
10

A File Is Not a File: Understanding the I/O Behavior
of Apple Desktop Applications

TYLER HARTER, CHRIS DRAGGA, MICHAEL VAUGHN,
ANDREA C. ARPACI-DUSSEAU, and REMZI H. ARPACI-DUSSEAU,
University of Wisconsin-Madison

We analyze the I/O behavior of iBench, a new collection of productivity and multimedia application work-
loads. Our analysis reveals a number of differences between iBench and typical file-system workload studies,
including the complex organization of modern files, the lack of pure sequential access, the influence of un-
derlying frameworks on I/O patterns, the widespread use of file synchronization and atomic operations, and
the prevalence of threads. Our results have strong ramifications for the design of next generation local and
cloud-based storage systems.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File Systems Management; D.4.8
[Operating Systems]: Performance—Measurements

General Terms: Measurement, Performance

Additional Key Words and Phrases: Application performance, file systems, measurement, trace study

ACM Reference Format:
Harter, T., Dragga, C., Vaughn, M., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H. 2012. A file is not
a file: Understanding the I/O behavior of Apple desktop applications. ACM Trans. Comput. Syst. 30, 3,
Article 10 (August 2012), 39 pages.
DOI = 10.1145/2324876.2324878 http://doi.acm.org/10.1145/2324876.2324878

1. INTRODUCTION

The design and implementation of file and storage systems has long been at the
forefront of computer systems research. Innovations such as namespace-based
locality [McKusick et al. 1984], crash consistency via journaling [Hagmann 1987;
Prabhakaran et al. 2005a] and copy-on-write [Bonwick and Moore 2007; Rosenblum
and Ousterhout 1992], checksums and redundancy for reliability [Bartlett and
Spainhower 2004; Bonwick and Moore 2007; Patterson et al. 1988; Prabhakaran
et al. 2005b], scalable on-disk structures [Sweeney et al. 1996], distributed file
systems [Howard et al. 1988; Sandberg 1985], and scalable cluster-based storage
systems [Decandia et al. 2007; Ghemawat et al. 2003; Lee and Thekkath 1996] have
greatly influenced how data is managed and stored within modern computer systems.

This material was based on work supported by the National Science Foundation under CSR-1017518 as well
as by generous donations from Network Appliance and Google. T. Harter and C. Dragga were supported by
the Guri Sohi Fellowship and the David DeWitt Fellowship, respectively. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors and may not reflect the views
of NSF or other institutions.
Authors’ address: T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
Department of Computer Sciences, University of Wisconsin-Madison, 1210 West Dayton Street, Madison,
WI 53706-1685; email: tylerharter@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 0734-2071/2012/08-ART10 $15.00

DOI 10.1145/2324876.2324878 http://doi.acm.org/10.1145/2324876.2324878

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:2 T. Harter et al.

Much of this work in file systems over the past three decades has been shaped by
measurement: the deep and detailed analysis of workloads [Baker et al. 1991; Douceur
and Bolosky 1999; Ellard and Seltzer 2003; Howard et al. 1988; Leung et al. 2008;
Ousterhout et al. 1985; Roselli et al. 2000; Satyanarayanan 1981; Vogels 1999]. One
excellent example is found in work on the Andrew File System [Howard et al. 1988];
detailed analysis of an early AFS prototype led to the next-generation protocol, includ-
ing the key innovation of callbacks. Measurement helps us understand the systems of
today so we can build improved systems for tomorrow.

Whereas most studies of file systems focus on the corporate or academic intranet,
most file-system users work in the more mundane environment of the home, access-
ing data via desktop PCs, laptops, and compact devices such as tablet computers and
mobile phones. Despite the large number of previous studies, little is known about
home-user applications and their I/O patterns.

Home-user applications are important today, and their importance will increase
as more users store data not only on local devices but also in the cloud. Users ex-
pect to run similar applications across desktops, laptops, and phones; therefore,
the behavior of these applications will affect virtually every system with which a
user interacts. I/O behavior is especially important to understand since it greatly
impacts how users perceive overall system latency and application performance
[Endo et al. 1994].

While a study of how users typically exercise these applications would be interest-
ing, the first step is to perform a detailed study of I/O behavior under typical but con-
trolled workload tasks. This style of application study, common in the field of computer
architecture [Woo et al. 1995], is different from the workload study found in systems
research, and can yield deeper insight into how the applications are constructed and
how file and storage systems need to be designed in response.

Home-user applications are fundamentally large and complex, containing millions
of lines of code [Macintosh Business Unit (Microsoft) 2006]. In contrast, traditional
UNIX-based applications are designed to be simple, to perform one task well, and to
be strung together to perform more complex tasks [Ritchie and Thompson 1973]. This
modular approach of UNIX applications has not prevailed [Lampson 1999]: modern
applications are standalone monoliths, providing a rich and continuously evolving set
of features to demanding users. Thus, it is beneficial to study each application individ-
ually to ascertain its behavior.

In this article, we present the first in-depth analysis of the I/O behavior of modern
home-user applications; we focus on productivity applications (for word processing,
spreadsheet manipulation, and presentation creation) and multimedia software (for
digital music, movie editing, and photo management). Our analysis centers on two
Apple software suites: iWork, consisting of Pages, Numbers, and Keynote; and iLife,
which contains iPhoto, iTunes, and iMovie. As Apple’s market share grows [Tilmann
2010], these applications form the core of an increasingly popular set of workloads; as
device convergence continues, similar forms of these applications are likely to access
user files from both stationary machines and moving cellular devices. We call our
collection the iBench task suite.

To investigate the I/O behavior of the iBench suite, we build an instrumen-
tation framework on top of the powerful DTrace tracing system found inside
Mac OS X [Cantrill et al. 2004]. DTrace allows us not only to monitor system calls
made by each traced application, but also to examine stack traces, in-kernel functions
such as page-ins and page-outs, and other details required to ensure accuracy and
completeness. We also develop an application harness based on AppleScript [Apple
Computer, Inc. 2011] to drive each application in the repeatable and automated fash-
ion that is key to any study of GUI-based applications [Endo et al. 1994].

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:3

Our careful study of the tasks in the iBench suite has enabled us to make a number
of interesting observations about how applications access and manipulate stored data.
In addition to confirming standard past findings (e.g., most files are small; most bytes
accessed are from large files [Baker et al. 1991]), we find the following new results.

A File Is Not a File. Modern applications manage large databases of informa-
tion organized into complex directory trees. Even simple word-processing documents,
which appear to users as a “file”, are in actuality small file systems containing many
sub-files (e.g., a Microsoft .doc file is actually a FAT file system containing pieces of the
document). File systems should be cognizant of such hidden structure in order to lay
out and access data in these complex files more effectively.

Sequential Access Is Not Sequential. Building on the trend noticed by Vogels [1999]
for Windows NT, we observe that even for streaming media workloads, “pure” sequen-
tial access is increasingly rare. Since file formats often include metadata in headers,
applications often read and re-read the first portion of a file before streaming through
its contents. Prefetching and other optimizations might benefit from a deeper knowl-
edge of these file formats.

Auxiliary Files Dominate. Applications help users create, modify, and organize
content, but user files represent a small fraction of the files touched by modern ap-
plications. Most files are helper files that applications use to provide a rich graphical
experience, support multiple languages, and record history and other metadata. File-
system placement strategies might reduce seeks by grouping the hundreds of helper
files used by an individual application.

Writes Are Often Forced. As the importance of home data increases (e.g., family
photos), applications are less willing to simply write data and hope it is eventually
flushed to disk. We find that most written data is explicitly forced to disk by the
application; for example, iPhoto calls fsync thousands of times in even the simplest of
tasks. For file systems and storage, the days of delayed writes [Mogul 1994] may be
over; new ideas are needed to support applications that desire durability.

Renaming Is Popular. Home-user applications commonly use atomic operations,
in particular rename, to present a consistent view of files to users. For file systems,
this may mean that transactional capabilities [Olson 2007] are needed. It may also
necessitate a rethinking of traditional means of file locality; for example, placing a file
on disk based on its parent directory [McKusick et al. 1984] does not work as expected
when the file is first created in a temporary location and then renamed.

Multiple Threads Perform I/O. Virtually all of the applications we study issue I/O
requests from a number of threads; a few applications launch I/Os from hundreds of
threads. Part of this usage stems from the GUI-based nature of these applications;
it is well known that threads are required to perform long-latency operations in the
background to keep the GUI responsive [Ousterhout 1995]. Thus, file and storage
systems should be thread-aware so they can better allocate bandwidth.

Frameworks Influence I/O. Modern applications are often developed in sophisti-
cated IDEs and leverage powerful libraries, such as Cocoa and Carbon. Whereas
UNIX-style applications often directly invoke system calls to read and write files, mod-
ern libraries put more code between applications and the underlying file system; for
example, including "cocoa.h" in a Mac application imports 112,047 lines of code from
689 different files [Pike 2010]. Thus, the behavior of the framework, and not just the

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:4 T. Harter et al.

application, determines I/O patterns. We find that the default behavior of some Cocoa
APIs induces extra I/O and possibly unnecessary (and costly) synchronizations to disk.
In addition, use of different libraries for similar tasks within an application can lead
to inconsistent behavior between those tasks. Future storage design should take these
libraries and frameworks into account.

This article contains four major contributions. First, we describe a general tracing
framework for creating benchmarks based on interactive tasks that home users may
perform (e.g., importing songs, exporting video clips, saving documents). Second, we
deconstruct the I/O behavior of the tasks in iBench; we quantify the I/O behavior of
each task in numerous ways, including how directories are used, the types of files ac-
cessed (e.g., counts and sizes), the access patterns (e.g., read/write, sequentiality, and
preallocation), caching considerations (e.g., data reuse and prefetching hints), trans-
actional properties (e.g., durability, atomicity, and isolation), and threading. Third, we
describe how these qualitative changes in I/O behavior may impact the design of fu-
ture systems. Finally, we present the 34 traces from the iBench task suite; by making
these traces publicly available and easy to use, we hope to improve the design, imple-
mentation, and evaluation of the next generation of local and cloud storage systems:

http://www.cs.wisc.edu/adsl/Traces/ibench

This article is an expansion of our earlier work [Harter et al. 2011]. We have
made two major additions to our quantitative analysis: a section on directory I/O
(Section 4.1), and a section on memory-related behavior (Section 4.4). We have also
added minor sections which discuss memory-mapped I/O (Section 4.3.1), read and
write request sizes (Section 4.3.3), open durations (Section 4.3.6), metadata ac-
cess (Section 4.3.7), and file locking (Section 4.5.3). The sequential-access section
(Section 4.3.4) has also been expanded to provide details about full-file access.

