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Abstract. We present NyxCache (Nyx), an access regulation
framework for multi-tenant persistent memory (PM) caching
that supports light-weight access regulation, per-cache re-
source usage estimation and inter-cache interference analysis.
With these mechanisms and existing admission control and
capacity allocation logic, we build important sharing policies
such as resource-limiting, QoS-awareness, fair slowdown, and
proportional sharing: Nyx resource-limiting can accurately
limit PM usage of each cache, providing up to 5⇥ better per-
formance isolation than a bandwidth-limiting method. Nyx
QoS can provide QoS guarantees to latency-critical caches
while providing higher throughput (up to 6⇥ vs. previous
DRAM-based approaches) to best-effort caches that are not
interfering. Finally, we show that Nyx is useful for realistic
workloads, isolating write spikes, and ensuring that important
caches are not slowed down by increased best-effort traffic.

1 Introduction
Memory-based look-aside key-value caches (e.g., mem-

cached [14]) are a critical component of many systems and
applications [3, 5, 23, 74]. To improve utilization and simplify
management, multiple cache instances are often consolidated
onto a single multi-tenant server. For example, Facebook [54]
and Twitter [74] each maintain hundreds of dedicated cache
servers that host thousands of cache instances. However, multi-
tenant servers have the added challenge of ensuring that each
client cache meets its performance goals; a range of produc-
tion and research in-memory multi-tenant caches currently
provide different sharing policies, such as enforcing a limit
on the used memory capacity and bandwidth [7], guarantee-
ing a level of quality-of-service (QoS) [18], and allocating
resources proportionately [60].

Persistent memory (PM), such as that provided by Intel’s
Optane DC PMM [10], is emerging as an appealing building
block for these caches, due to PM’s large capacity, low cost
per byte, and comparable performance to DRAM. However,
PM performance differs from DRAM and Flash in a number
of ways that reduce the effectiveness of current multi-tenant
caches for other devices [34,62]. In particular, unlike DRAM,
Optane DC PMM exhibits highly asymmetric read vs. write
performance (for a single DC PMM, max read bandwidth is
6.6GB/s whereas max write bandwidth is 2.3GB/s) [45], se-
vere and unfair interference between reads and writes (writing
at 1GB/s can cause the same throughput and P99 latency slow-
down to a co-running read workload as reading at 8GB/s) [55],
and especially efficient access for multiples of 256B [73].

Unfortunately, existing multi-tenant DRAM and storage

caching techniques do not readily translate to PM. Some
approaches focus exclusively on capacity allocation across
clients [34, 60, 62]; capacity allocation is necessary but
not sufficient for PM sharing because the rate of requests
to PM must also be regulated. Host-level request regula-
tion has been explored extensively for Flash devices using
block-layer I/O scheduling [58, 61], but these software over-
heads are prohibitive given 100ns PM accesses [24]. Device-
level request scheduling assumes special hardware that PM
lacks [53, 65, 78, 79]. Finally, coarse-grain request throttling
underpins the vast majority of DRAM bandwidth allocation
techniques; however, these approaches assume both hardware
counters and performance characteristics that do not hold for
PM (e.g., bandwidth is an accurate estimate of utilization).

In this paper, we introduce NyxCache (Nyx), a standalone
lightweight and flexible PM access regulation framework for
multi-tenant key-value caches that is optimized for today’s
PM without special hardware support. Given a PM server and
a sharing policy (e.g., QoS), cache instances are admitted and
assigned space using existing load admission [36, 37, 52] and
capacity allocation [34, 60, 62] techniques. At runtime, Nyx
monitors information (e.g., PM resource utilization) of caches,
regulates the rate at which each cache is allowed to access
PM, and thus enforces the sharing policy’s performance goals.
Nyx works with any in-memory key-value store that adheres
to the memcached interface [14]; the current implementation
includes a PM-optimized version of Twitter’s Pelikan [17]
that can improve single-cache performance by more than 50%
for get-heavy workloads and 3⇥ for write-heavy workloads.
Nyx’s central contribution is a set of software mechanisms
designed for PM to extract the information required to flexibly
enforce popular sharing policies.

Nyx provides new mechanisms to efficiently i) regulate PM
accesses, ii) obtain a client’s PM resource usage, iii) analyze
inter-client interferences, and has two particularly useful and
novel mechanisms for PM. First, Nyx efficiently estimates
not only the total PM DIMM utilization (building on pio-
neering work in this space [55]), but also the PM utilization
caused by each cache instance, as is needed for sharing poli-
cies; estimating PM utilization is challenging because the
number of transferred bytes is not an accurate proxy of PM
utilization, unlike on DRAM. Second, Nyx can determine
which cache instance most interferes with another cache in-
stance; in PM-based systems, these interactions are difficult
to identify because a harmed client may be impacted more by
a low-bandwidth client than a high-bandwidth client, unlike
DRAM. Both of these mechanisms accurately account for the



Quality Proportional
Resource of Fair Resource

Limit Service Slowdown Allocation

Request Regulation 3 3 3 3
Resource Usage 3 3

Interference 3 *
Application Slowdown 3 3

Table 1: Control and Information Needed. 3indicates con-
trol or information is required by the policy. * indicates optional.

CPU cache prefetching that is essential for high performance
on PM. These new mechanisms enable Nyx to easily and
efficiently support sharing policies such as resource limiting,
QoS, fair slowdown, and proportional sharing.

The sharing policies provided by Nyx are powerful. Nyx
can accurately limit the PM utilization of each cache (simi-
lar to Google Cloud’s memcache [7]), whereas an approach
that measures only bandwidth cannot. Nyx can provide QoS
guarantees to latency-critical caches while providing higher
throughput (up to 6⇥) to best-effort caches that are not in-
terfering. Nyx can provide proportional resource allocation
while redistributing idle PM utilization to clients that will
not inadvertently slowdown others. Finally, as shown for real
large-scale cache traces from Twitter, Nyx can isolate clients
from write spikes and ensure that important caches are not
slowed down by increased best-effort traffic.

In the rest of this paper, we evaluate previous multi-tenant
caches and their limits for PM (§2); discuss the Nyx design
(§3); evaluate overheads of Nyx’s mechanisms and the effec-
tiveness of its policies (§4); discuss potential extensions (§5);
compare to related work (§6); and conclude (§7).

2 Motivation and Challenges
We provide background on the sharing policies provided

by many in-memory multi-tenant key-value caches and the
mechanisms needed to implement those policies. We explain
why previous approach for providing control and information
on DRAM or block I/O do not work well on PM.

2.1 Sharing Policies for Multi-Tenant Caches
In-memory key-value caches such as memcached [14], Re-

dis [66], and Pelikan [17] are an essential part of web infras-
tructure for many real-time and batch applications [3, 74].
Before accessing data from slow backend-storage or compute
nodes, applications first check an in-memory cache server.
In production environments, cache servers are usually multi-
tenant: many cache instances are consolidated on a single
server to improve utilization and simplify management and
scaling [54]. In a multi-tenant cache, requests are routed to
the cache instance of the corresponding tenant. For example,
large companies such as Facebook [54] and Twitter [74] main-
tain hundreds of large-memory dedicated servers that host
thousands of cache instances. Smaller companies use caching-
as-a-service providers such as ElastiCache [1], Redis [20] and
Memcachier [16]. In this paper, we focus on managing an

individual multi-tenant cache server.
Giving competing clients, enforcing performance and shar-

ing goals is critical in multi-tenant caching. Different indus-
trial and research multi-tenant systems have provided different
objectives; we focus on the following four.

