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ABSTRACT

We analyze the 1/0 behavior @Bench, a new collection of productivity and multimedia application
workloads. Our analysis reveals a number of differences betwearciBand typical file-system
workload studies, including the complex organization of modern files, ttie & pure sequential
access, the influence of underlying frameworks on 1/O patterns, thespidad use of file synchro-
nization and atomic operations, and the prevalence of threads. Olisreave strong ramifications
for the design of next generation local and cloud-based storagersyste

1. INTRODUCTION

The design and implementation of file and storage systems has long liberiaefront of computer
systems research. Innovations such as namespace-based loddlitgrédh consistency via jour-
naling [15, 29] and copy-on-write [7, 34], checksums and redoogdor reliability [5, 7, 26, 30],
scalable on-disk structures [37], distributed file systems [16, 35]saathble cluster-based storage
systems [9, 14, 18] have greatly influenced how data is managed aad stithin modern computer
systems.

Much of this work in file systems over the past three decades has bapadshymeasurement: the
deep and detailed analysis of workloads [4, 10, 11, 16, 19, 25, 33986 One excellent example
is found in work on the Andrew File System [16]; detailed analysis of aly &S prototype led
to the next-generation protocol, including the key innovation of callbackeasdrement helps us
understand the systems of today so we can build improved systems fortom

Whereas most studies of file systems focus on the corporate or aicaiddnanet, most file-system
users work in the more mundane environment oftibee, accessing data via desktop PCs, laptops,
and compact devices such as tablet computers and mobile phonepitelibe large number of
previous studies, little is known about home-user applications and theiat®rps.
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Home-user applications are important today, and their importance wikaser as more users store
data not only on local devices but also in the cloud. Users expect tamilaisapplications across
desktops, laptops, and phones; therefore, the behavior of theligasipps will affect virtually every
system with which a user interacts. 1/0 behavior is especially important terstzchd since it greatly
impacts how users perceive overall system latency and applicaticorperice [12].

While a study of how users typically exercise these applications would bestiteg, the first step

is to perform a detailed study of I/O behavior under typical but controlledkisad tasks. This
style of application study, common in the field of computer architecture [40], is different from the
workload study found in systems research, and can yield deeper insight into how tliesdjgms are
constructed and how file and storage systems need to be designedonsesp

Home-user applications are fundamentally large and complex, contamilli@ns of lines of code [20].

In contrast, traditional Wix-based applications are designed to be simple, to perform one task well,
and to be strung together to perform more complex tasks [32]. This laodpproach of Wix
applications has not prevailed [17]: modern applications are standaloneliths, providing a rich

and continuously evolving set of features to demanding users. Thissbéneficial to study each
application individually to ascertain its behavior.

In this paper, we present the first in-depth analysis of the 1/0 behafimodern home-user appli-
cations; we focus on productivity applications (for word processipgeadsheet manipulation, and
presentation creation) and multimedia software (for digital music, movtsngdand photo manage-
ment). Our analysis centers on two Apple software suites: iWork, corgisfiRages, Numbers, and
Keynote; and iLife, which contains iPhoto, iTunes, and iMovie. As Appiesket share grows [38],
these applications form the core of an increasingly popular set of wantkloas device convergence
continues, similar forms of these applications are likely to access useffril@sboth stationary
machines and moving cellular devices. We call our collectioriBeach task suite.

To investigate the 1/0 behavior of the iBench suite, we build an instrumentatiorefvork on top of
the powerful DTrace tracing system found inside Mac OS X [8]. DTadlm®vs us not only to monitor
system calls made by each traced application, but also to examine staek fra&ernel functions
such as page-ins and page-outs, and other details required to ensuracg and completeness.
We also develop an application harness based on AppleScript [3] te dagh application in the
repeatable and automated fashion that is key to any study of GUI-bpphckdions [12].

Our careful study of the tasks in the iBench suite has enabled us to makalzen of interesting
observations about how applications access and manipulate storedmaiddition to confirming
standard past findinge.g., most files are small; most bytes accessed are from large files [@fjnad/
the following new results.

Afile is not a file. Modern applications manage large databases of information organizecbim-
plex directory trees. Even simple word-processing documents, wiijghaa to users as a “file”, are
in actuality small file systems containing many sub-fikeg.(a Microsoft .doc file is actually a FAT
file system containing pieces of the document). File systems should b&aogof such hidden
structure in order to lay out and access data in these complex files niecévefly.

Sequential access is not sequentiauilding on the trend noticed by Vogels for Windows NT [39],
we observe that even for streaming media workloads, “pure” segli@ccess is increasingly rare.
Since file formats often include metadata in headers, applications oftdrarehre-read the first
portion of a file before streaming through its contents. Prefetching aret offtimizations might
benefit from a deeper knowledge of these file formats.



Auxiliary files dominate. Applications help users create, modify, and organize content, but user
files represent a small fraction of the files touched by modern applicatiost files are helper files
that applications use to provide a rich graphical experience, suppoiipia languages, and record
history and other metadata. File-system placement strategies migheredeaks by grouping the
hundreds of helper files used by an individual application.

Writes are often forced. As the importance of home data increaseg.{family photos), applications
are less willing to simply write data and hope it is eventually flushed to disk. Wetfat most written
data is explicitly forced to disk by the application; for example, iPhoto dalgnc thousands of
times in even the simplest of tasks. For file systems and storage, thefdslayed writes [22] may
be over; new ideas are needed to support applications that desitslidyra

Renaming is popular. Home-user applications commonly use atomic operations, in particular
renane, to present a consistent view of files to users. For file systems, this reap that trans-
actional capabilities [23] are needed. It may also necessitate a rethiokingditional means of

file locality; for example, placing a file on disk based on its parent dired@ity does not work as
expected when the file is first created in a temporary location and themesha

Multiple threads perform 1/0. Virtually all of the applications we study issue 1/0 requests from a
number of threads; a few applications launch 1/Os from hundreds e&ads:. Part of this usage stems
from the GUI-based nature of these applications; it is well known thaatisrare required to perform
long-latency operations in the background to keep the GUI respor]e Thus, file and storage
systems should be thread-aware so they can better allocate bandwidth.