The remainder of this article is organized as follows. We begin by presenting a
detailed timeline of the I/O operations performed by one task in the iBench suite; this
motivates the need for a systematic study of home-user applications. We next describe
our methodology for creating the iBench task suite. We then spend the majority of the
paper quantitatively analyzing the I/O characteristics of the full iBench suite. Finally,
we summarize the implications of our findings on file-system design.

2. CASE STUDY

The I/O characteristics of modern home-user applications are distinct from those of
UNIX applications studied in the past. To motivate the need for a new study, we inves-
tigate the complex I/O behavior of a single representative task. Specifically, we report
in detail the I/O performed over time by the Pages (4.0.3) application, a word processor,
running on Mac OS X Snow Leopard (10.6.2) as it creates a blank document, inserts
15 JPEG images each of size 2.5 MB, and saves the document as a Microsoft .doc file.

Figure 1 shows the I/O this task performs (see the caption for a description of the
symbols used). The top portion of the figure illustrates the accesses performed over the
full lifetime of the task: at a high level, it shows that more than 385 files spanning six
different categories are accessed by eleven different threads, with many intervening
calls to fsync and rename. The bottom portion of the figure magnifies a short time
interval, showing the reads and writes performed by a single thread accessing the
primary .doc productivity file. From this one experiment, we illustrate each finding
described in the introduction. We first focus on the single access that saves the user’s
document (bottom), and then consider the broader context surrounding this file save,
where we observe a flurry of accesses to hundreds of helper files (top).

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:5

Fig. 1. Pages saving a word document. The top graph shows the 75-second timeline of the entire run, while
the bottom graph is a magnified view of seconds 54 to 58. In the top graph, annotations on the left categorize
files by type and indicate file count and amount of I/O; annotations on the right show threads. Black bars are
file accesses (reads and writes), with thickness logarithmically proportional to bytes of I/O. / is an fsync; \ is
a rename; X is both. In the bottom graph, individual reads and writes to the .doc file are shown. Vertical bar
position and bar length represent the offset within the file and number of bytes touched. Thick white bars
are reads; thin gray bars are writes. Repeated runs are marked with the number of repetitions. Annotations
on the right indicate the name of each file section.

A File Is Not a File. Focusing on the magnified timeline of reads and writes to the
productivity .doc file, we see that the file format comprises more than just a simple file.
Microsoft .doc files are based on the FAT file system and allow bundling of multiple files
in the single .doc file. This .doc file contains a directory (Root), three streams for large
data (WordDocument, Data, and 1Table), and a stream for small data (Ministream).
Space is allocated in the file with three sections: a file allocation table (FAT), a double-
indirect FAT (DIF) region, and a ministream allocation region (Mini).

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:6 T. Harter et al.

Sequential Access Is Not Sequential. The complex FAT-based file format causes
random access patterns in several ways: first, the header is updated at the beginning
and end of the magnified access; second, data from individual streams is fragmented
throughout the file; and third, the 1Table stream is updated before and after each
image is appended to the WordDocument stream.

Auxiliary Files Dominate. Although saving the single .doc we have been consider-
ing is the sole purpose of this task, we now turn our attention to the top timeline and
see that 385 different files are accessed. There are several reasons for this multitude
of files. First, Pages provides a rich graphical experience involving many images and
other forms of multimedia; together with the 15 inserted JPEGs, this requires 118
multimedia files. Second, users want to use Pages in their native language, so appli-
cation text is not hard-coded into the executable but is instead stored in 25 different
.strings files. Third, to save user preferences and other metadata, Pages uses a SQLite
database (2 files) and a number of key-value stores (218 .plist files).

Writes Are Often Forced; Renaming Is Popular. Pages uses both of these actions
to enforce basic transactional guarantees. It uses fsync to flush write data to disk,
making it durable; it uses rename to atomically replace old files with new files so that a
file never contains inconsistent data. The timeline shows these invocations numerous
times. First, Pages regularly uses fsync and rename when updating the key-value store
of a .plist file. Second, fsync is used on the SQLite database. Third, for each of the 15
image insertions, Pages calls fsync on a file named “tempData” (classified as “other”)
to update its automatic backup.

Multiple Threads Perform I/O. Pages is a multi-threaded application and issues
I/O requests from many different threads during the experiment. Using multiple
threads for I/O allows Pages to avoid blocking while I/O requests are outstanding.
Examining the I/O behavior across threads, we see that Thread 1 performs the most
significant portion of I/O, but ten other threads are also involved. In most cases, a sin-
gle thread exclusively accesses a file, but it is not uncommon for multiple threads to
share a file.

Frameworks Influence I/O. Pages was developed in a rich programming environ-
ment where frameworks such as Cocoa or Carbon are used for I/O; these libraries
impact I/O patterns in ways the developer might not expect. For example, although
the application developers did not bother to use fsync or rename when saving the
user’s work in the .doc file, the Cocoa library regularly uses these calls to atomically
and durably update relatively unimportant metadata, such as “recently opened” lists
stored in .plist files. As another example, when Pages tries to read data in 512-byte
chunks from the .doc, each read goes through the STDIO library, which only reads in
4 KB chunks. Thus, when Pages attempts to read one chunk from the 1Table stream,
seven unrequested chunks from the WordDocument stream are also incidentally read
(offset 12039 KB). In other cases, regions of the .doc file are repeatedly accessed unnec-
essarily. For example, around the 3 KB offset, read/write pairs occur dozens of times.
Pages uses a library to write 2-byte words; each time a word is written, the library
reads, updates, and writes back an entire 512-byte chunk. Finally, we see evidence of
redundancy between libraries: even though Pages has a backing SQLite database for
some of its properties, it also uses .plist files, which function across Apple applications
as generic property stores.

This one detailed experiment has shed light on a number of interesting I/O behav-
iors that indicate that home-user applications are indeed different than traditional
workloads. A new workload suite is needed that accurately reflects these applications.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:7

3. IBENCH TASK SUITE

Our goal in constructing the iBench task suite is two-fold. First, we would like iBench
to be representative of the tasks performed by home users. For this reason, iBench
contains popular applications from the iLife and iWork suites for entertainment and
productivity. Second, we would like iBench to be relatively simple for others to use for
file and storage system analysis. For this reason, we automate the interactions of a
home user and collect the resulting traces of I/O system calls. The traces are available
online at this site: http://www.cs.wisc.edu/adsl/Traces/ibench. We now describe in
more detail how we met these two goals.

3.1. Representative

To capture the I/O behavior of home users, iBench models the actions of a “reasonable”
user interacting with iPhoto, iTunes, iMovie, Pages, Numbers, and Keynote. Since
the research community does not yet have data on the exact distribution of tasks that
home users perform, iBench contains tasks that we believe are common and uses files
with sizes that can be justified for a reasonable user. iBench contains 34 different
tasks, each representing a home user performing one distinct operation. If desired,
these tasks could be combined to create more complex workflows and I/O workloads.
The six applications and corresponding tasks are as follows.

iLife iPhoto 8.1.1 (419). Digital photo album and photo manipulation software.
iPhoto stores photos in a library that contains the data for the photos (which can be
in a variety of formats, including JPG, TIFF, and PNG), a directory of modified files, a
directory of scaled down images, and two files of thumbnail images. The library stores
metadata in a SQLite database. iBench contains six tasks exercising user actions typ-
ical for iPhoto: starting the application and importing, duplicating, editing, viewing,
and deleting photos in the library. These tasks modify both the image files and the
underlying database. Each of the iPhoto tasks operates on 400 2.5-MB photos, repre-
senting a user who has imported 12 megapixel photos (2.5 MB each) from a full 1-GB
flash card on his or her camera.

iLife iTunes 9.0.3 (15). A media player capable of both audio and video playback.
iTunes organizes its files in a private library and supports most common music for-
mats (e.g., MP3, AIFF, WAVE, AAC, and MPEG-4). iTunes does not employ a database,
keeping media metadata and playlists in both a binary and an XML file. iBench con-
tains five tasks for iTunes: starting iTunes, importing and playing an album of MP3
songs, and importing and playing an MPEG-4 movie. Importing requires copying files
into the library directory and, for music, analyzing each song file for gapless playback.
The music tasks operate over an album (or playlist) of ten songs while the movie tasks
use a single 3-minute movie.

iLife iMovie 8.0.5 (820). Video editing software. iMovie stores its data in a library
that contains directories for raw footage and projects, and files containing video footage
thumbnails. iMovie supports both MPEG-4 and Quicktime files. iBench contains four
tasks for iMovie: starting iMovie, importing an MPEG-4 movie, adding a clip from this
movie into a project, and exporting a project to MPEG-4. The tasks all use a 3-minute
movie because this is a typical length for home videos on video-sharing websites.

iWork Pages 4.0.3 (766). A word processor. Pages uses a ZIP-based file format and
can export to DOC, PDF, RTF, and basic text. iBench includes eight tasks for Pages:
starting up, creating and saving, opening, and exporting documents with and without
images and with different formats. The tasks use 15-page documents.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:8 T. Harter et al.