Resource Limiting: A common objective when clients pay
for resources is to guarantee that each client cannot exceed
some amount of usage such as bandwidth, ops/sec, or number
of resources [2, 7]. For example, Google Cloud memcache
limits operations according to a pricing tier, such as “Up to
10k reads or 5k writes (exclusive) per sec per GB” [7]. Mul-
tiple resources can be limited simultaneously, e.g., Amazon
ElastiCache [2] charges for both memory and vCPUs.

There are two requirements for a multi-tenant cache to
enforce per-client resource limits. First, the system must accu-
rately determine the amount of resource each client is using;
we refer to this as resource usage estimation. Second, the sys-
tem must reschedule or throttle requests of each client if they
exceed this limit, which we call request regulation. Below
(§2.2), we describe how previous multi-tenant caches have
provided request regulation and resource usage estimation,
and why these previous approaches are not sufficient for PM.

Quality-of-Service: A multi-tenant system may ensure
that each client’s performance goals (throughput, latency, or
tail latency) are met regardless of other co-located clients, as
in Twitter [18] and Microsoft [62]. This objective is useful for
latency-critical clients that must meet service-level objectives
(SLOs). For example, production caches at Twitter provide a
p999 latency of <5 milliseconds [18].

Providing QoS requires knowledge of whether each client
is meeting its goals at run-time. When the system observes
that one client is not meeting its performance guarantee, in-
terfering clients are identified and limited [31, 39, 51] (e.g.,
with request regulation). Identifying the client causing the
most harm is usually straightforward and based on simple
bandwidth [39] for DRAM-based caches, but not for PM. A
new technique involving interference estimation is required
on PM to determine how the workloads compose.

In addition to run-time support, guaranteeing QoS requires
admission control and space allocation. Admission control
must be performed on newly arriving clients to ensure that the
system has sufficient resources and that the new client will not
interfere with existing clients [36, 37, 52]. Space allocation
across cache instances must be performed to provide a speci-
fied hit ratio for each client to ensure each can meet its goals.
Previous research has focused on this challenge. For example,
Microsoft [62] allocates space to meet QoS bandwidth tar-
gets, and Robinhood [29] to minimize tail latency. Admission
control and space allocation are mostly orthogonal to the new
challenges introduced by PM and are not our focus.

Fair Slowdown: Multi-tenant systems in more coopera-
tive environments may ensure that all clients are slowed down
by the same amount. Formally, these approaches minimize
the ratio of the maximum slowdown to the minimum slow-



down [38, 63]. In web cache settings, application requests
may fan out, in which case the cache access with the longest
latency determines overall latency [29, 54]; thus, balancing
slowdown benefits overall request latency.

Enforcing fair slowdown requires knowledge of each
cache’s slowdown at runtime. The system must monitor each
cache’s current performance when sharing the server with
others and know its performance if run alone. A technique
for slowdown estimation is required. Furthermore, to equalize
slowdowns of different caches, caches with small slowdown
should be further limited and caches with larger slowdowns
should be less limited (e.g., with request regulation).

Proportional Resource Allocation: Finally, a multi-
tenant system may incent clients to share resources by guar-
anteeing that each of N clients performs within 1/N-th of
its stand-alone performance. This guarantee can be general-
ized to give each client a different proportional share. Idle
resources may be redistributed across clients, such that some
obtain more than their guarantee. For example, FairRide [60]
ensures proportional cache space allocation.

To guarantee proportional allocation, a multi-tenant cache
must meet three requirements. The system must perform re-
quest regulation and resource usage estimation to guarantee
that each client does not consume more than its allocation.
When assigning idle resources to clients, the system must val-
idate that the additional resource usage does not interfere with
others; therefore, the system must track each client’s slow-
down (i.e., with slowdown estimation) and stop idle resource
re-allocation before it severely impacts some clients.

In summary, for a multi-tenant cache to provide the above
policies, it must control resource usage of each cache instance
and obtain information about resources and application per-
formance. Table 1 summarizes the needed control and infor-
mation for each policy.

2.2 Challenges of PM Cache Sharing
Persistent memory is an appealing building block for key-

value caches. After presenting PM background, we describe
the challenges of using PM for multi-tenant caching.
2.2.1 Persistent Memory Characteristics

PM is becoming a reality in products and research proto-
types. For example, Intel Optane DC PMM [10] is a popularly
available device; there are also research prototypes [30,49,70].
In this paper, we use PM to refer to Optane DC PMM. PM
performance is similar to DRAM but can deliver extremely
large capacity at low cost [10, 11]. PM is significantly faster
than NAND Flash and is byte-addressable. PM is directly con-
nected to the memory bus and, when configured in App Direct
Mode, can be accessed using loads and stores. Different CPU
caching options exist for PM access: loads and stores with
CPU caching and prefetching; loads and stores with prefetch-
ing disabled (for both PM and DRAM); non-temporal (NT)
operations that bypass the CPU cache entirely [73].

Table 2 summarizes the bandwidth and latency of Optane

Metric Load No-Prefetch NT-Load Store Store+clwb NT-Store

256B GB/s 1.59 1.53 0.29 1.12 0.52 3.73
us 0.49 0.52 0.84 0.38 0.47 0.08

4KB GB/s 4.08 2.92 2.24 1.03 1.50 3.44
us 1.22 1.69 1.84 4.14 2.71 1.22

Table 2: PM Load/Store Performance. This table summarizes the
throughput/latency of single thread random 256B and 4KB load/store opera-
tions (on 2⇥ DC PMMs). No-Prefetch: the CPU’s prefetching is turned off
(for DRAM/PM); NT: non-temporal operations that bypass the CPU cache.

DC PMM for a workload relevant to key-value caches: ran-
dom 256B and 4KB loads and stores. As shown, for loads,
regular loads perform best: CPU cache prefetching is essential
for hiding PM latency and increasing throughput. For stores
on a random workload, NT-stores that bypass the CPU cache
have much better performance. Thus, we use in-PM key-value
caches optimized to use regular loads and NT-stores.

PM has unique characteristics that impact multi-tenant
caching. For instance, as previously identified, PM exhibits
asymmetric read vs. write performance [45], especially effi-
cient access for specific sizes (e.g., 256B) [73], and severe
and unfair interference across reads and writes [55]. As we
will describe, these characteristics deeply impact the ability
to perform request regulation and to estimate resource usage,
interference, and application slowdown.
2.2.2 Request Regulation

Previous approaches for request regulation have been de-
signed for both DRAM and for block I/O. However, none of
these approaches are suitable for PM.

Existing techniques for regulating memory requests have
adjusted the number of cores dedicated to an application [39],
used clock modulation (DVFS) [57], and Intel Memory Band-
width Allocation (MBA) [9]. In multi-tenant caching, reduc-
ing the number of cores is not suitable because a cache in-
stance is often allotted only a single core [2]. Intel MBA
manages last-level cache (LLC) misses from each core to
limit memory traffic, but does not distinguish between misses
to PM and DRAM [8] and so cannot restrict PM accesses
without also slowing down DRAM. Furthermore, Intel MBA
does not have access to accurate information about resource
usage, interference, and application slowdown, as we will dis-
cuss. Likewise, adjusting CPU frequency has an effect on all
instructions; Oh et al. [55] demonstrated the ineffectiveness
of CPU frequency scaling on regulating PM traffic.