Frameworks influence 1/0. Modern applications are often developed in sophisticated IDEs and
leverage powerful libraries, such as Cocoa and Carbon. Wheneesstyle applications often di-
rectly invoke system calls to read and write files, modern libraries put namte between applications
and the underlying file system; for example, includihgocoa. h" in a Mac application imports
112,047 lines of code from 689 different files [28]. Thus, the b&ranf the framework, and not
just the application, determines I/O patterns. We find that the default lelef\some Cocoa APIs
induces extra I/0 and possibly unnecessary (and costly) synchtiomizo disk. In addition, use of
different libraries for similar tasks within an application can lead to inconsidgiehavior between
those tasks. Future storage design should take these libraries andnk®@to account.

This paper contains four major contributions. First, we describe a gktracing framework for
creating benchmarks based on interactive tasks that home usersnfi@ayrp(e.g., importing songs,
exporting video clips, saving documents). Second, we deconstrutfQheehavior of the tasks in
iBench; we quantify the 1/0 behavior of each task in numerous ways,dim@ithe types of files ac-
cessedd.g., counts and sizes), the access patteems, fead/write, sequentiality, and preallocation),
transactional propertieg.g., durability and atomicity), and threading. Third, we describe how these
qualitative changes in 1/0 behavior may impact the design of future sgstemally, we present the
34 traces from the iBench task suite; by making these traces publicly deailat easy to use, we
hope to improve the design, implementation, and evaluation of the nextagiemeof local and cloud
storage systems:

http://ww. cs.w sc. edu/ adsl / Traces/ i bench

The remainder of this paper is organized as follows. We begin by piegesm detailed timeline of
the 1/0O operations performed by one task in the iBench suite; this motivagestd for a systematic
study of home-user applications. We next describe our methodolagyrdéating the iBench task
suite. We then spend the majority of the paper quantitatively analyzing thénHfacteristics of the
full iBench suite. Finally, we summarize the implications of our findings ordjlstem design.
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Figure 1: Pages Saving A Word Document.The top graph shows the 75-second timeline of the
entire run, while the bottom graph is a magnified view of seconds 54 to 5@8eltop graph, anno-
tations on the left categorize files by type and indicate file count and anodli@; annotations on
the right show threads. Black bars are file accesses (reads and writbsthickness logarithmically
proportional to bytes of I/0/ is anf sync; \ is ar enane; Xis both. In the bottom graph, individual
reads and writes to the .doc file are shown. Vertical bar position and hgthleepresent the offset
within the file and number of bytes touched. Thick white bars are readsgthinbars are writes.
Repeated runs are marked with the number of repetitions. Annotationg aiglt indicate the name

of each file section.



2. CASE STUDY

The 1/O characteristics of modern home-user applications are distioict fhose of Wix appli-
cations studied in the past. To motivate the need for a new study, we intestigacomplex 1/O
behavior of a single representative task. Specifically, we report iril tle¢al/O performed over time
by the Pages (4.0.3) application, a word processor, running on Nka¥ Snow Leopard (10.6.2) as
it creates a blank document, inserts 15 JPEG images each of size 22bklIBaves the document as
a Microsoft .doc file.

Figure 1 shows the 1/O this task performs (see the caption for a descrigtitthre symbols used).
The top portion of the figure illustrates the accesses performed oveulthiéetime of the task: at a
high level, it shows that more than 385 files spanning six different cateyare accessed by eleven
different threads, with many intervening callsftsync andr enane. The bottom portion of the
figure magnifies a short time interval, showing the reads and writesrpegtbby a single thread
accessing the primary .doc productivity file. From this one experimeetillustrate each finding
described in the introduction. We first focus on the single access thas shg user's document
(bottom), and then consider the broader context surrounding this ¥iés wéoere we observe a flurry
of accesses to hundreds of helper files (top).

A file is not a file. Focusing on the magnified timeline of reads and writes to the productivity .do
file, we see that the file format comprises more than just a simple file. béradoc files are based
on the FAT file system and allow bundling of multiple files in the single .doc fileis Tdoc file
contains a directory (Root), three streams for large data (WordDoayrData, and 1Table), and a
stream for small data (Ministream). Space is allocated in the file with thréi@ssca file allocation
table (FAT), a double-indirect FAT (DIF) region, and a ministream alioceregion (Mini).

Sequential access is not sequentialThe complex FAT-based file format causes random access
patterns in several ways: first, the header is updated at the beginrmremdrof the magnified access;
second, data from individual streams is fragmented throughout thefitethird, the 1Table stream

is updated before and after each image is appended to the WordDadcstneem.

Auxiliary files dominate. Although saving the single .doc we have been considering is the sole
purpose of this task, we now turn our attention to the top timeline and see thalif&&ent files are
accessed. There are several reasons for this multitude of files. FRuges provides a rich graphical
experience involving many images and other forms of multimedia; togetitarthe 15 inserted
JPEGs, this requires 118 multimedia files. Second, users want to uss iRabeir native language,

so application text is not hard-coded into the executable but is instead &ta28 different .strings
files. Third, to save user preferences and other metadata, Pages 86 ite database (2 files) and

a number of key-value stores (218 .plist files).

Writes are often forced; renaming is popular. Pages uses both of these actions to enforce basic
transactional guarantees. It u$es/nc to flush write data to disk, making it durable; it usesnanme

to atomically replace old files with new files so that a file never contains indensidata. The
timeline shows these invocations numerous times. First, Pages reguleslysiysnc andr enane
when updating the key-value store of a .plist file. Secdragd/nc is used on the SQLite database.
Third, for each of the 15 image insertions, Pages ¢allgnc on a file named “tempData” (classified
as “other”) to update its automatic backup.

Multiple threads perform 1/O. Pages is a multi-threaded application and issues 1/0 requests from
many different threads during the experiment. Using multiple threadg@oallows Pages to avoid
blocking while 1/0O requests are outstanding. Examining the 1/O behaviosachreads, we see that
Thread 1 performs the most significant portion of I/O, but ten othegtis@re also involved. In most
cases, a single thread exclusively accesses a file, but it is not urmofonrmultiple threads to share

a file.



