
1

EIO: Error-handling is
Occasionally Correct

Haryadi S. Gunawi, Cindy Rubio-González,

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Ben Liblit

University of Wisconsin – Madison

FAST ’08 – February 28, 2008

2

Robustness of File Systems

Today’s file systems have robustness issues

Buggy implementation[FiSC-OSDI’04, EXPLODE-OSDI’06]

Unexpected behaviors in corner-case situations

Deficient fault-handling[IRONFS-SOSP’05]

Inconsistent policies: propagate, retry, stop, ignore

Prevalent ignorance
Ext3: Ignore write failures during checkpoint and journal replay
NFS: Sync-failure at the server is not propagated to client
What is the root cause?

3

Incorrect Error Code Propagation

void dosync() {

fdatawrite();

sync_file();

fdatawait();
}

NFS
Client

NFS
Serversync()

dosync

fdatawrite sync_file fdatawait

......

......

...

4

Incorrect Error Code Propagation

void dosync() {

fdatawrite();

sync_file();

fdatawait();
}

NFS
Client

NFS
Serversync()

X

X

X

dosync

fdatawrite sync_file fdatawait

...

...

...

...... ...

... ...

...

...

...

...

...

...

fdatawrite

return
EIO;

dosync

sync_file

...

...

return
EIO;

fdatawait

...

...

...

return
EIO;

Unsaved
error-codes

5

Implications

Misleading error-codes in distributed systems
NFS client receives SUCCEED instead of ERROR

Useless policies
Retry in NFS client is not invoked

Silent failures
Much harder debugging process

6

EDP:
Error Detection and Propagation Analysis

Static analysis
Useful to show how error codes flow
Currently: 34 basic error codes (e.g. EIO, ENOMEM)

Target systems
51 file systems (all directories in linux/fs/*)
3 storage drivers (SCSI, IDE, Software-RAID)

7

Results
Number of violations

Error-codes flow through 9022 function calls
1153 (13%) calls do not save the returned error-codes

Analysis, a closer look
More complex file systems, more violations
Location distance affects error propagation correctness
Write errors are neglected more than read errors
Many violations are not corner-case bugs
− Error-codes are consistently ignored

8

Outline
Introduction

Methodology
Challenges
EDP tool

Results

Analysis

Discussion and Conclusion

9

Challenges in Static Analysis

File systems use many error codes
buffer state[Uptodate] = 0
journal flags = ABORT
int err = -EIO; ... return err;

Error codes transform
Block I/O error becomes journal error
Journal error becomes generic error code

Error codes propagate through:
Function call path
Asynchronous path (e.g. interrupt, network messages)

10

State
Current State: Integer error-codes, function call path
Future: Error transformation, asynchronous path

Implementation
Utilize CIL: Infrastructure for C program analysis[Necula-CC’02]

EDP: ~4000 LOC in Ocaml

3 components of EDP architecture
Specifying error-code information (e.g. EIO, ENOMEM)
Constructing error channels
Identifying violation points

EDP

11

sys_fsync

do_fsync

filemap_fdatawrite

filemap_fdatawrt_rn

do_writepages

generic_writepages

mpage_writepages

ext3_writepage

VFS

EIO

if (...)
return –EIO;

ext3_writepage (int *err)
*err = –EIO;

Constructing Error Channels

Propagate function
Dataflow analysis
Connect function
pointers

Generation endpoint
Generates error code
Example: return –EIO

ext3

12

func() {
err = func_call();

}

func() {
err = func_call();
if (err)
...

}

Detecting Violations

Termination endpoint
Error code is no longer propagated
Two termination endpoints:
− error-complete (minimally checks)

− error-broken
(unchecked, unsaved, overwritten)

Goal:
Find error-broken endpoints

func() {
err = func_call();
err = func_call_2();

}

func() {
func_call();

}

Error-complete endpoint

Unchecked

Unsaved / Bad Call

Overwritten

13

Outline
Introduction

Methodology

Results (unsaved error-codes / bad calls)
Graphical outputs
Complete results

Analysis of Results

Discussion and Conclusion

14

Functions that generate/propagate error-codes
Functions that make bad calls (do not save error-codes)

Good calls (calls that propagate error-codes)
Bad calls (calls that do not save error-codes)

HFS

func

func

1

2

3

15

int find_init(find_data *fd) {
…
fd->search_key = kmalloc(…);
if (!fd->search_key)
return –ENOMEM;

…
}

HFS (Example 1)

int file_lookup() {
…
find_init(fd);
fd->search_key->cat = …;
…

}

Bad call!

