
1 

Thanh Do, Tyler Harter, Yingchao Liu, 
Andrea C.  Arpaci-Dusseau, 	


and Remzi H. Arpaci-Dusseau	


	


Haryadi S. Gunawi	



HARDFS:���
Hardening HDFS with���

Selective and Lightweight Versioning	





Cloud Reliability	



2 

q Cloud systems	


§  Complex software	


§  Thousands of commodity machines	


§  “Rare failures become frequent” [Hamilton]	



q Failure detection and recovery	


§  “… has to come from the software” [Dean]	


§  “… must be a first-class operation” [Ramakrishnan et al.]	





3 

Fail-stop failures	


q Machine crashes, disk failures	



q Pretty much handled	



q Current systems have sophisticated crash- 
recovery machineries	


§  Data replication	


§  Logging	


§  Fail-over	





Fail-silent failures	



q Exhibits incorrect behaviors instead of crashing	



q Caused by memory corruption or software bugs	



q Crash recovery is useless if fault can spread	



4 

Master	



Workers	





5 

Fail-silent failure headlines	





Current approaches	



6 

Replicated state machine	


using BFT library	



Ver. 1	

 Ver.2	



Ver. 3	

Agree?	



N-Version programing	



•  High resource consumption	


•  High engineering effort	


•  Rare deployment	





Selective and Lightweight 
Versioning (SLEEVE)	



q  2nd version models basic protocols of the system	



q  Detects and isolates fail-silent behaviors	



q  Exploits crash recovery machinery for recovery	


7 

Master	



Workers	



Trusted	


sources	



Reloading state	


during reboot	





8 

Selective and lightweight 
versioning (SLEEVE)	



q Selective	


§  Goal: small engineering effort	


§  Protects important parts	



-  Bug sensitive	


-  Frequently changed	


-  Currently unprotected 	



q Lightweight	


§  Avoids replicating full state	


§  Encodes states to reduce space	



A	

B	


C	

D	



A	


D	



0 1 0 0
1 0 1 0
0 1 0 1



9 

HARDFS	


q HARDFS - hardened version HDFS:	


§  Namespace management	


§  Replica management	


§  Read/write protocol	



q HARDFS detects and recovers from:	


§  90% of the faults caused by random memory corruption	


§  100% of the faults caused by targeted memory corruption	


§  5 injected software bugs	



q Fast recovery using micro-recovery	


§  3 orders of magnitude faster than full reboot	



q Little space and performance overhead	





10 

Outline	


ü  Introduction	



q HARDFS Design	



q HARDFS Implementation	



q Evaluation 	



q Conclusion	





Case study: ���
namespace integrity	



11 

NameNode	



Client	



Create(F)	



F	



F	



Normal Operation	



txCreat(F)	



NameNode	



Client	



exists(F)	



F	



No	



G	



Corrupted HDFS	



Client	



exists(F)	



F	



Yes	



G	



F	



F	



HARDFS	



NameNode	



Incorrect behavior	



Trusted	


source	





SLEEVE layer components	



12 

•  Interposition module	


•  State manager	


•  Action verifier	


•  Recovery module	


	





State manager	


q Replicates subset of state of the main version	



§  Directory entries without modification time	



q Adds new state incrementally	


§  Adds permissions for security checks	



q Understands semantics of various protocol 
messages and thread events to update state 
correctly	



q Compresses state using compact encoding	



13 



Naïve: Full replication	



q HDFS master manages millions of files	



q 100% memory overhead reduces HDFS 
master scalability [;login; ‘11]	



14 

FF
100% memory overhead	





Lightweight: ���
Counting Bloom Filters	



q Space-efficient data structure	



q Supports 3 APIs	


§  insert(“A fact”)	


§  delete(“A fact”)	


§  exists(“A fact”)	



15 



Lightweight: ���
Counting Bloom Filters	



q  Suitable for boolean checking	


§ Does F exist?	


§ Does F has length X?	


§ Has block B been allocated?	

 16 

  “F is 10 bytes”	



Disagreement 	


detected!	