Frameworks influence 1/0.Pages was developed in a rich programming environment whereframe
works such as Cocoa or Carbon are used for I/O; these libraries iriPguatterns in ways the devel-
oper might not expect. For example, although the application develdjgknst bother to useésync

or r enane when saving the user’s work in the .doc file, the Cocoa library regulagsthese calls
to atomically and durably update relatively unimportant metadata, sucteasritly opened” lists
stored in .plist files. As another example, when Pages tries to read dai2-byfe chunks from
the .doc, each read goes through 81Dl Olibrary, which only reads in 4 KB chunks. Thus, when
Pages attempts to read one chunk from the 1Table stream, sevenastesbchunks from the Word-
Document stream are also incidentally read (offset 12039 KB). Irr atges, regions of the .doc file
are repeatedly accessed unnecessarily. For example, around Bheff3it, read/write pairs occur
dozens of times. Pages uses a library to write 2-byte words; each timedaswwritten, the library
reads, updates, and writes back an entire 512-byte chunk. Finallyeevevidence of redundancy
between libraries: even though Pages has a backing SQLite databas®of its properties, it also
uses .plist files, which function across Apple applications as genenepsostores.

This one detailed experiment has shed light on a number of interestingeli@viors that indicate
that home-user applications are indeed different than traditional waxtkloA new workload suite is
needed that more accurately reflects these applications.

3. IBENCH TASK SUITE

Our goal in constructing the iBench task suite is two-fold. First, we would lilenith to beepre-
sentative of the tasks performed by home users. For this reason, iBench ceptpular applications
from the iLife and iWork suites for entertainment and productivity. Selcame would like iBench

to be relativelysimple for others to use for file and storage system analysis. For this reason, w
automate the interactions of a home user and collect the resulting track3 sydtem calls. The
traces are available online at this site:t p: / / www. cs. wi sc. edu/ adsl / Traces/ i bench.

We now describe in more detail how we met these two goals.

3.1 Representative

To capture the 1/0 behavior of home users, iBench models the actions@disonable” user inter-
acting with iPhoto, iTunes, iMovie, Pages, Numbers, and Keynote. Sieceesiearch community
does not yet have data on the exact distribution of tasks that homepeséosm, iBench contains
tasks that we believe are common and uses files with sizes that can bedustifeereasonable user.
iBench contains 34 different tasks, each representing a home u$ampieg one distinct operation.
If desired, these tasks could be combined to create more complex awesldind 1/0 workloads. The
six applications and corresponding tasks are as follows.

iLife iPhoto 8.1.1 (419) digital photo album and photo manipulation software. iPhoto stores photos
in a library that contains the data for the photos (which can be in a varietgrofaits, including
JPG, TIFF, and PNG), a directory of modified files, a directory of stalewn images, and two
files of thumbnail images. The library stores metadata in a SQLite dataiizsech contains six
tasks exercising user actions typical for iPhoto: starting the applicatiorngpaiting, duplicating,
editing, viewing, and deleting photos in the library. These tasks modify betimhge files and the
underlying database. Each of the iPhoto tasks operates on 400 2.5 M@sphepresenting a user
who has imported 12 megapixel photos (2.5 MB each) from a full 1 G&hflzard on his or her
camera.

iLife iTunes 9.0.3 (15) a media player capable of both audio and video playback. iTunesinezan
its files in a private library and supports most common music formags, MP3, AIFF, WAVE,
AAC, and MPEG-4). iTunes does not employ a database, keeping rmmedédata and playlists in
both a binary and an XML file. iBench contains five tasks for iTunes: starfinnes, importing and
playing an album of MP3 songs, and importing and playing an MPEG-4 mawigorting requires
copying files into the library directory and, for music, analyzing eaclydie for gapless playback.
The music tasks operate over an album (or playlist) of ten songs while thie tasks use a single
3-minute movie.



iLife iMovie 8.0.5 (820) video editing software. iMovie stores its data in a library that contains
directories for raw footage and projects, and files containing video dedatsumbnails. iMovie sup-
ports both MPEG-4 and Quicktime files. iBench contains four tasks for i#ostarting iMovie,
importing an MPEG-4 movie, adding a clip from this movie into a project, afod#ing a project to
MPEG-4. The tasks all use a 3-minute movie because this is a typical lengttl from home users
on video-sharing websites.

iWork Pages 4.0.3 (766) a word processor. Pages uses a ZIP-based file format and part &x
DOC, PDF, RTF, and basic text. iBench includes eight tasks for Pagesing up, creating and
saving, opening, and exporting documents with and without images andlifiérent formats. The
tasks use 15 page documents.

iWork Numbers 2.0.3 (332) a spreadsheet application. Numbers organizes its files with a ZIRrbase
format and exports to XLS and PDF. The four iBench tasks for Numblude starting Numbers,
generating a spreadsheet and saving it, opening the spreadsheekpaniihg that spreadsheet to
XLS. To model a possible home user working on a budget, the tasks utifize page spreadsheet
with one column graph per sheet.

iWork Keynote 5.0.3 (791) a presentation and slideshow application. Keynote saves to a .key ZIP-
based format and exports to Microsoft's PPT format. The seven iB&asks for Keynote include
starting Keynote, creating slides with and without images, opening and playesentations, and
exporting to PPT. Each Keynote task uses a 20-slide presentation.

Accesses 1/0 MB

Name Description Files  (MB) Accesses (MB) | RD% WR% /CPU Sec | /CPU Sec

Start Open iPhoto with library of 400 photos 779 (336.7) 828  (25.4) 78.8 212 151.1 4.6

o Imp Import 400 photos into empty library 5900 (1966.9) 8709 (3940.3) 74.4 25.6 26.7 121

E Dup Duplicate 400 photos from library 2928 (1963.9) 5736 (2076.2) 52.4 47.6 237.9 86.1

[ Edit Sequentially edit 400 photos from library 12119 (4646.7) 18927 (12182.9) 69.8 30.2 19.6 12.6

Del Sequentially delete 400 photos; empty trash | 15246 (23.0) 15247 (25.0) 21.8 78.2 280.9 0.5

View Sequentially view 400 photos 2929 (1006.4) 3347 (1005.0) 98.1 1.9 24.1 7.2

° Start Open iTunes with 10 song album 143 (184.4) 195 (9.3) | 54.7 753 724 34
5 4 ImpS Import 10 song album to library 68 (204.9) 139 (264.5) 66.3 33.7 75.2 143.1
- § ImpM Import 3 minute movie to library 41 (67.4) 57  (42.9) 48.0 52.0 152.4 114.6
= PlayS Play album of 10 songs 61 (103.6) 80  (90.9) 96.9 3.1 0.4 0.5
PlayM Play 3 minute movie 56 (77.9) 69  (32.0) 92.3 7.7 2.2 1.0

o | St Open iMovie with 3 minute clip in project 433 (223.3) 786 (29.4) 99.9 0.1 13438 5.0