I/O requests have been regulated via software with block-
layer I/O scheduling [12], which is not suitable for PM for
two reasons. First, the block abstraction would add significant
read/write amplification for byte-addressable PM. Second,
scheduling requests with merging, reordering, and other syn-
chronization would add unacceptable overhead to otherwise
low-latency PM accesses [24].
2.2.3 Resource Usage Estimation

Previous techniques for estimating the memory or I/O us-
age of clients do not work well for PM. We describe the
problems with previous software approaches for tracking I/O



(a) Read vs. Write Interferences (b) Interferences Related to Access Sizes

Figure 1: PM Load Performance with Various Interferences. We place a victim workload (single thread 256B loads) with various interferences. (a)
shows the victim throughput and tail latency when colocated with varying amounts of read and write interferences. (b) shows the victim performance when
colocated with 1GB/s store traffic of varying access sizes (range from 64B to 512B with step of 64B).

usage and with hardware approaches for DRAM.
As discussed above, CPU cache prefetching is required for

PM to deliver high bandwidth and low latency. However, when
estimating block I/O traffic in software [4, 35, 76], extra PM
accesses caused by prefetching are not observed. Running an
experiment with 1KB random loads, we found that software-
level tracking accounted for only 60% of actual memory traf-
fic, leading to inaccurate resource-usage estimation.

Accounting on DRAM uses hardware counters to track L3
cache line misses to the memory controller per core. While
hardware counters accurately measure prefetching, they do
not account for the difference between cache line size and
PM access granularity, which is needed for PM accounting.
Because PM has a 256B minimum access granularity, a 64B
load (a single L3 cache line) utilizes the same amount of PM
resources as a 256B load (four L3 cache lines). Thus, four
cache line accesses can result one to four PMEM accesses.
Previous systems for resource estimation have often used
bandwidth consumption as a proxy for resource usage [39,51,
77], but this is not appropriate for PM where operation cost is
affected by access size and is different for reads versus writes.

Unfortunately, current hardware counters in PM are also
not sufficient; existing PM counters are at the DIMM media-
level and do not track per-client or per-core usage [13, 55].
2.2.4 Interference Estimation

In memory-based approaches, interference caused by a par-
ticular client was assumed to be related to memory bandwidth.
For example, Caladan [39] identifies the client with the high-
est number of LLC misses, which corresponds directly to the
client with the highest memory bandwidth. This simplifica-
tion does not work for PM, as PM interference depends on
both volume and pattern of traffic.

Specifically, on PM, write-intensive clients generate greater
interference than read-intensive clients with the same band-
width, as shown in Figure 1.a. For example, on a read-
intensive client, a competing 1GB/s write causes the same
throughput and tail latency interference as a competing 8GB/s
read. As shown in Figure 1.b, smaller accesses (64B) can
cause more interference than larger accesses (256B). Since
PM has a minimum granularity of 256B, a 64B access is am-
plified into 256B on the device; thus, at the same bandwidth,

64B accesses generate significantly more interference than
256B accesses. In short, the bandwidth of a competing client
is not a good estimation of interference in PM, unlike DRAM.
2.2.5 Application Slowdown Estimation

Numerous efforts have estimated slowdown for DRAM
and Flash-based systems; however, all require specialized de-
vice support. For example, FST [38] requires in-DRAM bank
conflict counters that are updated with each memory access;
MISE [64] and ASM [63] require the DRAM controller to as-
sign priorities to application requests. FLIN [65] changes the
Flash controller to track and rearrange each flash transaction.
Although application slowdown is not inherently different on
PM than DRAM or I/O, previous approaches require special
hardware which is not available on PM.
Summary: Multi-tenant PM caching demands new methods
for regulating PM accesses and extracting PM resource usage,
interference information, and application slowdown.

3 NyxCache Design
Given that existing multi-tenant cache servers cannot han-

dle PM, we introduce NyxCache (Nyx). Nyx provides mech-
anisms for control (e.g., request throttling) and information
estimation on PM (e.g., resource usage, interference, and ap-
plication slowdown), and supports a range of sharing policies
(e.g., resource limiting, quality-of-service, fair slowdown, and
proportional resource usage). We describe the overall archi-
tecture of Nyx, present our design goals, describe how Nyx
provides these mechanisms and policies.

3.1 Architecture
As shown in Figure 2, Nyx provides a multi-tenant in-

PM caching framework. Each PM server running Nyx may
contain any number of cache instances (e.g., memcached,
Pelikan, Redis). Thousands of users may send requests (e.g.,
set/get) to their associated cache instance. When cache space
is exhausted, a cache instance can use any eviction strategy
(e.g., FIFO, LRU, and LFU). As in other look-aside caches,
users explicitly write desired data into the cache; Nyx does
not fetch data from remote storage on a cache miss.

Nyx can be configured with different sharing policies and
parameters (e.g., a resource limit, latency target, or propor-
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Figure 2: NyxCache Architecture. Nyx implements throttling and
resource usage accounting for each cache instance, and enforces sharing
policies across cache instances. Nyx contains two major components: 1) a
Nyx Library for each instance, and 2) a centralized Nyx Controller.

tional weight). Administrators can implement new policies us-
ing the control and information mechanisms provided by Nyx.
At runtime, Nyx enforces the desired sharing policy. Based on
information Nyx acquires about per-instance resource usage
and performance, the Nyx controller dynamically adjusts the
throttling and space allocated to instances.

Nyx has two requirements for cache instances. First, each
cache instance must report application-level performance met-
rics such as throughput and tail latency; most systems have
this capability or can be extended [15]. Second, the instances
must be integrated with a trusted Nyx-library. When a cache
instance reads/writes from/to PM, it must use Nyx library
APIs (e.g., read(dest, src), write(dest, src)). For each PM ac-
cess, the Nyx library throttles access, tracks PM usage, and
performs the actual access. The library uses a separate thread
to communicate with the Nyx controller. The controller inter-
acts with the library to query statistics and to set configuration,
space, and throttling values. Nyx leverages techniques from
previous multi-tenant in-memory caches for basic sharing
functionality such as admission control and space allocation.
As of now, Nyx only manages cache instances on a single
NUMA node that share PM (and all PM accesses are lo-
cal); multiple Nyx can be used to manage multiple NUMA
nodes. We leave NUMA-aware management for future work.

3.2 Design goals
Nyx has the following goals. (i) Lightweight: Performance

is critical for in-PM caching; thus the cost of adding control
and acquiring information must be low relative to the cost
of accessing PM. (ii) Flexible Sharing Policies: Different
sharing policies may be required by administrators for dif-
ferent scenarios. Thus, Nyx can be configured with several
policies based on a common set of simple mechanisms. (iii)
No Special Hardware: Previous work has assumed smart re-
sources (e.g. Flash, DRAM) that provide configurable control
and information [53, 65, 78, 79]. Nyx handles current devices
with existing hardware interfaces. (iv) Minimal Assump-
tions: Storage devices are continuously evolving, with new
generations having new performance characteristics. There-
fore, Nyx does not assume a particular performance model for
all PM devices (e.g., the interference for different operations).

Figure 3: MaxIOPS Profile. MaxIOPS for random reads and writes of
different sizes on our 2⇥ Intel Optane DC PMM system.

3.3 Nyx Mechanisms
Nyx contains low-level mechanisms that enable higher-

level sharing policies to be implemented easily. Since request
regulation, estimation of resource usage, interference, and
application slowdown are changed significantly by PM, we
describe these Nyx mechanisms in detail. Access control
and space allocation are largely independent of PM and not
the focus of this paper; Nyx borrows these techniques from
previous systems [29, 34, 52, 60, 62].

PM Access Regulation: To minimize the overhead of reg-
ulating requests to PM, Nyx adheres to the basic principle
used by previous techniques for DRAM regulation: throttle
requests in a coarse-grained manner without reordering or
prioritizing. To mimic the behavior of Intel MBA, Nyx imple-
ments simple throttling by delaying PM accesses at user-level.

Our current implementation adds delays in units of 10ns
with a simple computation-based busy loop. In some cases
PM operations may need to be delayed indefinitely (e.g., when
a resource limit is reached); in this case, PM operations are
stalled until the Nyx controller sets the delay to a finite value.

