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Abstract

The types of data we entrust to our storage systems are wide and diverse,
including medical records, genetic information, maps, images, videos,
music, sales records, restaurant reviews, messages, documents, presen-
tations, software, and code. These storage workloads have very differ-
ent I/O patterns and have thus created a need for many different storage
systems. Unfortunately, building new storage systems “from scratch” for
every new workload is cost prohivitive in terms of engineering effort. In
order to cope with this challenge, systems builders typically decompose
a storage system into subcomponents and reuse existing subcomponents
whenever possible. Unfortunately, this can lead to inneficiency and un-
predictability. Subsystems are being used that were not optimized for
the storage task at hand, and unexpected behaviors often emerge when
subcomponents are combined.

In this disseration, we ask several questions. What are the storage needs
of modern applications? How does modularity and code reuse impact the han-
dling of I/O requests across layers and subsystems? And finally, what unex-
pected I/O behaviors emerge when subsystems are composed? We explore these
questions by performing three measurement studies on Apple desktop
applications, Facebook Messages, and Docker containers. We further use
the findings from the Docker study to optimize container deployment.

First, we study the I/O patterns of six Apple desktop applications. In
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particular, we collect and analyze system-call traces for 34 tasks one might
perform while using these applications. In addition to confirming stan-
dard past findings (e.g., most files are small; most bytes accessed are from
large files [10]), we observe a number of new trends. For example, all of
the applications heavily use fsync and rename to durably and atomically
update file data. In most of the tasks we study, the application forces a
majority of the data written to the file system to disk. These patterns are
especially costly for file systems because the amount of data flushed is
small, commonly less than 4 KB. An analysis of user-space call stacks sug-
gests that many of these costly operations originate from general-purpose
libraries, and may not correspond with programmer intent.

Second, we present a multilayer study of the Facebook Messages stack,
which is based on HBase and HDFS. We collect and analyze HDFS traces
to identify potential improvements, which we then evaluate via simula-
tion. Messages represents a new HDFS workload: whereas HDFS was
built to store very large files and receive mostly-sequential I/O, 90% of
files are smaller than 15 MB and I/O is highly random. We find hot data is
too large to easily fit in RAM and cold data is too large to easily fit in flash;
however, cost simulations show that adding a small flash tier improves
performance more than equivalent spending on RAM or disks. HBase’s
layered design offers simplicity, but at the cost of performance; our simu-
lations show that network I/O can be halved if compaction bypasses the
replication layer. Finally, although Messages is read-dominated, several
features of the stack (i.e., logging, compaction, replication, and caching)
amplify write I/O, causing writes to dominate disk I/O.

Third, we study the I/O patterns generated by the deployment of
Docker containers. Towards this end, we develop a new container bench-
mark, HelloBench, to evaluate the startup times of 57 different container-
ized applications. We use HelloBench to analyze workloads in detail,
studying the block I/O patterns exhibited during startup and compress-



xiv

ibility of container images. Our analysis shows that pulling packages ac-
counts for 76% of container start time, but only 6.4% of that data is read.

Finally, we use our analysis of Docker to guide the design of Slacker,
a new Docker storage driver optimized for fast container startup. Slacker
is based on centralized storage that is shared between all Docker workers
and registries. Workers quickly provision container storage using back-
end clones and minimize startup latency by lazily fetching container data.
Slacker speeds up the median container development cycle by 20× and
deployment cycle by 5×.
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1
Introduction

Emergent Properties: “properties that are not evident in the individual
components, but they show up when combining those components”

...

“they might also be called surprises”

– Saltzer and Kaashoek [91]

Our society is largely driven by data. A major data loss is devastating
to many companies [57], and many types of data carry immeasurable per-
sonal value (e.g., family photos). The storage systems that preserve this
data thus represent a core infrastructure that supports us in our daily
lives. The types of data we entrust to our storage systems are wide and
diverse, including medical records, genetic information, maps, images,
videos, music, sales records, restaurant reviews, messages, documents,
presentations, software, and code. The patterns with which we access
this data are similarly diverse: some data is quickly deleted after being
generated; other data is worth keeping forever. Some data is read repeat-
edly; other data is preserved “just in case” it is someday needed. Some
data is scanned sequentially, in order from beginning to end; other data
is accessed in random, unpredictable ways.
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The diversity of modern storage workloads creates a corresponding
need to build many different storage systems. A generic storage system
cannot well serve many different applications because a workload’s char-
acteristics have many implications for how the underlying storage sys-
tem should represent and manipulate data. For example, data lifetime has
implications for how aggressively the storage system should reorganize
data in the background. If most data is deleted soon after it is created,
compacting or defragmenting data for optimal layout is a waste of I/O
resources. Access skew has implications for caching and hybrid storage. If
most I/O is to a small portion of the total data, the storage system should
probably keep the hot data and cold data on different devices that are
faster and slower respectively. Sequentiality has implications for storage
layout. If reads to a file are issued in order, from the beginning to the end
of the file, the storage system should similarly arrange the file data in the
same order on disk for optimal access.

Unfortunately, storage systems are exceedingly complex and time con-
suming to design, implement, and operate. Local file systems are fre-
quently a core component of a larger storage system, but local file systems
alone are typically 30-75K lines of code [93]. People are continually find-
ing new bugs in these file systems, even those that are most mature [66].
Building a new storage system “from scratch” for every new storage work-
load is simply not feasible. We thus face a challenge: how can we build a
broad range of storage systems to meet the diverse demands of modern applica-
tions without expending inordinate engineering effort doing so?

The Case for Modularity: The solution has been to modularize and
reuse various storage components. Rather than cutting new systems from
whole cloth, engineers typically build new systems as a composition of
subsystems. This divide-and-conquer approach simplifies reasoning about
the storage problem at hand and enables reuse of subsystems in different
storage stacks.
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Dijkstra found layering (one way to compose subsystems) “proved to
be vital for the verification and logical soundness” of the THE operating
system [29]. Modularity was also helpful in the Frangipani distributed file
system [103]. Construction of Frangipani was greatly simplified because
it was implemented atop Petal [62], a distributed and replicated block-
level storage system. Because Petal provides scalable, fault-tolerant vir-
tual disks, Frangipani could focus solely on file-system level issues (e.g.,
locking). The result of this two-layer structure, according to the authors,
was that Frangipani was “relatively easy to build” [103].

Modular storage also enables reuse. For example, GFS (the Google
File System) was built with a set of workloads at Google in mind [40],
such as MapReduce [26]. GFS manages sharding and replication, and
thereby tolerates disk and machine failures. When Google later decided
to build a distributed database, Bigtable [20], they reused GFS. This de-
cision allowed them to focus on higher-level logic in Bigtable (e.g., how
to represent rows and columns) without needing to reimplement all the
fault tolerance functionality provided by GFS.

Emergent Properties: Building modular storage systems and reusing
components has many advantages, but oftentimes the final system has
characteristics one would not expect. These characteristics have been called
emergent properties because they are not evident in any of the individual
components and only emerge when the subcomponents are combined.

Because storage systems are exceedingly complex, and their interac-
tions are even more so, emergent properties are usually “surprises” [91]
to developers. Unfortunately, these surprises are rarely pleasant (e.g.,
one never achieves unexpectedly good scalability after gluing together
old components to construct a new storage stack). Instead, to the dis-
may of many a systems builder, the surprises usually emerge in the form
of decreased performance, lowered reliability, and other related issues.
Denehy et al. show that combining journaling with a software RAID can
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lead to data loss or corruption if one is not careful [28]. Others have sim-
ilarly argued about the general inefficiency of the file system atop block
devices [39]. “The most pernicious and subtle bugs are system bugs arising from
mismatched assumptions made by the authors of various components” [17].

The problem of emergent properties is exacerbated by the fact that
most software is too large to be built by individuals or small teams. Even
Linus Torvalds is responsible for writing only 2% of the code in his name-
sake operating system, Linux [86]. The subsystems from which we com-
pose modern storage systems are not co-designed with a single, well-
defined storage problem in mind. Brooks argues that conceptual integrity
“dictates that the design must proceed from one mind, or from a very small num-
ber of agreeing resonant minds” [17]. Modern storage systems necessarily
lack this kind of conceptual integrity. Consequently, unexpected and in-
efficient I/O behaviors emerge when we deploy these systems.

The Need to Measure: Given that developers can usually only be
deeply familiar with a small fraction of the storage stack to which they
contribute, how can we know whether a composed storage system effectively
serves a particular workload? Emergent properties make it impossible to
answer this question by design. As Saltzer and Kaashoek advise, “it is
wise ... to focus on an unalterable fact of life: some things turn up only when a
system is built” [91]. If we follow this advice, the best we can do is make
sure emergent properties do not remain unknown. Measurement is the
key to uncovering emergent properties: once a system is been built, it
should be traced and profiled. The resulting measurement findings can
then drive the next iteration of building.

One excellent example of measurement-driven storage is found in the
development of the Andrew File System [52]. Detailed analysis of an early
AFS prototype showed, among other things, that workloads were domi-
nated by stat calls used to check for cache staleness. The measurements
led to the next-generation protocol, which included the key innovation
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of callbacks. Much of the work in storage systems over the past three
decades has been similarly driven by measurement, the deep and detailed
analysis of I/O workloads [10, 32, 33, 52, 64, 78, 88, 95, 109].

This Dissertation: New applications are constantly being written and
the corresponding I/O workloads are always evolving, so the work of
measurement is never done. At its core, this dissertation is part of that
ongoing work, providing three new data points in the large space of I/O
workloads. Our work exposes the inner workings of three types of mod-
ern application. In particular, we study the I/O behavior of Apple desk-
top applications, Facebook Messages, and Docker containers. These ap-
plications have previously been the subject of little or no published I/O
behavior analysis.

This dissertation is also a study of modularity in storage systems. In
addition to reporting basic I/O characteristics (e.g., file sizes and sequen-
tiality), our exploration is attuned to the fact that all our applications are a
composition of subsystems. Our three applications represent three com-
position patterns. The desktop applications rely heavily on user-space
libraries. Facebook Messages stores its data is a database (HBase) backed
by a distributed file system (HDFS) originally built for very different work-
loads (e.g., MapReduce jobs). Docker containers are a fundamental build-
ing block for decomposing applications into microservices.

Finally, this dissertation is a study of emergent properties. In all three
studies, we find I/O behaviors of the composed system that would likely
be “surprises” to the developers of these systems. The Apple applications
use expensive operations (e.g., fsync and rename) for relatively unimpor-
tant data. Facebook Messages is based on a stack that amplifies writes
from 1% of all I/O (at the database level) to 64% (at the device level).
Docker containers give every microservice its own file system environ-
ment with the result that over 90% of the data copied during deployment
is not necessary.
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The purpose of measurement is to inform the next iteration of build-
ing. Our findings have many implications for how future applications
and storage stacks should be built. While we do not implement all of our
suggestions, we use our measurement of Docker containers to drive the
design of a new Docker storage driver, Slacker. Relative to Docker run-
ning with a traditional driver, Slacker improves container startup latency
by 5x. In contrast to this large improvement, our changes were relatively
small and focused within the Docker codebase. Because our optimiza-
tions were guided by analysis, we were able to achieve major gains with
very targeted implementation efforts.

The central finding of this dissertation is that modularity is not free. In
all the applications we consider, we find excessive I/O related to layering
and other forms of composition. To qualify our thesis, we are not opposed
to modularity; decomposition has many advantages including maintain-
ability, reusability, and isolation. These properties are often valuable enough
to justify a performance cost. However, we believe it is crucial to measure
workloads and storage systems to identify and mitigate the costs of mod-
ularity. Modern software lacks conceptual integrity, but efficiency is not
a lost cause. We find that relatively simple measurement-driven adapta-
tions work surprisingly well.

1.1 Libraries: Apple Desktop Applications

Whereas most studies of file systems focus on the corporate or academic
intranet, most file-system users work in the more mundane environment
of the home, accessing data via desktop PCs, laptops, and compact devices
such as tablet computers and mobile phones. Despite the large number of
previous studies, little is known about home-user applications and their
I/O patterns.

Home-user applications are important today, and their importance
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will increase as more users store data not only on local devices but also in
the cloud. Users expect to run similar applications across desktops, lap-
tops, and phones; therefore, the behavior of these applications will affect
virtually every system with which a user interacts. I/O behavior is espe-
cially important to understand since it greatly impacts how users perceive
overall system latency and application performance [35].

Home-user applications are fundamentally large and complex, con-
taining millions of lines of code [67]. These applications are often devel-
oped in sophisticated IDEs and leverage powerful libraries, such as Co-
coa and Carbon. Whereas UNIX-style applications often directly invoke
system calls to read and write files, modern libraries put more code be-
tween applications and the underlying file system; for example, including
"cocoa.h" in a Mac application imports 112,047 lines of code from 689 dif-
ferent files [83]. A goal of this work is to learn whether I/O is processed
across library boundaries in a reasonable and consistent way, or whether
conceptual integrity is sacrificed in the design of these applications.

In this study, we present the first in-depth analysis of the I/O behav-
ior of modern home-user applications; we focus on productivity applica-
tions (for word processing, spreadsheet manipulation, and presentation
creation) and multimedia software (for digital music, movie editing, and
photo management). Our analysis centers on two Apple software suites:
iWork, consisting of Pages, Numbers, and Keynote; and iLife, which con-
tains iPhoto, iTunes, and iMovie. As Apple’s market share grows [104],
these applications form the core of an increasingly popular set of work-
loads; as device convergence continues, similar forms of these applica-
tions are likely to access user files from both stationary machines and
moving cellular devices. We call our collection the iBench task suite.

To investigate the I/O behavior of the iBench suite, we build an in-
strumentation framework on top of the powerful DTrace tracing system
found inside Mac OS X [19]. DTrace allows us not only to monitor system
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calls made by each traced application, but also to examine stack traces,
in-kernel functions such as page-ins and page-outs, and other details re-
quired to ensure accuracy and completeness. We also develop an appli-
cation harness based on AppleScript [6] to drive each application in the
repeatable and automated fashion that is key to any study of GUI-based
applications [35].

Our careful study of the tasks in the iBench suite has enabled us to
make a number of interesting observations about how applications ac-
cess and manipulate stored data. In addition to confirming standard past
findings (e.g., most files are small; most bytes accessed are from large
files [10]), we observe a number of new trends. For example, all of the ap-
plications heavily use fsync and rename to durably and atomically update
file data. In most of the tasks we study, the application forces a majority
of the data written to the file system to disk. These patterns are especially
costly for file systems because the amount of data flushed is small, com-
monly less than 4 KB. An analysis of user-space call stacks suggests that
many of these costly operations originate from general-purpose libraries,
and may not correspond with programmer intent.

1.2 Layering: Facebook Messages

In this study, we focus on one specific, and increasingly common, lay-
ered storage architecture: a distributed database (HBase, derived from
Bigtable [20]) atop a distributed file system (HDFS [97], derived from the
Google File System [40]). Our goal is to study the interaction of these
important systems, with a particular focus on the lower layer; thus, our
highest-level question: is HDFS an effective storage backend for HBase?

To derive insight into this hierarchical system, and thus answer this
question, we trace and analyze it under a popular workload: Facebook
Messages [72]. Facebook Messages is a messaging system that enables
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Facebook users to send chat and email-like messages to one another; it is
quite popular, handling millions of messages each day. Facebook Mes-
sages stores its information within HBase (and thus, HDFS), and hence
serves as an excellent case study.

To perform our analysis, we first collect detailed HDFS-level traces
over an eight-day period on a subset of machines within a specially con-
figured shadow cluster. Facebook Messages traffic is mirrored to this shadow
cluster for the purpose of testing system changes; here, we utilize the
shadow to collect detailed HDFS traces. We then analyze said traces,
comparing results to previous studies of HDFS under more traditional
workloads [47, 56].

To complement to our analysis, we also perform numerous simula-
tions of various caching, logging, and other architectural enhancements
and modifications. Through simulation, we can explore a range of “what
if?” scenarios, and thus gain deeper insight into the efficacy of the layered
storage system.

Overall, we derive numerous insights, some expected and some sur-
prising, from our combined analysis and simulation study. From our
analysis, we find writes represent 21% of I/O to HDFS files; however, fur-
ther investigation reveals the vast majority of writes are HBase overheads
from logging and compaction. Aside from these overheads, Facebook
Messages writes are scarce, representing only 1% of the “true” HDFS I/O.
Diving deeper in the stack, simulations show writes become amplified.
Beneath HDFS replication (which triples writes) and OS caching (which
absorbs reads), 64% of the final disk load is write I/O. This write blowup
(from 1% to 64%) emphasizes the importance of optimizing writes in lay-
ered systems, even for especially read-heavy workloads like Facebook
Messages.

From our simulations, we further extract the following conclusions.
We find that caching at the DataNodes is still (surprisingly) of great util-
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ity; even at the last layer of the storage stack, a reasonable amount of mem-
ory per node (e.g., 30 GB) significantly reduces read load. We also find
that a “no-write allocate” policy generally performs best, and that higher-
level hints regarding writes only provide modest gains. Further analysis
shows the utility of server-side flash caches (in addition to RAM), e.g.,
adding a 60 GB SSD can reduce latency by 3.5x.

Finally, we evaluate the effectiveness of more substantial HDFS archi-
tectural changes, aimed at improving write handling: local compaction
and combined logging. Local compaction performs compaction work
within each replicated server instead of reading and writing data across
the network; the result is a 2.7x reduction in network I/O. Combined log-
ging consolidates logs from multiple HBase RegionServers into a single
stream, thus reducing log-write latencies by 6x.

1.3 Microservices: Docker Containers

In this study, we analyze Docker, a microservice development and de-
ployment tool. Microservice architectures decompose applications into
loosely coupled components that control their own environments and
dependencies and communicate over well-defined interfaces. This ap-
proach improves developer velocity because programmers have more con-
trol over the environment in which their component runs, and they need
not understand everything about the surrounding components [24].

In a microservice architecture, each microservice is isolated from other
microservices. Hypervisors, or virtual machine monitors (VMMs), have
traditionally been used to provide isolation for applications [18, 45, 110].
Each application is deployed in its own virtual machine, with its own en-
vironment and resources. Unfortunately, hypervisors need to interpose
on various privileged operations (e.g., page-table lookups [1, 18]) and use
roundabout techniques to infer resource usage (e.g., ballooning [110]).
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The result is that hypervisors are heavyweight, with slow boot times [119]
as well as run-time overheads [1, 18]. As applications and systems are fur-
ther decomposed into smaller services, these overheads become increas-
ingly odious.

Fortunately, containers, as driven by the popularity of Docker [70],
have recently emerged as a lightweight alternative to hypervisor-based
virtualization. Within a container, all process resources are virtualized
by the operating system, including network ports and file-system mount
points. Containers are essentially just processes that enjoy virtualization
of all resources, not just CPU and memory; as such, there is no intrinsic
reason container startup should be slower than normal process startup.
Thus, containers might appear an ideal abstraction on which to build mi-
croservices.

Unfortunately, containers also have overheads and startup delays in
practice one might not expect given their similarity to traditional pro-
cesses. In particular, deployment tools built for containers frequently
spend significant time initializing a container when an application runs
on a new worker for the first time. Storage initialization is especially ex-
pensive. Whereas initialization of network, compute, and memory re-
sources is relatively fast and simple (e.g., zeroing memory pages), a con-
tainerized application requires a fully initialized file system, containing
application binaries, a complete Linux distribution, and package depen-
dencies. Deploying a container in a Docker or Google Borg [108] cluster
typically involves significant copying and installation overheads. A recent
study of Google Borg revealed: “[task startup latency] is highly variable, with
the median typically about 25 s. Package installation takes about 80% of the total:
one of the known bottlenecks is contention for the local disk where packages are
written” [108].

If the latency of starting a containerized application on a new worker
can be reduced, a number of opportunities arise: microservices can scale
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instantly to handle flash-crowd events [34], cluster schedulers can fre-
quently rebalance nodes at low cost [50, 108], software upgrades can be
rapidly deployed when a security flaw or critical bug is fixed [82], and
developers can interactively build and test distributed applications [90].

We study the obstacles to fast container startup by developing a new
open-source Docker benchmark, HelloBench, that carefully exercises con-
tainer startup. HelloBench is based on 57 different container workloads
and measures the time from when deployment begins until a container is
ready to start doing useful work (e.g., servicing web requests).

We then perform a measurement study on Docker. We use HelloBench
and static analysis to characterize container images and I/O patterns.
Among other findings, our analysis shows that (1) copying package data
accounts for 76% of container startup time, (2) only 6.4% of the copied
data is actually needed for containers to begin useful work, and (3) sim-
ple block-deduplication across images achieves better compression rates
than gzip compression of individual images.

1.4 Slacker: A Lazy Docker Storage Driver

We use the finding of our Docker measurement study to optimize con-
tainer deployment and startup in Docker. In particular, we construct Slacker,
a new Docker storage driver that achieves fast container distribution by
utilizing specialized storage-system support at multiple layers of the stack.
Slacker uses the snapshot and clone capabilities of our backend storage
server (a Tintri VMstore [106]) to dramatically reduce the cost of common
Docker operations. Rather than prepropagate whole container images,
Slacker lazily pulls image data as necessary, drastically reducing network
I/O. Slacker also utilizes modifications we make to the Linux kernel in
order to improve cache sharing.

The result of using these techniques is a massive improvement in the
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performance of common Docker operations; image pushes become 153×
faster and pulls become 72× faster. Common Docker use cases involv-
ing these operations greatly benefit. For example, Slacker achieves a 5×
median speedup for container deployment cycles and a 20× speedup for
development cycles.

We also build MultiMake, a new container-based build tool that show-
cases the benefits of Slacker’s fast startup. MultiMake produces 16 dif-
ferent binaries from the same source code, using different containerized
GCC releases. With Slacker, MultiMake experiences a 10× speedup.

1.5 Contributions and Findings

We describe the main contributions of this dissertation:

• We collect and analyze traces of three new sets of applications: Ap-
ple desktop applications, Facebook Messages, and Docker contain-
ers.

• We publicly released the trace tools we developed for tracing system
calls1 and HDFS workloads2.

• We publicly release our Apple desktop traces3; these have been used
in the Magritte benchmark [114].

• We publicly release a new Docker startup benchmark based on 57
workloads, HelloBench4.

• We build a storage stack simulator to study how Facebook Messages
I/O is processed across layers.

1http://research.cs.wisc.edu/adsl/Traces/ibench/utilities.tar.gz
2https://github.com/facebookarchive/hadoop-20/blob/master/src/hdfs/

org/apache/hadoop/hdfs/APITraceFileSystem.java
3http://research.cs.wisc.edu/adsl/Traces/ibench
4https://github.com/Tintri/hello-bench

http://research.cs.wisc.edu/adsl/Traces/ibench/utilities.tar.gz
https://github.com/facebookarchive/hadoop-20/blob/master/src/hdfs/org/apache/hadoop/hdfs/APITraceFileSystem.java
https://github.com/facebookarchive/hadoop-20/blob/master/src/hdfs/org/apache/hadoop/hdfs/APITraceFileSystem.java
http://research.cs.wisc.edu/adsl/Traces/ibench
https://github.com/Tintri/hello-bench
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• We build Slacker, a new Docker storage driver optimized for fast
startup; Slacker utilizes Linux kernel modifications and the extended
API of a Tintri VMstore.

We draw a number of general conclusions from our three analysis
studies, which we describe in more detail in Section 7.2:

Modularity often causes unnecessary I/O. The Apple desktop appli-
cations force unimportant data to disk, HBase copies data over the
network that workers could compute locally, and Docker copies a
significant amount of package data that is not strictly needed. All
these behaviors are related to the modularity of the system being
studied.

Layers mask costs. A high-level request typically passes through many
layers before reaching the underlying device. In all our studies, we
found cases where the cost of high-level operations was amplified
at lower layers of the stack in ways a developer would likely not
expect.

Simple measurement-driven adaptations work surprisingly well. Our
simulation of HBase/HDFS integrations and our work on Slacker
show that simple optimizations can mitigate the costs of modularity.

Files remain small. We find that most files are small in our analysis,
as is found in many prior studies. For the Apple desktop applica-
tions, this is unsurprising, but small files represent a new pattern
for which HDFS was not originally built.

Cold data is important. Much data is copied and stored that is not ac-
tually used in our studies. This finding challenges the assumption
that SSDs will soon make disk drives obsolete. It also has highlights
the importance of laziness at the software level.
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1.6 Overview

We briefly describe the contents of the different chapters in the disserta-
tion.

• Apple Desktop Measurement. In Chapter 2, we analyze traces of
six Apple Desktop applications. We correlate the system-call invo-
cations with user-space stack traces to understand how libraries and
frameworks influence I/O patterns.

• Facebook Messages Measurement. In Chapter 3, we analyze traces
of Facebook Messages as collected on a shadow cluster. We also use
the traces to drive a multilayer simulator we build and explore a
number of what-if questions related to hybrid storage and caching.

• Docker Measurement. In Chapter 4, we describe the construction
of our HelloBench benchmark that stresses container startup. We
study the images of which HelloBench consists and analyze I/O
patterns during the execution of the benchmark.

• Slacker: A Lazy Docker Storage Driver. In Chapter 5, we describe
a new Docker storage driver we build that lazily fetches container
data instead of prefetching everything, as done by other container
deployment systems.

• Related Work. In Chapter 6, we discuss related measurement work.
We also describe various techniques for layer integration, deploy-
ment work, and cache sharing strategies.

• Conclusions and Future Work. Chapter 7 summarizes our mea-
surement findings and highlights general findings across multiple
studies. We also discuss our research with OpenLambda and our
plans to explore new ways to build applications with serverless com-
puting.
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2
Apple Desktop Measurement

Desktop applications have greatly evolved over the last few decades. In
1974, Ritchie and Thompson wrote “No large ’access method’ routines are
required to insulate the programmer from the system calls; in fact, all user pro-
grams either call the system directly or use a small library program, only tens of
instructions long” [87]. Today, desktop applications rely heavily on a vari-
ety of libraries for storing and managing data. In this chapter, we analyze
six modern desktop applications and study the effects of using complex
storage libraries.

The rest of this chapter is organized as follows. We begin by describing
how modern applications are developed and the set of applications we
select to study (§2.1). Next, we describe our analysis methodology (§2.2).
We then look at one workload in detail as a case study (§2.3). Next, we do
a broader analysis over six sections, focusing on open patterns (§2.4), file
characteristics (§2.5), access patterns (§2.6), memory (§2.7), transactional
properties (§2.8), and asynchronicity (§2.9). Finally, we summarize our
findings (§2.10).

2.1 Background

Modern desktop and mobile applications rely heavily on libraries for man-
aging and persisting data structures. In this section, we discuss some of
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the reasons for choosing to use libraries (§2.1.1) and describe the desktop
applications we select for our study (§2.1.2).