Table I. 34 Tasks of the iBench Suite

The table summarizes the 34 tasks of iBench, specifying the application, a short name for the
task, and a longer description of the actions modeled. The I/O is characterized according to the
number of files read or written, the sum of the maximum sizes of all accessed files, the number of
file accesses that read or write data (Acc.), the number of bytes read or written, the percentage of
I/O bytes that are part of a read (or write; RD% and WR%, respectively), and the rate of I/O per
CPU-second in terms of both file accesses and bytes (Acc./s and MB/s, respectively). Each core is
counted individually, so at most 2 CPU-seconds can be counted per second on our dual-core test
machine. CPU utilization is measured with the UNIX top utility, which in rare cases produces
anomalous CPU utilization snapshots; those values are ignored.

iWork Numbers 2.0.3 (332). A spreadsheet application. Numbers organizes its files
with a ZIP-based format and exports to XLS and PDF. The four iBench tasks for Num-
bers include starting Numbers, generating a spreadsheet and saving it, opening the
spreadsheet, and exporting a spreadsheet to XLS. To model a possible user working on
a budget, tasks utilize a five-page spreadsheet with one column graph per sheet.

iWork Keynote 5.0.3 (791). A presentation and slideshow application. Keynote
saves to a .key ZIP-based format and exports to Microsoft’s PPT format. The seven
iBench tasks for Keynote include starting Keynote, creating slides with and without
images, opening and playing presentations, and exporting to PPT. Each Keynote task
uses a 20-slide presentation.

Table I contains a brief description and basic I/O characteristics for each of our
34 iBench tasks. The table illustrates that the iBench tasks perform a significant
amount of I/O. Most tasks access hundreds of files, which in aggregate contain tens
or hundreds of megabytes of data. The tasks perform widely differing amounts of I/O,
from less than a megabyte to more than a gigabyte. Most tasks perform many more

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:9

reads than writes. Finally, the tasks exhibit high I/O throughput, often transferring
tens of megabytes of data per CPU-second.

3.2. Easy to Use

To enable other system evaluators to easily use these tasks, the iBench suite is pack-
aged as a set of 34 system call traces. To ensure reproducible results, the 34 user tasks
were first automated with AppleScript, a general-purpose GUI scripting language.
AppleScript provides generic commands to emulate mouse clicks through menus and
application-specific commands to capture higher-level operations. Application-specific
commands bypass a small amount of I/O by skipping dialog boxes; however, we use
them whenever possible for expediency.

The system call traces were gathered using DTrace [Cantrill et al. 2004], a kernel
and user level dynamic instrumentation tool. DTrace is used to instrument the entry
and exit points of all system calls dealing with the file system; it also records the
current state of the system and the parameters passed to and returned from each call.

While tracing with DTrace was generally straightforward, we addressed four chal-
lenges in collecting the iBench traces. First, file sizes are not always available to
DTrace; thus, we record every file’s initial size and compute subsequent file size
changes caused by system calls such as write or ftruncate. Second, iTunes uses the
ptrace system call to disable tracing; we circumvent this block by using gdb to in-
sert a breakpoint that automatically returns without calling ptrace. Third, the volfs
pseudo-file system in HFS+ (Hierarchical File System) allows files to be opened via
their inode number instead of a file name; to include pathnames in the trace, we in-
strument the build path function to obtain the full path when the task is run. Fourth,
tracing system calls misses I/O resulting from memory-mapped files; therefore, we
purged memory and instrumented kernel page-in functions to measure the amount of
memory-mapped file activity. We found that the amount of memory-mapped I/O is neg-
ligible in most tasks; we thus do not include this I/O in the iBench traces or analysis,
except for a brief discussion in Section 4.3.1.

To provide reproducible results, the traces must be run on a single file-system im-
age. Therefore, the iBench suite also contains snapshots of the initial directories to be
restored before each run; initial state is critical in file-system benchmarking [Agrawal
et al. 2009].

4. ANALYSIS OF IBENCH TASKS

The iBench task suite enables us to study the I/O behavior of a large set of home-
user actions. As shown from the timeline of I/O behavior for one particular task in
Section 2, these tasks are likely to access files in complex ways. To characterize this
complex behavior in a quantitative manner across the entire suite of 34 tasks, we focus
on answering six categories of questions.

— How often are directories accessed? How much data is read from them?
— What different types of files are accessed and what are the sizes of these files?
— How are files accessed? Does I/O occur via system calls or via memory-mapped

files? How are files accessed for reads and writes? How many bytes are accessed per
request? Are files accessed sequentially? Is space preallocated?

— Is the data repeatedly accessed? Are patterns conducive to caching/buffering data?
Are there caching/prefetching hints?

— What are the transactional properties? Are writes flushed with fsync or performed
atomically? Are file locks used for isolation?

— How do multithreaded applications distribute I/O across different threads?

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:10 T. Harter et al.

Fig. 2. Types of opens. This plot divides opens into four types—file opens that access the file’s data, file
opens that do not, directory opens that read the directory, and directory opens that do not—and displays the
relative size of each. The numbers atop the bars indicate the total number of opens in each task.

Answering these questions has two benefits. First, the answers can guide file and
storage system developers to target their systems better to home-user applications.
Second, the characterization will help users of iBench to select the most appropriate
traces for evaluation and to understand their resulting behavior.

All measurements were performed on a Mac Mini running Mac OS X Snow Leopard
version 10.6.2 and the HFS+ file system. The machine has 2 GB of memory and a
2.26 GHz Intel Core Duo processor.

4.1. Open Types: Directories and Files

One of the first measurements necessary for workload analysis is the ratio of file oper-
ations to directory operations. The results inform where to concentrate investigations
into the rest of the workload; if data access is skewed towards either files or directories,
it would be best to focus on that.

We categorize opens into four groups based on their target and their usage: opens
of files that access the files’ contents, opens of files that do not access the contents of
the files directly, opens of directories that read their contents, and opens of directories
that do not read them. We display our results in Figure 2.

Our results show that opens to files are generally more common than directory
opens, though significant variance exists between tasks. In particular, iMovie Add
uses over 90% of its opens for file I/O, while Pages Start uses less than 20% of them
for this purpose. Opens to files that access data outnumber those that do not across
all tasks; only a few of the iPhoto and iTunes tasks open more than 10–15% of their
files without accessing them. Though some opens that do not access files result in no
further manipulation of their target file, investigating our traces shows that many of
these opens are used for locking, calls to fsync or mmap, and metadata access.

While directory opens usually occur less frequently than file opens, they nonetheless
have a significant presence, particularly for iWork. Their quantity varies widely, rang-
ing from over 60% for Keynote Start to under 5% for iTunes PlayS. As with file opens,

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:11

Fig. 3. Distribution of bytes between file and directory reads. This plot shows how bytes read are dis-
tributed between files and explicit reads of directories. The numbers atop the bars indicate the total number
of bytes read.

the majority of directory opens access directory entries, although all iPhoto work-
loads other than Start access very little data from the directories they open. Similarly,
directory opens that do not explicitly access directory entries are not necessarily
useless or used solely to confirm the existence of a given directory; many examine
metadata attributes of their children or of the directory itself or change the working
directory.

Given that a sizable minority of opens are on directories, we next examine how
many bytes are read from each type of object in Figure 3. This plot omits the implicit
directory reads that occur during pathname resolution when files are opened.

Despite the prevalence of directory opens, directory reads account for almost none
of the I/O performed in the iLife suite and usually comprise at most 5–7% of the total
I/O in iLife. The only exceptions are the Start tasks for Keynote, Pages, and Numbers,
where directory reads account for roughly 50%, 25%, and 20%, respectively, of all data
read. None of these tasks read much data, however, and, in general, the proportion
of data read from directories diminishes rapidly as the total data read for the task
rises.

Summary. While the iBench applications frequently open directories, the vast ma-
jority of reads are from files; the total data read from directories in any given task
never exceeds 1 MB. Thus, we focus on file I/O for the rest of our analysis.

4.2. Nature of Files

We now characterize the high-level behavior of the iBench tasks. In particular, we
study the different types and sizes of files opened by each iBench task.

4.2.1. File Types. The iLife and iWork applications store data across a variety of files
in a number of different formats; for example, iLife applications tend to store their
data in libraries (or data directories) unique to each user, while iWork applications

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:12 T. Harter et al.

Fig. 4. Types of files accessed by number of opens. This plot shows the relative frequency with which file
descriptors are opened upon different file types. The number at the end of each bar indicates the total
number of unique file descriptors opened on files.

organize their documents in proprietary ZIP-based files. The extent to which tasks
access different types of files greatly influences their I/O behavior.

To understand accesses to different file types, we place each file into one of six cat-
egories, based on file name extensions and usage. Multimedia files contain images
(e.g., JPEG), songs (e.g., MP3, AIFF), and movies (e.g., MPEG-4). Productivity files are
documents (e.g., .pages, DOC, PDF), spreadsheets (e.g., .numbers, XLS), and presen-
tations (e.g., .key, PPT). SQLite files are database files. Plist files are property-list files
in XML containing key-value pairs for user preferences and application properties.
Strings files contain strings for localization of application text. Finally, Other contains
miscellaneous files such as plain text, logs, files without extensions, and binary files.

Figure 4 shows the frequencies with which tasks open and access files of each type;
most tasks perform hundreds of these accesses. Multimedia file opens are common in
all workloads, though they seldom predominate, even in the multimedia-heavy iLife
applications. Conversely, opens of productivity files are rare, even in iWork applica-
tions that use them; this is likely because most iWork tasks create or view a single
productivity file. Because .plist files act as generic helper files, they are relatively com-
mon. SQLite files only have a noticeable presence in iPhoto, where they account for a
substantial portion of the observed opens. Strings files occupy a significant minority of
most workloads (except iPhoto and iTunes). Finally, between 5% and 20% of files are
of type “Other” (except for iTunes, where they are more prevalent).

Figure 5 displays the percentage of I/O bytes accessed for each file type. In bytes,
multimedia I/O dominates most of the iLife tasks, while productivity I/O has a signifi-
cant presence in the iWork tasks; file descriptors on multimedia and productivity files
tend to receive large amounts of I/O. SQLite, Plist, and Strings files have a smaller
share of the total I/O in bytes relative to the number of opened files; this implies that
tasks access only a small quantity of data for each of these files opened (e.g., several
key-value pairs in a .plist). In most tasks, files classified as “Other” receive a more
significant portion of the I/O (the exception is iTunes).

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:13

Fig. 5. Types of files opened by I/O size. This plot shows the relative frequency with which each task
performs I/O upon different file types. The number atop each bar indicates the total bytes of I/O accessed.

Summary. Home applications access a wide variety of file types, generally opening
multimedia files the most frequently. iLife tasks tend to access bytes primarily from
multimedia or files classified as “Other”; iWork tasks access bytes from a broader range
of file types, with some emphasis on productivity files.

