to suffer some slowdown. A more comprehensive rewrite
of Apache to provide fair throughput would perhaps allow a more intuitive
policy.

5.5 summary

Corresponding to our design goals, integrating CPU Futures into the case
study applications required only a limited amount of developer effort. The
Empathy external controller is written in C++ and is under 900 lines of code
and can be used to monitor a variety of low-importance programs. Similarly,
the Shepherd controller required roughly 800 lines of code modifications to the
Apache master.

These controllers are designed to act as templates for other applications.
Application developers can use these templates or implement completely dif-
ferent controllers. The controllers presented here are in now way intended to
represent the entire array of possibilities.

114

5.5. Summary

We provided three case studies that demonstrate combining enhanced
scheduler feedback with an application controller enables a wide variety of
application-specific CPU contention policies. In the Empathy case study, a
low-importance application managed by a CPU Futures controller limited the
interference between this application and a high-importance web server. In the
Shepherd starvation avoidance case study, a CPU-Futures-enhanced web server
was able to reduce both the number and duration of starving requests by nearly
order of magnitude. The second Shepherd case study divided server through-
put fairly between job classes in direct contradiction to the CPU scheduler’s
policy.

Traditional best-effort schedulers provide a wide range of CPU allocations
due to variability in workloads and scheduling policy. However, many applica-
tions have a minimum share of CPU below which they become unresponsive.
Applications that ignore the variability in CPU allocations can appear not only
unresponsive, but also oblivious.

CPU Futures compromises both enhancements to CPU schedulers and a
user-level feedback scheduler to give applications the opportunity to avoid un-
responsiveness due to CPU contention. The in-kernel portion of CPU Futures
gives applications the ability to automatically determine their CPU require-
ments as well as anticipate performance degradation due to CPU contention.
CPU Futures also allows applications to define their own CPU contention poli-
cies in the form of a user-level feedback controller. Defining CPU contention
policies in user-space means that applications can each have their own poten-
tially complex, dynamic policies for avoiding CPU performance degradation.

This chapter and the evaluation section of the previous chapter demonstrate
that it is possible to generate accurate scheduler feedback, including predictions,
and that this scheduler feedback allows applications to create and enforce a
wide variety of CPU contention policies, even when these policies are in direct
conflict with kernel CPU scheduler.

115

Part III

Harmony

117

Chapter 6

Uncovering CPU Load Balancing
Policies with Harmony

Nothing exists until or unless it is observed.

— William S. Burroughs

The era of multicore computing is upon us [21], and with it come new
challenges for many aspects of computing systems. While there may be debate
as to whether new [31] or old [36] kernel architectures are necessitated by the
move to multicore processors, it is certain that some care will be required to
enable operating systems to run well on this new breed of multiprocessor.

One of the most critical components of the OS in the multicore era is the
scheduler. Years of study in single-CPU systems have led to sophisticated
single-CPU scheduling algorithms (e.g., the multi-level feedback queue found
in Solaris, Windows, and BSD variants [37, 113]); although studied for years
in the literature [34, 44, 61, 118, 120, 122, 132], there is little consensus as to the
best approach for scheduling multiple processors.

119

6. Uncovering CPU Load Balancing Policies with Harmony

An excellent example of this multiprocessor confusion is found in Linux, per-
haps one of the most fecund arenas for the development of modern schedulers.
At least three popular choices exist: the O(1) scheduler [93], the Completely-Fair
Scheduler (CFS) [92], and BFS [78]. Each is widely used and yet little is known
about their relative strengths and weaknesses. Poor multiprocessor scheduler
policies can (unsurprisingly) result in poor performance or violation of user
expectations [48, 72, 87], but without hard data, how can a user or administrator
choose which scheduler to deploy?

We address this lack of understanding by developing Harmony. The basic
idea is simple: Harmony creates a number of controlled workloads and uses a
variety of timers and in-kernel probes to monitor the behavior of the scheduler
under observation. As we will show, this straightforward approach is surpris-
ingly powerful, enabling us to learn intricate details of a scheduler’s algorithms
and behaviors.

While there are many facets of scheduling one could study, we focus on
what we believe is the most important to users: load balance. Simply put, does
the system keep all the CPUs busy, when there is sufficient load to do so? How
effectively? How efficiently? What are its underlying policies and mechanisms?

We apply Harmony to the analysis of the three aforementioned Linux sched-
ulers, O(1), CFS, and BFS, and discovered a number of interesting and previ-
ously undocumented behaviors. While all three schedulers attempt to balance
load, O(1) pays the strongest attention to affinity, and BFS the least. O(1) uses
global information to perform fewer migrations, whereas the CFS approach
is randomized and slower to converge. Both O(1) and CFS take a long time to
detect imbalances unless a CPU is completely idle. Under uneven loads, O(1)
is most unfair, leading to notable imbalances while maintaining affinity; CFS
is more fair, and BFS is even more so. Finally, under mixed workloads, O(1)
does a good job with load balance, but (accidentally) migrates scheduling state
across queues; CFS continually tries new placements and thus will migrate
out of good balances; BFS and its centralized approach is fair and does well.
More generally, our results hint at the need for a tool such as Harmony; simply
reading source code is not likely to uncover the nuanced behaviors of systems
as complex as modern multiprocessor schedulers.

120

6.1. Harmony

This chapter provides a detailed overview of Harmony and an examination
of the basic load balancing policies found in O(1), CFS, and BFS. The following
chapter discusses more advanced behaviors these schedulers exhibit when
dealing with more difficult workloads: workloads in which processes are not
interchangeable.

6.1 harmony

The primary goal of the Harmony project is to enable developers and re-
searchers to extract multiprocessor scheduling policies with an emphasis on
load-balancing behavior. We now describe the details of our approach.

An Empirical Approach

In building Harmony, we decided to take a black-box approach, in which we
measure the behavior of the scheduler under controlled workloads, and analyze
the outcomes to characterize the scheduler and its policies. We generally do
not examine or refer to source code for the “ground truth” about scheduling;
rather, we believe that the behavior of the scheduler is its best measure. This
approach has three primary advantages. First, schedulers are highly complex
and delicate; even though they are relatively compact (less than 10k lines of
code), even the smallest change can enact large behavioral differences. Worse,
many small patches are accrued over time, making overall behavior difficult to
determine (see [103] for a typical example); by our count, there were roughly
323 patches to the CFS scheduler in 2010 alone. Further, comments in the code
are often wrong or misleading (see Figure 6.1). It is often unclear whether the
comments or the code is wrong, but to quote Norm Schryer [32]: “If the code
and the comments disagree, then both are probably wrong.”

Second, our approach is by definition portable and thus can be applied to a
wide range of schedulers. We do require a few in-kernel probes to monitor mi-
grations and queue lengths (discussed further below); however, many systems
support such probes (e.g., DTrace [42] or systemtap [57]).

Third, a black-box approach gives developers and users the ability to verify

121

6. Uncovering CPU Load Balancing Policies with Harmony

the documented load balancing policy. This is a bit of a moot point in Linux
because, despite being so popular, Linux has very little documentation about
its multiprocessor scheduling policy (e.g., CFS is distributed without any such
documentation [92]). Internally, however, a core group of Linux developers
must have at least a folk-lore understanding of what the desired policy is. For
these core Linux developers and developers working on better documented
operating systems, Harmony can be used to both verify changes in policy and
analyze the impact of proposed policy changes. Harmony does not extract the
intended policy, but rather extracts the actual policy. It is our hope that this
property of Harmony causes it to become an indispensable part of the CPU
scheduling development tool chain.

Using Harmony

The main goal of Harmony is to extract policies from the scheduler under
test. To help answer these questions, Harmony provides the ability to easily
construct workloads and monitor low-level scheduler behavior; however, the
user of Harmony must still design the exact experiments in order to analyze
the particular properties of the system the user is interested in.

The Harmony user-level workload controller can be used to start, stop,
and modify synthetic processes to create the individual workload suites. This
controller must be able to introduce run queue imbalances into the system,
and these imbalances should be created instantly rather than slowly accrued to
increase precision of the results obtained. Use of process groups and binding
to specific CPUs enables us to carefully control where and when load is placed
upon the system.

The low-level monitoring component of Harmony records three simple
aspects of multiprocessor scheduling behavior: the run queue lengths for each
processor, the CPU allocation given to each Harmony process, and the CPU
selected to run each Harmony process. Our Linux implementation of Harmony
relies on the systemtap kernel instrumentation tool [57]. Harmony’s kernel
instrumentation records each time a processor is selected to run a Harmony
process, and it also samples the run queue lengths every millisecond. Harmony

122

6.1. Harmony

/* Don’t have all balancing operations going off at once: */
static inline unsigned long cpu_offset(int cpu)
{

return jiffies + cpu * HZ / NR_CPUS;
}
static void
rebalance_tick(int this_cpu, struct rq *this_rq, enum idle_type idle){

unsigned interval, j = cpu_offset(this_cpu);
struct sched_domain *sd;

/* Author: Finds scheduling domain (sd), e.g., SMT on core,
* cores in chip or chips on board. Removed for brevity. */

interval = sd->balance_interval;
if (idle != SCHED_IDLE)

interval *= sd->busy_factor;

/* scale ms to jiffies */
interval = msecs_to_jiffies(interval);
if (unlikely(!interval))

interval = 1;

if (j - sd->last_balance >= interval) {
if (load_balance(this_cpu, this_rq, sd, idle)) {

/*
* We’ve pulled tasks over so either we’re no
* longer idle, or one of our SMT siblings is
* not idle.
*/

idle = NOT_IDLE;
}
sd->last_balance += interval;

}
}

Figure 6.1: O(1) Load Balancing Snippet. To illustrate the difficulty in extracting
policy from source code, we have provided this code snippet from the O(1) scheduler. This code
is executed by each processor every scheduling interval to determine whether this processor
should compare its load to the other processors. The top comment indicates that the processors
should not all load balance during the same scheduling interrupt. The code, however, allows
that exact scenario. Detecting why is left as an exercise to the reader. About 10 lines of code
unrelated to computing the load balancing interval have been removed for brevity. Comments
from this author are prefixed with Author:.

123

6. Uncovering CPU Load Balancing Policies with Harmony

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���

CPU 1

CPU 3 CPU 4

CPU 2

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

CPU 3

CPU 1

CPU 4

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���

CPU 2

���
���
���
���

���
���
���
���

���
���
���
���

Figure 6.2: Single-source and Single-target. On the left, CPU 4 is the source of
processes (initial: <2, 3, 1, 10>); two processes migrate to CPU 1, one to CPU 2, and three
to CPU 3 (final: <4, 4, 4, 4>). On the right, CPU 4 is underloaded and becomes the target
(<5, 5, 5, 1>); a single process is migrated from each CPU to CPU 4 (<4, 4, 4, 4>).

also uses the /proc/ virtual file system to collect a variety of information about
its processes, including CPU allocations and scheduling priorities.

Experiment Types

Although Harmony can be used to setup a variety of experiments, our analysis
of Linux schedulers and their load-balancing behavior relies on a few specific
experiment types. The first is a single source experiment type, in which a single
processor is overloaded and the remaining processors are underloaded. This
overloaded processor becomes the single source of processes to migrate to the
other underloaded processors. The second is a single target experiment, in
which the imbalance consists of a single underloaded processor, the target; this
processor steals processes from each of the remaining overloaded processors.
See Figure 6.2 for an example of each.

In both a single target and a single source experiment, the targets of process
migration may be either idle or busy. When we configure a processor to be idle,
it is left left without any runnable processes as the experiment begins. Idle target
processors give insight into the work conserving nature of a multiprocessor

124

6.2. Multiprocessor Scheduling Policy Foundations

scheduling policy. When we set a target processor to busy, it is underloaded
but still has some runnable processes. A busy target migration provides an
insight into a policy’s willingness to accept an imbalance in order to limit the
synchronization overhead of checking the load balance.

For simplicity, we refer to the initial and final conditions of an experiment
with the following notation, <a,b, c,d>, which means the first CPU has a pro-
cesses, the second b, and so forth. Thus, a single-source experiment with idle
targets andm processes on the source would have the following initial configu-
ration: <m, 0, 0, 0>; the starting configuration of a single-target experiment with
a busy target would instead be represented as <m,m,m,n>, wherem > n.

Hardware and Software Environment

For all experiments in this paper we used a machine with a quad-core Intel Xeon
processor; we feel that this size system is a “sweet spot” for the multicore era
and thus worthy of intense study. The specific operating systems used in these
experiments are Red Hat Enterprise Linux 5.5 (kernel version 2.6.18-194.3.1.el5),
Fedora 12 (kernel version 2.6.32.21-168.fc12.x86_64), and Linux kernel 2.6.32
patched with BFS (2.6.32-bfs.313). Each operating system is configured to
deliver scheduling interrupts once per millisecond.

6.2 multiprocessor scheduling policy foundations

This section presents a simple experiment that extracts the most basic aspect
of load balancing policy and provides motivation for the remainder of the
experiments in this chapter. These experiments uncover the basic, foundational
load balancing policies of the O(1), CFS, and BFS Linux schedulers. Higher-level,
more complex load balancing policies are examined in the next chapter.

Load balancing versus Affinity?

We begin with the most basic question for a multiprocessor scheduler: does it
perform load balancing across processors and contain mechanisms for main-
taining affinity between processes and processors? We begin our examination

125

6. Uncovering CPU Load Balancing Policies with Harmony

Time (sec.)
0 5 10 15 20 25 30

P
ro

c
e
s
s
 M

ig
ra

ti
o
n
s

0

5

10

15

20

25

30
O(1)

CFS

BFS

Figure 6.3: Timeline of Process Migrations for O(1), CFS, and BFS Sched-
ulers. The figure shows the average number of processes migrated over 25 runs with a starting
load of eight processes on 1 CPU: <8, 0, 0, 0>. Only the first 30s of the experiment is shown;
the remainder is similar.

with a workload that should be straightforward to balance: eight identical
100% CPU-bound processes running on a single source with three idle targets
(expressed as <8, 0, 0, 0>).

This basic scenario allows us to determine the trade-offs the underlying
scheduler makes between load balancing and affinity. If the multiprocessor
scheduler does not have a load balancing mechanism, then all eight processes
will remain on the single target. At the other extreme, if the multiprocessor
scheduler does not attempt to maintain any affinity, then the processes will
be continuously migrated over the lifetime of the experiment. Finally, if the
multiprocessor scheduler attempts to achieve a compromise between load
balance and affinity, then initially the processes will be migrated across cores
and then after some period the processes will each remain on its own core (or
migrated less frequently).

Figure 6.3 shows the number of process migrations over time for the three

126

6.2. Multiprocessor Scheduling Policy Foundations

Time(s)
24.05 24.1 24.15 24.2 24.25 24.3 24.35

R
u

n
 Q

u
e

u
e

 L
e

n
g

th

0

1

2

3

4

5

6

7

8 Core 1

Core 2

Core 3

Core 4

Figure 6.4: Timeline of Run Queues for O(1). The figure shows the length of each of
the four run queues over time for a single experiment initially configured as <8, 0, 0, 0>. At
time 24.05, Cores 2, 3, 4 are able to start migrating processes away from Core 1; eventually, at
time 24.3, all four cores have two processes each.

Linux schedulers (averaged over 20 runs). Both O(1) and CFS have an initial
burst of process migrations (6 and 30 respectively) and then zero migrations
afterward. This indicates that O(1) and CFS perform load balancing with
processor affinity, matching their known implementation of using a separate
local queue per core. On the other hand, BFS has a sustained rate of roughly 13
migrations per second. This indicates that BFS does not attempt to maintain
affinity, and matches well with its known global-queue implementation.

