HARDFS:
Hardening HDFS with

Selective and Lightweight Versioning

/;(bﬁf@);\ TTTTTTTTTTTTT Thanh Do, Tyler Harter, Yingchao Liu,
‘\ /' WISCONS[N Andrea C. Arpaci-Dusseau,

WY — waoison

and Remzi H. Arpaci-Dusseau

Haryadi S. Gunawi

Cloud Reliability

0 Cloud systems
= Complex software
* Thousands of commodity machines
= 'Rare failures become frequent ” [Hamilton]

3 Failure detection and recovery

= “... has to come from the software” [Dean]
= “... must be a first-class operation” [Ramakrishnan et al.]

Fail-stop failures

dMachine crashes, disk failures
O Pretty much handled

0 Current systems have sophisticated crash-
recovery machineries

= Data replication

" Logging
= Fail-over

Fail-silent failures

0 Exhibits incorrect behaviors instead of crashing
0 Caused by memory corruption or software bugs

A Crash recovery is useless if fault can spread

o

MEN Y

Workers

Fail-silent failure headlines
2GIGAOm

(e |- APPLE CLEANTECH CLOUD DATA EUROPE MOBILE VIDEO

Jul 20,2008 - 7:46PM PT

S3 Outage Highlights

Fraglhty of Web Services

Home » .NET p Azure

Gmail data loss bug causes complete data loss, calls for tape
backups
By Chris Alexander, published on 02 Mar 2011 | Filed in m ¢ 0Comments "% PDF

Q +1| W Tweet EjLike 1

Current approaches

Replicated state machine

N-Versi :
using BFT library O ersion programing

[Agree? W

* High resource consumption
* High engineering effort
* Rare deployment

Selective and Lightweight
Versioning (SLEEVE)

Master ®
Reloadlng stat
during re
- Trusted

sources

0 2" version models basic protocols of the system
0 Detects and isolates fail-silent behaviors

3 Exploits crash recovery machinery for recovery

Selective and lightweight
versioning (SLEEVE)

Q Selective
= Goal: small engineering effort

" Protects important parts
- Bug sensitive
- Frequently changed
- Currently unprotected

a Lightweight

= Avoids replicating full state

" Encodes states to reduce space

HARDFS
JOHARDFS - hardened version HDFS:

= Namespace management
= Replica management
= Read/write protocol

OHARDFS detects and recovers from:

= 90% of the faults caused by random memory corruption
= [00% of the faults caused by targeted memory corruption
= 5 injected software bugs

A Fast recovery using micro-recovery
= 3 orders of magnitude faster than full reboot

ALittle space and performance overhead

Outline

v Introduction
JHARDFS Design
OHARDFS Implementation
a Evaluation

dConclusion

10

Case study:
namespace integrity

NameNode

NameNode

|
i NameNode
|
i

exists(F
| Cli%

No

-

Create(F) exists(F)

Trusted
source

Normal Operation ' Corrupted HDFS ! HARDFS

11

SLEEVE layer components

* Interposition module
¢ State manager
* Action verifier
* Recovery module

12

State manager

0 Replicates subset of state of the main version
= Directory entries without modification time

0 Adds new state incrementally
= Adds permissions for security checks

a Understands semantics of various protocol
messages and thread events to update state

correctly

0 Compresses state using compact encoding

13

Naive: Full replication

. >§;E 100% memory overhead

0 HDFS master manages millions of files

2 100% memory overhead reduces HDFS
master scalability [;login; I 1]

14

Lightweight:
Counting Bloom Filters

0 Space-efficient data structure

2 Supports 3 APlIs
= insert(“A fact”)
= delete(“A fact”)
= exists(“A fact”)

15

Lightweight:
Counting Bloom Filters

“Fis 10 bytes” “Give me length of F”

sl Disagreement

detected!

exists(“F is 5 bytes”) 2 NO

3 Suitable for boolean checking
" Does F exist!?

* Does F has length X?
= Has block B been allocated?

insert("F is 10 bytes”)

16

Challenges of using
Counting Bloom Filters

0 Hard to check stateful system

0 False positives

17

Non-boolean verification

“F is 20 bytes”

Before

Bloom filter does
not support this API

X = returnSize(F)
delete(F:X)
insert(F:20)

After

18

Non-boolean verification

Fis 20 bytes™ A ck-Then-Check

X € MainVersion.returnSize(F);
IF exists(F:X)

delete(F:X);
insert(F:20);

ELSE

initiate recovery;
Before After

19

Stateful verification

Ask Then Check

|
‘ Checking stateful systems
|

Bloom Filter (boolean verification)

20

Dealing with False positive

0 Bloom filters can give false positive
= 4 per billion
= | false positive per month (given 100 op/s)

a Only leads to unnecessary recovery

Reloading
state

Trusted
source

21

Outline

v Introduction

JHARDFS Design
v" Lightweight
= Selective
= Recovery

OHARDFS Implementation
3 Evaluation

2 Conclusion

22

Selective Checks
HDFS Master

create(F)

exists(F)

Disagreement detected!

