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Abstract
The hardware trend toward multicore processors has so
far been driven by technology limitations of wire de-
lays, power efficiency, and limited capability to exploit
instruction-level parallelism. Software evolution has
lead to the rise of the cloud. This multicore + cloud evo-
lution provides several challenges and has led to a call
for parallelism.

In this paper, we first examine the drivers behind these
trends to address three fallacies: software is driven by
hardware, multicores will be everywhere, and multicore
hardware implies parallelism is exposed to all develop-
ers. We first address these fallacies and then present our
simple view of the future cloud-based ecosystem, based
on what we refer to as data-centric concurrency.

1 Introduction

Two trends dominate the landscape of computing today
(and likely will for the next many years). The first is
a hardware trend: the rise of multicore processors [18].
The second is a software trend: the coming storm of
cloud computing [5].

Trend 1: The Rise of Multicore
For years, architects worked steadily towards the goal of
achieving the highest single-thread performance possi-
ble. Various techniques, including caching [17], spec-
ulation [23], and other aggressive optimizations [21, 9]
sustained this movement for many years. But, like all
good things, this too came to an end.

Microprocessors have been recently forced into multi-
core designs because of fundamental energy efficiency of
transistors and wire-delay properties [15, 14]. In multi-
core chips, multiple simpler processors are deployed in-
stead of a single large one; parallelism, which used to be
hidden within the microarchitecture of a processor, be-
comes exposed to programmers.

The move to multicore seemingly represents a sea-
change for developers. In the past, the best way to
improve performance was simply to wait; the next-
generation CPU would arrive, and the inevitable perfor-
mance bump would be achieved. With multicore, this
performance-improvement is no longer available; adding
cores does not improve single-thread performance.

Trend 2: The Rise of the Cloud
The dominant software trend has been the advent of
“cloud computing” [5], an idea that has been articulated
many times in the past (e.g., the utility computing vision
behind Multics [10]) but only now is becoming a stan-
dard approach to computing systems.

This world consists of two important (and radically
different) computing platforms. The platform most di-
rectly relevant to users is the “device”, by which we mean
the computer system that the user primarily interacts with
in order to obtain services from the cloud or otherwise
run applications. The platform that exists to support de-
vices is what most people now refer to as the “cloud”,
which are the thousands of servers that combine to pro-
vide back-end service of varying types.

The cloud has a tremendous impact on software devel-
opment. As an extreme point, consider Google’s Chrome
OS, which is a stripped-down Linux platform meant to
run a single application: a web browser. In this world,
virtually all applications are true “web” applications,
where substantial server-side components and client-side
code (e.g., javascript) combine to form what the user per-
ceives as a single application.

2 The Algebra of the Future:
Multicore + Cloud = ?

We believe that viewing these trends in isolation has led
our field astray in articulating a vision for future research.
We now discuss three critical fallacies that have arisen.
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Fallacy #1: Software Trends Will Be Dic-
tated By Hardware Trends

The focus of software development has changed dramat-
ically over the past decades. We first review the past, ex-
amine current trends, and conclude with our future pro-
jection.

In the past few decades, hardware used to be pro-
hibitively expensive, to the extent that proper utilization
of every cycle was of the utmost concern. For example,
the original developers of UNIX were finally able to ob-
tain a machine to work upon (in the early 1970’s) when
the cost dropped to $65,000 [20]; adjusted for inflation,
the amazing cost of the machine is $360,000.1

As Jim Gray once related: “When I was growing up,
the only metric was cycles; what mattered was how effi-
cient your algorithm was.” [12]. An examination of soft-
ware technology of the time confirms this. Developers
for many years were forced to use C and other low-level
languages to deliver efficient, lean applications to users.

However, hardware costs have consistently dropped
and performance has risen so dramatically, that counting
cycles is no longer the developer’s primary worry. To-
day’s software ecosystem is different in two ways. First,
significant amount of today’s software is web-deployed
software. Second, today’s web developer, uses mod-
ern frameworks where much of the code is interpreted.
The clear goal of said frameworks is to enable the de-
veloper to write as little code as possible to implement
their ideas, and efficiency is left on the back-burner. As a
result, as Gray further elaborated, the key metric is time-
to-market. What matters is how quickly you can develop
an application and make it available to users.

An excellent example of this new philosophy is found
in Django, one of many relevant web development sys-
tems. As stated on the Django web page: “Django
focuses on automating as much as possible and adher-
ing to the DRY principle: Don’t Repeat Yourself.” [22]
The DRY principle quite simply states: “Every piece of
knowledge must have a single, unambiguous, authorita-
tive representation within a system.” The one and only
goal is to write as little code as possible.

Undoubtedly hardware played a role in this evolu-
tion2. The relative abundance of computing capability
has made computation a commodity thus enabling such
other metrics becoming primary constraints and these
new frameworks (and their philosophies). Developers no
longer think of efficiency, they simply think of how to get
what they want done in as few lines of code as possible.

