
Zettabyte Reliability with
Flexible End-to-end Data Integrity

Yupu Zhang, Daniel S. Myers, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Department of Computer Sciences, University of Wisconsin – Madison

{yupu,dsmyers,dusseau,remzi}@cs.wisc.edu

Abstract— We introduce flexible end-to-end data integrity for
storage systems, which enables each component along the I/O
path (e.g., memory, disk) to alter its protection scheme to meet the
performance and reliability demands of the system. We apply this
new concept to Zettabyte File System (ZFS) and build Zettabyte-
Reliable ZFS (Z2FS). Z2FS provides dynamical tradeoffs between
performance and protection and offers Zettabyte Reliability,
which is one undetected corruption per Zettabyte of data read.
We develop an analytical framework to evaluate reliability; the
protection approaches in Z2FS are built upon the foundations
of the framework. For comparison, we implement a straight-
forward End-to-End ZFS (E2ZFS) with the same protection
scheme for all components. Through analysis and experiment,
we show that Z2FS is able to achieve better overall performance
than E2ZFS, while still offering Zettabyte Reliability.

I. INTRODUCTION

Preserving data integrity is one of the most important

responsibilities of modern storage systems; not surprisingly,

many techniques have been developed and applied to improve

integrity over the years. For example, different checksums are

widely applied to many components, including disks [10],

system buses [5], and network protocols [6]. Redundancy,

especially in the form of RAID [30], is commonly used to

provide recovery.

Unfortunately, despite the presence of various protection

techniques, data corruption still occurs. Rare events such as

dropped writes or misdirected writes leave stale or corrupt

data on disk [1], [11], [32], [33]. Bits in memory get flipped

due to chip defects [19], [22], [36] or radiation [25], [47].

Software bugs are also a source of data corruption, arising

from low-level device drivers [41], system kernels [14], [18],

and file systems [44], [45]. Even worse, design flaws are not

uncommon and can lead to serious data loss or corruption [21].

While many features that storage systems provide require

great care and coordination across the many layers of the

system (e.g., performance), integrity checks for data protection

generally remain isolated within individual components. For

example, hard disks have built-in ECC for each sector [10],

but the ECCs are rarely exposed to the upper-level system;

TCP uses Internet checksums to protect data payload [6],

but only during the transmission. When data is transferred

across components, data is not protected and thus may become

silently corrupted.

A more comprehensive approach to data protection should

embrace the “end to end” philosophy [34]. In this approach,

checksums are generated by an application and percolate

through the entire storage system. When reading data, the ap-

plication can check whether the calculated checksum matches

the stored checksum, thus improving data integrity.

Unfortunately, the straight-forward end-to-end approach has

two drawbacks. The first is performance; depending on the

cost of checksum calculation, performance can suffer when

repeatedly accessing data from the in-memory page cache.

The second is timeliness; if a data block is corrupted in

memory before being flushed to disk, the corruption can only

be detected when it is later read by an application, which is

likely too late to recover from the corruption.

To address these issues, we propose a concept called flexible

end-to-end data integrity. We argue that it is not necessary for

all components on the I/O path to use the same checksum.

By carefully choosing different checksum for each component

(and perhaps altering said checksum over time), the system can

deliver better performance while still maintaining a high level

of protection.

To explore this flexible approach, we design and implement

flexible end-to-end data integrity within Zettabyte File System

[12], resulting a new variant which we call Zettabyte-reliable

ZFS (Z2FS). It exposes checksums to the application, and

passes checksums through the page cache down to the disk

system, thus enabling end-to-end verification. It uses two

techniques to provide flexible data protection. The first is

checksum chaining, which is needed to safely convert from

one checksum to another when crossing domains (e.g., when

moving from a stronger on-disk checksum to a weaker but

more performant in-memory one). The second is checksum

switching, which enables a component (e.g., memory) to

switch the checksum it is using dynamically, thus preserving a

high level of reliability for blocks that remain resident for ex-

tended periods of time. For comparison, we also develop End-

to-End ZFS (E2ZFS), which embraces the straight-forward

end-to-end protection and uses only one type of checksum

for both the page cache and disk.

Underlying Z2FS is an analytical framework that enables

us to understand reliability of storage systems against data

corruption. The framework takes models of devices and check-

sums used in a storage system as input, and calculates the

probability of undetected data corruption when reading a data

block from the system as a reliability metric. We define978-1-4799-0218-7/13/$31.00 c© 2013 IEEE

Zettabyte Reliability, one undetected corruption per Zettabyte

read, as a reliability goal of storage systems. Guided by the

reliability goal, we use the framework throughout the paper to

provide rationale behind flexible end-to-end data integrity.

Through fault injection experiments, we show that Z2FS is

able to detect and recover from corruption in time. Using both

controlled benchmarks as well as real-world traces, we demon-

strate that Z2FS is able to meet or exceed the performance of

E2ZFS while still providing Zettabyte reliability. Especially

for workloads dominated by warm reads, Z2FS ourperforms

E2ZFS by up to 17%.

The contribution of this paper are as follows:

• We propose the concept of flexible end-to-end data in-

tegrity, which dynamically trades off the reliability and

performance of a storage system by carefully choosing

checksums for data in different places in the stack and

changing checksums over time.

• We introduce an analytical framework to reason about

checksum choices based on the effectiveness of checksum

algorithms and corruption rate of devices. The framework

provides ways to evaluate and compare the overall relia-

bility of storage systems.

• We develop Z2FS, which provides end-to-end protec-

tion from application to disk with minimal performance

overhead. The design, implementation and evaluation of

Z2FS, combined with the reliability analysis using the

framework, demonstrate a holistic way to think about the

performance-reliability tradeoff in storage systems.

The rest of the paper is organized as follows. In Section II,

we introduce the framework for evaluating reliability of stor-

age systems. We then present the design and implementation

of E2ZFS and Z2FS in Section III and evaluate both systems

in Section IV. Finally, we discuss related work in Section V

and conclude in Section VI.

II. RELIABILITY OF STORAGE SYSTEMS WITH DATA

CORRUPTION

We now present a framework to analyze the reliability of

storage systems with data corruption. The framework uses

analytical models for each type of device and checksum in a

system to calculate a reliability metric in terms of probability

of undetected data corruption.

A. Overview

The reliability of a storage system can be evaluated based

on how likely corruption would occur. There are two types

of corruption: detected and undetected (silent data corruption,

SDC). Detected corruption is the case the system is built to

detect and may recover from, but SDC is what the system

is not prepared for. SDC does more harm in that it would be

treated as correct data and may further pollute other good data

(e.g., RAID reconstruction with corrupted data). Therefore, we

focus on the probability of SDC in storage system. To quantify

how likely a SDC would occur, we use the probability of

undetected data corruption (udc) when reading a data block

from the system Psys−udc as a reliability metric.

Psys−udc for a storage system depends on various devices,

each of which may experience corruptions caused by different

factors. Each device may employ different types of hardware

protection and the upper-level system or application may

add extra protection mechanisms. Therefore, we propose a

framework that takes a ground-up approach to derive the

system-level reliability metric from underlying devices.

The framework consists of models for devices and check-

sums. All models are built around the basic storage unit, a data

block of b bits. For a raw device D (with its own hardware-

level checksum), we are interested in how likely corruption

would occur to a block and escape from the detection of the

device’s checksum (Pc(D)). To detect such corruption, high-

level (software) checksums are usually applied on top of raw

device (henceafter, we will use “checksum” to indicate the

high-level checksum). Each data block has a checksum of k
bits. For a checksum C and device D, we focus on the device-

level probability of undetected corruption (Pudc(D, C)) when

the checksum is used to protect a data block on the device.

Devices with different checksums are connected in various

ways to form the whole system. A data block can pass through

or stay in several devices from the time it is born to the time

it is accessed. By considering all possible corruption scenarios

during this time period, we calculate the overall probability of

undetected data corruption when reading the data block from

the system (Psys−udc).

B. Models for Devices and Checksums

To demonstrate how to apply the framework, we present

models for devices and checksums that will be used throughout

the paper. We make assumptions (e.g., independence of bit

errors) to simplify our models such that we can focus on rea-

soning the reliability of storage systems within the framework;

discussion on more complex and accurate models is beyond

the scope of this paper.