Resource Usage Estimation: Nyx must determine how
much PM resource each cache instance is using. As described
in Section 2, for PM the number of transferred bytes is not
a good estimate of resource usage; on PM, each operation
type (e.g., read or write) and access pattern (e.g., request
size) consumes a different amount of the resource and has a
different maximum operations per second. Therefore, Nyx
determines the utilization of PM as a function of the current
IOPS of each operation type relative to the maximum IOPS
for that operation type. For example, if the maximum IOPS
of pattern A is MaxIOPSA, then the cost of each operation of
pattern A is 1/MaxIOPSA. If the maximum IOPS of pattern
B is 1/N ⇥MaxIOPSA, then each B operation consumes N
times more PM than an A operation and has N times the cost.
The IOPS cost model accurately captures that writes are more
expensive than reads, and the dependency on request size.

Nyx determines the MaxIOPS of each access pattern
through profiling, performed once per PM server. The pro-
filer measures IOPS for random read and write operations
between 64B and 4KB (in steps of 64B). Because prefetching
occurs during profiling, the measured MaxIOPS accurately
represents the cost of both the operation itself and any wasted
prefetching. Profiling concentrates on random accesses as



multi-tenant key-value caches are mostly random: first, be-
cause multiple tenants access PM simultaneously (in different
address spaces), their requests are interleaved; second, keys
tend to be mapped to arbitrary PM locations based on their
time-to-live and size [14, 75]. The profiler stops at request
sizes of 4KB which obtain the device’s maximum bandwidth.

Figure 3 shows the profiled MaxIOPS for reads and writes
as a function of request size. As shown, writes have lower
IOPS and thus a higher cost per operation than reads. While
larger requests generally have lower IOPS, there is a complex
relationship with the minimal PM access size: for example,
a 64B random store has a similar maximum IOPS as 256B,
the minimum PM access size; accesses that are not aligned to
256B have lower MaxIOPS.

At runtime, Nyx tracks the PM usage of each cache in-
stance. When a cache instance accesses PM, Nyx looks up the
MaxIOPS for this operation and size, and increments a cost
counter for this cache instance by 1

MaxIOPS . To reduce synchro-
nization overhead, these counters are maintained per-thread
and only lazily combined when needed (e.g., for responding
to a resource usage query from Nyx Controller).

While the CPU cache can theoretically introduce errors in
PM cost estimation, these errors are negligible for Nyx. First,
since CPU prefetching waste depends in part on spatial local-
ity, the profiler mimics the random accesses of cache instances
that have little sequentiality. Second, given a cache instance
that uses NT-store (as in Nyx-Pelikan), the CPU cache has
no effect on stores. Finally, although a PM load could be
served in the CPU cache and never access PM, in multi-tenant
caches few PM loads hit in the CPU cache: because each
instance’s working set is typically tens of GBs [28, 74] (and
there are many instances), there is little temporal locality in
CPU caches of tens of MBs. More intricate cost models for
cache instances with spatial (e.g., scan) and temporal locality
(e.g., bursty retries) are left for future work.

Interference Analysis: When multiple cache instances are
co-located, Nyx determines which instance most impacts an-
other. For example, when an efficient QoS implementation
observes that an affected client W is not meeting its guarantee,
it will iteratively slow down the one competing client that will
produce the greatest benefit for W. In PM-based systems, un-
like DRAM, these interactions are difficult to identify because
an affected client may be impacted more by a low-bandwidth
client than a high-bandwidth client. The amount of interfer-
ence is due to complex scheduling within the PM device; as
future generations of PM devices become available, which
clients interfere with which others may change. Therefore,
Nyx assumes no prior knowledge of these interactions.

Nyx determines which client is interfering the most with
the affected client with a runtime micro-experiment. Given
affected client W and several competing clients, Nyx itera-
tively throttles each competing client by X for some metric of
interest while measuring the impact on client W. The throttled
client that helps W attain the greatest performance improve-

Algorithm 1: Resource Limit The gray area denotes
unique functionality used to deal with PM issues

EpochLen: ticks in an epoch (e.g. 100), TickLen: (e.g. 10ms)
A.getResCounter(): query A’s Nyx-Lib for resource usage
A.setThrottling(t): add t⇥10ns delay to each access of A
ResAssigned[1..N]: each cache’s assigned resource per epoch
while true do

# Step 1: Begin an epoch and set all cache throttling to 0
foreach cache A do

A.setThrottling(0)
InitResCounter[A] = A.getResCounter()

# Step 2: Monitor resource utilization and pause clients
who have used up their allotted resources.

while Epoch is not completed do
SleepFor(TickLen)
foreach cache A do

ResUsed = A.getResCounter() - InitResCounter[A]
if ResUsed > ResAssigned[A] then

A.setThrottling(INFINITE) # Pause

ment is identified as the client that interferes with W the
most. The value of X is configurable, as is the metric (e.g.,
throughput, average latency, or tail latency). Nyx uses simple
pruning techniques to throttle only the clients with the highest
resource usage. Optimizations for reducing micro-experiment
times (e.g., focus on different client subsets in different trials)
are left for future work.

SlowDown Estimation: Nyx determines the slowdown
that each client experiences at runtime by calculating Talone

Tshare
;

Talone is the client’s performance (for some metric of interest)
when it is running alone, and Tshare is its current performance
in the shared environment. As we assume no special hardware,
Nyx uses an approach similar to previous work [47].

First, to learn Talone, Nyx briefly pauses all other clients;
Talone is updated on a regular basis (e.g., 1s) or whenever a
workload change is observed. Second, slowdown is period-
ically calculated using a runtime measurement of Tshare. As
we will show, at the cost of a small loss of bandwidth and
increase in tail latency, this solution adequately approximates
slowdown without hardware support. The impact of the pause
can be reduced for workloads that do not change frequently.

3.4 Nyx Sharing Policies
Nyx implements four popular sharing policies. We describe

how these policies leverage the mechanisms of Nyx for PM.
Resource Limit: Nyx can limit the amount of the PM re-

source used by each client in multi-tenant caching, isolating
the performance of clients from one another. Our policy de-
fines resource limits in terms of standard operations, similar
to Google Cloud’s memcache [7] (e.g., 1000 1KB random
reads per second, or 1MB/s random reads).

As shown in Algorithm 1, Nyx provides resource lim-
its for each client epoch by epoch, extending existing ap-
proaches [77]. Each epoch, Nyx monitors the resource utiliza-
tion of each client; if a client reaches its limit for this epoch,
its accesses to PM are delayed until the next epoch. When the
epoch ends, the throttling value for each client is reset to zero.



Algorithm 2: QoS The gray area denotes functionality
for PM. We omit code to rollback throttling when the
action violates any LC task’s target.

ExperimentStep: a cache’s throughput expense pays for an
interference analysis experiment. (e.g. 500MB/s)

while true do
# Step 1: Monitor each client’s SLO slack
foreach cache A do

slack[A] = (A.target - A.latency) / A.target
S = cache with the smallest slack
# Step 2: Protect clients violating SLO
if slack[S] < 0 then

if S is throttled then
throttle down S

else
# Step 2.1: Pick candidates to throttle
if there are BE caches then

candidates = top 3 resource usage BE
else

candidates = top 3 res usage LC, slack > 0.2
if all LCs have little slack then

candidates = LC with the most slack
# Step 2.2: Find the most interfering client
I = getLargestInterference(S, candidates)
throttle up I

else if slack[S] > 0.2 then
# All caches have slack -> relax throttling
throttle down every cache

Function getLargestInterference(S, Candidates):
# Find the tenant who will most improve S at the same

expense (throughput)
If there is only one client in Candidates, return the client
foreach C in Candidates do

throttle up C by ExperimentStep
track S latency change after the experiment
restore all throttle to previous state

return L who helps S get the largest improvement

The implementation allows the administrator to configure the
epoch and tick length to trade-off the overhead of checking
counters with reaction time.