1Humorously, the high cost of the machine didn’t prevent Ken
Thompson from playing Space Travel at $75 a game!

2We concur with the conventional wisdom and recognize the em-
pirical evidence that software trends were dictated by hardware in the
past.

Minimalism is the dominant software trend3.
Thus, it no longer makes sense to think of hardware

trends first when trying to understand where software is
headed; at best, the opposite is needed. The bottom line:
Software trends are now largely independent of hardware
trends. If they do relate, it is in the opposite direction: the
demands of software will drive hardware, and not vice-
versa.

Fallacy #2: Multicore Everywhere
The observation that multicores will be ubiquitous as-
sumes high-performance computing must be performed
locally (i.e., on the client). While 10 TFLOPS at 1 Watt
for x86 applications would be great, it is not realistic;
neither is it necessary or useful, as we outline below.

Instead of examining microprocessor trends alone, we
view the entire information technology ecosystem. We
see an obvious inflection point. We observe that the con-
ventional world of the personal high-performance com-
putation device is disruptively transforming into highly
energy-efficient and mobile devices wirelessly tethered
to remote clouds and hence providing orders of mag-
nitude increases in performance, reliability, and main-
tainability than personal desktops. This transformation
is driven by usability trends, microprocessor trends, and
technology trends, as we now discuss.

Usability trend: Highly-mobile devices (“converged
mobile devices” in industry parlance) are projected to
have explosive growth, reaching 390 million units in
2013 [2]. In contrast world-wide sales of desktop, note-
books, and servers is projected to total 440 million in
2013. These devices will soon outnumber conventional
desktops. We observe that many sharing and data-mining
related tasks require access to the cloud and must offload
computation thus making high-performance on the client
moot.

Microprocessor trend: As transistors have gotten
smaller and faster overall, microprocessor performance
has improved over the years. We contend that 2006/2007
is a subtle inflection point where a “powerful” micropro-
cessor consuming only a few watts could be built. In
terms of quantitative benchmarks, SPECINT scores of
700 to 1000 could be obtained. While the number itself
is inconsequential, with such a device several common
tasks could be easily executed; more importantly, a web
browser could execute without creating interaction prob-
lems. From a specific processor-design standpoint, the
Intel Atom chip (or designs from ARM, Via, or Centaur)
can be viewed as the inflection point, perhaps portend-
ing a second “attack of the killer micros”. As the RISC

3One of the synergistic mechanisms in these web frameworks is
that they have abundant concurrency and effectively hide this from the
programmer, which we elaborate more in our third fallacy.
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Figure 1: Microprocessor technology driven trends
Number of cores

(45 nm) Current (32nm) 2012 (24 nm) 2014 (19 nm) 2016 (15 nm) 2018
Mobile-devices 1 2 3-4 5-6 9-10

Complex servers 8 16 28 44 72
Simple servers 64 128 225 359 576

Projected core counts for different types of processors based on ITRS scaling.

and x86 micros became dominant in HPC by focusing on
energy and cost, these smaller devices are poised to take
over personal computing using those same metrics.

Technology trends: The energy efficiency of transis-
tors is no longer increasing from one generation to the
next. Figure 1 shows a Pareto-optimal curve of energy
vs. performance. For a given technology node (e.g.,
a transistor size of 45nm), different microprocessor de-
sign techniques, including multicore vs. unicore, simply
move a design from a given energy/performance point
higher or lower. In previous years, technology scaling
lowered this curve every year, thus providing additional
performance in every generation. Going forward, volt-
age scaling faces fundamental challenges and little or
no energy benefit will be seen from technology scaling.
However, sufficient network bandwidth and efficient net-
work processing provide practically free performance to
a hand-held device as shown in Figure 1c. There is essen-
tially no requirement for a high-energy high performance
conventional desktop, which is a fundamental driver be-
hind cloud-computing.

The table below the figure shows an optimistic (and
simple) view of microprocessor scaling in terms of num-
ber of cores. These projections are based on the ITRS
projections of technology scaling. Even assuming mul-
ticores will become dominant everywhere, a realistic
assessment shows the number of cores in mobile de-
vices will be limited to a handful through the end of
this decade and beyond. Furthermore, providing multi-
ple programmable general-purpose cores on a chip does
not fundamentally alter the energy-efficiency problem.
Thus, in the long-term, devices are more likely to use
specialization to provide energy-efficient functionality.
The number of “cores” in a device is likely to be less than
even the 9-10 range projected from technology scaling.
Core counts for servers will likely grow as shown in the
table depending on the complexity of the core itself.