'g Imp Import 3 minute .m4v (20MB) to “Events” 184 (440.1) 383 (122.3) 55.6 44.4 29.3 9.3

= Add Paste 3 minute clip from “Events” to project 210 (58.3) 547 (2.2) 47.8 52.2 357.8 14

Exp Export 3 minute video clip 70 (157.9) 546 (229.9) 55.1 44.9 2.3 1.0

Start Open Pages 218 (183.7) 228 (23) | 99.9 0.1 97.7 1.0

New Create 15 text page document; save as .pagds 135 (1.6) 157 (1.0 733 26.7 50.8 0.3

» NewP Create 15 JPG document; save as .pages 408 (112.0) 997 (180.9) 60.7 39.3 54.6 9.9

:'j’ Open Open 15 text page document 103  (0.8) 109 (0.6) 99.5 0.5 57.6 0.3

a PDF Export 15 page document as .pdf 107 (1.5) 115 (0.9 91.0 9.0 41.3 0.3
PDFP | Export 15 JPG document as .pdf 404 (77.4) 965 (110.9) | 67.4 326 497 57

DOC Export 15 page document as .doc 112 (1.0) 121 (1.0) 87.9 12.1 44.4 0.4

DOCP Export 15 JPG document as .doc 385 (111.3) 952 (183.8) 61.1 38.9 46.3 8.9

x z Start Open Numbers 283 (179.9) 360 2.6) 99.6 0.4 1155 0.8
§ -g New Save 5 sheets/column graphs as .numbers 269 4.9) 313 (2.8) 90.7 9.3 9.6 0.1
= S Open Open 5 sheet spreadsheet 119 (1.3) 137 1.3) 99.8 0.2 48.7 0.5
z XLS Export 5 sheets/column graphs as .xIs 236 (4.6) 272 .7) 94.9 5.1 8.5 0.1
Start Open Keynote 517 (183.0) 681 (1.1) | 998 02 7298 04

® New Create 20 text slides; save as .key 637 (12.1) 863 (5.4) 92.4 7.6 129.1 0.8

° NewP Create 20 JPG slides; save as .key 654 (92.9) 901 (103.3) 66.8 33.2 70.8 8.1

% Play Open and play presentation of 20 text slides 318 (11.5) 385 4.9 99.8 0.2 95.0 1.2

X PlayP Open and play presentation of 20 JPG slides 321 (45.4) 388  (55.7) 69.6 30.4 72.4 104

PPT Export 20 text slides as .ppt 685 (12.8) 918  (10.1) 78.8 21.2 115.2 13

PPTP | Export 20 JPG slides as .ppt 723 (110.6) 996 (124.6) | 57.6 424 61.0 7.6

Table 1:34 Tasks of the iBench SuiteThe table summarizes the 34 tasks of iBench, specifying the
application, a short name for the task, and a longer description of thenaatiodeled. The I/O is
characterized according to the number of files read or written, the suheahaximum sizes of all
accessed files, the number of file accesses that read or write datanthemof bytes read or written,
the percentage of 1/O bytes that are part of a read (or write), and thef&O per CPU-second in
terms of both file accesses and bytes. Each core is counted indivica@ty,most 2 CPU-seconds
can be counted per second on our dual-core test machine. CPU utilizmtineasured with the
UNIX t op utility, which in rare cases produces anomalous CPU utilization snapshoss Walues
are ignored.



Table 1 contains a brief description of each of the 34 iBench tasks as svidleabasic 1/0 charac-
teristics of each task when running on Mac OS X Snow Leopard 10.6h2. tdble illustrates that
the iBench tasks perform a significant amount of I/O. Most tasks aduasdreds of files, which in

aggregate contain tens or hundreds of megabytes of data. The taiskdlyyaccess files hundreds of
times. The tasks perform widely differing amounts of 1/O, from less tharegabyte to more than a
gigabyte. Most of the tasks perform many more reads than writes. Fittalyasks exhibit high I/O

throughput, often transferring tens of megabytes of data for evegnskof computation.

3.2 Easyto Use

To enable other system evaluators to easily use these tasks, the iBendh paitkaged as a set of
34 system call traces. To ensure reproducible results, the 34 userntask first automated with

AppleScript, a general-purpose GUI scripting language. AppleScriptiges generic commands
to emulate mouse clicks through menus and application-specific comraodpture higher-level

operations. Application-specific commands bypass a small amouf® dfyl skipping dialog boxes;

however, we use them whenever possible for expediency.

The system call traces were gathered using DTrace [8], a kernelsardevel dynamic instrumenta-
tion tool. DTrace is used to instrument the entry and exit points of all sysédisiadealing with the
file system; it also records the current state of the system and the pgararpassed to and returned
from each call.

While tracing with DTrace was generally straightforward, we addresseddhallenges in collect-
ing the iBench traces. First, file sizes are not always available to DTthas; we record every
file's initial size and compute subsequent file size changes causedstansygalls such asri t e
orftruncate. Second, iTunes uses tipe r ace system call to disable tracing; we circumvent
this block by usinggdb to insert a breakpoint that automatically returns without callpg ace.
Third, thevol f s pseudo-file system in HFS+ (Hierarchical File System) allows files to beetpe
via their inode number instead of a file name; to include pathnames in the wadastrument the
bui | d_pat h function to obtain the full path when the task is run. Fourth, tracing systdis ca
misses I/O resulting from memory-mapped files; therefore, we pungechory and instrumented
kernel page-in functions to measure the amount of memory-mapleatfivity. We found that the
amount of memory-mapped I/O is negligible in most tasks; we thus do ohtda this I/O in the
iBench traces or analysis.

To provide reproducible results, the traces must be run on a single/fitera image. Therefore, the
iBench suite also contains snapshots of the initial directories to be restefect leach run; initial
state is critical in file-system benchmarking [1].

4. ANALYSIS OF IBENCH TASKS

The iBench task suite enables us to study the 1/0 behavior of a large seta-tiser actions. As
shown from the timeline of I/O behavior for one particular task in Sectionesdtiasks are likely to
access files in complex ways. To characterize this complex behavioriargitative manner across
the entire suite of 34 tasks, we focus on answering four categoriesesfiqos.

What different types of files are accessed and what are the sizessef fites?