1) Device Model: We consider two types of devices, hard

disks (dsk) and memory (mem) , and one type of corruption:

random bit flip. We assume the block size b is 32768 bit (4KB).

a) Hard Disks: Hard disks are a long-term storage

medium for data, and are known to be unreliable. Hard disks

can exhibit unusual behaviors because of hardware faults such

as latent sector errors [10], [35]. These errors can usually

be detected by disk ECC. The less-likely but more harmful

silent data corruption may come from hardware bit rot, buggy

firmware, or mechanic faults (such as dropped writes and

misdirected writes [11], [33]), causing random bit flips and

block corruption. These errors are not detectable by disk ECC.

Bit error rate (BER) is often used to characterize the

reliability of a hard disk. BER is defined as the number of

bit errors divided by the total number of bits transferred and

often refers to detected bit error (by disk ECC). For silent

corruption, we are more interested in the undetected bit error

rate (UBER), which is the rate of errors that have escaped from

ECC. Assuming each bit error in a data block is independent

and the number of bit errors follows a binomial distribution,

the probability of an undetected bit flip is equal to UBER.

Assuming there is at most one flip for each bit, the probability

of i bitflips in a b-bit block is:

Pc(dsk, i) =

(

b

i

)

(UBER)i(1 − UBER)b−i

Therefore, the probability of corruption in a block is the sum

of the probabilities of all possible bitflips (from exact 1 bitflip

to exact b bitflips):

Pc(dsk) =

b
∑

i=1

(

b

i

)

(UBER)i(1 − UBER)b−i

While BER is often reported by disk manufactures, ranging

from 10−14 to 10−16, there is no published data on UBER.

Rozier et al. estimated that the rate of undetected disk error

caused by far-off track writes and hardware bit corruption is

between 10−12 and 10−13 [33]. Although we do not know the

percentage of errors caused by either fault, we conservatively

assume that most are bit errors and thus we pick 10−12

as the UBER for current disks. In our study, we choose a

wider range for UBER, from 10−10 to 10−20, to cover more

reliability levels. To simplify the presentation, we define the

disk reliability index as −log10(UBER).

b) Memory: Memory (DRAM) is mainly used to cache

data for performance. Bit flips are the main corruption type,

probably due to chip faults or external radiation [25], [47].

Earlier studies show that memory errors can occur at a rate

of 10 to 360 errors/year/GB [27], [28], [37] and suspect that

most errors are soft errors, which are transient. However,

recent studies show that memory errors occur more frequently

[19], [22], [36] and are probably dominated by hard errors

(actual device defects). If a memory module has ECC or more

complex codes such as chipkill [20], then both soft errors and

hard errors within the capability of the codes can be detected

or corrected. However, corruption caused by software bugs

[39] are not detectable by these hardware codes.

For memory, the error rate is usually measured as failure

in time (FIT) per Mbit. Assuming each failure is a bitflip, 1

FIT/Mbit means there is one bitflip in one billion hours per

Mbit. Assuming each bitflip is independent and the same bit

can only experience one flip, we model the number of bitflips

in a b-bit block during a time period t as a Poisson distribution

with a constant failure rate λ errors/second/bit. Therefore, the

probability of i bitflips in a b-bit block during time t is:

Pc(mem, i, t) =
e−bλt(bλt)i

i!

Summing up the probabilities of all possible bit corruptions,

we have:

Pc(mem, t) =
b

∑

i=1

e−bλt(bλt)i

i!

Previous studies reported FIT/Mbit as low as 0.56 [23] and as

high as 167,066 [19]. Converting to errors/second/bit gives the

range for λ, from 1.48×10−19 (λmin) to 4.42×10−14 (λmax).

In this paper, we choose 6.62 × 10−15 (λmid) as the error

rate of non-ECC memory; it is derived from 25,000 FIT/Mbit,

which is the lower bound of the DRAM error rate measured

in a recent study [36]. We pick λmin as the error rate of ECC

memory, because most errors would have been detected by

ECC. We use −log10(λ) as the memory reliability index. The

corresponding indices for λmin, λmid, and λmax are 18.8,

14.2, and 13.4.

2) Checksum Model: The effectiveness of a checksum is

measured by the probability of undetected corruption given

an error rate. It is usually difficult, sometimes impossible,

to have an accurate model for the probability, because of

the complexity of errors and the data-dependency property of

some checksums. Therefore, we apply an analytic approach

to evaluate checksums for random bitflips. We focus on two

types of checksum: xor (64-bit) and Fletcher (256-bit).

Our approach is similar to the one used in a recent study

on checksums for embedded control networks [24]. The idea

is based on Hamming Distance (HD). A checksum C with

HD=n can detect all bit errors up to n − 1 bits, but there

is at least one case of n bitflips that is undetectable by the

checksum. We use F (C) to represent the fraction of n bitflips

that are undetectable by checksum C. Then, the probability of

undetectable n bitflips is Pc(D, n)×F (C), in which Pc(D, n)
is the probability of n bitflips on device D. The actual Pudc

is the sum of the probabilities of undetectable bitflips from

n to b (the size of the block is b bits). Since the occurrence

of more than n bitflips is highly unlikely, the probability of

undetected n bitflips dominates Pudc [24]. Therefore, we have

the approximation of Pudc(D, C) = Pc(D, n) × F (C).

The value of Pc(D, n) can be easily calculated based on

the model of each device, so the key parameter is F (C).
Assuming the block size is b bits and the checksum size is

k bits, there is an analytical formula for xor [24]: F (xor) =
b−k

k(b−1) . Since the HD for xor is 2, we have: Pudc(D, xor) =

Pc(D, 2) × b−k
k(b−1) . But for Fletcher (HD=3), we can only

get an approximation [4]: F (Fletcher) = 4.16 × 10−20.

Therefore, Pudc(D, F letcher) = Pc(D, 3) × (4.16 × 10−20).

C. Calculating Psys−udc

Based on previous models, given the configuration of a

storage system, we can calculate Psys−udc by summing up

the probabilities of every silent corruption scenario during the

time from the data being generated to it being read. We define

the reliability score for a system as −log10(Psys−udc); higher

scores mean better reliability.

Finding all scenarios that lead to a silent corruption is

tricky. In reality, it is possible that multiple devices corrupt

the same data when it is transferred through or stored on

them. In this paper, we assume that in each scenario, there

is only one corruption from when a data block is born to

when it is read from the system. One reason is that data

corruption is rare - multiple corruptions to the same data block

are unlikely. Another reason is that with this assumption, we

do not have to reason about complex interactions of corruption

from multiple devices, which may require more advanced

modeling techniques.

Cfg Index

Num Mem Dsk Description

1 13.4 10 worst mem & dsk

2 14.2 12 non-ECC mem & regular dsk

3 18.8 12 ECC mem & regular dsk

4 18.8 20 ECC mem & best dsk

TABLE I: Sample System Configurations. This table shows

four configurations of a local file system that we will study throughout

the paper.

Determining whether a value of Psys−udc is good enough

for a storage system is not easy. Ideally, the best value of

Psys−udc is 0, but this is impossible. In reality, Psys−udc is a

tradeoff between reliability and performance; it should be low

enough such that SDC is extremely rare, but at the same time

it should not hinder the system’s performance. In this paper,

we use Zettabyte Reliability as a reliability goal of storage

systems. Zettabyte reliability means that there is at most one

SDC when reading one Zettabyte data from a storage system.

With our models, assuming the block size and the IO size is

4KB, this goal translates to Psys−udc = Pgoal = 3.46×10−18,

which in terms of a reliability score is 17.5. Note that the

numerical value of the reliability goal may differ depending

on the accuracy of the assumptions and models, and it may not

be precise; our purpose is to use it as a way to demonstrate how

to make proper tradeoffs between performance and protection

in a storage system.

D. Example: NCFS

To illustrate how to apply the framework to evaluate the

reliability of a storage system, we use a local file system

with no checksum (NCFS) as an example. We focus on four

configurations of the system, as listed in Table I. Within the

range for each index, we use the minimum value to represent

the worst memory or disks which may be faulty or prone to

corrupting data. We use the maximum disk index to represent

disks that are much more reliable than regular disks. Therefore,

config 1 has the worst components while config 4 has the best.