This basic experiment raises many questions. Given that the O(1) and the
CFS schedulers achieve the same final balanced allocation of two processes
per core, how do the two schedulers each arrive at this allocation? Our initial
experiment illustrated that the O(1) scheduler arrives at this balance with fewer
total migrations than the CFS scheduler; how does each scheduler determine
the number of processes that should be migrated? We investigate this question in
Section 6.3.

127

6. Uncovering CPU Load Balancing Policies with Harmony

Other questions that are raised are related to time. As an example, Figure 6.4
shows the behavior of the O(1) scheduler over time for this workload; specifically,
it illustrates the length of the four run queues for a single experiment starting
with <8, 0, 0, 0>. This figure shows that when the experiment begins at time
24.05 s, Core 1 has a run queue containing eight processes while the other three
CPUs each have zero processes. As time progresses, the load on Core 1 drops
in distinct increments from eight processes to two, while the load on the other
cores increases from zero to two. In this case, it takes 250 ms for each CPU to
have exactly two processes; furthermore, migrations occur at different points in
time on each CPU. We would like to know how long it takes each scheduler to
react to load imbalance. Do schedulers react more rapidly when a CPU is idle,
when there is a large imbalance, or when there has been an imbalance recently?
These questions are addressed in Section 6.4.

The final set of questions are related to which processes are migrated by
the scheduler. As another example, the three graphs in Figure 6.5 show the
percentage of CPU given to each of the eight identical processes for the O(1),
CFS, and BFS schedulers. The figure illustrates that O(1) and BFS allocate a
fair percentage of the CPU to every process: each of the eight processes obtains
half of a CPU. However, CFS does not always allocate a fair share to every
process: in some runs of this workload, some of the processes receive less and
some correspondingly more than their fair share. If this inequity occurs for
the simplest of workloads, what does this imply for more complex workloads?
Thus, we would like to know how each scheduler picks a particular process for
migration. Specifically, which processes share a CPU when the workload cannot
be divided evenly across processes? Which processes share CPUs when some
have different CPU requirements or priorities? We address these questions in
the next chapter.

6.3 how many processes are migrated?

Our motivational experiments in the previous section lead us to next determine
the number of processes each scheduler migrates in order to transform an
imbalanced load into a balanced one. We focus on the O(1) and CFS schedulers

128

6.3. How Many Processes are Migrated?

O
(1

)
C

P
U

 %

0

20

40

60

80

100

C
F

S
C

P
U

 %

0

20

40

60

80

100

Sorted Processes
1 2 3 4 5 6 7 8

B
F

S
C

P
U

 %

0

20

40

60

80

100

Figure 6.5: CPU allocations. The 3 graphs show the percentage of CPU given to eight
processes running on four CPUs using O(1), CFS, and BFS; the initial allocation is <8, 0, 0, 0>.
In the figure, the processes are sorted by allocation and each point is an allocation from one of
25 runs; the dashed line is the expected allocation for a perfect balance.

129

6. Uncovering CPU Load Balancing Policies with Harmony

since they explicitly move processes from one queue associate with one core to
another; in contrast, BFS contains a single queue with no default affinity.

Balancing load across multiple processors is challenging because the sched-
uler is attempting to achieve a property for the system as a whole (e.g., the
number of processes on each CPU is identical) with a migration between pairs
of CPUs (e.g., migrating process A from CPU 1 to 2). Thus, the scheduler
contains a policy for using a series of pairwise migrations to achieve balance.

We hypothesize that there are two straight-forward policies for achieving a
global balance. In the first, the scheduler performs a series of pairwise balances
while ensuring that the final number of processes is evenly divided between
the one pair of CPUs. For example, on a four core system with <30, 30, 30, 10>,
a pairwise balance migrates 10 processes from CPU 1 to CPU 4 so that both
have 20; then 5 processes are migrated from CPU 2 to CPU 4 so that both have
25; then, 2 processes are migrated from CPU 3 to CPU 4 to leave the system
with the load <20, 25, 28, 27>. Pairwise balances must then be repeated until the
system converges. Pairwise balances are simple, but potentially require many
cycles of migrations to to achieve a system-wide load balance.

In the second policy, the scheduler performs a poly-balance by calculating
the number of processes each processor should have when the system is finally
balanced (e.g., the number of processes divided by the number of processors).
When migrating processes, a poly-balance moves only a source processor’s
excess processes (those that exceed the system average) to the target. Using the
example load of <30, 30, 30, 10>, the desired final balance is 25 processes per
processor; thus, the poly-balance migrates 5 processes from each of the first
three CPUs to the fourth CPU. A poly-balance balances the system quickly, but
requires information sharing between processors to calculate the total number
of processes.

To determine whether a scheduler uses a pairwise or poly-balance, we
measure the number of processes migrated between the first source processor
and the target. We examine workloads in which a single target must migrate
processes from multiple sources; each source processor has from 20 to 90 more
processes than the target and each workload is repeated 10 times. Figure 6.6
shows the number of migrations performed between the first two CPUs to

130

6.3. How Many Processes are Migrated?

O(1): 1st CPU Migration

Imbalance
20 30 40 50 60 70 80 90

P
ro

c
e
s
s
e
s
 M

ig
ra

te
d

0

5

10

15

20

25

30
Actual

Poly−balance

Pair−wise

CFS: 1st CPU Migration

Imbalance
20 30 40 50 60 70 80 90

P
ro

c
e
s
s
e
s
 M

ig
ra

te
d

0

5

10

15

20

25

30

35

Actual Mean Poly−balance Pair−wise

Figure 6.6: First Migration: O(1) and CFS. The top graph shows the O(1) scheduler
and the bottom the CFS scheduler. Each graph shows the number of processes migrated between
the first source and the target processor. The imbalance between the three loaded sources and the
single target is varied along the x-axis; that is, <10 + x, 10 + x, 10 + x, 10>.

131

6. Uncovering CPU Load Balancing Policies with Harmony

perform a balance; the graphs on the top and bottom show the results for the
O(1) and the CFS schedulers, respectively.

The top graph illustrates that the O(1) scheduler appears to be performing a
poly-balance. In most cases, the first migration performed by O(1) matches the
number that is exactly needed for a fair global balance; these results hold even
as the imbalance (and the resulting number of processes that must be migrated)
is varied. In a few cases, significantly greater or fewer numbers of processes
are migrated, but these anomalies occur at unpredictable points. We infer that
the O(1) scheduler must be using global information across all processors to
determine the correct number of processes to migrate.

The bottom graph illustrates that CFS migrates a wide, unpredictable range
of processes, usually more than are required for a poly-balance. Thus, the first
migration is usually too large and leaves the first source processor with too
small of a load; the underloaded source processor must then migrate processes
from other processors to complete the global balance. This result corroborates
our initial result shown earlier in Figure 6.3 in which CFS performed 30 total
migrations compared to 6 by the O(1) scheduler. Thus, we conclude that CFS is
not performing a correct poly-balance.

6.4 time to resolve and detect?

Our next questions concern how long it takes a scheduler to detect and respond
to a load imbalance. We start with a macro experiment that measures how
long the scheduler takes to completely resolve an imbalance and move to micro
experiments that measure how long the scheduler takes to detect an imbalance.

The setup for our macro experiment is identical to those in the previous
section in which we vary the amount of imbalance between multiple sources
and single target. We now measure how long it takes the scheduler to create a
balance that is within 15% of optimal. For example, given an ideal balance of
<25, 25, 25, 25>, the balance <28, 22, 28, 22> is acceptable because the length of
each run queue is within 15% of optimal. From the previous results, we expect
O(1) will quickly find a balance using a poly-balance and CFS will likely take
longer using pairwise balances.

132

6.4. Time to Resolve and Detect?

Imbalance
20 30 40 50 60 70 80 90

B
a
la

n
c
e
 T

im
e
(s

e
c
.)

0

5

10

15

20

25

30
O(1)

CFS

Figure 6.7: Time to Resolve Imbalance. An imbalance is considered resolved when
each run queue is within 15% of optimal. The imbalance between the three loaded sources and
the single target is varied along the x-axis; that is, <10 + x, 10 + x, 10 + x, 10>

Figure 6.7 reports the amount of time the O(1) and CFS schedulers take to
find acceptable balances given a range of initial imbalances. As expected, O(1)
finds a balance within seconds, even for very large imbalances. In comparison,
CFS is quite slow to find a stable balance, requiring nearly 9 s on average and
26 s for some workloads.

The large difference in time for O(1) versus CFS to find a stable balance
leads us to ask if the difference is due to a better balancing policy or to faster
imbalance detection in O(1). Therefore, our next set of experiments investigate
how long it takes each scheduler to detect that an imbalance exists and to begin
reacting.

Our first micro experiment is designed to determine whether a scheduler
is work-conserving: is a processor idle only if there are no eligible processes
in the system? In a work-conserving system, a newly-idle processor should
immediately steal waiting processes from busy CPUs.

133

6. Uncovering CPU Load Balancing Policies with Harmony

To determine if the scheduler is work conserving, we construct a workload
with heavily loaded sources and a single target (<40, 40, 40, 0>); the target
becomes idle after a uniformly random interval. This experiment is repeated
25 times, each time measuring the interval before the target processor steals
its first process. A work-conserving policy will immediately migrate processes
and non-work conserving schedulers will not.

Harmony shows that, for the O(1) scheduler, the idle target processor begins
migrating processes after a single millisecond of idle time; for CFS, migration
always begins in less than 1 ms. From these results we infer that both CFS and
O(1) are work conserving.

Our next experiment examines how long the system takes to respond when
one processor becomes relatively underloaded, but not idle. Underloaded
processors effectively reduce the performance of all the processes that are
assigned to more heavily loaded processors. A multiprocessor scheduler detects
that a processor is underloaded by performing a balance check between two
processors. Because each balance check incurs some cost, schedulers are likely
to need some heuristic about when to perform this operation. We specifically
want to know the frequency of balance checks.

The setup of this experiment is identical to the previous one, except the
load on the target processor is reduced instead of completely eliminated
(<40, 40, 40, 10>). Because the target processor is imbalanced with respect to
each of the three source processors, it must migrate processes from all three and
there are three corresponding balance checks. The definition of these intervals
is illustrated in Figure 6.8.

We measure all three intervals to infer the detection policy. If the balance
check is based on an event related to process activity (e.g., the check is performed
whenever a process exits the run queue), then we expect the first interval to a
be a small, fixed amount. On the other hand, if the balance check is performed
at some periodic, fixed interval (e.g., the check is performed every 5 seconds),
then we expect the measured first interval to appear random, since the load is
decreased at a random point in time. The longest recorded first interval should
be close to the period of the balance checks.

Table 6.1 shows the median and maximum duration of the first interval for

134

6.4. Time to Resolve and Detect?

Time(s)
32.1 32.2 32.3 32.4 32.5 32.6

R
u

n
 Q

u
e

u
e

 L
e

n
g

th

10

20

30

40

2nd

3rd
1st

Core 1

Core 2

Core 3

Core 4

Figure 6.8: Imbalance Detection. Illustrates the definition of the three detection
intervals: interval 1 occurs between when an imbalance is introduced and when the first
migration occurs; interval 2 is time between the first migration and the second; interval 3 is
between the second migration and the third.

O(1) Median(Max) Predictable
1st Interval 248 (11458) No
2nd Interval 64 Yes
3rd Interval 64 Yes
CFS Median(Max) Predictable
1st Interval 210.5 (9419) No
2nd Interval 256 Yes
3rd Interval 64 Yes

Table 6.1: Imbalance Detection. The table reports the three detection intervals(in
milliseconds): interval 1 occurs between when an imbalance is introduced and when the first
migration occurs; interval 2 is time between the first migration and the second; interval 3 is
between the second migration and the third.

135

6. Uncovering CPU Load Balancing Policies with Harmony

the O(1) and CFS schedulers. These results show that, for both schedulers, the
first interval is not fixed relative to the time at which the processor became
underloaded; thus, we infer that both schedulers perform a balance check
relative to some external timer. The maximum duration we observed for this
interval for O(1) and CFS were 11 and 9 seconds, respectively.

The results for the second and third intervals are shown in Table 6.1 as well.
For O(1), the second and third intervals are fixed at 64 ms; for CFS, the second
interval usually follows after 256 ms and the third after 64 ms. The implication
of these results is that each scheduler performs a periodic balance check, where
the period is affected by the likelihood of the imbalance. For a policy like this,
the first interval is not predictable, but the second and third intervals (measured
from the last migration) are. The policy in CFS appears to be slightly more
sophisticated in that the period continues to shorten as more imbalances are
detected.

6.5 summary

Both O(1) and CFS are work-conserving and perform a periodic balance check.
In both, idle processors are assigned eligible processes in about a millisecond.
Imbalances that do not involve newly-idle processors may not be detected for
long periods of time (roughly 10s); however, once an imbalance is detected,
both systems check the next processor relatively quickly (in 64 or 256 ms).
We find that O(1) often resolves imbalances within seconds, whereas CFS
takes much longer (nearly 9 seconds on average). Because CFS and O(1) have
similar detection latencies, we attribute CFS’s longer balance time to its process
migration strategy.

136

Chapter 7

Load Balancing Policies for
Non-Fungible Processes

When Kepler found his long desired belief did not agree with the most
precise observation, he accepted the uncomfortable fact. He preferred the
hard truth to his dearest illusions; this is the heart of science.

— Carl Sagan

This chapter examines load balancing policy for more complex workloads
where it is insufficient to simply divide processes evenly amongst processors.
All of our previous experiments have examined homogeneous workloads in
which every process had identical characteristics and properties. We now turn
our attention to understanding how O(1), CFS, and BFS balance heterogeneous
workloads. Load balancing is more difficult with heterogeneous processes
because processes are no longer interchangeable. For example, placing two
CPU-bound processes on the same processor is not the same as assigning two
IO-bound processes. In these workloads, processes are not fungible; which
processes are selected for migration is as important as how many or how often.

137

7. Load Balancing Non-Fungible Processes

Several aspects of a process may make it distinct from other processes. In
this work, we examine workloads containing processes with different CPU
demands and different user-assigned priorities. Evenly dividing CPU demand
across processors ensures that all processes receive the same level of service
or, viewed differently, experience the same level of CPU contention. If each
processor is evenly loaded, the scheduler can present a uniform view of CPU
resources. This uniformity allows the scheduler to more closely match general
processor scheduling policy. A scheduling policy that divides CPU demand
evenly must either selectively choose processes to migrate or continuously
shuffle processes until the desired balance is achieved. A similar situation exists
for user-assigned priorities.

Using Harmony, we also extract O(1), CFS, and BFS’s policies for load bal-
ancing workloads that do not divide evenly across the available number of
processors. At any given moment, the processes of an unevenly divided work-
load are receiving asymmetric levels of service. For example with a <2, 1, 1, 1>
workload, the two processes on Core 1 only receive a half of a CPU while the
processes on Cores 2, 3, and 4 receive a full CPU. To provide fair long-term
allocations, each process should take an equal turn sharing a processor. To
ensure this fairness, the scheduler keep track of the processes that have already
shared a CPU and carefully select which processes to migrate.

We start by examining unevenly divided workloads in Section 7.1 and move
to heterogeneous CPU demand and user-priorities in Sections 7.2 and 7.3.

7.1 resolution of intrinsic imbalances?

Our next questions concern how load balancing interacts with the general
processor scheduling policy, specifically fairness. For example, a proportional-
share scheduler should provide the same CPU allocation to each process with
the same scheduling weight; unfortunately, this can be difficult to achieve when
there exists an intrinsic imbalance (i.e., when the number of processes does not
divide evenly by the number of processors).