How are files accessed for reads and writes? Are files accessezhsiatjy? Is space preallo-

cated?

e What are the transactional properties? Are writes flushed fastync or performed atomi-
cally?

e How do multi-threaded applications distribute I/O across different thfeads



Answering these questions has two benefits. First, the answers canfifgiided storage system
developers to target their systems better to home-user applicationsndsehe characterization
will help users of iBench to select the most appropriate traces for di@huand to understand their
resulting behavior.

All measurements were performed on a Mac Mini running Mac OS X Sbeepard version 10.6.2
and the HFS+ file system. The machine has 2 GB of memory and a 2.26n8&HZore Duo proces-
sor.

4.1 Nature of Files
Our analysis begins by characterizing the high-level behavior of theciB&asks. In particular, we
study the different types of files opened by each iBench task as welk aizts of those files.

411 FileTypes

The iLife and iWork applications store data across a variety of files in a eaofdifferent formats;
for example, iLife applications tend to store their data in libraries (or datawires) unique to each
user, while iWork applications organize their documents in proprietaryt@ged files. The extent to
which tasks access different types of files greatly influences their Ilawber.

To understand accesses to different file types, we place each file iatofaix categories, based
on file name extensions and usadéultimedia files contain imagese(g., JPEG), songs(g., MP3,
AIFF), and movies €g., MPEG-4). Productivity files are documentse@., .pages, DOC, PDF),
spreadsheets., .numbers, XLS), and presentatioresg(, .key, PPT).SQLite files are database
files. Plist files are property-list files in XML containing key-value pairs for usegfprences and
application propertiestrings files contain strings for localization of application text. FinaDther
contains miscellaneous files such as plain text, logs, files without extenaimhbinary files.

Figure 2 shows the frequencies with which tasks open and access fiexcloftype; most tasks
perform hundreds of these accesses. Multimedia file opens are aoimnatl workloads, though

they seldom predominate, even in the multimedia-heavy iLife applicationsweZsely, opens of
productivity files are rare, even in iWork applications that use them; thiseg/likecause most iWork
tasks create or view a single productivity file. Because .plist files acensri helper files, they
are relatively common. SQLite files only have a noticeable presence indaPlibere they account
for a substantial portion of the observed opens. Strings files occugn#icant minority of most

workloads (except iPhoto and iTunes). Finally, between 5% and 20%esfdre of type “Other”

(except for iTunes, where they are more prevalent).

Figure 3 displays the percentage of 1/0 bytes accessed for each fileltypgtes, multimedia 1/0
dominates most of the iLife tasks, while productivity I/O has a significaas@nce in the iWork
tasks; file descriptors on multimedia and productivity files tend to receige lamounts of 1/0O.
SQLite, Plist, and Strings files have a smaller share of the total I/O in byteas/eeta the number
of opened files; this implies that tasks access only a small quantity of datadd of these files
opened é.g., several key-value pairs in a .plist). In most tasks, files classifie®D#set” receive a
more significant portion of the 1/0 (the exception is iTunes).

Summary: Home applications access a wide variety of file types, generally openitigmadia files
the most frequently. iLife tasks tend to access bytes primarily from muliemedfiles classified
as “Other”; iWork tasks access bytes from a broader range of filestywéh some emphasis on
productivity files.
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Figure 3: Types of Files Opened By I/O Size. This plot shows the relative frequency with which
each task performs 1/0O upon different file types. The number at ti®Eeach bar indicates the total

bytes of 1/0 accessed.
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Figure 4: File Sizes, Weighted by Number of AccessesThis graph shows the number of ac-
cessed files in each file size range upon access ends. The total mfrfileaccesses appears at the

end of the bars. Note that repeatedly-accessed files are counted ntirtigde and entire file sizes

are counted even upon patrtial file accesses.
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bytes in accessed files of each size range upon access ends. Thétkerfile sizes appears at the

end of the bars. This number differs from total file footprint since filbange size over time and

repeatedly accessed file are counted multiple times.



412 FileSzes

Large and small files present distinct challenges to the file system. [gerfites, finding contiguous
space can be difficult, while for small files, minimizing initial seek time is morpedrtant. We
investigate two different questions regarding file size. First, what is theldison of file sizes
accessed by each task? Second, what portion of accessed bides nediles of various sizes?

To answer these questions, we record file sizes when each uniquesiilepdier is closed. We cat-
egorize sizes as very smak (4KB), small < 64KB), medium & 1MB), large  10MB), or very
large (> 10MB). We track how many accesses are to files in each category anahaoy of the bytes
belong to files in each category.

Figure 4 shows the number of accesses to files of each size. Actessegsmall files are extremely
common, especially for iWork, accounting for over half of all the aseesn every iWork task. Small
file accesses have a significant presence in the iLife tasks. The laagétgwf very small and small

files is due to frequent use of .plist files that store preferences, sgtamgl other application data;
these files often fill just one or two 4 KB pages.

Figure 5 shows the proportion of the files in which the bytes of accesssads&le. Large and very
large files dominate every startup workload and nearly every task tbaegses multimedia files.
Small files account for few bytes and very small files are essentialljgitelg.

Summary: Agreeing with many previous studies (e.qg., [4]), we find that while apgibos tend to
open many very small files( 4 KB), most of the bytes accessed are in large fitesl (MB).

4.2 Access Patterns

We next examine how the nature of file accesses has changed, sttityirepd and write patterns
of home applications. These patterns include whether files are usedafing, writing, or both;
whether files are accessed sequentially or randomly; and finally, whetmet blocks are preallo-
cated via hints to the file system.

421 File Accesses

One basic characteristic of our workloads is the division between readtidgvriting on open file
descriptors. If an application uses an open file only for reading (orfonkyriting) or performs more
activity on file descriptors of a certain type, then the file system may be abiake more intelligent
memory and disk allocations.

To determine these characteristics, we classify each opened file desti@sed on the types of
accesses—read, write, or both read and write—performed during tisnkfe We also ignore the ac-
tual flags used when opening the file since we found they do not aclyurefiect behavior; in all
workloads, almost all write-only file descriptors were opened V@tHRDWR. We measure both the
proportional usage of each type of file descriptor and the relative ata/O performed on each.

Figure 6 shows how many file descriptors are used for each type eksccThe overwhelming
majority of file descriptors are used exclusively for reading or writingad-write file descriptors
are quite uncommon. Overall, read-only file descriptors are the mosinom across a majority of
workloads; write-only file descriptors are popular in some iLife tasksabel rarely used in iWork.

