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Abstract

Virtualization is increasingly being used to address server man-
agement and administration issues like flexible resource allocation,
service isolation and workload migration. In a virtualized environ-
ment, the virtual machine monitor (VMM) is the primary resource
manager and is an attractive target for implementing system fea-
tures like scheduling, caching, and monitoring. However, the lack
of runtime information within the VMM about guest operating sys-
tems, sometimes called the semantic gap, is a significant obstacle
to efficiently implementing some kinds of services.

In this paper we explore techniques that can be used by a
VMM to passively infer useful information about a guest operating
system’s unified buffer cache and virtual memory system. We have
created a prototype implementation of these techniques inside the
Xen VMM called Geiger and show that it can accurately infer when
pages are inserted into and evicted from a system’s buffer cache.
We explore several nuances involved in passively implementing
eviction detection that have not previously been addressed, such
as the importance of tracking disk block liveness, the effect of file
system journaling, and the importance of accounting for the unified
caches found in modern operating systems.

Using case studies we show that the information provided by
Geiger enables a VMM to implement useful VMM-level services.
We implement a novel working set size estimator which allows

the VMM to make more informed memory allocation decisions.
We also show that a VMM can be used to drastically improve the
hit rate in remote storage caches by using eviction-based cache
placement without modifying the application or operating system
storage interface. Both case studies hint at a future where inference
techniques enable a broad new class of VMM-level functionality.

Categories and Subject Descriptors D.4.7 [Organization and
Design]

General Terms Design, Measurement, Performance

Keywords Virtual Machine, Inference
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1. Introduction

Virtualization technology is an increasingly common component in
server and desktop PC systems. As both software [13, 39] and hard-
ware [18, 20] support for low-overhead virtualization develops, and
as virtualization is included in popular commercial systems [3], we
expect virtualized computing environments to become ubiquitous.

As virtualization becomes prevalent, the virtual machine moni-
tor (VMM) naturally supplants the operating system as the primary
resource manager for the machine. Hence, the VMM becomes an
attractive target for implementing what would traditionally be con-
sidered operating system features like flexible resource manage-
ment [38], service and device driver isolation [15], load balanc-
ing [10], security monitoring [16, 24], and fault tolerance [5].

The transition of some functionality from the OS into the VMM
has many potential benefits. For example, because a guest operating
system is isolated from the VMM by the stable virtual hardware
interface, services implemented within a VMM can be portable
across many guest operating systems. Further, the VMM may be
the only place where innovative features can be inserted into a
system, because the guest operating system is legacy or closed-
source or both. Finally, in a virtualized environment, the VMM is
the only component that has total control over system resources and
can therefore likely make the most informed resource management
decisions.

Pushing functionality down one layer in the software stack into
the VMM has disadvantages as well. One significant problem is the
lack of higher-level knowledge within the VMM, usually referred
to as a semantic gap [7]. Previous work in virtualized environments
has partially recognized this dilemma, and researchers have devel-
oped techniques to infer information about how guests utilize vir-
tual hardware resources [6, 30, 38]. These techniques are useful
because they allow a VMM to manage the resources of a system
more effectively (e.g., by reallocating an otherwise idle page in one
virtual machine to a different virtual machine that could use it [38]).

This paper describes techniques that can be used by a VMM
to infer [1] information about one performance-critical software
component, the operating system buffer cache and virtual memory
system. Specifically, we show how a VMM can carefully observe
guest operating system interactions with virtual hardware like the
MMU and storage devices and detect when pages are inserted into
or evicted from the operating system buffer cache.

Geiger is a prototype implementation of these techniques within
the Xen virtual machine monitor [13]. In this paper, we discuss the
details of Geiger’s implementation and perform a careful evaluation
of Geiger’s eviction detection techniques. A few of Geiger’s infer-
encing techniques within the VMM are similar to those used by
Chen et al. within a pseudo-device driver [9]. Hence, our evaluation
focuses on which of Geiger’s new techniques are needed in differ-
ent circumstances. First, we show that the unified buffer caches and
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virtual memory systems found in modern operating systems require
the VMM to track not only disk traffic, but memory allocations as
well. Second, we show that a VMM must take basic storage system
behavior into account to accurately detect cache eviction. For ex-
ample, the VMM must track whether a particular data block is live
or dead on disk in order to avoid reporting many spurious evictions.
We also show that journaling file systems, such as ext3 in Linux,
require the VMM to distinguish between writes to the journal and
writes to other parts of storage to avoid an aliasing problem that
leads to false eviction reporting. In summary, passively detecting
cache events within modern operating systems requires new sophis-
tication. Without these techniques, passive inferencing can result in
inaccurate information which can be worse than no information at
all.

Via case studies, we demonstrate how the inferred eviction in-
formation provided by Geiger can enable useful services inside
a VMM. In the first case study we implement a novel, VMM-
based working set size estimator that complements existing tech-
niques [38] by allowing estimation in the case that a virtual ma-
chine is thrashing. A second study explores how Geiger-inferred
evictions can be used by a VMM to enable remote storage caches
to implement eviction-based cache placement [40] without chang-
ing the application or operating system storage interface, hence en-
hancing the adoption of this feature.

The rest of this paper is organized as follows. We begin by pre-
senting some extended motivation for why eviction information is
useful and address related work in Section 2. In Section 3, we de-
scribe the techniques used by Geiger in detail. Section 4 discusses
the implementation of Geiger and in Section 5 we evaluate the ac-
curacy and overhead of our prototype Geiger implementation. Sec-
tions 6 and 7 discuss our two case studies. Finally, in Section 8 we
summarize and conclude.

2. Motivation and Related Work

It is useful for a VMM to understand how its hosted virtual ma-
chines use memory. In this section, we describe two different con-
texts where a VMM can exploit information about buffer cache pro-
motion and eviction events.

2.1 Working Set Size

In a virtualized environment, knowing the working set size [11, 12]
of a virtual machine is useful for allocating the appropriate amount
of memory to it. As hosted environments become more popular, it
will become more and more common for many VMs to be running
simultaneously on the same physical host. In this situation, know-
ing the working set size of each VM allows the VMM to allocate, or
dynamically re-allocate, an appropriate amount of memory to each
competing VM. When migrating VMs [10, 29], for example in a
grid computing environment [14, 41], working set size information
enables the job scheduler to intelligently select a new host with an
adequate amount of available memory.