We begin by using Harmony to examine how O(1), CFS, and BFS resolve
intrinsic imbalances. One way to achieve a fair balance, or an even division of

138

7.1. Resolution of Intrinsic Imbalances?

O
(1

)
C

P
U

 %

50
60
70
80
90

100

C
F

S
C

P
U

 %

50
60
70
80
90

100

Sorted Processes
1 2 3 4 5

B
F

S
C

P
U

 %

50
60
70
80
90

100

Figure 7.1: Allocations with Intrinsic Imbalances. The three graphs report the
percentage of CPU allocated by O(1), CFS, and BFS to each of five processes running on four
processors. Each point represents a process’s average CPU allocation over one of the 25 runs of
this experiment. The dashed line represents the expected allocation given a perfect fair balance.

139

7. Load Balancing Non-Fungible Processes

Time (sec.)
0 5 10 15 20 25 30

P
ro

c
e

s
s
 M

ig
ra

ti
o

n
s

0

20

40

60

80

100

120

140

160
O(1)

CFS

BFS

Figure 7.2: Migration Timeline with Intrinsic Imbalances. The graph shows the
average number of processes migrated per second over the lifetime of the experiment for the O(1),
CFS, and BFS schedulers.

resources across processes, is to frequently migrate processes. However, fair
balancing conflicts with providing processor affinity, since frequent migrations
mean fewer consecutive process executions on the same processor.

To stress the decisions of each of the three schedulers given workloads with
intrinsic imbalances, we introduce five identical processes for four processors;
the experiment is started with the load of <5, 0, 0, 0>. Thus, if each process is
allocated 80% of a processor, the policy is fair.

Figure 7.1 shows the average allocation each process receives over a 60
second interval for each of the three different schedulers. Figure 7.2 reports the
corresponding rate of migrations over time. The two figures show that the three
different schedulers behave significantly different given intrinsic imbalances.

The O(1) scheduler gives a strong preference to affinity over fairness. As
shown in the top graph of Figure 7.1, three processes are allocated an entire
processor and the remaining two are each allocated half a processor. Figure 7.2
supports the observation that few migrations are performed after finding this

140

7.1. Resolution of Intrinsic Imbalances?

Time (sec.)
45 45.2 45.4 45.6 45.8 46

1

0

1

2

2

0

1

2

3

0

1

2

4

0

1

2

Figure 7.3: Run queue lengths for CFS with Intrinsic Imbalances. The four
graphs report the run queue lengths for each of the four processors, numbered 1-4. This graph is
a detailed view of a single second of a single run, but is representative of each second of every
run.

acceptable balance.

The BFS scheduler strongly ranks fairness above processor affinity. As
shown in the bottom graph of Figure 7.1, in all 25 runs of this experiment, each
process receives within 1% of the exact same allocation. This perfect fair balance
comes at the cost of 163 migrations per second.

Finally, the behavior of the CFS scheduler falls between that of the O(1) and
BFS schedulers. As shown in the middle graph of Figure 7.1, CFS allocates each
process between 65 to 100% of a CPU; as shown in Figure 7.2, processes are
migrated at a rate of approximately 23 migrations per second.

We now delve deeper into the cause of these allocations by CFS. Figure 7.3
shows a representative one second window of the run queue lengths for a single
run of this experiment. In this figure, Cores 2 and 4 have only a single process
while Cores 1 and 3 oscillate frequently between one and two processes by

141

7. Load Balancing Non-Fungible Processes

Time (sec.)
0 10 20 30 40 50 60

A

0
25
50
75

100

B

0
25
50
75

100

C

0
25
50
75

100

D

0
25
50
75

100

E

0
25
50
75

100

Figure 7.4: Allocation Timeline for CFS with Intrinsic Imbalances. The five
graphs report the amount of CPU given over time to each of 5 processes, lettered A-E, running
on 4 CPUs with CFS. The y-axis is the percent of a CPU each process is allocated. The dashed
line is the expected allocation for a perfect fair balance.

migrating a single process back and forth rapidly. This pattern indicates that
two cores are shared by three processes while the two remaining processes are
each allocated their own core.

Figure 7.4 shows the large scale effect this pattern has on the amount of CPU
allocated to five processes on four CPUs in one particular run. The figure shows
that processes E and D are each allocated their own CPU for a long period of
time (between 35 and 65 seconds) while processes A, B, C share the two other

142

7.2. Resolution of Mixed CPU Workloads?

CPUs; then after 65 seconds, CFS migrates process D, at which point processes
A and E are each allocated their own CPU. Across many runs, we have found
that CFS allocates, for long periods of time, two CPUs to two processes and
divides the remaining two CPUs between three processes. In general, CFS
is more likely to migrate processes that have recently been migrated. While
this technique provides a nice compromise between processor affinity and fair
balancing, some processes are migrated quite often: once a process begins
migrating it may continue for tens of seconds. These oft-migrated processes
suffer both in lost processor affinity and in reduced allocations.

To summarize, given intrinsic imbalances, the O(1) policy strongly favors
processor affinity over fairness. BFS has the exact opposite policy: intrinsic
imbalances are resolved by performing a process migration every 6ms on aver-
age. CFS’s policy falls somewhere in the middle: it attempts to resolve intrinsic
imbalances while honoring processor affinity. This policy results in 85% fewer
migrations than BFS, but unfairly divides processors amongst processes.

7.2 resolution of mixed cpu workloads?

We next examine multiprocessor scheduling policies for workloads with mixed
CPU requirements. These policies determine how heterogeneous processes
are distributed across processors: in this case processes with dissimilar CPU
usages. Load balancing is more difficult with these types of workloads because
processes are no longer interchangeable.

In this section, we first use Harmony to extract a scheduler’s policy for
balancing processes with different CPU requirements. We then determine how
this policy is implemented by each scheduler. Finally, we examine the effect of
these policies on performance.

Given a workload with a mix of heavy and light CPU processes, our first
goal is to determine how each scheduler balances those heavy and light CPU
processes across processors. In an ideal weighted balance, the aggregate CPU
demand is the same on each processor. To simplify the task of identifying the
ideal weighted balance, we construct workloads such that a balance can only be
created by placing a single heavy and a single light process on each processor.

143

7. Load Balancing Non-Fungible Processes

We use workloads of four heavy processes (100% CPU-bound) and four light
processes (CPU requirements varying from 5 to 100%).

To determine how closely the dynamic balance chosen by each scheduler
matches the ideal weighted balance, we compare the run queues lengths for the
two cases. The first case is represented by the ideal: a run with the processes
statically balanced such that there is one heavy and one light process per CPU.
Even with the ideal balance, there exists variation in the run queue lengths at
each CPU over time. This variation is due both to the light process sleeping at
random intervals and how each scheduler decides to allocate the CPU between
the light and heavy processes; capturing these non-subtle variations in run
queue length is the point of constructing this ideal static balance. For intuition,
the top graph in Figure 7.5 shows the run queue lengths over 100ms for a
statically balanced heavy/light workload; each run queue length varies between
one and two.

The second case is the behavior of the scheduler when it performs dynamic
balancing. The bottom graph in Figure 7.5 shows an example of the run queue
lengths when the loads are dynamically balanced; in this case, each run queue
length varies between 0 and 4. To measure how close the dynamic balance is to
the ideal static balance, we compare the variance across the run queues. The
difference in the variance recorded during the static and dynamic balanced
experiments is normalized using symmetric absolute percent error such that
the worst possible match is represented by 100% and a perfect match is assigned
0%.

We extract a scheduler’s mixed CPU load balancing policy using a single
source Harmony experiment in which the target processors become idle. Both
the heavy and light processes start on the single source processor (<8, 0, 0, 0>).
If resulting load balance is <2, 2, 2, 2> and each processor contains a heavy and
a light process, then the scheduler has achieved a weighted balance.

Figure 7.6 shows how well the O(1) and CFS schedulers match the ideal
weighted balance for a variety of heterogeneous workloads over 25 runs. This
graph shows the balance achieved in the long term; in this case, each workload
is first run for 30 s to give the scheduler time to distribute processes and then
the run queue variance is measured and reported for the next 30s.

144

7.2. Resolution of Mixed CPU Workloads?

Static Balance

Time

R
u
n
 Q

u
e
u
e
 L

e
n
g
th

0

1

2

3

4

5
Core 1

Core 2

Core 3

Core 4

Dynamic Balance

Time

R
u
n
 Q

u
e
u
e
 L

e
n
g
th

0

1

2

3

4

5
Core 1 Core 2 Core 3 Core 4

Figure 7.5: Run Queue Timelines for Mixed CPU Workloads. Each graph shows
the run queue length for each of the four cores given a workload with four heavy and four light
processes. The top graph illustrates the case where the processes are statically balanced; the
bottom graph illustrates a case with dynamic balancing. This experiment was run on the O(1)
scheduler.

145

7. Load Balancing Non-Fungible Processes

Long−Term

Light CPU %
0 10 20 30 40 50 60 70 80 90 100

R
u
n
 Q

u
e
u
e
 M

is
m

a
tc

h

0
10
20
30
40
50
60
70
80
90

100 O(1)

CFS

Figure 7.6: Run Queue Match. This graph reports the symmetric mean absolute percent
error of the variance of the four run queues using a dynamic balance performed by the O(1) or
CFS scheduler, as compared to an ideal static balance. The results presented are for the long-term
balance (30 seconds after a 30 second warm-up). In all cases, four heavy and four light processes
are started on a single CPU; the amount of CPU used by the light process is varied along the
x-axis.

The results in this graph indicate that in the long term both CFS and O(1)
usually place processes such that run queue variance is within 25% of the ideal
placement. We now discuss these two schedulers in detail.

While the O(1) scheduler places some heterogeneous workloads very fairly,
it does not match the ideal placement well for two regimes of workloads: for
a light process using 5-10% of the CPU or one using 65-90% of the CPU. We
have examined these cases in more detail and found the following. In the low
range (5-10%), we observe that heavy processes are divided across processors
evenly, but light processes are clustered in pairs. An extra light process per
CPU results in an extra CPU demand of 10% in the worst case and the O(1)
scheduler appears to view this an acceptable imbalance.

In the high range with a light process using 65% to 90% of the CPU, we dis-

146

7.2. Resolution of Mixed CPU Workloads?

Concurrent Heavy Processes
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L
ig

h
t
P

ro
c
e
s
s
 B

o
n
u
s

0
1
2
3
4
5
6
7
8
9

10

With

Without

Figure 7.7: Sticky Priority Bonuses in O(1). A single light process (85% CPU) is
run against a variable number of heavy processes; the y-axis show the magnitude of the bonus
given to the light process. The line marked “Without” starts the experiment on a cold system.
The line marked “With” starts the experiment after warming the system by temporarily running
a heavy lead of 16 processes.

covered that the light processes receive a much larger allocation than expected,
once it has been assigned to a particular CPU. To improve interactivity, the O(1)
scheduler gives priority-bonuses to processes that are not CPU-bound; this
causes light processes to wait less in the run queue and alters the run queue
variance. We discovered that the priority-bonus given to jobs that have been
recently migrated is higher due to a phenomena we refer to as sticky bonuses.
Specifically, because the light process received too little of the CPU in the past
when the experiment was being initialized, O(1) gives it more of the CPU in
the present. These sticky bonuses, and not the load balancing policy, cause
the mismatch between the run queues. Further analysis confirms that the O(1)
scheduler achieves weighted balances in the 65%-90% light CPU range.

To better illuminate the behavior of sticky bonuses, Figure 7.7 illustrates two
different experiments: one in which bonuses are sticky and one in which they

147

7. Load Balancing Non-Fungible Processes

Time (sec.)
−10 0 10 20 30 40 50 60

L
ig

h
t

P
ro

c
e

s
s

D
y
n

a
m

ic
 P

ri
o

ri
ty

0

2

4

6

8

10

Dynamic

Static

Figure 7.8: Sticky Priority Bonuses Across Migration in O(1). Priority of a single
light process (85% CPU) during a run of the heavy/light heterogeneous workload experiment.
The y-axis shows the magnitude of the bonus given to the light process. The dynamic line shows
a run of the experiment in which the load was balanced by the O(1) scheduler and the static line
shows a run of the experiment in which the load was statically distributed by Harmony. The
range from -10 to 0 is experiment setup. A Harmony balanced run of this experiment needs
almost no time to setup.

are not. In both experiments, a single light process (85% CPU) is run against a
variable number of heavy processes and the magnitude of the bonus given to
the light process is reported. The line marked “Without” shows the base case in
which the experiment is started on a cold system; in this case, the magnitude of
the bonus increases as the light process competes against more heavy processes.
The line marked “With” shows what occurs when processes have a past history:
in this experiment, the system is warmed by having the light process compete
with a constant heavy load of 16 processes; after these 16 heavy processes are
stopped, the previous experiment is repeated. The “With” line illustrates that
priority bonuses remain even after the load is reduced; thus, processes maintain
bonuses even after the conditions that created the bonus cease to exist. Further
experiments (not shown) indicate that O(1) maintains bonuses after migration
as well.

148

7.2. Resolution of Mixed CPU Workloads?

Time (sec.)
0 10 20 30 40 50 60

R
u

n
 Q

u
e

u
e

 M
is

m
a

tc
h

0

20

40

60

80

100

Figure 7.9: Losing Balance in CFS. This timeline illustrates that CFS finds the ideal
weighted balance (between time 11 and 33), but then migrates processes and losses the balance.
The vertical lines indicate process migrations.

To demonstrate the affect process migration has on sticky bonuses, Figure 7.8
shows a light process’s priority during a single run of a heavy/light heteroge-
neous workload experiment. From time -10 to 0, the light process shares the
CPU with the other seven processes (three more light and four heavy). This
heavy load creates a large interactivity bonus. At time 0 Harmony introduces
an imbalance and the scheduler begins migrating processes to balance the load.
This light process is not initially migrated, but it maintains its interactivity
bonus despite the reduced load on its CPU. When the light process is eventually
migrated at times 10, 19, and 21, its bonus remains. O(1) maintains these sticky
bonuses across processors even if the conditions on the processor are different
from those that created the bonus.

In contrast to O(1), CFS consistently misses a weighted balance by a more
constant amount. Further analysis reveals that CFS actively searches for a
weighted balance by continuously migrating processes at a rate of 4.5 per second
on average. When CFS finds a weighed balance, it stops migrating processes for

149

7. Load Balancing Non-Fungible Processes

Light CPU %
0 10 20 30 40 50 60 70 80 90 100

M
ig

ra
ti
o
n
s

0

50

100

150

200

250

300

350

400
O(1) CFS BFS

Figure 7.10: Migrations for Heavy/Light workload. Total number of process
migrations during the heavy/light experiment for the O(1), CFS, and BFS schedulers. The
duration of the experiment was 60 seconds and the results presented are an average over 25
runs.

several seconds. After this brief pause, it resumes migrating processes again.
This effect is illustrated in Figure 7.9, which shows that the run queue variance
exactly matches that of the ideal case for periods of time (e.g., between 11 and 33
seconds in this run) and then differs significantly. Therefore, CFS’s run queues
alternate between being in a weighted balance and being in flux, causing a
roughly 25% mismatch on average.

Figure 7.10 illustrates the effort each scheduler put into finding a balance.
O(1) finds an acceptable balance in less than 10 migrations. In contrast, CFS of-
ten performs over 50 migrations during the 60s experiment, and would perform
more if the experiment ran longer. Because BFS does not have per-processor
run queues, this is the first metric we have shown for how BFS handles hetero-
geneous workloads. BFS continues to disregard processor affinity in the pursuit
of load balancing.

We infer from these results that O(1) and CFS strive for a weighted balance.