We observe different patterns when analyzing the amount of 1/0 peeit on each type of file
descriptor, as shown in Figure 7. First, even though iWork tasks hayefe®w write-only file de-
scriptors, they often write significant amounts of /O to those descript@scond, even though
read-write file descriptors are rare, when present, they accoumeltively large portions of total
1/0 (particularly when exporting to .doc, .xIs, and .ppt).

Summary: While many files are opened with th@ RDWR flag, most of them are subsequently
accessed write-only; thus, file open flags cannot be used to predictfde will be accessed.
However, when an open file is both read and written by a task, the améurffic to that file
occupies a significant portion of the total I/O. Finally, the rarity of readenfile descriptors may
derive in part from the tendency of applications to write to a temporary filekvthey then rename
as the target file, instead of overwriting the target file; we explore this reryd@more in 84.3.2.
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Figure 6:Read/Write Distribution By File Descriptor. File descriptors can be used only for reads,
only for writes, or for both operations. This plot shows the percentdddeodescriptors in each
category. This is based on usage, npen flags. Any duplicate file descriptorg.¢., created by
dup) are treated as one and file descriptors on which the program doesniotp any subsequent
action are ignored.

. Read Only Z Both (Reads) § Both (Writes) Write Only

o oM
s Jos) m o N OmoYom o o
1] [rafus] S0 as S X n=SX=H= Q. S90S
mom L m m oXm momm mosom
Z0058 SBE32 2Ns8 S35L5708F SSs55 5525328
0, _NQ’NHNH oONTOM N—=NN AN AAD MMM AW A
N D N
D N
N P N
N N N
80% 1 3 N N >
N \ 78
N N N
\ N N
60% - N
N
N
40% - §
N
\
20% A 7
0% Cpssgs 305 tose £5eissgs E5g pEacine
SERDOL S25z> SEZN SL g8 s8>
7] > WEEEE 7] mozgﬂgog nh§=zx hafzgan

iPhoto  iTunes iMovie Pages Numbers Keynote

Figure 7:Read/Write Distribution By Bytes. The graph shows how I/O bytes are distributed among
the three access categories. The unshaded dark gray indicatesdadessra part of read-only ac-
cesses. Similarly, unshaded light gray indicates bytes written in write-agsses. The shaded
regions represent bytes touched in read-write accesses, andvateddbetween bytes read and
bytes written.
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Figure 8:Read Sequentiality. This plot shows the portion of file read accesses (weighted by bytes)

that are sequentially accessed.
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Figure 9:Write Sequentiality. This plot shows the portion of file write accesses (weighted by bytes)

that are sequentially accessed.



4.2.2 Sequentiality

Historically, files have usually been read or written entirely sequentially J#f next determine
whether sequential accesses are dominant in iBench. We measurg txarbining all reads and
writes performed on each file descriptor and noting the percentageoééitessed in strict sequential
order (weighted by bytes).

We display our measurements for read and write sequentiality in Figured 8,aespectively. The
portions of the bars in black indicate the percent of file accesses thibitegxire sequentiality. We
observe high read sequentiality in iWork, but little in iLife (with the exception ef #tart tasks and
iTunes Import). The inverse is true for writes: most iLife tasks exhibihrsgquentiality; iWork
accesses are largely non-sequential.

Investigating the access patterns to multimedia files more closely, we notaahgtiLife applica-
tions first touch a small header before accessing the entire file sedlyentia better reflect this
behavior, we define an access to a file as “nearly sequential” whensa®&% of the bytes read or
written to a file form a sequential run. We found that a large number @dfsass fall into the “nearly
sequential” category given a 95% threshold; the results do not change with lower thresholds.

The slashed portions of the bars in Figures 8 and 9 show observeergizdjty with a 95% threshold.
Tasks with heavy use of multimedia files exhibit greater sequentiality with tB& BBeshold for
both reading and writing. In several workloads (mainly iPhoto and iTynles 1/0O classified almost
entirely as non-sequential with a 100% threshold is classified as neadgrstéa). The difference for
iWork applications is much less striking, indicating that accesses are iaodem.

Summary: A substantial number of tasks contain purely sequential accesses Weefinition

of a sequential access is loosened such that only 95% of bytes must$ecative, then even more
tasks contain primarily sequential accesses. These “nearly sequactalses result from metadata
stored at the beginning of complex multimedia files: tasks frequently toyiels Imear the beginning
of multimedia files before sequentially reading or writing the bulk of the file.

4.2.3 Preallocation

One of the difficulties file systems face when allocating contiguous spafieefois not knowing how
much data will be written to those files. Applications can communicate this ifomby providing
hints [27] to the file system to preallocate an appropriate amount of sjyeites section, we quantify
how often applications use preallocation hints and how often these hintseftd.u

We instrument two calls usable for preallocatigoww i t € andftruncate. pwite writes a
single byte at an offset beyond the end of the file to indicate the futurefahe @ile;f t r uncat e
directly sets the file size. Sometimes a preallocation does not communigaiténgnuseful to the
file system because it is immediately followed by a single write call with all the degdlag these
preallocations as unnecessary.

Figure 10 shows the portion of file growth that is the result of preallocatioall cases, preallocation
was due to calls tpwr i t e; we never observefit r uncat e preallocation. Overall, applications
rarely preallocate space and preallocations are often useless.

The three tasks with significant preallocation are iPhoto Dup, iPhoto EditiMove Exp. iPhoto
Dup and Edit both call @opyPat h function in the Cocoa library that preallocates a large amount
of space and then copies data by reading and writing it in 1 MB chunks.taHbap sometimes
usescopyPat h to copy scaled-down images of size 50-100 KB; since these smallerréespied
with a single write, the preallocation does not communicate anything usefuvidvExp calls a
Quicktime append function that preallocates space before writing thel aletize however, the data

is appended in small 128 KB increments. Thus, the append is not split idtiplawr i t e calls; the
preallocation is useless.
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Figure 10:Preallocation Hints.. The sizes of the bars indicate which portion of file extensions are
preallocations; unnecessary preallocations are diagonally stripechuifhiger atop each bar indicates
the absolute amount preallocated.

Summary: Although preallocation has the potential to be useful, few tasks use it tadgrdints,
and a significant number of the hints that are provided are uselesshifiiseare provided inconsis-
tently: although iPhoto and iMovie both use preallocation for some tasks eneifiplication uses
preallocation during import.