Techniques for estimating the working set size of a virtual ma-
chine have been explored by Waldspurger and are part of the VM-
ware ESX Server [38] product. However, the ESX server technique
can only determine the working set size for virtual machines that
are using less than their full allocation. If a guest begins to thrash,
the sampling technique used by ESX server simply reports a work-
ing set that is 100% of the VM’s memory allocation, when in fact it
is larger. Therefore, to determine the true working set size, the ESX
technique would need to use trial and error: the VMM would re-
peatedly give a thrashing virtual machine incrementally more mem-
ory and re-measure the working set size until it drops below 100%.
If the system does not contain enough physical memory to accom-
modate the full working set, then even this trial and error method
will fail.

In contrast, if the VMM can detect the eviction events of each
virtual machine, the VMM can directly model the hit rate of each
virtual machine as a function of the amount of memory. As a
result, the VMM can quickly and efficiently determine how much
physical memory to give each competing virtual machine or where
to migrate a virtual machine.

2.2 Secondary-level Caching

In a virtualized environment, knowing the contents of the OS buffer
cache is useful when implementing an effective secondary-level
cache. For example, when multiple VMs run on the same machine,
the VMM can manage a shared secondary cache in its own memory,
increasing the utilization of memory when the VMs share pages [6].
Additionally, when the hosted OS is a legacy system that cannot
address a large amount of memory, a secondary cache can enable
the legacy OS to exceed its natural addressing limits. Finally, the
VMM can explicitly communicate with a remote storage server
cache, informing it of which pages are currently cached within each
VM [40].

Designing a secondary cache management policy is non-trivial.
Secondary storage caches exhibit less reference locality than client
caches because the reference stream is filtered through the client
cache [25]. This, plus the fact that secondary storage caches are
often about the same size as client caches has led to innovations
in cache replacement policies [42] and in cache placement poli-
cies [40]. One promising placement policy, called “eviction-based
placement”, inserts blocks into the secondary cache only when they
have been evicted from the client cache. This approach tends to
make the caches overlap less and leads to more effective secondary
cache utilization [9, 40]. Eviction-based placement is similar to
micro-architectural victim caches in the processor cache hierar-
chy [23].

If one is willing to modify the OS, then eviction-based cache
placement is relatively straight-forward. Wong et al. [40] extend
the block-based storage interface with a DEMOTE operation that
explicitly notifies interested parties, like remote storage caches,
when pages are evicted from client caches. Our goal is not to
modify the OS, hence, the VMM instead uses passive techniques
to infer that a page has been evicted from the OS page cache; the
VMM itself can then explicitly notify the storage cache.

Passive eviction detection has been explored to some extent for
exclusive caching in storage systems. For example, X-RAY [2]
uses file system semantic information (e.g., which storage blocks
contain inodes) to snoop on updates to a file’s accessed time field.
Knowing which files have been recently accessed allows X-RAY to
build an approximate model of a client’s cache. However, X-RAY
is somewhat limited in its inferences because the storage system
only has access to the I/O block stream outside the OS.

Other exclusive caching work has assumed that one has access
to more OS information; for example, Chen et al. [8, 9] perform
their inferencing within a pseudo-device driver that has access to
the addresses of the memory pages that are being read and written.
Thus, they are able to infer that an eviction has occurred when a
memory page that is storing disk data is reused for other disk data.

The Geiger approach is most similar to that of Chen et al., but
uses additional information available to a VMM to improve its abil-
ity to infer cache events. Geiger builds upon previous work in three
important ways. First, Geiger handles guest operating systems that
implement a unified buffer cache and virtual memory system. With
a unified buffer cache, events other than disk I/O can evict pages;
thus, Geiger contains new techniques to handle when anonymous
memory allocation causes cache evictions. Second, Geiger recog-
nizes when blocks on disk are freed. If a block is free on disk, reuse
of a memory buffer that recently held its contents does not imply
eviction; this distinction is important as it is counterproductive to
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cache blocks the file system believes are free. Third, Geiger sup-
ports journaling file systems. When the file system writes the same
block to two distinct locations on disk, as occurs with a journal-
ing file system, Geiger avoids reporting false evictions. Thus, with
these three additional techniques, Geiger is able to handle the range
of situations that occur in modern operating systems.

3. Geiger Techniques

In this section we discuss the techniques used by Geiger. We begin
by providing relevant background about virtual machine monitors,
and continue by describing the basic techniques Geiger uses to infer
page cache promotion and eviction. We then describe how Geiger
performs more complex inferences, in particular, how it handles
unified buffer caches and virtual memory systems that are present
in all modern operating systems, and how it handles issues that arise
due to storage system interactions.

3.1 Background

Virtualization is a well studied technique [17] that has somewhat
recently been revitalized in the ubiquitous PC environment [6, 33,
38, 39]. In a virtualized environment, a thin layer of software
known as the virtual machine monitor (VMM) virtualizes some
components of a host computer system allowing one or more guest
operating systems to safely share available resources transparently.

A key feature of a virtualized environment is that guest operat-
ing systems execute using the unprivileged mode of the processor
while the VMM runs with full privilege. Hence, guest OS accesses
to sensitive system components (e.g., the MMU and I/O peripher-
als) cause an exception and control is transferred to the VMM. At
this point, the VMM can decide the appropriate action (e.g., em-
ulate the behavior of the privileged hardware or operation in soft-
ware).

In this paper, we take advantage of these VMM entry points to
observe interesting OS activity. For example, Geiger observes ar-
chitecturally visible events such as page faults, page table updates,
disk reads, and disk writes to infer the occurrence of a buffer cache
eviction or promotion. One major benefit of observing only these
entry points is performance; adding a small piece of observation
code at these points induces little or no overhead.

3.2 Basic Techniques

Buffer cache promotion occurs when a disk page is added to the
cache. Buffer cache eviction occurs when a cache page is freed
by the operating system and its previous contents remain available
to be reloaded from disk. For example, an eviction occurs if the
contents of an anonymous page are written to a swap partition
and then the page is freed. Similarly, an eviction occurs if a page
that was read from the file system is later freed without writing
anything back to disk, since the data can be reloaded from the
original location on disk. However, an eviction does not occur if
the OS frees a page and its contents are lost (e.g., an anonymous
page when its associated process exits).