Based on these trends, we argue that the two dominant
types of compute systems will be lightweight devices and
remote clouds, with personal high-performance desk-
tops becoming irrelevant. We argue that the only utility
of high-performance local computation is for “games”
which are following a natural evolutionary path toward
immersive reality. Examples of this trend include the
Wii remote, Microsoft’s Project Natal, and Sony’s mo-
tion controller. In this paper, we do not address the chal-
lenges or propose solutions for this segment of compu-
tation. Usability and economic trends clearly show that
this segment will be a separate discrete device and will
not be a general-purpose PC. Game-console software
sales and handheld game software sales totaled $11.3 bil-
lion, while PC game sales totaled less than $701 million
for 2009. High-performance desktops are no longer com-
putationally superior or well-suited as gaming platforms.

Summarizing: Multicore will (likely) dominate in the
server cloud but not on the devices used to access the
cloud. Thus, how we use multicore chips in server clouds
is the main issue we face.

Fallacy #3: The Hardware Is Parallel; Thus,
Everyone Must Be a Parallel Programmer

Some have concluded from industry announcements
about multicore that we all should become parallel pro-
grammers. For example, the recent standard curriculum
proposed by ACM has a strong focus on parallel (con-
current) programming [3]. Quoting the authors:

“The development of multicore processors has
been a significant recent architectural develop-
ment. To exploit this fully, software needs to
exhibit concurrent behavior; this places greater
emphasis on the principles, techniques and
technologies of concurrency.”
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If parallelism in software is what is needed, then the IT
industry may indeed be in trouble [6]. As John Hennessy
has been quoted saying: “...when we start talking about
parallelism and ease of use of truly parallel computers,
we’re talking about a problem that’s as hard as any that
computer science has faced. ...I would be panicked if I
were in industry.” [6]

Because the goal of parallel software has been extant
for so long, perhaps we should take that as good evidence
that is generally to be avoided rather than embraced.

Before addressing the parallelism problem and our
strategy on how to avoid it, let us summarize our anal-
ysis thus far: multicore processors will be found within
the server cloud and probably less so on devices access-
ing said cloud. The direct implication: a large amount
of parallel hardware will exist that server-side software
must exploit.

Fortunately, in the cloud, true software parallelism
will rarely be needed to utilize the many cores found
across servers. To understand why, we first define a few
terms. We label two tasks concurrent if they can be (or
are) executing at the same time, but are unrelated (i.e.,
not working on the same problem). Some examples in-
clude separate applications running on your phone, or
even threads within a web-server processing different re-
quests.

We label two tasks as parallel if they are executing at
the same time but working on the same larger task. For
example, a search for a keyword across many machines
(each of which contains a small portion of the search
database), or a parallel matrix multiply.

To utilize “parallel hardware”, either concurrency or
parallel software is needed. Indeed this is fortunate, be-
cause concurrency is ubiquitous within server-side cloud
software and generally easy to come by. Imagine thou-
sands of users simultaneously editing documents within
Google Docs; the backend support for this will certainly
execute many (unrelated) concurrent tasks, thus being
fully capable of utilizing parallel hardware without great
effort. For most server software on the cloud, concur-
rency is the solution, not parallelism.

This is not to say that parallelism will not have a place
within the cloud; indeed, services that access massive
amounts of data will always need to execute in paral-
lel across many nodes (e.g., a Google search). However,
such parallelism, whether specialized as in the Google
example or more general as in an SQL query, will be
the rare case. This is good news as it leaves parallelism
where it has always been in computer systems: hidden
behind the scenes, left to a few experts in particular appli-
cation domains where it is required4. Web-development

4Indeed, almost every example of successful parallelism in com-
puter systems has come in a form hidden from most programmers:
Google search, extracting ILP at a microarchitectural level, and RAID

frameworks particularly excel at hiding and abstracting
such details away from the programmer. Second, by con-
struction, web applications are themselves written as a
set of fine-grained concurrent tasks.

Thus, our final point: Concurrency of unrelated tasks
will naturally utilize the many cores of cloud servers;
there will be no great need to parallelize all software in
order for the cloud to be successful.

3 Future Directions

As the device may be largely unaffected by multicore
chips, we focus on challenges for the future on the server
side of the cloud. We discuss both hardware and software
research directions.

Our overarching theme is the need to design data-
centric concurrent servers (DCC servers). This new
class of machine will be built to service the needs of the
cloud running many concurrent (and thus largely unre-
lated) tasks.

3.1 Hardware Challenges
Technology Revisited: The primary technology con-
straint for this decade and beyond is the decreasing en-
ergy efficiency of transistors. While the number of de-
vices is expected to double every generation, the power
efficiency of devices is growing slowly. The main rea-
son behind this trend is that classical voltage scaling has
effectively ended and capacitance of transistors is reduc-
ing slowly from one generation to another [1]. While
the number of transistors will increase sixteen-fold from
now through 2020, due to limitations in device efficiency,
power will increase. Applying a simple model of 5%
reduction in voltage per generation, first-order models
show an approximate three-fold increase in power.