2.1.1 Modularity with Libraries

Applications and systems are often divided into subcomponents, or mod-
ules, for a variety of reasons, including comprehensibility, reusability, and
isolation. The last benefit, isolation, typically entails clear performance
costs (e.g., context switching and copying between fault domains). Li-
braries represent a popular form of modularity without isolation. With
libraries, many modules may run in the same fault domain (e.g., a process
address space). Like other types of modules, libraries often expose well-
defined interfaces and hide internal implementation details. Unlike other
types of modules, libraries can easily and efficiently share data with other
libraries without copying, but a bug in one library could easily cause the
entire process to crash.

Both approaches to decomposing applications (i.e., into processes or
libraries) have a long history in application development [79, 87]. Many
features of Unix specifically support decomposition into processes. All
processes have common I/O interfaces (e.g., stdin and stdout), and pipes
enable arbitrary composition of multiple processes. These traditional Unix-
based applications are designed to be simple and perform one task well.
The user has significant power and flexibility to string these simple pro-
grams together to perform more complex tasks.

The Unix approach to decomposition is still in use by some modern
users, particularly advanced users (e.g., developers and system adminis-
trators), but Unix-style decomposition has not prevailed more broadly [60].
Modern home and office applications are standalone monoliths, provid-
ing a rich and continuously evolving set of features to demanding users.
These applications are fundamentally large and complex, containing mil-
lions of lines of code [67], and relying heavily on many different libraries.
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Why have libraries won over processes as the means of modularity
for desktop applications? One likely reason is that as more people have
become computer users, user sophistication has decreased. Most users
want a GUI-based application that intuitively guides them in their work;
they do not want to think about how to compose a pipeline of simple pro-
cesses to accomplish the task at hand. Developers, not users, are now typ-
ically responsible for reasoning about how to compose subcomponents to
achieve complex goals.

There are also more technical arguments for why applications should
be composed from libraries rather than subprocesses. Parnas [79] shows
that there are multiple ways to decompose a large task into modules. One
way is to decompose around functions, or stages of a pipeline. With this
type of decomposition, the Unix approach is quite natural. However, a
second way is to decompose around data structures. This second way
allows flexibility of representation (e.g., where and how data is stored),
but abstracting data structures is a cross-cutting proposition. A change
in representation may affect every stage of a pipelined task. When devel-
opers reason about applications in terms of data structures (instead of, for
example, functionality or stages of a pipeline), libraries are a more natural
form of modularity, because changing code in one library can affect every
stage of a pipeline, and copying is unnecessary between stages.

Parnas [79] argues that this type of maintainability is possible due to
information hiding: the internal representation of data is hidden behind
well-defined interfaces, so the many functions interacting with a data
structure need not change when the representation changes.

Modern applications rely heavily on libraries for managing data; these
libraries hide internal representation details. The use of libraries for data
management is even being adopted for structured data stored in databases,
which have traditionally been managed as separate processes. Embedded
databases (i.e., databases that are built as a library to be used in the same
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process address space as the client) are being used when developers want
to abstract data representation but do not want to pay the performance
cost of inter-process communication [15]. SQLite is a particularly popu-
lar embedded database used by many modern applications [58]. SQLite
is also used in several of the tasks we study in this chapter, and we will be
analyzing its impact on I/O in more detail. Applications also use libraries
for less-structured data. For example, all the applications we study rely
heavily on an Apple library (i.e., the PList library) for storing key-value
data and managing persistence properties. We will show how decisions
made by the developers of the PList library greatly influence the I/O be-
havior of nearly every workload we consider.

Given that libraries can avoid copying between modules and switch-
ing costs, one might expect that applications composed of libraries do not
experience the modularity-related overheads that are often experienced
by applications based on other types of modules. Many of results we
present in this chapter will refute this hypothesis. Even when decomposi-
tion of program logic is merely logical, as with libraries, modularity often
has performance costs due to information hiding. Abstraction has many
benefits, but it is not free in terms of performance, even with libraries.

2.1.2 iLife and iWork

In this section, we describe the workloads we study. For our study, we se-
lected six popular Apple desktop applications: iPhoto, iTunes, and iMovie
(of the iLife suite), and Pages, Numbers, and Keynote (of the iWork suite).
Unfortunately, the research community does not have data on the exact
ways home users utilize these applications, so we study a variety of tasks
in each application we believe a reasonable user would be likely to per-
form. Fortunately, our results show many consistent patterns across this
range of tasks.

We call our collection of application tasks the iBench task suite. The
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Task Description
iPhoto Start Open iPhoto with a library of 400 photos
iPhoto Imp Import 400 photos into an empty library
iPhoto Dup Duplicate 400 photos from library
iPhoto Edit Sequentially edit 400 photos
iPhoto Del Sequentially delete 400 photos
iPhoto View Sequentially view 400 photos
iTunes Start Open iTunes with 10 song album
iTunes ImpS Import 10 song album to library
iTunes ImpM Import 3 minute movie to library
iTunes PlayS Play album of 10 songs
iTunes PlayM Play 3 minute movie
iMovie Start Open iMovie with 3 minute clip in project
iMovie Imp Import 3 minute .m4v (20MB) to “Events”
iMovie Add Paste 3 minute clip from “Events” to project
iMovie Exp Export 3 minute video clip
Pages Start Open Pages
Pages New Create 15 text-page document; save as .pages
Pages NewP Create 15 JPG document; save as .pages
Pages Open Open 15 text-page document
Pages PDF Export 15 page document as .pdf
Pages PDFP Export 15 JPG document as .pdf
Pages DOC Export 15 page document as .doc
Pages DOCP Export 15 JPG document as .doc
Numbers Start Open Numbers
Numbers New Save 5 sheets/column graphs as .numbers
Numbers Open Open 5 sheet spreadsheet
Numbers XLS Export 5 sheets/column graphs as .xls
Keynote Start Open Keynote
Keynote New Create 20 text slides; save as .key
Keynote NewP Create 20 JPG slides; save as .key
Keynote Play Open/play presentation of 20 text slides
Keynote PlayP Open/play presentation of 20 JPG slides
Keynote PPT Export 20 text slides as .ppt
Keynote PPTP Export 20 JPG slides as .ppt

Table 2.1: iBench Task Suite. Each of the 34 tasks is briefly described.
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suite contains 34 different task in total; a brief overview is given in Ta-
ble 2.1. We now describe the six applications in more detail.

iLife iPhoto 8.1.1 (419): a digital photo album and photo manipula-
tion application. iPhoto stores photos in a library that contains the data
for the photos (which can be in a variety of formats, including JPG, TIFF,
and PNG), a directory of modified files, a directory of scaled down im-
ages, and two files of thumbnail images. The library stores metadata in a
SQLite database. iBench contains six tasks exercising user actions typical
for iPhoto: starting the application and importing, duplicating, editing,
viewing, and deleting photos in the library. These tasks modify both the
image files and the underlying database. Each of the iPhoto tasks operates
on 400 2.5 MB photos, representing a user who has imported 12 megapixel
photos (2.5 MB each) from a full 1 GB flash card from a digital camera.

iLife iTunes 9.0.3 (15): a media player capable of both audio and video
playback. iTunes organizes its files in a private library and supports most
common music formats (e.g., MP3, AIFF, WAVE, AAC, and MPEG-4).
iTunes does not employ a database, keeping media metadata and playlists
in both a binary and an XML file. iBench contains five tasks for iTunes:
starting iTunes, importing and playing an album of MP3 songs, and im-
porting and playing an MPEG-4 movie. Importing requires copying files
into the library directory and, for music, analyzing each song file for gap-
less playback. The music tasks operate over an album (or playlist) of ten
songs while the movie tasks use a single 3-minute movie.

iLife iMovie 8.0.5 (820): a video editing application. iMovie stores its
data in a library that contains directories for raw footage and projects and
files containing video footage thumbnails. iMovie supports both MPEG-
4 and QuickTime files. iBench contains four tasks for iMovie: starting
iMovie, importing an MPEG-4 movie, adding a clip from this movie into
a project, and exporting a project to MPEG-4. The tasks all use a 3-minute
movie because this is a typical length for home videos on video-sharing
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websites.
iWork Pages 4.0.3 (766): a word processor. Pages uses a ZIP-based file

format and can export to DOC, PDF, RTF, and basic text. iBench includes
eight tasks for Pages: starting up, creating and saving, opening, and ex-
porting documents with and without images and with different formats.
The tasks use 15 page documents.

iWork Numbers 2.0.3 (332): a spreadsheet application. Numbers or-
ganizes its files with a ZIP-based format and exports to XLS and PDF.
The four iBench tasks for Numbers include starting Numbers, generating
a spreadsheet and saving it, opening the spreadsheet, and exporting a
spreadsheet to XLS. To model a possible user working on a budget, tasks
utilize a five page spreadsheet with one column graph per sheet.

iWork Keynote 5.0.3 (791): a presentation and slideshow application.
Keynote saves to a .key ZIP-based format and exports to Microsoft’s PPT
format. The seven iBench tasks for Keynote include starting Keynote, cre-
ating slides with and without images, opening and playing presentations,
and exporting to PPT. Each Keynote task uses a 20-slide presentation.

2.2 Measurement Methodology

In the previous section, we described the 34 tasks of our study. In this sec-
tion, we describe our tracing and analysis methodology. One difficulty of
studying home-user applications is that users interact with these appli-
cation via a GUI, so the iBench tasks are inherently difficult to drive via
traditional scripts. Thus, to save time and ensure reproducible results, we
automate the tasks via AppleScript, a general-purpose GUI scripting lan-
guage. AppleScript provides generic commands to emulate mouse clicks
through menus and application-specific commands to capture higher-
level operations. Application-specific commands bypass a small amount
of I/O by skipping dialog boxes; however, we use them whenever possi-
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Name Description Files (MB) Acc. (MB) RD% WR% Acc./s MB/s

Start Open iPhoto with library of 400 photos 779 (336.7) 828 (25.4) 78.8 21.2 151.1 4.6

Imp Import 400 photos into empty library 5900 (1966.9) 8709 (3940.3) 74.4 25.6 26.7 12.1

Dup Duplicate 400 photos from library 2928 (1963.9) 5736 (2076.2) 52.4 47.6 237.9 86.1

Edit Sequentially edit 400 photos from library 12119 (4646.7) 18927 (12182.9) 69.8 30.2 19.6 12.6

Del Sequentially del. 400 photos; empty trash 15246 (23.0) 15247 (25.0) 21.8 78.2 280.9 0.5

View Sequentially view 400 photos 2929 (1006.4) 3347 (1005.0) 98.1 1.9 24.1 7.2

Start Open iTunes with 10 song album 143 (184.4) 195 (9.3) 54.7 45.3 72.4 3.4

ImpS Import 10 song album to library 68 (204.9) 139 (264.5) 66.3 33.7 75.2 143.1

ImpM Import 3 minute movie to library 41 (67.4) 57 (42.9) 48.0 52.0 152.4 114.6

PlayS Play album of 10 songs 61 (103.6) 80 (90.9) 96.9 3.1 0.4 0.5

PlayM Play 3 minute movie 56 (77.9) 69 (32.0) 92.3 7.7 2.2 1.0

Start Open iMovie with 3 minute. clip in project 433 (223.3) 786 (29.4) 99.9 0.1 134.8 5.0

Imp Import 3 minute .m4v (20MB) to ‘‘Events’’ 184 (440.1) 383 (122.3) 55.6 44.4 29.3 9.3

Add Paste 3 min. clip from ‘‘Events’’ to project 210 (58.3) 547 (2.2) 47.8 52.2 357.8 1.4

Exp Export 3 minute video clip 70 (157.9) 546 (229.9) 55.1 44.9 2.3 1.0

Start Open Pages 218 (183.7) 228 (2.3) 99.9 0.1 97.7 1.0

New Create 15 text-page doc; save as .pages 135 (1.6) 157 (1.0) 73.3 26.7 50.8 0.3

NewP Create 15 JPG doc; save as .pages 408 (112.0) 997 (180.9) 60.7 39.3 54.6 9.9

Open Open 15 text page document 103 (0.8) 109 (0.6) 99.5 0.5 57.6 0.3

PDF Export 15 page document as .pdf 107 (1.5) 115 (0.9) 91.0 9.0 41.3 0.3

PDFP Export 15 JPG document as .pdf 404 (77.4) 965 (110.9) 67.4 32.6 49.7 5.7

DOC Export 15 page document as .doc 112 (1.0) 121 (1.0) 87.9 12.1 44.4 0.4

DOCP Export 15 JPG document as .doc 385 (111.3) 952 (183.8) 61.1 38.9 46.3 8.9

Start Open Numbers 283 (179.9) 360 (2.6) 99.6 0.4 115.5 0.8

New Save 5 sheets/col graphs as .numbers 269 (4.9) 313 (2.8) 90.7 9.3 9.6 0.1

Open Open 5 sheet spreadsheet 119 (1.3) 137 (1.3) 99.8 0.2 48.7 0.5

XLS Export 5 sheets/column graphs as .xls 236 (4.6) 272 (2.7) 94.9 5.1 8.5 0.1

Start Open Keynote 517 (183.0) 681 (1.1) 99.8 0.2 229.8 0.4

New Create 20 text slides; save as .key 637 (12.1) 863 (5.4) 92.4 7.6 129.1 0.8

NewP Create 20 JPG slides; save as .key 654 (92.9) 901 (103.3) 66.8 33.2 70.8 8.1

Play Open/play presentation of 20 text slides 318 (11.5) 385 (4.9) 99.8 0.2 95.0 1.2

PlayP Open/play presentation of 20 JPG slides 321 (45.4) 388 (55.7) 69.6 30.4 72.4 10.4

PPT Export 20 text slides as .ppt 685 (12.8) 918 (10.1) 78.8 21.2 115.2 1.3

PPTP Export 20 JPG slides as .ppt 723 (110.6) 996 (124.6) 57.6 42.4 61.0 7.6
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Table 2.2: 34 Tasks of the iBench Suite. The table summarizes the 34 tasks
of iBench, specifying the application, a short name for the task, and a longer de-
scription of the actions modeled. The I/O is characterized according to the num-
ber of files read or written, the sum of the maximum sizes of all accessed files, the
number of file accesses that read or write data (Acc.), the number of bytes read
or written, the percentage of I/O bytes that are part of a read (or write; RD%
and WR%, respectively), and the rate of I/O per CPU-second in terms of both file
accesses and bytes (Acc./s and MB/s, respectively). Each core is counted individ-
ually, so at most 2 CPU-seconds can be counted per second on our dual-core test
machine. CPU utilization is measured with the UNIX top utility, which in rare
cases produces anomalous CPU utilization snapshots; those values are ignored.
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ble for expediency.
We then collect system-call traces using DTrace [19] while the tasks

are run by the AppleScript task driver. DTrace is a kernel and user level
dynamic instrumentation tool that can be used to instrument the entry
and exit points of all system calls dealing with the file system. DTrace also
records the current state of the system and the parameters passed to and
returned from each call. In addition to collecting I/O traces, we recorded
important details about the initial state of the system before task execution
(e.g., directory structure and file sizes). Such initial-state snapshots are
critical in file-system benchmarking [2] and make it possible to replay the
traces [114].

While tracing with DTrace was generally straightforward, we faced
four challenges in collecting the iBench traces. First, file sizes are not al-
ways available to DTrace; thus, we record every file’s initial size and com-
pute subsequent file size changes caused by system calls such as write
or ftruncate. Second, iTunes uses the ptrace system call to disable trac-
ing; we circumvent this block by using gdb to insert a breakpoint that
automatically returns without calling ptrace. Third, the volfs pseudo-
file system in HFS+ (Hierarchical File System) allows files to be opened
via their inode number instead of a file name; to include pathnames in the
trace, we instrument the build_path function to obtain the full path when
the task is run. Fourth, tracing system calls misses I/O resulting from
memory-mapped files; therefore, we purged memory and instrumented
kernel page-in functions to measure the amount of memory-mapped file
activity. We found that the amount of memory-mapped I/O is negligi-
ble in most tasks; we thus do not include this I/O in the iBench traces or
analysis, except for a brief discussion in Section 2.6.1.

All measurements were performed on a Mac Mini running Mac OS X
Snow Leopard version 10.6.2 and the HFS+ file system. The machine has
2 GB of memory and a 2.26 GHz Intel Core Duo processor. Our traces are
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online at http://www.cs.wisc.edu/adsl/Traces/ibench.
Table 2.2 contains a brief description and basic I/O characteristics for

each of our 34 iBench tasks. The table illustrates that the iBench tasks
perform a significant amount of I/O. Most tasks access hundreds of files,
which in aggregate contain tens or hundreds of megabytes of data. The
tasks perform widely differing amounts of I/O, from less than a megabyte
to more than a gigabyte. Most tasks perform many more reads than writes.
Finally, the tasks exhibit high I/O throughput, often transferring tens of
megabytes of data per CPU-second. These results show that the iBench
task suite represents an interesting I/O workload (i.e., it is not simply CPU
bound).

2.3 Pages Export Case Study

The I/O characteristics of modern home-user applications are distinct
from those of Unix applications studied in the past. To motivate the need
for a new study, we investigate the complex I/O behavior of a single rep-
resentative task: the “Pages DOCP” iBench task. In this workload, the
Pages (4.0.3) word processor creates a blank document, inserts 15 JPEG
images (each of size 2.5 MB), and saves the document as a Microsoft .doc
file.

Figure 2.1 shows the I/O this task performs. The top portion of the
figure illustrates the accesses performed over the full lifetime of the task:
at a high level, it shows that more than 385 files spanning six different cat-
egories are accessed by eleven different threads, with many intervening
calls to fsync and rename. The bottom portion of the figure magnifies a
short time interval, showing the reads and writes performed by a single
thread accessing the primary .doc productivity file. From this one exper-
iment, we make seven observations. We first focus on the single access
that saves the user’s document (bottom), and then consider the broader
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Figure 2.1: Pages Saving A Word Document. Top: All accessed files are shown.
Black bars are opens followed by I/O, with thickness logarithmically proportional to bytes of I/O.
/ is an fsync; \ is a rename; X is both. Bottom: Individual I/O requests to the .doc file during
54-58 seconds are shown. Vertical bar position and bar length represent the offset within the file
and number of bytes touched. Thick white bars are reads; thin gray bars are writes. Repeated
runs are marked with the number of repetitions. Annotations on the right indicate the name of
each file section.
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context surrounding this file save, where we observe a flurry of accesses
to hundreds of helper files (top).

A file is not a file. Focusing on the magnified timeline of reads and
writes to the productivity .doc file, we see that the file format comprises
more than just a simple file. Microsoft .doc files are based on the FAT file
system and allow bundling of multiple files in the single .doc file. This
.doc file contains a directory (Root), three streams for large data (Word-
Document, Data, and 1Table), and a stream for small data (Ministream).
Space is allocated in the file with three sections: a file allocation table
(FAT), a double-indirect FAT (DIF) region, and a ministream allocation
region (Mini).

Sequential access is not sequential. The complex FAT-based file for-
mat causes random access patterns in several ways: first, the header is
updated at the beginning and end of the magnified access; second, data
from individual streams is fragmented throughout the file; and third, the
1Table stream is updated before and after each image is appended to the
WordDocument stream.

Auxiliary files dominate. Although saving the single .doc we have
been considering is the sole purpose of this task, we now turn our atten-
tion to the top timeline and see that 385 different files are accessed. There
are several reasons for this multitude of files. First, Pages provides a rich
graphical experience involving many images and other forms of multi-
media; together with the 15 inserted JPEGs, this requires 118 multimedia
files. Second, users want to use Pages in their native language, so applica-
tion text is not hard-coded into the executable but is instead stored in 25
different .strings files. Third, to save user preferences and other metadata,
Pages uses a SQLite database (2 files) and a number of key-value stores
(218 .plist files).

Writes are often forced. Pages heavily uses fsync to flush write data
to disk, making it durable. Pages primarily calls fsync on three types of



28

data. First, Pages regularly uses fsync and when updating the key-value
store of a .plist file. Second, fsync is used on the SQLite database. Third,
for each of the 15 image insertions, Pages calls fsync on a file named “tem-
pData” (classified as “other”) to update its automatic backup.

Renaming is popular. Pages also heavily uses rename to atomically
replace old files with new files so that a file never contains inconsistent
data. This is mostly done in conjunction with calls to fsync on .plist files.

Multiple threads perform I/O. Pages is a multi-threaded application
and issues I/O requests from many different threads during the exper-
iment. Using multiple threads for I/O allows Pages to avoid blocking
while I/O requests are outstanding. Examining the I/O behavior across
threads, we see that Thread 1 performs the most significant portion of
I/O, but ten other threads are also involved. In most cases, a single thread
exclusively accesses a file, but it is not uncommon for multiple threads to
share a file.

Frameworks influence I/O. Pages was developed in a rich program-
ming environment where frameworks such as Cocoa or Carbon are used
for I/O; these libraries impact I/O patterns in ways the developer might
not expect. For example, although the application developers did not
bother to use fsync or rename when saving the user’s work in the .doc
file, the Cocoa library regularly uses these calls to atomically and durably
update relatively unimportant metadata, such as “recently opened” lists
stored in .plist files. As another example, when Pages tries to read data
in 512-byte chunks from the .doc, each read goes through the STDIO li-
brary, which only reads in 4 KB chunks. Thus, when Pages attempts to
read one chunk from the 1Table stream, seven unrequested chunks from
the WordDocument stream are also incidentally read (offset 12039 KB). In
other cases, regions of the .doc file are repeatedly accessed unnecessarily.
For example, around the 3 KB offset, read/write pairs occur dozens of
times. Pages uses a library to write 2-byte words; each time a word is
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written, the library reads, updates, and writes back an entire 512-byte
chunk. Finally, we see evidence of redundancy between libraries: even
though Pages has a backing SQLite database for some of its properties, it
also uses .plist files, which function across Apple applications as generic
property stores.

This one detailed experiment has shed light on a number of interest-
ing I/O behaviors that indicate that home-user applications are indeed
different than traditional workloads. Throughout the remainder of this
chapter, we will analyze all 34 tasks of the iBench suite to learn to what
degree the patterns observed in this case study apply to Apple desktop
applications more generally.

2.4 Open Types: Directories and Files

Files and directories are the two most important objects stored by a file
system. We begin our analysis of the iBench task suite by measuring the
frequency of access to these two types of object. Applications can use
open to create a file descriptor corresponding to a file or directory and
then use that descriptor to perform I/O. We categorize opens into four
groups based on their target and their usage: opens of files that access
the files’ contents, opens of files that do not access the contents of the
files directly, opens of directories that read their contents, and opens of
directories that do not read them. We display our results in Figure 2.2.

Our results show that opens to files are generally more common than
directory opens, though significant variance exists between tasks. In par-
ticular, iMovie Add uses over 90% of its opens for file I/O, while Pages
Start uses less than 20% of them for this purpose. Opens to files that ac-
cess data outnumber those that do not across all tasks; only a few of the
iPhoto and iTunes tasks open more than 10-15% of their files without ac-
cessing them. Though some opens that do not access files result in no
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Figure 2.2: Types of Opens. This plot divides opens into four types–file
opens that access the file’s data, file opens that do not, directory opens that read
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further manipulation of their target file, investigating our traces shows
that many of these opens are used for locking, calls to fsync or mmap, and
metadata access.

While directory opens usually occur less frequently than file opens,
they nonetheless have a significant presence, particularly for iWork. Their
quantity varies widely, ranging from over 60% for Keynote Start to under
5% for iTunes PlayS. As with file opens, the majority of directory opens
access directory entries, although all iPhoto workloads other than Start
access very little data from the directories they open. Similarly, directory
opens that do not explicitly access directory entries are not necessarily
useless or used solely to confirm the existence of a given directory; many
examine metadata attributes of their children or of the directory itself or
change the working directory.

Given that a sizable minority of opens are on directories, we next ex-
amine how many bytes are read from each type of object in Figure 2.3.
This plot omits the implicit directory reads that occur during pathname
resolution when files are opened.

Despite the prevalence of directory opens, directory reads account for
almost none of the I/O performed in the iLife suite and usually comprise
at most 5-7% of the total I/O in iLife. The only exceptions are the Start
tasks for Keynote, Pages, and Numbers, where directory reads account
for roughly 50%, 25%, and 20%, respectively, of all data read. None of
these tasks read much data, however, and, in general, the proportion of
data reads from directories diminishes greatly as the total data read for
the task rises.

Conclusion: While the iBench applications frequently open directo-
ries, the vast majority of reads are from files; the total data read from
directories in any given task never exceeds 1 MB. Thus, we focus on file
I/O for the rest of our analysis.
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2.5 Nature of Files

We now characterize the high-level behavior of the iBench tasks. In partic-
ular, we study the different types and sizes of files opened by each iBench
task.

2.5.1 File Types

The iLife and iWork applications store data across a variety of files in
a number of different formats; for example, iLife applications tend to
store their data in libraries (or data directories) unique to each user, while
iWork applications organize their documents in proprietary ZIP-based
files. The extent to which tasks access different types of files greatly in-
fluences their I/O behavior.

To understand accesses to different file types, we place each file into
one of six categories, based on file name extensions and usage. Multime-
dia files contain images (e.g., JPEG), songs (e.g., MP3, AIFF), and movies
(e.g., MPEG-4). Productivity files are documents (e.g., .pages, DOC, PDF),
spreadsheets (e.g., .numbers, XLS), and presentations (e.g., .key, PPT). SQLite
files are database files. Plist files are XML property-list files containing
key-value pairs for user preferences and application properties. Strings
files contain strings for localization of application text. Finally, Other con-
tains miscellaneous files such as plain text, logs, files without extensions,
and binary files.

Figure 2.4 shows the frequencies with which tasks open and access
files of each type; most tasks perform hundreds of these accesses. Multi-
media file opens are common in all workloads, though they seldom pre-
dominate, even in the multimedia-heavy iLife applications. Conversely,
opens of productivity files are rare, even in iWork applications that use
them; this is likely because most iWork tasks create or view a single pro-
ductivity file. Because .plist files act as generic helper files, they are rel-
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Figure 2.4: Types of Files Accessed By Number of Opens. This plot
shows the relative frequency with which file descriptors are opened upon different
file types. The number at the end of each bar indicates the total number of unique
file descriptors opened on files.
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Figure 2.5: Types of Files Opened By I/O Size. This plot shows the
relative frequency with which each task performs I/O upon different file types.
The number atop each bar indicates the total bytes of I/O accessed.
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atively common. SQLite files only have a noticeable presence in iPhoto,
where they account for a substantial portion of the observed opens. Strings
files occupy a significant minority of iWork files. Finally, between 5% and
20% of files are of type “Other” (except for iTunes, where they are more
prevalent).

Figure 2.5 displays the percentage of I/O bytes accessed for each file
type. In bytes, multimedia I/O dominates most of the iLife tasks, while
productivity I/O has a significant presence in the iWork tasks; file de-
scriptors on multimedia and productivity files tend to receive large amounts
of I/O. SQLite, Plist, and Strings files have a smaller share of the total I/O
in bytes relative to the number of opened files; this implies that tasks ac-
cess only a small quantity of data for each of these files opened (e.g., sev-
eral key-value pairs in a .plist). In most tasks, files classified as “Other”
receive a significant portion of the I/O.