Quality-of-Service: Nyx can ensure that latency-critical
(LC) tenants meet a service-level-objective while maintain-
ing high PM utilization for best-effort (BE) tenants on the
same server. As in earlier work [36, 37], admission control
prevents workloads with unachievable QoS targets and space-
allocation provides the necessary hit ratio.

As shown in Algorithm 2, Nyx employs an approach similar
to Parties [31] and Caladan [39]: for each LC client, the differ-
ence between the guaranteed and the current performance is
tracked; when the guarantee is violated (i.e., negative slack),
a competing tenant is throttled.

Nyx differs in how it identifies the client to be throttled.
Caladan always throttles the BE tenant with the maximum
bandwidth (LLC misses), whereas Nyx throttles the BE or LC
cache that most improves the LC cache, for the same expense
across competing tenants. The implementation allows the
administrator to configure ExperimentStep, allowing a balance
between aggressive throttling and faster convergence.

Fair Slow Down: Nyx can achieve fairness in terms of

Algorithm 3: Fair Slow Down
A.getSlowDown(): return A’s current performance / Talone
while true do

if Talone info is older than P sec then
foreach cache A do

refreshTalone(A)

# Adjust throttling to equalize slowdowns
foreach cache A do

SlowDown[A] = A.getSlowDown()
find cache L and S with the largest and smallest slowdowns
unfairness = SlowDown[L] / SlowDown[S]
if unfairness > UnfairnessThreshold then

throttle down L and throttle up S
FairIntervals = 0

else
# With fair slowdown, try to improve utilization
FairIntervals ++
if FairIntervals > FairIntervalThreshold then

throttle down all caches

Function refreshTalone(A):
A.setThrottling(0), and pause every other cache
A.Talone = measure A throughput
restore throttle of all caches to previous state

equalized slowdown across caches. As in Algorithm 3 [38,63],
Nyx minimizes (MaxSlowDown/MinSlowdown) by gradu-
ally increasing the throttling of the MinSlowDown cache
and decreasing the throttling of the MaxSlowDown cache.
The tuning process is terminated when the unfairness met-
ric falls under an UnfairnessThreshold. The implementation
periodically (every P seconds) refreshes the estimate of the
stand-alone performance (Talone) for each client. Administra-
tors can customize P to balance between lower overhead and
faster adjustments for dynamic workloads.

The policy can be generalized to guarantee weighted slow-
downs and a hard limit on some cache’s slowdown. For the
hard limit, Nyx tracks the particular slowdown at runtime and
throttles other caches when the hard limit is exceeded.

Proportional Resource Allocation: Nyx implements pro-
portional sharing with actual proportional resource allocation
(instead of simple bandwidth allocation) and with interference-
aware idle resource redistribution. Nyx ensures that each
cache achieves performance equal to or better than accessing
PM alone for a given amount of time (time-sharing [67]). For
example, if a cache has a weight of 2 out of 3, then it is guar-
anteed to obtain at least 2/3 of its stand-alone performance.

Nyx first allocates resources (not bandwidth) proportionally
to each cache and enforces the resource limit during an epoch
(Algorithm 4). We assume cache space has been allocated
proportionately. Following an epoch, Nyx forecasts each ten-
ant’s desired amount of resources: a tenant that did not use
all its given resource may donate idle resources, whereas a
tenant that used all assigned resources may consume more (a
simple linear model predicts desired resources [77]).

Nyx provides interference-aware resource donation (Op-
tion 2 in the Alg.). On PM, idle resource redistribution faces
the difficulty that the donated resource may severely interfere
with the original donor’s performance. For example, as shown



Algorithm 4: Proportional Resource Allocation The
slowdown refreshing code is omitted.

DonateStep: step to donate idle resources (e.g. 10%)
TotalResource = 1
while true do

# Step 1: Enforce and track resource usage in an epoch
Begin a New Epoch
foreach cache A do

Enforce A uses resource <= ResourceAssigned[A]
if A depleted resources, record how long:

TimeUseUp[A] (e.g. half of the epoch)
if A left idle resources, record ResourceUsed[A]

End of the Epoch
# Step 2: Redistribute Idle resources
foreach cache A do

if A has idle resources then
# Option 1: Donate all extra resources
DesiredResource[A] = ResourceUsed[A]
# Option 2: Interference-aware resource donation
if A.getSlowdown() < TotalWeight / A.weight then

# Donate a step when within slowdown limit
DesiredResource[A] =
Max(ResourceAssigned[A] * (1 - DonateStep),
ResourceUsed[A])

else
# Revoke a step when under slowdown limit
DesiredResource[A] =

Min(ResourceAssigned[A] * (1 +
DonateStep), TotalResource * A.weight/
TotalWeight)

if A depleted resources: DesiredResource[A] =
ResourceAssigned[A] / TimeUseUp[A]

ResourceAssigned[1..N] = Allocate resources
proportionally based on weight and desired resource

in Section 4.5, if a get-heavy cache A donates idle resources
to a write-heavy cache, the new write traffic can dramatically
harm A’s performance. To prevent this interference, Nyx re-
allocates resources in increments, stopping when the donating
cache’s slowdown is near its lower bound; if the slowdown
exceeds the lower bound, a portion of the donated resources
are returned. Thus, Nyx guarantees the “time-sharing” lower
bound while maximizing resource utilization. The implemen-
tation allows the administrator to set DonateStep, balancing
quick idle resource donation and the proportional guarantee.

With Admission Control and Capacity Allocation: In a
nutshell, cache instances are 1) admitted, 2) allocated space,
and 3) governed by Nyx. A PM free-space check, for example,
suffices for resource limiting as admission control for a cache;
QoS policy requires logic like [36,37] to predict SLA compli-
ance given existing caches. The cache size is then determined.
For instance, it can be set based on the instance’s price tier;
to enforce QoS, administrators can profile a client’s hit-rate
v.s. cache space relationship [62] and allocate enough space
to meet SLAs. While running, Nyx assumes the admission
logic is correct and is unconcerned about the space allocated.

3.5 Cache Instances: PM-Optimized Pelikan
Nyx has been designed to handle any in-memory key-value

store; our current implementation is built upon Pelikan – Twit-
ter’s in-memory KV cache [17, 75]. We describe the original

(a) Get (b) Write
Figure 4: Optimization: Nyx-Pelikan. (a) presents Get (single-
thread) throughput improvement due to key-value separation. (b) presents
Write (replace, 8 threads) improvement due to changing stores to NT-stores.

Pelikan and optimizations for higher PM performance.
Pelikan (SegCache [75]) maintains a hash table for index-

ing and segments for storing key-value pairs. Each segment
includes items, where each item is a tuple of (key, value, meta-
data). On a get operation, Pelikan hashes the key to find items.
Because of conflicts, multiple keys are likely to be read for a
single get. Thus, Pelikan must compare each read item with
the key; if the keys match, the value is returned.

When the default version of Pelikan is configured for PM,
the hash index is kept in DRAM and the segments in PM.
However, this placement is inefficient due to the frequent key
accesses in PM: the keys in caching workloads are often much
smaller [74] than the granularity of PM access (256B), and
small reads perform relatively poorly on PM [73].

Nyx-Pelikan addresses this by separating keys (and meta-
data) from values into different segments; the keys (and meta-
data) are placed in DRAM and the values in PM. This design
requires DRAM for keys and metadata, which works well
because they are typically much smaller than values [73].

As shown previously in Table 2, because non-temporal
stores to PM can provide much greater throughput than con-
ventional stores, Nyx-Pelikan uses NT-store. Although non-
temporal stores may not benefit from temporal locality in
the CPU cache, this loss is negligible on large-scale caching
workloads which typically have large working sets. As shown
in Figure 4, Nyx-Pelikan improves Pelikan Get performance
by up to 55% and set performance by up to 3⇥.