4.2.2. File Sizes. Large and small files present distinct challenges to the file system.
For large files, finding contiguous space can be difficult, while for small files, mini-
mizing initial seek time is more important. We investigate two different questions
regarding file size. First, what is the distribution of file sizes accessed by each task?
Second, what portion of accessed bytes resides in files of various sizes?

To answer these questions, we record file sizes when each unique file descriptor is
closed. We categorize sizes as very small (<4 KB), small (<64 KB), medium (<1 MB),
large (<10 MB), or very large (≥10 MB). We track how many accesses are to files in
each category and how many of the bytes belong to files in each category.

Figure 6 shows the number of accesses to files of each size. Accesses to very small
files are extremely common, especially for iWork, accounting for over half of all the
accesses in every iWork task. Small file accesses have a significant presence in the
iLife tasks. The large quantity of very small and small files is due to frequent use of
.plist files that store preferences, settings, and other application data; these files often
fill just one or two 4 KB pages.

Figure 7 shows the proportion of the files in which the bytes of accessed files reside.
Large and very large files dominate every startup workload and nearly every task that
processes multimedia files. Small files account for few bytes and very small files are
essentially negligible.

Summary. Agreeing with many previous studies (e.g., Baker et al. [1991]), we find
that while applications tend to open many very small files (<4 KB), most of the bytes
accessed are in large files (>1 MB).

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:14 T. Harter et al.

Fig. 6. File sizes, weighted by number of accesses. This graph shows the number of accessed files in each
file size range upon access ends. The total number of file accesses appears at the end of the bars. Note that
repeatedly-accessed files are counted multiple times, and entire file sizes are counted even upon partial file
accesses.

4.3. Access Patterns

We next examine how the nature of file accesses has changed, studying the read and
write patterns of home applications. These patterns include whether data is trans-
ferred via memory-mapped I/O or through read and write requests; whether files are
used for reading, writing, or both; whether files are accessed sequentially or randomly;
and finally, whether or not blocks are preallocated via hints to the file system.

4.3.1. I/O Mechanisms. UNIX provides two mechanisms for reading and writing to
a file that has been opened. First, calls to read, write, or similar functions may be
performed on a file descriptor (we call this request-based I/O). Second, a process may
use mmap to map a file into a region of virtual memory and then just access that region.
We explore how often these two mechanisms are used.

For each of our tasks, we clear the system’s disk cache using the purge command
so that we can observe all pageins that result from memory-mapped I/O. We are in-
terested in application behavior, not the I/O that results from loading the applica-
tion, so we filter pageins to executable memory or from files under /System/Library
and /Library. We also exclude pageins from a 13 MB file named “/usr/share/icu/
icudt40l.dat”; all the applications use this file, so it should typically be resident in
memory. Figure 8 shows how frequently pageins occur relative to request-based I/O.
We do not observe any pageouts. In general, memory-mapped I/O is negligible. For the
two exceptions, Numbers Start and Keynote Start, the pagein traffic is from JPG files.

In the Numbers and Keynote Start tasks, the user is presented with a list of tem-
plates from which to choose. A JPG thumbnail represents each template. The applica-
tions map these thumbnails into virtual memory.

Summary. The vast majority of I/O is performed by reading and writing to
open file descriptors. Only a few of the iBench tasks have significant pageins from

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:15

Fig. 7. File sizes, weighted by the bytes in accessed files. This graph shows the portion of bytes in accessed
files of each size range upon access ends. The sum of the file sizes appears at the end of the bars. This
number differs from total file footprint since files change size over time and repeatedly accessed files are
counted multiple times.

Fig. 8. File access mechanisms. Memory-mapped I/O is compared to request-based I/O. The values atop the
bars indicate the sum of both I/O types. Memory-mapped I/O to JPG files is indicated by the black bars.

memory-mapped files; most of this pagein traffic is from images. For the rest of our
analysis, we exclude memory-mapped I/O since it is generally negligible.

4.3.2. File Accesses. One basic characteristic of our workloads is the division between
reading and writing on open file descriptors. If an application uses an open file only for

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:16 T. Harter et al.

Fig. 9. Read/write distribution by file descriptor. File descriptors can be used only for reads, only for writes,
or for both operations. This plot shows the percentage of file descriptors in each category. This is based
on usage, not open flags. Any duplicate file descriptors (e.g., created by dup) are treated as one and file
descriptors on which the program does not perform any subsequent read or write are ignored.

reading (or only for writing) or performs more activity on file descriptors of a certain
type, then the file system may be able to allocate memory and disk space in a more
intelligent fashion.

To determine these characteristics, we classify each opened file descriptor based on
the types of accesses–read, write, or both read and write–performed during its lifetime.
We also ignore the actual flags used when opening the file since we found they do
not accurately reflect behavior; in all workloads, almost all write-only file descriptors
were opened with O RDWR. We measure both the proportional usage of each type of file
descriptor and the relative amount of I/O performed on each.

Figure 9 shows how many file descriptors are used for each type of access. The over-
whelming majority of file descriptors are used exclusively for reading or writing; read-
write file descriptors are quite uncommon. Overall, read-only file descriptors are the
most common across a majority of workloads; write-only file descriptors are popular in
some iLife tasks, but are rarely used in iWork.

We observe different patterns when analyzing the amount of I/O performed on each
type of file descriptor, as shown in Figure 10. First, although iWork tasks have very few
write-only file descriptors, significant write I/O is often performed on those descriptors.
Second, even though read-write file descriptors are rare, when present, they account
for relatively large portions of total I/O (especially for exports to .doc, .xls, and .ppt).

Summary. While many files are opened with the O RDWR flag, most of them are
subsequently accessed write-only; thus, file open flags cannot be used to predict how
a file will be accessed. However, when an open file is both read and written by a
task, the amount of traffic to that file occupies a significant portion of the total I/O.
Finally, the rarity of read-write file descriptors may derive in part from the tendency
of applications to write to a temporary file which they then rename as the target file,
instead of overwriting the target file; we explore this tendency more in Section 4.5.2.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:17

Fig. 10. Read/write distribution by bytes. The graph shows how I/O bytes are distributed among the three
access categories. The unshaded dark gray indicates bytes read as a part of read-only accesses. Similarly,
unshaded light gray indicates bytes written in write-only accesses. The shaded regions represent bytes
touched in read-write accesses, and are divided between bytes read and bytes written.

4.3.3. Read and Write Sizes. Another metric that affects file-system performance is
the number and size of individual read and write system calls. If applications perform
many small reads and writes, prefetching and caching may be a more effective strategy
than it would be if applications tend to read or write entire files in one or two system
calls. In addition, these data can augment some of our other findings, especially those
regarding file sizes and complex access patterns.

We examine this by recording the number of bytes accessed by each read and write
system call. As in our file size analysis in Section 4.2.2, we categorize these sizes into
five groups: very small (≤4 KB), small (≤32 KB), medium (≤128 KB), large (≤1 MB),
and very large (>1 MB).

Figures 11 and 12 display the number of reads and writes, respectively, of each size.
We see very small operations dominating the iWork suite, with a more diverse vari-
ety of sizes in iLife; in particular, very large writes dominate iTunes ImpS, indicating
that the act of copying songs occupies the majority of the I/O operations for that task.
Conversely, many iPhoto write tasks are composed almost entirely of very small oper-
ations, and reads for iLife tasks are usually dominated by a mixture of small and very
small operations.

Figures 13 and 14 show the proportion of accessed bytes for each group. As with
file sizes, large and very large reads cover substantial proportions of bytes in most of
the workloads across both iLife and iWork. However, while large and very large writes
account for sizable proportions of the workloads in iLife and the iWork workloads that
use images, the vast majority of bytes in many of the other iWork tasks result from
very small writes. Much of this is likely due to the complex patterns we observe when
applications write to the complex files frequently used in productivity applications,
although some of it also derives from the small amount of bytes that these tasks write.

Summary. We find that applications perform large numbers of very small (≤4 KB)
reads and writes, which agrees with our findings in Section 4.2.2 that applications

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:18 T. Harter et al.

Fig. 11. Read size distribution. This plot groups individual read operations by the number of bytes each
operation returns. The numbers atop the bars indicate the total number of read system calls in each task.

Fig. 12. Write size distribution. This plot groups individual write operations by the number of bytes each
operation returns. The numbers atop the bars indicate the number of write system calls in each task.

open many small files. While we also find that applications read most of their bytes in
large operations, very small writes dominate many of the iWork workloads, resulting
from a combination of the complex access patterns we have observed and the limited
write I/O they perform.

4.3.4. Sequentiality. Historically, files have usually been read or written entirely se-
quentially [Baker et al. 1991]. We next determine whether sequential accesses are

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:19

Fig. 13. Read size distribution by bytes. This plot groups individual read operations by the percent of total
bytes read for which each call is responsible. The numbers atop the bars indicate the total number of bytes
read.

dominant in iBench. We measure this by examining all reads and writes performed
on each file descriptor and noting the percentage of files accessed in strict sequential
order (weighted by bytes).

We display our measurements for read and write sequentiality in Figures 15 and 16,
respectively. The portions of the bars in black indicate the percent of file accesses that
exhibit pure sequentiality. We observe high read sequentiality in iWork, but little in
iLife (with the exception of the Start tasks and iTunes Import). The inverse is true
for writes: while a majority of iLife writes are sequential, iWork writes are seldom
sequential outside of Start tasks.

Investigating the access patterns to multimedia files more closely, we note that
many iLife applications first touch a small header before accessing the entire file se-
quentially. To better reflect this behavior, we define an access to a file as “nearly se-
quential” when at least 95% of the bytes read or written to a file form a sequential run.
We found that a large number of accesses fall into the “nearly sequential” category
given a 95% threshold; the results do not change much with lower thresholds.

The slashed portions of the bars in Figures 15 and 16 show observed sequentiality
with a 95% threshold. Tasks with heavy use of multimedia files exhibit greater se-
quentiality with the 95% threshold for both reading and writing. In several workloads
(mainly iPhoto and iTunes), the I/O classified almost entirely as non-sequential with a
100% threshold is classified as nearly sequential. The difference for iWork applications
is much less striking, indicating that accesses are more random.