150

7.2. Resolution of Mixed CPU Workloads?

O(1) allows some minor imbalances for light processes. CFS also continues to
search for better balances even when it has found the best one.

Which Process to Migrate?

We next examine how O(1) and CFS find weighted balances. Specifically, we
are interested in how these schedulers pick a particular process to migrate.

Using the same experiment from the previous section, we analyze the initial
balance instead of the long-term balance achieved. This analysis gives the sched-
uler one second to find a balance, and then analyzes the run queue variance of
the following second. We then compare the dynamically-balanced run queue
variance with its ideal static counterpart, as in the previous section.

We expect to see two possible implementations of a weighted balance policy.
In the first, the scheduler uses its knowledge of the past behavior of each process
to select one for migration. We call this implementation informed selection. For
example in our mixed CPU experiment, informed selection would enable each
target processor to select a single heavy and a single light process for migration.
Informed selection should result in a scheduler quickly finding a weighted
balance and therefore the short and long-term balances should be roughly the
same.

A blind selection implementation ignores process characteristics when se-
lecting processes to migrate. Blind selection schedulers are likely to perform
several rounds of trial-and-error migration before finding their desired balance.
The initial and long-term balances of these schedulers would often be very
different; this results in run queue graphs that are not similar.

The two graphs in Figure 7.11 enable us to compare the long-term and
short-term results for the two schedulers. For the O(1) scheduler, the short-term
results match closely with the long-term results; therefore, we infer that O(1)
uses informed selection. However, CFS’s short-term and long-term balances
do not match at all. Performing further analysis, we discovered that CFS does
not select the correct processes for migration initially. Target processors often
take two heavy or two light processes instead of one of each. These processors
occasionally take too many processes as well. From these results we hypothesize

151

7. Load Balancing Non-Fungible Processes

Long−Term

Light CPU %
0 10 20 30 40 50 60 70 80 90 100

R
u
n
 Q

u
e
u
e
 M

is
m

a
tc

h

0
10
20
30
40
50
60
70
80
90

100 O(1)

CFS

Short−Term

Light CPU %
0 10 20 30 40 50 60 70 80 90 100

R
u
n
 Q

u
e
u
e
 M

is
m

a
tc

h

0
10
20
30
40
50
60
70
80
90

100

O(1)

CFS

Figure 7.11: Run Queue Match. Both graphs report the symmetric mean absolute
percent error of the variance of the four run queues using a dynamic balance performed by
the O(1) or CFS scheduler, as compared to an ideal static balance. The top graph examines
the long-term results (30 seconds after a 30 second warm-up); the bottom graph examines the
short-term results (one second after a one second warm-up). In all cases, four heavy and four
light processes are started on a single CPU; the amount of CPU used by the light process is
varied along the x-axis.152

7.2. Resolution of Mixed CPU Workloads?

that CFS uses a blind selection implementation.

Impact on CPU Performance?

Finally, we examine the performance implications of the O(1), CFS, and BFS
policies for handling mixed CPU workloads. Using the previous workloads
of four heavy and four light processes, we report the relative CPU allocation
that the heavy processes receive with each scheduler relative to the ideal static
layout; we focus on the heavy processes because they suffer the most from load
imbalances. The three graphs in Figure 7.12 report the relative slowdowns
given the three different schedulers.

The top graph in Figure 7.12 reports the slowdown for heavy processes in
both the short and long term with the O(1) scheduler. This graph illustrates
that when a heavy process competes against a light process consuming less
than 60% of the CPU, the O(1) scheduler delivers nearly identical performance
to the heavy process as the ideal static layout; however, heavy processes incur
a significant slowdown when competing against a process using between 60
and 90% of the CPU. This degradation is a direct result of the sticky bonuses
described earlier: even though the heavy and light processes are balanced
correctly, the O(1) scheduler gives a boost to the light processes to account for
the time in which they were competing with many other processes on a single
processor. As expected, the impact of the sticky bonuses wears off over the
longer time period for some of the workloads.

The middle graph in Figure 7.12 reports results for CFS; in the long term,
CFS’s continuous migration policy causes approximately a 10% reduction in
performance for the heavy processes. In the short term, CFS performs slightly
worse: its blind selection policy causes a 20% performance degradation for
heavy processes.

The bottom graph shows the relative slowdown for heavy processes using
BFS compared to an ideal static balance. These results show that BFS balances
processes such that they receive allocations very similar to those they would
achieve with an ideal static balance: within 4%. This balance is achieved by per-
forming an average of 375 migrations every second; this disregard for processor

153

7. Load Balancing Non-Fungible Processes

0 10 20 30 40 50 60 70 80 90 100

O
(1

)
H

e
a

v
y
 C

P
U

 A
llo

c
.

0
10
20
30
40
50
60
70
80
90

100

Long−term

Short−term

0 10 20 30 40 50 60 70 80 90 100

C
F

S
H

e
a

v
y
 C

P
U

 A
llo

c
.

0
10
20
30
40
50
60
70
80
90

100

Long−term

Short−term

Light CPU %
0 10 20 30 40 50 60 70 80 90 100

B
F

S
H

e
a

v
y
 C

P
U

 A
llo

c
.

0
10
20
30
40
50
60
70
80
90

100

Figure 7.12: CPU Allocations for Heavy Processes with O(1), CFS, and BFS.
Each graph shows the percentage of CPU given to the heavy processes; the allocations are
normalized to that received in the ideal static balance. Results for both the short and long-term
balances are shown.

154

7.3. Resolution of Priority Classes?

affinity may have serious performance implications for some workloads.
To summarize, all three schedulers have a weighted balance policy. O(1)

uses informed selection to find a weighted balance or a close proximity, but
O(1)’s per CPU policy of providing sticky bonuses results in severe performance
degradation for CPU-bound processes even after migration. CFS continually
searches for better balances even after it has found the most appropriate allo-
cation; because weighted balances are discarded, it is unsurprising that CFS
uses blind selection when picking a process to migrate. The performance cost
of CFS’s continuous migration on heavy processes is relatively low (< 10%)
since this policy ensures that CFS never spends too long in the best or worst
balance. Finally, BFS achieves a near perfect weighted balance (within 4%) by
aggressively migrating processes.

7.3 resolution of priority classes?

In our final set of experiments, we examine policies for scheduling heteroge-
neous workloads with mixed priority classes. Like the previous heterogeneous
workload, these workloads are difficult to balance because processes are no
longer interchangeable. We are again interested in discovering how these pro-
cesses are distributed amongst processors, how this distribution takes place,
and the performance cost of these policies. The experiments we use are similar
to the mixed CPU requirements experiments except we replace the heavy and
light processes with high and low priority processes, varying the differences in
priority from 2-38.

Unlike balances in the mixed CPU requirements experiment, mixed priority
imbalances do not lend themselves to analysis using a summary statistic like run
queue variance. For example, a <2, 2, 0, 0> division of high priority processes
and a <0, 0, 2, 2> division of low priority processes would yield constant run
queue lengths of <2, 2, 2, 2>. The run queue variance, in this example, would
be nil, but the resulting allocations to high priority processes may be too small
because the priorities are imbalanced. We must, therefore, rely on direct analysis
of process distributions. Unfortunately, this analysis does not produce useful
summary graphs, so instead we must describe these results primarily in prose.

155

7. Load Balancing Non-Fungible Processes

Priority Difference
0 5 10 15 20 25 30 35 40

N
o

rm
.

M
ig

ra
ti
o

n
s

0

5

10

15

20

25

30

35

40

45
High Priority

Low Priority

Figure 7.13: Migrations for Mixed Priorities with BFS. The graph shows the
number of normalized migrations per second for the four high and four low priority processes
in the workload. The difference in priority between the two classes is varied along the x-axis.
To fairly compare high and low priority processes, migrations are normalized by dividing the
raw count by their CPU allocation (in seconds). This normalization is required because in
a global queue architecture processes are only migrated when they actually scheduled. Low
priority processes are scheduled less, and so naturally, have fewer total potential migrations
than frequently scheduled, high priority processes. Comparing the raw counts would unfairly
inflate the relative number of high priority processes migrations.

We find that O(1), CFS, and BFS all divide the four high priority processes
evenly across the four processors. However, each scheduler handles the low
priority processes slightly differently. The O(1) scheduler clusters low priority
processes together on a few processors. When a large priority difference exists
between processes, the O(1) scheduler continuously migrates groups of low
priority processes (1.5 migrations per second).

CFS divides low priority processes evenly amongst processors, provided
the priority difference is small. As priority differences increase, the low priority
processes tend to be clustered together on a few processors. Similar to its
policy for handling processes with mixed CPU requirements, CFS continuously

156

7.3. Resolution of Priority Classes?

Priority Difference
0 5 10 15 20 25 30 35 40

M
ig

ra
ti
o

n
s

0

20

40

60

80

100

120

140 O(1)

CFS

Figure 7.14: O(1) and CFS Migrations for Mixed Priorities. This graphs shows
the total number of migrations over the 60 second run of this experiment. The difference in
priority between the two classes is varied along the x-axis.

migrates processes and pauses migration briefly when it finds an acceptable
balance.

Like O(1) and CFS, BFS also clusters low priority processes on a few pro-
cessors. It also provides some targeted processor affinity for mixed priority
workloads, in contrast to previous experiments. When the priority difference
between processes is small (2 to 6), BFS compensates for the small allocations
given to low priority processes by migrating them less and providing more
processor affinity (Figure 7.13). In this range, low priority processes are about
1.9 times more likely to execute on the same processor than the high priority
processes. In contrast, when the priority difference is large (16 to 38), low prior-
ity processes are roughly 2.3 times more likely to run on a different processor
when compared to high priority processes. These results strongly suggest that
BFS provides differentiated processor affinity based on process priorities.

Figure 7.14 shows how many migrations O(1) and CFS took to achieve
these balances. As discussed above, O(1) finds its desired balance with few

157

7. Load Balancing Non-Fungible Processes

migrations for small to medium priority differences, but begins to continuously,
and aggressively, migrate processes when the priority difference is large. CFS
repeats its policy of continuous migrations

We next examine how O(1) and CFS find their desired balance with mixed
priority workloads. O(1) performs a targeted selection of processes to achieve a
clustered low-priority balance. CFS, similar to previous experiments, blindly
selects processes for migration. In the priority difference range 18-30, it often
incorrectly assigns two high priority processes to the same CPU. Although, this
blind selection is later remedied by CFS’s continuous migration policy. BFS
also continuously migrates processes, but with some targeted processor affinity
for low priority processes.

Finally, we investigate how these policies affect the CPU performance of the
mixed priority workloads. For mixed priority workloads, this is perhaps the
best measure of how well the load is balanced. In the mixed CPU requirements
experiment, we can sum the desired CPU allocations to determine the load
experienced by each processor. A similar technique also works for mixed prior-
ities in a proportional-share scheduler; the total load is the sum of the process
weights. For example given four 25 weight processes, two 50 weight processes
and two CPUs, any combination of processes that yields 100 weight per CPU is
a balanced load. Unfortunately, there is not an equivalent technique for time-
sharing systems. The allocation guaranteed to four low priority processes in
the presence of two high priority processes cannot be calculated so easily in
a timesharing system. Therefore, we can only compare the CPU allocations
processes receive from a balance created by O(1), CFS, and BFS to allocations
equivalent processes receive given load distributions we know are balanced (a
single high and a single low priority process per processor).

Figure 7.15 shows the performance implications of each scheduler’s load
balancing policy. The long-term performance impact of O(1) and CFS’s policies
are most evident in the small priority difference range. Clustering low priority
processes results in up to a 20% performance degradation for high priority
processes in the O(1) scheduler and up to a 10% penalty for CFS. BFS’s policy
of clustering low priority processes can result in periodic reductions of CPU
allocations for high priority process of up to 12%.

158

7.3. Resolution of Priority Classes?

0 10 20 30 40

O
(1

)
H

ig
h

 C
P

U
 A

llo
c
.

0
10
20
30
40
50
60
70
80
90

100

Long−term

Short−term

0 10 20 30 40

C
F

S
H

ig
h

 C
P

U
 A

llo
c
.

0
10
20
30
40
50
60
70
80
90

100

Long−term

Short−term

Priority Difference
0 10 20 30 40

B
F

S
H

ig
h

 C
P

U
 A

llo
c
.

0
10
20
30
40
50
60
70
80
90

100

Figure 7.15: CPU Allocations for High Priority Processes with O(1), CFS,
and BFS. Each graph shows the percentage of CPU given to the high priority processes; the
allocations are normalized to that received in the ideal static balance. Results for both the short
and long-term balances are shown.

159

7. Load Balancing Non-Fungible Processes

In the mid to large priority difference range, the clustering of low prior-
ity processes does not result in a heavy performance penalty for any of the
schedulers. The large priority difference ensures that an additional one to three
low priority processes sharing the processor does not significantly affect the
allocation received by a high priority process.

In the initial balance, CFS’s blind selection caused up to 75% performance
drop on average for high priority processes in the medium priority difference
range (18-30). O(1)’s targeted process selection means its initial balance often
matches its long-term balance. BFS’s global queue architecture means it is is
always in a continuous state of balancing load.

To review, all three schedulers evenly divide high priority processes amongst
processors and often cluster low priority processes together on a few proces-
sors. The low priority processes are either left in an acceptable imbalance or
continuously migrated depending on the priority difference. For small priority
differences, this policy can come with a performance penalty between 10 and
20%. Although, large priority differences make this clustering irrelevant. In
contrast to it previously observed behavior, BFS provides targeted processor
affinity for low priority or high priority processes depending on the difference
in priorities.

7.4 discussion

Our Harmony experiments show that there are a wide variety of multiprocessor
scheduling policies, even just within Linux, see Table 7.1. The O(1) scheduler
places a premium on processor affinity. This adherence to processor affinity is
evident in the intrinsic imbalance experiment. After the initial assignment of
processes to processors, the scheduler does not reassign processes to provide
long-term fair allocations. O(1) enforces its broad policy using precise algo-
rithms, like poly-balance process migration algorithm and informed selection
for the initial distribution of processes.

In contrast, CFS’s general multiprocessor scheduling policy is to avoid the
worst-case load balance at all costs. CFS migrates processes at a steady rate
over the lifetime of our Harmony experiments. This behavior is visible in all

160

7.4. Discussion

Does the scheduler perform load balancing across processors? (§6.2)
O(1), BFS, and CFS all perform process migrations.

Does it contain mechanisms for maintaining affinity? (§6.2)
O(1) pays the strongest attention to affinity.
BFS is the weakest.
CFS is in-between.

How does the scheduler determine how many processes to migrate? (§6.3)
O(1) uses global information and performs a minimal number of migrations.
CFS uses a randomized pairwise strategy, hence performing more migrations.
BFS has a centralized queue and constantly migrates processes.

How long does the scheduler take to get to a stable balance? (§6.4)
O(1) is relatively quick (due to its minimal migrations).
CFS takes an order of magnitude longer.
BFS’s global queue architecture makes this question irrelevant.

How long before the scheduler detects an imbalance? (§6.4)
If idle, immediately; all schedulers are work-conserving and thus steal work when

idle.
If non-idle, O(1) and CFS use a periodic check to detect imbalances, which

increases in frequency when some imbalance has been detected.
BFS’s global queue architecture makes this question irrelevant.

When there is an intrinsic imbalance, how does the scheduler react? (§7.1)
O(1) is most unfair, and thus can lead to notable imbalances across processes

while maintaining affinity;
CFS moves processes somewhat frequently and is more fair, at the cost of affinity.
BFS is most fair, constantly moving processes across all CPUs, also at the cost of

affinity.
With heterogeneous workload (heavy vs. light CPU), how are processes migrated? (§7.2)

O(1) does a good job of balancing heavy and light processes, but some scheduling
state is maintained across migrations (perhaps inadvertently).