Config 2 is likely to be a consumer-level system with non-ECC

memory and a regular disk. Config 3 may be representative of

a server with ECC memory.

The timeline of a data block from being generated to being

accessed is shown in Figure 1a. A writer application generates

the block at t0. The block stays in memory until t1 when it is

flushed to disk. The block is then read into memory at t2 and

finally accessed by a reader application at t3. The residency

time of the block in writer’s memory and reader’s memory

is t1 − t0 and t3 − t2 respectively. Since most file systems

flush dirty blocks to disk at regular time intervals (usually 30

seconds), we assume t1 − t0 to be 30 seconds for all blocks

in this paper.

Based on the “one corruption” assumption, there are three

scenarios that will lead to silent data corruption: corruption

that occurs in the reader’s memory, disk, or the writer’s

memory. Therefore, Psys−udc for NCFS is approximately the

sum of the probabilities of corruption in each device:

PNCFS−udc =Pc(mem, tresident) + Pc(dsk)

+ Pc(mem, 30)

where tresident = t3 − t2 is the residency time (in seconds)

of the block in the reader’s memory and 30 is the residency

time of it in the writer’s memory. Psys−udc is a function of

three variables: the reliability indices of memory and disk in

the system, and the residency time tresident.

The reliability score of NCFS (tresident = 1) is shown in

Figure 2a, with the four configurations marked as “×”. We

choose tresident = 1 because it represents a best case (ap-

proximately) for reliability and we will discuss the sensitivity

of reliability score to tresident in Section III-C.

As one can see from the figure, when either the disk or

the memory reliability index is low, corruption on that device

dominates the reliability score. For example, when the disk

reliability index is 12, the reliability score of the system almost

does not change when the memory reliability index varies;

both config 2 and 3 have a score of 7.4. But when the disk

is more reliable, memory corruption starts to dominate and

the reliability score increases as the memory reliability index

increases. When both reliability indices are high, NCFS with

config 4 has the best reliability score of 12.8, still less than

the Zettabyte reliability goal (17.5).

III. FROM ZFS TO Z2FS

To explore end-to-end concepts in a file system, we now

present two variants of ZFS: E2ZFS, which takes the straight-

forward end-to-end approach, and Z2FS, which employs the

flexible end-to-end data integrity. Specifically, we show how

ZFS, a modern file system with strong protection against

disk corruption, can be further hardened with end-to-end data

integrity to protect data all the way from application to disk,

achieving Zettabyte reliability with better performance.

A. ZFS: the Original ZFS

ZFS is a state-of-the-art open source file system originally

created by Sun Microsystems with many reliability features.

ZFS provides data integrity by using checksums, data recovery

with replicas, and consistency with a copy-on-write trans-

actional model [12]. In addition, other mechanisms such as

pooled storage, inline deduplication, snapshots, and clones,

provide efficient data management.

1) Background: One important feature that distinguishes

ZFS from most other file systems is that ZFS provides protec-

tion from disk corruption by using checksums. ZFS maintains

a disk checksum (Fletcher, by default) for each disk block and

keeps the checksum in a block pointer structure. As shown in

Figure 1b, when ZFS writes a block to disk at t1, it generates a

Fletcher checksum. When ZFS reads the block back, it verifies

the checksum and places it in the page cache. In this manner,

ZFS is able to detect many kinds of corruption caused by disk

faults, such as bit rot, phantom writes, and misdirected reads

and writes [12].

writer

mem (none)

storage

dsk (none)

t
0

t
1

t
2

reader

mem (none)

t
3

writer

mem (none)

storage

dsk (Fletcher)

t
0

t
1

t
2

reader

mem (none)

Fletcher Fletcher

t
3

(a) NCFS

(b) ZFS

writer

mem (Fletcher/xor)

storage

dsk (Fletcher/xor)

t
0

t
1

t
2

reader

mem (Fletcher/xor)

t
3

(c) E2ZFS (Fletcher/xor)

(d) Z2FS w/ Checksum Chaining

(e) Z2FS (static)

(f) Z2FS (dynamic)

writer

mem (xor)

storage

dsk (Fletcher)

t
0

t
1

t
2

reader

mem (xor)

Fletcher

t
3

xor Fletcher

xor xorxor

writer

mem (xor)

storage

dsk (xor, Fletcher)

t
0

t
1

reader

mem (xor)

t
3

writer

mem (xor)

storage

t
2

t
1

dsk (xor, Fletcher)

reader

t
switch

mem (xor, Fletcher)mem (xor, Fletcher)

t
3

t
3

Write

Read

Checksum

Generation

Checksum

Veri!cation

G

V

G G

V

V

G V

Fletcher/xorVFletcher/xorG

Fletcher

xor

Fletcherxor xorG

V

G V V

t
2

V

G

Fletcher

xor

Fletcherxor xorG

V

G V V

t
0

FletcherV

Fig. 1: Timeline of a Data Block. This figure shows timeline of a block from being generated by the writer (t0) to being read by the

reader (t3) in NCFS, ZFS, E2ZFS, and Z2FS. Each timeline consists of three parts: writer in memory, storage (disk), and reader in memory.

The name of the checksum used to protect data during each time period is listed in the parentheses on the right of the device name. When

there are two checksums during a time period, the underlined checksum is the primary checksum, as defined in Section III-C.1. Note that in

(c), E2ZFS uses the same checksum (either xor or Fletcher) all the way through.

However, a recent study [46], as well as some anecdotal

evidence [3], [8], [9], shows that ZFS is vulnerable to mem-

ory corruption. The checksum in ZFS is only verified and

generated at the boundary of memory and disk; once a block

is cached in memory, the checksum is never verified again.

Applications could read bad data from the page cache without

knowing that it is corrupted. Even worse, if a dirty data page

is corrupted before the new checksum is generated, the bad

data will get to disk permanently with a matching checksum

and later reads will not be able to detect the corruption.
2) Reliability Analysis: We apply the framework introduced

in Section II to calculate the reliability score for ZFS. Similar

to NCFS, there are three scenarios that cause SDC:

PZFS−udc =Pc(mem, tresident)

+ Pudc(dsk, F letcher)

+ Pc(mem, 30)

Because ZFS has on-disk blocks protected by Fletcher, only

undetected corruption contributes to PZFS−udc.
Figure 2b depicts the reliability score of ZFS. With Fletcher

protecting data on disk, the reliability score is now dominated

by memory corruption. However, the reliability score is not

improved much, due to the lack of protection of in-memory

data. Both config 3 and config 4 have the highest reliability

score of 12.8, but they are still below the reliability goal

(17.5). It is interesting to see that config 4 in ZFS has the

same best reliability score as itself in NCFS, which indicates

that when both the disk and memory reliability indices are

the highest, memory corruption is more severe than disk

corruption. Therefore, we need to protect data in memory.

B. E2ZFS: ZFS with End-to-end Data Integrity

To improve the reliability of ZFS, data both in memory and

on disk must be protected. One way to achieve this is to apply

the straight-forward end-to-end concept. In common practice,

the writer generates an application-level checksum for the data

block and sends both the checksum and data to the file system.

Because the page cache and the file system are not aware of the

checksum, the writer usually uses a portion of the data block

to store the checksum. When the reader reads back the block,

it can verify the checksum portion to ensure the integrity of

the data portion. The checksum protects the data block all the

way from the writer to the reader.

Because ZFS already maintains a checksum for each on-

disk block in the block pointer, we do not have to append

the application checksum on top of ZFS’s checksum. Instead,

we can simply store the application checksum in the block

pointer, replacing the original disk checksum. Therefore, we

only have to expose the checksum to the reader and writer, and

make sure the page cache and the file system are oblivious to

the checksum.

1) Implementation: To achieve the straight-forward end-to-

end data integrity, we make the following changes to ZFS,

transforming it into E2ZFS.