In addition to this analysis of sequential and random accesses, we also measure
how often a completely sequential access reads or writes an entire file. Figure 17
divides sequential reads into those that read the full file and those that only read part
of it. In nearly all cases, the access reads the entire file; the only tasks for which
sequential accesses of part of the file account for more than five percent of the total
are iTunes Start and iMovie Imp and Exp. We omit the corresponding plot for writes,
since virtually all sequential writes cover the entire file.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:20 T. Harter et al.

Fig. 14. Write size distribution. This plot groups individual write operations by the percent of total bytes
written each for which each call is responsible. The numbers atop the bars indicate the total number of
bytes written.

Fig. 15. Read sequentiality. This plot shows the portion of file read accesses (weighted by bytes) that are
sequentially accessed.

Summary. A substantial number of tasks contain purely sequential accesses.
When the definition of a sequential access is loosened such that only 95% of bytes must
be consecutive, then even more tasks contain primarily sequential accesses. These
“nearly sequential” accesses result from metadata stored at the beginning of complex
multimedia files: tasks frequently touch bytes near the beginning of multimedia files
before sequentially reading or writing the bulk of the file. Those accesses that are fully

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:21

Fig. 16. Write sequentiality. This plot shows the portion of file write accesses (weighted by bytes) that are
sequentially accessed.

Fig. 17. Full-file sequential reads. This plot divides those reads that are fully sequential into partial reads
of the file and reads of the entire file. The number atop each bar shows the total bytes the task read.

sequential tend to access the entire file at once; applications that perform a substan-
tial number of sequential reads of parts of files, like iMovie, often deal with relatively
large files that would be impractical to read in full.

4.3.5. Preallocation. One of the difficulties file systems face when allocating contigu-
ous space for files is not knowing how much data will be written to those files. Appli-
cations can communicate this information by providing hints [Patterson et al. 1995]

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:22 T. Harter et al.

Fig. 18. Preallocation hints. The sizes of the bars indicate which portion of file extensions are prealloca-
tions; unnecessary preallocations are diagonally striped. The number atop each bar indicates the absolute
amount preallocated.

to the file system to preallocate an appropriate amount of space. In this section, we
quantify how often applications use preallocation hints and how often these hints are
useful.

We instrument two calls usable for preallocation: pwrite and ftruncate. pwrite
writes a single byte at an offset beyond the end of the file to indicate the fu-
ture end of the file; ftruncate directly sets the file size. Sometimes a preallocation
does not communicate anything useful to the file system because it is immediately
followed by a single write call with all the data; we flag these preallocations as
unnecessary.

Figure 18 shows the portion of file growth that is the result of preallocation. In all
cases, preallocation was due to calls to pwrite; we never observed ftruncate preallo-
cation. Overall, applications rarely preallocate space and the preallocations that occur
are often useless.

The three tasks with significant preallocation are iPhoto Dup, iPhoto Edit, and
iMovie Exp. iPhoto Dup and Edit both call a copyPath function in the Cocoa library
that preallocates a large amount of space and then copies data by reading and writing
it in 1 MB chunks. iPhoto Dup sometimes uses copyPath to copy scaled-down images
of size 50–100 KB; since these smaller files are copied with a single write, the preal-
location does not communicate anything useful. iMovie Exp calls a Quicktime append
function that preallocates space before writing the actual data; however, the data is
appended in small 128 KB increments. Thus, the append is not split into multiple
write calls; the preallocation is useless.

Summary. Although preallocation has the potential to be useful, few tasks use it to
provide hints, and a significant number of the hints that are provided are useless. The
hints are provided inconsistently: although iPhoto and iMovie both use preallocation
for some tasks, neither application uses preallocation during import.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:23

Fig. 19. Lifetime of each file open by intervening opens. This plot groups the file opens present in each task
based on the number of opens to other files that occur during their lifetime. The number at the end of each
bar displays the largest number of opens during the lifetime of any one open in each task.

4.3.6. Open Durations. The average length of time that an application keeps its files
open can be useful to know, as it provides a sense of how many resources the operating
system should allocate to that file and its file descriptors. If applications keep file
descriptors open for extended periods of time, closing a file descriptor likely means that
the application is done with the file and that it no longer needs its contents; whereas
if applications quickly close file descriptors after individual operations, the operation
may not provide a meaningful hint for caching or buffering. Previous studies have
found that files tend to be open for only brief periods of time [Baker et al. 1991], and
we wish to determine whether this remains the case.

Due to the automated and compressed nature of our tasks, we cannot obtain a pre-
cise sense of how long file descriptors remain open under normal operation. We ap-
proximate this, however, by examining the number of operations performed during
the lifetime of each file descriptor. Specifically, we assume that most file descriptors
remain open for only a short period and examine the number of files opened during
the lifetime of each access. As each task usually involves a large number of file de-
scriptors, this should provide a reasonable sense of the relative lifetime of each open.
We only track this statistic for file descriptors that access data, though the duration
metric counts all intervening file opens.

We display our results in Figure 19. The vast majority of file descriptors in most
tasks see no intervening file opens during their lifetimes. The only applications with
tasks in which more than 5% of their file descriptors have others opened during their
lifetimes are iPhoto and iTunes. Of these, iPhoto has significantly more file descriptors
of this type, but most of them see fewer than five opens and many only one. iTunes, on
the other hand, has fewer file descriptors with multiple intervening opens, but those
that do generally have significantly more intervening opens than those observed in
iPhoto. This is particularly apparent in iTunes PlayS, where about 10% of the file
descriptors see between 11 and 20 opens during their lifetimes.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:24 T. Harter et al.

Despite the predominance of file descriptors without intervening opens, all exper-
iments except Pages Open, New, PDF, and DOC and Keynote Start feature at least
one file open over the lifetime of a large number of other file opens. The nature of
this file varies: in iPhoto and iWork, it is generally a database, while in iTunes it is a
resource fork of an iTunes-specific file, and in iMovie, it is generally the movie being
manipulated (except for Start, where it is a database).

The two applications that open the most files while others are open, iPhoto and
iTunes, also make the most use of multi-threaded I/O, as shown in Section 4.6. This
indicates that these applications may perform I/O in parallel. Similarly, the prevalence
of file descriptors without intervening opens indicates that most I/O operations are
likely performed serially.

Summary. In the vast majority of cases, applications close the file they are work-
ing on before opening another, though they frequently keep one or two files open for
the majority of the task. Those applications that do open multiple file descriptors in
succession tend to perform substantial multi-threaded I/O, indicating that the opens
may represent parallel access to files instead of longer-lived accesses.

4.3.7. Metadata Access. Reading and writing file data hardly comprises the entirety
of file system operations; many file system calls are devoted to manipulating file
metadata. As previous studies have noted [Jacob et al. 2000], stat calls (including
variations like fstat, stat64, and lstat) often occupy large portions of file system
workloads, as they provide an easy way to verify whether a file currently exists and
to examine the attributes of a file before opening it. Similarly, statfs offers an in-
terface to access metadata about the file system on which a given file resides. Mac
OS X provides an additional function, getattrlist, which combines the data returned
in these two calls, as well as providing additional information; some of the attributes
that it deals with can be manipulated by the application with the setattrlist call. Fi-
nally, the xattr related calls allow applications to retrieve and set arbitrary key-value
metadata on each file. To determine how heavily applications use these metadata op-
erations, we compare the relative frequency of these calls to the frequency of file data
accesses.

We display our results in Figure 20. Metadata accesses occur substantially more
often than data accesses (i.e., open file descriptors that receive at least one read or
write request) with calls to stat and getattrlist together comprising close to 80%
of the access types for most workloads. In a majority of the iLife workloads, calls to
getattrlist substantially exceed those to stat; however, stat calls hold a plurality in
most iWork workloads, except the Pages tasks that deal with images. Data accesses are
the third-most common category and generally occupy 10–20% of all accesses, peaking
at 30% in iTunes PlayS. statfs calls, while uncommon, appear noticeably in all work-
loads except iTunes PlayS; at their largest, in iPhoto Del, they occupy close to 25% of
the categories. Finally, xattr calls are the rarest, seldom comprising more than 3–4%
of accesses in a workload, though still appearing in all tasks other than those in iTunes
(in several cases, such as iPhoto Del, they comprise such a small portion of the overall
workload that they do not appear in the plot).

Summary. As seen previous studies, metadata accesses are very common, greatly
outnumbering accesses to file data across all of our workloads. stat is no longer as
predominant as it has been, however; in many cases, attrlist calls appear more fre-
quently. statfs and xattr access are not nearly as common, but still appear in almost
all of the workloads. As there are usually at least five metadata accesses for each data

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:25

Fig. 20. Relative quantities of metadata access to data access. This plot shows the ratios of stat calls, statfs
calls, and xattr accesses to data accesses in each task. The total combined amount of these is provided at
the end of each bar.

access, the need to keep these system calls optimized, as described by Jacob et al.
[2000], remains.

4.4. Memory: Caching, Buffering, and Prefetching

In this section, we explore application behavior that affects file-system memory man-
agement. We measure how often previously accessed data is read again in the future,
how often applications overwrite previously written data, and how frequently hints are
provided about future patterns. These measures have implications for caching, write
buffering, and prefetching strategies.

4.4.1. Reuse and Overwrites. File systems use memory to cache data that may be read
in the future and to buffer writes that have not yet been flushed to disk. Choosing
which data to cache or buffer will affect performance; in particular, we want to cache
data that will be reused, and we want to buffer writes that will soon be invalidated by
overwrites. In this section, we measure how often tasks reuse and overwrite data. We
keep track of which regions of files are accessed at byte granularity.

Figure 21 shows what portion of all reads are to data that was previously accessed.
For most tasks, 75–100% of reads are to fresh data, but for eight tasks, about half or
more of the data was previously accessed. The previously accessed data across all tasks
can be fairly evenly divided into previously read and previously written categories.

Several of the tasks that exhibit the read-after-write pattern are importing data to
an application library (i.e., iPhoto Imp, iTunes ImpS, and iMovie Imp). For example,
iPhoto Import first performs reads and writes to copy photos to a designated library
directory. The freshly created library copies are then read in order to generate thumb-
nails. It would be more efficient to read the original images once and create the library
copies and thumbnails simultaneously. Unfortunately, use of two independent high-
level abstractions, copy-to-library and generate-thumbnail, cause additional I/O.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:26 T. Harter et al.