Conclusion: Home applications access a wide variety of file types,
generally opening multimedia files the most frequently. iLife tasks tend
to access bytes primarily from multimedia or files classified as “Other”;
iWork tasks access bytes from a broader range of file types, with some
emphasis on productivity files.

2.5.2 File Sizes

Large and small files present distinct challenges to the file system. For
large files, finding contiguous space can be difficult, while for small files,
minimizing initial seek time is more important. We investigate two ques-
tions regarding file size. First, what is the distribution of file sizes ac-
cessed by each task? Second, what portion of accessed bytes resides in
files of various sizes?

To answer these questions, we record file sizes when each unique file
descriptor is closed. We categorize sizes as very small (< 4 KB), small
(< 64 KB), medium (< 1 MB), large (< 10 MB), or very large (> 10 MB).
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Figure 2.6: File Sizes, Weighted by Number of Accesses. This graph
shows the number of accessed files in each file size range upon access ends. The
total number of file accesses appears at the end of the bars. Note that repeatedly-
accessed files are counted multiple times, and entire file sizes are counted even
upon partial file accesses.
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Figure 2.7: File Sizes, Weighted by the Bytes in Accessed Files. This
graph shows the portion of bytes in accessed files of each size range upon access
ends. The sum of the file sizes appears at the end of the bars. This number differs
from total file footprint since files change size over time and repeatedly accessed
file are counted multiple times.
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We track how many accesses are to files in each category and how many
of the bytes belong to files in each category.

Figure 2.6 shows the number of accesses to files of each size. Accesses
to very small files are extremely common, especially for iWork, account-
ing for over half of all the accesses in every iWork task. Small file accesses
have a significant presence in the iLife tasks. The large quantity of small
and very small files is due to frequent use of .plist files that store prefer-
ences, settings, and other application data; these files often fill just one or
two 4 KB pages.

Figure 2.7 shows the proportion of the files in which the bytes of ac-
cessed files reside. Large and very large files dominate every startup
workload and nearly every task that processes multimedia files. Small
files account for few bytes and very small files are essentially negligible.

Conclusion: Agreeing with many previous studies (e.g., [10]), we find
that while applications tend to open many very small files (< 4 KB), most
of the bytes accessed are in large files (> 1 MB).

2.6 Access Patterns

We next examine how the nature of file accesses has changed, studying
the read and write patterns of home applications. These patterns include
whether data is transferred via memory-mapped I/O or through read
and write requests; whether files are used for reading, writing, or both;
whether files are accessed sequentially or randomly; and finally, whether
or not blocks are preallocated via hints to the file system.

2.6.1 I/O Mechanisms

Unix provides two mechanisms for reading and writing to a file that has
been opened. First, calls to read, write, or similar functions may be per-
formed on a file descriptor (we call this request-based I/O). Second, a
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Figure 2.8: File Access Mechanisms. Memory-mapped I/O is compared to
request-based I/O. The values atop the bars indicate the sum of both I/O types.
Memory-mapped I/O to JPG files is indicated by the black bars. Note that other
figures in this chapter exclude memory-mapped I/O.

process may use mmap to map a file into a region of virtual memory and
then just access that region. We explore how often these two mechanisms
are used.

For each of our tasks, we clear the system’s disk cache using the purge
command so that we can observe all pageins that result from memory-
mapped I/O. We are interested in application behavior, not the I/O that
results from loading the application, so we exclude pageins to executable
memory or from files under /System/Library and /Library. We also ex-
clude pageins from a 13 MB file named “/usr/share/icu/icudt40l.dat”;
all the applications use this file, so it should typically be resident in mem-
ory. Figure 2.8 shows how frequently pageins occur relative to request-
based I/O. We do not observe any pageouts. In general, memory-mapped
I/O is negligible. For the two exceptions, Numbers Start and Keynote
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Start, the pagein traffic is from JPG files.
In the Numbers and Keynote Start tasks, the user is presented with a

list of templates from which to choose. A JPG thumbnail represents each
template. The applications map these thumbnails into virtual memory.

Conclusion: The vast majority of I/O is performed by reading and
writing to open file descriptors. Only a few of the iBench tasks have sig-
nificant pageins from memory-mapped files; most of this pagein traffic is
from images. For the rest of our analysis, we exclude memory-mapped
I/O since it is generally negligible.

2.6.2 File Accesses

One basic characteristic of our workloads is the division between reading
and writing on open file descriptors. If an application uses an open file
only for reading (or only for writing) or performs more activity on file
descriptors of a certain type, then the file system may be able to utilize
memory and allocate disk space in a more intelligent fashion.

To determine these characteristics, we classify each opened file de-
scriptor based on the types of accesses (i.e., read, write, or both) per-
formed during its lifetime. We ignore the actual flags used when opening
the file since we found they do not accurately reflect behavior; in all work-
loads, almost all write-only file descriptors were opened with O_RDWR. We
measure both the proportional usage of each type of file descriptor and
the relative amount of I/O performed on each.

Figure 2.9 shows how many file descriptors are used for each type
of access. The overwhelming majority of file descriptors are used exclu-
sively for reading or writing; read-write file descriptors are quite uncom-
mon. Overall, read-only file descriptors are the most common across a
majority of workloads; write-only file descriptors are popular in some iL-
ife tasks, but are rarely used in iWork.
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Figure 2.9: Read/Write Distribution By File Descriptor. File descriptors
can be used only for reads, only for writes, or for both operations. This plot shows
the percentage of file descriptors in each category. This is based on usage, not
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Figure 2.10: Read/Write Distribution By Bytes. The graph shows how
I/O bytes are distributed among the three access categories. The unshaded dark
gray indicates bytes read as a part of read-only accesses. Similarly, unshaded
light gray indicates bytes written in write-only accesses. The shaded regions
represent bytes touched in read-write accesses, and are divided between bytes
read and bytes written.
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We observe different patterns when analyzing the amount of I/O per-
formed on each type of file descriptor, as shown in Figure 2.10. Although
iWork tasks have very few write-only file descriptors, significant write
I/O is often performed on those descriptors. Even though read-write file
descriptors are rare, when present, they account for relatively large por-
tions of total I/O (especially for exports to .doc, .xls, and .ppt). The read-
write file descriptors are generally used for writing more than reading.

Conclusion: While many files are opened with the O_RDWR flag, most
of them are subsequently accessed write-only; thus, file open flags cannot
be used to predict how a file will be accessed. However, when an open file
is both read and written by a task, the amount of traffic to that file occupies
a significant portion of the total I/O. Finally, the rarity of read-write file
descriptors may derive in part from the tendency of applications to write
to a temporary file which they then rename as the target file, instead of
overwriting the target file; we explore this tendency more in Section 2.8.2.

2.6.3 Read and Write Sizes

Another metric that affects file-system performance is the number and
size of individual read and write system calls. If applications perform
many small reads and writes, prefetching and caching may be a more
effective strategy than it would be if applications tend to read or write
entire files in one or two system calls. In addition, these data can aug-
ment some of our other findings, especially those regarding file sizes and
complex access patterns.

We examine this by recording the number of bytes accessed by each
read and write system call. As in our file size analysis in Section 2.5.2,
we categorize these sizes into five groups: very small (64 KB), small
(632 KB), medium (6128 KB), large (61 MB), and very large (>1 MB).

Figures 2.11 and 2.12 display the number of reads and writes, respec-
tively, of each size. We see very small operations dominating the iWork
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Figure 2.11: Read Size Distribution. This plot groups individual read oper-
ations by the number of bytes each operation returns. The numbers atop the bars
indicate the total number of read system calls in each task.
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Figure 2.12: Write Size Distribution. This plot groups individual write
operations by the number of bytes each operation returns. The numbers atop the
bars indicate the number of write system calls in each task.
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Figure 2.13: Read Size Distribution by Bytes. This plot groups individual
read operations by the percent of total bytes read for which each call is responsible.
The numbers atop the bars indicate the total number of bytes read.
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Figure 2.14: Write Size Distribution by Bytes. This plot groups individual
write operations by the percent of total bytes written each for which each call is
responsible. The numbers atop the bars indicate the total number of bytes written.
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suite, with a more diverse variety of sizes in iLife; in particular, very large
writes dominate iTunes ImpS because copying songs represents most the
I/O performed during that task. Conversely, many iPhoto write tasks are
composed almost entirely of very small operations, and reads for iLife
tasks are usually dominated by a mixture of small and very small opera-
tions.

Figures 2.13 and 2.14 show the proportion of accessed bytes for each
group. As with file sizes, large and very large reads cover substantial pro-
portions of bytes in most of the workloads across both iLife and iWork.
However, while large and very large writes account for sizable propor-
tions of the workloads in iLife and the iWork workloads that use images,
the vast majority of bytes in many of the other iWork tasks result from
very small writes. Much of this is likely due to the complex patterns we
observe when applications write to the complex files frequently used in
productivity applications, although some of it also derives from the small
amount of bytes that these tasks write.

Conclusion: We find that applications perform large numbers of very
small (64 KB) reads and writes; this fact is related to our finding in Sec-
tion 2.5.2 that applications open many small files. While we also find
that applications read most of their bytes in large requests, very small
writes dominate many of the iWork workloads, due to a combination of
the complex access patterns we have observed and the limited write I/O
they perform.

2.6.4 Sequentiality

Historically, files have usually been read or written entirely sequentially [10].
We now determine whether sequential accesses are dominant in iBench.
We measure this by examining all reads and writes performed on each file
descriptor and noting the percentage of files accessed in strict sequential
order (weighted by bytes).
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Figure 2.15: Read Sequentiality. This plot shows the portion of file read
accesses (weighted by bytes) that are sequentially accessed.
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Figure 2.16: Write Sequentiality. This plot shows the portion of file write
accesses (weighted by bytes) that are sequentially accessed.
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We display our measurements for read and write sequentiality in Fig-
ures 2.15 and 2.16, respectively. The portions of the bars in black indicate
the percent of file accesses that exhibit pure sequentiality. We observe
high read sequentiality in iWork, but little in iLife (with the exception of
the Start tasks and iTunes Import). The inverse is true for writes: while a
majority of iLife writes are sequential, iWork writes are seldom sequential
outside of Start tasks.

Investigating the access patterns to multimedia files more closely, we
note that many iLife applications first touch a small header before access-
ing the entire file sequentially. To better reflect this behavior, we define an
access to a file as “nearly sequential” when at least 95% of the bytes read
or written to a file form a sequential run. We found that a large number of
accesses fall into the “nearly sequential” category given a 95% threshold;
the results do not change much with lower thresholds.

The slashed portions of the bars in Figures 2.15 and 2.16 show ob-
served sequentiality with a 95% threshold. Tasks with heavy use of mul-
timedia files exhibit greater sequentiality with the 95% threshold for both
reading and writing. In several workloads (mainly iPhoto and iTunes), the
I/O classified almost entirely as non-sequential with a 100% threshold is
classified as nearly sequential. The difference for iWork applications is
much less striking, indicating that accesses are more random.

In addition to this analysis of sequential and random accesses, we also
measure how often a completely sequential access reads or writes an en-
tire file. Figure 2.17 divides sequential reads into those that read the full
file and those that only read part of it. In nearly all cases, the access reads
the entire file; the only tasks for which sequential accesses of part of the
file account for more than five percent of the total are iTunes Start and
iMovie Imp and Exp. We omit the corresponding plot for writes, since
virtually all sequential writes cover the entire file.

Conclusion: A substantial number of tasks contain purely sequential
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Figure 2.17: Full-File Sequential Reads. This plot divides those reads that
are fully sequential into partial reads of the file and reads of the entire file. The
number atop each bar shows the total bytes the task read.

accesses. When the definition of a sequential access is loosened such that
only 95% of bytes must be consecutive, even more tasks contain primarily
sequential accesses. These “nearly sequential” accesses result from meta-
data stored at the beginning of complex multimedia files: tasks frequently
touch bytes near the beginning of multimedia files before sequentially
reading or writing the bulk of the file. Those accesses that are fully se-
quential tend to access the entire file at once; applications that perform a
substantial number of sequential reads of parts of files, like iMovie, often
deal with relatively large files that would be impractical to read in full.

2.6.5 Preallocation

One of the difficulties file systems face when allocating contiguous space
for files is not knowing how much data will be written to those files. Ap-
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Figure 2.18: Preallocation Hints. The sizes of the bars indicate which portion
of file extensions are preallocations; unnecessary preallocations are diagonally
striped. The number atop each bar indicates the absolute amount preallocated.

plications can communicate this information by providing hints [80] to
the file system to preallocate an appropriate amount of space. In this sec-
tion, we quantify how often applications use preallocation hints and how
often these hints are useful.

We instrument two calls usable for preallocation: pwrite and ftruncate.
pwrite writes a single byte at an offset beyond the end of the file to indi-
cate the future end of the file; ftruncate directly sets the file size. Some-
times a preallocation does not communicate anything useful to the file
system because it is immediately followed by a single write call with all
the data; we flag these preallocations as unnecessary.

Figure 2.18 shows the portion of file growth that is the result of preal-
location. In all cases, preallocation was due to calls to pwrite; we never
observed ftruncate preallocation. Overall, applications rarely preallo-
cate space and the preallocations that occur are sometimes useless.



48

The three tasks with significant preallocation are iPhoto Dup, iPhoto
Edit, and iMovie Exp. iPhoto Dup and Edit both call a copyPath function
in the Cocoa library that preallocates a large amount of space and then
copies data by reading and writing it in 1 MB chunks. iPhoto Dup some-
times uses copyPath to copy scaled-down images of size 50-100 KB; since
these smaller files are copied with a single write, the preallocation does
not communicate anything useful. iMovie Exp calls a QuickTime append
function that preallocates space before writing the actual data; however,
the data is appended in small 128 KB increments. Thus, the append is not
split into multiple write calls; the preallocation is useless.

Conclusion: Although preallocation has the potential to be useful,
few tasks use it to provide hints, and a significant number of the hints
that are provided are useless. The hints are provided inconsistently: al-
though iPhoto and iMovie both use preallocation for some tasks, neither
application uses preallocation during import.

2.6.6 Open Durations

The average length of time that an application keeps its files open can be
useful to know, as it provides a sense of how many resources the operating
system should allocate to that file and its file descriptors. If applications
keep file descriptors open for extended periods of time, closing a file de-
scriptor likely means that the application is done with the file and that
it no longer needs its contents; whereas if applications quickly close file
descriptors after individual operations, the operation may not provide a
meaningful hint for caching or buffering. Previous studies have found
that files tend to be open for only brief periods of time [10], and we wish
to determine whether this remains the case.

Due to the automated and compressed nature of our tasks, we can-
not obtain a precise sense of how long file descriptors remain open un-
der normal operation. We approximate this, however, by examining the
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Figure 2.19: Lifetime of Each File Open by Intervening Opens. This plot
groups the file opens present in each task based on the number of opens to other
files that occur during their lifetime. The number at the end of each bar displays
the largest number of opens during the lifetime of any one open in each task.

number of operations performed during the lifetime of each file descrip-
tor. Specifically, we examine the number of intervening file opens during
the lifetime of each access. As each task usually involves a large number
of file descriptors, this should provide a reasonable sense of the relative
lifetime of each open. We only track this statistic for file descriptors that
access data, though the duration metric counts all intervening file opens.

We display our results in Figure 2.19. The vast majority of file descrip-
tors in most tasks see no intervening file opens during their lifetimes. The
only applications with tasks in which more than 5% of their file descrip-
tors have others opened during their lifetimes are iPhoto and iTunes. Of
these, iPhoto has significantly more file descriptors of this type, but most
of them see fewer than five opens and many only one. iTunes, on the
other hand, has fewer file descriptors with multiple intervening opens,
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but those that do generally have significantly more intervening opens
than those observed in iPhoto. This is particularly apparent in iTunes
PlayS, where about 10% of the file descriptors see between 11 and 20
opens during their lifetimes.

Despite the predominance of file descriptors without intervening opens,
all experiments except Pages Open, New, PDF, and DOC and Keynote
Start feature at least one file open over the lifetime of a large number of
other file opens. The nature of this file varies: in iPhoto and iWork, it is
generally a database, while in iTunes it is a resource fork of an iTunes-
specific file, and in iMovie, it is generally the movie being manipulated
(except for Start, where it is a database).

The two applications that open the most files while others are open,
iPhoto and iTunes, also make the most use of multi-threaded I/O, as
shown in Section 2.9. This indicates that these applications may perform
I/O in parallel. Similarly, the prevalence of file descriptors without in-
tervening opens indicates that most I/O operations are likely performed
serially.

Conclusion: In the vast majority of cases, applications close the file
they are working on before opening another, though they frequently keep
one or two files open for the majority of the task. Those applications that
do open multiple file descriptors in succession tend to perform substan-
tial multi-threaded I/O, indicating that the opens may represent parallel
access to files instead of longer-lived accesses.

2.6.7 Metadata Access

Reading and writing file data hardly comprises the entirety of file sys-
tem operations; many file system calls are devoted to manipulating file
metadata. As previous studies have noted [55], stat calls (including vari-
ations like fstat, stat64, and lstat) often occupy large portions of file
system workloads, as they provide an easy way to verify whether a file
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Figure 2.20: Relative Quantities of Metadata Access to Data Access.
This plot shows the ratios of stat calls, statfs calls, and xattr accesses to
data accesses in each task. The total combined amount of these is provided at the
end of each bar.

currently exists and to examine the attributes of a file before opening it.
Similarly, statfs offers an interface to access metadata about the file sys-
tem on which a given file resides. Mac OS X provides an additional func-
tion, getattrlist, which combines the data returned in these two calls,
as well as providing additional information; some of the attributes that it
deals with can be manipulated by the application with the setattrlist
call. Finally, the xattr related calls allow applications to retrieve and
set arbitrary key-value metadata on each file. To determine how heav-
ily applications use these metadata operations, we compare the relative
frequency of these calls to the frequency of file data accesses.

We display our results in Figure 2.20. Metadata accesses occur sub-
stantially more often than data accesses (i.e., open file descriptors which
receive at least one read or write request) with calls to stat and getattrlist
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together comprising close to 80% of the access types for most workloads.
In a majority of the iLife workloads, calls to getattrlist substantially
exceed those to stat; however, stat calls hold a plurality in most iWork
workloads, except the Pages tasks that deal with images. Data accesses
are the third-most common category and generally occupy 10-20% of all
accesses, peaking at 30% in iTunes PlayS. statfs calls, while uncommon,
appear noticeably in all workloads except iTunes PlayS; at their largest,
in iPhoto Del, they occupy close to 25% of the categories. Finally, xattr
calls are the rarest, seldom comprising more than 3-4% of accesses in a
workload, though still appearing in all tasks other than those in iTunes
(in several cases, such as iPhoto Del, they comprise such a small portion
of the overall workload that they do not appear in the plot).

Conclusion: As seen in previous studies, metadata accesses are very
common, greatly outnumbering accesses to file data across all of our work-
loads. stat is no longer as predominant as it has been, however; in many
cases, attrlist calls appear more frequently. statfs and xattr access
are not nearly as common, but still appear in almost all of the workloads.
As there are usually at least five metadata accesses for each data access.
The need to keep these optimize these system calls, as described by Ja-
cob et al. [55], remains.

2.7 Memory: Caching, Buffering, and
Prefetching

In this section, we explore application behavior that affects file-system
memory management. We measure how often previously accessed data
is read again in the future, how often applications overwrite previously
written data, and how frequently hints are provided about future pat-
terns. These measures have implications for caching, write buffering, and
prefetching strategies.
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Figure 2.21: Reads of Previously Accessed Data. This plots shows what
portion of reads are to file regions that were previously read or written. The num-
bers atop the bars represent all the bytes read by the tasks. The bars are broken
down to show how much of this read data was previously read or written. Data
previously read and written is simply counted as previously written.

2.7.1 Reuse and Overwrites

File systems use memory to cache data that may be read in the future and
to buffer writes that have not yet been flushed to disk. Choosing which
data to cache or buffer will affect performance; in particular, we want to
cache data that will be reused, and we want to buffer writes that will soon
be invalidated by overwrites. In this section, we measure how often tasks
reuse and overwrite data. We keep track of which regions of files are
accessed at byte granularity.

Figure 2.21 shows what portion of all reads are to data that was pre-
viously accessed. For most tasks, 75-100% of reads are to fresh data, but
for eight tasks, about half or more of the data was previously accessed.
The previously accessed data across all tasks can be divided somewhat
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Figure 2.22: Overwrites of Previously Accessed Data. This plots shows
what portion of writes are to file regions that were previously read or written. The
numbers atop the bars represent all the bytes written by the tasks. The bars are
broken down to show how many of these writes overwrite data that was previously
read or written. Data previously read and written is simply counted as previously
written.

evenly into previously read and previously written categories.
Several of the tasks that exhibit the read-after-write pattern are im-

porting data to an application library (i.e., iPhoto Imp, iTunes ImpS, and
iMovie Imp). For example, iPhoto Import first performs reads and writes
to copy photos to a designated library directory. The freshly created li-
brary copies are then read in order to generate thumbnails. It would
be more efficient to read the original images once and create the library
copies and thumbnails simultaneously. Unfortunately, use of two inde-
pendent high-level abstractions, copy-to-library and generate-thumbnail, cause
additional I/O.

Figure 2.22 shows what portion of all writes are overwriting data that
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has previously been read or written. We see that such overwrites are gen-
erally very rare, with four exceptions: iPhoto Start, iPhoto Delete, Num-
bers XLS, and Keynote PPT.

For the iPhoto tasks, the overwrites are caused by SQLite. For Num-
bers XLS and Keynote PPT, the overwrites are caused by an undocumented
library, SFCompatability, which is used to export to Microsoft formats.
When only a few bytes are written to a file using the streamWrite func-
tion of this library, the function reads a 512-byte page, updates it, and
writes it back. We noted this behavior for Pages DOCP in the case study
in Section 2.3; presumably the 512-byte granularity for the read-update-
write operation is due to the Microsoft file format, which resembles a FAT
file system with 512-byte pages. The read-update-write behavior occurs
in all the tasks that export to Microsoft formats; however, the repetitious
writes are less frequent for Pages. Also, when images are in the exported
file, writes to the image sections dwarf the small repetitious writes. Thus,
the repetitious write behavior caused by SFCompatability is only pro-
nounced for Numbers XLS and Keynote PPT.

Conclusion: A moderate amount of reads could potentially be ser-
viced by a cache, but most reads are to fresh data, so techniques, such as
intelligent disk allocation, are necessary to guarantee quick access to un-
cached data. Written data is rarely overwritten, so waiting to flush buffers
until data becomes irrelevant is usually not helpful. These findings also
have implications for SSD design: overwrites will not be a frequent cause
of page invalidation. Finally, we observe, many of the reads and writes
to previously accessed data which do occur are due to I/O libraries and
high-level abstractions, and could be eliminated by combining I/O tasks.
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Figure 2.23: File Descriptors Given Caching Commands. This
plot shows the percent of file descriptors issued fcntl system calls with the
F_RDADVISE and F_NOCACHE commands, distinguishing between file descriptors
that eventually have F_NOCACHE disabled and those that only have it enabled.
The numbers atop the bars indicate the total number of file descriptors opened on
files.

2.7.2 Caching Hints

Accurate caching and prefetching behavior can significantly affect the
performance of a file system, improving access times dramatically for files
that are accessed repeatedly. Conversely, if a file will only be accessed
once, caching data wastes memory that could be better allocated. Cor-
rectly determining the appropriate behavior can be difficult for the file
system without domain-specific knowledge. Thus, Mac OS X allows de-
velopers to affect the caching behavior of the file system through two com-
mands associated with the fcntl system call, F_NOCACHE and F_RDADVISE.
F_NOCACHE allows developers to explicitly disable and enable caching for
certain file descriptors, which is useful if the developer knows that either
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Figure 2.24: Inodes Affected By Caching Commands. This plot shows
the percent of the inodes each task touches that are opened by file descriptors with
either F_RDADVISE or F_NOCACHE. The numbers atop the bars indicate the total
inodes touched by each task.

all or a portion of the file will not be reread. F_RDADVISE suggests an asyn-
chronous read to prefetch data from the file into the page cache. These
commands are only helpful, however, if developers make active use of
them, so we analyze the frequency with which they appear in our traces.

Figure 2.23 displays the percent of file descriptors with F_RDADVISE is-
sued, F_NOCACHE enabled, and F_NOCACHE both enabled and disabled dur-
ing their lifetimes. The figure also includes opened file descriptors which
received no I/O, even though most of our plots exclude them (sometimes
files are opened just so an F_RDADVISE can be issued). We observed no file
descriptors where F_NOCACHE was combined with F_RDADVISE. Overall,
we see these commands used most heavily in iPhoto and iTunes. In par-
ticular, over half of the file descriptors opened on files in iPhoto Dup and
Edit receive one of these commands, with F_NOCACHE overwhelmingly
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dominating Dup and F_RDADVISE dominating Edit. Most of the other iLife
tasks tend to use F_NOCACHE much more frequently than F_RDADVISE, with
the exception of iPhoto Start and Del. In contrast, only the Start workloads
of the iLife applications issue any of these commands to more than one or
two percent of their file descriptors, with F_RDADVISE occurring most fre-
quently. When F_NOCACHE occurs (usually in those applications dealing
with photos), it is usually disabled before the file descriptor is closed.

To complement this, we also examine the relative number of inodes
in each workload that receive these commands. Figure 2.24 shows our
results. F_RDADVISE is generally issued to a much smaller proportion of
the total inodes than total file descriptors, indicating that advisory reads
are repeatedly issued to a small set of inodes in the workloads in which
they appear. In contrast, the proportion of inodes affected by F_NOCACHE is
generally comparable to (or, in the case of iTunes PlayS, greater than) the
proportion of file descriptors, which shows that these inodes are usually
only opened once.

Conclusion: Mac OS X allows developers to guide the file system’s
caching behavior using the fcntl commands F_NOCACHE and F_RDADVISE.
Only iPhoto and iTunes make significant use of them, though all of the
iBench applications use them in at least some of their tasks. When the
commands are used, they generally occur in ways that make sense: files
with caching disabled tend not to be opened more than once, whereas
files that receive advisory reads are repeatedly opened. Thus, developers
are able to make effective use of these primitives when they choose to do
so.

2.8 Transactional Properties

In this section, we explore the degree to which the iBench tasks require
transactional properties from the underlying file and storage system. In
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Figure 2.25: Percentage of Fsync Bytes. The percentage of fsync’d bytes
written to file descriptors is shown, broken down by cause. The value atop each
bar shows total bytes synchronized.

particular, we investigate the extent to which applications require writes
to be durable; that is, how frequently they invoke calls to fsync and which
APIs perform these calls. We also investigate the atomicity requirements
of the applications, whether from renaming files or exchanging inodes.
Finally, we explore how applications use file locking to achieve isolation.