First, we attach checksums to all buffers along the I/O

path: user buffer, data page and disk block. Since ZFS already

provides disk checksum for each disk block, we add memory

checksum to the user buffer and the data page. It enables the

Memory Reliability Index

D
is

k
 R

e
lia

b
ili

ty
 I

n
d

e
x

6

7

8

9

10

11

12

1

2 3

4

14 15 16 17 18
10

12

14

16

18

20

(a) NCFS

Memory Reliability Index

D
is

k
 R

e
lia

b
ili

ty
 I

n
d

e
x

8 9 1
0 1
1

1
2

1

2 3

4

14 15 16 17 18
10

12

14

16

18

20

(b) ZFS

Memory Reliability Index

D
is

k
 R

e
lia

b
ili

ty
 I

n
d

e
x

15

17.5

19

21

23

25

27

1

2 3

4

14 15 16 17 18
10

12

14

16

18

20

(c) E2ZFS (xor)

Memory Reliability Index

D
is

k
 R

e
lia

b
ili

ty
 I

n
d

e
x

40

44

48

52

56

1

2 3

4

14 15 16 17 18
10

12

14

16

18

20

(d) E2ZFS (Fletcher)

Fig. 2: Reliability Score (tresident = 1). These figures illustrate contour plots of the reliability score of NCFS, ZFS, E2ZFS (xor), and

E2ZFS (Fletcher). Darker color means lower score - worse reliability. On each plot, there are four points marked with a “×” representing

the four configurations.

system to pass checksums between the application and disk.

Since only one checksum algorithm is used throughout the

system, the memory checksum and the disk checksum are

the same as the application-generated checksum, assuming the

user buffers are always aligned to data pages. We will discuss

the alignment issue in Section III-D. E2ZFS currently supports

both xor and Fletcher, but only one can be used at a time.

Second, we enhance the existing read/write system calls

with a new argument to transfer checksums between user

and kernel space. The new argument is a buffer containing

all checksums corresponding to the blocks in the user buffer.

On reads, the application receives both data and checksum,

and thus is able to verify the integrity of data. On writes, the

application must generate a checksum for each data block,

and send both the data block and checksum through the new

system call.

Finally, we modify the checksum handling at the boundary

of memory and disk such that the checksum is always passed

through this boundary without any extra processing. E2ZFS

simply stores both data and checksum on disk and does

not generate or verify the checksum. In this way, only the

applications (reader and writes) are responsible of verifying

and generating the checksums, thus providing the straight-

forward end-to-end data integrity.

2) Reliability Analysis: The timeline of a data block from

writer to reader is shown in Figure 1c. E2ZFS uses one type

of checksum (xor or Fletcher) all the way through. The writer

generates the checksum for the data block at t0, and passes

both the checksum and data block to the file system. Both

are then written to disk at t1 and read back at t2. The reader

receives them at t3 and verifies the checksum.

In E2ZFS, only undetected corruption during each time

System TP (MB/s) Normalized TP

ZFS 656.67 100%

E2ZFS (Fletcher) 558.22 85%

E2ZFS (xor) 639.89 97%

TABLE II: Overhead of Checksum Calculation. This table

shows the throughput of sequentially reading a 1GB file from the

page cache in ZFS, E2ZFS (xor), and E2ZFS(Fletcher).

period causes a SDC; detected corruption would be caught

by the checksum verification performed by the reader. The

probability of undetected data corruption is:

PE2ZFS−udc =Pudc(mem, F letcher/xor, tresident)

+ Pudc(dsk, F letcher/xor)

+ Pudc(mem, F letcher/xor, 30)

The reliability scores of E2ZFS (xor) and E2ZFS (Fletcher)

are shown in Figure 2c and Figure 2d. Overall, E2ZFS

(Fletcher) has the best reliability, with all scores above the

reliability goal; config 1 even gets a score of 36.6. E2ZFS

(xor) can meet the goal only when both disk and memory

are more reliable. Config 4 has a score of 27.8 while both

config 2 and 3 have a score of 17.1. Comparing both figures,

when the disk corruption dominates (with an index below 12),

E2ZFS (Fletcher) is much better than E2ZFS (xor), showing

that Fletcher is clearly a better checksum for protecting blocks

on disk.

3) Performance Issues: E2ZFS (xor) is less reliable than

E2ZFS (Fletcher), but it offers better performance, especially

when the reader is reading data from memory. Table II shows

the throughput of reading a 1GB file from the page cache.

As one can see, ZFS has the best throughput because there

is no checksum calculation involved. E2ZFS with Fletcher

suffers a throughput drop of 15%. In contrast, E2ZFS (xor)

is able to achieve a throughput just 3% less than ZFS, with

the checksum-on-copy optimization [15], which calculates the

xor checksum while data is copied between kernel space and

user space. The checksum-on-copy technique can be applied

easily and efficiently due to the simplicity of xor checksum,

but may not be a good option for stronger and more complex

checksums such as Fletcher.

C. Z2FS: ZFS with Flexible End-to-end Data Integrity

There are two drawbacks with the straight-forward end-to-

end approach. Besides the performance problem as shown

above, it also suffers from untimely recovery: neither the

page cache nor the file system is able to verify the checksum

to detect corruption in time. To handle both problems, we

build Z2FS on top of the changes we have made in E2ZFS

by further applying the concept of flexible end-to-end data

integrity. For the timeliness problem, a simple fix is to add an

extra verification when the data is being flushed to disk and

when the data is being read from disk. For the performance

problem, however, more analysis and techniques are required.

We will focus on the performance problem in this section and

discuss the timeliness problem in Section III-D.

1) Static Mode with Checksum Chaining: Looking at the

reliability score and performance figures of E2ZFS, a natural

question one may ask is: can we combine E2ZFS (xor) and

E2ZFS (Fletcher) to make a system with better performance

while still meeting the reliability goal? To answer this ques-

tion, we introduce the static mode of Z2FS, Z2FS (static), a

hybrid of E2ZFS (xor) and E2ZFS (Fletcher) that uses xor as

the memory checksum and Fletcher as the disk checksum. In

static mode, Z2FS must perform a checksum conversion at the

cache-disk boundary. To handle the conversion correctly, we

develop a technique called Checksum Chaining, which care-

fully changes the checksum to avoid any vulnerable window.

Z2FS (static) converts the checksum from xor to Fletcher

when writing data to disk. With checksum chaining, it must

generate the Fletcher checksum before verifying the xor check-

sum. In this way, the creation of the new Fletcher checksum

occurs before the last use (verification) of the old xor check-

sum; the coverage of the new and old checksums overlaps.

It is as if the two checksums are chained to each other. A

successful verification of the xor checksum indicates that with

high probability, the Fletcher checksum was generated over the

correct data and thus Fletcher checksum is correct. If the order

of generating Fletcher and verifying xor is reversed, there is a

vulnerable window in between. If the data is corrupted in the

window, the new Fletcher checksum will be calculated over

the corrupted data, resulting in silent corruption, because the

checksum actually “matches” the bad data.

The timeline of a data block in Z2FS with checksum

chaining is shown in Figure 1d. On the write path, the writer

generates an xor checksum at first. When the block is being

written to disk, Z2FS generates a Fletcher checksum using

checksum chaining and sends the Fletcher checksum and data

to disk. On the read path, Z2FS generates an xor checksum

using checksum chaining when reading the data block from

disk, and then passes it to the reader along with the data block.

The reader finally verifies the xor checksum. As a side effect of

checksum chaining, the xor checksum is verified at the cache-

disk boundary on the write path and the Fletcher checksum is

verified on the read path, which helps to catch any detectable

corruption in time.

With checksum chaining, Z2FS has to generate an xor

checksum for each data block when reading it from disk,

which may affect the performance. In fact, the same xor

checksum already existed when the data block was first written

by the application. Instead of regenerating the xor checksum

on every read, Z2FS simply stores both the xor checksum and

the Fletcher checksum on disk when writing a data block,

and then when reading it, both checksums are available. The

Fletcher checksum is called the primary checksum, because it

is the required disk checksum. By grouping both checksums

and storing them on disk, Z2FS skips the generation of xor

checksum on the read path, thus improving the performance.

Note that Z2FS still need to verify the primary checksum

(Fletcher) when reading a block from disk.