F:10	



insert(“F is 10 bytes”)	



F:10	

 F:5	

 F:10	



exists(“F is 5 bytes”) à NO	



  “Give me length of F”	





Challenges of using ���
Counting Bloom Filters	



q Hard to check stateful system	



q False positives	



17 



Non-boolean verification	



18 

  “F is 20 bytes”	



F:10	

 F:10	

 F:10	

 F:20	



X = returnSize(F)	


delete(F:X)	


insert(F:20)	



Bloom filter does	


not support this API	



Before	

 After	





Non-boolean verification	



19 

  “F is 20 bytes”	



F:10	

 F:10	



X ç MainVersion.returnSize(F);	


IF exists(F:X)	


 	

delete(F:X);	


 	

insert(F:20);	


ELSE	


    	

initiate recovery;	



Ask-Then-Check	



F:10	

 F:20	



Before	

 After	





Stateful verification	



20 

Bloom Filter (boolean verification)	



Checking stateful systems	



Ask Then Check	





Dealing with False positive	


q  Bloom filters can give false positive	



§  4 per billion	


§  1 false positive per month (given 100 op/s)	



q  Only leads to unnecessary recovery	



21 

F	

 G	



Trusted	


source	



F	



F	



Reloading 	


state	





22 

Outline	


ü  Introduction	



q HARDFS Design	


ü  Lightweight	


§  Selective	


§  Recovery	



q HARDFS Implementation	



q Evaluation 	



q Conclusion	





Selective Checks	



q  Goals: small engineering effort	



q  Selectively chooses namespace protection	



q  Excludes security checks	

 23 

Client	


create(F)	



G	

 F	

F	



HDFS Master	



F	



txCreate(F)	



Client	



Operation log	



exists(F)	



Disagreement detected!	


No	

 Yes	



X ß mainVersion.exists(F);	


Y ß bloomFilter.exists(F);	


If X != Y then	


   handleDisagreement();	





Incorrect action examples	



24 

Create(F)	



txCreate(F)	



Create(F)	



reject	



Create(F)	



txCreate(D/F)	


txMkdir(D)	



txCreate(F)	



Create(D/F)	

 Mkdir(D)	



Normal correct action	

 Corrupt action	

 Missing action	



Orphan action	

 Out-of-order action	



All of these happen in practice	





Action verifier	


q Set of micro-checks to detect incorrect 

actions of the main version	



q Mechanisms:	


§  Expected-action list	


§  Actions dependency checking	


§  Timeout	


§  Domain knowledge to handle disagreement	



25 



26 

Outline	


ü  Introduction	



q HARDFS Design	


ü  Lightweight	


ü  Selective	


q  Recovery	



q HARDFS Implementation	



q Evaluation 	



q Conclusion	





Recovery	



q Crash is good provided no fault propagation	



q Detects and turns bad behaviors into crashes	



q Exploits HDFS crash recovery machineries	


27 

Master	



Workers	



Trusted	


sources	



Reloading state	


during reboot	





HARDFS Recovery	


	



q Full recovery (crash and reboot)	



q Micro-recovery	


§  Repairing the main version	


§  Repairing the 2nd version	



28 



Crash and Reboot	



q  Full state is reconstructed from trusted sources	



q  Full recovery may be expensive	


§  Restarting an HDFS master could take hours	



29 

Reloading 	


Full state	





Micro-recovery	



q  Repairs only corrupted state from trusted sources	



q  Falls back to full reboot when micro-recovery fails	



30 



Repairing main version	



31 

Main Version	


	



2nd Version	


	



F:100	



Trusted source: checkpoint file	



F:200	

 F:100	



Direct update	


F:200 ç F:100	

F:100	





Repairing 2nd version	



32 

Main Version	


	



2nd Version	


	



F:100	



Trusted source: checkpoint file	



F:200	



Must:	


1. Delete(“F is 200 bytes”)	


2. Insert(“F is 100 bytes”)	

F:100	



Solution:	


1.  Start with an empty BF	


2.  Add facts as they are verified	



F:100	





33 

Outline	


ü  Introduction	



ü HARDFS Design	



q HARDFS Implementation	



q Evaluation 	



q Conclusion	





Implementation	


q Hardens three functionalities of HDFS	



§  Namespace management (HARDFS-N)	


§  Replica management (HARDFS-R)	


§  Read/write protocol of datanodes (HARDFS-D)	



q Uses 3 Bloom filters API	


§  insert(“a fact”), delete(“a fact”), exists(“a fact”)	



q Uses ask-then-check for non-boolean 
verification	



34 



Protecting ���
namespace integrity	


q Guards namespace structures necessary for 

reaching data: 	