Fig. 21. Reads of previously accessed data. This plots shows what portion of reads are to file regions that
were previously read or written. The numbers atop the bars represent all the bytes read by the tasks. The
bars are broken down to show how much of this read data was previously read or written. Data previously
read and written is simply counted as previously written.

Fig. 22. Overwrites of previously accessed data. This plots shows what portion of writes are to file regions
that were previously read or written. The numbers atop the bars represent all the bytes written by the
tasks. The bars are broken down to show how many of these writes overwrite data that was previously read
or written. Data previously read and written is simply counted as previously written.

Figure 22 shows what portion of all writes are overwriting data that has previously
been read or written. We see that such overwrites are generally very rare, with four
exceptions: iPhoto Start, iPhoto Delete, Numbers XLS, and Keynote PPT.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:27

For the iPhoto tasks, the overwrites are caused by SQLite. For Numbers XLS
and Keynote PPT, the overwrites are caused by an undocumented library,
SFCompatability, which is used to export to Microsoft formats. When only a few bytes
are written to a file using the streamWrite function of this library, the function reads a
512-byte page, updates it, and writes it back. We noted this behavior for Pages DOCP
in the case study in Section 2; presumably the 512-byte granularity for the read-
update-write operation is due to the Microsoft file format, which resembles a FAT file
system with 512-byte pages. The read-update-write behavior occurs in all the tasks
that export to Microsoft formats; however, the repetitious writes are less frequent
for Pages. Also, when images are in the exported file, writes to the image sections
dwarf the small repetitious writes. Thus, the repetitious write behavior caused by
SFCompatability is only pronounced for Numbers XLS and Keynote PPT.

Summary. A moderate amount of reads could potentially be serviced by a cache,
but most reads are to fresh data, so techniques, such as intelligent disk allocation,
are necessary to guarantee quick access to uncached data. Written data is rarely over-
written, so waiting to flush buffers until data becomes irrelevant is usually not helpful.
Many of the reads and writes to previously accessed data which do occur are due to I/O
libraries and high-level abstractions.

4.4.2. Caching Hints. Accurate caching and prefetching behavior can significantly af-
fect the performance of a file system, improving access times dramatically for files
that are accessed repeatedly. Conversely, if a file will only be accessed once, caching
data wastes memory that could be better allocated. Correctly determining the ap-
propriate behavior can be difficult for the file system without domain-specific knowl-
edge. Thus, Mac OS X allows developers to affect the caching behavior of the file
system through two commands associated with the fcntl system call, F NOCACHE and
F RDADVISE. F NOCACHE allows developers to explicitly disable and enable caching for
certain file descriptors, which is useful if the developer knows that either all or a por-
tion of the file will not be reread. F RDADVISE suggests an asynchronous read to prefetch
data from the file into the page cache. These commands are only helpful, however, if
developers make active use of them, so we analyze the frequency with which they
appear in our traces.

Figure 23 displays the percent of file descriptors with F RDADVISE issued, F NOCACHE
enabled, and F NOCACHE both enabled and disabled during their lifetimes. The figure
also includes opened file descriptors which received no I/O, even though most of our
plots exclude them (sometimes files are opened just so an F RDADVISE can be issued).
We observed no file descriptors where F NOCACHE was combined with F RDADVISE. Over-
all, we see these commands used most heavily in iPhoto and iTunes. In particular,
over half of the file descriptors opened on files in iPhoto Dup and Edit receive one
of these commands, with F NOCACHE overwhelmingly dominating Dup and F RDADVISE
dominating Edit. Most of the other iLife tasks tend to use F NOCACHE much more fre-
quently than F RDADVISE, with the exception of iPhoto Start and Del. In contrast, only
the Start workloads of the iLife applications issue any of these commands to more
than one or two percent of their file descriptors, with F RDADVISE occurring most fre-
quently. When F NOCACHE occurs (usually in those applications dealing with photos), it
is usually disabled before the file descriptor is closed.

To complement this, we also examine the relative number of inodes in each
workload that receive these commands. Figure 24 shows our results. F RDADVISE is
generally issued to a much smaller proportion of the total inodes than total file
descriptors, indicating that advisory reads are repeatedly issued to a small set of
inodes in the workloads in which they appear. In contrast, the proportion of inodes

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:28 T. Harter et al.

Fig. 23. File descriptors given caching commands. This plot shows the percent of file descriptors issued fcntl
system calls with the F RDADVISE and F NOCACHE commands, distinguishing between file descriptors
that eventually have F NOCACHE disabled and those that only have it enabled. The numbers atop the bars
indicate the total number of file descriptors opened on files.

Fig. 24. Inodes affected by caching commands. This plot shows the percent of the inodes each task touches
that are opened by file descriptors with either F RDADVISE or F NOCACHE. The numbers atop the bars
indicate the total inodes touched by each task.

affected by F NOCACHE is generally comparable to (or, in the case of iTunes PlayS,
greater than) the proportion of file descriptors, which shows that these inodes are
usually only opened once.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:29

Summary. Mac OS X allows developers to guide the file system’s caching behavior
using the fcntl commands F NOCACHE and F RDADVISE. Only iPhoto and iTunes make
significant use of them, though all of the iBench applications use them in at least some
of their tasks. When the commands are used, they generally occur in ways that make
sense: files with caching disabled tend not to be opened more than once, whereas files
that receive advisory reads are repeatedly opened. Thus, developers are able to make
effective use of these primitives when they choose to do so.

4.5. Transactional Properties

In this section, we explore the degree to which the iBench tasks require transactional
properties from the underlying file and storage system. In particular, we investigate
the extent to which applications require writes to be durable; that is, how frequently
they invoke calls to fsync and which APIs perform these calls. We also investigate the
atomicity requirements of the applications, whether from renaming files or exchanging
inodes. Finally, we explore how applications use file locking to achieve isolation.

4.5.1. Durability. Writes typically involve a trade-off between performance and dura-
bility. Applications that require write operations to complete quickly can write data to
the file system’s main memory buffers, which are lazily copied to the underlying stor-
age system at a subsequent convenient time. Buffering writes in main memory has
a wide range of performance advantages: writes to the same block may be coalesced,
writes to files that are later deleted need not be performed, and random writes can be
more efficiently scheduled.

On the other hand, applications that rely on durable writes can flush written data
to the underlying storage layer with the fsync system call. The frequency of fsync
calls and the number of bytes they synchronize directly affect performance: if fsync
appears often and flushes only several bytes, then performance will suffer. Therefore,
we investigate how modern applications use fsync.

Figure 25 shows the percentage of written data each task synchronizes with fsync.
The graph further subdivides the source of the fsync activity into six categories.
SQLite indicates that the SQLite database engine is responsible for calling fsync;
Archiving indicates an archiving library frequently used when accessing ZIP for-
mats; Pref Sync is the PreferencesSynchronize function call from the Cocoa library;
writeToFile is the Cocoa call writeToFile with the atomically flag set; and finally,
FlushFork is the Carbon FSFlushFork routine.

At the highest level, the figure indicates that half the tasks synchronize close to
100% of their written data while approximately two-thirds synchronize more than
60%. iLife tasks tend to synchronize many megabytes of data, while iWork tasks usu-
ally only synchronize tens of kilobytes (excluding tasks that handle images).

To delve into the APIs responsible for the fsync calls, we examine how each bar
is subdivided. In iLife, the sources of fsync calls are quite varied: every category of
API except for Archiving is represented in one of the tasks, and many of the tasks call
multiple APIs which invoke fsync. In iWork, the sources are more consistent; the only
sources are Pref Sync, SQLite, and Archiving (for manipulating compressed data).

Given that these tasks require durability for a significant percentage of their write
traffic, we next investigate the frequency of fsync calls and how much data each in-
dividual call pushes to disk. Figure 26 groups fsync calls based on the amount of
I/O performed on each file descriptor when fsync is called, and displays the relative
percentage each category comprises of the total I/O.

These results show that iLife tasks call fsync frequently (from tens to thousands
of times), while iWork tasks call fsync infrequently except when dealing with images.
From these observations, we infer that calls to fsync are mostly associated with media.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:30 T. Harter et al.

Fig. 25. Percentage of fsync bytes. The percentage of fsyncd bytes written to file descriptors is shown,
broken down by cause. The value atop each bar shows total bytes synchronized.

Fig. 26. Fsync sizes. This plot shows a distribution of fsync sizes. The total number of fsync calls appears
at the end of the bars.

The majority of calls to fsync synchronize small amounts of data; only a few iLife tasks
synchronize more than a megabyte of data in a single fsync call.

Summary. Developers want to ensure that data enters stable storage durably, and
thus, these tasks synchronize a significant fraction of their data. Based on our anal-
ysis of the source of fsync calls, some calls may be incidental and an unintentional
side-effect of the API (e.g., those from SQLite or Pref Sync), but most are performed

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:31

Fig. 27. Atomic writes. The portion of written bytes written atomically is shown, divided into groups:
(1) rename leaving a file in the same directory; (2) rename causing a file to change directories; (3) exchange-
data, which never causes a directory change. The atomic file-write count appears atop each bar.

intentionally by the programmer. Furthermore, some of the tasks synchronize small
amounts of data frequently, presenting a challenge for file systems.

4.5.2. Atomic Writes. Applications often require file changes to be atomic. In this
section, we quantify how frequently applications use different techniques to achieve
atomicity. We also identify cases where performing writes atomically can interfere with
directory locality optimizations by moving files from their original directories. Finally,
we identify the causes of atomic writes.

Applications can atomically update a file by first writing the desired contents to
a temporary file and then using either the rename or exchangedata call to atomically
replace the old file with the new file. With rename, the new file is given the same
name as the old, deleting the original and replacing it. With exchangedata, the inode
numbers assigned to the old file and the temporary file are swapped, causing the old
path to point to the new data; this allows the file path to remain associated with the
original inode number, which is necessary for some applications.

Figure 27 shows how much write I/O is performed atomically with rename or
exchangedata; rename calls are further subdivided into those which keep the file in
the same directory and those which do not. The results show that atomic writes are
quite popular and that, in many workloads, all the writes are atomic. The breakdown
of each bar shows that rename is frequent; many of these calls move files between di-
rectories. exchangedata is rare and used only by iTunes for a small fraction of file
updates.