While this problem is daunting, understanding the
synergy with application provides hope. In the context of
designing DCCs, several simplifications come to our res-
cue: (a) global coherence can be significantly relaxed, (b)
managing the concurrency is simpler because the tasks
are independent, and (c) extracting the concurrency is
purely a software problem. Thus DCCs will be simple
to design. In fact, this design is synergistic with future
game console (graphics) platforms as well where there
is a requirement for simplicity and the ability to handle
concurrency [11]. Interesting research directions to ex-
plore are:

• Locality. The main problem is to extract and exploit
locality at unprecedented levels beyond conven-
tional caching techniques. Fundamental abstrac-
tions are required to directly map data structures

disk arrays [19] are just a few good examples
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to hardware. For example, staged databases [4]
attempt to exploit instruction-locality by dedicat-
ing different cores to different types of database
queries. PLUG processors take the extreme ap-
proach of building a programmable on-chip mem-
ory that spatially lays out data-structures and pro-
vides a high-level abstraction to software [7].

• Specialization: New types of specialization, het-
erogeneity, and run-time reconfiguration are re-
quired. The main opportunity is provided by the fact
that most software executed will be written in inter-
preted high-level languages. Energy efficiency can
be obtained by specializing hardware to the most-
common tasks. For example, DVD encoding in
hardware using a specialized chip is 10000 times
more energy efficient that software using even a
media-enhanced ISA like SSE/MMX [13]. Com-
putation spreading [8] attempts to dynamically spe-
cialize different cores in a processor to different
types of functionality. In the past, such specializa-
tion in hardware was impractical because of the het-
erogeneity in executed code. However, with web
applications, optimizations are possible to the run-
time based on analysis of the most frequent regions.

Issues not addressed above include deterministic de-
bugging of back-end servers, performance optimizations,
instrumentation, and reliability. We believe, all these is-
sues pose challenges as well and provide interesting av-
enues for further exploration.

3.2 Software Challenges

The systems software challenges will also be plentiful in
the coming era of DCC servers. Here we highlight a few
directions for systems work within these servers:

• OS Support for Hardware Non-Coherence.
Memory in future DCC servers need not be coher-
ent; hence, OS support, and in some cases, radical
re-design, is required. As a simple example, the OS
will have to explicitly move memory when migrat-
ing threads or processes across different cores.

• Concurrency Management. Server-side operating
systems will need to multiplex thousands of largely-
independent tasks across a few cores; managing
such concurrency efficiently and with higher-level
objectives in mind (e.g., users who paid for the ser-
vice should receive priority) will thus be a primary
OS concern. Extremely scalable task management
will be needed. Current schedulers likely do not
scale to the levels required by DCCs.

• Global Resource Management. As clouds are
comprised of large collections of multicores con-
nected via high-performance networks, traditional
OS issues of scheduling and resource management
at a global scale become increasingly relevant. Re-
ducing peak usage of resources may be a primary
goal, as peak drives cost and power usage [16]; thus,
clever techniques to better offload data movement
and computation to non-peak hours is needed.

• Low-latency storage. As the cloud becomes the
last tier in the storage hierarchy, and as more data
moves to the cloud, building and deploying low-
latency storage clouds will become of the utmost
importance. Flash and other solid-state storage
technologies are likely to be used; redesign of file
storage software within DCCs is needed to realize
the full benefits of these emerging hardware plat-
forms. Better integration between volatile memo-
ries and persistent storage devices will likely be of
great importance.

We believe this list represents only a small fraction of
many possible interesting software directions for DCC-
based systems, and it is certainly biased by our own in-
terests and perspective. Other interesting directions un-
doubtedly exist, particular in the domain of compiler
support and other related areas of research.

4 Conclusions

Our analysis of current and future hardware and soft-
ware trends bears some similarity to the classic tale of
the horse and the cart; which pulls which? In the old
world, the horse (hardware) clearly pulled the cart (soft-
ware), and thus writing efficient software was needed to
extract the most out of the precious few cycles available.
In the new world, advances in hardware have led us to an
abundance of cycles, and a modern emphasis on ease of
development and deployment; the cart (software) seems
to be now driving itself, without much attention paid to
the horse (hardware). Put simply: where the cart goes,
the horse must now follow.

The software cart tells us that the cloud is the platform
of the future; it has many innate advantages over tradi-
tional software development models and a huge amount
of momentum behind it. Thus, how should the systems
horse follow? We suggest in this paper an approach
based on simplification and specialization; by building
innately parallel hardware, but using it to largely exe-
cute concurrent (unrelated) tasks, we believe that many
of the challenges in performance, energy-efficiency, and
cost can be overcome. Many research issues remain,
and only through broad efforts of a large and focused
research community will they be adequately addressed.
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