To detect promotion and eviction, Geiger performs two tasks.
First, Geiger tracks whether the contents of a page are available on
disk and, if so, where on disk the contents are stored. We call the on-
disk location associated with a memory page the page’s Associated
Disk Location (ADL). Second, Geiger must detect when a page is
freed by the OS. We describe each of these steps in turn.

3.2.1 Associated Disk Locations

Geiger associates a disk location with each physical memory page,
whenever appropriate. An associated disk location (ADL) is simply
the pair <device, block offset>, representing the most
recent disk location with which a VMM can associate the page.

A VMM associates a disk location with a memory page whenever
that page is involved in a disk read or write operation. For example,
if a page is the target of a read from disk location A, the page
becomes associated with A. Similarly, if a page is the source of
a write to disk location B the page becomes associated with B.
These associations persist until replaced by another association, the
memory page is freed, or the relevant disk blocks are freed.

Since the VMM virtualizes all disk I/O, disk reads and writes
initiated by a guest are explicitly visible to the VMM and no special
action on the part of the VMM is required to establish the ADL of a
page. However, to correctly invalidate an ADL when the disk block,
to which it refers, is no longer in use requires detecting when the
disk block is freed. We discuss this further in Section 3.4.

3.2.2 Detecting Page Reuse

Geiger must also determine when a memory page has been freed by
the OS. However, the guest OS does not explicitly notify the VMM
when it frees a page. Often the only difference between an active
and a free page is an entry in a private OS data structure, such
as a free list or bitmap. We assume that the VMM does not have
the detailed, OS-specific information required to locate or interpret
these data structures. Hence, instead of detecting that a page has
been freed, Geiger detects that a page has been reused. Since reuse
implies that a page was freed between uses, it is an appropriate
proxy for the page free event.

Geiger uses numerous heuristics to detect that a page has been
reused. Each heuristic corresponds to a different scenario in which
a guest OS allocates a page of memory. If Geiger detects a page
allocation and the newly allocated page has a current ADL, then
Geiger signals that the previous contents of the page, as defined by
the ADL, have been evicted.

The two most basic techniques used by Geiger are monitoring
disk reads and disk writes. This builds on the previous work of
Chen et al. [9] which monitors reads and writes in a device driver
within an OS.

Disk Read: Geiger uses disk reads to infer that a new page may
have been allocated. When a page is read from disk, a new page is
allocated in the OS buffer cache. If the allocated page has a current
ADL that refers to a different disk location than the one currently
being read, Geiger reports that the page’s previous contents have
been evicted. The ADL of the affected page is updated to point to
the new disk location as a consequence of this kind of eviction.

Disk Write: Geiger uses disk writes to infer that a new page may
have been allocated. If a full page of data is written to disk and the
page does not already reside in the page cache, then the OS may
allocate a new page to buffer the data until it is asynchronously
written to disk. Geiger detects this case by observing all disk writes
and signaling an eviction if the write source is a page with a current
ADL that is different than the target disk location of the write. Note
that if a previous read or write caused the disk block to already exist
in the cache, Geiger will not erroneously signal a duplicate eviction
since the page’s ADL will not change. As with the read-eviction
heuristic, the ADL of the affected page is updated to refer to the
target disk location.

3.3 Techniques for Unified Caches

Techniques from previous research [9] work well with old-style
file system buffer caches, which were kept distinct from the vir-
tual memory system. However, virtually all modern operating sys-
tems, including Linux, *BSD, Solaris, and Windows, have a unified
buffer cache and virtual memory system. Unification complicates
inferences: Geiger must be able to detect page reuse for additional
cases associated with the virtual memory system. Hence, we intro-
duce two new detection techniques.
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Microbenchmark Description

Read Evict Sequentially reads a section of a file larger than available memory multiple times
Write Evict Sequentially writes a file larger than available memory. Repeated multiple times.
COW Evict Allocates a memory buffer approximately the size of available physical memory, then writes to

each virtual page to ensure a physical page is allocated, then forks and writes to each page in the child.
Allocation Evict Allocates a memory buffer that exceeds the size of available memory and

writes to each virtual page to ensure a page is allocated.

Figure 1. Microbenchmark Workloads. This table describes the four microbenchmarks used to isolate a specific type of page eviction.

Application Description Read % Write% COW% Alloc%

Dbench [35] File system benchmark simulating load on a network file server 41.13% 58.85% 0.00% 0.00%
Mogrify [19] Scales and converts a large bitmap image 53.22% 22.31% 0.01% 24.25%
OSDL-DBT1 [26] TPC-W-like web commerce benchmark 77.02% 2.14% 0.54% 20.29%

simulating web purchase transactions in an online store.
SPC Web Search 2 [32] Storage performance council block device traces 99.6 % 0.03% 0.00% 0.00%

from a web search engine server.
Traces are replayed to a real file system.

Figure 2. Application Workloads. This table describes each of the four application workloads and reports the percentage of total eviction events caused
by each eviction type.

Copy On Write: Copy-on-write (COW) is a technique widely
used in operating systems to implement efficient read sharing of
memory. A page shared using COW is marked read-only in each
process’s virtual address space that shares it. When one of these
processes attempts to write to a COW-shared page, the action
causes a page fault. The operating system then transparently al-
locates a new, private page and copies the data from the old page
into the new page. Subsequently, a new writable virtual memory
mapping is established which refers to the new page. Because the
private copy requires allocation of a free page, it can lead to page
reuse.

Geiger detects page reuse that occurs as a result of COW by
observing page faults and page table updates. When Geiger detects
a page fault whose cause is a write into a read-only page, it saves
the affected virtual address and page table entry in a small queue.
If, a short time later, the guest OS creates a new writable mapping
for the same virtual address, but a different physical page, Geiger
infers that the new physical page was newly allocated. If the newly
allocated page has an active ADL, then Geiger signals an eviction.
This heuristic clears the ADL of the newly allocated page because it
is a modified private copy of an existing page and is not associated
with any disk location.