0 50 100 150 200 250 300
0

5

10

15

20

25

30

Residency Time (s)

R
e
lia

b
ili

ty
 S

c
o
re

Z
2
FS

Goal

(a) λmax (index = 13.4, config 1)

0 50 100 150 200 250 300
0

5

10

15

20

25

30

Residency Time (s)

R
e
lia

b
ili

ty
 S

c
o
re

Z
2
FS

Goal

(b) λmid (index = 14.2, config 2)

0 50 100 150 200 250 300
0

5

10

15

20

25

30

Residency Time (s)

R
e
lia

b
ili

ty
 S

c
o
re

Z
2
FS

Goal

(c) λmin (index = 18.8, config 3)

0 50 100 150 200 250 300
0

5

10

15

20

25

30

Residency Time (s)

R
e
lia

b
ili

ty
 S

c
o
re

Z
2
FS

Goal

(d) λmid (index = 14.2, config 2)

Fig. 4: Reliability Score vs tresident in Z2FS. These figures show the relationship between reliability score and residency time in

Z2FS. The first three are for the static mode, and the last for the dynamic mode, in which the checksum switching occurs at 92 seconds.

Memory Reliability Index

D
is

k
 R

e
lia

b
ili

ty
 I

n
d

e
x

1
7

.5

1
9 2
1 2
3

2
5 2
7

1

2 3

4

14 15 16 17 18
10

12

14

16

18

20

Fig. 3: Reliability Score (tresident = 1) of Z2FS (static).

2) Reliability Analysis of Static Mode: Figure 1e shows an

updated timeline for Z2FS (static) with this optimization. The

probability of undetected corruption for Z2FS (static) is:

PZ2FS−udc =Pudc(mem, xor, tresident)

+ Pudc(dsk, xor&Fletcher)

+ Pudc(mem, xor, 30)

Note that the corruption on disk must be undetectable by both

xor and Fletcher. Since the block will be checked against the

Fletcher checksum at t2 and against the xor checksum at t3,

if either checksum catches the corruption, there will not be a

silent data corruption.

The reliability score of Z2FS (static) at tresident = 1
is shown in Figure 3. Since on-disk blocks are protected

by Fletcher, memory corruption dominates. When memory

corruption is severe with an index less than 13.7, the reliability

score is below the goal. As the memory reliability index

increases, the reliability score increases and becomes above

the goal. However, as tresident increases, the reliability score

will decrease and at some point it is possible to drop below

the goal.

To find out when we should use Z2FS (static), we focus on

memory reliability and tresident. We take a close look at three

cases based on the memory reliability index: 13.4 (λmax =
1.99×10−14), 14.2 (λmid = 6.62×10−15), and 18.8 (λmin =
1.48× 10−19). Since Figure 3 shows that memory corruption

dominates, the value of the disk reliability index in each case

does not affect the reliability score. Therefore, we fix the disk

reliability index at 10 for the first case, and at 12 for second

and third case; the three cases now correspond to config 1,

2 and 3. Figure 4a, Figure 4b, and Figure 4c illustrate the

reliability score of Z2FS (static) versus residency time in all

three cases.

In Figure 4c where the memory reliable index is maximum,

the reliability score is above the goal and they will intersect

after about seven weeks (not shown). It indicates that xor is

probably strong enough for data in memory; Z2FS (static) fits

right into this case.

In contrast, when the index is minimum as shown in Figure

4a, the whole line of Z2FS is below the goal. It shows that xor

is not strong enough to protect data in memory. To handle this

extreme case, Z2FS (static) skips checksum chaining and uses

Fletcher all the way through, but keeps the extra verification at

the boundary of memory and disk. In this way, Z2FS (static)

can provide the same level of reliability as E2ZFS (Fletcher).

The most interesting case is shown in Figure 4b with a

memory reliability index of 14.2. When the residency time is

less than 92 seconds, Z2FS is able to keep the reliability score

above the goal. However, after then the score drops below the

goal and slowly converges to E2ZFS (xor). In this case, in

order to make sure the reliability score is always above the

goal, Z2FS may need to change to a stronger checksum at

some point when data stays longer in memory.

3) Dynamic Mode with Checksum Switching: To prevent

the reliability score from dropping below the goal as the

residency time increases, we apply a technique called Check-

sum Switching to Z2FS (static). The idea behind checksum

switching is simple. On the read path, there are already two

checksums on disk: xor and Fletcher. Z2FS can simply read

both checksums into memory; for the first tswitch seconds,

Z2FS uses xor as the weaker memory checksum and then

switch to Fletcher as the stronger memory checksum after

tswitch seconds. It is just a simple change of checksum and

there is no extra overhead. We call this mode Z2FS (dynamic).

4) Reliability Analysis of Dynamic Mode: Figure 1f shows

the timeline of a block in Z2FS (dynamic mode). The static

mode is essentially a special case of dynamic mode with a

extremely large value of tswitch such that t3 is always in

between t2 and tswitch.

a) Calculating Psys−udc: Depending on whether t3 is

before or after tswitch, we have:

PZ2FS−udc =Pudc(mem, xor, tresident)

+ Pudc(dsk, xor&Fletcher)

+ Pudc(mem, xor, 30)

where t3 = t2 + tresident is between t2 and tswitch, and:

PZ2FS−udc =Pudc(mem, F letcher, tresident)

+ Pudc(dsk, F letcher)

+ Pudc(mem, xor, 30)

where t3 = t2 + tresident is greater than tswitch.

b) Determining tswitch: By replacing tresident in the

first formula with tswitch, we can solve for tswitch from the

equation below:

PZ2FS−udc = Pgoal

With the Zettabyte reliability goal Pgoal = 3.46 × 10−18 and

λmid, we have tswitch = 92. Figure 4d shows the reliability

Memory Reliability Index

D
is

k
 R

e
lia

b
ili

ty
 I

n
d

e
x

1

2 3

4

1 2 3 4 5 6

14 15 16 17 18
10

12

14

16

18

20

Fig. 5: tswitch of Z2FS (dynamic). This figure shows a contour

plot of the required switching time to provide Zettabyte reliability in

Z2FS (dynamic), with respect to different disk and memory reliability

index. The z axis is the base 10 logarithm of tswitch in seconds.

score of Z2FS in dynamic mode. As we can see from the

figure, checksum switching occurs at 92 seconds so that the

score afterwards is still above the goal.

By varying both the disk and memory reliability index, we

have Figure 5 showing the values of tswitch that are required

to meet the goal of Zettabyte reliability. When the memory

reliability index is high (λ = λmin, e.g., config 3 and 4),

tswitch is about seven weeks; in this case, Z2FS (static) is

strong enough, which also offers the best performance. When

the memory reliability index is extremely low (e.g., config 1),

Z2FS (static) keeps using Fletcher as both disk and memory

checksum to provide the best reliability. When the memory

reliability index is in between (e.g., config 2), Z2FS (dynamic)

strikes a nice balance between reliability and performance by

switching the checksum at tswitch.

D. Discussion

We now discuss two remaining technical issues: error han-

dling and application integration.

c) Error Handling: Both E2ZFS and Z2FS use check-

sums to verify data integrity. Whenever a mismatch happens, it

is reasonable to think the data is corrupted, not the checksum,

because the checksum is usually much smaller than the data

it protects and has a lower chance of becoming corrupted. In

the unusual case where the checksum is corrupted, good data

would be considered corrupted. This false positive about data

corruption does not hurt data integrity; in fact, any checksum

mismatch indicates that the data cannot be trusted, either

because the data itself is corrupted, or because the checksum

cannot prove the data is correct. Therefore, both systems must

handle verification failures properly.

In E2ZFS, there is only one verification, which occurs when

the reader reads a data block. If the verification fails, the

reader will re-read the same block from the file system. If

the corruption happens in the page cache (reader’s memory),

Data Page User Bu�er

Aligned Read Unaligned Read

Data Page User Bu�er

Fig. 6: Example of Aligned and Unaligned Reads. This

figure illustrates how Z2FS handles aligned and unaligned reads.

Small squares represent page checksums and small triangles represent

user checksums. The dark area represents the requested data.

E2ZFS can get the correct data from disk and return it to the

reader. However, if the corruption occurs before the block is

written to disk on the write path, it is too late to recover from

the corruption. This is the timeliness problem of the straight-

forward end-to-end approach.