CFS continually tries new placements, and thus will migrate out of good
situations (even though unnecessary).

BFS and its central queue once again is fair and does well.
With heterogeneous workloads (high vs. low priorities), how are processes migrated? (§7.3)

All schedulers do well with high-priority processes, dividing them evenly
amongst processors.

BFS seems to provide targeted processor affinity to mixed-priority workloads.

Table 7.1: The Load-balancing Policies Extracted by Harmony.

161

7. Load Balancing Non-Fungible Processes

three of the workload experiments in this chapter. CFS implements this policy
using simple, but imprecise algorithms. It employs a non-deterministic pair-
wise process migration algorithm and ignores process characteristics when
initially selecting processes for migration. The long-term cost of pair-wise
process migration and blind selection are potentially large for schedulers that
do not continuously rebalance their workloads. However, these algorithms
make sense in the context of CFS’s continuous migration policy. The outcome of
more precise algorithms would simply be tossed out during the next migration.

BFS’s load balancing and per-processor scheduling policies are very tightly
integrated. BFS defines a proportional-share scheduling policy and maintains it,
even across multiple processors. The intrinsic imbalance experiment exemplifies
this behavior. BFS provides near perfect fair allocations in this experiment, at
the cost of 163 process migrations per second. In contrast to O(1) and CFS, BFS
regards processor affinity as a potential scheduling bonus rather than an integral
part of scheduling policy. In nearly all of our experiments BFS disregards
processor affinity in favor of enforcing a proportional-share scheduling policy.
In the mixed priority experiments, BFS simply uses processor affinity as a bonus
for low or high priority processes.

Assigning Applications to Schedulers

The results of these experiments begin to provide a guide for application de-
velopers in selecting a multiprocessor scheduler or molding their applications.
Each scheduler has advantages and disadvantages that make it suitable to cer-
tain types of workloads. The ideal workloads for each scheduler are presented
below.

Because of O(1)’s unfairness given intrinsic imbalances and its tendency
to find acceptable (but not perfect) balances, this scheduler is well-suited for
applications that are composed of many tasks (many more than the number of
processors in the system). The O(1) scheduler tends to find a balance and keep it.
It also occasionally takes over 11s to detect new imbalances. Applications using
the O(1) scheduler should ensure that tasks tend to maintain the same behavior
(perhaps by partitioning the work amongst task groups). The system should

162

7.5. Conclusion

also be well-controlled to ensure that no unexpected tasks arrive. Strongly
controlling the application and system behavior should minimize the cost of
O(1)’s tendency to keep a balance for a long time. Tasks with good cache-locality
can expect improved performance from O(1)’s policy of strong processor affinity.

CFS’s difficulty with intrinsic imbalances and its tendency to discard good
balances in search of better ones makes it ideal for applications composed of
many tasks where the workload is constantly shifting. Under CFS it is unimpor-
tant if a task’s, or even if the system’s, behavior changes dramatically because
CFS is constantly searching for a better load balance. We also hypothesize
that CFS will scale to a large number of CPUs better than O(1). CFS’s blind
selection and constant migration policy ensures that it does not need global
knowledge or good information coherency to eventually find a good balance.
This was a disadvantage in our experiments because of the small number of
cores; however, it may prove to be an advantage in larger systems.

BFS is a good choice for applications that do not utilize the cache well. This
includes applications with lots of tasks that each have large cached require-
ments, applications with poor locality, and applications with small working
sets. BFS’s strong fairness guarantees makes it suitable for both applications
with a few tasks and applications with many more tasks than processors. In
addition, BFS’s agility in creating balances quickly is even more well-suited
than CFS for workloads with unexpected changes in demand or systems in
which the application is not the only workload. This scheduler’s strict adher-
ence to proportional-share policy also allows applications to perform weighted
CPU partitioning based on user or request-type. We hypothesize that BFS’s
global queue architecture will not scale well to lots of processors. This confines
applications to relatively small workloads or requires the construction of a large
cluster using several small machines.

7.5 conclusion

The increasing popularity of multicore and SMP systems have created an envi-
ronment in which a new set of tools are required to evaluate and understand the
behavior of CPU schedulers. Because performance gains are predicted to come

163

7. Load Balancing Non-Fungible Processes

primarily from increased parallelism it is vital that multiprocessor schedulers
do not waste these resources. We have presented Harmony, a technique and
suite of experiments designed to extract an operating system’s multiprocessor
scheduling policy. This extraction occurs through a combination of simple
high-level synthetic workloads and low-level measurements. With Harmony
users can determine the scheduling policy of undocumented or poorly docu-
ment operating systems. System developers can use Harmony to validate their
scheduling policy implementations and quickly evaluate prototype policies.

In this chapter, we used Harmony to analyze the behavior of three Linux
schedulers. Harmony exposed several interesting policies (see Table 7.1). CFS
throws away good load balances to search for something better when running
heterogeneous workloads. The O(1) scheduler strongly favors processor affinity
over fairness, even if this results in performance degradation of over 30%. All
three schedulers cluster low priority processes together rather than spreading
them over the available processors. BFS provides increased processor affinity
for marginally low priority processes, presumably to make up for their small
CPU allocation.

The results of extracting multiprocessor scheduling policies from O(1), CFS,
and BFS highlight the value of taking an empirical scientific approach to under-
standing CPU scheduling. The policies extracted indicate that multiprocessor
scheduling is far from standardized. Moreover, they provide an indication of
areas that need improvement. Generalizing the extracted policies also gives
developers an idea of what to expect when running their applications on these
schedulers.

164

Part IV

Context and Conclusions

165

Chapter 8

Related Work

They always say time changes things, but you actually have to change
them yourself.

— Andy Warhol

The work presented in this dissertation is focused on increasing the trans-
parency, predictability, and reliability of operating systems, and as such, it rests
firmly on the foundations of operating system research from the past 50 years.
This related work section is not intended to be a survey of this foundational
research, rather it is intended to present an overview of similar efforts (with a
focus on more recent works). To improve clarity, we have divided the related
work into two sections, those works related primarily to CPU Futures and those
more closely related to Harmony.

8.1 cpu futures

This section begins with a discussion of research that has a similar motivation
to CPU Futures: enabling applications to create and enforce their own resource

167

8. Related Work

management policies. We then discuss related techniques for detecting and
managing resource contention using implicit rather than explicit feedback.
Next we examine the similarities between CPU Futures and prior research in
real-time scheduling. We then compare the feedback provided by CPU Futures
to the feedback from Share, an early timesharing scheduler. Two alternate
architectures for preventing resource contention are discussed next. In the
first, static partitioning, cross application resource contention is eliminated.
Cloud computing environments, the second architecture, presents the illusion
of infinite hardware resources. Research works that may improve the auxiliary
aspects of CPU Future are discussed next. In particular, we speculate on the
potential improvements of using the accurate accounting found in Resource
Containers and increasing precision of CPU Futures controllers using control
theory. We conclude with a brief examination of the contribution of CPU
Futures to the reliability and performance of web servers under overload.

Our motivation is similar to that of Exokernel [59, 75], microkernels [12, 69,
70, 82], extensible operating systems [33, 41, 86, 112], introspective systems [18,
66], and split-level schedulers [14, 81] (like Scheduler Activations); namely,
applications can benefit from exerting more control over resource management.
Conceptually, this allows a wide variety of application-specific scheduling
policies that may be difficult to express through an operating system interface,
but that are relatively easy to implement in modern programming languages.
In particular, Scheduler Activations [14] shares not only a motivation with
CPU Futures, but also a basic architecture. Scheduler Activations’ design was
the inspiration for our division of CPU Futures into a in-kernel herald and a
userspace controller. Scheduler Activations create a feedback loop between the
in-kernel CPU scheduler and the user-space thread scheduler to prevent multi-
threaded scheduling conflicts. CPU Futures takes a similar approach by creating
a feedback loop to avoid CPU contention policy conflicts. Our approach is also
similar to Infokernel [18], in that CPU Futures enhances commodity schedulers
rather than replacing them. This technique leverages the time and money
invested in commodity schedulers, and may help make them more robust by
facilitating in-depth user feedback.

An alternative approach to direct CPU scheduler feedback is to construct

168

8.1. CPU Futures

implicit feedback from low-level instrumentation of individual tasks. Barham
et al. [30] and Stewart et al. [115] take this approach to detect or predict resource
contention. In this approach, a variety of performance information is collected
online and complex models are calibrated or constructed offline. This approach
is broader than CPU Futures in that it can detect contention for multiple re-
sources. However, it requires a learning phase or recalibration for every new
application, range of inputs, and hardware configuration. In contrast, CPU
Futures models are simple, predictive, adjust to all hardware types (just as the
scheduler does), and do not require a learning phase or offline analysis.

Implicit feedback has also been used to ensure low-importance background
tasks do not interfere with important foreground processing [11, 55]. A back-
ground application monitors its own application-specific progress or resource
allocations and infers resource contention whenever this progress slows or allo-
cations decrease. The low-importance application then slows or suspends its
resource consumption to reduce interfering with high-importance applications.
These type of applications can detect resource contention for a larger set of
resources than CPU Futures. However, this approach only works if resource
contention reduces allocations to all tasks. As the web server experiment in
Chapter 3 illustrates, this assumption does not always hold. Recall that in this
experiment nearly identical Apache workers received a wide range of CPU
allocations; some processes starved while others were able to service over 200
requests per second.

Previous work in real-time scheduling is related to our work in many ways.
For example, Buttazzo and Abeni [39] proposed the notion of tasks that have
a range of acceptable CPU allocations. Feedback scheduling has been used
to support real-time applications without a priori knowledge of their resource
requirements [26, 52]. And previous real-time research has also attempted to
extract CPU requirements from the behavior of real-time applications [25, 28].
Our approach differs in that our focus is entirely on non-periodic, best-effort
applications, with the ability to reduce or modify their CPU demand given
scheduler feedback.

Previous schedulers have provided feedback to users. For example, the
Share decay-usage scheduler allowed users to query the system to get their

169

8. Related Work

expected share of CPU [76]. However, multifaceted distributed services are
rapidly replacing single-purpose programs executed from a prompt. Service
applications are long-lived entities, often servicing multiple requests and users
concurrently. In effect, the application has replaced the user as the primary
resource consumer in server environments. These applications need feedback
in much the same way that Share users did. In short, more abstraction requires
more automation.

Statically partitioning CPU resources through virtualization [29, 38, 114]
or hierarchical CPU partitioning [65, 125] can be used to ensure a fixed CPU
allocation for each individual application. These techniques ensure that there is
CPU isolation between competing applications. However, they do not prevent
CPU contention between concurrent tasks in the same application; without
scheduler feedback, it can be difficult for an application to determine the correct
level of concurrency or the severity of CPU slowdown it is suffering.

Rather than enabling applications to handle CPU contention, another alter-
native is to dynamically add more hardware. Recent advances in cloud comput-
ing have made it appear as though computing resources are infinite [22, 58, 84];
however, as demand increases in the cloud, good scheduling will be required
to preserve this illusion. Applications will need to detect when demand has
outstripped its current supply of cloud nodes. CPU Futures can not only aid in
detecting overload, but also may allow applications to effectively manage CPU
contention until additional cloud nodes can be brought online. Optionally, a
frugal cloud client may wish to manage transient overload using CPU Futures
rather than allocating more nodes, thereby saving money.

CPU Futures use of accurate accounting information to allow applications
to modify performance by job class is reminiscent of Resource Containers [27].
Our CPU accounting is not as precise as that presented in the Resource Contain-
ers work because we do not provide accounting groups or measure operating
system CPU usage. However, CPU futures introduces three metrics not found
in Resource Containers, a process’s desired, predicted, and potential alloca-
tions. Combining the precision and flexibility of Resource Containers with the
behavioral analysis of CPU futures would yield a powerful set of metrics.

Control theory mechanisms present an alternative to the search algorithm

170

8.2. Harmony

employed the CPU Futures controllers presented in Chapter 5. Padala et al.
[98] use a control-theory-enabled resource allocator to meet statically-specified
application performance metrics, such as throughput or mean response time.
Unfortunately, desired throughput and response time are functions of the type
and size requests being made; a user would not expect similar response times
for converting on a 30 second snippet of video as they would for a feature film.
Replacing throughput or response time with CPU slowdown may add propor-
tionality to this control theory approach; similarly, adding control theory to
CPU Futures controllers may speed finding the optimal priority or concurrency
level.

Many other works have examined the problem of web servers under over-
load [58, 105, 109, 124]; some in particular have dealt with finding the optimal
MPL [67, 123, 127]. We feel that our technique is both valuable beyond this
purpose as well as an important supplement to these prior techniques. CPU fu-
tures may be able to provide supplemental information to aid these techniques.
They may also be able to verify at run-time that these techniques are working;
CPU futures can act as a lightweight fault detector for sophisticated admission
control techniques.

8.2 harmony

Understanding the policies and behaviors of operating systems and hardware
is critical to building new operating systems and applications and a vital tool
to validate current operating systems. It is no surprise that there have been
similar studies into extracting operating system and hardware behaviors. As
yet, however, no comparable tools exist for multiprocessor scheduling policies.

Systems other than the CPU scheduler have also been the focus of policy
extraction. Semantic block-level analysis is a technique designed to analyze
the behavior of journaling file systems [104]. Shear is a tool that measures
the characteristics of RAIDs [53]; by generating controlled I/O request pat-
terns and measuring the latency, Shear can detect a broad range of storage
properties. Similar microbenchmarking techniques have been applied to SCSI
disks [129], memory hierarchies [131], and TCP stacks [99]. Application and

171

8. Related Work

microbenchmark-driven workloads have also been used to analyze system-call
behavior [74, 95, 119]. These analyses are used to enable accurate simulations,
find bugs, and optimize performance.

Several studies have applied policy extraction techniques to CPU schedulers
as well [40, 106, 107]. Hourglass is a tool that runs synthetic, instrumented
workloads to detect context switch times, timer resolutions, and low-level
kernel noise [106]. Like Harmony, Hourglass introduces controlled stimulus
and observes the resulting scheduling behavior. From this behavior, Hourglass
is able to infer low-level single processor scheduling policies. Hourglass relies
solely on high-resolution hardware timers for its observations, and therefore,
does not require kernel instrumentation. Although it is portable, this reliance
on hardware timers limits its scope to single processor machines. Relying solely
on hardware timers also limits the types of single processor scheduling behavior
that can be observed; this limited observation restricts the types of policies that
can be inferred (even on single processor machines).

During the development of FreeBSD’s ULE CPU scheduler, the developers
also created a synthetic workload simulation tool called Late [107]. Developers
used Late’s synthetic workloads to measure timer resolutions, fairness, inter-
activity, and basic performance. Late does not include measurements of run
queue lengths or processor selection, limiting the scope of its analysis. Late can
be used to compare schedulers in the areas mentioned, but cannot determine
the underlying policy or infer the cause of a schedulers behaviors.

The LinSched tool runs the CFS scheduler in a userspace simulator [40].
Researchers and kernel developers can use this tool to observe the behavior of
CFS and evaluate new scheduling policies. The goals of Harmony are quite
similar to those of LinSched; only the approach differs. Harmony is designed
to be generally applicable to a variety of operating systems, whereas LinSched
is primarily focused on CFS. Perhaps integrating Harmony’s experiments and
measurement types, particularly run queue length and processor selection, into
LinSched could provide extra insights into CFS’s multiprocessor scheduling
behavior with all the benefits of running in a simulated environment.

172

Chapter 9

Conclusions

Never believe a thing simply because you want it to be true.