3.6 Nyx Parameter Values
The values of Nyx’s parameters affect its behavior; as previ-

ously stated, the appropriate settings depend on the tradeoffs
made by administrators. Nyx enables users to configure all of
these parameters while also setting defaults.

Nyx follows existing guidelines [38, 63, 77] for policy pa-
rameter values’ selection. For resource limiting, Nyx uses 10
ms tick and 100 ticks per epoch to limit resource usage offset
to 1%. For fair slowdown, Nyx sets the Talone refresh inter-
val to one second to achieve a relatively quick response to
workload changes and a within 2% overhead (§4.1).

Nyx provides defaults for newly introduced parameters
via sensitivity tests (§4.7). Nyx QoS uses 500MB/s Experi-
mentStep because it is the smallest step that produces good
interference analysis. In interference-aware resource dona-



Trace Type Avg.Key/Value Sizes(B) Operations (Get/Write ratio)
S1 Storage 36/799 0.86/0.13
C1 Computation 67/2439 0.93/0.07
C2 Computation 18/67485 0.52/0.48

Table 3: Twitter Traces.
tion, Nyx sets a 10% DonateStep to balance quick donation
and steady donator performance. Nyx sets 10ns throttling de-
lay granularity for fine-grained access rate regulation, which
is an order of magnitude less than 100ns PM latency. We
will discuss potential optimizations like dynamic/adaptive
parameters and automatic parameter value selection in §5.

4 Evaluation
We evaluate the overhead of Nyx’s mechanisms and how

well Nyx provides the sharing policies of resource limit, QoS,
fair slowdown, and proportional resource allocation.

Setup: We use a 16-core, single-socket Intel Xeon Gold
5128 CPU @ 2.3GHz server (Ubuntu 18.04), with a 22 MB
L3 Cache, 2x16GB DRAM, and 2x128GB Intel Optane DC
PMM in app direct mode. We mount an ext4 file system in
DAX mode on the PM.

Synthetic Workloads: We begin with synthetic workloads
to illustrate key features. Unless specified, the workloads have
uniform random accesses to each cache instance, a working
set of 10GB per instance, and 4B keys and variable-sized
value. To focus on PM accesses, we use get workloads with a
high hit ratio (>99 percent). We use in-place replacement for
write-heavy workloads; a cache write implies a replace. The
cache is warmed to begin.

Realistic Workloads: We conclude with three large-scale
cache traces from Twitter [74] (Table 3). The traces cover
caches with various value sizes (799B to 67845B) and get-
percentages (93% to 52%). We pre-load one million opera-
tions from the traces and loop through them.

4.1 Mechanisms Overhead
Request Regulation and Resource Usage Estimation:

With Nyx, each PM access incurs a call into Nyx-lib, throt-
tling logic, and resource accounting. Figure 5.a shows this
can add up to 12% overhead for extremely small value sizes
(e.g., a cache line), but less than 6% for access sizes above
256B. Given the benefit of request regulation and resource
usage accounting, we believe this overhead is justified.

Interference Analysis: Determining the most interfering
client takes longer than simply selecting the client with the
greatest bandwidth due to the lag necessary to observe tail
latency. In Section 4.3 we will demonstrate the benefit of
trading increased analysis time for more precise information.

SlowDown Estimation: The overhead of slowdown esti-
mation is influenced by the time to measure Talone per instance,
the frequency of this measurement, and the number of cache
instances. We determined that 1ms is a sufficient pause time
to accurately determine Talone for a client. Figure 5.b shows
that calculating Talone for up to 12 instances adds less than
2.5% overhead, even when performed every 500ms.

(a) Regulation, Accounting Overhead (b) Slowdown Estimation Overhead

Figure 5: Mechanisms Overhead. (a) shows Nyx request regulation
and resource usage accounting overhead (throughput). It is measured with
8-threads get-only caches. A similar percentage of latency overhead was
observed. (b) shows Nyx slowdown estimation overhead (throughput). It is
measured with 1ms Talone pausing time, different number of clients (x axis)
and different frequency (0.5/1/10s) of updating Talone for all caches.

4.2 Resource Limiting
We demonstrate that Nyx can enforce a true resource limit

on PM, in contrast to an approach based only on bandwidth.
We begin with a workload containing one unlimited (U) cache
and one limited (L) cache. Cache U is a get-heavy cache
instance, while Cache L changes: get-only or write-only, with
varied value sizes. L has a resource limit of 1.25M 4KB
random load OPS, or 42% of the total device resource given
that MaxIOPS for 4KB random loads is 3 Million. Defined
in terms of bandwidth, this equates to 5GB/s for these 4KB
random loads; however, this IOPS limit results in different
bandwidths for other workloads.

Figure 6.a shows the bandwidth of L; the target IOPS, in
which no more than 42% of the device resource is used, is
shown in red. As desired, Nyx always limits L’s throughput to
the target limit, regardless of L’s access pattern (determined
by value sizes and read/write). In contrast, a policy based
only on bandwidth mistakenly allows L to significantly ex-
ceed the target limit, up through the maximum bandwidth
of 5GB/s. When L is get-only, this problem is most notice-
able when the value size is around 1KB; as previously noted,
1KB accesses result in significant CPU prefetching waste
not captured by software-level bandwidth accounting. On the
other hand, Nyx’s MaxIOPS cost model accurately captures
resource usage. Similarly, bandwidth cannot capture PM write
cost and fails to properly limit L’s throughput.

The impact on the unlimited client (U) is shown in Fig-
ure 6.b for the same L workloads. With the bandwidth policy,
U’s performance depends on L’s access pattern. Due to asym-
metric read/write cost of PM, whether L performs reads or
writes significantly impacts U; similarly, the varied prefetch-
ing waste of each access pattern causes up to 45% impact on
U. In contrast, Nyx provides U with steady and predictable
performance, regardless of L’s access pattern: across all of L’s
workloads, the standard deviation of U’s performance is only
130MB/s (bandwidth limit’s deviation is 678MB/s). Finally,
Figure 6.c shows that when the percentage of gets in L is
varied, Nyx provides steady performance for U, whereas a
PM-oblivious bandwidth-based approach does not.



(a) L Throughput (b) U Throughput (c) U + Broader L Setups

Figure 6: Resource Limit: Cache U (unlimited) + Cache L (limited). Cache U is get-only. (a) Cache L throughput when resource limit is 5GB/s
(1.25M 4KB random load OPS, or 42% of the total device resources). The red dotted line represents L’s performance under the “ideal limit”, which is calculated
as 42% of the current access pattern’s MaxIOPS. L is get-only or write-only, and its value sizes varies (x axis). (b) Cache U’s performance when colocated with
the same L in (a), comparing bandwidth limit and Nyx resource limit. (c) Additional L setups: 1KB/4KB value sizes and 10% - 90% gets. U is a lighter cache
than (a) and (b). The label indicates U’s max bandwidth when colocated with a 5GB/s cache instance (4KB-value, get-only).

Figure 7: Resource Limit: Behaviors with a Varying Hit Rate.
Operations Per Second (OPS) for a Cache with 1KB Get-only workloads
when resource limit is 5GB/s. We vary the workloads with different working
sets to achieve a different hit rate; note there is no insertion after each miss.

Figure 7 demonstrates Nyx’s resource limiting behaviors
as the cache hit rate varies. As shown, Nyx restricts PM re-
source usage from (get) hits. Misses in look-aside caches
(e.g., Pelikan) are simply returned after checking the index (in
DRAM) and do not use PM resources, so they are not limited.