2.8.1 Durability

Writes typically involve a trade-off between performance and durability.
Applications that require write operations to complete quickly can write
data to the file system’s main memory buffers, which are lazily copied to
the underlying storage system at a convenient time. Buffering writes in
main memory has a wide range of performance advantages: writes to the
same block may be coalesced, writes to files that are later deleted need
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Figure 2.26: Fsync Sizes. This plot shows a distribution of fsync sizes. The
total number of fsync calls appears at the end of the bars.

not be performed, and random writes can be more efficiently scheduled.
On the other hand, applications that rely on durable writes can flush

written data to the underlying storage layer with the fsync system call.
The frequency of fsync calls and the number of bytes they synchronize
directly affect performance: if fsync appears often and flushes only sev-
eral bytes, then performance will suffer. Therefore, we investigate how
modern applications use fsync.

Figure 2.25 shows the percentage of written data each task synchro-
nizes with fsync. The graph further subdivides the source of the fsync
activity into six categories. SQLite indicates that the SQLite database en-
gine is responsible for calling fsync; Archiving indicates an archiving li-
brary frequently used when accessing ZIP formats; Pref Sync is the Pref-
erencesSynchronize function call from the Cocoa library; writeToFile is
the Cocoa call writeToFile with the atomically flag set; and finally, Flush-
Fork is the Carbon FSFlushFork routine.
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At the highest level, the figure indicates that half the tasks synchronize
close to 100% of their written data while approximately two-thirds syn-
chronize more than 60%. iLife tasks tend to synchronize many megabytes
of data, while iWork tasks usually only synchronize tens of kilobytes (ex-
cluding tasks that handle images).

To delve into the APIs responsible for the fsync calls, we examine how
each bar is subdivided. In iLife, the sources of fsync calls are quite varied:
every category of API except for Archiving is represented in one of the
tasks, and many of the tasks call multiple APIs which invoke fsync. In
iWork, the sources are more consistent; the only sources are Pref Sync,
SQLite, and Archiving (for manipulating compressed data).

Given that these tasks require durability for a significant percentage
of their write traffic, we next investigate the frequency of fsync calls and
how much data each individual call pushes to disk. Figure 2.26 groups
fsync calls based on the amount of I/O performed on each file descriptor
when fsync is called, and displays the relative percentage each category
comprises of the total I/O.

These results show that iLife tasks call fsync frequently (from tens
to thousands of times), while iWork tasks call fsync infrequently except
when dealing with images. From these observations, we infer that calls
to fsync are mostly associated with media. The majority of calls to fsync
synchronize small amounts of data; only a few iLife tasks synchronize
more than a megabyte of data in a single fsync call.

Conclusion: All the applications we study aggressively flush data to
disk with fsync. This behavior is especially problematic for file systems
because the amount of data flushed per fsync call is often quite small.
Based on our analysis of the source of fsync calls, many calls may be inci-
dental and an unintentional side-effect of the API (e.g., those from SQLite
or Pref Sync), but many are performed intentionally by the programmer.
Furthermore, some of the tasks synchronize small amounts of data fre-
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Figure 2.27: Atomic Writes. The portion of written bytes written atomically
is shown, divided into groups: (1) rename leaving a file in the same directory;
(2) rename causing a file to change directories; (3) exchangedata, which never
causes a directory change. The atomic file-write count appears atop each bar.

quently, presenting a challenge for file systems.

2.8.2 Atomic Writes

Applications often require file changes to be atomic. In this section, we
quantify how frequently applications use different techniques to achieve
atomicity. We also identify cases where performing writes atomically can
interfere with directory locality optimizations by moving files from their
original directories. Finally, we identify the causes of atomic writes.

Applications can atomically update a file by first writing the desired
contents to a temporary file and then using either the rename or exchange-
data call to atomically replace the old file with the new file. With rename,
the new file is given the same name as the old, deleting the original and
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Figure 2.28: Rename Causes. This plot shows the portion of rename calls
caused by each of the top four higher level functions used for atomic writes. The
number of rename calls appears at the end of the bars.

replacing it. With exchangedata, the inode numbers assigned to the old
file and the temporary file are swapped, causing the old path to point
to the new data; this allows the file path to remain associated with the
original inode number, which is necessary for some applications.

Figure 2.27 shows how much write I/O is performed atomically with
rename or exchangedata; rename calls are further subdivided into those
which keep the file in the same directory and those which do not. The
results show that atomic writes are quite popular and that, in many work-
loads, all the writes are atomic. The breakdown of each bar shows that
rename is frequent; many of these calls move files between directories.
exchangedata is rare and used only by iTunes for a small fraction of file
updates.

We find that most of the rename calls causing directory changes occur
when a file (e.g., a document or spreadsheet) is saved at the user’s request.
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We suspect different directories are used so that users are not confused by
seeing temporary files in their personal directories. Interestingly, atomic
writes are performed when saving to Apple formats, but not when export-
ing to Microsoft formats. We suspect the interface between applications
and the Microsoft libraries does not specify atomic operations well.

Figure 2.28 identifies the APIs responsible for atomic writes via rename.
Pref Sync, from the Cocoa library, allows applications to save user and sys-
tem wide settings in .plist files. WriteToFile and movePath are Cocoa rou-
tines and FSRenameUnicode is a Carbon routine. A solid majority of the
atomic writes are caused by Pref Sync; this is an example of I/O behavior
caused by the API rather than explicit programmer intention. The second
most common atomic writer is writeToFile; in this case, the programmer
is requesting atomicity but leaving the technique up to the library. Fi-
nally, in a small minority of cases, programmers perform atomic writes
themselves by calling movePath or FSRenameUnicode, both of which are
essentially rename wrappers.

Conclusion: Many of our tasks write data atomically, generally do-
ing so by calling rename. The bulk of atomic writes result from API calls;
while some of these hide the underlying nature of the write, others make
it clear that they act atomically. Thus, developers desire atomicity for
many operations, and file systems will need to either address the ensuing
renames that accompany it or provide an alternative mechanism for writ-
ing atomically. In addition, the absence of atomic writes when writing to
Microsoft formats highlights the inconsistencies that can result from the
use of high level libraries.

2.8.3 Isolation via File Locks

Concurrent I/O to the same file by multiple processes can yield unex-
pected results. For correctness, we need isolation between processes. To-
wards this end, Unix file systems provide an advisory-locking API, which
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Figure 2.29: Locking Operations. The explicit calls to the locking API are
shown, broken down by type. O_SHLOCK and O_EXLOCK represent calls to
open with those flags, flock represents a change to a file’s lock status via a call
to flock, and fcntl represents file-region locking via fcntl with certain com-
mands (F_GETLK, F_SETLK, or F_SETLKW). The number atop each bar indicates
the number of locking calls.

achieves mutual exclusion between processes that use the API. However,
because the API is advisory, its use is optional, and processes are free to
ignore its locks. The API supports both whole-file locking and file-region
locking. File-region locking does not inherently correspond to byte re-
gions in the file; instead, applications are free define their own semantics
for the regions locked (e.g., a lock of size ten could cover ten records in
the file, each of which is 100 bytes long). We explore how the iBench ap-
plications use these locking API calls.

Figure 2.29 shows the frequency and type of explicit locking opera-
tions (implicit unlocks are performed when file descriptors are closed, but
we do not count these). Most tasks perform 15-50 lock or unlock opera-



66

tions; only three tasks do not use file locks at all. iPhoto makes extreme
use of locks; except for the Start task, all the iPhoto tasks make tens of
thousands of calls through the locking API.

We observe that most calls are issued via the fcntl system call; these
calls lock file regions. Whole-file locking is also used occasionally via the
O_SHLOCK and O_EXLOCK open flags; the vast majority of these whole-file
lock operations are exclusive. flock can be used to change the lock status
on a file after it has been opened; these calls are less frequent, and they
are only used to unlock a file that was already locked by a flag passed to
open.

The extreme use of file-region locks by iPhoto is due to iPhoto’s de-
pendence on SQLite. Many database engines are server based; in such
systems, the server can provide isolation by doing its own locking. In
contrast, SQLite has no server, and multiple processes may concurrently
access the same database files directly. Thus, file-system locking is a nec-
essary part of the SQLite design [101].

Conclusion: Most tasks make some use of the locking API, and file-
region locking accounts for the majority of this use. Tasks that heavily
rely on SQLite involve numerous lock operations. In the case of iPhoto,
it seems unlikely that other applications need to access iPhoto’s database
files. iPhoto would be more efficient if there were a single global lock
that prevented multiple instances of the application from running con-
currently so that SQLite could be configured to skip file locking. iPhoto
is a prime example of how modularity can result in excessive fine-grained
locking within subcomponents.

2.9 Threads and Asynchronicity

Home-user applications are interactive and need to avoid blocking when
I/O is performed. Asynchronous I/O and threads are often used to hide
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Figure 2.30: Asynchronous Reads. This plot shows the percentage of read
bytes read asynchronously via aio_read. The total amount of asynchronous I/O
is provided at the end of the bars.

the latency of slow operations from users. For our final experiments, we
investigate how often applications use asynchronous I/O libraries or mul-
tiple threads to avoid blocking.

Figure 2.30 shows the relative amount of read operations performed
asynchronously with aio_read; none of the tasks use aio_write. We find
that asynchronous I/O is used rarely and only by iLife applications. How-
ever, in those cases where asynchronous I/O is performed, it is used quite
heavily.

Figure 2.31 investigates how threads are used by these tasks: specifi-
cally, the portion of I/O performed by each of the threads. The numbers at
the tops of the bars report the number of threads performing I/O. iPhoto
and iTunes leverage a significant number of threads for I/O, since many
of their tasks are readily subdivided (e.g., importing 400 different photos).
Only a handful of tasks perform all their I/O from a single thread. For
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Figure 2.31: I/O Distribution Among Threads. The stacked bars indicate
the percentage of total I/O performed by each thread. The I/O from the threads
that do the most and second most I/O are dark and medium gray respectively, and
the other threads are light gray. Black lines divide the I/O across the latter group;
black areas appear when numerous threads do small amounts of I/O. The total
number of threads that perform I/O is indicated next to the bars.

most tasks, a small number of threads are responsible for the majority of
I/O.

Figure 2.32 shows the responsibilities of each thread that performs
I/O, where a thread can be responsible for reading, writing, or both. Sig-
nificantly more threads are devoted to reading than to writing, with a fair
number of threads responsible for both. This indicates that threads are
the preferred technique to avoiding blocking and that applications may
be particularly concerned with avoiding blocking due to reads.

Conclusion: Our results indicate that iBench tasks are concerned with
hiding long-latency operations from interactive users and that threads are
the preferred method for doing so. Virtually all of the applications we
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Figure 2.32: Thread Type Distribution. The plot categorizes threads that do
I/O into three groups: threads that read, threads that write, or threads that both
read and write. The total number of threads that perform I/O is indicated next to
the bars.

study issue I/O requests from multiple threads, and some launch I/Os
from hundreds of different threads.

2.10 Summary

We began our analysis by taking one task as a case study (Pages saving a
.doc file) and considering its I/O patterns in great detail (§2.3). From this
case study, we made seven observations. We summarize the rest of our
analysis by commenting on the degree to which the other 33 tasks exhibit
our seven findings.

A file is not a file. We saw that when Pages saves a .doc file, the saved
file is formatted as a file-system image, but backed by a regular file. These
kinds of files never represent a large number of the files accessed, but
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complex files do receive a disproportionality large amount of I/O when-
ever one of the iWork applications is saving to a Microsoft format. iL-
ife does not appear to use files that are formatted as file-system images.
However, all six application we studied heavily used .plist files to store
key-value pairs; greater efficiency could perhaps be achieved if file sys-
tems understood these patterns or otherwise provided special support
for this use case.

Sequential access is not sequential. Multimedia files are a very im-
portant part of the I/O performed by all six applications, even when the
task does not specifically involve manipulating multimedia, because all
the applications provide a rich GUI. Accesses to multimedia files often
involve random access to metadata near the beginning of files and large
sequential access to the rest of the file. These accesses can easily be mis-
classified, so we contribute an alternative definition of “nearly sequen-
tiality” that improves the understanding of accesses to multimedia files.
This is important for the iLife applications, but very little I/O is nearly
sequential for iWork.

Auxiliary files dominate. Almost all the tasks involve accessing hun-
dreds of files, even though the purpose of a task usually involves very few
files of which the user would actually be aware.

Writes are often forced. This is very generally true for both iLife and
iWork; a majority of writes are forced to disk in a majority of the tasks.
The use of fsync poses a challenge to systems. Often, file systems buffer
updates and perform batch writes at regular intervals, but fsync renders
this strategy ineffective.

Renaming is popular. This is also very generally true for all the ap-
plications. About half the tasks rename a majority of the written data in
order to achieve atomicity. The use of rename for atomicity means that
files are constantly being created and deleted with each minor update,
potentially leading to external fragmentation and poor data placement.
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Furthermore, atomic writes that involve moving a new file from a tempo-
rary directory to its final destination could easily trick naive systems into
poor data placement.

Multiple threads perform I/O. In only four of the tasks we analyzed
does the application issue all I/O from a single thread. However, the
number of threads is usually not excessive: about two thirds of the tasks
have fewer than ten threads performing I/O.

Frameworks influence I/O. We found that many of the demands for
durability and atomicity placed on the file systems and various bizarre
access patterns were the result of high level API use, not necessarily the
informed intent of the programmer. For example, most atomic writes and
many fsync requests resulted from use of a preferences library that al-
low programmers to store key-value pairs per user. It is unlikely that the
programmer always needed the atomicity and durability this library au-
tomatically provided.
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3
Facebook Messages Measurement

Storage systems are often organized as a composition of layers. In Chap-
ter 2, we studied the impact of libraries on I/O. Many of those libraries
were user-space layers that happen to run in the same address space as
the application. In this chapter, we study the composition of storage lay-
ers that run as distinct subsystems in separate fault domains. Whereas
the libraries of the previous chapter interact via regular function calls, the
layers of this chapter communicate via well-defined RPC and system-call
interfaces.

We focus our study on one specific, and increasingly common, lay-
ered storage architecture: a distributed database (HBase, derived from
Bigtable [20]) atop a distributed file system (HDFS [97], derived from the
Google File System [40]). Our goal is to study the interaction of these
important systems, with a particular focus on the lower layer; thus, our
highest-level question: is HDFS an effective storage backend for HBase?

To derive insight into this hierarchical system, and thus answer this
question, we trace and analyze it under a popular workload: Facebook
Messages (FM) [72]. FM is a messaging system that enables Facebook
users to send chat and email-like messages to one another; it is quite pop-
ular, handling millions of messages each day. FM stores its information
within HBase (and thus, HDFS), and hence serves as an excellent case
study.
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To complement our analysis, we also perform numerous simulations
of various caching, logging, and other architectural enhancements and
modifications. Through simulation, we can explore a range of “what if?”
scenarios, and thus gain deeper insight into the efficacy of the layered
storage system.

The rest of this chapter is organized as follows. First, a background
section describes HBase and the Messages storage architecture (§3.1). Then
we describe our methodology for tracing, analysis, and simulation (§3.2).
We present our analysis results (§3.3), make a case for adding a flash tier
(§3.4), and measure layering costs (§3.5). Finally, we summarize our find-
ings (§3.6).

3.1 Background

We now describe the HBase sparse-table abstraction (§3.1.1) and the over-
all FM storage architecture (§3.1.2).

3.1.1 Versioned Sparse Tables

HBase, like Bigtable [20], provides a versioned sparse-table interface, which
is much like an associative array, but with two major differences: (1) keys
are ordered, so lexicographically adjacent keys will be stored in the same
area of physical storage, and (2) keys have semantic meaning which influ-
ences how HBase treats the data. Keys are of the form row:column:version.
A row may be any byte string, while a column is of the form family:name.
While both column families and names may be arbitrary strings, families
are typically defined statically by a schema while new column names are
often created during runtime. Together, a row and column specify a cell,
for which there may be many versions.

A sparse table is sharded along both row and column dimensions.
Rows are grouped into regions, which are responsible for all the rows
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within a given row-key range. Data is sharded across different machines
with region granularity. Regions may be split and re-assigned to ma-
chines with a utility or automatically upon reboots. Columns are grouped
into families so that the application may specify different policies for each
group (e.g., what compression to use). Families also provide a locality
hint: HBase clusters together data of the same family.

3.1.2 Messages Architecture

Users of FM interact with a web layer, which is backed by an application
cluster, which in turn stores data in a separate HBase cluster. The ap-
plication cluster executes FM-specific logic and caches HBase rows while
HBase itself is responsible for persisting most data. Large objects (e.g.,
message attachments) are an exception; these are stored in Haystack [12]
because HBase is inefficient for large data (§3.3.1). This design applies
Lampson’s advice to “handle normal and worst case separately” [61].

HBase stores its data in HDFS [97], a distributed file system that re-
sembles GFS [40]. HDFS triply replicates data in order to provide avail-
ability and tolerate failures. These properties free HBase to focus on higher-
level database logic. Because HBase stores all its data in HDFS, the same
machines are typically used to run both HBase and HDFS servers, thus
improving locality. These clusters have three main types of machines:
an HBase master, an HDFS NameNode, and many worker machines. Each
worker runs two servers: an HBase RegionServer and an HDFS DataNode.
HBase clients use a mapping generated by the HBase master to find the
one RegionServer responsible for a given key. Similarly, an HDFS Name-
Node helps HDFS clients map a pathname and logical block number to
the three DataNodes with replicas of that block.
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3.2 Measurement Methodology

We now discuss trace collection and analysis (§3.2.1), simulation (§3.2.2),
sensitivity of results (§3.2.3), and confidentiality (§3.2.4).

3.2.1 Trace Collection and Analysis

Prior Hadoop trace studies [21, 56] typically analyze default MapReduce
or HDFS logs, which record coarse-grained file events (e.g., creates and
opens) but lack details about individual requests (e.g., offsets and sizes).
For our study, we build a new trace framework, HTFS (Hadoop Trace File
System) to collect these details. Some data, though (e.g., the contents of a
write), is not recorded; this makes traces smaller and (more importantly)
protects user privacy.

HBase accesses HDFS via the HDFS client library. We build HTFS,
a new wrapper around the client library that records over 40 different
HDFS calls. HDFS clients can be configured to use an arbitrary compo-
sition of a set of wrappers around the underlying library, so deploying
HTFS is relatively straightforward. The ability to configure HDFS clients
to use an arbitrary composition of wrappers has been used to extend
HDFS with a variety of features (e.g., some deployments wrap the client
library with a client-side checksumming layer). FM is typically deploy-
ment with a client-side wrapper that enables fast failover upon Name-
Node failure [16]. We collect our traces by additionally wrapping the
HDFS client used by the RegionServers on select machines with our HTFS
layer. HTFS is publicly available with the Facebook branch of Hadoop.1

We collect our traces on a specially configured shadow cluster that re-
ceives the same requests as a production FM cluster. Facebook often uses
shadow clusters to test new code before broad deployment. By tracing in

1https://github.com/facebook/hadoop-20/blob/master/src/hdfs/org/
apache/hadoop/hdfs/APITraceFileSystem.java

https://github.com/facebook/hadoop-20/blob/master/src/hdfs/org/apache/hadoop/hdfs/APITraceFileSystem.java
https://github.com/facebook/hadoop-20/blob/master/src/hdfs/org/apache/hadoop/hdfs/APITraceFileSystem.java
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Figure 3.1: Tracing, Analysis, and Simulation.

an HBase/HDFS shadow cluster, we were able to study the real workload
without imposing overheads on real users. For our study, we randomly
selected nine worker machines, configuring each to use HTFS.

We collected traces for 8.3 days, starting June 7, 2013. We collected
116 GB of gzip-compressed traces, representing 5.2 billion recorded events
and 71 TB of HDFS I/O. The machines each had 32 Xeon(R) CPU cores
and 48 GB of RAM, 16.4 GB of which was allocated for the HBase cache
(most memory is left to the file-system cache, as attempts to use larger
caches in HBase cause JVM garbage-collection stalls). The HDFS work-
load is the product of a 60/34/6 get/put/delete ratio for HBase.

As Figure 3.1 shows, the traces enable both analysis and simulation.
We analyzed our traces with a pipeline of 10 MapReduce jobs, each of
which transforms the traces, builds an index, shards events, or outputs
statistics. Complex dependencies between events require careful shard-
ing for correctness. For instance, a stream-open event and a stream-write
event must be in the same compute shard in order to correlate I/O with
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file type. Furthermore, sharding must address the fact that different paths
may refer to the same data (due to renames).

3.2.2 Modeling and Simulation

We evaluate changes to the storage stack via simulation. Our simulations
are based on two models (illustrated in Figure 3.1): a model that deter-
mines how the HDFS I/O translates to local I/O and a model of local
storage.

How HDFS I/O translates to local I/O depends on several factors,
such as prior state, replication policy, and configurations. Making all
these factors match the actual deployment would be difficult, and model-
ing what happens to be the current configuration is not particularly inter-
esting. Thus, we opt for a model that is easy to understand and plausible
(i.e., it reflects a hypothetical policy and state that could reasonably be
deployed).

Our HBase+HDFS model assumes the HDFS files in our traces are
replicated by nine DataNodes that co-reside with the nine RegionServers
we traced. The data for each RegionServer is replicated to one co-resident
and two remote DataNodes. Our model ignores network latency: an
HDFS write results in I/O on the remote DataNodes at the same instant
in time. HDFS file blocks are 256 MB in size; thus, when a RegionServer
writes a 1 GB HDFS file, our model translates that to the creation of twelve
256 MB local files (four per replica). Furthermore, 2 GB of network copies
are counted for the remote replicas. This simplified model of replication
could lead to errors for load balancing studies, but we believe little gen-
erality is lost for caching simulations and our other experiments. In pro-
duction, all the replicas of a RegionServer’s data may be remote (due to
region re-assignment), causing additional network I/O; however, long-
running FM-HBase clusters tend to converge over time to the pattern we
simulate.
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The HDFS+HBase model’s output is the input for our local-store model.
Each local store is assumed to have an HDFS DataNode, a set of disks
(each with its own file system and disk scheduler), a RAM cache, and pos-
sibly an SSD. When the simulator processes a request, a balancer module
representing the DataNode logic directs the request to the appropriate
disk. The file system for that disk checks the RAM and flash caches; upon
a miss, the request is passed to a disk scheduler for re-ordering.

The scheduler in our local-store module switches between files using
a round-robin policy (1 MB slice). The C-SCAN policy [8] is then used
to choose between multiple requests to the same file. The scheduler dis-
patches requests to a disk module that determines latency. Requests to
different files are assumed to be distant, and so require a 10ms seek. Re-
quests to adjacent offsets of the same file, however, are assumed to be
adjacent on disk, so blocks are transferred at 100 MB/s. Finally, we as-
sume some locality between requests to non-adjacent offsets in the same
file; for these, the seek time is min{10ms,distance/(100MB/s)}.

3.2.3 Sensitivity Analysis

We now address three validity questions: does ignoring network latency
skew our results? Did we run our simulations long enough? Are simulation
results from a single representative machine meaningful?

First, we explore our assumption about constant network latency by
adding random jitter to the timing of requests and observing how impor-
tant statistics change. Table 3.1 shows how much error results by chang-
ing request issue times by a uniform-random amount. Errors are very
small for 1ms jitter (at most 1.3% error). Even with a 10ms jitter, the worst
error is 6.6%. Second, in order to verify that we ran the simulations long
enough, we measure how the statistics would have been different if we
had finished our simulations 2 or 4 days earlier (instead of using the full
8.3 days of traces). The differences are worse than for jitter, but are still
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Table 3.1: Statistic Sensitivity. The first column group shows important
statistics and their values for a representative machine. Other columns show how
these values would change (as percentages) if measurements were done differently.
Low percentages indicate a statistic is robust.



80

usually small, and are at worst 18.4% for network I/O.
Finally, we evaluate whether it is reasonable to pick a single represen-

tative instead of running our experiments for all nine machines in our
sample. Running all our experiments for a single machine alone takes
about 3 days on a 24-core machine with 72 GB of RAM, so basing our re-
sults on a representative is desirable. The final column of Table 3.1 com-
pares the difference between statistics for our representative machine and
the median of statistics for all nine machines. Differences are quite small
and are never greater than 6.4%, so we use the representative for the re-
mainder of our simulations (trace-analysis results, however, will be based
on all nine machines).

3.2.4 Confidentiality

In order to protect user privacy, our traces only contain the sizes of data
(e.g., request and file sizes), but never actual data contents. Our trac-
ing code was carefully reviewed by Facebook employees to ensure com-
pliance with Facebook privacy commitments. We also avoid presenting
commercially-sensitive statistics, such as would allow estimation of the
number of users of the service. While we do an in-depth analysis of the
I/O patterns on a sample of machines, we do not disclose how large the
sample is as a fraction of all the FM clusters. Much of the architecture we
describe is open source.

3.3 Workload Behavior

We now characterize the FM workload with four questions: what are the
major causes of I/O at each layer of the stack (§3.3.1)? How much I/O and space is
required by different types of data (§3.3.2)? How large are files, and does file size
predict file lifetime (§3.3.3)? And do requests exhibit patterns such as locality
or sequentiality (§3.3.4)?
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Figure 3.2: I/O Across Layers. The horizontal length of the bars represents
bytes of I/O at various levels of the storage stack. Black sections represent reads
and gray sections represent writes. The top two bars indicate HDFS I/O as mea-
sured directly in the traces. The bottom two bars indicate local I/O at the file-
system and disk layers as inferred via simulation.

3.3.1 Multilayer Overview

We begin by considering the number of reads and writes at each layer
of the stack in Figure 3.2. At a high level, FM issues put() and get()
requests to HBase. The put data accumulates in buffers, which are occa-
sionally flushed to HFiles (HDFS files containing sorted key-value pairs
and indexing metadata). Thus, get requests consult the write buffers as
well as the appropriate HFiles in order to retrieve the most up-to-date
value for a given key. This core I/O (put-flushes and get-reads) is shown
in the first bar of Figure 3.2; the 47 TB of I/O is 99% reads.

In addition to the core I/O, HBase also does logging (for durability)
and compaction (to maintain a read-efficient layout) as shown in the sec-
ond bar. Writes account for most of these overheads, so the R/W (read-
/write) ratio decreases to 79/21. Flush data is compressed but log data
is not, so logging causes 10x more writes even though the same data is
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both logged and flushed. Preliminary experiments with log compression
[99] have reduced this ratio to 4x. However, flushes have a fundamen-
tal advantage over logs with regard to compression. Flushed data can be
compressed in written in large chunks, so there is more potential redun-
dancy to be exploited by a compression algorithm. In contrast, log writes
must complete in smaller increments as puts arrive, so it is inherently
more difficult to compress.

Compaction causes about 17x more writes than flushing does. Flushes
of new data forces compaction with existing data in order to prevent reads
from becoming increasingly expensive, so we conclude there as a 17x
compaction amplification for writes. FM stores very large objects (e.g., im-
age attachments) in Haystack [12] for this reason. FM is a very read-heavy
HBase workload within Facebook, so it is tuned to compact aggressively.
Compaction makes reads faster by merge-sorting many small HFiles into
fewer big HFiles, thus reducing the number of files a get must check.