We find that most of the rename calls causing directory changes occur when a file
(e.g., a document or spreadsheet) is saved at the user’s request. We suspect differ-
ent directories are used so that users are not confused by seeing temporary files in
their personal directories. Interestingly, atomic writes are performed when saving to
Apple formats, but not when exporting to Microsoft formats. We suspect the interface

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:32 T. Harter et al.

Fig. 28. Rename causes. This plot shows the portion of rename calls caused by each of the top four higher
level functions used for atomic writes. The number of rename calls appears at the end of the bars.

between applications and the Microsoft libraries does not specify atomic operations
well.

Figure 28 identifies the APIs responsible for atomic writes via rename. Pref Sync,
from the Cocoa library, allows applications to save user and system wide settings in
.plist files. WriteToFile and movePath are Cocoa routines and FSRenameUnicode is a
Carbon routine. A solid majority of the atomic writes are caused by Pref Sync; this is an
example of I/O behavior caused by the API rather than explicit programmer intention.
The second most common atomic writer is writeToFile; in this case, the programmer
is requesting atomicity but leaving the technique up to the library. Finally, in a small
minority of cases, programmers perform atomic writes themselves by calling movePath
or FSRenameUnicode, both of which are essentially rename wrappers.

Summary. Many of our tasks write data atomically, generally doing so by calling
rename. The bulk of atomic writes result from API calls; while some of these hide the
underlying nature of the write, others make it clear that they act atomically. Thus,
developers desire atomicity for many operations, and file systems will need to either
address the ensuing renames that accompany it or provide an alternative mechanism
for it. In addition, the absence of atomic writes when writing to Microsoft formats
highlights the inconsistencies that can result from the use of high level libraries.

4.5.3. Isolation Via File Locks. Concurrent I/O to the same file by multiple processes
can yield unexpected results. For correctness, we need isolation between processes.
Towards this end, UNIX file systems provide an advisory-locking API, which achieves
mutual exclusion between processes that use the API. However, because the API is
advisory, its use is optional, and processes are free to ignore its locks. The API supports
both whole-file locking and file-region locking. File-region locking does not inherently
correspond to byte regions in the file; instead, applications are free define their own
semantics for the regions locked (e.g., a lock of size ten could cover ten records in the

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:33

Fig. 29. Locking operations. The explicit calls to the locking API are shown, broken down by type.
O SHLOCK and O EXLOCK represent calls to open with those flags, flock represents a change to a file’s
lock status via a call to flock, and fcntl represents file-region locking via fcntl with certain commands
(F GETLK, F SETLK, or F SETLKW). The number atop each bar indicates the number of locking calls.

file, each of which is 100 bytes long). We explore how the iBench applications use these
locking API calls.

Figure 29 shows the frequency and type of explicit locking operations (implicit un-
locks are performed when file descriptors are closed, but we do not count these). Most
tasks perform 15-50 lock or unlock operations; only three tasks do not use file locks at
all. iPhoto makes extreme use of locks; except for the Start task, all the iPhoto tasks
make tens of thousands of calls through the locking API.

We observe that most calls are issued via the fcntl system call; these calls lock
file regions. Whole-file locking is also used occasionally via the O SHLOCK and O EXLOCK
open flags; the vast majority of these whole-file lock operations are exclusive. flock
can be used to change the lock status on a file after it has been opened; these calls are
less frequent, and they are only used to unlock a file that was already locked by a flag
passed to open.

The extreme use of file-region locks by iPhoto is due to iPhoto’s dependence on
SQLite. Many database engines are server based; in such systems, the server can pro-
vide isolation by doing its own locking. In contrast, SQLite has no server, and multiple
processes may concurrently access the same database files directly. Thus, file-system
locking is a necessary part of the SQLite design [SQLite 2012].

Summary. Most tasks make some use of the locking API, and file-region locking ac-
counts for the majority of this use. Tasks that heavily rely on SQLite involve numerous
lock operations. In the case of iPhoto, it seems unlikely that other applications need
to access iPhoto’s database files; however, given SQLite’s support for multi-process
access, iPhoto must pay for the locking functionality, regardless. This shows that
general-purpose storage APIs, such as SQLite, can result in unexpected inefficiency
from actions like excessive locking.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:34 T. Harter et al.

Fig. 30. Asynchronous reads. This plot shows the percentage of read bytes read asynchronously via
aio read. The total amount of asynchronous I/O is provided at the end of the bars.

4.6. Threads and Asynchronicity

Home-user applications are interactive and need to avoid blocking when I/O is
performed. Asynchronous I/O and threads are often used to hide the latency of slow op-
erations from users. For our final experiments, we investigate how often applications
use asynchronous I/O libraries or multiple threads to avoid blocking.

Figure 30 shows the relative amount of read operations performed asynchronously
with aio read; none of the tasks use aio write. We find that asynchronous I/O is used
rarely and only by iLife applications. However, in those cases where asynchronous I/O
is performed, it is used quite heavily.

Figure 31 investigates how threads are used by these tasks: specifically, the portion
of I/O performed by each of the threads. The numbers at the tops of the bars report the
number of threads performing I/O. iPhoto and iTunes leverage a significant number of
threads for I/O, since many of their tasks are readily subdivided (e.g., importing 400
different photos). Only a handful of tasks perform all their I/O from a single thread.
For most tasks, a small number of threads are responsible for the majority of I/O.

Figure 32 shows the responsibilities of each thread that performs I/O, where a
thread can be responsible for reading, writing, or both. Significantly more threads
are devoted to reading than to writing, with a fair number of threads responsible for
both. This indicates that threads are the preferred technique for avoiding blocking and
that applications may be particularly concerned with avoiding blocking due to reads.

Summary. Our results indicate that iBench tasks are concerned with hiding long-
latency operations from interactive users and that threads are the preferred method
for doing so. Virtually all of the applications we study issue I/O requests from multiple
threads, and some launch I/Os from hundreds of different threads.

5. RELATED WORK

Although our study is unique in its focus on the I/O behavior of individual ap-
plications, a body of similar work exists both in the field of file systems and in

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:35

Fig. 31. I/O distribution among threads. The stacked bars indicate the percentage of total I/O performed
by each thread. The I/O from the threads that do the most and second most I/O are dark and medium gray
respectively, and the other threads are light gray. Black lines divide the I/O across the latter group; black
areas appear when numerous threads do small amounts of I/O. The total number of threads that perform
I/O is indicated next to the bars.

Fig. 32. Thread type distribution. The plot categorizes threads that do I/O into three groups: threads that
read, threads that write, or threads that both read and write. The total number of threads that perform I/O
is indicated next to the bars.

application studies. As mentioned earlier, our work builds upon that of Baker et al.
[1991], Ousterhout et al. [1985], and Vogels [1999], and others who have con-
ducted similar studies, providing an updated perspective on many of their findings.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:36 T. Harter et al.

However, the majority of these focus on academic and engineering environments,
which are likely to have noticeably different application profiles from the home en-
vironment. Some studies, like those by Ramakrishnan et al. [1992] and by Vogels,
have included office workloads on personal computers; these are likely to feature ap-
plications similar to those in iWork, but are still unlikely to contain analogues to iLife
products. None of these studies, however, look at the characteristics of individual ap-
plication behaviors; instead, they analyze trends seen in prolonged usage. Thus, our
study complements the breadth of this research with a more focused examination, pro-
viding specific information on the causes of the behaviors we observe, and is one of the
first to address the interaction of multimedia applications with the file system.

In addition to these studies of dynamic workloads, a variety of papers have exam-
ined the static characteristics of file systems, starting with Satyanarayanan’s analysis
of files at Carnegie-Mellon University [Satyanarayanan 1981]. One of the most recent
of these examined metadata characteristics on desktops at Microsoft over a five year
time span, providing insight into file-system usage characteristics in a setting similar
to the home [Agrawal et al. 2007]. This type of analysis provides insight into long term
characteristics of files that ours cannot; a similar study for home systems would, in
conjunction with our article, provide a more complete image of how home applications
interact with the file system.

While most file-system studies deal with aggregate workloads, our examination of
application-specific behaviors has precedent in a number of hardware studies. In par-
ticular, Flautner et al.’s [2000] and Blake et al.’s [2010] studies of parallelism in desk-
top applications bear strong similarities to ours in the variety of applications they
examine. In general, they use a broader set of applications, a difference that derives
from the subjects studied. In particular, we select applications likely to produce inter-
esting I/O behavior; many of the programs they use, like the video game Quake, are
more likely to exercise threading than the file system. Finally it is worth noting that
Blake et al. analyze Windows software using event tracing, which may prove a useful
tool to conduct a similar application file-system study to ours in Windows.

6. DISCUSSION AND CONCLUSIONS

We have presented a detailed study of the I/O behavior of complex, modern applica-
tions. Through our measurements, we have discovered distinct differences between
the tasks in the iBench suite and traditional workload studies. To conclude, we con-
sider the possible effects of our findings on future file and storage systems.

We observed that many of the tasks in the iBench suite frequently force data to disk
by invoking fsync, which has strong implications for file systems. Delayed writing has
long been the basis of increasing file-system performance [Rosenblum and Ousterhout
1992], but it is of greatly decreased utility given small synchronous writes. Thus,
more study is required to understand why the developers of these applications and
frameworks are calling these routines so frequently. For example, is data being flushed
to disk to ensure ordering between writes, safety in the face of power loss, or safety
in the face of application crashes? Finding appropriate solutions depends upon the
answers to these questions. One possibility is for file systems to expose new interfaces
to enable applications to better express their exact needs and desires for durability,
consistency, and atomicity. Another possibility is that new technologies, such as flash
and other solid-state devices, will be a key solution, allowing writes to be buffered
quickly, perhaps before being staged to disk or even the cloud.