4.3 QoS-Aware
Nyx can provide QoS guarantees for latency-critical (LC)

caches while providing high utilization to best-effort (BE)
caches with interference-aware regulation; in contrast, a PM-
oblivious approach such as that in Caladan may not be able
to deliver the same performance to the BE cache. For compar-
ison, we implemented the Caladan approach in Nyx-Caladan.

Figure 8 shows an LC cache (P99 latency target of 1.5µs)
colocated with two BE caches: BE1 is get-heavy, BE2 is
write-heavy. Initially, when BE2 has low throughput and BE1
has moderate throughput of 2.4GB/s, LC meets its P99 ob-
jective; however, at 12s, BE2 performs many bursty writes,
causing LC’s P99 latency to exceed 3µs and violate its target.
Both Nyx-Caladan and Nyx resolve the situation by itera-
tively throttling a BE cache. Nyx-Caladan throttles the cache
currently consuming the most bandwidth, shown in the left
two subfigures; as a result, Nyx-Caladan throttles both BE1
and BE2, resulting in ⇥6 less bandwidth for BE1. Nyx, on
the other hand, identifies the cache that most interferes with
LC as BE2, the write-heavy cache. As a result, Nyx stabilizes
to throttling only the correct interference source; after 28 sec-
onds, only BE2 is throttled, and BE1 returns to its original
throughput. To summarize, Nyx provides high utilization for
multiple caches while guaranteeing each target.

Figure 8: QoS: Nyx-Caladan vs. Nyx Tuning. This figure shows
how Nyx and Nyx-Caladan throttle BE caches to ensure LC cache P99
latency. LC cache is colocated with two BE caches; BE1 is get-heavy, B2 is
write-heavy (i.e., more interference to LC). BE2 has burst at 12s, breaking LC
latency targets. Nyx-Caladan (left) throttles the highest-bw client, whereas
Nyx (right) throttles the client with the most interferences to LC. Nyx-Caladan
incorrectly throttles BE1, resulting in ⇥6 less bandwidth for BE1.

Nyx’s convergence time of tens of seconds is similar to
prior work such as Parties [31]: the majority of the converging
time is spent monitoring tail latencies. As in Parties, Nyx
measures tail latency for 500ms because shorter intervals can
result in noisy measurements. We leave faster tail latency
measurement at network packet queues (as utilized in the
original Caladan [39]) for future investigation.

Our experiments reveal that Nyx has an intriguing effect on
convergence time: as shown in the Figure, Nyx can bring the
LC cache to its target performance in a comparable amount
of time to just selecting the cache with the highest bandwidth
(which does not require any micro-experiment time). The
implication of these results is that, rather than simply act-
ing quickly and throttling any competing instance, Nyx acts
correctly and throttles the source of the interference.

4.4 Fair Slowdown
Nyx implements fair slowdown by iteratively regulating

requests according to the measured slowdown of each client
(i.e., Talone

Tshare
). Figure 9.a shows Nyx’s tuning given colocated

light and intensive get-heavy caches. Initially, the slowdown
of the light cache is 2.2 times higher than that of the inten-
sive cache. Over time, Nyx dynamically increases the throt-
tling of the cache with the minimum slowdown and decreases
throttling for the cache with maximum slowdown. Relatively



(a) Tuning Process (Light + Intensive) (b) L + various B
Figure 9: Fair Slowdown. (a) shows how Nyx equalizes slowdown over time for two cache instances (a light one (L) and an intensive one (I)). Both cache
instances are get-heavy. (b) shows the unfairness metric when colocating L (a light get-heavy cache) with different B instances (get-heavy -> write-heavy, and
light -> intensive). Unfairness = MaxSlowDown / MinSlowDown, the more close to 1, the more fair.

(a)A: Get-heavy, B: Write-heavy (b) A: Efficient-Get, B: Inefficient-Get
Figure 10: Proportional Sharing. (a) shows A (get-heavy cache) and B (write-heavy cache)’s throughput with different weight configuration. The labels
indicate running alone throughput of A and B. With bandwidth allocation, B surpasses its allotted proportional performance. (b) shows A (efficient get-intensive
cache, 4KB value sizes) and B (inefficient get-intensive cache, 1KB value sizes).

quickly, both caches converge to a slowdown near 1.5 and the
unfairness metric of MaxSlowdown

MinSlowdown settles near 1.05.
Figure 9.b shows Nyx’s fair slowdown policy on a range

of caches. Cache L remains a light get-heavy cache; Cache B
varies the number of threads and can be get-heavy, 50% mixed,
or write-heavy. Without Nyx, L can experience dramatically
unfair slowdown (due to PM’s complex performance); for
example, colocating A with a multi-threaded get-heavy cache
B gives unfairness near 2.4. In contrast, Nyx achieves fair
slowdown (< 1.05 unfairness) for all 12 cases.

4.5 Proportional Resource Allocation
Nyx achieves proportional resource allocation and guar-

antees a time-sharing lower bound while performing idle
resource re-distribution. We begin with simple scenarios in
which two caches that use all their assigned resources are
colocated. The scenarios in Figure 10 vary the desired propor-
tional share for A and B along the x-axis; the red line indicates
the ideal proportional throughput given their throughput when
run alone. Figure 10.a shows that a PM-oblivious bandwidth
approach cannot guarantee a proportional share; in particular,
the write-intensive B cache obtains up to 3⇥ more throughput
than desired and the get-intensive cache A suffers significantly
(⇠40%). However, by correctly estimating resource usage,
Nyx delivers the desired allocation to each cache. Figure 10.b
shows a similar effect occurs when efficient-get (value: 4KB)
and inefficient-get (value: 1KB) caches are colocated.

Proportional allocation is more challenging when there
are idle resources to be redistributed. Figure 11.a shows two

caches A and B, where A uses only 25% of its share. When
B is get-heavy (left-top subfigure), A can donate all its idle
resources to B; A’s performance is slightly degraded, but B
receives substantially higher throughput. However, when B
is write-heavy (right-top subfigure), if A donates all its idle
resources, the higher throughput of B substantially interfere
with A, breaching A’s time-sharing lower bound (2/3 of A’s
stand-alone throughput). Therefore, Nyx does not perform
naive donation; instead, Nyx donates idle resources in incre-
ments while monitoring each cache’s slowdown. As shown
in the bottom two graphs, Nyx guarantees the time-sharing
lower bound for each cache while improving utilization.

We next examine workloads varying the percentage of
idle resources in Cache A. When cache B is get-heavy, all
of A’s idle resources can be safely redistributed to B, and
Nyx achieves the same performance for cache B as simple
donation (Figure not shown due to space limit). However,
when cache B is write-heavy, simple donation of A’s idle
resources to B violates A’s time-sharing bound (Figure 11.b);
Nyx accurately protects cache A’s performance while still
improving the performance of cache B relative to no donation.

4.6 Realistic Traces
Nyx provides isolation for realistic workloads. We demon-

strate use cases for resource limiting and slowdown limiting.
In production workloads, write spikes are common; for

example, when a cache is used for ML models, write spikes
occur with model parameters are regularly refreshed [74].
Figure 12.a shows how Nyx can isolate caches S1 and C1



(a) Problem of Naive “Donate All” Strategy (b) Re-distribution between Get and Write-heavy Caches

Figure 11: Proportional Share: Extra Resource Re-distribution. Cache weight A:B is 2:1. (a) shows cache A (light, get-heavy) throughput before
and after it donates its extra allocated resource. A has a 75 percent idle resource. Y axis is the normalized difference. When cache B is get-heavy (the top-left
figure), A gets nominal performance drop due to donation. However, when cache B is write-heavy (top-right figure), donating cause severe slowdown for A.
Unlike naive extra re-distribution, Nyx (two bottom figures) ensures that tenant A’s performance is always more than two-thirds of its running alone performance.
TimeStep = 2ms. (b) shows A’s slowdown (left figure) and B’s throughput (right figure) before and after A donating extra resource. A is get-heavy and B is
write-heavy. The label indicates absolute throughput number. Naive extra resource allocation can easily break isolation guarantee, while Nyx always ensures it.