FM tolerates failures by replicating data with HDFS. Thus, writing an
HDFS block involves writing three local files and two network transfers.
The third bar of Figure 3.2 shows how this tripling further reduces the
R/W ratio to 55/45. Furthermore, OS caching prevents some of these file-
system reads from hitting disk. With a 30 GB cache, the 56 TB of reads at
the file-system level cause only 35 TB of reads at the disk level, as shown
in the fourth bar. Also, very small file-system writes cause 4 KB-block
disk writes, so writes are increased at the disk level. Because of these
factors, writes represent 64% of disk I/O.

Figure 3.3 gives a similar layered overview, but for the amount of data
stored at each layer of the stack rather than for I/O. The first bar shows
3.9 TB of HDFS data received some core I/O during tracing (data deleted
during tracing is not counted). Nearly all this data was read and a small
portion written. The second bar also includes data which was accessed
only by non-core I/O; non-core data is several times bigger than core data.
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Figure 3.3: Data Across Layers. The horizontal length of the bars represents
bytes of logical data at various levels of the storage stack. This is the same as
Figure 3.2 but for data size instead of I/O. COMP is compaction.

The third bar shows how much data is touched at the local level during
tracing. This bar also shows untouched data; we estimate2 this by subtract-
ing the amount of data we infer was touched due to HDFS I/O from the
disk utilization (measured with df). Most of the 120 TB of data is very
cold; only a third is accessed over the 8-day period.

Conclusion: FM is very read-heavy, but logging, compaction, repli-
cation, and caching amplify write I/O, causing writes to dominate disk
I/O. We also observe that while the HDFS dataset accessed by core I/O
is relatively small, on disk the dataset is very large (120 TB) and very cold
(two thirds is never touched). Thus, architectures to support this work-
load should consider its hot/cold nature.

3.3.2 Data Types

We now study the types of data FM stores. Each user’s data is stored in a
single HBase row; this prevents the data from being split across different
RegionServers. New data for a user is added in new columns within the

2the RegionServers in our sample store some data on DataNodes outside our sample
(and vice versa), so this is a sample-based estimate rather than a direct correlation of
HDFS data to disk data
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Family Description
Actions Log of user actions and message contents
MessageMeta Metadata per message (e.g., isRead and subject)
ThreadMeta Metadata per thread (e.g.list of participants)
PrefetchMeta Privacy settings, contacts, mailbox summary, etc.
Keywords Word-to-message map for search and typeahead
ThreaderThread Thread-to-message mapping
ThreadingIdIdx Map between different types of message IDs
ActionLogIdIdx Also a message-ID map (like ThreadingIdIdx)

Table 3.2: Schema. HBase Column Families are Described.

0 1 2 3 4 5 6
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PrefetchMeta

Keywords
ThreaderThread
ThreadingIdIdx
ActionLogIdIdx

logs
other

(a) File dataset footprint (TB)
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Figure 3.4: File Types. Left: all accessed HDFS file data is broken down by
type. Bars further show whether data was read, written, or both. Right: I/O is
broken down by file type and read/write. Bar labels indicate the I/O-to-data ratio.

row. Related columns are grouped into families, which are defined by the
FM schema (summarized in Table 3.2).

The Actions family is a log built on top of HBase, with different log
records stored in different columns; addMsg records contain actual mes-
sage data while other records (e.g., markAsRead) record changes to meta-
data state. Getting the latest state requires reading a number of recent
records in the log. To cap this number, a metadata snapshot (a few hun-
dred bytes) is sometimes written to the MessageMeta family. Because Face-
book chat is built over messages, metadata objects are large relative to
many messages (e.g., “hey, whasup?”). Thus, writing a change to Actions
is generally much cheaper than writing a full metadata object to Mes-
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sageMeta. Other metadata is stored in ThreadMeta and PrefetchMeta while
Keywords is a keyword-search index and ThreaderThread, ThreadingIdIdx,
and ActionLogIdIdx are other indexes.

Figure 3.4a shows how much data of each type is accessed at least
once during tracing (including later-deleted data); a total (sum of bars) of
26.5 TB is accessed. While actual messages (i.e., Actions) take significant
space, helper data (e.g., metadata, indexes, and logs) takes much more.
We also see that little data is both read and written, suggesting that writes
should be cached selectively (if at all). Figure 3.4b reports the I/O done
for each type. We observe that some families receive much more I/O per
data, e.g., an average data byte of PrefetchMeta receives 15 bytes of I/O
whereas a byte of Keywords receives only 1.1.

Conclusion: FM uses significant space to store messages and does a
significant amount of I/O on these messages; however, both space and
I/O are dominated by helper data (i.e., metadata, indexes, and logs). Rel-
atively little data is both written and read during tracing; this suggests
caching writes is of little value.

3.3.3 File Size

GFS (the inspiration for HDFS) assumed that “multi-GB files are the com-
mon case, and should be handled efficiently” [40]. Other workload stud-
ies confirm this, e.g., MapReduce inputs were found to be about 23 GB at
the 90th percentile (Facebook in 2010) [21]. We now revisit the assump-
tion that HDFS files are large.

Figure 3.5 shows, for each file type, a distribution of file sizes (about
862 thousand files appear in our traces). Most files are small; for each
family, 90% are smaller than 15 MB. However, a handful are so large as to
skew averages upwards significantly, e.g., the average MessageMeta file
is 293 MB.
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Figure 3.5: File-Size Distribution. This shows a box-and-whiskers plot of
file sizes. The whiskers indicate the 10th and 90th percentiles. On the left, the
type of file and average size is indicated. Log files are not shown, but have an
average size of 218 MB with extremely little variance.

Although most files are very small, compaction should quickly replace
these small files with a few large, long-lived files. We divide files cre-
ated during tracing into small (0 to 16 MB), medium (16 to 64 MB), and
large (64 MB+) categories. 94% of files are small, 2% are medium, and
4% are large; however, large files contain 89% of the data. Figure 3.6
shows the distribution of file lifetimes for each category. 17% of small
files are deleted within less than a minute, and very few last more than a
few hours; about half of medium files, however, last more than 8 hours.
Only 14% of the large files created during tracing were also deleted dur-
ing tracing.

Conclusion: Traditional HDFS workloads operate on very large files.
While most FM data lives in large, long-lived files, most files are small and
short-lived. This has metadata-management implications; HDFS man-
ages all file metadata with a single NameNode because the data-to-metadata
ratio is assumed to be high. For FM, this assumption does not hold; per-
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Figure 3.6: Size/Life Correlation. Each line is a CDF of lifetime for created
files of a particular size. Not all lines reach 100% as some files are not deleted
during tracing.

haps distributing HDFS metadata management should be reconsidered.

3.3.4 I/O Patterns

We explore three relationships between different read requests: temporal
locality, spatial locality, and sequentiality. We use a new type of plot,
a locality map, that describes all three relationships at once. Figure 3.7
shows a locality map for FM reads. The data shows how often a read
was recently preceded by a nearby read, for various thresholds on “recent”
and “nearby”. Each line is a hit-ratio curve, with the x-axis indicating
how long items are cached. Different lines represent different levels of
prefetching, e.g., the 0-line represents no prefetching, whereas the 1 MB-
line means data 1 MB before and 1 MB after a read is prefetched.

Line shape describes temporal locality, e.g., the 0-line gives a distribu-
tion of time intervals between different reads to the same data. Reads are
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Figure 3.7: Reads: Locality Map. This plot shows how often a read was
recently preceded by a nearby read, with time-distance represented along the x-
axis and offset-distance represented by the four lines.

almost never preceded by a prior read to the same data in the past four
minutes; however, 26% of reads are preceded within the last 32 minutes.
Thus, there is significant temporal locality (i.e., reads are near each other
with respect to time), and additional caching should be beneficial. The
locality map also shows there is little sequentiality. A highly sequential
pattern would show that many reads were recently preceded by I/O to
nearby offsets; here, however, the 1 KB-line shows only 25% of reads were
preceded by I/O to very nearby offsets within the last minute. Thus, over
75% of reads are random. The distances between the lines of the locality
map describe spatial locality. The 1 KB-line and 64 KB-line are very near
each other, indicating that (except for sequential I/O) reads are rarely pre-
ceded by other reads to nearby offsets. This indicates very low spatial
locality (i.e., reads are far from each other with respect to offset), and ad-
ditional prefetching is unlikely to be helpful.
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Figure 3.8: Read Heat. In both plots, bars show a distribution across different
levels of read heat (i.e., the number of times a byte is read). The left shows a
distribution of the dataset (so the bars sum to the dataset size, included deleted
data), and the right shows a distribution of I/O to different parts of the dataset
(so the bars sum to the total read I/O).

To summarize the locality map, the main pattern reads exhibit is tem-
poral locality (there is little sequentiality or spatial locality). High tem-
poral locality implies a significant portion of reads are “repeats” to the
same data. We explore this repeated-access pattern further in Figure 3.8a.
The bytes of HDFS file data that are read during tracing are distributed
along the x-axis by the number of reads. The figure shows that most data
(73.7%) is read only once, but 1.1% of the data is read at least 64 times.
Thus, repeated reads are not spread evenly, but are concentrated on a
small subset of the data.

Figure 3.8b shows how many bytes are read for each of the categories
of Figure 3.8a. While 19% of the reads are to bytes which are only read
once, most I/O is to data which is accessed many times. Such bias at
this level is surprising considering that all HDFS I/O has missed two
higher-level caches (an application cache and the HBase cache). Caches
are known to lessen I/O to particularly hot data, e.g., a multilayer photo-
caching study found caches cause “distributions [to] flatten in a signifi-
cant way” [53]. The fact that bias remains despite caching suggests the
working set may be too large to fit in a small cache; a later section (§3.4.1)
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H/W Cost Failure rate Performance
HDD $100/disk 4% AFR [37] 10ms/seek, 100 MB/s
RAM $5.0/GB 4% AFR (8 GB) 0 latency
Flash $0.8/GB 10K P/E cycles 0.5ms latency

Table 3.3: Cost Model. Our assumptions about hardware costs, failure rates,
and performance are presented. For disk and RAM, we state an AFR (annual
failure rate), assuming uniform-random failure each year. For flash, we base re-
placement on wear and state program/erase cycles.

shows this to be the case.
Conclusion: At the HDFS level, FM exhibits relatively little sequen-

tiality, suggesting high-bandwidth, high-latency storage mediums (e.g.,
disk) are not ideal for serving reads. The workload also shows very little
spatial locality, suggesting additional prefetching would not help, possi-
bly because FM already chooses for itself what data to prefetch. However,
despite application-level and HBase-level caching, some of the HDFS data
is particularly hot; thus, additional caching could help.

3.4 Tiered Storage: Adding Flash

We now make a case for adding a flash tier to local machines. FM has
a very large, mostly cold dataset (§3.3.1); keeping all this data in flash
would be wasteful, costing upwards of $10K/machine3. We evaluate the
two alternatives: use some flash or no flash. We explore tradeoffs be-
tween various configurations via simulation (§3.2.2), using the assump-
tions summarized in Table 3.3 unless otherwise specified.

We consider four questions: how much can we improve performance with-
out flash, by spending more on RAM or disks (§3.4.1)? What policies utilize a
tiered RAM/flash cache best (§3.4.2)? Is flash better used as a cache to absorb

3at $0.80/GB, storing 13.3 TB (120 TB split over 9 machines) in flash would cost
$10,895/machine.
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Figure 3.9: Disk Performance. The figure shows the relationship between
disk characteristics and the average latency of disk requests. As a default, we use
15 disks with 100 MB/s bandwidth and 10ms seek time. Each of the plots varies
one of the characteristics, keeping the other two fixed.

reads or as a buffer to absorb writes (§3.4.3)? And ultimately, is the cost of a
flash tier justifiable (§3.4.4)?

3.4.1 Performance without Flash

Can buying faster disks or more disks significantly improve FM performance?
Figure 3.9 presents average disk latency as a function of various disk fac-
tors. The first plot shows that for more than 15 disks, adding more disks
has quickly diminishing returns. The second shows that higher-bandwidth
disks also have relatively little advantage, as anticipated by the highly-
random workload observed earlier (§3.3.4). However, the third plot shows
that latency is a major performance factor.

The fact that lower latency helps more than having additional disks
suggests the workload has relatively little parallelism, i.e., being able to
do a few things quickly is better than being able to do many things at
once. Unfortunately, the 2-6ms disks we simulate are unrealistically fast,
having no commercial equivalent. Thus, although significant disk capac-
ity is needed to store the large, mostly cold data, reads are better served
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Figure 3.10: Cache Hit Rate. The relationship between cache size and hit rate
is shown for three policies.

by a low-latency medium (e.g., RAM or flash).
Thus, we ask, can the hot data fit comfortably in a pure-RAM cache? We

measure hit rate for cache sizes in the 10-400 GB range. We also try three
different LRU policies: write allocate, no-write allocate, and write hints. All
three are write-through caches, but differ regarding whether written data
is cached. Write allocate adds all write data, no-write allocate adds no
write data, and the hint-based policy takes suggestions from HBase and
HDFS. In particular, a written file is only cached if (a) the local file is a
primary replica of the HDFS block, and (b) the file is either flush output
(as opposed to compaction output) or is likely to be compacted soon.

Figure 3.10 shows, for each policy, that the hit rate increases signifi-
cantly as the cache size increases up until about 200 GB, where it starts
to level off (but not flatten); this indicates the working set is very large.
Earlier (§3.3.2), we found little overlap between writes and reads and con-
cluded that written data should be cached selectively if at all. Figure 3.10
confirms: caching all writes is the worst policy. Up until about 100 GB,
“no-write allocate” and “write hints” perform about equally well. Beyond
100 GB, hints help, but only slightly. We use no-write allocate through-
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out the remainder of the paper because it is simple and provides decent
performance.

Conclusion: The FM workload exhibits relatively little sequentiality
or parallelism, so adding more disks or higher-bandwidth disks is of lim-
ited utility. Fortunately, the same data is often repeatedly read (§3.3.4), so
a very large cache (i.e., a few hundred GBs in size) can service nearly 80%
of the reads. The usefulness of a very large cache suggests that storing at
least some of the hot data in flash may be most cost effective. We evaluate
the cost/performance tradeoff between pure-RAM and hybrid caches in
a later section (§3.4.4).

3.4.2 Flash as Cache

In this section, we use flash as a second caching tier beneath RAM. Both
tiers independently are LRU. Initial inserts are to RAM, and RAM evic-
tions are inserted into flash. We evaluate exclusive cache policies. Thus,
upon a flash hit, we have two options: the promote policy (PP) repromotes
the item to the RAM cache, but the keep policy (KP) keeps the item at the
flash level. PP gives the combined cache LRU behavior. The idea behind
KP is to limit SSD wear by avoiding repeated promotions and evictions
of items between RAM and flash.

Figure 3.11 shows the hit rates for twelve flash/RAM mixes. For ex-
ample, the middle plot shows what the hit rate is when there is 30 GB of
RAM: without any flash, 45% of reads hit the cache, but with 60 GB of
flash, about 63% of reads hit in either RAM or flash (regardless of policy).
The plots show that across all amounts of RAM and flash, the number of
reads that hit in “any” cache differs very little between policies. However,
PP causes significantly more of these hits to go to RAM; thus, PP will be
faster because RAM hits are faster than flash hits.

We now test our hypothesis that, in trade for decreasing RAM hits, KP
improves flash lifetime. We compute lifetime by measuring flash writes,
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Figure 3.11: Tiered Hit Rates. Overall hit rate (any) is shown by the
solid lines for the promote and keep policies. The results are shown for varying
amounts of RAM (different plots) and varying amounts of flash (x-axis). RAM
hit rates are indicated by the dashed lines.

assuming the FTL provides even wear leveling, and assuming the SSD
supports 10K program/erase cycles. Figure 3.12 reports flash lifetime as
the amount of flash varies along the x-axis.

The figure shows that having more RAM slightly improves flash life-
time. This is because flash writes occur upon RAM evictions, and evic-
tions will be less frequent with ample RAM. Also, as expected, KP often
doubles or triples flash lifetime, e.g., with 10 GB of RAM and 60 GB of
flash, using KP instead of PP increases lifetime from 2.5 to 5.2 years. The
figure also shows that flash lifetime increases with the amount of flash.
For PP, the relationship is perfectly linear. The number of flash writes
equals the number of RAM evictions, which is independent of flash size;
thus, if there is twice as much flash, each block of flash will receive exactly
half as much wear. For KP, however, the flash lifetime increases superlin-
early with size; with 10 GB of RAM and 20 GB of flash, the years-to-GB
ratio is 0.06, but with 240 GB of flash, the ratio is 0.15. The relationship
is superlinear because additional flash absorbs more reads, causing fewer
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Figure 3.12: Flash Lifetime. The relationship between flash size and flash
lifetime is shown for both the keep policy (gray lines) and promote policy (black
lines). There are two lines for each policy (10 or 30 GB RAM).

RAM inserts, causing fewer RAM evictions, and ultimately causing fewer
flash writes. Thus, doubling the flash size decreases total flash writes in
addition to spreading the writes over twice as many blocks.

Flash caches have an additional advantage: crashes do not cause cache
contents to be lost. We quantify this benefit by simulating four crashes
at different times and measuring changes to hit rate. Figure 3.13 shows
the results of two of these crashes for 100 GB caches with different flash-
to-RAM ratios (using PP). Even though the hottest data will be in RAM,
keeping some data in flash significantly improves the hit rate after a crash.
The examples also show that it can take 4-6 hours to fully recover from
a crash. We quantify the total recovery cost in terms of additional disk
reads (not shown). Whereas crashing with a pure-RAM cache on average
causes 26 GB of additional disk I/O, crashing costs only 10 GB for a hybrid
cache which is 75% flash.

Conclusion: Adding flash to RAM can greatly improve the caching
hit rate; furthermore (due to persistence) a hybrid flash/RAM cache can
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Figure 3.13: Crash Simulations. The plots show two examples of how crash-
ing at different times affects different 100 GB tiered caches, some of which are
pure flash, pure RAM, or a mix. Hit rates are unaffected when crashing with
100% flash.

eliminate half of the extra disk reads that usually occur after a crash.
However, using flash raises concerns about wear. Shuffling data between
flash and RAM to keep the hottest data in RAM improves performance
but can easily decrease SSD lifetime by a factor of 2x relative to a wear-
aware policy. Fortunately, larger SSDs tend to have long lifetimes for FM,
so wear may be a small concern (e.g., 120 GB+ SSDs last over 5 years re-
gardless of policy).

3.4.3 Flash as Buffer

Another advantage of flash is that (due to persistence) it has the poten-
tial to reduce disk writes as well as reads. We saw earlier (§3.3.3) that
files tend to be either small and short-lived or big and long-lived, so one
strategy would be to store small files in flash and big files on disk.

HDFS writes are considered durable once the data is in memory on
every DataNode (but not necessarily on disk), so buffering in flash would
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Figure 3.14: Flash Buffer. We measure how different file-buffering policies
impact foreground requests with two plots (for 10 or 15 disks) and three lines (60,
120, or 240 GB of flash). Different points on the x-axis represent different policies.
The optimum point on each line is marked, showing improvement relative to the
latency when no buffering is done.

not actually improve HDFS write performance. However, decreasing disk
writes by buffering the output of background activities (e.g., flushes and
compaction) indirectly improves foreground performance. Foreground ac-
tivity includes any local requests which could block an HBase request
(e.g., a get). Reducing background I/O means foreground reads will face
less competition for disk time. Thus, we measure how buffering files writ-
ten by background activities affects foreground latencies.

Of course, using flash as a write buffer has a cost, namely less space
for caching hot data. We evaluate this tradeoff by measuring performance
when using flash to buffer only files which are beneath a certain size. Fig-
ure 3.14 shows how latency corresponds to the policy. At the left of the
x-axis, writes are never buffered in flash, and at the right of the x-axis,
all writes are buffered. Other x-values represent thresholds; only files
smaller than the threshold are buffered. The plots show that buffering
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all or most of the files results in very poor performance. Below 128 MB,
though, the choice of how much to buffer makes little difference. The best
gain is just a 4.8% reduction in average latency relative to performance
when no writes are buffered.

Conclusion: Using flash to buffer all writes results in much worse
performance than using flash only as a cache. If flash is used for both
caching and buffering, and if policies are tuned to only buffer files of the
right size, then performance can be slightly improved. We conclude that
these small gains are probably not worth the added complexity, so flash
should be for caching only.

3.4.4 Is Flash Worth the Money?

Adding flash to a system can, if used properly, only improve performance,
so the interesting question is, given that we want to buy performance with
money, should we buy flash, or something else? We approach this question
by making assumptions about how fast and expensive different storage
mediums are, as summarized in Table 3.3. We also state assumptions
about component failure rates, allowing us to estimate operating expen-
diture.

We evaluate 36 systems, with three levels of RAM (10 GB, 30 GB, or
100 GB), four levels of flash (none, 60 GB, 120 GB, or 240 GB), and three
levels of disk (10, 15, or 20 disks). Flash and RAM are used as a hybrid
cache with the promote policy (§3.4.2). For each system, we compute the
capex (capital expenditure) to initially purchase the hardware and de-
termine via simulation the foreground latencies (defined in §3.4.3). Fig-
ure 3.15 shows the cost/performance of each system. 11 of the systems
(31%) are highlighted; these are the only systems that one could justify
buying (i.e., they are Pareto optimal). Each of the other 25 systems is both
slower and more expensive than one of these 11 justifiable systems. Over
half of the justifiable systems have maximum flash. It is worth noting



99

900 1200 1500 1800 2100 2400 2700
0

2

4

6

8

10

12

14

16

18

20
A0

A1

A2
A3B3 C3

A2

A3B3 C3 C3

Cost ($)

F
o
re

g
ro

u
n
d
 l
a
te

n
c
y
 (

m
s
)

ram GB

: 10A

: 30B

: 100C

flash GB

: 00

: 601

: 1202

: 2403

disks

: 10
: 15
: 20

Figure 3.15: Capex/Latency Tradeoff. We present the cost and performance
of 36 systems, representing every combination of three RAM levels, four flash
levels, and three disk levels. Combinations which present unique tradeoffs are
black and labeled; unjustifiable systems are gray and unlabeled.

that the systems with less flash are justified by low cost, not good perfor-
mance. With one exception (15-disk A2), all systems with less than the
maximum flash have the minimum number of disks and RAM. We ob-
serve that flash can greatly improve performance at very little cost. For
example, A1 has a 60 GB SSD but is otherwise the same as A0. With 10
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disks, A1 costs only 4.5% more but is 3.5x faster. We conclude that if per-
formance is to be bought, then (within the space we explore) flash should
be purchased first.

We also consider expected opex (operating expenditure) for replacing
hardware as it fails, and find that replacing hardware is relatively inex-
pensive compared to capex (not shown). Of the 36 systems, opex is at
most $90/year/machine (for the 20-disk C3 system). Furthermore, opex
is never more than 5% of capex. For each of the justifiable flash-based
systems shown in Figure 3.15, we also do simulations using KP for flash
hits. KP decreased opex by 4-23% for all flash machines while increasing
latencies by 2-11%. However, because opex is low in general, the savings
are at most $14/year/machine.

Conclusion: Not only does adding a flash tier to the FM stack greatly
improve performance, but it is the most cost-effective way of improving
performance. In some cases, adding a small SSD can triple performance
while only increasing monetary costs by 5%.

3.5 Layering: Pitfalls and Solutions

The FM stack, like most storage, is a composition of other systems and
subsystems. Some composition is horizontal; for example, FM stores small
data in HBase and large data in Haystack (§3.3.1). In this section, we focus
instead on the vertical composition of layers, a pattern commonly used to
manage and reduce software complexity. We discuss different ways to
organize storage layers (§3.5.1), how to reduce network I/O by bypassing
the replication layer (§3.5.2), and how to reduce the randomness of disk
I/O by adding special HDFS support for HBase logging (§3.5.3).
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locating database computation with database data. The mid-bypass architecture
is similar to mid-replication, but provides a mechanism for bypassing the repli-
cation layer for efficiency.

3.5.1 Layering Background

Three important layers are the local layer (e.g., disks, local file systems,
and a DataNode), the replication layer (e.g., HDFS), and the database layer
(e.g., HBase). FM composes these in a mid-replicated pattern (Figure 3.16a),
with the database at the top of the stack and the local stores at the bottom.
The merit of this architecture is simplicity. The database can be built with
the assumption that underlying storage, because it is replicated, will be
available and never lose data. The replication layer is also relatively sim-
ple, as it deals with data in its simplest form (i.e., large blocks of opaque
data). Unfortunately, mid-replicated architectures separate computation
from data. Computation (e.g., database operations such as compaction)
can only be co-resident with at most one replica, so all writes involve net-
work transfers.

Top-replication (Figure 3.16b) is an alternative approach used by the
Salus storage system [112]. Salus supports the standard HBase API, but
its top-replicated approach provides additional robustness and perfor-
mance advantages. Salus protects against memory corruption and certain
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bugs in the database layer by replicating database computation as well as
the data itself. Doing replication above the database level also reduces
network I/O. If the database wants to reorganize data on disk (e.g., via
compaction), each database replica can do so on its local copy. Unfortu-
nately, top-replicated storage is complex. The database layer must handle
underlying failures as well as cooperate with other databases; in Salus,
this is accomplished with a pipelined-commit protocol and Merkle trees
for maintaining consistency.

Mid-bypass (Figure 3.16c) is a third option wherein the application (in
this case, a database) is above the replication layer, but a well-defined API
allows the application to send certain computations past the replication
layer, directly to the individual replicas. Zaharia et al. have proposed such
an abstraction for use with Spark [118]: the RDD (Resilient Distributed
Dataset). The RDD abstraction allows the application to bypass the repli-
cation layer by sending deterministic computation directly to replicas.
This gives the storage system significant flexibility over replica manage-
ment. For example, rather than immediately materializing backup repli-
cas, workers could lazily compute the backup from other replicated data,
only in the event that the primary replica is lost. Similarly, the RDD ab-
straction could be leveraged to reduce network I/O by shipping compu-
tation directly to the data. HBase compaction could potentially be built
upon two RDD transformations, join and sort, and network I/O could
thus be avoided.

3.5.2 Local Compaction

We simulate the mid-bypass approach, with compaction operations shipped
directly to all the replicas of compaction inputs. Figure 3.17 shows how lo-
cal compaction differs from traditional compaction; network I/O is traded
for local I/O, to be served by local caches or disks.
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Figure 3.18 shows the result: a 62% reduction in network reads from
3.5 TB to 1.3 TB. The figure also shows disk reads, with and without local
compaction, and with either write allocate (wa) or no-write allocate (nwa)
caching policies (§3.4.1). We observe disk I/O increases sightly more than
network I/O decreases. For example, with a 100 GB cache, network I/O
is decreased by 2.2 GB but disk reads are increased by 2.6 GB for no-write
allocate. This is unsurprising: HBase uses secondary replicas for fault tol-
erance rather than for reads, so secondary replicas are written once (by a
flush or compaction) and read at most once (by compaction). Thus, local-
compaction reads tend to (a) be misses and (b) pollute the cache with data
that will not be read again. We see that write allocate still underperforms
no-write allocate (§3.4.1). However, write allocate is now somewhat more
competitive for large cache sizes because it is able to serve some of the data
read by local compaction.