Allocation: Most modern operating systems allocate memory
lazily. When an application requests memory (e.g., using brk or
an anonymous mmap), the OS does not immediately allocate phys-
ical memory; instead the virtual address range is “reserved” and
physical memory is allocated on-demand when the page is actually
accessed. This property means that physical memory allocation
nearly always occurs in the context of servicing a page fault.

Similar to the COW heuristic, Geiger observes page faults that
are due to a guest accessing a virtual page that has no virtual-
to-physical mapping and saves the affected virtual address in a
small queue. If, a short time later, the guest OS creates a new
writable mapping for the faulting virtual address, Geiger infers a
page allocation. If the newly allocated physical page has a current
ADL, then Geiger signals an eviction.

3.4 Techniques for Storage

Storage systems also introduce some nuances into the inferences
made by Geiger. In particular, file system features like journaling
lead to an aliasing problem; further, the fact that disk blocks can be

deleted leads to the problem of liveness detection. We now describe
these issues and how Geiger handles them in turn.

3.4.1 Journaling

The basic write heuristic signals an eviction whenever the contents
of a page that has an ADL are written to a location on disk which
does not match that ADL. For example if a page has ADL A and
is written to disk location B an eviction will be reported for the
contents of disk location A. The basic write heuristic over-reports
evictions in cases where data are written from the same buffer
cache page to multiple disk locations; we view this as an aliasing
problem, as the same page is wrongly associated with two disk
addresses.

Journaling file systems, such as Linux ext3 [36], ReiserFS [28],
JFS [4], and XFS [34], routinely write to two locations on disk from
the same cache page, namely the journal location and the fixed disk
location. In the worst-case journaling scenario, where both data and
metadata are first written to the journal, twice the actual number
of write evictions will be reported. In the more common case of
metadata-only journaling, a much smaller penalty is incurred.

The negative effect of journaling and virtual memory can be
mitigated if the VMM identifies reads and writes to the file system
journal. This is straightforward in most systems, since the journal
is either placed on a separate, easily identifiable partition or in a file
within a file system partition to which a reference is made from the
file system superblock [37]. Hence, to avoid the problem of journal
aliasing, Geiger monitors the disk addresses of write requests and
ignores writes directed to the journal.

3.4.2 Block Liveness

Geiger signals that a page has been evicted only if that page has a
current ADL. It is possible that the blocks to which an ADL refers
are deallocated on disk between the time that the ADL mapping is
first established and when Geiger detects that the associated page
has been reused. In this case, Geiger will falsely report an eviction,
because an ADL exists but the data to which the ADL refers have
been deallocated and are no longer accessible. This problem of
block liveness can lead to large numbers of false evictions for
workloads in which files are regularly deleted, truncated, or when
processes die that have significant parts of their virtual memory
swapped to disk.
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Figure 3. Eviction Inference Counts. The figure compares inferred vs. actual eviction counts over time for microbenchmarks that isolate each eviction type
inferred by Geiger.
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Figure 4. Eviction Lag. The figure shows the cumulative lag distribution for microbenchmarks that isolate each eviction type.

File systems: A virtual machine monitor can passively track file
system block liveness in the same way a smart disk system can track
block liveness [30]. The allocation state for each file system block
is typically noted in some on-disk structure like a bitmap. The file
system superblock, which is stored at a known, fixed location on
disk can be used to locate these bitmap structures. By examining
guest operating system writes to these on-disk areas, a VMM can
snoop on the file system to determine when disk blocks to which an
ADL refers have been freed. If the blocks to which an ADL refers
are deallocated, the ADL must be invalidated so that a future reuse
of the affected page is not misinterpreted as an eviction.

Implementing block liveness by observing only disk writes has
one significant drawback because of the often substantial lag be-
tween when a file system structure like an allocation bitmap is up-
dated in memory and when it is written to disk. In many operating
systems this interval can be 30 seconds or more. If Geiger does not
observe that the file system blocks, to which a page’s ADL points,
have been deallocated until after the page has been reused a false
eviction will occur. Hence, the timeliness of block deallocation no-
tification is important.

A VMM can improve the timeliness of block deallocation notifi-
cation by tracking updates to the in-memory versions of the alloca-
tion bitmaps. Given the known locations of the bitmaps, the VMM
can observe when bitmaps are loaded from disk into memory. At
that time, the VMM can mark all such buffers read-only. When a
guest updates an in-memory bitmap, a minor page fault will occur.
The VMM can observe that the fault is due to an attempted bitmap
update and respond by invalidating affected ADLs.

Geiger implements this style of in-memory block liveness track-
ing. Bitmap blocks are identified by reading and parsing the file
system superblock for known file system types. Pages used to cache
file system allocation bitmaps are marked read-only in memory by
Geiger. When a write to such a page is detected due to a page pro-
tection fault, the effect of the faulting instruction is emulated on
the guest memory and register state and the faulting instruction is
skipped; hence, every bitmap update is synchronously observed and
handled by the VMM. The overhead of block liveness tracking is
kept low in spite of additional minor page faults due to the rela-
tively low frequency of disk bitmap updates.

Like Sivathanu [31], we consider embedding file system layout
information, such as the format of the superblock, within a VMM
a reasonable technique. There are few commonly used file systems

and the on-disk data structure formats for those file systems change
slowly. A VMM can be provided with layout information for all
commonly used file systems and the information can be expected
to remain valid for a long time. The on-disk format of ext2, for
example, has not changed since its introduction in 1994. This is a
far longer interval than the typical system software upgrade cycle.

Swap space: The liveness tracking techniques Geiger uses for file
system partitions do not apply to disk space used as a swap area.
As a rule, swap space does not contain any on-disk data structures
that track block allocation because data in swap is not expected
to persist across system restarts. All swap allocation information
is managed exclusively in volatile system memory. There are two
swap liveness tracking techniques we have found to be effective
for some workloads in preventing false evictions due to ADLs that
point to deallocated swap space.

The first technique invalidates any ADL that points to a set of
disk blocks that is overwritten. When disk blocks are overwritten,
the data to which an ADL refers has been destroyed; hence, ADL
invalidation is appropriate. This technique is implemented by main-
taining a reverse mapping between cached disk blocks and ADLs.