PU@ES X < mainVersion.exists(F);
Y <& bloomFilter.exists(F);
If X !=Y then

Operation log

handleDisagreement();

0 Goals: small engineering effort
0 Selectively chooses namespace protection

O Excludes security checks 2

Incorrect action examples

txCreate(F) reject

— —
Normal correct action Corrupt action Missing action
’ Create(D kdir(D)
|threate(r) l tXCrezfte(D/.
‘ txMkdir(D)
= .
_

Orphan action Out-of-order action

2

Action verifier

a Set of micro-checks to detect incorrect
actions of the main version

a Mechanisms:
= Expected-action list
= Actions dependency checking
* Timeout
* Domain knowledge to handle disagreement

25

Outline

v Introduction

JHARDFS Design
v" Lightweight
v" Selective
1 Recovery

OHARDFS Implementation
3 Evaluation

2 Conclusion

26

Recovery

Reloading stat
during reps

Trusted
sources

A Crash is good provided no fault propagation
d Detects and turns bad behaviors into crashes

3 Exploits HDFS crash recovery machineries

27

HARDFS Recovery

3 Full recovery (crash and reboot)

3 Micro-recovery

= Repairing the main version
= Repairing the 2" version

28

Crash and Reboot
@
.)

.

3 Full state is reconstructed from trusted sources

Reloading
Full state

A Full recovery may be expensive
= Restarting an HDFS master could take hours

29

Micro-recovery

e . ®:
] -

0 Repairs only corrupted state from trusted sources

0 Falls back to full reboot when micro-recovery fails

30

Repairing main version

-

U

2"dVersion

F:100

~N

| F:100 |

Trusted source: checkpoint file

Direct update

F:

€< F:100

31

Repairing 29 version

-

U

2"dVersion

F: 00

F:100

Trusted source: checkpoint file

~
Must:
[. Delete(“F is 200 bytes”)
) 2.Insert{*Fis-+80 bytes”)
Solution:

|. Start with an empty BF
2. Add facts as they are verified

32

Outline

v Introduction

v HARDFS Design

JHARDFS Implementation
2 Evaluation

dConclusion

33

Implementation

0 Hardens three functionalities of HDFS

* Namespace management (HARDFS-N)
= Replica management (HARDFS-R)
= Read/write protocol of datanodes (HARDFS-D)

0 Uses 3 Bloom filters API

= insert(“a fact”), delete(““a fact”), exists(“a fact”)

2 Uses ask-then-check for non-boolean
verification

34

Protecting
namespace integrity

0 Guards namespace structures necessary for

reaching data:

= File hierarchy

* File-to-block mapping
= File length information

A Detects and recovers from namespace-

related problems:

= Corrupt file-to-block mapping
* Unreachable files

35

Namespace management

Create(F): Entry:
Client request NN to create F If (F) Then reject;
Else

(F);

generateAction(txCreate[F]);

Return: check response;

AddBlock(F): Entry:
client requests NN to allocate F:-X = (F);
a block to file F Return:
B = addBlk(F);
If (F) &! (B) Then
X'=X U {B}
(F:X);
(F:X")
(B@O);

Else declare error;

Outline

v Introduction

v HARDFS Design

~ HARDFS Imp

d Evaluation anc

ementation

Conclusion

37

Evaluation

2 Is HARDFS robust against fail-silent faults?

0 How much time and space overhead incurred?

3 Is micro-recovery efficient?

d How much engineering effort required?

38

Random memory
corruption results

Outcome HDFS
Silent failure |17
Detect and reboot -
Detect and micro-recover -
Crash 133
Hang 22

No problem observed 728

HARDFS
9

140

107

268

|6

460

Q # fail-silent failures reduced by factor of 10

3 Crash happens twice as often

Silent failures

FIELD

pathname

replication
modification time
permission

block size

HDFS

HARDFS

40

Namepsace management
Space Overhead

800
= 700
~§— 600
ke
-lé 500
2 400
©
=300
o
€ 200 —

]
e x Bl 0l N
0 -
pA0 0] ¢ 400K (5100] ¢ 800K 1000K

File system size (number of files)
HDFS HARDFS + Concrete State ™ HARDFS + Bloom Filters

_41

Recovery Time

10000

1000

100

10 l
: = n 0 8

PA0[0] 4 400K 600K 800K 1[0]0]0] ¢
File system size (number of files)

Recovery Time (seconds)

Reboot ™ Micro-recovery B Optimized Micro-recovery

_

Complexity (LOC)

Functionality HDFS| HARDFS

Namespace management 1751 1 7%

Replica management 934 40%

Read/write protocol 244 19%

Others

43

Injecting software bugs

Bug
HADOOP-1 135

HADOOP-3002

HDFS-900

HDFS-1250

HDFS-3087

Year

Priority

Major
Blocker
Blocker
Major

Critical

Description

Blocks in block report wrongly
marked for deletion

Blocks removed during safemode

Valid replica deleted rather than
corrupt replica

Namenode processes block
report from dead datanode

Decommission before replication
during namenode restart

44

Conclusion

3 Crashing is good

a0 To die (and be reborn) is better than to lie
0 But lies do happen in reality

0 HARDFS turns lies into crashes

0 Leverages existing crash recovery techniques
to resurrect

45

Thank you!
Questions?

» ©

A D S L

http://research.cs.wisc.edu/adsl/ http://wisdom.cs.wisc.edu/

http://ucare.cs.uchicago.edu/

46