The iBench tasks also illustrate that file systems are now being treated as repos-
itories of highly-structured “databases” managed by the applications themselves. In
some cases, data is stored in a literal database (e.g., iPhoto uses SQLite), but in most

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:37

cases, data is organized in complex directory hierarchies or within a single file (e.g., a
.doc file is basically a mini-FAT file system). One option is that the file system could
become more application-aware, tuned to understand important structures and to bet-
ter allocate and access these structures on disk. For example, a smarter file system
could improve its allocation and prefetching of “files” within a .doc file: seemingly non-
sequential patterns in a complex file are easily deconstructed into accesses to metadata
followed by streaming sequential access to data.

Our analysis also revealed the strong impact that frameworks and libraries have
on I/O behavior. Traditionally, file systems have been designed at the level of the VFS
interface, not breaking into the libraries themselves. However, it appears that file
systems now need to take a more “vertical” approach and incorporate some of the func-
tionality of modern libraries. This vertical approach hearkens back to the earliest days
of file-system development when the developers of FFS modified standard libraries to
buffer writes in block-sized chunks to avoid costly sub-block overheads [McKusick et al.
1984]. Future storage systems should further integrate with higher-level interfaces to
gain deeper understanding of application desires.

Finally, modern applications are highly complex, containing millions of lines of code,
divided over hundreds of source files and libraries, and written by many different pro-
grammers. As a result, their own behavior is increasingly inconsistent: along similar,
but distinct code paths, different libraries are invoked with different transactional se-
mantics. To simplify these applications, file systems could add higher-level interfaces,
easing construction and unifying data representations. While the systems community
has developed influential file-system concepts, little has been done to transition this
class of improvements into the applications themselves. Database technology does sup-
port a certain class of applications quite well but is generally too heavyweight. Future
storage systems should consider how to bridge the gap between the needs of current
applications and the features low-level systems provide.

Our evaluation may raise more questions than it answers. To build better systems
for the future, we believe that the research community must study applications that
are important to real users. We believe the iBench task suite takes a first step in this
direction and hope others in the community will continue along this path.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and Rebecca Isaacs (our shepherd) for their tremendous feedback as
well as members of our research group for their thoughts and comments on this work at various stages.

REFERENCES
AGRAWAL, N., BOLOSKY, W. J., DOUCEUR, J. R., AND LORCH, J. R. 2007. A five-year study of file-system

metadata. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST).
AGRAWAL, N., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. 2009. Generating realistic

impressions for file-system benchmarking. In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST).

APPLE COMPUTER, INC. 2011. AppleScript Language Guide. https://developer.apple.com/library/mac
/documentation/applescript/conceptual/applescriptlangguide/AppleScriptLanguageGuide.pdf.

BAKER, M., HARTMAN, J., KUPFER, M., SHIRRIFF, K., AND OUSTERHOUT, J. 1991. Measurements of a
distributed file system. In Proceedings of the 13th ACM Symposium on Operating System Principles
(SOSP’91). 198–212.

BARTLETT, W. AND SPAINHOWER, L. 2004. Commercial fault tolerance: A tale of two systems. IEEE Trans.
Depend. Secure Comput. 1, 1, 87–96.

BLAKE, G., DRESLINSKI, R. G., MUDGE, T., AND FLAUTNER, K. 2010. Evolution of thread-level parallelism
in desktop applications. SIGARCH Comput. Archit. News 38, 302–313.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



10:38 T. Harter et al.

BONWICK, J. AND MOORE, B. 2007. ZFS: The last word in file systems.
http://opensolaris.org/os/community/ zfs/docs/zfs last.pdf.

CANTRILL, B., SHAPIRO, M. W., AND LEVENTHAL, A. H. 2004. Dynamic instrumentation of production
systems. In Proceedings of USENIX’04. 15–28.

DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G., LAKSHMAN, A., PILCHIN, A.,
SIVASUBRAMANIAN, S., VOSSHALL, P., AND VOGELS, W. 2007. Dynamo: Amazon’s highly available
key-value store. In Proceedings of the ACM Symposium on Operating System Principles (SOSP’07).

DOUCEUR, J. R. AND BOLOSKY, W. J. 1999. A large-scale study of file-system contents. In Proceedings of
the SIGMETRICS’99. 59–69.

ELLARD, D. AND SELTZER, M. I. 2003. New NFS tracing tools and techniques for system analysis. In
Proceedings of the 17th Large Installation Systems Administration Conference (LISA’03). 73–85.

ENDO, Y., WANG, Z., CHEN, J. B., AND SELTZER, M. 1994. Using latency to evaluate interactive system per-
formance. In Proceedings of the USENIX 2nd Symposium on OS Design and Implementation (OSDI’96).

FLAUTNER, K., UHLIG, R., REINHARDT, S., AND MUDGE, T. 2000. Thread-level parallelism and interactive
performance of desktop applications. SIGPLAN Not. 35, 129–138.

GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. 2003. The Google file system. In Proceedings of the ACM
Symposium on Operating System Principles (SOSP’03). 29–43.

HAGMANN, R. 1987. Reimplementing the cedar file system using logging and group commit. In Proceedings
of the ACM Symposium on Operating System Principles (SOSP’87).

HARTER, T., DRAGGA, C., VAUGHN, M., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. 2011. A
file is not a file: Understanding the I/O behavior of apple desktop applications. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles (SOSP’11). ACM, New York, 71–83.

HOWARD, J., KAZAR, M., MENEES, S., NICHOLS, D., SATYANARAYANAN, M., SIDEBOTHAM, R., AND
WEST, M. 1988. Scale and performance in a distributed file system. ACM Trans. Comput. Syst. 6, 1.

JACOB, D. R., LORCH, J. R., AND ANDERSON, T. E. 2000. A comparison of file system workloads. In
Proceedings of the USENIX Annual Technical Conference. 41–54.

LAMPSON, B. 1999. Computer systems research – Past and present. In Proceedings of SOSP’17.
LEE, E. K. AND THEKKATH, C. A. 1996. Petal: Distributed virtual disks. In Proceedings of the International

Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS).
LEUNG, A. W., PASUPATHY, S., GOODSON, G. R., AND MILLER, E. L. 2008. Measurement and analysis of

large-scale network file system workloads. In Proceedings of USENIX’08. 213–226.
MACINTOSH BUSINESS UNIT (MICROSOFT). 2006. It’s all in the numbers...

blogs.msdn.com/b/macmojo/archive/2006/11/03/it-s-all-in-the-numbers.aspx.
MCKUSICK, M. K., JOY, W. N., LEFFLER, S. J., AND FABRY, R. S. 1984. A fast file system for UNIX. ACM

Trans. Comput. Syst. 2, 3, 181–197.
MOGUL, J. C. 1994. A better update policy. In Proceedings of USENIX Summer’94.
OLSON, J. 2007. Enhance your apps with file system transactions.

http://msdn.microsoft.com/enus/magazine/cc163388.aspx.
OUSTERHOUT, J. 1995. Why threads are a bad idea (for most purposes).

www.standard.edu/class/cs240/readings/theads-bad-usenix96.pdf.
OUSTERHOUT, J. K., COSTA, H. D., HARRISON, D., KUNZE, J. A., KUPFER, M., AND THOMPSON, J. G.

1985. A trace-driven analysis of the UNIX 4.2 BSD file system. In Proceedings of the ACM Symposium
on Operating System Principles (SOSP’85). 15–24.

PATTERSON, D., GIBSON, G., AND KATZ, R. 1988. A case for redundant arrays of inexpensive disks (RAID).
In Proceedings of the ACM SIGMOD Conference (SIGMOD’88). 109–116.

PATTERSON, R. H., GIBSON, G. A., GINTING, E., STODOLSKY, D., AND ZELENKA, J. 1995. Informed
prefetching and caching. In Proceedings of the ACM Symposium on Operating System Principles
(SOSP’95). 79–95.

PIKE, R. 2010. Another go at language design. http://www.stanford.edu/class/ee380/Abstracts/100428.html.
PRABHAKARAN, V., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. 2005a. Analysis and evolution

of journaling file systems. In Proceedings of USENIX’05. 105–120.
PRABHAKARAN, V., BAIRAVASUNDARAM, L. N., AGRAWAL, N., GUNAWI, H. S., ARPACI-DUSSEAU, A. C.,

AND ARPACI-DUSSEAU, R. H. 2005b. IRON file systems. In Proceedings of the ACM Symposium on
Operating System Principles (SOSP’95). 206–220.

RAMAKRISHNAN, K. K., BISWAS, P., AND KAREDLA, R. 1992. Analysis of file I/O traces in commercial
computing environments. SIGMETRICS Perform. Eval. Rev. 20, 78–90.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.



A File Is Not a File 10:39

RITCHIE, D. M. AND THOMPSON, K. 1973. The UNIX time-sharing system. In Proceedings of the ACM
Symposium on Operating System Principles (SOSP’73).

ROSELLI, D., LORCH, J. R., AND ANDERSON, T. E. 2000. A comparison of file system workloads. In
Proceedings of USENIX’00. 41–54.

ROSENBLUM, M. AND OUSTERHOUT, J. 1992. The design and implementation of a log-structured file
system. ACM Trans. Comput. Syst. 10, 1, 26–52.

SANDBERG, R. 1985. The design and implementation of the sun network file system. In Proceedings of the
USENIX Summer Technical Conference. 119–130.

SATYANARAYANAN, M. 1981. A study of file sizes and functional lifetimes. In Proceedings of the ACM
Symposium on Operating System Principles (SOSP’81). 96–108.

SQLITE. 2012. SQLite: Frequently Asked Questions. http://www.sqlite.org/faq.html.
SWEENEY, A., DOUCETTE, D., HU, W., ANDERSON, C., NISHIMOTO, M., AND PECK, G. 1996. Scalability

in the XFS file system. In Proceedings of USENIX’96. San Diego, CA.
TILMANN, M. 2010. Apple’s market share in the PC world continues to surge. maclife.com.
VOGELS, W. 1999. File system usage in Windows NT 4.0. In Proceedings of the ACM Symposium on Operat-

ing System Principles (SOSP’99). 93–109.
WOO, S. C., OHARA, M., TORRIE, E., SHINGH, J. P., AND GUPTA, A. 1995. The SPLASH-2 programs:

Characterization and methodological considerations. In Proceedings of the International Symposium on
Computer Architecture (ISCA’95). 24–36.

Received March 2012; accepted May 2012

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 10, Publication date: August 2012.