The second technique makes use of implicitly obtained process
lifetime information like that provided by Antfarm [22]. Given
accurate information about guest OS processes and a mapping of
memory pages to the owning OS process, many ADLs can be
invalidated when the process exits. Specifically, an ADL from a
page belonging to a dead process that points to a swap space disk
block can be invalidated. This second technique appears promising
but has not been fully implemented in the current version of Geiger.

4. Implementation

Geiger is implemented as an extension to the Xen virtual machine
monitor version 2.0.7. Xen [13] is an open source virtual machine
monitor for the Intel x86 architecture. Xen provides a paravirtual-
ized [39] processor interface, which enables lower overhead virtu-
alization at the expense of porting system software. We explicitly
do not make use of this feature of Xen; hence, the mechanisms we
describe are equally applicable to a more conventional virtual ma-
chine monitor such as VMWare [33, 38].

Geiger consists of a set of patches to the Xen hypervisor and
Xen’s block device backends. Changes are concentrated in the han-
dlers for events like page faults, page table updates and block de-
vice reads and writes. The Geiger patches consist of approximately
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Workload False Neg % False Pos %

Read Evict 0.96% 0.58%
Write Evict 1.68% 0.03%
COW Evict 2.47% 1.45%
Alloc Evict 0.17% 0.17%

Figure 5. Microbenchmark Heuristic Accuracy. The table reports the
false positive and false negative ratios for the complete set of eviction
heuristics for each of the microbenchmark workloads.

Workload w/o Journal Opt w/ Journal Opt
F. Neg % F. Pos % F. Neg % F. Pos %

No Journal 1.68% 0.03% 1.68% 0.03%
Metadata 1.83% 0.33% 0.61% 0.08%
Data 1.43% 61.91% 2.51% 0.06%

Figure 6. Effect of Journaling. The table reports the false positive and
false negative ratios for the write-eviction microbenchmark workload when
run with no journaling, with metadata journaling (ordered mode), and data
journaling with the Linux ext3 file system. The table shows the benefits of
turning on the Geiger specialization to detect writes to the journal.

700 lines of code across three files. About 25 other files from the
Xen hypervisor and the Linux kernel required small changes in or-
der to implement instrumentation and tracing.

All experiments described in this paper were performed on a PC
with a 2.4 GHz Pentium IV processor, 2 GB of system memory, and
two WD1200BB ATA disk drives. We used Linux kernel version
2.6.11 in the Xen control domain and Linux kernel version 2.4.30
for all unprivileged domains. We use either the ext2 or ext3 file
system, depending upon the experiment. The Xen control domain is
configured with 512 MB of memory. Unless otherwise noted, each
unprivileged guest virtual machine is assigned 128 MB of memory.

5. Evaluation

In this section we evaluate the ability of Geiger to accurately infer
page cache evictions and promotions occurring within guest oper-
ating systems. We begin by describing our workloads and metrics;
we then evaluate Geiger using a set of four microbenchmarks and
four application workloads. We conclude by measuring the over-
heads that Geiger imposes on the system.

5.1 Workloads

Throughout the experimental evaluation of Geiger, we use two sets
of workloads. The first workload set consists of four microbench-
marks. Each of these four microbenchmarks have been constructed
to generate a specific type of page cache eviction: Read, Write,
Copy-On-Write (COW), or Allocate. Thus, these microbenchmarks
isolate Geiger’s ability to track evictions due to specific events. The
microbenchmarks are described in more detail in Figure 1.

The second set of workloads consists of four application bench-
marks. These represent more realistic workloads. Each workload
contains a mix of eviction types, whether read, write, COW, or
allocation. Figure 2 lists the application workloads as well as the
breakdown of eviction types generated by them. Thus, these appli-
cation workloads stress Geiger’s ability to track evictions that may
occur for several different reasons.

5.2 Metrics

Our methodology for evaluating the accuracy of Geiger is to com-
pare the trace of evictions signaled by Geiger to a trace of evic-
tions produced by the guest operating system; we have modified
the Linux kernel to generate this trace. Since the guest operating
system has complete information about which pages are evicted
and when, our comparison is against the ideal eviction detector.

Workload Geiger Opts False Neg % False Pos %

Dbench w/o block liveness 1.10% 30.23%
Dbench w/ block liveness 2.30% 5.72%
Mogrify w/o block liveness 0.05% 22.99%
Mogrify w/ block liveness 0.65% 2.46%
TPC-W 0.14% 3.12%
SPC Web 2 2.24% 0.32%

Figure 7. Application Heuristic Accuracy. The table reports the false
positive and false negative ratios for Geiger on the four application work-
loads. For the Dbench and Mogrify workloads, we evaluate Geiger both
without and with the optimizations to detect whether a block is live on disk.
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Figure 8. Geiger Runtime Overhead. The figure shows that Geiger
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inference heuristics.

The eviction records in both traces contain the physical memory
address, the disk address of the evicted data, and a time stamp.

We consider three different metrics for accuracy. The first metric
is simply the eviction count reported by Geiger compared to that
reported by the guest OS over time. The second metric is detection
lag, or the time between when a particular eviction takes place
in the OS and when it is detected by Geiger. Finally, the third
metric is the detection accuracy, which tracks the percentage of
records from the inferred and actual traces that match in a one-to-
one mapping; we report both the percentage of false negatives (i.e.,
actual evictions not detected by Geiger) and false positives (i.e.,
inferred evictions that did not correspond to OS-reported evictions).

5.3 Microbenchmarks

We begin by running workloads consisting of the four microbench-
marks. Figure 3 shows the resulting eviction count time-lines.
For all microbenchmarks, the eviction counts inferred by Geiger
closely match the actual OS counts; however, depending upon the
workload, some interesting differences may occur along the way.
For example, during the COW workload, the guest OS reclaims
pages in groups, leading to a slight stair-step eviction pattern;
Geiger’s inferences lag slightly behind in this case. In the write
workload, the guest OS begins evicting pages early and continues
to evict eagerly throughout the experiment; these pages are not
reused for some time. Because Geiger’s inferences are based on
page reuse, eviction is not detected until a page is reused, and in-
ferred evictions lag noticeably behind actual evictions when caused
by writes.