As we mentioned in Section III-C.1, to solve the problem,

Z2FS has extra checksum verifications at the boundary of

memory and disk. On the write path, the verification is part

of the checksum chaining. If it fails, Z2FS aborts the write

immediately and inform the application, thus preventing cor-

rupt data going to disk. The application then can re-write the

block. On the read path, Z2FS verifies the primary checksum

(Fletcher) after getting a data block from disk and will re-read

it if the verification fails.

Note that informing the application about the failed write is

quite challenging. It is easy for synchronous writes; because

the verification occurs before the write system call returns,

the application can just check the return value of the system

call. However, for asynchronous writes, the verification is

performed by the background flushing thread. To properly

return the error information to the application, our solution in

Z2FS is to use a modified fsync system call. Z2FS creates an

error table for each opened file to record which data page fails

the verification. Whenever fsync is called, it checks the error

table of the corresponding file and returns all block numbers

found in the table. Because at that time all verifications of

dirty pages belonging to the file have already finished, fsync

can give the most up-to-date error information. Therefore, by

calling fsync periodically, the application can know the latest

status of the blocks it wrote and perform necessary recovery

in time.

d) Compatibility with Existing Applications: The com-

patibility issue mainly comes from the the new interfaces.

First, so far, we have assumed the user buffer is always

aligned to page size. In fact, Z2FS does support generic

requests with arbitrary offset and size through checksum

chaining. For example, Figure 6 illustrates how Z2FS han-

dles aligned and generic read requests respectively. In the

aligned case, Z2FS simply returns all three checksums to

the application. But when dealing with the unaligned reads,

ZFS E2ZFS Z2FS

Timing act res act res act res

t0 ∼ t1 − × d3r e d1r
√

t1 ∼ t2 d2r e d3r e d2r e
t2 ∼ t3 − × d3r

√
d3r

√

TABLE III: Fault Injection Results. The columns (from left

to right) show the time period when the fault was injected (Timing),

how the system and the reader reacts (act) and the result of the read

request from the reader (res). Under the act column, “dir” means the

corruption is detected at ti and a retry is performed. Under the res

column, “×” means silent data corruption, “e” means the corruption

is detected but can not be recovered (assuming there is only one copy

of the data on disk), and “
√

” means the reader gets good data.

Z2FS calculates a new checksum that covers the requested

data and sends it to the application. The order of checksum

generation and verification conforms with checksum chaining:

generate the user checksum first and then verify all three page

checksums. The same technique is applicable to E2ZFS, but

in common practice, the straight-forward end-to-end approach

only supports aligned reads and writes.
Second, the new read/write interfaces may require the

application to be aware of the checksums. For applications

that really care about data integrity, we believe such changes

are necessary. The exposed checksums can be further utilized

by applications to protect data at the user level. For other

applications that may not want to make changes, both E2ZFS

and Z2FS provide a compatibility library that preserves the

traditional interfaces. The library performs checksum genera-

tion and verification on behalf of the application. The tradeoff

is that applications do not have access to the checksums,

thus losing some data protection at the user level. We should

note that currently E2ZFS and Z2FS do not support memory-

mapped I/O.

IV. EVALUATION

We now evaluate and compare E2ZFS and Z2FS along two

axes: reliability and performance. Specifically, we want to

answer the following questions:

• How do they handle various data corruption?

• What is the the overall performance of both systems?

• What is the impact of checksum switching on perfor-

mance?

• What is the performance of both systems on real-world

workloads?

We perform all experiments on a machine with a single-

core 2.2GHz AMD Opteron processor, 2GB memory, and

a 1TB Hitachi Deskstar hard drive. We use Solaris Express

Community Edition (build 108), ZFS pool version 14 and ZFS

file system version 3.

A. Reliability

The analyses in Section III showed theoretically how Z2FS

can achieve Zettabyte Reliability with different reliability lev-

els of disk and memory. In practice, however, it is difficult to

Seq Write Seq Read

Cold

Seq Read

Warm

Random Write Random Read

Cold

Random Read

Warm

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

77
.1

3

93
.5

9

65
6.

67

7.
51

0.
65

59
1.

65

75
.4

6

86
.9

6

63
9.

89

7.
43

0.
65

58
1.

55

76
.5

3

84
.4

5

55
8.

22

7.
37 0.
65

49
1.

8173
.2

9

85
.1

5

64
1.

89

7.
21 0.

65

58
0.

69

ZFS E ZFS (xor) 2 E ZFS (Fletcher) 2 Z FS (static) 2

Fig. 7: Micro Benchmark. This graph shows the results of several

micro benchmarks on ZFS, E2ZFS, and Z2FS (static). The bars are

normalized to the throughput of ZFS. The absolute values in MB/s are

shown on top.

webserver fileserver varmail

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

29
7.

21

11
9.

55

10
.3

8

28
2.

72

11
4.

48

10
.2

8

25
4.

75 11
3.

88

10
.2

4

28
2.

73

11
3.

87

10
.1

7

26
7.

38

11
2.

96

10
.1

9

ZFS E ZFS(xor) 2 E ZFS(Fletcher) 2 Z FS(static) 2 Z FS (dynamic) 2

Fig. 8: Macro Benchmark. This figure shows the

throughput of our macro benchmarks on ZFS, E2ZFS, Z2FS

(static), and Z2FS (dynamic). Each workload runs for 720

seconds. Z2FS (dynamic) has tswitch = 92 seconds.

experimentally measure the reliability of a system, especially

since we have no knowledge of the actual failure rate of the

disk and memory in use. Therefore, we focus on demonstrating

the advantage of flexible end-to-end data integrity in detecting

and recovering from corruption, through a series of fault

injection experiments.

We inject a single bit flip to a data block during each time

period in Figure 1, and record how each system reacts and

whether the reader can get correct data. We perform the same

set of experiments on all three systems, ZFS, E2ZFS, and

Z2FS.

Table III summarizes the fault injection results. For the fault

injected before the block goes to disk (t0 ∼ t1), only Z2FS

is able to detect it before t1 and ask the writer to retry, thus

preventing corrupt data getting to disk. The reader in E2ZFS

can also detect the fault at t3, but it is too late to recover

the data. When data on disk is corrupted (t1 ∼ t2), neither

E2ZFS nor Z2FS is able to recover. For the fault injected after

the block leaves disk on the read path (t2 ∼ t3), the reader

in both Z2FS and E2ZFS can detect it and re-read the block

from disk. Since ZFS only has protection for on-disk blocks,

it can only catch corruption that occurs on disk.

B. Overall Performance

We use a series of micro and macro benchmarks to evaluate

the performance of E2ZFS and Z2FS. All benchmarks are

compiled with the compatibility library.

e) Micro Benchmark: Figure 7 shows the results of our

micro benchmark experiments. Sequential write/read is writ-

ing/reading a 1GB file in 4KB requests. Random write/read

is writing/reading 100MB of a 1GB file in 4KB requests.

To avoid the effect of checksum switching, Z2FS is in static

mode. From Figure 7, one can see that under random write

and random read (cold), the performance of Z2FS and E2ZFS

is close to ZFS. Because both workloads are dominated by

disk seeks, the overhead of checksum calculation is small.

In the cases where the cache is warm, since no physical

I/Os are involved, the calculation of checksums dominates the

processing time. E2ZFS (Fletcher) is about 15-17% slower

than ZFS, while both E2ZFS (xor) and Z2FS only have a 3%

throughput drop. In sequential write and sequential read (cold),

the performance of Z2FS is comparable to E2ZFS (Fletcher).

f) Macro Benchmark: We use filebench [40] as our

macro benchmark. We choose webserver, fileserver and var-

mail to evaluate the overall application performance on E2ZFS

and Z2FS. Figure 8 depicts the throughput of these workloads.

Webserver is a multi-threaded read-intensive workload. It

consists of 100 threads, each of which performs a series of

open-read-close operations on multiple files and then appends

to a log file. After reaching a steady state, all reads are

satisfied by data in the page cache. Therefore, the throughput

is mainly determined by the overhead of checksum calculation.

As shown in Figure 8, E2ZFS (xor) and Z2FS (static) has the

closest performance to ZFS, because they always calculate the

xor checksum. E2ZFS (Fletcher) is about 15% percent slower

than ZFS, which matches our previous micro benchmark

result. In Z2FS (dynamic), the memory checksum is changed

from xor to Fletcher when a block stays in memory for more

than 92 seconds, so the overall throughput is in between Z2FS

(static) and E2ZFS (Fletcher).