— Neal Stephenson (Anathem)

Applying the scientific method to CPU scheduling has improved the perfor-
mance of distributed applications and created a deeper understanding of the
tradeoffs inherent in multiprocessor scheduling. The single processor predictive
models presented in CPU Futures are the direct result of 100s of hours of obser-
vations, hypothesis creation, and experimental validation. These models allow
distributed applications to steer CPU scheduling and mitigate CPU contention.
In the Harmony project, we defined a framework and set of experiments for
observing multiprocessor scheduling policy. We then used Harmony to analyze
the scheduling policies of three Linux schedulers: O(1), CFS, and BFS.

In this chapter, we provide a brief summary of the advances made by taking
a scientific approach to CPU scheduling. This is followed by a discussion of
our ideal scheduler to hopefully influence future scheduler designs. We then
present some of the broader lessons we learned in the pursuit of this work. An

173

9. Conclusions

analysis of how we might approach this work differently, given our experience,
concludes this chapter.

9.1 summary

This section summarizes the results of creating predictive scheduling models
and building an experimental framework for observing multiprocessor schedul-
ing behavior. These two projects are the direct result of taking a classic scientific
approach towards CPU schedulers. By treating the CPU scheduler like a nat-
ural system, we were able to use the scientific method to observe, generalize,
and predict its behavior. These projects are summarized in more detail in the
following sections.

CPU Futures

Using the results of observational experiments, we created predictive CPU allo-
cation models for both timesharing and proportional-share schedulers. These
models are based on a combination of basic principles about how these sched-
ulers work and experimental observation. Our proportional-share predictive
model is an extension to the GPS model on which proportional-share schedulers
are based. Through experimentation, we extended this basic model to include
both ineligible weights and dynamic (non-CPU-bound) processes. Refining this
model further, we altered it to work with CFS’s particular implementation of
IO-compensation. Unlike the proportional-share predictive model, we created
our timesharing model purely from empirical observations and the base intu-
ition that while tasks may move between priority groups, the CPU allocations
across priorities remains roughly the same. Both of these models can accurately
determine a tasks slowdown due to CPU contention and can predict changes
in CPU allocation due to priority adjustments.

Embedding these models into CPU schedulers gave applications the ability
to resolve CPU contention and enforce CPU scheduling policies that contra-
dict the operating system’s policy. For example, a CPU Futures controller,
called Empathy, limited the performance impact of a low-importance back-

174

9.1. Summary

ground application on a web server; Empathy was able to reduce the web
server’s performance degradation by over 70% compared to using the standard
CPU scheduling interface. In a different scenario, an Empathy-managed, low-
importance application was also able to accurately meet performance goals
while minimizing its interference with foreground applications. In the web
server starvation-avoidance case study, the Shepherd web server was able to
reduce both the number and duration of starving requests by an order of mag-
nitude by using CPU Futures feedback. In the final CPU Futures case study,
we replaced the Shepherd’s starvation-avoidance policy with a fair-throughput
policy. With this new policy and predictive scheduling models, Shepherd can
proportionally divide server CPU resources between multiple job classes in
direct contradiction to the underlying CPU scheduler’s policy.

An evaluation of our predictive scheduling models combined with these
case studies demonstrate that predictive scheduling models can provide useful,
accurate feedback to applications. This feedback enables applications to proac-
tively manage their own CPU scheduling and prevents conflicts between the
application’s and CPU scheduler’s objectives.

Harmony

Harmony is, in many ways, an effort to formalize the approach we took in
creating the CPU Futures models. The CPU Futures predictive models were the
results of careful experimental observation and hypothesis testing. To obtain
observations of the scheduler given different workloads, we built a synthetic
experimental framework. Harmony is an extension of that framework modified
to focus on multiprocessor scheduling.

Using the Harmony framework and experiment set, we were able to observe
and generalize the multiprocessor scheduling behavior of three different Linux
schedulers: O(1), CFS, and BFS. For example, each scheduler has a unique policy
for managing intrinsic imbalances. O(1) strongly values processor affinity over
fairness, leaving the workload permanently imbalanced. BFS strongly favors
fairness over processor affinity; it provided near perfect long-term balance by
constantly migrating processes. CFS falls somewhere in between; it provides a

175

9. Conclusions

better balance than O(1), but still far from perfect. CFS also fails to effectively
limit process migrations. This behavior is likely the result of CFS’s policy of
preferring to migrate tasks that have been recently migrated.

Each scheduler also had a unique policy for load balancing heterogeneous
workloads. O(1) carefully selects tasks for migration to create its desired balance;
whereas CFS blindly selects tasks and then continuously migrates them until
an acceptable balance is achieved. CFS never stays in a single state too long,
even if it is an acceptable balance; it continues to search for better load balances.
Because of its global queue architecture, BFS tends to create its load balances
on the fly by dispatching whichever task is at the front of the run queue. In
contradiction to this general behavior, it does provide some processor affinity to
low priority tasks. We believe this is to compensate for the smaller allocations
these tasks will receive; however, it may simply be an unintended side-effect of
BFS’s processor affinity mechanism.

From these observations, system researchers can begin to refine and replace
these multiprocessor scheduling policies. Every multiprocessor scheduling
policy represents a tradeoff between conflicting design goals. A good policy
is one in which the tradeoffs are made efficiently. For example, CFS’s intrinsic
imbalance policy is not efficient; the oft-migrated tasks suffer a large reduction
in processor affinity and receive only a small increase in fairness. Using these
observations, system researchers and Linux developers can refine CFS’s intrinsic
imbalance policy to produce more efficient tradeoffs.

These observations may also lead to advances in multiprocessor scheduling
architecture. Many of the policies exposed in this work are directly related
to the underlying multiprocessor scheduling architecture; note BFS’s often
complete disregard for processor affinity. Examining the real consequences of
these architectural choices may inspire researchers to provide an alternative
architecture that enables simpler policy design.

The Harmony framework does not rely on source code, documentation,
or any particular scheduling paradigm. It is, therefore, entirely portable and
reusable. It can easily be integrated into the development tool chain for creating
and modifying schedulers. Developers need to be able to evaluate whether
their implementation matches their desired policy and they must be able to

176

9.2. Ideal Scheduling

examine the unexpected side-effects of high-level policy decisions.

9.2 ideal scheduling

In analyzing and modeling commodity CPU schedulers, we began to develop
an idea of the properties we would like to see in future schedulers. We hope
that these properties can help guide researchers in developing new schedulers.

Technology that behaves in such a predictable manner as to become boring
and even unnoticeable is the best technology. We should strive to make our
CPU schedulers predictable and boring; unexpected behavior should be elim-
inated entirely. We have shown that it is possible (and worthwhile) to create
predictive models for the current generation of schedulers; however, we never
claimed that making these models was easy. Ideally, future CPU scheduling
development would start with a simple and complete model (note: GPS is not a
complete model). This model would clearly define the scheduling policy, ease
development, and keep the scheduler simple. It is our hope that this style of
development would create a feedback loop that generates better models and
more predictable schedulers. We have (hopefully) seen the first step of this
transition with the move from complex timesharing schedulers like O(1) to
simpler proportional-share schedulers like CFS1.

Multiprocessor schedulers should more closely match simple user expec-
tations. Our initial multiprocessor scheduling experiments were based on
two properties we assumed that all schedulers would strive to implement: (a)
the allocation a process received on a system with N processors should be N
times larger than the allocation the same process received on a system with
one processor and (b) the allocation a process received on a system with N
processors should be the same as the allocation it would receive on a single
processor with 1

N workload 2. We have termed (a) proportional speedup and (b)
proportional concurrency. We soon discovered that neither O(1) nor CFS matches
these properties and began our policy extraction work to discover why. Future
multiprocessor schedulers should strive to provide these properties (within

1The O(1) scheduler was amazingly difficult to model when compared to CFS.

177

9. Conclusions

feasibility constraints).
The final property we would like to see in future CPU schedulers is more

instrumentation. A system administrator, application, or developer should be
able to view a myriad of metrics regrading CPU scheduling. Something as
simple as the current GPS weight of a proportional-share run queue would be
immensely useful. Without instrumentation, users must simply trust that the
CPU scheduler is working in their best interest. Increased measurement also
allows refinement of scheduling policy. How can system developers know their
policies are producing the desired behavior if they cannot record the result of
these policies in the real-world?

9.3 lessons learned

This section contains a discussion of the broader lessons we learned in the
pursuit of this work. It covers everything from sampling error to observations
on the Linux kernel.

In observing CPU scheduling behavior, we discovered that sampling the
run queue does not provide an accurate measure of either its mean or me-
dian length. We rely on accurate measurements of run queue length in both
Harmony and CPU Futures, and in both instances we initially used sampling.
In Harmony, we incorrectly assumed that process migrations were infrequent
and so we sampled the run queue every second. This left us struggling to un-
derstand strange phenomenon that were the result of us missing lots of process
migrations. Increasing the sampling rate to match the scheduling interrupt
frequency ensured that we did not miss any process migrations. Similarly, in
CPU Futures we initially sampled the run queue every 100ms to create a moving
average of the run queue length and weight. Early on, we discovered that these
numbers were inaccurate. We replaced this sampling with instrumentation
that recorded each time a process entered or exited the run queue.

One of the larger lessons we learned in our low-level analysis of operating

2Of course, even a perfect scheduler cannot guarantee these properties for all workloads.
For example, it impossible for a 20% CPU-bound process that receives a 10% CPU allocation on
a single processor to get an 80% CPU allocation on a eight processor machine.

178

9.3. Lessons Learned

system behavior is that Linux is prone to performance bugs. These perfor-
mance bugs include both deterministic and non-deterministic errors. They
may be difficult for a user to notice and they are certainly difficult to debug
(especially the non-deterministic bugs). For example, the version of CFS we
used initially had a load balancing bug that caused it to divide 32 processes
over four processors like so <31, 1, 1, 1>. It would migrate 30 of these processes
several times a second; the processes in this group of 30 would receive both
unfair allocations and also poor processor affinity. This bug was deterministic,
exceptionally detrimental to performance, and active in a stable version of the
kernel.

In this dissertation work, we sometimes relied heavily on kernel subsys-
tems other than the CPU scheduler (e.g., the network stack in our web server
experiments). Stressing these systems, as a side-effect of our experiments, often
revealed interesting flaws in them as well. In analyzing these flaws, we found
that the Linux kernel is a great place to find hard research problems. Any
time we found odd behavior or strange looking code it was often related to
a difficult, as yet, unsolved problem. For example, the Linux kernel uses an
Out-Of-Memory (OOM) killer to handle situations where it has run out of
virtual memory backing storage (swap space). When the systems runs out of
swap space, the OOM killer selects a process and terminates it. This process is
selected using a six part heuristic that includes the process’s priority and total
run time. This heuristic is a near constant source of debate, as is the validity
of designing a system that needs an OOM killer. Although, we do not have
space to discuss it here, the problem addressed by the OOM killer is difficult
and subtle3.

3It is easy to blame these flaws on amateur programmers, but we often found these same
problems in professionally developed kernels like Solaris. For example, Solaris solves the out-
of-memory problem by waiting; it stops servicing page faults until some process exits, freeing
memory. This may seem like a better approach then the OOM killer at first, but for a server
application with many long-lived processes this wait-and-see solution may cause full system
deadlock.

179

9. Conclusions

9.4 hindsight

If we began this work anew tomorrow, no doubt it would be better. In lieu of
starting over, we present a small summary of how we would approach this
work differently.

As presented in this thesis, it seems like we started with the idea to analyze
CPU scheduling formally using the scientific method and were rewarded in
this approach. However, the idea for this approach actually evolved during our
attempts at improving scalability for distributed systems.

We observed that the O(1) scheduler behaved strangely during overload and
decided to build a system to notify the user when this was going to happen. Our
first step in creating this prediction system was to read all the documentation
we could find on the O(1) scheduler. This revealed relatively little, except that
the starvation protection mechanism was not designed for this type of workload.
We moved on to reading the code, but again this was also mostly unproductive.
The comments provided little intuition into why or when the scheduler would
behave this way. The only avenue left was introducing controlled stimulus and
analyzing the results to find patterns.

While working on creating the CPU Futures predictive models, we noticed
that the load balancer did not work the way we expected it to either. So, we
set out to build a better multiprocessor scheduler. This proved difficult; we
had several experiments showing poor performance due to multiprocessor
scheduling, but we did not know why the performance was bad. Again we
turned to documentation (even worse in this case) and examining the source
code. And again we found the only recourse was controlled stimulus and
observation. In determining why the scheduler was causing poor performance,
we discovered several interesting things about its scheduling policy. It was
here where the idea of applying the scientific method became obvious, and we
expanded our analysis to two other Linux schedulers.

If we could restart this dissertation work, we would begin with the premise
of a classic scientific approach that aims to increase the transparency of the CPU
scheduler. Using this premise from the start, we could create a standalone piece
of research on extracting single processor scheduling policies from O(1), CFS,

180

9.4. Hindsight

and BFS. These observations would naturally lead into creating the predictive
models found in CPU Futures. In fact, these observations did enable us to create
CPU Futures, but at the time we viewed them as a means to an end rather than
a valuable research contribution in their own right.

Beginning the Harmony research with the scientific method in mind would
have allowed us to add some in-depth hypothesis testing to the framework. We
could have added instrumentation to CPU schedulers that allowed us to disable
certain features. Then, when creating hypotheses about observed behavior, we
could disable the feature(s) we suspected of causing a behavior and rerun the
experiments. If the new results had no trace of this behavior we could clearly
attribute it to the disabled feature(s).

Additionally, if we had performed an empirical analysis of both single and
multiprocessor scheduling policies before building CPU Futures, we could have
introduced predictive process migration models into CPU Futures. This would
increase the accuracy and usefulness of CPU Futures on multiprocessor systems.
As CPU Futures are currently implemented, they provide accurate predictions
for multiprocessor systems once the load is balanced and migrations become
less common. This is probably sufficient for many workloads because load
tends to become balanced relatively quickly, although accurate predictions are
difficult for intrinsic imbalances.

181

references

[1] Red hat enterprise linux life cycle. URL https://access.redhat.com/
support/policy/updates/errata/.

[2] From a few cores to many: A tera-scale computing research overview.
http://www.developers.net/intelisdshowcase/view/2181, 2006.

[3] CyanogenMod Android Rom, 2009. URL http://www.cyanogenmod.
com/home/4-1-6-is-here-with-100-more-jet-fuel.

[4] Apache http server, 2010. URL http://httpd.apache.org.

[5] Condor high throughput computing system, 2010. URL http://www.cs.
wisc.edu/condor/.

[6] Dovecot, 2010. URL http://www.dovecot.org.

[7] Sendmail, 2010. URL http://www.sendmail.org.

[8] Apache tomcat, 2010. URL http://tomcat.apache.org.

[9] Tornado, 2010. URL http://www.tornadoweb.org.

[10] Poweredge r910 rack server, 2011. URL http://www.dell.com/
us/en/enterprise/servers/poweredge-r910/pd.aspx?refid=
poweredge-r910&cs=555&s=biz.