Figure 4 shows the cumulative distributions of eviction lag times
for each of the microbenchmarks. As expected, the lag times for
read, COW, and allocation eviction are concentrated at very small
values. However, the lag times for the write microbenchmark are
concentrated at about three seconds due to the operating system’s
eager reclamation behavior.
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Figure 5 reports Geiger’s detection accuracy in both false nega-
tives and false positives. For all workloads, false negatives are un-
common: at worst, fewer than 2.5% of the total number of evic-
tions are missed by Geiger. False positives are even less common:
at worst, Geiger over-reports 1.45% of its inferred evictions.

In our final microbenchmark experiment, we explore Geiger’s
ability to detect aliased writes to the file system journal. We use
the write workload to stress this detection. Figure 6 shows the
accuracy of Geiger with and without the specialization to disregard
write traffic to the file system journal. Without this specialization,
Geiger performs satisfactorily when journaling is disabled or when
only metadata is journaled (i.e., Linux ext3 ordered-mode); with
metadata journaling, relatively few blocks have aliases. However,
with data journaling, many blocks have aliases and, as a result,
more than half of the evictions reported by the un-specialized
Geiger are false positives. In contrast, the full version of Geiger
accurately handles all journaling modes of Linux ext3; even with
data journaling, Geiger has a false positive percentage of only
0.06%.

5.4 Application Benchmarks

We next consider workloads containing more realistic applications.
Figure 7 reports the detection accuracy of Geiger on these applica-
tion workloads. For all workloads, false negative ratios are small:
in the worst case, Geiger misses only 2.24% of the evictions re-
ported by the OS. However, the Dbench and Mogrify workloads
have interesting behavior regarding false positives.

5.4.1 Block Liveness

The Dbench and Mogrify workloads illustrate the benefit of having
Geiger attempt to track the liveness of each block on disk. Dbench
creates and deletes many files; as a result, many pages in memory
are reused for different files (and different disk blocks). Mogrify
causes large amounts of swap to be allocated and deallocated dur-
ing its execution. If the VMM uses only the change in association
between a memory page and its disk block to infer an eviction, then
the VMM concludes that many evictions have occurred that actu-
ally have not (i.e., many false positives). Thus, without live block
detection, Geiger has a 30.2% false positive rate for Dbench and a
23% false positive rate for Mogrify. However, when Geiger tracks
whether a particular disk block is free, it can detect when a page
is simply reused without the previous contents being evicted; as
a result, the false positive rate improves dramatically to 5.7% for
Dbench and 2.46% for Mogrify. Thus, to adequately handle delete-
intensive (or truncate-intensive) workloads, Geiger includes tech-
niques to track disk block liveness.

5.4.2 Limitations

As mentioned previously, we do not expect our current techniques
for tracking block liveness in swap space to be adequate in all
situations. To demonstrate this remaining problem, a microbench-
mark was crafted that results in large numbers of false positives
despite the best efforts of Geiger to track block liveness. The pro-
gram forces a large buffer (allocated using mmap) to be swapped
to disk and then the buffer is released. In Linux, as the buffer is
released, the associated swap space is also deallocated, but Geiger
does not detect that event. As additional memory is allocated by the
program, pages are reused whose ADLs point to deallocated swap
space resulting in an eviction false positive ratio of about 37%.

5.5 Overhead

Geiger observes events that are intrinsically visible to a VMM like
page faults, page table updates, and disk I/O. Except in the case
of disk block liveness tracking, no additional memory protection

Figure 9. MemRx Operation. The figure shows a schematic of the cache
simulation implemented by MemRx. A) When a page is evicted by a guest,
this event is detected by Geiger and an entry is added to the head of a series
of queues. B) If necessary, queue entries ripple from the tail of one queue to
the head of the next. C) Upon reload, the associated queue entry is removed
and an array entry associated with that queue is incremented. Each entry
tracks which sub-queue it appears in to enable fast depth estimation.

traps or I/O requests are caused by Geiger. Liveness tracking im-
poses one additional minor page fault for each disk bitmap update
which occur relatively rarely. Hence, we expect the runtime over-
head imposed by Geiger to be small. To validate this expectation,
we compare the runtime of workloads running on an unmodified
version of Xen to that of Geiger. We are interested in two per-
formance regimes. The first regime is the more common case, in
which a workload has sufficient memory and few evictions occur.
The second regime occurs when a machine is thrashing, since this
implies that many evictions are taking place and Geiger’s inference
mechanisms are being stressed.

We evaluate each of these four cases using two carefully cho-
sen workloads. Since Geiger interposes on code paths for han-
dling page faults, page table updates and disk I/O, we use the mi-
crobenchmark “allocation-evict” described in Figure 1 and Dbench
described in Figure 2. Allocation-evict causes many page faults
and page-table updates stressing that portion of Geiger’s infer-
ence machinery. Dbench causes a large number of file creations,
reads, writes, and deletes which exercise those portions of Geiger’s
heuristics.

Figure 8 shows the results of the experiment. Each value shown
is the average of five runs; the standard deviation is shown with
error bars. The largest observed overhead is 2.19%, which occurs
for a thrashing Dbench. For all cases, the results for Geiger and the
unmodified Xen are comparable.

Geiger requires some extra space per physical memory page to
track ADLs. In our prototype this amounts to 20 bytes per memory
page. In our test system, configured with 2 GB of physical memory,
a total of 10 MB of additional memory is allocated by the VMM,
leading to a space overhead of approximately 0.5%. If this space
overhead is a concern, it could be substantially reduced, given the
preallocated, fixed size, and sparsely-populated data structures of
our prototype.

5.6 Hardware Trends

Major microprocessor vendors like Intel, AMD, and IBM have be-
gun to include optional hardware virtualization features in their
server and desktop products to reduce the overhead imposed by
virtualization. Some of the new features can hide information from
the VMM in favor of reducing guest-to-VMM transitions. For ex-
ample, in some cases page faults and guest page table updates may
not cause the VMM to be invoked. Geiger uses page fault and page
table update information to detect cache eviction events and its
absence would impact Geiger’s functionality. In the future, new
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Benchmark Activity

FS Sequential Sequentially scan a 256 MB section
of a file system file 10 times

VM Sequential Sequentially scan 256 MB section
of allocated virtual memory 10 times

FS Random Randomly read page-sized blocks from
a 256 MB file system file two times

VM Random Randomly touch virtual memory pages from
256 MB virtual memory allocation 2 times

Figure 10. Calibrated Microbenchmarks. The table describes each of
the microbenchmarks used to evaluate VMM-MemRx.

techniques may be required to provide Geiger-like functionality on
the latest VMM-aware architectures.