4.3 Transactional Properties

In this section, we explore the degree to which the iBench tasks requisati@onal properties from
the underlying file and storage system. In particular, we investigate thetegteshich applications
require writes to be durable; that is, how frequently they invoke callsstpnc and which APIs

perform these calls. We also investigate the atomicity requirements of thieatfgms, whether from
renaming files or exchanging inodes.

4.3.1 Durability

Writes typically involve a trade-off between performance and durabilitgpleations that require
write operations to complete quickly can write data to the file system’s main mydméfers, which
are lazily copied to the underlying storage system at a subsequennéemveéme. Buffering writes
in main memory has a wide range of performance advantages: writeg teathe block may be
coalesced, writes to files that are later deleted need not be perforntedaradom writes can be more
efficiently scheduled.

On the other hand, applications that rely on durable writes can flush wrigtientd the underlying
storage layer with thé sync system call. The frequency éfsync calls and the number of bytes
they synchronize directly affect performancef §ync appears often and flushes only several bytes,
then performance will suffer. Therefore, we investigate how modepiications usésync.
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Figure 12:Fsync SizesThis plot shows a distribution dfsync sizes. The total number éfsync

calls appears at the end of the bars.



Figure 11 shows the percentage of written data each task synchrorithelssync. The graph fur-
ther subdivides the source of theync activity into six categoriesSQLite indicates that the SQLite
database engine is responsible for callirsy nc; Archiving indicates an archiving library frequently
used when accessing ZIP formaef Sync is the Pr ef er encesSynchr oni ze function call
from the Cocoa librarywriteToFile is the Cocoa calw i t eToFi | e with theat omi cal | y flag
set; and finallyFlushFork is the Carbor-SFI ushFor k routine.

At the highest level, the figure indicates that half the tasks synchronige tal00% of their written
data while approximately two-thirds synchronize more than 60%. iLife téeskd to synchronize
many megabytes of data, while iWork tasks usually only synchronize tekitobytes (excluding
tasks that handle images).

To delve into the APIs responsible for theync calls, we examine how each bar is subdivided. In
iLife, the sources of sync calls are quite varied: every category of API except for Archiving is
represented in one of the tasks, and many of the tasks call multiple ARds wivokef sync. In
iWork, the sources are more consistent; the only sources are Pref S@i.ite, and Archiving (for
manipulating compressed data).

Given that these tasks require durability for a significant percentagieeaf write traffic, we next
investigate the frequency dfsync calls and how much data each individual call pushes to disk.
Figure 12 group$ sync calls based on the amount of 1/0 performed on each file descriptor when
f sync is called, and displays the relative percentage each category conyribestotal 1/0.

These results show that iLife tasks chfiync frequently (from tens to thousands of times), while
iWork tasks callf sync infrequently except when dealing with images. From these observations,
we infer that calls td sync are mostly associated with media. The majority of call§ &ync
synchronize small amounts of data; only a few iLife tasks synchronae tihan a megabyte of data

in a singlef sync call.

Summary: Developers want to ensure that data enters stable storage durabtiusnthese tasks
synchronize a significant fraction of their data. Based on our analy$iesource of sync calls,
some calls may be incidental and an unintentional side-effect of theéd| those from SQLite or
Pref Sync), but most are performed intentionally by the programfethermore, some of the tasks
synchronize small amounts of data frequently, presenting a challenfjeefsystems.

4.3.2 Atomic Writes

Applications often require file changes to be atomic. In this section, wetifydow frequently
applications use different techniques to achieve atomicity. We also idemtsgscwhere perform-
ing writes atomically can interfere with directory locality optimizations by movitesfirom their
original directories. Finally, we identify the causes of atomic writes.

Applications can atomically update a file by first writing the desired contentéemporary file and
then using either theenane or exchangedat a call to atomically replace the old file with the
new file. Withr enane, the new file is given the same name as the old, deleting the original and
replacing it. Withexchangedat a, the inode numbers assigned to the old file and the temporary
file are swapped, causing the old path to point to the new data; this allows tipatfiléo remain
associated with the original inode number, which is necessary for spplieations.

Figure 13 shows how much write I/O is performed atomically witnane or exchangedat a;

r enane calls are further subdivided into those which keep the file in the same diyemal those
which do not. The results show that atomic writes are quite popular and thaiariy workloads,
all the writes are atomic. The breakdown of each bar shows thatine is frequent; a significant
minority of ther enane calls move files between directoriesxchangedat a is rare and used only
by iTunes for a small fraction of file updates.
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We find that most of the enane calls causing directory changes occur when a élg.(a document
or spreadsheet) is saved at the user’s request. We suspectrdifieextories are used so that users
are not confused by seeing temporary files in their personal direstdniéerestingly, atomic writes
are performed when files are saved to Apple formats, but not wheorgémg to Microsoft formats.
We suspect that the interface between applications and the Microsoftdibdmes not specify atomic
operations well.

Figure 14 identifies the APIs responsible for atomic writesnamane. Pref Sync, from the Cocoa
library, allows applications to save user and system wide settings in .plist file&eToFile and
movePath are Cocoa routines arfdSRenameUnicode is a Carbon routine. A solid majority of the
atomic writes are caused by Pref Sync; this is an example of I/O behauised by the API rather
than explicit programmer intention. The second most common atomic vsiteriteToFile; in this
case, the programmer is requesting atomicity but leaving the techniquethip library. Finally, in
a small minority of cases, programmers perform atomic writes thensélyealling movePath or
FSRenameUnicode, both of which are essentiadipane wrappers.

Summary: Many of our tasks write data atomically, generally doing so by calliegane. The bulk
of atomic writes result from API calls; while some of these hide the undeylgature of the write,
others make it clear that they act atomically. Thus, developers desirgcittpfor many operations,
and file systems will need to either address the ensuing renames thaipogoit or provide an
alternative mechanism for it. In addition, the absence of atomic writes wiiging to Microsoft
formats highlights the inconsistencies that can result from the use of highlileraries.

4.4 Threads and Asynchronicity

Home-user applications are interactive and need to avoid blocking w@eis performed. Asyn-
chronous 1/0 and threads are often used to hide the latency of slowtiopsrérom users. For our
final experiments, we investigate how often applications use asynalsdf@ libraries or multiple
threads to avoid blocking.

Figure 15 shows the portion of read operations performed asynetsbnwithai o_r ead; none of
the tasks usai o_wr i t e. We find that asynchronous 1/O is used rarely and only by iLife applica-
tions. However, in those cases where asynchronous I/O is perfoiniedsed quite heavily.