183

https://access.redhat.com/support/policy/updates/errata/
https://access.redhat.com/support/policy/updates/errata/
http://www.cyanogenmod.com/home/4-1-6-is-here-with-100-more-jet-fuel
http://www.cyanogenmod.com/home/4-1-6-is-here-with-100-more-jet-fuel
http://httpd.apache.org
http://www.cs.wisc.edu/condor/
http://www.cs.wisc.edu/condor/
http://www.dovecot.org
http://www.sendmail.org
http://tomcat.apache.org
http://www.tornadoweb.org
http://www.dell.com/us/en/enterprise/servers/poweredge-r910/pd.aspx?refid=poweredge-r910&cs=555&s=biz
http://www.dell.com/us/en/enterprise/servers/poweredge-r910/pd.aspx?refid=poweredge-r910&cs=555&s=biz
http://www.dell.com/us/en/enterprise/servers/poweredge-r910/pd.aspx?refid=poweredge-r910&cs=555&s=biz

184

[11] Yoshihisa Abe, Hiroshi Yamada, and Kenji Kono. Enforcing appropriate
process execution for exploiting idle resources from outside operating
systems. In Proceedings of the EuroSys Conference (EuroSys ’08), pages 27–
40, Glasgow, Scotland UK, March 2008.

[12] Michael J. Accetta, Robert V. Baron, William J. Bolosky, David B. Golub,
Richard F. Rashid, Avadis Tevanian, and Michael Young. Mach: A new
kernel foundation for unix development. In Proceedings of the USENIX
Summer Technical Conference (USENIX Summer ’86), Atlanta, Georgia,
June 1986.

[13] Amazon. Amazon elastic compute cloud, 2010. URL http://aws.amazon.
com/ec2.

[14] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and
Henry M. Levy. Scheduler activations: effective kernel support for the
user-level management of parallelism. In Proceedings of the 13th ACM Sym-
posium on Operating Systems Principles (SOSP ’91), pages 95–109, Pacific
Grove, California, October 1991.

[15] Jeremy Andrews. Cfs and sched yield. Kernel Trap, Sep 2007. URL
http://kerneltrap.org/Linux/CFS_and_sched_yield.

[16] AP. North carolina unemployment claims crash website. USA Today, Jan
2009.

[17] Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Informa-
tion and Control in Gray-Box Systems. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP ’01), pages 43–56, Banff,
Canada, October 2001.

[18] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Nathan C. Bur-
nett, Timothy E. Denehy, Thomas J. Engle, Haryadi S. Gunawi, James A.
Nugent, and Florentina I. Popovici. Transforming policies into mech-
anisms with infokernel. In Proceedings of the 19th ACM Symposium on

http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://kerneltrap.org/Linux/CFS_and_sched_yield

185

Operating Systems Principles (SOSP ’03), pages 90–105, Bolton Landing,
New York, October 2003.

[19] Remzi H. Arpaci-Dusseau, and Andrea C. Arpaci-Dusseau. Fail-Stutter
Fault Tolerance. In The Eighth Workshop on Hot Topics in Operating Systems
(HotOS VIII), pages 33–38, Schloss Elmau, Germany, May 2001.

[20] Remzi H. Arpaci-Dusseau, and Andrea C. Arpaci-Dusseau. Operating
Systems: Four Easy Pieces. 2011.

[21] Krste Asanovic, Ras Bodik, Bryan Catanzaro, Joseph J. Gebis, Parry Hus-
bands, Kurt Keutzer, David A. Patterson, William L. Plishker, John Shalf,
Samuel W. Williams, and Katherine A. Yelick. The Landscape of Par-
allel Computing Research: A View from Berkeley. Technical Report
UCB/EECS-2006-183, University of California, Berkeley, Dec 2006.

[22] Ozalp Babaoglu, Márk Jelasity, Anne-Marie Kermarrec, Alberto Montre-
sor, and Maarten van Steen. Managing clouds: a case for a fresh look
at large unreliable dynamic networks. ACM SIGOPS Operating Systems
Review, 40(3):9–13, 2006.

[23] Ganesh Balakrishnan. Intel xeon 5500 memory pe-
formance. www.crc.nd.edu/ rich/Nehalem/Ne-
halem%20Memory%20performance.pdf.

[24] Scott A. Banachowski, and Scott A. Brandt. The BEST scheduler for
integrated processing of best-effort and soft real-time processes. In Pro-
ceedings of Multimedia Computing and Networking 2002 (MMCN ’02), pages
46–60, San Jose, California, January 2002.

[25] Scott A. Banachowski, and Scott .A. Brandt. Better real-time response for
time-share scheduling. In Proceedings of the 17th International Parallel and
Distributed Processing Symposium (IPDPS ’03), Nice, France, April 2003.

[26] Scott A. Banachowski, Joel Wu, and Scott A. Brandt. Missed deadline noti-
fication in best-effort schedulers. In Proceedings of Multimedia Computing

186

and Networking 2004 (MMCN ’04), pages 123–135, Santa Clara, California,
January 2004.

[27] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource containers:
A new facility for resource management in server systems. In Proceed-
ings of the 3rd Symposium on Operating Systems Design and Implementation
(OSDI ’99), pages 45–58, New Orleans, Louisiana, February 1999.

[28] Paul Barham, Simon Crosby, Tim Granger, Neil Stratford, Meriel Huggard,
and Fergal Toomey. Measurement based resource allocation for multime-
dia applications. In Proceedings of ACM/SPIE Multimedia Computing and
Networking 1998 (MMCN’98), San Jose, California, January 1998.

[29] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art
of virtualization. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP ’03), pages 164–177, Bolton Landing, New York,
October 2003.

[30] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Us-
ing magpie for request extraction and workload modelling. In Proceed-
ings of the 6th Symposium on Operating Systems Design and Implementation
(OSDI ’04), pages 259–272, San Francisco, California, December 2004.

[31] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schupbach, and
Akhilesh Singhania. The Multikernel: A New OS Architecture for Scal-
able Multicore Systems. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles (SOSP ’07), Big Sky, Montana, October 2009.

[32] Jon Bentley, editor. More programming pearls: confessions of a coder.
Addison-Wesley, 1 edition, 1988.

[33] Brian N. Bershad, Craig Chambers, Susan Eggers, Chris Maeda, Dylan
McNamee, Przemyslaw Pardyak, Stefan Savage, and Emin Gun Sirer.
Spin—an extensible microkernel for application-specific operating system

187

services. In Proceedings of the 15th ACM Symposium on Operating Systems
Principles (SOSP ’95), Copper Mountain Resort, Colorado, December
1995.

[34] Sergey Blagodurov, Sergey Zhuravlev, and Alexandra Fedorova. Con-
tention Aware Scheduling on Multicore Systems. ACM Transactions on
Computer Systems, 28(4), December 2010.

[35] Daniel Bovet, and Marco Cesati. Understanding the Linux Kernel. O’Reilly
Media, Inc., 3rd edition, 2005.

[36] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. An Analysis
of Linux Scalability to Many Cores. In Proceedings of the 9th Symposium
on Operating Systems Design and Implementation (OSDI ’10), Vancouver,
Canada, December 2010.

[37] Max Bruning. A Comparison of Solaris, Linux, and FreeBSD Sched-
ulers, October 2005. URL http://www.opensolaris.org/os/article/
2005-10-14_a_comparison_of_solaris__linux__and_freebsd_
kernels.

[38] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco: running
commodity operating systems on scalable multiprocessors. In Proceedings
of the 16th ACM Symposium on Operating Systems Principles (SOSP ’97),
pages 143–156, Saint-Malo, France, October 1997.

[39] Giorgio Buttazzo, and Luca Abeni. Adaptive workload management
through elastic scheduling. Real-Time Systems, 23(1/2):7–24, 2002.

[40] John Calandrino, Dan Baumberger, Jessica Young Tong Li, , and Scott
Hahn. Linsched: The linux scheduler simulator. In Proceedings of the
21st ISCA International Conference on Parallel and Distributed Computing
and Communication Systems (PDCCS ’08), pages 171–176, Sept 2008.

http://www.opensolaris.org/os/article/2005-10-14_a_comparison_of_solaris__linux__and_freebsd_kernels
http://www.opensolaris.org/os/article/2005-10-14_a_comparison_of_solaris__linux__and_freebsd_kernels
http://www.opensolaris.org/os/article/2005-10-14_a_comparison_of_solaris__linux__and_freebsd_kernels

188

[41] George M. Candea, and Michael B. Jones. Vassal: loadable scheduler
support for multi-policy scheduling. In Proceedings of the 2nd conference
on USENIX Windows NT Symposium, 1998.

[42] Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic
Instrumentation of Production Systems. In Proceedings of the USENIX
Annual Technical Conference (USENIX ’04), pages 15–28, Boston, Mas-
sachusetts, June 2004.

[43] Bogdan Caprita, Wong Chun Chan, Jason Nieh, Clifford Stein, and Hao-
qiang Zheng. Group ratio round-robin: O(1) proportional share schedul-
ing for uniprocessor and multiprocessor systems. In Proceedings of the
USENIX Annual Technical Conference (USENIX ’05), pages 337–352, Ana-
heim, California, April 2005.

[44] Bogdan Caprita, Jason Nieh, and Clifford Stein. Grouped distributed
queues: distributed queue, proportional share multiprocessor schedul-
ing. In Proceedings of the 25th ACM Symposium on Principles of Distributed
Computing (PODC ’06), pages 72–81, Denver, Colorado, July 2006.

[45] Michael J. Carey, Sanjay Krishnamurthi, and Miron Livny. Load con-
trol for locking: The ’half-and-half’ approach. In Proceedings of the Ninth
Symposium on Principles of Database Systems, pages 72–84, Nashville, Ten-
nessee, April 1990.

[46] Tracy Carver. Magny-cours and direct connect architecture 2.0, March
2010. URL http://developer.amd.com/documentation/articles/
pages/magny-cours-direct-connect-architecture-2.0.aspx.

[47] Anupam Chanda, Alan L. Cox, and Willy Zwaenepoel. Whodunit: trans-
actional profiling for multi-tier applications. In Proceedings of the EuroSys
Conference (EuroSys ’07), pages 17–30, Lisbon, Portugal, March 2007.

[48] Abhishek Chandra, Micah Adler, Pawan Goyal, and Prashant Shenoy. Sur-
plus fair scheduling: a proportional-share cpu scheduling algorithm for

http://developer.amd.com/documentation/articles/pages/magny-cours-direct-connect-architecture-2.0.aspx
http://developer.amd.com/documentation/articles/pages/magny-cours-direct-connect-architecture-2.0.aspx

189

symmetric multiprocessors. In Proceedings of the 4th Symposium on Oper-
ating Systems Design and Implementation (OSDI ’00), San Diego, California,
October 2000.

[49] Abhishek Chandra, Pawan Goyal, and Prashant Shenoy. Quantifying
the benefits of resource multiplexing in on-demand data centers. In
Proceedings of the First ACM Workshop on Algorithms and Architectures for
Self-Managing Systems (Self-Manage 2003), June 2003.

[50] Kevin Closson. Intel xeon 5500 (nehalem EP) NUMA versus interleaved
memory (aka SUMA): There is no difference! a forced confession, August
2009. URL http://kevinclosson.wordpress.com/2009/08/14/.

[51] Jonathan Corbet. Ks2009: How google uses linux. LWN.net, Oct 2009.
URL http://lwn.net/Articles/357658/.

[52] Tommaso Cucinotta, Fabio Checconi, Luca Abeni, and Luigi Palopoli.
Self-tuning schedulers for legacy real-time applications. In Proceedings
of the Eurosys Conference (EuroSys ’10), pages 55–68, Paris, France, April
2010.

[53] Timothy E. Denehy, John Bent, Florentina I. Popovici, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Deconstructing Storage Arrays.
In Proceedings of the 11th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XI), pages 59–
71, Boston, Massachusetts, October 2004.

[54] Peter J. Denning. Thrashing: its causes and prevention. In AFIPS ’68:
Proceedings of the Fall joint computer conference, part I, pages 915–922, 1968.

[55] John R. Douceur, and William J. Bolosky. Progress-based regulation of
low-importance processes. In Proceedings of the 17th ACM Symposium on
Operating Systems Principles (SOSP ’99), pages 247–260, Kiawah Island
Resort, South Carolina, December 1999.

[56] Kenneth J. Duda, and David R. Cheriton. Borrowed-virtual-time (bvt)
scheduling: supporting latency-sensitive threads in a general-purpose

http://kevinclosson.wordpress.com/2009/08/14/
http://lwn.net/Articles/357658/

190

scheduler. In Proceedings of the 17th ACM Symposium on Operating Sys-
tems Principles (SOSP ’99), pages 261–276, Kiawah Island Resort, South
Carolina, December 1999.

[57] Frank C. Eigler, Vara Prasad, Will Cohen, Hien Nguyen, Martin Hunt, Jim
Keniston, and Brad Chen. Architecture of systemtap: a Linux trace/probe
tool, July 2005. URL http://sourceware.org/systemtap/archpaper.
pdf.

[58] Jeremy Elson, and Jon Howell. Handling flash crowds from your garage.
In Proceedings of the USENIX Annual Technical Conference (USENIX ’08),
pages 171–184, Boston, Massachusetts, June 2008.

[59] Dawson R. Engler, M. Frans Kaashoek, and James OâŁ™Toole Jr. Ex-
okernel: an operating system architecture for application-level resource
management. In Proceedings of the 16th ACM Symposium on Operating Sys-
tems Principles (SOSP ’97), pages 251–266, Saint-Malo, France, October
1997.

[60] D. H. J. Epema. An analysis of decay-usage scheduling in multiproces-
sors. In Proceedings of the 1995 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS ’95), Banff, Alberta,
Canada, June 1995.

[61] Alexandra Fedorova, Margo Seltzer, Christopher Small, and Daniel Nuss-
baum. Performance of Multithreaded Chip Multiprocessors And Implica-
tions For Operating System Design. In Proceedings of the USENIX Annual
Technical Conference (USENIX ’05), Anaheim, California, April 2005.

[62] Laurie J. Flynn. Intel halts development of 2 new microprocessors. The
New York Times, May 2004.

[63] Samuel H. Fuller, and Lynette I. Miller, editors. The Future of Computing
Performance: Game Over or Next Level? The National Academies Press,
2011.

http://sourceware.org/systemtap/archpaper.pdf
http://sourceware.org/systemtap/archpaper.pdf

191

[64] Corey Gough, Suresh Siddha, and Ken Chen. Kernel Scalability – Expand-
ing the horizon beyond fine grain locks. In Linux Symposium, volume 1,
pages 153–166, 2007.

[65] Pawan Goyal, Xingang Guo, and Harrick M. Vin. A hierarchial cpu sched-
uler for multimedia operating systems. In Proceedings of the 2nd Sym-
posium on Operating Systems Design and Implementation (OSDI ’96), pages
107–121, Seattle, Washington, October 1996.

[66] Steven D. Gribble. Robustness in complex systems. In The Eighth Workshop
on Hot Topics in Operating Systems (HotOS VIII), pages 21 – 26, Schloss
Elmau, Germany, May 2001.

[67] Varun Gupta, and Mor Harchol-Balter. Self-adaptive admission control
policies for resource-sharing systems. In Proceedings of the 2009 Joint
International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS/Performance ’09), pages 311–322, Seattle, Washington, June
2007.

[68] Andreas Haeberlen. A case for the accountable cloud. In The 3rd ACM
SIGOPS International Workshop on Large Scale Distributed Systems and Mid-
dleware (LADIS’09), October 2009.

[69] Per Brinch Hansen. The nucleus of a multiprogramming system. Com-
munications of the ACM, 13(4):238–241, April 1970.

[70] Gernot Heiser. Inside L4/MIPS: Anatomy of a High-Performance Microkernel.
School of Computer Science and Engineering, University of NSW, Sydney
2052, Australia, Jan 2001.

[71] Joseph L Hellerstein. Achieving service rate objectives with decay us-
age scheduling. IEEE Transactions on Software Engineering, 19(8):813–825,
1993.