§  File hierarchy 	


§  File-to-block mapping	


§  File length information	



q Detects and recovers from namespace-
related problems:	


§  Corrupt file-to-block mapping	


§  Unreachable files	



35 



Namespace management	


Message	

 Logic of the secondary version	



Create(F):	


Client request NN to create F	



Entry: ���
   If exists(F) Then reject; 	


   Else	


       insert(F); 	


       generateAction(txCreate[F]); 	


Return: check response;	



AddBlock(F):	


client requests NN to allocate 
a block to file F 	


	



Entry: 	


    F:X = ask-then-check(F); 	


Return: 	


    B = addBlk(F);���
    If exists(F) & !exists(B) Then 	


        X′ = X ∪ {B};	


        delete(F:X);	


        insert(F:X′)	


        insert(B@0); 	


    Else declare error; 	



36 



37 

Outline	


ü  Introduction	



ü HARDFS Design	



ü HARDFS Implementation	



q Evaluation and Conclusion	





Evaluation	



q Is HARDFS robust against fail-silent faults?	



q How much time and space overhead incurred?	



q Is micro-recovery efficient?	



q How much engineering effort required?	



38 



Random memory 
corruption results	


Outcome	

 HDFS	

 HARDFS	



Silent failure	

 117	

 9	



Detect and reboot	

 -	

 140	



Detect and micro-recover	

 -	

 107	



Crash	

 133	

 268	



Hang	

 22	

 16	



No problem observed	

 728	

 460	



39 

q # fail-silent failures reduced by factor of 10	



q Crash happens twice as often 	





Silent failures	


FIELD	

 HDFS	

 HARDFS	



pathname	

 95	

 0	



replication	

 1	

 0	



modification time	

 6	

 8	



permission	

 3	

 0	



block size	

 12	

 1	



40 



0	
  

100	
  

200	
  

300	
  

400	
  

500	
  

600	
  

700	
  

800	
  

200K	
   400K	
   600K	
   800K	
   1000K	
  

M
em

or
y	
  
al
lo
ca
te
d	
  
(M

B)
	
  

File	
  system	
  size	
  (number	
  of	
  files)	
  
HDFS	
   HARDFS	
  +	
  Concrete	
  State	
   HARDFS	
  +	
  Bloom	
  Filters	
  

Namepsace management 
Space Overhead	



41 

HARDFS with Bloom filter	


 incurs little space overhead (2.6%)	





Recovery Time	



42 

1	
  

10	
  

100	
  

1000	
  

10000	
  

200K	
   400K	
   600K	
   800K	
   1000K	
  Re
co
ve
ry
	
  T
im

e	
  
(s
ec
on

ds
)	
  

File	
  system	
  size	
  (number	
  of	
  files)	
  

Reboot	
   Micro-­‐recovery	
   OpGmized	
  Micro-­‐recovery	
  

•  Rebooting NameNode is expensive	


•  Micro-recovery is 3 order of magnitude faster	





Complexity (LOC)	



Functionality	

 HDFS	

 HARDFS	



Namespace management	

 10114	

 1751	

 17%	



Replica management	

 2342	

 934	

 40%	



Read/write protocol	

 5050	

 944	

 19%	



Others	

 13339	

 -	

 -	



43 

•  Lightweight versions are smaller	





Injecting software bugs	


Bug	

 Year	

 Priority	

 Description	

 HARDFS	



HADOOP-1135	

 2007	

 Major	

 Blocks in block report wrongly 
marked for deletion	

 ✔	



HADOOP-3002 	

 2008	

 Blocker	

 Blocks removed during safemode 	

 ✔	


HDFS-900 	

 2010	

 Blocker	

 Valid replica deleted rather than 

corrupt replica 	

 ✔	


HDFS-1250 	

 2010	

 Major	

 Namenode processes block 

report from dead datanode 	

 ✔	


HDFS-3087 	

 2012	

 Critical	

 Decommission before replication 

during namenode restart 	

 ✔	



44 



Conclusion	



q Crashing is good	



q To die (and be reborn) is better than to lie	



q But lies do happen in reality	



q HARDFS turns lies into crashes	



q Leverages existing crash recovery techniques 
to resurrect 	



45 



Thank you!���
Questions?	



46 

http://research.cs.wisc.edu/adsl/	



http://ucare.cs.uchicago.edu/	



http://wisdom.cs.wisc.edu/	