Null pointer dereference

Inconsistencies

113find_init

Good Calls Bad CallsCallee

1

16

HFS (Example 2)

2

17

int __brec_find(key) {

Finds a record in an HFS node
that best matches the given key.
Returns ENOENT if it fails.

}

int brec_find(key) {
…
result = __brec_find(key);
…
return result;

}

Inconsistencies

113find_init

41__brec_find

18

Good Calls

0

Bad Calls

brec_find

Callee

HFS (Example 2)
2

18

HFS (Example 3)

3

19

int free_exts(…) {

Traverses a list of extents and
locate the extents to be freed.
If not found, returns EIO.
“panic?” is written before
the return EIO statement.

}

HFS (Example 3)

Inconsistencies

113find_init

41__brec_find

1

18

Good Calls

3

0

Bad Calls

free_exts

brec_find

Callee

3

20

HFS (Summary)

Not only in HFS

Almost all file systems and storage systems have
major inconsistencies

Inconsistencies

113find_init

41__brec_find

1
18

Good Calls

3
0

Bad Calls

free_exts

brec_find

Callee

21

ext3 37 bad / 188 calls = 20%

22

35 bad / 218 calls = 16%ReiserFS

23

IBM JFS 61 bad / 340 calls = 18%

24

NFS Client 54 bad / 446 calls = 12%

25

Coda 0 bad / 54 calls = 0% (internal)

0 bad / 95 calls = 0% (external)

26

Summary
Incorrect error propagation plagues almost all
file systems and storage systems

177

914

Bad Calls

904

7400

EC Calls

20%Storage drivers

12%File systems

Fraction

27

Outline
Introduction

Methodology

Results

Analysis of Results

Discussion and Conclude

28

Analysis of Results
Correlate robustness and complexity

Correlate file system size with number of violations
− More complex file systems, more violations (Corr = 0.82)

Correlate file system size with frequency of violations
− Small file systems make frequent violations (Corr = -0.20)

Location distance of calls affects correct error propagation
Inter-module > inter-file > intra-file bad calls

Read vs. Write failure-handling

Corner-case or consistent mistakes

29

Read vs. Write Failure-Handling

Filter read/write operations (string comparison)
Callee contains “write”, or “sync”, or “wait” Write ops
Callee contains “read” Read ops

177
26*

Bad Calls

904
603

EC Calls

20%Sync+Wait+Write
4%Read

FractionCallee Type

mm/readahead.c
Read prefetching in
Memory Management

Lots of write failures
are ignored!

30

Corner-Case or Consistent Mistakes?

Define bad call frequency =
Example: sync_blockdev, 15/21
Bad call frequency: 71%

Corner-case bugs
Bad call frequency < 20%

Consistent bugs
Bad call frequency > 50%

Bad calls to f()
All calls to f()

31

Bad Call Frequency
sync_blockdev
15 bad calls / 21 EC calls
Bad Call Freq: 71 %
At x = 71, y += 15

Less than 100
violations are corner-
case bugs

850 bad calls
fall above the
50% mark

CDF of Bad Call Frequency

Cumulative
#Bad Calls

Cumulative
Fraction

32

What’s going on?

Not just bugs

But more fundamental design issues
Checkpoint failures are ignored
− Why? Maybe because of journaling flaw [IOShepherd-SOSP’07]

− Cannot recover from checkpoint failures
− Ex: A simple block remap could not result in a consistent state

Many write failures are ignored
− Lack of recovery policies? Hard to recover?

Many failures are ignored in the middle of operations
− Hard to rollback?

33

Conclusion (developer comments)

ext3 “there's no way of reporting error to
userspace. So ignore it”

XFS “Just ignore errors at this point. There is
nothing we can do except to try to keep
going”

ReiserFS “we can't do anything about an error here”

IBM JFS “note: todo: log error handler”

CIFS “should we pass any errors back?”

SCSI “Todo: handle failure”

34

Thank you!
Questions?

ADvanced Systems Laboratory
www.cs.wisc.edu/adsl

35

Extra Slides