(a) Protecting Caches from Write Spikes (b) Limiting S1 Slowdown During Day and Night

Figure 12: Realistic Traces. (a) shows the performance of Cache S1 and C1 when colocated with Cache C2. Cache C2 has write spikes. Nyx (bottom
figure) can isolate write spikes, whereas bandwidth limits cannot (top figure). (b) shows the performance of Cache S1 (the cache we guarantee its slowdown is
always smaller than 1.5⇥). S1 is colocated with C1 and C2; both C1 and C2 have a strong diurnal pattern (light during the night, and intensive during the day).
Without Nyx, S1 performance plummets during the day (because the impact from C1 and C2), discouraging sharing. However, Nyx can always offer reasonable
performance (e.g. within x1.5 slowdown vs. running alone). The red line represents S1’s performance guarantee.

from (added) write spikes in cache C2. If resource limiting is
based only on the bandwidth of C2, S1 and C1 suffer when
C2 experiences write spikes. However, Nyx’s resource-limit
policy can cap C2’s resource usage (at 4GB/s, defined as 1M
4KB random load OPS) to keep S1 and C1 steady.

Nyx can also protect the performance of critical caches. To
encourage tenants to use multi-tenant PM environments, some
caches must be guaranteed performance similar to exclusive
use of the PM device. In the experiment shown in Figure 12.b,
S1 (the critical cache) is colocated with C1 and C2 which
have diurnal patterns [74]. With no control (gray lines), the
performance of S1 drops below its target during the day due to
the heavy accesses of C1 and C2. However, Nyx can establish
a hard limit of slowdown (e.g., 1.5) for S1. As observed, Nyx
keeps S1 performance loss within a fair range.

4.7 Parameters Sensitivity Analysis
Here, we present the sensitivity analysis of Nyx behaviors

with different ExperimentStep and DonateStep values.
The ExperimentStep affects the Nyx interference analy-

sis’s accuracy. As shown in Figure 13.b, using the same
configuration as Figure 8, a smaller ExperimentStep is more

likely to result in a lower BE 1 final throughput. When Exper-
imentStep is small, the tail latency change is more likely to
be due to measurement noise rather than interference, leading
to a less accurate interference analysis. Our experiments sug-
gest an ExperimentStep of at least 500MB/s. ExperimentStep
also influences how quickly the Nyx QoS can ensure LC tail
latency. As shown in Figure 13.a, a larger ExperimentStep
indicates faster convergence. However, it increases the risk
of over-throttling BE caches and lowering system utilization.
ExperimentStep in Nyx QoS defaults to 500MB/s for good
interference analysis and high system utilization while main-
taining a reasonable convergence time.

Figure 14 shows how DonateStep affects Nyx proportional
resource allocation. A larger DonateStep causes faster idle
resource donation, but also potentially large performance fluc-
tuations (e.g., 60% DonateStep, 12s and 18s in the figure). At
runtime, cache throughput always varies slightly, causing do-
nation adjustments. These adjustments are subtle with small
DonateSteps but significant with large ones. The fluctuation
harms donors by slowing them down at times (exceeding the
limit). Nyx uses a 10% DonateStep, which balances between
quick resource donation and steady donor performance.



(a) Convergence Time (b) BE 1 Final Throughput

Figure 13: QoS: ExperimentStep Sensitivity Analysis. Same as
in Figure 8. (a) shows how fast Nyx QoS can ensure LC P99 latency varying
ExperimentSteps. (b) shows BE 1 final throughput (boxplot, five runs) varying
ExperimentSteps; BE 2 has near zero final throughput in all cases.

5 Discussion
Beyond Basic Policies: Nyx can be extended to more so-
phisticated policies for more complex setups. For instance,
a proportional sharing policy can be applied across groups
of caches. Then, within a group, another sharing policy (e.g.,
QoS) can be enforced. We leave a full study as a future work.
Multi-tenant Caching Alternatives: Nyx manages caches,
each with its own space. There are alternatives to shared
caching; for instance, a single large instance can be shared
by multiple users [60]. This model can make use of the Nyx
resource usage accounting and interference analysis tech-
niques. However, it may create new problems like: how should
users be charged for PM writes to commonly cached objects?
Smarter Parameter Value Selection: i) Adaptive parame-
ters can be beneficial, e.g., the DonateStep can be larger when
it is far from the threshold (for quick donation) and smaller
when it is close (to avoid performance fluctuations). ii) Auto-
tuning [46, 68] may ease the load for choosing parameter
values. We leave these optimizations as future work.
Security: Nyx policies can be attackable, e.g., in resource
limiting, an adversary client may limit its access in the first
ticks while putting significant load in the last. A solution
would be to use randomized measuring points rather than
fixed ones. We leave Nyx security studies as future work.

6 Related Work
Multi-tenant in-mem key-value caching: Our work builds
on past research in multi-tenant in-memory key-value cache
systems. These efforts include techniques for allocating space
across tenants [29, 32, 34, 60, 62] as well as optimization of
individual cache instances [25,27,28,33,42,54,75]. Our work
instead focuses on the challenges of access regulation and
information extraction when many caches share PM.
PM Caching: There have been efforts to integrate PM
with individual caching systems. Previous work covers
databases [50, 72, 81], file systems [22, 48, 80], in-memory
key-value caches [6, 19, 21], and general policies [26, 27].
However, to the best of our knowledge, we are the first to
address PM issues in multi-tenant caching settings.
PM Interference: Several efforts have characterized PM de-

Figure 14: Proportional Share: DonateStep Sensitivity Analy-
sis. We use the same setup as in Figure 11 when B is write-heavy. This figure
shows A, the donator’s throughput over time with different DonateStep.

vices [45, 69, 71, 73]. However, only a few have investigated
the interference effect in PM. To our knowledge, Dicio [55]
is the first work in this space. Both Dicio and our work ob-
serve the different read-write interference effect in PM. How-
ever, the goals of Dicio and Nyx differ. Dicio’s purpose is
to identify when PM DIMM bandwidth is saturated. Dicio
approximates this by using the write pending queue (WPQ)
delay as a heuristic. We, on the other hand, aim to provide
mechanisms for per-client (not per-DIMM) resource usage ac-
counting, slowdown estimation, and cross-client interference
analysis. Dicio protects a single LC task from a single BE
task, while our QoS policy applies to multiple clients. Dicio
acknowledges that deciding which best-effort task to throttle,
with PM media-level statistics, was challenging (and hence
not done); we address this issue with a run-time method for
interference analysis. Finally, Dicio extends Caladan [39] to
use CPU scheduling to regulate PM accesses. This approach
is applicable to all applications, including cache, but requires
application modifications to use Caladan’s unique runtime
system (not fully Linux compatible). We leave CPU schedul-
ing approaches for PM regulation to future work.
Sharing Other Resources: Efforts have been made to man-
age and share other resources such as network, CPU, LLC,
storage devices, and locks [31,39–41,43,44,51,56,57,59,65].
They are essentially orthogonal to our work; we plan to inte-
grate PM management into these systems in the future.

7 Conclusion
We demonstrated that prior DRAM or storage device-

intended approaches for access regulation, resource-usage
estimation, and interference analysis fail to work on PM due
to its unique properties. We introduced Nyx, which enables
these mechanisms in a lightweight manner without hardware
support. We showed that Nyx can support a variety of multi-
tenant cache sharing policies, meeting performance or sharing
goals better than earlier DRAM or storage approaches.
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