[72] Steven Hofmeyr, Costin Iancu, and Filip Blagojević. Load balancing
on speed. In 15th ACM SIGPLAN Annual Symposium on Principles and
Practice of Parallel Programming (PPoPP ’10), pages 147–158, January 2010.

192

[73] Raj Jain. Congestion control and traffic management in atm networks:
Recent advances and a survey. Computer Networks and ISDN Systems, 28
(13):1723 – 1738, 1996.

[74] Nikolai Joukov, Avishay Traeger, Rakesh Iyer, Charles P. Wright, and Erez
Zadok. Operating system profiling via latency analysis. In Proceedings of
the 7th Symposium on Operating Systems Design and Implementation (OSDI
’06), pages 89–102, Seattle, Washington, November 2006.

[75] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, HÃ©ctor M.
Briceño, Russell Hunt, David Mazières, Thomas Pinckney, Robert Grimm,
John Jannotti, and Kenneth Mackenzie. Application Performance and
Flexibility on Exokernel Systems. In Proceedings of the 16th ACM Sympo-
sium on Operating Systems Principles (SOSP ’97), pages 52–65, Saint-Malo,
France, October 1997.

[76] J. Kay, and P. Lauder. A fair share scheduler. Communications of the ACM,
31(1):44–55, 1988.

[77] Vahid Kazempour, Alexandra Fedorova, and Pouya Alagheband. Perfor-
mance implications of cache affinity on multicore processors. In Euro-Par
’08, pages 151–161, 2008.

[78] Con Kolivas. BFS – The Brain Fuck Scheduler.
http://ck.kolivas.org/patches/bfs/sched-BFS.txt.

[79] Con Kolivas. Faqs about bfs v0.310, Nov 2009. URL http://ck.kolivas.
org/patches/bfs/bfs-faq.txt.

[80] Con Kolivas. BFS CPU scheduler v0.304 stable release. LWN.net, Oct 2009.
URL http://lwn.net/Articles/357451/.

[81] Charles Krasic, Mayukh Saubhasik, Anirban Sinha, and Ashvin Goel.
Fair and timely scheduling via cooperative polling. In Proceedings of the
EuroSys Conference (EuroSys ’09), pages 103–116, Nuremburg, Germany,
April 2009.

http://ck.kolivas.org/patches/bfs/bfs-faq.txt
http://ck.kolivas.org/patches/bfs/bfs-faq.txt
http://lwn.net/Articles/357451/

193

[82] Orran Krieger, Marc Auslander, Bryan Rosenburg, Robert W. Wisniewski,
Jimi Xenidis, Dilma Da Silva, Michal Ostrowski, Jonathan Appavoo, Maria
Butrico, Mark Mergen, Amos Waterland, and Volkmar Uhlig. K42: build-
ing a complete operating system. In Proceedings of the EuroSys Conference
(EuroSys ’06), pages 133–145, Leuven, Belgium, April 2006.

[83] Avinesh Kumar. Multiprocessing with the completely fair scheduler. IBM
developerWorks, Jan 2008.

[84] Horacio Andrés Lagar-Cavilla, Joseph Andrew Whitney, Adin Matthew
Scannell, Philip Patchin, Stephen M. Rumble, Eyal de Lara, Michael
Brudno, and Mahadev Satyanarayanan. Snowflock: rapid virtual ma-
chine cloning for cloud computing. In Proceedings of the EuroSys Conference
(EuroSys ’09), pages 1–12, Nuremburg, Germany, April 2009.

[85] Butler W. Lampson. Hints for computer system design. In Proceedings of
the 9th ACM Symposium on Operating System Principles (SOSP ’83), pages
33–48, Bretton Woods, New Hampshire, October 1983.

[86] Ian Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul Barham,
David Evers, Robin Fairbairns, and Eoin Hyden. The design and im-
plementation of an operating system to support distributed multimedia
applications. IEEE Journal on Selected Areas in Communications, 14(7), 1996.

[87] Tong Li, Dan Baumberger, and Scott Hahn. Efficient and scalable mul-
tiprocessor fair scheduling using distributed weighted round-robin. In
14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP ’09), pages 65 – 74, February 2009.

[88] Richard McDougall, and Jim Mauro. Solaris Internals: Solaris 10 and Open-
Solaris Kernel Architecture. Sun Microsystems Press, 2nd edition, 2007.

[89] Marshall Kirk McKusick, and George V. Neville-Neil. The Design and
Implementation of the FreeBSD Operating System. Addison-Wesley, 2005.

194

[90] Joe Meehean, and Miron Livny. A service migration case study: Mi-
grating the Condor schedd. In Proceedings of the 38th Midwest Instruction
Computing Symposium (MICS ’05), April 2005.

[91] Jeffrey C. Mogul. Emergent (mis)behavior vs. complex software systems.
In Proceedings of the EuroSys Conference (EuroSys ’06), pages 293–304, Leu-
ven, Belgium, April 2006.

[92] Ingo Molinar. CFS Scheduler, . URL Linux_2.6.36/Documentation/
scheduler/sched-design-CFS.txt.

[93] Ingo Molinar. Goals, Design and Implementation of the new ultra-scalable
O(1) scheduler, . URL Linux_2.6.18/Documentation/sched-design.
txt.

[94] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), April 1965.

[95] Satish Narayanasamy, Cristiano Pereira, Harish Patil, Robert Cohn, and
Brad Calder. Automatic logging of operating system effects to guide
application-level architecture simulation. In Proceedings of the joint inter-
national conference on Measurement and modeling of computer systems, SIG-
METRICS ’06/Performance ’06, pages 216–227, 2006.

[96] Netcraft. Operating system share by groups for sites in all locations,
January 2009. URL https://ssl.netcraft.com/ssl-sample-report/
/CMatch/osdv_all.

[97] Chandandeep Singh Pabla. Completely fair scheduler. Linux Journal, Aug
2009.

[98] Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu, Mustafa
Uysal, Zhikui Wang, Sharad Singhal, and Arif Merchant. Automated
control of multiple virtualized resources. In Proceedings of the EuroSys
Conference (EuroSys ’09), pages 13–26, Nuremburg, Germany, April 2009.

Linux_2.6.36/Documentation/scheduler/sched-design-CFS.txt
Linux_2.6.36/Documentation/scheduler/sched-design-CFS.txt
Linux_2.6.18/Documentation/sched-design.txt
Linux_2.6.18/Documentation/sched-design.txt
https://ssl.netcraft.com/ssl-sample-report//CMatch/osdv_all
https://ssl.netcraft.com/ssl-sample-report//CMatch/osdv_all

195

[99] Jitendra Padhye, and Sally Floyd. Identifying the TCP Behavior of Web
Servers. In Proceedings of SIGCOMM ’01, San Diego, California, August
2001.

[100] Maija Palmer. Surge of goods for sale sparks ebay crash and compensation
claims. FT.com (Financial Times), Nov 2009.

[101] Abhay K. Parekh, and Robert G. Gallager. A generalized processor sharing
approach to flow control in integrated services networks: the single-node
case. IEEE/ACM Transactions on Networking, 1(3):344–357, 1993.

[102] PCLinuxOS. PCLinuxOS 2010 Edition is now available for download.
URL http://www.pclinuxos.com/?p=579.

[103] Nick Piggin. Less Affine Wakeups, February 2005. URL http://lwn.
net/Articles/124982/.

[104] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Analysis and Evolution of Journaling File Systems. In Pro-
ceedings of the USENIX Annual Technical Conference (USENIX ’05), pages
105–120, Anaheim, California, April 2005.

[105] Pratap Ramamurthy, Vyas Sekar, Aditya Akella, Balachander Krishna-
murthy, and Anees Shaikh. Remote profiling of resource constraints of
web servers using mini-flash crowds. In Proceedings of the USENIX Annual
Technical Conference (USENIX ’08), pages 185–198, Boston, Massachusetts,
June 2008.

[106] John Regehr. Inferring Scheduling Behavior with Hourglass. In Proceed-
ings of the USENIX Annual Technical Conference (FREENIX Track), Mon-
terey, California, June 2002.

[107] Jeff Roberson. Ule: a modern scheduler for freebsd. In Proceedings of the
2nd USENIX Conference on BSD, 2003.

[108] Mark E. Russinovich, David A. Solomon, and Alex Ionescu. Windows
Internals: Covering Windows Server 2008 and Windows Vista. Microsoft
Press, 5 edition, 2009.

http://www.pclinuxos.com/?p=579
http://lwn.net/Articles/124982/
http://lwn.net/Articles/124982/

196

[109] Bianca Schroeder, and Mor Harchol-Balter. Web servers under overload:
How scheduling can help. ACM Transactions on Internet Technology, 6(1):
20–52, 2006.

[110] Guo Shipeng, and Ken Willis. Snags, again, for china ticket sale. Reuters,
May 2008.

[111] Amit Singh. Mac OS X Internals: A systems approach. Addison-Wesley,
2006.

[112] Christopher Small, and Margo Seltzer. Vino: An integrated platform
for operating system and database research. Technical Report TR-30-94,
Harvard, 1994.

[113] David A. Solomon. Inside Windows NT. Microsoft Programming Series.
Microsoft Press, 2nd edition, May 1998.

[114] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and
Larry Peterson. Container-based operating system virtualization: a scal-
able, high-performance alternative to hypervisors. In Proceedings of the
EuroSys Conference (EuroSys ’07), pages 275–287, Lisbon, Portugal, March
2007.

[115] Christopher Stewart, Terence Kelly, and Alex Zhang. Exploiting non-
stationarity for performance prediction. In Proceedings of the EuroSys
Conference (EuroSys ’07), pages 31–44, Lisbon, Portugal, March 2007.

[116] Ion Stoica, and Hussein Abdel-Wahab. Earliest eligible virtual deadline
first: A flexible and accurate mechanism for proportional share resource
allocation. Technical Report TR-95-22, Old Dominion University, 1996.

[117] TOP500. Top500 operating system family share, November 2010. URL
http://top500.org/stats/list/36/osfam.

[118] Josep Torrellas, Andrew Tucker, and Anoop Gupta. Evaluating the Perfor-
mance of Cache-Affinity Scheduling in Shared-Memory Multiprocessors.
Journal of Parallel and Distributed Computing, 24:139–151, 1995.

http://top500.org/stats/list/36/osfam

197

[119] Avishay Traeger, Ivan Deras, and Erez Zadok. Darc: dynamic analysis of
root causes of latency distributions. In Proceedings of the 2008 ACM SIG-
METRICS Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS ’08), pages 277–288, Annapolis, Maryland, June 2008.

[120] Andrew Tucker, Anoop Gupta, and Shigeru Urushibara. The Impact
of Operating System Scheduling Policies and Synchronization Methods
on the Performance of Parallel Applications. In Proceedings of the 1991
ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’91), San Diego, California, May 1991.

[121] Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. Resource over-
booking and application profiling in a shared internet hosting platform.
ACM Transactions on Internet Technology, 9(1):1–45, 2009.

[122] Raj Vaswani, and John Zahorjan. The Implications of Cache Affinity on
Processor Scheduling for Multiprogrammed, Shared Memory Multipro-
cessors. In Proceedings of the 13th ACM Symposium on Operating Systems
Principles (SOSP ’91), Pacific Grove, California, October 1991.

[123] Thiemo Voigt, and Per Gunningberg. Adaptive resource-based web
server admission control. In The Seventh IEEE Symposium on Computers
and Communications (ISCC ’02), Giardini Naxos, Italy, July 2002.

[124] Thiemo Voigt, Renu Tewari, Douglas Freimuth, and Ashish Mehra. Ker-
nel mechanisms for service differentiation in overloaded web servers.
In Proceedings of the USENIX Annual Technical Conference (USENIX ’02),
pages 189–202, Monterey, California, June 2002.

[125] Carl A. Waldspurger, and William E. Weihl. Lottery scheduling: flexible
proportional-share resource management. In Proceedings of the 1st Sym-
posium on Operating Systems Design and Implementation (OSDI ’94), Mon-
terey, California, November 1994.

[126] Carl A. Waldspurger, and William E. Weihl. Stride scheduling: Determin-
istic proportional- share resource management. Technical Report TM-528,
Massachusetts Institute of Technology, 1995.

198

[127] Matt Welsh, David Culler, and Eric Brewer. SEDA: An Architecture
for Well-Conditioned, Scalable Internet Services. In Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP ’01), Banff,
Canada, October 2001.

[128] Windows. Windows azure platform, 2010. URL http://www.microsoft.
com/windowsazure.

[129] Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt, and John Wilkes.
On-line extraction of scsi disk drive parameters. In Proceedings of the joint
international conference on Measurement and modeling of computer systems,
SIGMETRICS ’95/PERFORMANCE ’95, pages 146–156, 1995.

[130] Ting Yang, Tongping Liu, Emery D. Berger, Scott F. Kaplan, and J. Eliot B.
Moss. Redline: First class support for interactivity in commodity oper-
ating systems. In Proceedings of the 8th Symposium on Operating Systems
Design and Implementation (OSDI ’08), pages 73–86, San Diego, California,
December 2008.

[131] Kamen Yotov, Keshav Pingali, and Paul Stodghill. Automatic measure-
ment of memory hierarchy parameters. In Proceedings of the 2005 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Sys-
tems (SIGMETRICS ’05), pages 181–192, Banff, Canada, June 2005.

[132] J. Zahorjan, E.D. Lazowska, and D.L. Eager. The Effect of Scheduling
Discipline on Spin Overhead in Shared Memory Parallel Processors. IEEE
Transactions on Parallel and Distributed System, 2(2):180–198, April 1991.

[133] Alan Zeichick. Frequently asked questions: NUMA, SMP, and AMDs
direct connect architecture, August 2006. URL http://developer.amd.
com/pages/810200618.aspx.

[134] ZenWalk. ZenWalk 6.4 is Ready. URL http://www.zenwalk.org/
modules/news/article.php?storyid=107.

http://www.microsoft.com/windowsazure
http://www.microsoft.com/windowsazure
http://developer.amd.com/pages/810200618.aspx
http://developer.amd.com/pages/810200618.aspx
http://www.zenwalk.org/modules/news/article.php?storyid=107
http://www.zenwalk.org/modules/news/article.php?storyid=107

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Importance of CPU Scheduling
	Opaque CPU Schedulers
	Increasing Transparency of CPU Scheduling
	Organization

	CPU Scheduling Background
	CPU Scheduling
	Environment
	CPU Scheduling
	Multiprocessor Scheduling
	Commodity Schedulers
	Summary

	Opaque CPU Scheduling
	CPU Contention
	Application CPU Contention Policies
	Barriers to Good Scheduling
	Limited Scheduling Interface
	Unpredictability of Best Effort Schedulers
	Limited Scheduler Feedback
	Experimental Examples
	Commodity Approaches to Mitigate CPU Contention
	Summary

	CPU Futures
	Scheduler support for application management of CPU contention
	Requirements
	CPU Futures
	Scheduler-Agnostic Feedback
	Scheduler Models
	Implementation Details
	Evaluation
	Summary

	CPU Futures Controller Case Studies
	CPU Future's Controller
	Empathy
	Starvation Avoidance Shepherd
	Fair Throughput Shepherd
	Summary

	Harmony
	Uncovering CPU Load Balancing Policies with Harmony
	Harmony
	Multiprocessor Scheduling Policy Foundations
	How Many Processes are Migrated?
	Time to Resolve and Detect?
	Summary

	Load Balancing Non-Fungible Processes
	Resolution of Intrinsic Imbalances?
	Resolution of Mixed CPU Workloads?
	Resolution of Priority Classes?
	Discussion
	Conclusion

	Context and Conclusions
	Related Work
	CPU Futures
	Harmony

	Conclusions
	Summary
	Ideal Scheduling
	Lessons Learned
	Hindsight

	References