Figure 16 investigates how threads are used by these tasks: specifi@fgrtion of 1/0 performed
by each of the threads. The numbers at the tops of the bars repourtiteen of threads performing
1/0. iPhoto and iTunes leverage a significant number of threads foslf@e many of their tasks are
readily subdividedé€.g., importing 400 different photos). Only a handful of tasks perfornttadir
1/0 from a single thread. For most tasks, a small number of threadgspensible for the majority
of I/0.

Figure 17 shows the responsibilities of each thread that performs I/€grtthread can be responsi-
ble for reading, writing, or both. The measurements show that signifjcanore threads are devoted
to reading than to writing, with a fair number of threads responsible for.bbtlese results indicate
that threads are the preferred technique to avoiding blocking and tpli¢a@tions may be particularly
concerned with avoiding blocking due to reads.

Summary: Our results indicate that iBench tasks are concerned with hiding long-latgesations
from interactive users and that threads are the preferred methatbfiog so. Virtually all of the
applications we study issue 1/O requests from multiple threads, and sonehld®s from hundreds
of different threads.
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number of threads that perform 1/O is indicated next to the bars.
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5. RELATED WORK

Although our study is unique in its focus on the 1/0 behavior of individuglliaptions, a body
of similar work exists both in the field of file systems and in application studies.m&ntioned
earlier, our work builds upon that of Baker [4], Ousterhout [25]g¥&ts [39], and others who have
conducted similar studies, providing an updated perspective on matheioffindings. However,
the majority of these focus on academic and engineering environmehish are likely to have
noticeably different application profiles from the home environment. &studies, like those by
Ramakrishnan [31] and by Vogels, have included office workloadsessonal computers; these are
likely to feature applications similar to those in iWork, but are still unlikely to conéaalogues to
iLife products. None of these studies, however, look at the charaatsrif individual application
behaviors; instead, they analyze trends seen in prolonged usagse, othistudy complements the
breadth of this research with a more focused examination, providingfepaformation on the
causes of the behaviors we observe, and is one of the first to addessgderaction of multimedia
applications with the file system.

In addition to these studies of dynamic workloads, a variety of papersdsamined the static char-
acteristics of file systems, starting with Satyanarayanan’s analysis ddffi@arnegie-Mellon Univer-
sity [36]. One of the most recent of these examined metadata chasticteon desktops at Microsoft
over a five year time span, providing insight into file-system usage cteaistics in a setting similar
to the home [2]. This type of analysis provides insight into long term cheariatics of files that
ours cannot; a similar study for home systems would, in conjunction witlpaper, provide a more
complete image of how home applications interact with the file system.



While most file-system studies deal with aggregate workloads, our egéionirof application-specific
behaviors has precedentin a number of hardware studies. In partielautneet al.’s [13] and Blake
et al.’s [6] studies of parallelism in desktop applications bear strong similaritieatt®ia the variety
of applications they examine. In general, they use a broader set bfatmms, a difference that
derives from the subjects studied. In particular, we select applicatioely li& produce interesting
1/0 behavior; many of the programs they use, like the video game Qaekenore likely to exercise
threading than the file system. Finally it is worth noting that Blekel. analyze Windows software
using event tracing, which may prove a useful tool to conduct a sinlliGation file-system study
to ours in Windows.

6. DISCUSSION AND CONCLUSIONS

We have presented a detailed study of the I/O behavior of complex, magetications. Through
our measurements, we have discovered distinct differences bette&asks in the iBench suite and
traditional workload studies. To conclude, we consider the possibletefté our findings on future
file and storage systems.

We observed that many of the tasks in the iBench suite frequently foteetalalisk by invoking

f sync, which has strong implications for file systems. Delayed writing has long tezbasis of
increasing file-system performance [34], but it is of greatly de@@asility given small synchronous
writes. Thus, more study is required to understand why the developerese applications and
frameworks are calling these routines so frequently. For example taskaang flushed to disk to
ensure ordering between writes, safety in the face of power lossfaiysa the face of application
crashes? Finding appropriate solutions depends upon the answerseajtiestions. One possibility
is for file systems to expose new interfaces to enable applications to bgitesexheir exact needs
and desires for durability, consistency, and atomicity. Another possibilitiyatnew technologies,
such as flash and other solid-state devices, will be a key solution, allowiitesvto be buffered
quickly, perhaps before being staged to disk or even the cloud.

The iBench tasks also illustrate that file systems are now being treated astoeps of highly-
structured “databases” managed by the applications themselves. tcam®es, data is stored in a
literal databaseg(g., iPhoto uses SQLite), but in most cases, data is organized in complexodyre
hierarchies or within a single filee., a .doc file is basically a mini-FAT file system). One option is
that the file system could become more application-aware, tuned to temt&important structures
and to better allocate and access these structures on disk. For exarsiplaster file system could
improve its allocation and prefetching of “files” within a .doc file: seemingipsequential patterns
in a complex file are easily deconstructed into accesses to metadata fobgweeaming sequential
access to data.

Our analysis also revealed the strong impact that frameworks andidibraave on I/O behavior.

Traditionally, file systems have been designed at the level of the VFSaneerhot breaking into

the libraries themselves. However, it appears that file systems nowtmésde a more “vertical” ap-

proach and incorporate some of the functionality of modern librariess Viértical approach hearkens
back to the earliest days of file-system development when the developEFS modified standard
libraries to buffer writes in block-sized chunks to avoid costly sub-bloeérioeads [21]. Future

storage systems should further integrate with higher-level interfacesinalgeper understanding of
application desires.



Finally, modern applications are highly complex, containing millions of linesaafe, divided over
hundreds of source files and libraries, and written by many differegrammers. As a result, their
own behavior is increasingly inconsistent: along similar, but distinct cadlesp different libraries
are invoked with different transactional semantics. To simplify theséagtions, file systems could
add higher-level interfaces, easing construction and unifying datageptations. While the systems
community has developed influential file-system concepts, little has beentddransition this class
of improvements into the applications themselves. Database technologguogort a certain class
of applications quite well but is generally too heavyweight. Future storgsferss should consider
how to bridge the gap between the needs of current applications ancatieefe low-level systems
provide.

Our evaluation may raise more questions than it answers. To build bestensy for the future, we
believe that the research community must study applications that aretanpto real users. We
believe the iBench task suite takes a first step in this direction and hope wttieescommunity will
continue along this path.
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