Fileserver is configured with 50 threads performing creates,

deletes, appends, whole-file writes and whole-file reads. It’s

write-intensive with a 1:2 read/write ratio. In this case, the

throughput of Z2FS is comparable to E2ZFS (Fletcher) and

E2ZFS (xor).

Varmail emulates a multi-threaded mail server. Each thread

performs a set of create-append-sync, read-append-sync, read,

and delete operations. It has about half reads and half writes

and is dominated by random I/Os. Therefore, the overall

throughput of Z2FS and E2ZFS is no different than ZFS.

C. Impact of Checksum Switching

One key parameter in Z2FS is tswitch, which is the maxi-

mum residency time of a data block in reader’s memory before

checksum switching occurs. The value of tswitch indicates a

tradeoff between reliability and performance. Given a relia-

bility goal, longer tswitch means worse reliability score (still

above the goal), but better performance because the weaker

memory checksum can be used for a longer time.

Trace Read Cache Before After

Num Count Hit Rate tswitch tswitch

1 14343 98.0% 34.5% 65.5%

2 35209 96.9% 58.9% 41.1%

3 61437 98.8% 83.7% 16.3%

TABLE IV: Trace Characteristics. Read count is the total number

of 4KB-read in each trace. Hit rate is the cache hit rate for data reads.

Before/After tswitch is the percentage of warm reads that access a data

block with a residency time less/greater than tswitch = 92 seconds.

Total Read Time (s)

Trace E2ZFS Z2FS Z2FS

Num (Fletcher) (static) (dynamic)

1 1.00 0.91 (9.0%) 0.95 (5.0%)

2 4.34 3.73 (14.1%) 3.82 (12.0%)

3 6.58 5.46 (17.0%) 5.47 (16.9%)

TABLE V: Trace Replay Result. The table shows the

total time spent on read system calls for each trace on each

system. The percentage in the parentheses is the speedup

of Z2FS with respect to E2ZFS (Fletcher).

Switching Time (s)

0 100 200 300 400 500 600 700 800 900

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

250

260

270

280

290

E ZFS (Fletcher) 2

Z FS (static) 2

Z FS (dynamic) 2

Fig. 9: Webserver Throughput with Different tswitch. This

figure illustrates the throughput changes of webserver as tswitch

increases. The dashed line and dotted line represent the throughput

of webserver on Z2FS (static) and E2ZFS (Fletcher) respectively. The

runtime of the webserver workload is 720 seconds.

To understand the impact of checksum switching, we run

the webserver workload on Z2FS (dynamic) and vary tswitch.

Figure 9 illustrates the relationship between the throughput

of the workload and tswitch. As tswitch increases, the perfor-

mance of Z2FS (dynamic) gets closer to Z2FS (static), because

more and more warm reads are verifying the xor checksum.

When tswitch is the same as or longer than the runtime, Z2FS

(dynamic) matches the performance of Z2FS (static). Even

when tswitch is short (e.g., 30 seconds), Z2FS (dynamic) still

outperfoms E2ZFS (Fletcher).

D. Trace Replay

So far we have shown the performance benefit of Z2FS

using artificially generated workloads. Now, we evaluate Z2FS

by replaying real-world traces. We use the LASR system-

call traces [2] collected between 2000 and 2001, which cover

thirteen machines used for software development and research

projects. The traces are not I/O intensive, but they contain

realistic access patterns that are hard to emulate with con-

trolled benchmarks. We build a single-threaded trace replayer

to sequentially replay the system calls at the same speed as

they were recorded. All unaligned read and write requests are

converted into aligned ones such that we can replay the trace

on E2ZFS, which only supports aligned requests.

We choose three one-hour long traces from the collection

and replay them on E2ZFS (Fletcher), Z2FS (static), and Z2FS

(dynamic, tswitch = 92). The characteristics of the traces are

listed in Table IV and the results are shown in Table V. As one

can see from the tables, overall, Z2FS has better performance

than E2ZFS (Fletcher). In trace 3, most of the warm reads

(83.7%) are accessing data blocks with a residency time less

than 92 seconds, and thus there are more calculations of xor

checksum than Fletcher on Z2FS (dynamic), which makes its

performance closer to Z2FS (static). In contrast, 65.5% of

the warms reads in trace 1 are of blocks that have stayed

in memory for more than 92 seconds, so the performance

of Z2FS (dynamic) is closer to E2ZFS (Fletcher). Therefore,

workloads dominated by warm reads can benefit most from

Z2FS (dynamic) if most read accesses to a block occur during

the first tswitch seconds of that block in memory.

V. RELATED WORK

A large body of research has been focusing on modeling

device-level errors such as memory errors [22] and latent

sector errors [29], [35]. There are also many studies on relia-

bility modeling for RAID systems [13], [16], [30]. However,

only a few of them cover silent data corruption. Rozier et al.

present a fault model for Undetected Disk Errors (UDE) in

RAID systems [33]. They build a framework that combines

simulation and model to calculate the manifestation rates of

undetected data corruption caused by UDEs. Krioukov et al.

use model checking to analyze various protection techniques

used in current RAID storage systems [21]. They study the

interaction between these techniques and find design faults

that may lead to data loss or data corruption. In comparison,

our work focuses on bit errors from various devices (not

just disk or RAID). We use analytical models to evaluate

the reliability of different devices and different checksums

in terms of the probability of undetected corruption. Our

framework calculates a system-level metric that can be used

to compare the reliability of different storage systems.

The protection scheme in the Linux Data Integrity Extension

(DIX) [31] and the T10 Protection Information (T10-PI) model

[42] (previously known as Data Integrity Field) is very similar

to the concept of flexible end-to-end data integrity. DIX

provides end-to-end protection from the application to the I/O

controller, while T10-PI covers the data path between the I/O

controller and the disk. Within this framework, checksums

are passed from the application all the way to the disk, and

can be verified by the disk drive, as well as the components

inbetween. Although T10-PI requires CRC as the checksum,

DIX is able to use the Internet checksum [7] to achieve better

performance and relies on the I/O controller to convert the

Internet checksum to CRC. The behavior of each components

in the I/O path is well modeled by the data integrity architec-

ture from SNIA [38]. Our work differs from their scheme in

that they focus on defining the behavior of each node while

our work helps to reason about the rational behind certain

behaviors, such as what checksum should be used by which

component, and when and where the system should change

checksum. Our framework also provides a holistic way think

about the tradeoffs between performance and protection.

In terms of implementation, Z2FS offers similar protection

as DIX, but it is different from DIX in several aspects. First,

Z2FS is a purely software solution while T10-PI and DIX re-

quires support from hardware vendors. The hard drives and the

controller must support 520-byte sector because the checksum

is stored in the extra 8-byte area for each sector. Z2FS uses

space maintained by the file system to store checksums so that

it is able to provide similar protection as DIX without special

hardware. It can also be easily extended to support T10-PI.

Second, in addition to checksum chaining (conversion) at the

disk-memory boundary Z2FS performs checksum switching

for data in memory. We believe Z2FS is the first file system

to take data residency time into consideration and provide

better protection for data in the page cache. Third, Z2FS

is a full-featured local file system that exposes checksum

to applications through new and generic APIs so that any

application can be modified to take advantage of the data

protection offered by Z2FS. In comparison, DIX is currently a

block layer extension in Linux. To our best knowledge, there

is no local file system support or user-level APIs available;

DIX is now only used by Lustre file system [26] in distributed

environment and by Oracle’s database products [17], [43].

VI. CONCLUSION

The straight-forward approach of end-to-end data integrity

provides great protection against corruption, but the require-

ment of using one strong high-level checksum for all com-

ponents along the I/O path leads to lower application perfor-

mance and untimely detection and recovery.