It is worth noting that local compaction requires support from the
HDFS replication policy so that the compaction inputs are colocated, with
implications for data-loss events as well as performance. Cidon et al. [22]
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show that grouping inputs, as would be required for local compaction,
would increase the size of data losses, but would also decrease the fre-
quency of data losses. Thus, grouping inputs for the sake of local com-
paction may have either a positive or negative impact on reliability, de-
pending on the relative costs of small and large data loss events.

Conclusion: Doing local compaction by bypassing the replication layer
turns over half the network I/O into disk reads. This is a good tradeoff
as network I/O is generally more expensive than sequential disk I/O.
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be written to different locations. An alternative approach (right) would be for
HDFS to provide a special logging API which allows all the logs to be combined
so that disk seeks are reduced.

3.5.3 Combined Logging

We now consider the interaction between replication and HBase logging.
Figure 3.19 shows how (currently) a typical DataNode will receive log
writes from three RegionServers (because each RegionServer replicates
its logs to three DataNodes). These logs are currently written to three
different local files, causing seeks. Such seeking could be reduced if HDFS
were to expose a special logging feature that merges all logical logs into
a single physical log on a dedicated disk as illustrated.

We simulate combined logging and measure performance for requests
which go to disk; we consider latencies for foreground reads (defined in
Section 3.4.1), compaction, and logging. Figure 3.20 reports the results for
varying numbers of disks. The latency of log writes decreases dramati-
cally with combined logging; for example, with 15 disks, the latency is
decreased by a factor of six. Compaction requests also experience mod-
est gains due to less competition for disk seeks. Currently, neither logging
nor compaction block the end user, so we also consider the performance
of foreground reads. For this metric, the gains are small, e.g., latency only
decreases by 3.4% with 15 disks. With just 10 disks, dedicating one disk
to logging slightly hurts user reads.
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Conclusion: Merging multiple HBase logs on a dedicated disk re-
duces logging latencies by a factor of 6. However, put requests do not
currently block until data is flushed to disks, and the performance im-
pact on foreground reads is negligible. Thus, the additional complexity
of combined logging is likely not worthwhile given the current durabil-
ity guarantees. However, combined logging could enable HBase, at little
performance cost, to give the additional guarantee that data is on disk
before a put returns. Providing such a guarantee would make logging a
foreground activity.
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3.6 Summary

We have presented a detailed multilayer study of storage I/O for Face-
book Messages. Our combined approach of analysis and simulation al-
lowed us to identify potentially useful changes and then evaluate those
changes. We have four major conclusions.

First, the special handling received by writes make them surprisingly
expensive. At the HDFS level, the read/write ratio is 99/1, excluding
HBase compaction and logging overheads. At the disk level, the ratio is
write-dominated at 36/64. Logging, compaction, replication, and caching
all combine to produce this write blowup. Thus, optimizing writes is very
important even for especially read-heavy workloads such as FM.

Second, the GFS-style architecture is based on workload assumptions
such as “high sustained bandwidth is more important than low latency”
[40]. For FM, many of these assumptions no longer hold. For example,
we demonstrate (§3.4.1) just the opposite is true for FM: because I/O is
highly random, bandwidth matters little, but latency is crucial. Simi-
larly, files were assumed to be very large, in the hundreds or thousands of
megabytes. This traditional workload implies a high data-to-metadata ra-
tio, justifying the one-NameNode design of GFS and HDFS. By contrast,
FM is dominated by small files; perhaps the single-NameNode design
should be revisited.

Third, FM storage is built upon layers of independent subsystems.
This architecture has the benefit of simplicity; for example, because HBase
stores data in a replicated store, it can focus on high-level database logic
instead of dealing with dying disks and other types of failure. Layering
is also known to improve reliability, e.g., Dijkstra found layering “proved
to be vital for the verification and logical soundness” of an OS [29]. Un-
fortunately, we find that the benefits of simple layering are not free. In
particular, we showed (§3.5) that building a database over a replication
layer causes additional network I/O and increases workload randomness
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at the disk layer. Fortunately, simple mechanisms for sometimes bypass-
ing replication can reduce layering costs.

Fourth, the cost of flash has fallen greatly, prompting Gray’s procla-
mation that “tape is dead, disk is tape, flash is disk” [43]. To the contrary,
we find that for FM, flash is not a suitable replacement for disk. In partic-
ular, the cold data is too large to fit well in flash (§3.3.1) and the hot data
is too large to fit well in RAM (§3.4.1). However, our evaluations show
that architectures with a small flash tier have a positive cost/performance
tradeoff compared to systems built on disk and RAM alone.
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4
Docker Measurement

Containers are widely used to isolate applications, and their popularity
is rapidly growing [63, 74, 108]. Cloud compute has long been based on
the virtualization of hardware, but using virtual machines is relatively ex-
pensive (e.g., each application must have its own operating system). Like
virtual machines, containers provide isolation by virtualizing resources,
but at a higher level. For example, a VMM virtualizes network cards, but a
container virtualizes ports. With containers, many applications can share
the same operating system because the resources virtualized by contain-
ers are the high-level resources exposed by an operating system.

Container-like support not a new idea [84], but serious support for
containers in Linux is fairly recent [25]. This new support has influenced
how people build applications: isolation is cheaper, so there is more moti-
vation to split applications into smaller components, or microservices [24].
Microservices can be organized in a variety of ways, e.g., layers, trees, or
graphs, but in all these patterns, each microservice will have significant
control over its own execution environment. In this chapter, we explore
the question: what is the cost of deploying and providing storage for these many
different microservice environments?

In order to focus our study, we analyze one specific container deploy-
ment tool, Docker [70]. For our workload, we execute 57 applications
running inside Docker containers. Unless an application requires specific
kernel versions or extensions, the application is runnable in a variety of
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environments: on bare metal, in a virtual machine, or in a Docker con-
tainer. Many measurements for these applications will likely be similar
regardless of the environment. However, our goal is to specifically under-
stand Docker patterns, so we bias our analysis towards conditions under
which measurements will tend to be unique to Docker. In particular, this
means we focus more on application startup and less on long-running
performance characteristics. Startup is a known problem with contain-
ers [108], and the representation of applications as compressed layers (as
opposed to, say, virtual disk images as with virtual machines) leads to
new I/O patterns.

We first give a brief background on Docker (§4.1) and describe our
analysis methodology based on the HelloBench workloads (§4.2). Next,
we present our findings regarding image data (§4.3), distribution perfor-
mance (§4.4), layering properties (§4.5), and I/O determinism (§4.6). Fi-
nally, we summarize our findings (§4.7).

4.1 Background

We now describe Docker’s framework (§4.1.1), storage interface (§4.1.2),
and default storage driver (§4.1.3).

4.1.1 Version Control for Containers

While Linux has always used virtualization to isolate memory, cgroups [25]
(Linux’s container implementation) virtualizes a broader range of resources
by providing six new namespaces, for file-system mount points, IPC queues,
networking, host names, process IDs, and user IDs [73]. Linux cgroups
were first released in 2007, but widespread container use is a more recent
phenomenon, coinciding with the availability of new container manage-
ment tools such as Docker (released in 2013). With Docker, a single com-
mand such as “docker run -it ubuntu bash” will pull Ubuntu pack-
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ages from the Internet, initialize a file system with a fresh Ubuntu in-
stallation, perform the necessary cgroup setup, and return an interactive
bash session in the environment.

This example command has several parts. First, “ubuntu” is the name
of an image. Images are read-only copies of file-system data, and typi-
cally contain application binaries, a Linux distribution, and other pack-
ages needed by the application. Bundling applications as Docker images
is convenient because the distributor can select a specific set of packages
(and their versions) that will be used wherever the application is run.
Second, “run” is an operation to perform on an image; the run operation
creates an initialized root file system based on the image to use for a new
container. Other operations include “push” (for publishing new images)
and “pull” (for fetching published images from a central location); an im-
age is automatically pulled if the user attempts to run a non-local image.
Third, “bash” is the program to start within the container; the user may
specify any executable in the given image.

Docker manages image data much the same way traditional version-
control systems manage code. This model is suitable for two reasons.
First, there may be different branches of the same image (e.g., “ubuntu:latest”
or “ubuntu:12.04”). Second, images naturally build upon one another.
For example, the Ruby-on-Rails image builds on the Rails image, which
in turn builds on the Debian image. Each of these images represent a new
commit over a previous commit; there may be additional commits that
are not tagged as runnable images. When a container executes, it starts
from a committed image, but files may be modified; in version-control
parlance, these modifications are referred to as unstaged changes. The
Docker “commit” operation turns a container and its modifications into
a new read-only image. In Docker, a layer refers to either the data of a
commit or to the unstaged changes of a container.

Docker worker machines run a local Docker daemon. New containers
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and images may be created on a specific worker by sending commands to
its local daemon. Image sharing is accomplished via centralized registries
that typically run on machines in the same cluster as the Docker workers.
Images may be published with a push from a daemon to a registry, and
images may be deployed by executing pulls on a number of daemons in
the cluster. Only the layers not already available on the receiving end
are transferred. Layers are represented as gzip-compressed tar files over
the network and on the registry machines. Representation on daemon
machines is determined by a pluggable storage driver.

4.1.2 Storage Driver Interface

Docker containers access storage in two ways. First, users may mount di-
rectories on the host within a container. For example, a user running a
containerized compiler may mount her source directory within the con-
tainer so that the compiler can read the code files and produce binaries
in the host directory. Second, containers need access to the Docker layers
used to represent the application binaries and libraries. Docker presents
a view of this application data via a mount point that the container uses
as its root file system. Container storage and mounting is managed by
a Docker storage driver; different drivers may choose to represent layer
data in different ways. The methods a driver must implement are shown
in Table 4.1 (some uninteresting functions and arguments are not shown).
All the functions take a string “id” argument that identifies the layer be-
ing manipulated.

The Get function requests that the driver mount the layer and return
a path to the mount point. The mount point returned should contain
a view of not only the “id” layer, but of all its ancestors (e.g., files in the
parent layer of the “id” layer should be seen during a directory walk of the
mount point). Put unmounts a layer. Create copies from a parent layer
to create a new layer. If the parent is NULL, the new layer should be empty.
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DescriptionMethod

mount “id” layer file system, return mount point

unmount “id” layer file system

logically copy “parent” layer to “id” layer

return compressed tar of changes in “id” layer

apply changes in tar to “id” layer

Get(id)=dir

Put(id)

Create(parent, id)

Diff(parent, id)=tar

ApplyDiff(id, tar)

Table 4.1: Docker Driver API.
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Figure 4.1: Diff and ApplyDiff. Worker A is using Diff to package local
layers as compressed tars for a push. B is using ApplyDiff to convert the tars
back to the local format. Local representation varies depending on the driver, as
indicated by the question marks.

Docker calls Create to (1) provision file systems for new containers, and
(2) allocate layers to store data from a pull.

Diff and ApplyDiff are used during Docker push and pull operations
respectively, as shown in Figure 4.1. When Docker is pushing a layer, Diff
converts the layer from the local representation to a compressed tar file
containing the files of the layer. ApplyDiff does the opposite: given a tar
file and a local layer it decompresses the tar file over the existing layer.

Figure 4.2 shows the driver calls that are made when a four-layer im-
age (e.g., ubuntu) is run for the first time. Four layers are created during
the image pull; two more are created for the container itself. Layers A-D
represent the image. The Create for A takes a NULL parent, so A is ini-
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Figure 4.2: Cold Run Example. The driver calls that are made when a four-
layer image is pulled and run are shown. Each arrow represents a call (Create
or ApplyDiff), and the nodes to which an arrow connects indicate arguments
to the call. Thick-bordered boxes represent layers. Integers indicate the order in
which functions are called.

tially empty. The subsequent ApplyDiff call, however, tells the driver to
add the files from the pulled tar to A. Layers B-D are are each populated
with two steps: a copy from the parent (via Create), and the addition of
files from the tar (via ApplyDiff). After step 8, the pull is complete, and
Docker is ready to create a container. It first creates a read-only layer E-
init, to which it adds a few small initialization files, and then it creates E,
the file system the container will use as its root.

4.1.3 AUFS Driver Implementation

The AUFS storage driver is a common default for Docker distributions.
This driver is based on the AUFS file system (Another Union File Sys-
tem). Union file systems do not store data directly on disk, but rather use
another file system (e.g., ext4) as underlying storage.

A union mount point provides a view of multiple directories in the un-
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derlying file system. AUFS is mounted with a list of directory paths in the
underlying file system. During path resolution, AUFS iterates through
the list of directories; the first directory to contain the path being resolved
is chosen, and the inode from that directory is used. AUFS also sup-
ports special whiteout files to make it appear that certain files in lower
layers have been deleted; this technique is analogous to deletion markers
in other layered systems (e.g., LSM databases [76]). AUFS also supports
COW (copy-on-write) at file granularity; upon write, files in lower layers
are copied to the top layer before the write is allowed to proceed.

The AUFS driver takes advantage the AUFS file system’s layering and
copy-on-write capabilities while also accessing the file system underlying
AUFS directly. The driver creates a new directory in the underlying file
system for each layer it stores. An ApplyDiff simple untars the archived
files into the layer’s directory. Upon a Get call, the driver uses AUFS to
create a unioned view of a layer and its ancestors. The driver uses AUFS’s
COW to efficiently copy layer data when Create is called. Unfortunately,
as we will see, COW at file granularity has some performance problems
(§4.5).

4.2 Measurement Methodology

In order to study container startup, we choose a set of applications to
run inside Docker containers, and write scripts to pull and launch these
containers in a controlled and repeatable way. We call our suite of appli-
cations HelloBench. HelloBench directly executes Docker commands, so
pushes, pulls, and runs can be measured independently.

Although most applications could be run inside containers, we choose
all our applications from the public Docker Hub library [30]. Our reason-
ing is that this set of applications will be more frequently used in contain-
ers.
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alpine, busybox, centos, cirros, crux, debian, fedora, 
mageia, opensuse, oraclelinux, ubuntu, ubuntu-
debootstrap, ubuntu-upstart

cassandra, crate, elasticsearch, mariadb, mongo, 
mysql, percona, postgres, redis, rethinkdb

clojure, gcc, golang, haskell, hylang, java, jruby, 
julia, mono, perl, php, pypy, python, r-base,
rakudo-star, ruby, thrift

glassfish, httpd, jetty, nginx, php-zendserver, tomcat

django, iojs, node, rails

drupal, ghost, hello-world, jenkins, rabbitmq, 
registry, sonarqube

Linux Distro:

Database:

Language:

Web Server:

Web Framework:

Other:

Table 4.2: HelloBench Workloads. HelloBench runs 57 different container
images pulled from the Docker Hub.

As of June 1, 2015, there were 72 containerized applications on Docker
Hub. We evaluated all of these for inclusion in HelloBench, and selected
applications that were runnable with minimal configuration and do not
depend on other containers. For example, WordPress is not included be-
cause a WordPress container depends on a separate MySQL container.
The final application suite contains 57 Docker container images.

Table 4.2 lists the images used by HelloBench. We divide the images
into six broad categories as shown. Some classifications are somewhat
subjective; for example, the Django image contains a web server, but most
would probably consider it a web framework.

The HelloBench harness measures startup time by either running the
simplest possible task in the container or waiting until the container re-
ports readiness. For the language containers, the task typically involves
compiling or interpreting a simple “hello world” program in the applica-
ble language. The Linux distro images execute a very simple shell com-
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mand, typically “echo hello”. For long-running servers (particularly
databases and web servers), HelloBench measures the time until the con-
tainer writes an “up and ready” (or similar) message to standard out. For
particularly quiet servers, an exposed port is polled until there is a re-
sponse.

HelloBench images each consist of many layers, some of which are
shared between containers. Figure 4.3 shows the relationships between
layers. Across the 57 images, there are 550 nodes and 19 roots. In some
cases, a tagged image serves as a base for other tagged images (e.g., “ruby”
is a base for “rails”). Only one image consists of a single layer: “alpine”, a
particularly lightweight Linux distribution. Application images are often
based on non-latest Linux distribution images (e.g., older versions of De-
bian); that is why multiple images will often share a common base that is
not a solid black circle.

In order to evaluate how representative HelloBench is of commonly
used images, we counted the number of pulls to every Docker Hub library
image [30] on January 15, 2016 (7 months after the original HelloBench
images were pulled). During this time, the library grew from 72 to 94
images. Figure 4.4 shows pull counts to the 94 images, broken down by
HelloBench category. HelloBench is representative of popular images,
accounting for 86% of all pulls. Most pulls are to Linux distribution bases
(e.g., BusyBox and Ubuntu). Databases (e.g., Redis and MySQL) and web
servers (e.g., nginx) are also popular.

We use HelloBench throughout the remainder of our analysis for col-
lecting traces and measuring performance. All performance measure-
ments are taken from a virtual machine running on an PowerEdge R720
host with 2 GHz Xeon CPUs (E5-2620). The VM is provided 8 GB of RAM,
4 CPU cores, and a virtual disk backed by a Tintri T620 [105]. The server
and VMstore had no other load during the experiments.
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Figure 4.3: HelloBench Hierarchy. Each circle represents a layer. Filled
circles represent layers tagged as runnable images. Deeper layers are to the left.
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Figure 4.4: Docker Hub Pulls. Each bar represents the number of pulls to the
Docker Hub library, broken down by category and image. The far-right gray bar
represents pulls to images in the library that are not run by HelloBench.

4.3 Image Data

We begin our analysis by studying the HelloBench images pulled from
the Docker Hub. For each image, we take three measurements: its com-
pressed size, uncompressed size, and the number of bytes read from the
image when HelloBench executes. We measure reads by running the
workloads over a block device traced with blktrace [9]. Figure 4.5 shows
a CDF of these three numbers. We observe that only 20 MB of data is read
on median, but the median image is 117 MB compressed and 329 MB un-
compressed.

We break down the read and size numbers by category in Figure 4.6.
The largest relative waste is for distro workloads (30× and 85× for com-
pressed and uncompressed respectively), but the absolute waste is also
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smallest for this category. Absolute waste is highest for the language and
web framework categories. Across all images, only 27 MB is read on aver-
age; the average uncompressed image is 15× larger, indicating only 6.4%
of image data is needed for container startup.

Although Docker images are much smaller when compressed as gzip
archives, this format is not suitable for running containers that need to
modify data. Thus, workers typically store data uncompressed, which
means that compression reduces network I/O but not disk I/O. Dedupli-
cation is a simple alternative to compression that is suitable for updates.
We scan HelloBench images for redundancy between blocks of files to
compute the effectiveness of deduplication. Figure 4.7 compares gzip
compression rates to deduplication, at both file and block (4 KB) gran-
ularity. Bars represent rates over single images. Whereas gzip achieves
rates between 2.3 and 2.7, deduplication does poorly on a per-image basis.
Deduplication across all images, however, yields rates of 2.6 (file granu-
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Figure 4.8: Operation Performance (CDF). A distribution of push, pull, and
run times for HelloBench are shown for Docker with the AUFS storage driver.

larity) and 2.8 (block granularity).
Conclusion: the amount of data read during execution is much smaller

than the total image size, either compressed or uncompressed. Image
data is sent over the network compressed, then read and written to lo-
cal storage uncompressed, so overheads are high for both network and
disk. One way to decrease overheads would be to build leaner images
with fewer installed packages. Alternatively, image data could be lazily
pulled as a container needs it. We also saw that global block-based dedu-
plication is an efficient way to represent image data, even compared to
gzip compression.

4.4 Operation Performance

Once built, containerized applications are often deployed as follows: the
developer pushes the application image once to a central registry, a num-
ber of workers pull the image, and each worker runs the application. We
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measure the latency of these operations with HelloBench, reporting CDFs
in Figure 4.8. Median times for push, pull, and run are 61, 16, and 0.97
seconds respectively.

Figure 4.9 breaks down operation times by workload category. The
pattern holds in general: runs are fast while pushes and pulls are slow.
Runs are fastest for the distro and language categories (0.36 and 1.9 sec-
onds respectively). The average times for push, pull, and run are 72, 20,
and 6.1 seconds respectively. Thus, 76% of startup time will be spent on
pull when starting a new image hosted on a remote registry.

As pushes and pulls are slowest, we want to know whether these op-
erations are merely high latency, or whether they are also costly in a way
that limits throughput even if multiple operations run concurrently. To
study scalability, we concurrently push and pull varying numbers of ar-
tificial images of varying sizes. Each image contains a single randomly
generated file. We use artificial images rather than HelloBench images
in order to create different equally-sized images. Figure 4.10 shows that
the total time scales roughly linearly with the number of images and im-
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Figure 4.10: Operation Scalability. A varying number of artificial images
(x-axis), each containing a random file of a given size, are pushed or pulled si-
multaneously. The time until all operations are complete is reported (y-axis).

age size. Thus, pushes and pulls are not only high-latency, they consume
network and disk resources, limiting scalability.

Conclusion: container startup time is dominated by pulls; 76% of the
time spent on a new deployment will be spent on the pull. Publishing
images with push will be painfully slow for programmers who are iter-
atively developing their application, though this is likely a less frequent
case than multi-deployment of an already published image. Most push
work is done by the storage driver’s Diff function, and most pull work
is done by the ApplyDiff function (§4.1.2). Optimizing these driver func-
tions would improve distribution performance.

4.5 Layers

Image data is typically split across a number of layers. The AUFS driver
composes the layers of an image at runtime to provide a container a com-
plete view of the file system. In this section, we study the performance
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Figure 4.11: AUFS Performance. Left: the latency of the open system call is
shown as a function of the layer depth of the file. Right: the latency of a one-byte
append is shown as a function of the size of the file that receives the write.

implications of layering and the distribution of data across layers. We
start by looking at two performance problems (Figure 4.11) to which lay-
ered file systems are prone: lookups to deep layers and small writes to
non-top layers.

First, we create (and compose with AUFS) 16 layers, each containing
1K empty files. Then, with a cold cache, we randomly open 10 files from
each layer, measuring the open latency. Figure 4.11a shows the result (an
average over 100 runs): there is a strong correlation between layer depth
and latency. Second, we create two layers, the bottom of which contains
large files of varying sizes. We measure the latency of appending one byte
to a file stored in the bottom layer. As shown by Figure 4.11b, the latency
of small writes correspond to the file size (not the write size), as AUFS
does COW at file granularity. Before a file is modified, it is copied to the
topmost layer, so writing one byte can take over 20 seconds. Fortunately,
small writes to lower layers induce a one-time cost per container; subse-
quent writes will be faster because the large file will have been copied to



126

0 7 14 21 28
0%

5%

10%

15%

Layer Depth

P
e
rc

e
n
t 
o
f 
Im

a
g
e
s

files

dirs

size
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the top layer.
Having considered how layer depth corresponds with performance,

we now ask, how deep is data typically stored for the HelloBench images? Fig-
ure 4.12 shows the percentage of total data (in terms of number of files,
number of directories, and size in bytes) at each depth level. The three
metrics roughly correspond. Some data is as deep as level 28, but mass is
more concentrated to the left. Over half the bytes are at depth of at least
nine.

We now consider the variance in how data is distributed across layers,
measuring, for each image, what portion (in terms of bytes) is stored in the
topmost layer, bottommost layer, and whatever layer is largest. Figure 4.13
shows the distribution: for 79% of images, the topmost layer contains 0%
of the image data. In contrast, 27% of the data resides in the bottommost
layer in the median case. A majority of the data typically resides in a
single layer.

Conclusion: for layered file systems, data stored in deeper layers is
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slower to access. Unfortunately, Docker images tend to be deep, with at
least half of file data at depth nine or greater. Flattening layers is one tech-
nique to avoid these performance problems; however, flattening could
potentially require additional copying and void the other COW benefits
that layered file systems provide.

4.6 Caching

We now consider the case where the same worker runs the same image
more than once. In particular, we want to know whether I/O from the
first execution can be used to prepopulate a cache to avoid I/O on subse-
quent runs. Towards this end, we run every HelloBench workload twice
consecutively, collecting block traces each time. We compute the portion
of reads during the second run that could potentially benefit from cache
state populated by reads during the first run.



128

0

10

20

30

40

50

60

70

distro db language web
server

web
fwk

other ALL

I/
O

 (
M

B
)

writes

reads (miss)

reads (hit)

Figure 4.14: Repeated I/O. The bars represent total I/O done for the aver-
age container workload in each category. Bar sections indicate read/write ratios.
Reads that could have potentially been serviced by a cache populated by previous
container execution are dark gray.

Figure 4.14 shows the reads and writes for the second run. Reads
are broken into hits and misses. For a given block, only the first read
is counted (we want to study the workload itself, not the characteristics
of the specific cache beneath which we collected the traces). Across all
workloads, the read/write ratio is 88/12. For distro, database, and lan-
guage workloads, the workload consists almost completely of reads. Of
the reads, 99% could potentially be serviced by cached data from previ-
ous runs.

Conclusion: The same data is often read during different runs of the
same image, suggesting cache sharing will be useful when the same im-
age is executed on the same machine many times. In large clusters with
many containerized applications, repeated executions will be unlikely
unless container placement is highly restricted. Also, other goals (e.g.,
load balancing and fault isolation) may make colocation uncommon. How-
ever, repeated executions are likely common for containerized utility pro-
grams (e.g., python or gcc) and for applications running in small clusters.
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Our results suggest these latter scenarios would benefit from cache shar-
ing.

4.7 Summary

In this chapter, we have studied 57 containerized applications and startup
applications, representing 86% of the images pulled from the Docker Hub.
Our analysis leads to several findings, with strong implications for how
to build container storage.

Some of our key findings about Docker resemble findings in a mea-
surement study on Google’s Borg container deployment platform [108].
In Borg, 80% of startup time is spent on package installation; in Docker,
76% of startup time is spent pulling image data. We find that 94% of the
data installed during pull is not actually used during container startup,
suggesting image data should be pulled lazily.

We also make several new observations regarding Docker’s on-disk
representation of image data. Docker layers are composed to provide a
single view of all file data, but we show accesses to data in lower layers
are slow with Docker’s AUFS storage driver. Unfortunately, most data is
deep; over half the bytes are at a layer depth of at least nine.

In Chapter 5, we discuss further design implications gleaned from our
analysis, and describe Slacker, a new Docker storage driver that is based
on our findings.
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5
Slacker: A Lazy Docker Storage Driver

In Chapter 4, we described our measurements and analysis of Docker I/O
upon the launch of a variety of applications. In this chapter, we describe
the design and implementation of a new Docker storage driver that is
driven by our analysis. Our new driver is called Slacker because it lazily
copies and fetches container data. Our analysis showed that the vast ma-
jority of the work vanilla Docker does is unnecessary, so Slacker avoids
doing any such work until necessary. Slacker is built with five goals:

1. Make pushes and pulls very fast. Our Docker analysis and other
analysis of Google Borg suggest distribution is a primary problem
for containers.