5.7 Summary

In order to handle modern operating systems containing unified
system caches and journaling file systems, Geiger contains a num-
ber of sophisticated inferencing techniques. On microbenchmarks,
Geiger is highly accurate as measured by eviction counts and one-
to-one eviction accuracy; however, for write-intensive workloads,
Geiger does experience a significant lag in when it detects that an
eviction has occurred. On application workloads, Geiger also does
well. For some swap-intensive workloads, additional techniques
may be required to avoid detection of false evictions due to the
difficulty of tracking liveness within swap. We have shown that
Geiger’s full range of techniques are needed under different cir-
cumstances: COW and Allocation techniques are needed to handle
the Mogrify and TPC-W workloads given a unified buffer cache;
live block detection improves the accuracy of delete-intensive
workloads; finally, writes to the journal must be isolated to han-
dle file system data journaling.

6. Case study:

Working Set Size Estimation

The eviction detection techniques of Geiger are useful for imple-
menting a number of pieces of functionality. In our first case study,
we show how Geiger can be used to implement MemRx, a VMM
that tracks the working sets of its guest VMs. We begin by describ-
ing the implementation of MemRx and then present performance
results.

6.1 MemRx Implementation

Previous research by Waldspurger [38] for ESX Server has shown
how a VMM can determine the system working set size of a VM
whose memory footprint fits in physical memory. MemRx comple-
ments the ESX Server technique by enabling a VMM to determine
the working set size for a thrashing virtual machine.

MemRx accomplishes this using Geiger to observe the evictions
and subsequent reloads from the guest operating system buffer
cache. MemRx then quantifies the number of memory accesses that
would be transformed from misses into hits for several different
memory sizes. MemRx simulates the page cache behavior of a
virtual machine for each memory increment using a method similar
to Patterson et al.’s ghost buffering [27].

Figure 9 shows a schematic of the page cache simulation im-
plemented by MemRx. When a page is evicted, a reference to the
page’s location on disk is inserted at the head of a queue main-
tained in LRU order by MemRx. Subsequent evictions push previ-
ous references deeper in the queue. When a previously evicted page
is read from disk, the reference to that page is removed from the
queue and its distance (D) from the head of the queue is computed.
The distance is approximately equal to the number of evictions that

have taken place between that page’s eviction and its subsequent
reload. MemRx then uses (D) to compute the amount of memory
that would have been required to prevent the original eviction from
taking place as sizepage × (D + 1). This information is used to
compute a miss-ratio curve. The working set size can be read from
the miss-ratio curve by locating the curve’s primary knee.

6.2 Evaluation

We first evaluate the accuracy of MemRx by using it to measure
the working set size of microbenchmark workloads for which the
working set size is approximately known. Table 10 lists each of
the microbenchmarks and the actions they perform; the working
set size for each is approximately 256 MB and the virtual machine
is configured with 128 MB of memory. Second, we compare the
working set size predicted by MemRx to the working set size de-
termined by trial and error for more realistic application workloads,
in particular, Mogrify and Dbench.

Figure 11 shows the predicted and actual miss ratio curves for
the four microbenchmark workloads. The miss ratio curve shows
the fraction of the capacity cache misses occurring in the small-
est memory configuration (i.e., 128 MB) that remain misses in
larger memory configurations. The predicted curve is calculated
by MemRx using measurements taken during a single run at the
smallest memory configuration and then simulating the page cache
behavior of the guest operating system on-line for several larger
memory configurations in increments of 32 MB. The actual curve
is calculated by running the workload at each of the noted memory
sizes and counting actual capacity misses in the page cache.

These calibrated tests show that MemRx can locate the working
set size of simple workloads very accurately. The prediction made
by MemRx is identical to that found by direct measurement using
trial and error. The result is not surprising, because under these
simple workloads, Geiger incurs few eviction false positives.

Figure 12 shows the results for the two application workloads,
Mogrify and Dbench. The leftmost two graphs show the predicted
and actual miss ratio curves. In these cases, the inferred working set
size predicted by MemRx is slightly larger than the actual working
set size found using trial and error. To determine whether the dis-
crepancy was due to Geiger (e.g., false positive/negative evictions
or lag) or to MemRx (e.g., cache simulation error) we implemented
MemRx within Linux and compared the predicted and actual miss
ratio curves produced by that version. Within the operating system,
MemRx has access to precise eviction and promotion information,
which eliminates Geiger as a source of error. The rightmost two
graphs in Figure 12 show the miss ratio curves obtained for the
Mogrify and Dbench workloads using our operating system imple-
mentation of MemRx.

For the Dbench workload, the version of MemRx in the OS
shows the same deviation as the one produced by MemRx in the
VMM; this leads us to conclude that the cause of the deviation is
MemRx simulation error. MemRx models the guest buffer cache
using a strict LRU policy that does not exactly match the policy
used by Linux, which is something more akin to 2Q [21]. The
difference between the modeled policy and the true policy leads
to simulation errors like the one shown. In the case of Mogrify,
however, the OS-based miss ratio curve matches the actual curve
closely, leading us to believe that the error observed in the VMM-
predicted working set size is due to the small inference errors
imposed by Geiger and the granularity of the experiment.