To address these issues, we present a new concept, flexible

end-to-end data integrity. It uses different checksum algorithms

for different component, and thus can dynamically make trade-

offs between performance and reliability. It also utilizes extra

checksum verification below the application to provide in-time

detection and recovery. We develop an analytical framework to

provide rational behind flexible end-to-end data integrity. We

build E2ZFS and Z2FS, to study both end-to-end concepts and

demonstrate how to apply flexible end-to-end data integrity to

an existing file system. Through reliability analysis and various

experiments, we show that Z2FS is able to provide various

experiments, we show that Z2FS is able to provide Zettabyte

reliability with comparable or better performance than E2ZFS.

Our analysis framework provides a holistic way to reason

about the tradeoff between performance and reliability in

storage systems.

VII. ACKNOWLEDGMENT

We thank the anonymous reviewers for their tremendous

feedback and comments, which have substantially improved

the content and presentation of this paper. We thank Christo-

pher Dragga, Tyler Harter, Ao Ma and Thanumalayan Sankara-

narayana Pillai for their feedback on the initial draft of this

paper. We also thank the other members of the ADSL research

group for their insightful comments.

This material is based upon work supported by the National

Science Foundation (NSF) under CCF-0811657 and CNS-

0834392 as well as generous donations from Google, NetApp

and Samsung. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of NSF or

other institutions.

REFERENCES

[1] Data Integrity. http://indico.cern.ch/getFile.py/access?contribId=
3&sessionId=0&resId=1&materialId=paper&confId=13797.

[2] LASR Traces. http://iotta.snia.org/traces/2.
[3] Repeated panics, something gone bad? http://tech.groups.yahoo.com/

group/solarisx86/message/38925.
[4] RFC 3385 - Internet Protocol Small Computer System Interface (iSCSI)

Cyclic Redundancy Check (CRC)/Checksum Considerations. http://
www.ietf.org/rfc/rfc3385.txt.

[5] RFC 3720 - Internet Small Computer Systems Interface (iSCSI). http:
//www.ietf.org/rfc/rfc3720.txt.

[6] RFC 793 - Transmission Control Protocol. http://www.ietf.org/rfc/
rfc793.txt.

[7] RFC1071 - Computing the Internet Checksum. http://www.ietf.org/rfc/
rfc1071.txt.

[8] Zfs problem mirror. http://www.mail-archive.com/zfs-discuss@
opensolaris.org/msg18079.html.

[9] Zfs problems. http://www.mail-archive.com/zfs-discuss@opensolaris.
org/msg04518.html.

[10] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and J. Schindler.
An Analysis of Latent Sector Errors in Disk Drives. In SIGMETRICS

’07, San Diego, CA, June 2007.
[11] L. N. Bairavasundaram, G. R. Goodson, B. Schroeder, A. C. Arpaci-

Dusseau, and R. H. Arpaci-Dusseau. An Analysis of Data Corruption
in the Storage Stack. In FAST ’08, San Jose, CA, February 2008.

[12] J. Bonwick and B. Moore. ZFS: The Last Word in File Systems. http:
//opensolaris.org/os/community/zfs/docs/zfs last.pdf.

[13] W. Burkhard and J. Menon. Disk Array Storage System Reliability. In
FTCS-23, pages 432–441, Toulouse, France, June 1993.

[14] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An Empirical
Study of Operating System Errors. In SOSP ’01, pages 73–88, Banff,
Canada, October 2001.

[15] J. Chu and S. Inc. Zero-copy tcp in solaris. In USENIX ATC’96, pages
253–264, 1996.

[16] J. Elerath and M. Pecht. Enhanced reliability modeling of raid storage
systems. In DSN’07, pages 175–184, Edinburgh, UK, June 2007.

[17] EMC. An Integrated End-to-End Data Integrity Solution to Protect
Against Silent Data Corruption. www.oracle.com/us/technologies/linux/
data-integrity-solution-1852762.pdf.

[18] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
Deviant Behavior: A General Approach to Inferring Errors in Systems
Code. In SOSP ’01, pages 57–72, Banff, Canada, October 2001.

[19] A. A. Hwang, I. A. Stefanovici, and B. Schroeder. Cosmic rays don’t
strike twice: understanding the nature of dram errors and the implications
for system design. In ASPLOS’12, pages 111–122, London, England,
UK, 2012.

[20] D. T. J. A white paper on the benefits of chipkill- correct ecc for pc
server main memory. IBM Microelectronics Division, 1997.

[21] A. Krioukov, L. N. Bairavasundaram, G. R. Goodson, K. Srinivasan,
R. Thelen, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Parity
Lost and Parity Regained. In FAST ’08, pages 127–141, San Jose, CA,
February 2008.

[22] X. Li, M. C. Huang, K. Shen, and L. Chu. A realistic evaluation of
memory hardware errors and software system susceptibility. In USENIX
ATC’10, Boston, MA, 2010.

[23] X. Li, K. Shen, M. C. Huang, and L. Chu. A memory soft error
measurement on production systems. In USENIX ATC’07, 2007.

[24] T. C. Maxino and P. J. Koopman. The effectiveness of checksums for
embedded control networks. IEEE Trans. Dependable Secur. Comput.,
6(1):59–72, January 2009.

[25] T. C. May and M. H. Woods. Alpha-particle-induced soft errors in
dynamic memories. IEEE Trans. on Electron Dev, 26(1), 1979.

[26] Nathan Rutman. Improvements in Lustre Data Integrity. http://legacy.
xyratex.com/pdfs/lustre/Improvements in Lustre Data Integrity.pdf.

[27] E. Normand. Single event upset at ground level. Nuclear Science, IEEE

Transactions on, 43(6):2742–2750, 1996.
[28] T. J. O’Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler, H. P. Muhlfeld,

C. J. Montrose, H. W. Curtis, and J. L. Walsh. Field testing for cosmic
ray soft errors in semiconductor memories. IBM J. Res. Dev., 40(1):41–
50, 1996.

[29] A. Oprea and A. Juels. A clean-slate look at disk scrubbing. In FAST’10,
San Jose, CA, 2010.

[30] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays of
Inexpensive Disks (RAID). In SIGMOD ’88, pages 109–116, Chicago,
IL, June 1988.

[31] M. K. Petersen. Linux Data Integrity Extensions. In Linux Symposium,
2008.

[32] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. IRON File Systems.
In SOSP ’05, pages 206–220, Brighton, UK, October 2005.

[33] E. Rozier, W. Belluomini, V. Deenadhayalan, J. Hafner, K. Rao, and
P. Zhou. Evaluating the impact of undetected disk errors in raid systems.
In DSN’09, Estoril, Lisbon, Portugal, June 2009.

[34] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in
system design. ACM Transactions on Computer Systems, 2(4):277–288,
November 1984.

[35] B. Schroeder, S. Damouras, and P. Gill. Understanding latent sector
errors and how to protect against them. In FAST’10, San Jose, CA,
2010.

[36] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in the wild:
a large-scale field study. In SIGMETRICS’09, pages 193–204, 2009.

[37] T. Semiconductor. Soft errors in electronic memory - a white paper.
2004.

[38] SNIA Technical Proposal. Architectural Model for Data Integrity. http://
snia.org/sites/default/files/Data Integrity Architectural Model v1.0.pdf.

[39] M. Sullivan and R. Chillarege. Software defects and their impact on
system availability-a study of field failures in operating systems. In
FTCS-21, pages 2–9, June 1991.

[40] Sun Microsystems. Solaris Internals: FileBench. http://www.
solarisinternals.com/wiki/index.php/FileBench.

[41] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the Reliability
of Commodity Operating Systems. In SOSP ’03, Bolton Landing, NY,
October 2003.

[42] T10 Technical Committee. SCSI Block Commands - 3. http://www.t10.
org/members/w sbc3.htm.

[43] Wim Coekaerts. ASMLib. https://blogs.oracle.com/wim/entry/asmlib.
[44] J. Yang, C. Sar, and D. Engler. EXPLODE: A Lightweight, General

System for Finding Serious Storage System Errors. In OSDI ’06, Seattle,
WA, November 2006.

[45] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using Model
Checking to Find Serious File System Errors. In OSDI ’04, San
Francisco, CA, December 2004.

[46] Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. End-to-end Data Integrity for File Systems: A ZFS Case Study.
In FAST’10, San Jose, CA, 2010.

[47] J. F. Ziegler and W. A. Lanford. Effect of cosmic rays on computer
memories. Science, 206(4420):776–788, 1979.