2. Introduce no slowdown for long-running containers. Long-running
applications are still a common use case, so a solution that creates
a difficult tradeoff between startup latency and steady-state perfor-
mance would greatly reduce the solution’s generality.

3. Reuse existing storage systems whenever possible. Our analysis
suggests that data should be lazily copied and fetched. Copy-on-
write and lazy propagation are not new strategies in systems, so we
seek to reuse rather than reimplement.

4. Make no changes to the Docker registry or daemon except in the
storage-driver plugin. Docker bases storage on a general API, en-
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abling flexible solutions. For example, when the underlying file
system (e.g., btrfs) provides copy-on-write functionality, Docker can
use those features directly, without needing to rely on an inefficient
layered file system (e.g., AUFS). By restricting ourselves to using
Docker’s existing framework, we can evaluate the generality of the
API and suggest improvements.

5. Utilize the powerful primitives provided by a modern storage server.
The Docker btrfs driver utilizes the copy-on-write functionality of a
local file system to speed up local execution. We similarly hope to
build a driver that utilizes the copy-on-write functionality of a net-
work file system to speed up distribution. Specifically, we use the
functionality exposed by a Tintri VMstore [106].

We begin our discussion by considering the design implications from
our measurement study in more detail (§5.1) and giving an overview of
the Slacker architecture (§5.2). We then describe how Slacker represents
Docker layers (§5.3), Slacker’s integration with VMstore (§5.4), optimiza-
tions for snapshot and clone (§5.5), and kernel modifications that Slacker
uses (§5.6). We next evaluate Slacker’s performance (§5.7) and usefulness
(§5.8). Finally, we conclude by discussing potential modifications to the
Docker framework itself (§5.9) and summarizing our work (§5.10).

5.1 Measurement Implications

In this section, we recap the findings of Chapter 4 and discuss the impli-
cations for the design of a new Docker storage driver.

In Section 4.4, we measure push, pull, and run performance for HelloBench
workloads running on Docker with AUFS. While runs are fast, pushes
and pulls are very slow. For example, 76% of the time spent on a new
deployment will be spent on the pull. Publishing images with push will
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be also painfully slow for programmers who are iteratively developing
their application, though this is likely a less frequent case than multi-
deployment of an already published image. Inside Docker, most push
work is done by the storage driver’s Diff function, and most pull work
is done by the ApplyDiff function (§4.1.2). Thus, optimizing these driver
functions would improve distribution performance.

Section 4.3 provides more insight into why Diff and ApplyDiff are
slow relative to the run operation in Docker. Both functions copy image
data over the network compressed and to disk uncompressed, and the
average image size is 150 MB compressed and 399 MB uncompressed. In
contrast, only 27 MB of data is needed during container startup upon run.
Thus, Diff and ApplyDiff cause significant I/O that is not necessary for
startup. One way to decrease overheads would be to build leaner images
with fewer installed packages. Alternatively, image data could be lazily
pulled as a container needs it. We also saw that global block-based dedu-
plication is an efficient way to represent image data, even compared to
gzip compression.

In Section 4.5, we show that for layered file systems, data stored in
deeper layers is slower to access. Unfortunately, Docker images tend to
be deep, with at least half of file data at depth nine or greater. Flattening
layers is one technique to avoid these performance problems; however,
flattening could potentially require additional copying and void the other
COW benefits that layered file systems provide. One solution would be
to retain layers, but use a more efficient COW mechanism. For example,
block-level traversals are faster than file-level traversals.

Section 4.6 measures how similar reads are across multiple runs of
the same application. For HelloBench, the same data is often read during
different runs of the same image, suggesting cache sharing will be useful
when the same image is executed on the same machine many times. In
large clusters with many containerized applications, repeated executions
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will be unlikely unless container placement is highly restricted. Also,
other goals (e.g., load balancing and fault isolation) may make colocation
uncommon. However, repeated executions are likely common for con-
tainerized utility programs (e.g., python or gcc) and for applications run-
ning in small clusters. Our results suggest these latter scenarios would
benefit from cache sharing.

5.2 Architectural Overview

In this section, we give an overview of Slacker, a new Docker storage
driver based on our analysis.

Figure 5.1 illustrates the architecture of a Docker cluster running Slacker.
The design is based on centralized NFS storage, shared between all Docker
daemons and registries. Most of the data in a container is not needed
to execute the container, so Docker workers only fetch data lazily from
shared storage as needed. For NFS storage, we use a Tintri VMstore server [106].
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Docker images are represented by VMstore’s read-only snapshots. Reg-
istries are no longer used as hosts for layer data, and are instead used
only as name servers that associate image metadata with corresponding
snapshots. Pushes and pulls no longer involve large network transfers;
instead, these operations simply share snapshot IDs. Slacker uses VM-
store snapshot to convert a container into a shareable image and clone to
provision container storage based on a snapshot ID pulled from the reg-
istry. Internally, VMstore uses block-level COW to implement snapshot
and clone efficiently.

5.3 Storage Layers

Our analysis revealed that only 6.4% of the data transferred by a pull is ac-
tually needed before a container can begin useful work (§4.3). In order to
avoid wasting I/O on unused data, Slacker stores all container data on an
NFS server (a Tintri VMstore) shared by all workers; workers lazily fetch
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only the data that is needed. Figure 5.2a illustrates the design: storage
for each container is represented as a single NFS file. Linux loopbacks
(§5.6) are used to treat each NFS file as a virtual block device, which can
be mounted and unmounted as a root file system for a running container.
Slacker formats each NFS file as an ext4 file system.

Figure 5.2b compares the Slacker stack with the AUFS stack. Although
both use ext4 (or some other local file system) as a key layer, there are three
important differences. First, ext4 is backed by a network disk in Slacker,
but by a local disk with AUFS. Thus, Slacker can lazily fetch data over the
network, while AUFS must copy all data to the local disk before container
startup.

Second, AUFS does COW above ext4 at the file level and is thus sus-
ceptible to the performance problems faced by layered file systems (§4.5).
In contrast, Slacker layers are effectively flattened at the file level. How-
ever, Slacker still benefits from COW by utilizing block-level COW im-
plemented within VMstore (§5.4). Furthermore, VMstore deduplicates
identical blocks internally, providing further space savings between con-
tainers running on different Docker workers.

Third, AUFS uses different directories of a single ext4 instance as stor-
age for containers, whereas Slacker backs each container by a different
ext4 instance. This difference presents an interesting tradeoff because
each ext4 instance has its own journal. With AUFS, all containers will
share the same journal, providing greater efficiency. However, journal
sharing is known to cause priority inversion that undermines QoS guar-
antees [117], an important feature of multi-tenant platforms such as Docker.
Internal fragmentation [8, Ch. 17] is another potential problem when NFS
storage is divided into many small, non-full ext4 instances. Fortunately,
VMstore files are sparse, so Slacker does not suffer from this issue.
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Figure 5.3: Push/Pull Timelines. Slacker implements Diff and ApplyDiff
with snapshot and clone operations.

5.4 VMstore Integration

Earlier, we found that Docker pushes and pulls are quite slow compared
to runs (§4.4). Runs are fast because storage for a new container is ini-
tialized from an image using the COW functionality provided by AUFS.
In contrast, push and pull are slow with traditional drivers because they
require copying large layers between different machines, so AUFS’s COW
functionality is not usable. Unlike other Docker drivers, Slacker is built on
shared storage, so it is conceptually possible to use COW sharing between
daemons and registries.

Fortunately, VMstore extends its basic NFS interface with an auxil-
iary REST-based API that, among other things, includes two related COW
functions, snapshot and clone. The snapshot call creates a read-only
snapshot of an NFS file, and clone creates an NFS file from a snapshot.
Snapshots do not appear in the NFS namespace, but do have unique IDs.
File-level snapshot and clone are powerful primitives that have been used
to build more efficient journaling, deduplication, and other common stor-
age operations [115]. In Slacker, we use snapshot and clone to implement
Diff and ApplyDiff respectively. These driver functions are respectively
called by Docker push and pull operations (§4.1.2).
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Figure 5.3a shows how a daemon running Slacker interacts with a
VMstore and Docker registry upon push. Slacker asks VMstore to cre-
ate a snapshot of the NFS file that represents the layer. VMstore takes the
snapshot, and returns a snapshot ID (about 50 bytes), in this case “212”.
Slacker embeds the ID in a compressed tar file and sends it to the registry.
Slacker embeds the ID in a tar for backwards compatibility: an unmod-
ified registry expects to receive a tar file. A pull, shown in Figure 5.3b,
is essentially the inverse. Slacker receives a snapshot ID from the reg-
istry, from which it can clone NFS files for container storage. Slacker’s
implementation is fast because (a) layer data is never compressed or un-
compressed, and (b) layer data never leaves the VMstore during push and
pull, so only metadata is sent over the network.

The names “Diff” and “ApplyDiff” are slight misnomers given Slacker’s
implementation. In particular, Diff(A, B) is supposed to return a delta
from which another daemon, which already has A, could reconstruct B.
With Slacker, layers are effectively flattened at the file namespace level.
Thus, instead of returning a delta, Diff(A, B) returns a reference from
which another worker could obtain a clone of B, with or without A.

Slacker is partially compatible with other daemons running non-Slacker
drivers. When Slacker pulls a tar, it peeks at the first few bytes of the
streamed tar before processing it. If the tar contains layer files (instead of
an embedded snapshot), Slacker falls back to simply decompressing in-
stead cloning. Thus, Slacker can pull images that were pushed by other
drivers, albeit slowly. Other drivers, however, will not be able to pull
Slacker images, because they will not know how to process the snapshot
ID embedded in the tar file.



138

5.5 Optimizing Snapshot and Clone

Images often consist of many layers, with over half the HelloBench data
being at a depth of at least nine (§4.5). Block-level COW has inherent
performance advantages over file-level COW for such data, as traversing
block-mapping indices (which may be flattened) is simpler than iterating
over the directories of an underlying file system.

However, deeply-layered images still pose a challenge for Slacker. As
discussed (§5.4), Slacker layers are flattened, so mounting any one layer
will provide a complete view of a file system that could be used by a con-
tainer. Unfortunately, the Docker framework has no notion of flattened
layers. When Docker pulls an image, it fetches all the layers, passing each
to the driver with ApplyDiff. For Slacker, the topmost layer alone is suf-
ficient. For 28-layer images (e.g., jetty), the extra clones are costly.

One of our goals was to work within the existing Docker framework, so
instead of modifying the framework to eliminate the unnecessary driver
calls, we optimize them with lazy cloning. We found that the primary
cost of a pull is not the network transfer of the snapshot tar files, but the
VMstore clone. Although clones take a fraction of a second, performing
28 of them negatively impacts latency. Thus, instead of representing every
layer as an NFS file, Slacker (when possible) represents them with a piece
of local metadata that records a snapshot ID. ApplyDiff simply sets this
metadata instead of immediately cloning. If at some point Docker calls
Get on that layer, Slacker will at that point perform a real clone before
the mount.

We also use the snapshot-ID metadata for snapshot caching. In partic-
ular, Slacker implements Create, which makes a logical copy of a layer
(§4.1.2) with a snapshot immediately followed by a clone (§5.4). If many
containers are created from the same image, Create will be called many
times on the same layer. Instead of doing a snapshot for each Create,
Slacker only does it the first time, reusing the snapshot ID subsequent
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Figure 5.4: Cold Run Example. The driver calls that are made when a four-
layer image is pulled and run are shown. Each arrow represents a call (Create or
ApplyDiff), and the nodes to which an arrow connects indicate arguments to the
call. Thick-bordered boxes represent layers. Integers indicate the order in which
functions are called. Note: this figure is identical to Figure 4.2; it is reproduced
here for easy reference.

times. The snapshot cache for a layer is invalidated if the layer is mounted
(once mounted, the layer could change, making the snapshot outdated).

The combination of snapshot caching and lazy cloning can make Create
very efficient. In particular, copying from a layer A to layer B may only
involve copying from A’s snapshot cache entry to B’s snapshot cache en-
try, with no special calls to VMstore. Figure 5.4 shows the 10 Create and
ApplyDiff calls that occur for the pull and run of a simple four-layer im-
age. Without lazy caching and snapshot caching, Slacker would need to
perform 6 snapshots (one for each Create) and 10 clones (one for each
Create or ApplyDiff). With our optimizations, Slacker only needs to do
one snapshot and two clones. In step 9, Create does a lazy clone, but
Docker calls Get on the E-init layer, so a real clone must be performed.
For step 10, Create must do both a snapshot and clone to produce and
mount layer E as the root for a new container.
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5.6 Linux Kernel Modifications

Our analysis showed that multiple containers started from the same im-
age tend to read the same data, suggesting cache sharing could be useful
(§4.6). One advantage of the AUFS driver is that COW is done above an
underlying file system. This means that different containers may warm
and utilize the same cache state in that underlying file system. Slacker
does COW within VMstore, beneath the level of the local file system. This
means that two NFS files may be clones (with a few modifications) of the
same snapshot, but cache state will not be shared, because the NFSv3
protocol is not built around the concept of COW sharing. Cache dedupli-
cation could help save cache space, but this would not prevent the initial
I/O. It would not be possible for deduplication to realize two blocks are
identical until both are transferred over the network from the VMstore.
In this section, we describe our technique to achieve sharing in the Linux
page cache at the level of NFS files.

In order to achieve client-side cache sharing between NFS files, we
modify the layer immediately above the NFS client (i.e., the loopback
module) to add awareness of VMstore snapshots and clones. In partic-
ular, we use bitmaps to track differences between similar NFS files. All
writes to NFS files are via the loopback module, so the loopback module
can automatically update the bitmaps to record new changes. Snapshots
and clones are initiated by the Slacker driver, so we extend the loopback
API so that Slacker can notify the module of COW relationships between
files.

Figure 5.5 illustrates the technique with a simple example: two con-
tainers, B and C, are started from the same image, A. When starting the
containers, Docker first creates two init layers (B-init and C-init) from the
base (A). Docker creates a few small init files in these layers. Note that
the “m” is modified to an “x” and “y” in the init layers, and that the ze-
roth bits are flipped to “1” to mark the change. Docker the creates the
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Figure 5.5: Loopback Bitmaps. Containers B and C are started from the same
image, A. Bitmaps track differences.

topmost container layers, B and C from B-init and C-init. Slacker uses the
new loopback API to copy the B-init and C-init bitmaps to B and C re-
spectively. As shown, the B and C bitmaps accumulate more mutations
as the containers run and write data. Docker does not explicitly differen-
tiate init layers from other layers as part of the API, but Slacker can infer
layer type because Docker happens to use an “-init” suffix for the names
of init layers.

Now suppose that container B reads block 3. The loopback module
sees an unmodified “0” bit at position 3, indicating block 3 is the same in
files B and A. Thus, the loopback module sends the read to A instead of
B, thus populating A’s cache state. Now suppose C reads block 3. Block 3
of C is also unmodified, so the read is again redirected to A. Now, C can
benefit from the cache state of A, which B populated with its earlier read.

Of course, for blocks where B and C differ from A, it is important for
correctness that reads are not redirected. Suppose B reads block 1 and
then C reads from block 1. In this case, B’s read will not populate the
cache since B’s data differs from A. Similarly, suppose B reads block 2
and then C reads from block 2. In this case, C’s read will not utilize the
cache since C’s data differs from A.
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5.7 Evaluation

We use the same hardware for evaluation as we did for our analysis. In
particular, all performance measurements are taken from a virtual ma-
chine running on an PowerEdge R720 host with 2 GHz Xeon CPUs (E5-
2620). The VM is provided 8 GB of RAM, 4 CPU cores, and a virtual
disk backed by a Tintri T620 [105]. The server and VMstore had no other
load during the experiments. For a fair comparison, we also use the same
VMstore for Slacker storage that we used for the virtual disk of the VM
running the AUFS experiments.

5.7.1 HelloBench Workloads

Earlier, we saw that with HelloBench, push and pull times dominate while
run times are very short (Figure 4.9). We repeat that experiment with
Slacker, presenting the new results alongside the AUFS results in Fig-
ure 5.6. On average, the push phase is 153× faster and the pull phase is
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72× faster, but the run phase is 17% slower (the AUFS pull phase warms
the cache for the run phase).

Different Docker operations are utilized in different scenarios. One
use case is the development cycle: after each change to code, a developer
pushes the application to a registry, pulls it to multiple worker nodes, and
then runs it on the nodes. Another is the deployment cycle: an infrequently-
modified application is hosted by a registry, but occasional load bursts or
rebalancing require a pull and run on new workers. Figure 5.7 shows
Slacker’s speedup relative to AUFS for these two cases. For the median
workload, Slacker improves startup by 5.3× and 20× for the deployment
and development cycles respectively. Speedups are highly variable: nearly
all workloads see at least modest improvement, but 10% of workloads im-
prove by at least 16× and 64× for deployment and development respec-
tively.
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5.7.2 Long-Running Performance

In Figure 5.6, we saw that while pushes and pulls are much faster with
Slacker, runs are slower. This is expected, as runs start before any data
is transferred, and binary data is only lazily transferred as needed. We
now run several long-running container experiments; our goal is to show
that once AUFS is done pulling all image data and Slacker is done lazily
loading hot image data, AUFS and Slacker have equivalent performance.

For our evaluation, we select two databases and two web servers. For
all experiments, we execute for five minutes, measuring operations per
second. Each experiment starts with a pull. We evaluate the PostgreSQL
database using pgbench, which is “loosely based on TPC-B” [44]. We
evaluate Redis, an in-memory database, using a custom benchmark that
gets, sets, and updates keys with equal frequency. We evaluate the Apache
web server, using the wrk [41] benchmark to repeatedly fetch a static page.
Finally, we evaluate io.js, a JavaScript-based web server similar to node.js,
using the wrk benchmark to repeatedly fetch a dynamic page.

Figure 5.8a shows the results. AUFS and Slacker usually provide roughly
equivalent performance, though Slacker is somewhat faster for Apache.
Although the drivers are similar with regard to long-term performance,
Figure 5.8b shows Slacker containers start processing requests 3-19× sooner
than AUFS.

5.7.3 Caching

We have shown that Slacker provides much faster startup times relative
to AUFS (when a pull is required) and equivalent long-term performance.
One scenario where Slacker is at a disadvantage is when the same short-
running workload is run many times on the same machine. For AUFS,
the first run will be slow (as a pull is required), but subsequent runs will
be fast because the image data will be stored locally. Moreover, COW is
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Figure 5.8: Long-Running Workloads. Left: the ratio of Slacker’s to AUFS’s
throughput is shown; startup time is included in the average. Bars are labeled
with Slacker’s average operations/second. Right: startup delay is shown.

done locally, so multiple containers running from the same start image
will benefit from a shared RAM cache.

Slacker, on the other hand, relies on the Tintri VMstore to do COW on
the server side. This design enables rapid distribution, but one downside
is that NFS clients are not naturally aware of redundancies between files
without our kernel changes. We compare our modified loopback driver
(§5.6) to AUFS as a means of sharing cache state. To do so, we run each
HelloBench workload twice, measuring the latency of the second run (af-
ter the first has warmed the cache). We compare AUFS to Slacker, with
and without kernel modifications.

Figure 5.9 shows a CDF of run times for all the workloads with the
three systems (note: these numbers were collected with a VM running
on a ProLiant DL360p Gen8). Although AUFS is still fastest (with me-
dian runs of 0.67 seconds), the kernel modifications significantly speed
up Slacker; the median performance of Slacker alone is 1.71 seconds; with
kernel modifications to the loopback module it is 0.97 seconds. Although
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Slacker avoids unnecessary network I/O, the AUFS driver can directly
cache ext4 file data, whereas Slacker caches blocks beneath ext4, which
likely introduces some overhead.

5.7.4 Scalability

Earlier (§4.4), we saw that AUFS scales poorly for pushes and pulls with
regard to image size and the number of images being manipulated con-
currently. We repeat our earlier experiment (Figure 4.10) with Slacker,
again creating synthetic images and pushing or pulling varying numbers
of these concurrently.

Figure 5.10 shows the results: image size no longer matters as it does
for AUFS. Total time still correlates with the number of images being pro-
cessed simultaneously, but the absolute times are much better; even with
32 images, push or pull times are at most about two seconds. It is also
worth noting push times are similar to pull times for Slacker, whereas
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pushes were much more expensive for AUFS. This is because AUFS needs
compression for its huge transfers, and compression is typically more
costly that decompression.

5.8 Case Study: MultiMake

When starting Dropbox, Drew Houston (co-founder and CEO) found that
building a widely-deployed client involved a lot of “grungy operating-
systems work” to make the code compatible with the idiosyncrasies of
various platforms [51]. For example, some bugs would only manifest with
the Swedish version of Windows XP Service Pack 3, whereas other very
similar deployments (including the Norwegian version) would be unaf-
fected. One way to avoid some of these bugs is to broadly test software in
many different environments. Several companies provide containerized
integration-testing services [96, 107], including for fast testing of web ap-
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Figure 5.11: GCC Version Testing. Left: run time of a C program doing
vector arithmetic. Each point represents performance under a different GCC re-
lease, from 4.8.0 (Mar ‘13) to 5.3 (Dec ‘15). Releases in the same series have a
common style (e.g., 4.8.* releases are solid gray). Right: performance of Multi-
Make is shown for both drivers. Time is broken into pulling the image, running
the image (compiling), testing the binaries, and deleting the images from the local
daemon.

plications against dozens of releases of of Chrome, Firefox, Internet Ex-
plorer, and other browsers [100]. Of course, the breadth of such testing
is limited by the speed at which different test environments can be provi-
sioned.

We demonstrate the usefulness of fast container provisioning for test-
ing with a new tool, MultiMake. Running MultiMake on a source direc-
tory builds 16 different versions of the target binary using the last 16 GCC
releases. Each compiler is represented by a Docker image hosted by a
central registry. Comparing binaries has many uses. For example, certain
security checks are known to be optimized away by certain compiler re-
leases [111]. MultiMake enables developers to evaluate the robustness of
such checks across GCC versions.
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Another use for MultiMake is to evaluate the performance of code
snippets against different GCC versions, which employ different opti-
mizations. As an example, we use MultiMake on a simple C program
that does 20M vector arithmetic operations, as follows:

for (int i=0; i<256; i++) {
a[i] = b[i] + c[i] * 3;

}

Figure 5.11a shows the result: most recent GCC releases optimize the
vector operations well, but the 4.6.* and 4.7.* code takes about 50% longer
to execute. GCC 4.8.0 produces fast code, even though it was released
before some of the slower 4.6 and 4.7 releases, so some optimizations were
clearly not backported. Figure 5.11b shows that collecting this data is 9.5×
faster with Slacker (68 seconds) than with the AUFS driver (10.8 minutes),
as most of the time is spent pulling with AUFS. Although all the GCC
images have a common Debian base (which must only be pulled once),
the GCC installations represent most of the data, which AUFS pulls every
time. Cleanup is another operation that is more expensive for AUFS than
Slacker. Deleting a layer in AUFS involves deleting thousands of small
ext4 files, whereas deleting a layer in Slacker involves deleting one large
NFS file.

The ability to rapidly run different versions of code could benefit other
tools beyond MultiMake. For example, git bisect finds the commit that
introduced a bug by doing a binary search over a range of commits [68].
Alongside container-based automated build systems [98], a bisect tool in-
tegrated with Slacker could very quickly search over a large number of
commits.
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5.9 Framework Discussion

One of our goals was to make no changes to the Docker registry or dae-
mon, except within the pluggable storage driver. Although the storage-
driver interface is quite simple, it proved sufficient for our needs. There
are, however, a few changes to the Docker framework that would have
enabled a more elegant Slacker implementation.

First, it would be useful for compatibility between drivers if the reg-
istry could represent different layer formats (§5.4). Currently, if a non-
Slacker layer pulls a layer pushed by Slacker, it will fail in an unfriendly
way. Format tracking could provide a friendly error message, or, ideally,
enable hooks for automatic format conversion.

Second, it would be useful to add the notion of flattened layers. In par-
ticular, if a driver could inform the framework that a layer is flat, Docker
would not need to fetch ancestor layers upon a pull. This would eliminate
our need for lazy cloning and snapshot caching (§5.5).

Third, it would be convenient if the framework explicitly identified init
layers so Slacker would not need to rely on layer names as a hint (§5.6).

5.10 Summary

In this chapter, we built Slacker, a new Docker storage driver, motivated
by our findings in Chapter 4. Our analysis of Docker showed that startup
time is dominated by pulling image data, but over 90% of the pulled data
is not actually needed for startup. These findings suggest that Docker
should be lazy: if most data is not needed to start a container, why should
Docker wait to start a container until all that data is copied to a Docker
worked from the registry?

Slacker is lazy in two ways. First, Slacker lazily allocates a file system
for a new container by using the copy-on-write capabilities of a shared
VMstore storage server that is used to back all containers and images. In



151

this regard, Slacker is not totally unlike other storage drivers. The AUFS
storage driver also uses copy-on-write for allocation. However, Slacker
has an advantage over AUFS in that Slacker does COW at block granu-
larity rather than file granularity. File granularity is more costly because
when data is copied upon modification, whole files must be copied. Fur-
thermore, following COW references is expensive for layered file systems
because resolution requires file-system path traversals. Slacker is more
similar to the btrfs storage driver. The btrfs storage driver utilizes the
block COW capabilities of the btrfs file system; the Slacker storage driver
similarly utilizes the block COW capabilities of the VMstore file system.

Second, Slacker is lazy with regard to copying image data to a Docker
worker in order to run a container. All prior Docker storage drivers copy
all the data over the network and to local disk before a container can be
started. In contrast, Slacker leverages the lazy-fetch capabilities of a local
file system (i.e., ext4) to fetch data from the backing server as needed.

Being lazy changes the latencies of different Docker operations. After
a pull, executing “run” for the first time takes 17% longer with Slacker
than with vanilla Docker because a Slacker pull fetches minimal meta-
data for the container whereas a Docker pull prefetches all the data the
container will need to run (as well as all the data it will not). However,
Slacker is able to reach a ready state much sooner because it is able to fin-
ish the pull phase and start the run phase 72x faster that vanilla Docker.
The total result is that the time from the start of a pull until a container is
ready to do useful work is 5x shorter with Slacker.
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6
Related Work

In this chapter, we discuss other work related to our analysis and imple-
mentation efforts. We start by discussing other workload measurement
studies (§6.1); the majority of our work falls into this category. Next, we
consider prior techniques (some of which we simulated) for integrating
the layers of a storage system (§6.2). Some of the techniques for deploying
containers with Slacker were inspired by work on virtual machines. We
describe research done with virtual machines and consider other tech-
niques that could potentially be applied to containers in the future (§6.3).
Finally, we describe various approaches to cache sharing between appli-
cations (§6.4).