In summary, the information provided by Geiger is useful for
enabling a VMM to estimate the working set sizes of thrashing
VMs. The predictions made by MemRx are accurate enough to be
highly useful when allocating memory between competing VMs
on a single machine or when selecting an appropriate target host
during virtual machine migration.
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Figure 11. VMM-MemRx Predicted vs. Actual Miss Ratio. The figure shows the miss ratio predicted by VMM-MemRx vs. the actual miss ratio measured
for varying memory sizes. The known working set of 256 MB is marked by a vertical dashed line.
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Figure 12. Application Predicted vs. Actual Miss Ratio. The figure shows the miss ratio curve predicted by MemRx vs. the actual miss ratio measured
for varying memory sizes for two application workloads. Results from MemRx implemented in the VMM (left) and MemRx implemented in the OS (right) are
shown.
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Figure 13. Secondary Cache Hit Ratio. The figure compares the cache hit ratio in a secondary storage cache for various workloads when demand
placement (Demand), eviction placement based on inferred evictions (Eviction-Buffer and Eviction-Geiger), and eviction placement based on actual evictions
(Eviction-OS) is used. Experiments are performed using cache sizes from 32 MB to 512 MB.

7. Case study:

Eviction-Based Cache Placement

In our second case study, we show how Geiger can be used to
convey eviction information to a secondary cache. The basic idea is
that the VMM uses Geiger to infer which pages have been evicted
from the OS buffer cache, then sends this information (e.g., with a
DEMOTE operation [40]) to the storage server, which is potentially
remote. The storage server uses this explicit information to perform
eviction-based cache placement.

7.1 Implementation

Our implementation of an eviction-based secondary cache has two
components. First, the VMM interposes on the virtual block device
interface provided by Xen to see the block request stream generated
by the workload. Second, the VMM uses Geiger to infer which
blocks have been evicted from the VM page cache; these events
are then communicated to the remote storage server. We simulate
the behavior of a storage server by using the actual trace gathered
from running Geiger for a given workload as input. We refer to our
approach as Eviction-Geiger.

To evaluate our implementation, we compare to three alterna-
tives. In the first approach (Eviction-OS) the operating system is
modified to report actual evictions; this represents the ideal case. In
the second approach (Eviction-Buffer), the VMM performs only
the eviction detections that are possible using client buffer ad-
dresses as used by Chen et al.(i.e.read and write evictions). Finally,
we simulate a storage cache that uses no information about client

evictions and performs traditional, demand-based placement. In all
cases we use an LRU-based replacement policy.

7.2 Evaluation

We use the application workloads listed in Figure 2 to evaluate
our VMM-implementation of eviction-based cache placement. For
each workload, we consider remote caches from 32 MB to 512 MB.
We evaluate the four placement policies: Eviction-OS, Eviction-
Geiger, Eviction-Buffer, and Demand. Our metric is cache hit ratio.

Figure 13 shows graphs of the cache hit ratio vs. cache size
for the four workloads and four cache policies. In all cases, OS
and Geiger eviction-based placement outperform demand-based
placement, sometimes significantly. The largest gains occur for
moderate cache sizes where the working set of the application fits
neither in the client cache nor in the storage cache individually,
but does fit within the aggregate cache. OS and Geiger eviction-
based placement are able to improve cache hit rate by as much
as 28 percentage points for these workloads. For example, under
the Mogrify workload using a secondary cache size of 96 MB, the
cache hit ratio goes from 14.9% under demand placement to 42.9%
when eviction-based placement is used. When the secondary cache
size is large enough to contain the full system working set, OS
and Geiger eviction-based placement perform similarly to demand-
based placement. In the case of SPC web search, the traces exhibit
almost no locality. The results are included for completeness only.

For one workload, Dbench, eviction-based placement with OS
support outperforms that with inferred evictions, even with Geiger.
For example, with a secondary cache size of 416 MB, we observe
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a difference in hit rates of about 15 percentage points. This per-
formance difference is due to the significant time lag between the
actual and inferred write-eviction events (approximately 2 seconds
for most events in this experiment). Because some inferred evic-
tions are delayed, the secondary cache loses the opportunity to
place a block prior to the block being referenced by the client, and
a cache miss occurs. However, the eviction-based approaches still
perform significantly better than demand-based placement.

Eviction-Geiger always performs as good or better than Eviction-
Buffer. In fact, Eviction-Buffer sometimes performs significantly
worse than straight-forward demand-based placement. The prob-
lem occurs because Eviction-Buffer may detect fewer evictions
than actually occur (i.e., large false negatives). For workloads, such
as Mogrify and TPC-W, where a significant number of non-I/O
based evictions occur, missing evictions lead to poorer overall
cache performance. Missing evictions are particularly a problem
with large secondary caches, because few blocks are placed effec-
tively, even though adequate cache space is available. In the case of
TPC-W, missing eviction events change the cache hit rate by about
10 percentage points, while under Mogrify the difference is about
40 points.

In summary, Geiger can be used effectively to notify a sec-
ondary cache of the evictions that have been performed by clients.
As confirmed in other studies [9, 8, 40], secondary caches using
eviction-based placement can perform much better than those using
demand-based placement. Our results show that the eviction infor-
mation provided by Geiger is nearly as good as that which could
be provided directly by the OS (if the OS were modified to do so).
The one exception occurs when a significant lag occurs in the time
between the actual eviction and the inference; however, even in this
case, Geiger enables much better hit rates than those with simple
demand-based placement. With eviction-based placement, it is es-
sential to not miss evictions in the clients; eviction detection based
only on I/O reads and writes can miss important evictions, leading
to hit rates that are actually worse than simple demand-based place-
ment. Therefore, the full set of techniques within Geiger should be
used for buffer cache inferences.

8. Conclusion

On backend servers and desktop PCs, virtualization is becoming
commonplace. As the virtual machine monitor becomes the sole
resource manager of a system, many pieces of interesting function-
ality will likely migrate from the operating system into the VMM.
The key to enabling new VMM-level functionality is information,
i.e., knowledge of OS-level constructs that are typically needed to
implement various features.

In this paper, we have explored the techniques required to make
inferences about when pages are added to or removed from the OS
buffer cache. We have found that certain key features of modern op-
erating systems cannot be ignored, including unified buffer caches
and virtual memory systems, journaling file systems, and disk block
liveness. Overall, our techniques are efficient, and allow us to im-
plement two useful prototype case studies: a working set size esti-
mator and eviction-based cache placement for second-level caches.

Inferring information across the boundary between a VMM and
its guest operating systems is a powerful technique that enables new
systems innovation to be implemented portably within a VMM.
The more accurate, timely, and general these techniques can be
made the more likely they can be successfully applied in the com-
mercial domain.
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