6.1 Workload Measurement

The study of I/O workloads has a rich history in the systems community.
Ousterhout et al. [78] and Baker et al. [10] collected system-call traces of
file-system users. These much older studies have many findings in com-
mon with our Apple desktop and Facebook Messages studies; for exam-
ple, most files are small and short lived. Other patterns (e.g., frequent
fsync calls by Apple desktop applications) are new trends.

Vogels [109] is another somewhat later study that compares results
with the Ousterhout et al. [78] and Baker et al. findings. Vogels found that
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files were larger than those in the earlier studies, but lifetimes were still
short, and durability controls were still rarely used.

While most file-system studies deal with aggregate workloads, our
examination of application-specific behaviors for the Apple study has
precedent in a number of hardware studies. In particular, Flautner et
al.’s [36] and Blake et al.’s [13] studies of parallelism in desktop appli-
cations bear strong similarities to ours in the variety of applications they
examine. In general, they use a broader set of applications, a difference
that derives from the subjects studied. In particular, we select applica-
tions likely to produce interesting I/O behavior; many of the programs
they use, like the video game Quake, are more likely to exercise thread-
ing than the file system. Finally it is worth noting that Blake et al. analyze
Windows software using event tracing, which may prove a useful tool to
conduct a similar application file-system study to ours in Windows.

Kim et al. [58] perform a study of ten smartphone applications that has
a number of similarities to our own work. They found that programmers
rely heavily on user-space layers, particularly SQLite, for performing I/O.
These patterns cause excessive random writes and fsync calls. Kim et al.
also found durability requirements were being placed on unimportant
data, such as a web cache.

A number of studies share similarities with our analysis of Facebook
Messages. In our work, we compare the I/O patterns of Facebook Mes-
sages to prior GFS and HDFS workloads. Chen et al. [21] provides broad
characterizations of a wide variety of MapReduce workloads, making
some of the comparisons possible. The MapReduce study is broad, an-
alyzing traces of coarse-grained events (e.g., file opens) from over 5000
machines across seven clusters. By contrast, our study is deep, analyzing
traces of fine-grained events (e.g., reads to a byte) for just nine machines.

Our methodology of trace-driven analysis and simulation of Facebook
Messages is inspired by Kaushik et al. [56], a study of Hadoop traces from
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Yahoo! Both the Yahoo! study and our work involved collecting traces,
doing analysis to discover potential improvements, and running simula-
tions to evaluate those improvements.

A recent photo-caching study by Huang et al. [53] focuses, much like
our work, on I/O patterns across multiple layers of the stack. The photo-
caching study correlated I/O across levels by tracing at each layer, whereas
our approach was to trace at a single layer and infer I/O at each underly-
ing layer via simulation. There is a tradeoff between these two method-
ologies: tracing multiple levels avoids potential inaccuracies due to sim-
ulator oversimplifications, but the simulation approach enables greater
experimentation with alternative architectures beneath the traced layer.

In addition to these studies of dynamic workloads, a variety of pa-
pers have examined the static characteristics of file systems, starting with
Satyanarayanan’s analysis of files at Carnegie-Mellon University [95]. One
of the most recent of these examined metadata characteristics on desktops
at Microsoft over a five year time span, providing insight into file-system
usage characteristics in a setting similar to the home [3]. This type of
analysis provides insight into long term characteristics of files that ours
cannot.

6.2 Layer Integration

In our study of Facebook Messages, we simulated two techniques (§3.5)
for better integration between HBase and HDFS: local compaction and
combined logging. We are not the first to suggest these methods; our con-
tribution is to quantify how useful these techniques are for the Facebook
Messages workload.

Wang et al. [112] observed that doing compaction above the replication
layer wastes network bandwidth, and implemented Salus as a solution.
With Salus, new interfaces improve integration between layers: “Salus
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implements active storage by blurring the boundaries between the storage
layer and the compute layer.” In traditional HBase, a single RegionServer
is responsible for a given key range, but data is replicated beneath the Re-
gionServer by HDFS. With Salus, the RegionServers are also replicated,
and the three RegionServers coordinate to perform the same operations,
each on their own single replica of a file. Our simulation findings resem-
ble the Salus evaluation. Doing local compaction decreases network I/O
while increasing disk I/O: “Salus often outperforms HBase, especially
when disk bandwidth is plentiful compared to network bandwidth.”

Local compaction could also be implemented based on more generic
storage abstractions. For example, Spark provides an RDD (resilient dis-
tributed dataset) abstraction [118]. Externally, an RDD appears much
like a regular file or dataset, but internally the system tracks the origins
of an RDD, and can intelligently decide if, when, and how to material-
ize a replica of an RDD. For example, suppose A and B are RDDs, and
B = f(A). The key to the RDD abstraction is that the storage system is
aware of the relationship f. Depending on partitioning, it would be pos-
sible to lazily compute the replicas of B from the replicas from A. Further-
more, if three replicas of B are to be materialized, the system has options.
It could computeB from a single replica ofA, then write that data over the
network to three machines; alternatively, it could use additional compute
to execute f on each replica of A to produce each replica of B, without
causing any network I/O. One could implement local compaction, as we
simulated it, by using RDD abstractions in HBase. Compaction is funda-
mentally a deterministic merge sort that could be executed on each replica
independently. Compaction could be implemented with RDD operations
such as join and sort (or similar).

We also simulated combined logging, where logs from different Re-
gionServers arriving at the same DataNode are merged into a single stream
to improve sequentiality. Combined logging and the use of dedicated
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disks for transactions is an old technique that has been applied to tradi-
tional databases [31, 81].

6.3 Deployment

In Slacker, we optimized container deployment for fast startup and han-
dling flash crowds. While this type of work is relatively new for con-
tainers, much work has been done for virtual machines, and some of our
solutions are based on that work. The deployment problems for differ-
ent platforms are similar, as the ext4-formatted NFS files used by Slacker
resemble virtual-disk images. The strategy of lazy propagation was in-
spired by virtual machine optimizations. Several of the other strategies
described in this section could similarly be applied to container deploy-
ment, perhaps as future work.

Hibler et al. [49] built Frisbee, a system for deploying virtual disks.
Frisbee completes a transfer before a virtual machine starts running, but
it avoids transferring unnecessary data via file-system awareness. In par-
ticular, most blocks in a disk image may be unallocated by a file system.
By inspecting the blocks containing file-system metadata, Frisbee identi-
fies these unallocated blocks and does not transfer them.

Wartel et al. [113] compare multiple methods of distributing virtual-
machine images from a central repository (much like a Docker registry).
In particular, the work explores techniques for parallel deployment of
many identical virtual machines at the same time. Some of the techniques
evaluated, such as binary tree distribution, could be applied to the mass
deployment of containers.

Nicolae et al. [75] studied image deployment and found “prepropaga-
tion is an expensive step, especially since only a small part of the initial VM is
actually accessed.” These findings resemble our own: only a small part of
Docker image data is actually accessed during container startup. They
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further built a distributed file system for hosting virtual machine images
that supports lazy propagation of VM data.

Lagar-Cavilla et al. [59] built a “VM fork” function that rapidly creates
many clones of a running VM. Data needed by one clone is multicast to all
the clones as a means of prefetch. We believe Slacker would likely benefit
from similar prefetching when many containers are deployed in parallel.
However, this technique would be less useful when the containers are
started at different times over a longer period.

Zhe et al. [119] built Twinkle, a cloud-based platform for web appli-
cations that is designed to handle “flash crowd events.” Unfortunately,
virtual-machines tend to be heavyweight, as Zhe et al. noted: “virtual de-
vice creation can take a few seconds.” However, Twinkle implements many
optimizations for virtual machines that have not to our knowledge been
used with containers. For example, Twinkle takes memory snapshots of
initialized execution environments and predicts future demand for pages
so it can rapidly bring an application to a ready state. Our view is that
this work is heavily optimizing an inherently heavyweight platform, vir-
tual machines. We believe many of these techniques could be reapplied to
containers, an inherently lightweight platform, for extremely low-latency
startup.

6.4 Cache Sharing

A number of techniques bear similarity to our strategy for sharing cache
state and reducing redundant I/O. KSM (Kernel Same-page Merging)
scans and deduplicates memory [7]. While this approach saves cache
space, it does not prevent initial I/O. If deduplication of NFS file data
in a cache is done on the client side, the problem remains that two iden-
tical blocks must both be retrieved over the network before the client can
realize they are duplicates.
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Xingbo et al. [116] build TotalCOW, a modified btrfs file system with
many similarities to our work. Containers are often run over a file system
without copy-on-write functionality (e.g., ext4). Thus, Docker uses union
file systems on top of the underlying file system in order to provide copy-
on-write and avoid excessive copying. However, when the underlying
storage system provides copy-on-write, a custom storage driver can uti-
lize this functionality in Docker. For example, Slacker exposes the COW
capabilities of VMstore; similarly, a btrfs driver exposes the COW capabil-
ities of the btrfs file system. Xingbo et al. encountered a caching problem
with btrfs similar to what we encountered: although two files might be
duplicated on disk, higher layers of the storage stack do not take advan-
tage of that fact, so redundant I/O is done, and multiple pages in the page
cache are used for the same data.

Xingbo et al. solve this problem by building TotalCOW, a system that
modifies btrfs to index cache pages by disk location, thus servicing some
block reads issued by btrfs with the page cache. We encounter a very
similar issue, but the same solution is not possible because the layers (i.e.,
NFS client and NFS server) are across different machines, whereas the
entire stack is on the same machine with TotalCOW. Thus, we need to rely
on a smarter client that does dirty-block tracking. Also, Slacker solves the
slow-pull problem, whereas TotalCOW only improves performance when
container data is already local.

The migration problem has some commonalities with the deployment
problem: data is moved from host to host rather than from image server to
host. Sapuntzakis et al. [94] try to minimize the data that must be copied
during VM migration much like we try to minimize the data that must
be copied during container deployment. Slacker uses dirty bitmaps to
track differences between different NFS files that back containers, and
thus avoid fetching data for one file when identical data is cached for an-
other file. Similarly, Sapuntzakis et al. modify a VMware GSX server to
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use dirty bitmaps for VM images to identify a subset of the virtual-disk
image blocks that must be transferred during migration.



160

7
Conclusions and Future Work

The design and implementation of file and storage systems has long been
at the forefront of computer systems research. Innovations such as name-
space-based locality [69], crash consistency via journaling [46] and copy-
on-write [14, 89], scalable on-disk structures [102], distributed file sys-
tems [52, 92], and scalable storage for web services [27, 40] have greatly
influenced how we manage and store data today.

Applications and systems are constantly being built and evolving, so
ongoing measurement work will always be needed. In this dissertation,
we explore trends in how applications use storage. As applications grow
in complexity, developers are abandoning the monolithic approach and
adopting a variety of strategies for decomposing the storage problem and
reusing code. In our work, we consider three applications and systems,
each of which take a different approach to modularity.

First, we studied Apple desktop applications that rely heavily on user-
space libraries, and found that the use of libraries often resulted in expen-
sive transactional demands on file system (Chapter 2). Second, we stud-
ied Facebook Messages, which uses an HBase-over-HDFS architecture,
and found that reusing an unmodified distributed file-system layer re-
sults in excessive network I/O and random disk writes (Chapter 3). Third,
we studied Docker startup workloads, and found that cold startup time is
dominated by pulling data that is mostly not used during startup (Chap-
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ter 4). Finally, we used our finding in the third study to redesign Docker
storage and make startup latencies 5× faster (Chapter 5).

In this chapter, we summarize our three measurement studies and the
design of Slacker (§7.1) and list some of our lessons learned (§7.2). Fi-
nally, we describe our plans for future work on OpenLambda (§7.3) and
conclude (§7.4).

7.1 Summary

This dissertation is comprised of four parts: three workload analysis stud-
ies and an implementation project. The workloads we studied were Ap-
ple desktop applications, Facebook Messages, and Docker containers. We
used our findings from the Docker study to guide the design of a new
Docker storage driver, Slacker. We now summarize these four efforts.

7.1.1 Apple Desktop

Home-user applications are important today, and their importance will
increase as more users store data not only on local devices but also in the
cloud. Furthermore, home-user applications are interesting from a stor-
age perspective because they rely heavily on libraries for managing and
persisting data. In order to study this class of applications, we select six
Apple desktop applications for analysis: iPhoto, iTunes, iMovie, Pages,
Numbers, and Keynote. We build iBench, a set of scripts for executing
34 different user tasks in these applications. While running iBench, we
collect system-call traces with DTrace.

We find that the use of libraries significantly impacts I/O patterns.
In particular, libraries largely determine the transactional (i.e., durabil-
ity, atomicity, and isolation) demands placed on the file system. Anecdo-
tally, it appears the care with which data is handled does not correspond
with the developer’s likely intent. For example, the Pages word processor
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sometimes flushes a list of recently used files to disk, but does not flush
the actual file saved. Most (and often all) of the writes are flushed for
most of the iBench tasks. The vast majority of these flushes are issued via
libraries. Similar patterns hold for renames which are used for atomicity.

7.1.2 Facebook Messages

The HDFS file system was originally built for MapReduce and similar
workloads, but HDFS was later adopted as a substrate for HBase. In this
study, we do a multilayer study of this stack, from HBase to disk. In par-
ticular, we explore whether HDFS is an effective substrate for HBase, or
whether a lack of conceptual integrity in the composition of these layers
leads to inefficient use of storage resources. In order to study this stack,
we build a new HDFS tracing tool which we use to collect HDFS traces
under Facebook Messages. We analyze these traces and use them as input
to a multilayer simulator we build.

From our analysis, we find writes represent 21% of I/O to HDFS files.
Further investigation reveals the vast majority of writes are HBase over-
heads from logging and compaction. Aside from these overheads, Face-
book Messages writes are scarce, representing only 1% of the “true” HDFS
I/O. Diving deeper in the stack, simulations show writes become ampli-
fied. Beneath HDFS replication (which triples writes) and OS caching
(which absorbs reads), 64% of the final disk load is write I/O. This write
blowup (from 1% to 64%) emphasizes the importance of optimizing writes
in layered systems, even for especially read-heavy workloads like Face-
book Messages.

From our simulations, we extract the following conclusions. We find
that caching at the DataNodes is still (surprisingly) of great utility; even
at the last layer of the storage stack, a reasonable amount of memory per
node (e.g., 30 GB) significantly reduces read load. We also find that a
“no-write allocate” policy generally performs best, and that higher-level
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hints regarding writes only provide modest gains. Further analysis shows
the utility of server-side flash caches (in addition to RAM), e.g., adding a
60 GB SSD can reduce latency by 3.5x.

7.1.3 Docker Containers

Microservices are becoming increasingly popular as a way to build com-
plex applications. In our study, we focus on Docker, a tool for deploy-
ing microservices. With a microservices architecture, each microservice
controls its own environment; for example, each Docker container can
be deployed with its own Linux distribution and set of packages with
specific versions. Of course, this design means there is much more exe-
cutable data than there would be in other models. Instead of sharing a
set of packages, each service has its own libraries and other files. Sacri-
ficing sharing clearly has the potential to introduce significant overheads.
Prior measurement work confirms this intuition: the service startup time
in Google Borg [108] is dominated by package installation.

In order to study this problem, we build a new benchmark, HelloBench,
to drive the startup of 57 different Docker containers. We analyze the
data inside the HelloBench images, and trace I/O during startup to un-
derstand how the data is used. Our study shows that there is indeed a
high cost to giving each container its own environment: starting a con-
tainer on a new worker where the container has not been run before takes
26 seconds. 76% of that time is spent on pulling image data. Our I/O
traces show that only 6.4% of that data is actually used during container
startup.

7.1.4 Slacker

Our Docker measurement study showed that giving each container its
own packages and environment has a high cost in terms of time and I/O
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resources. Much data is transferred that is then not used. These findings
suggest that microservice deployment tools such as Docker should lazily
deploy services. A service should start with just the data it needs, and
the other data should be copied later (if ever).

We implement this approach in Docker by building a new Docker stor-
age driver, Slacker, backed by a shared network file system. For the net-
work file system, we integrate with a Tintri VMstore. Slacker is lazy in
two ways. First, rather than doing a deep copy of image data when a
new container runs, Slacker uses VMstore to allocate space for new con-
tainers in a copy-on-write manner. Second, Slacker workers lazily fetches
container data from the VMstore as needed. Slacker additionally utilizes
modifications to the local Linux kernel to improve caching and optimizes
certain VMstore operations to overcome deficiencies in the Docker stor-
age interface.

The result of using these techniques is a massive improvement in the
performance of common Docker operations; image pushes become 153×
faster and pulls become 72× faster. Common Docker use cases involv-
ing these operations greatly benefit. For example, Slacker achieves a 5×
median speedup for container deployment cycles and a 20× speedup for
development cycles. We also build MultiMake, a new container-based
build tool that showcases the benefits of Slacker’s fast startup. MultiMake
produces 16 different binaries from the same source code, using different
containerized GCC releases. With Slacker, MultiMake experiences a 10×
speedup.

7.2 Lessons Learned

We now describe some of the general lessons we learned while working
on this dissertation.
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Modularity often causes unnecessary I/O: In our studies, we consid-
ered three different ways developers decompose their applications
and systems, and in all three cases, we observed the decomposition
causing unnecessary I/O. In the Apple desktop applications, fsync
and rename were heavily used on many small files. It is unlikely the
programmer cared about these guarantees in many (or even most)
cases, yet the cost of durability and atomicity was paid because of
the way the library was written. In the Facebook Messages study,
we showed that building a database over a generic replication layer
causes additional network I/O and increases workload randomness
at the disk layer. In the Docker study, we found that giving each mi-
croservice its own file-system environment means that much binary
data is copied that is not needed, at least immediately.

Layers mask costs: In all our studies, we encountered cases where lay-
ering masks costs. For example, in the very first application case
study we considered, Pages saves a document, and it calls a user-
space function to update a 2-byte word in a document. That update
function performs a read-modify-write on the chunk containing the
word. The problem is that the function is called many times, so the
same chunk is repeatedly overwritten. Clearly, it was not obvious to
the user of the update function that so much additional I/O would
be generated by the series of calls.

In the Facebook Messages study, the special handling of HBase writes
makes them surprisingly expensive. At the HDFS level, the read-
/write ratio is 99/1, excluding HBase compaction and logging over-
heads. At the disk level, the ratio is write-dominated at 36/64. Log-
ging, compaction, replication, and caching all combine to produce
this write blowup.

In the Docker study, we showed that for layered file systems, data
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stored in deeper layers is slower to access. Unfortunately, we also
found that Docker images tend to be deep, with at least half of file
data at depth nine or greater. Even though all files appear in a single
unified file system to applications and users, accesses to deep files
will have unexpectedly high latencies.

Simple measurement-driven adaptations work surprisingly well: Brooks
argues that conceptual integrity “dictates that the design must pro-
ceed from one mind, or from a very small number of agreeing reso-
nant minds.” Unfortunately, modern applications and systems are
too complex to be built this way; instead, all the systems we studied
represented the composition of work from many different minds.
One might expect that the lack of conceptual integrity would make
the systems studied hopelessly inefficient. Fortunately, in the Face-
book and Slacker work we found relatively simple integrations and
optimizations can largely compensate for the artifacts and inefficien-
cies of the modular approaches taken.

In the Facebook study, we simulated changes to the HBase/HDFS
interfaces; in particular, we extended the HDFS interface beyond a
simple file API to enable execution directly on replicas and provide
special support for HBase logging. The result is a 2.7x reduction
in network I/O and a 6x reduction in log-write latencies. In our
Slacker work, we reused local file systems and VMstore copy-on-
write capabilities to be lazy. In particular, we avoid prematurely
moving and allocating the less-useful file data belonging to each
microservice.

Files remain small: In our Apple and Facebook studies, we confirm
a common finding in other analysis work: most accessed files are
small [10]. While this could have perhaps been expected for the
desktop applications, it is somewhat surprising that files are also
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small for HBase. HDFS was modeled after GFS, which was de-
signed for large files [40]. When files are large, the data-to-metadata
ratio is high, justifying the one-NameNode design of GFS and HDFS.
By contrast, the fact that the Messages/HBase workload is dom-
inated by small files suggests that perhaps the single-NameNode
design should be revisited.

Cold data is important: In our Facebook and Docker studies, we found a
lot of data that goes unused. Two thirds of the data on the Facebook
machines in our sample went untouched for the entire week-long
study. This intuitively makes sense for a chat application: old con-
versations are not deleted, but a typical user would not have reason
to revisit most message threads on a regular basis. In the Docker
study, we found that over 90% of image data is not used during con-
tainer startup. This also makes intuitive sense: each container has
its own bundled Linux distribution, but most of the programs and
libraries deployed in a generic installation would be unlikely to be
used by a microservice with a very specific purpose.

These finding suggest cold data is an important part of modern
workloads, with implications for both hardware and software. In
particular, we believe disks will remain part of an important stor-
age tier for the foreseeable future, and lazy techniques will be espe-
cially useful at the software level so that cold data does not translate
to wasted I/O.

7.3 Future Work

The rapid pace of innovation in datacenters [11] and the software plat-
forms within them is once again set to transform how we build, deploy,
and manage online applications and services. In early settings, every ap-
plication ran on its own physical machine [5, 38]. The high costs of buying



168

and maintaining large numbers of machines, and the fact that each was
often underutilized, led to a great leap forward: virtualization [18]. Virtu-
alization enables tremendous consolidation of services onto servers, thus
greatly reducing costs and improving manageability.

However, hardware-based virtualization is not a panacea, and lighter-
weight technologies have arisen to address its fundamental issues. In par-
ticular, one leading solution in this space is containers, a server-oriented
repackaging of Unix-style processes [8, Ch. 4] with additional namespace
virtualization [70, 77]. In this dissertation, we studied Docker, a platform
for deploying containers (Chapter 4). While containers are arguably an
improvement over virtual machines, our study and other work on Google
Borg [108] shows that giving every container its own file environment can
result in very slow startup times.

In our Slacker work (Chapter 5), we optimized deployment by lazily
fetching data and avoiding transfers of unnecessary data. The result was
a major relative improvement in deployment times (i.e., a 5× speedup);
however, even with our improvements, absolute times are still longer than
might be desired. In particular, the median startup time with Slacker
was 3 seconds, and the average was 8 seconds. While these times may
be “good enough” for many applications, decreasing startup times to a
small fraction of a second would open many new possibilities. Load bal-
ancers could reassign load at very fine granularity, and workers could be
brought up to handle individual web requests. We believe achieving such
extreme elasticity requires turning to new programming models.

One new cloud programming model, called serverless computation, is
poised to transform the construction of modern scalable applications. In-
stead of thinking of applications as collections of servers, developers in-
stead define applications with a set of functions with access to a common
data store. An excellent example of this microservice-based platform is
found in Amazon’s Lambda [4]; we thus generically refer to this style of
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Figure 7.1: Evolution of Sharing. Gray layers are shared.

service construction as the Lambda model.
The Lambda model has many benefits as compared to more tradi-

tional, server-based approaches. Lambda handlers from different cus-
tomers share common pools of servers managed by the cloud provider, so
developers need not worry about server management. Handlers are typ-
ically written in languages such as JavaScript or Python; by sharing the
runtime environment across functions, the code specific to a particular
application will typically be small, and hence it is inexpensive to send the
handler code to any worker in a cluster. Finally, applications can scale up
rapidly without needing to start new servers. In this manner, the Lambda
model represents the logical conclusion of the evolution of sharing be-
tween applications, from hardware to operating systems to (finally) the
runtime environments themselves (Figure 7.1).

The Lambda model introduces many new challenges and opportuni-
ties for systems research. A Lambda execution engine must safely and
efficiently isolate handlers. Handlers are inherently stateless, so there
are many opportunities for integration between Lambda and database
services. Lambda load balancers must make low-latency decisions while
considering session, code, and data locality. There are further challenges
in the areas of just-in-time compilation, package management, web ses-
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sions, data aggregation, monetary cost, and portability. Unfortunately,
most existing implementations [4, 42] (except OpenWhisk [54] and parts
of Azure Functions [71]) are closed and proprietary. In order to facil-
itate research on Lambda architectures (including our own, and hope-
fully others), we are currently building OpenLambda, a base upon which
researchers can evaluate new approaches to serverless computing. We
describe OpenLambda and our research plan in more detail in Hendrick-
son et al. [48].

7.4 Closing Words

Applications and storage systems have become incredibly complex, and
programmers cope with that complexity by modularizing and reusing
software. Modern software is built on the effort of many different pro-
grammers, with a wide range of goals, personalities, ideologies, and ex-
perience. We have explored three ways developers reuse the work of
other engineers: with libraries, layers, and microservices. Unfortunately,
our analysis of Apple desktop applications, Facebook Messages, and Docker
containers shows that modularity is not free. When subcomponents are
combined to form a new storage stack, the final product lacks conceptual
integrity, and unexpected and costly I/O patterns frequently emerge. As
we have seen, intermediate libraries make it more difficult for a high-level
programmer to communicate how data should be handled. Generic repli-
cation layers thwart distributed optimizations. Fine-grained microser-
vices create significant provisioning costs.

While it is easy to critique the inefficient behaviors that emerge in the
composed software we have studied, it is worth remembering that all
these applications and systems have been quite successful. It would be
naive to simply conclude that the engineers behind these systems were
unaware of emergent properties or to assume that they should have built
everything from scratch. Conceptual integrity is a nice property for a sys-
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tem to have, but it is also expensive in terms of developer effort. Many
companies have explicitly decided to prioritize developer velocity, with
slogans such as “speed wins” [23] and “move fast” [65]. Patching together
new products from old components is a good strategy for being first to
market, and being first entails many competitive advantages, often in
terms of branding and customer loyalty [85].

When should engineers prioritize development speed, and when should
they prioritize conceptual integrity? Unfortunately, there may be no sim-
ple answer. In this dissertation, we have explored many of the technical
aspects of this question, but a holistic conclusion about when and how
to modularize must consider many business factors that we have not ex-
plored in this work. We can, however, conclude that decisions should be
made with the wisdom gleaned by measurement and that measurement
should be an ongoing process. As Brooks writes: “even when an implemen-
tation is successful, it pays to revisit old decisions as the system evolves” [61].
Measurement will always be important because both the technical and
business factors impacting development decisions are constantly chang-
ing. As hardware becomes faster, breaking software into smaller compo-
nents (e.g., with microservices) becomes more affordable. As user bases
grow, improving resource utilization via optimization and integration be-
comes more worthwhile.

Measurement has always been important to systems, but it has per-
haps never been as important as it is now, given the rising complexity
of applications. In this work, we have explored a very tiny fraction of
existing storage workloads. Furthermore, new techniques will doubtless
emerge for composing storage systems to solve new problems. The work
of measurement is a never-ending endeavor. Our hope is that our on-
going measurement and that of others in the community will continue to
illuminate the inner workings of the storage systems we rely on every day
of our lives.
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