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ABSTRACT

Though there have been substantial innovations in bothyfdeems and storage systems over
the past twenty-five years, the interface with which they camicate has remained simple and
abstract. The storage stack that exists today was not g@etlo a coherent manner; rather, it
evolved over time due to the flexible nature of this abstoactiThe result is amformation gap:
the file system no longer understands the nature of its wyidgrstorage, and the storage system
cannot comprehend the semantics of the blocks it storedelend, thisbscuring interface has
lead to the development of independent, locally optimized)plex layers whose interactions may
lead to poor performance and limited functionality.

Therefore, we believe it is time to re-examine the structiitbe storage stack and the division
of labor between the file system and storage system layerscifgally, we advocate designs
that enable vertical coordination and evashlaboration between layers in order to achieve the
goals of the entire storage stack. Furthermore, we bellev&éey to achieving these goals lies in
information, and therefore depends on the developmemfafming interfaces that facilitate such

vertical designs.



In this dissertation, we take three steps in this directkrst, we develop a system that auto-
matically discovers the properties of a RAID storage syateing only the logical block abstrac-
tion, transforming the obscuring interface into a basioinfing interface. Second, we examine
the applicability of such storage level information by dgsing an improved informing interface
and a file system that explicitly manages the multiple digksstorage array. Third, we develop a
vertical design for collaboration between journaling fstems and RAID systems that improves

the reliability and availability of the overall storage &31s.



Chapter 1

Introduction

A chasm exists in the world of file storage and managementugtma hierarchical file system
of directories and byte-accessible files has been the naralrfwst 30 years [52], the internals of
both file systems and underlying storage systems have el/siugstantially.

In file systems, many approaches have been developed toumpeoformance, including read-
optimized inode and file placement [40], logging of writeS§]jSmproved meta-data update meth-
ods [67], more scalable internal data structures [75], ditin@ reorganization strategies [39].
However, almost all such techniques have been developesr timel assumption that the file sys-
tem will be run upon a single, traditional disk.

Storage systems have also received much attention fronesi@arch community. One of the
most notable innovations is the disk array, or RAID [47]. $&atorage systems contain multiple
disks and internally manage both parallelism and redungdiemaptimize for performance, capac-
ity, or even both [88]. Today, RAID disk arrays have become dbminant form of storage for
high-end applications. These modern storage systemsaeagingly complex. For example, an
enterprise storage array can contain tens of processorbuamteds of disks [21], and a given

array can be configured in many different ways.



While the changes in both file systems and storage systenesldean substantial, they have
also been separate, and the result isrdormation gap: the file system does not understand the
true nature of the storage system it runs upon, and the gt@ggfem cannot comprehend the
semantic relations between the blocks it stores. In additiee layers are unaware of the particular
responsibilities, functionalities, and optimizationsrgeperformed by the other. This gap arose
from a historical source: the boundary between softwarehandware and the requisite interface
for communicating across it.

The predominant storage interface dates to the introduafahe Small Computer System
Interface (SCSI) standard in 1986. SCSI defined a simpledbbiock address (LBA) interface for
disks instead of the device level interfaces that were comatahe time. This new interface was
independent of the geometry of the device, allowing comgmto develop interoperable systems
and peripherals. This abstract view of storage enabled ratithe innovation above and below
the SCSI interface. New file systems and storage devicesl t@utleveloped independently and
yet used together because they shared a common logicdhrder

In fact, the development of RAID systems in particular waal#ed by the flexibility of this
abstract interface. Regardless of their internal compleRAID arrays expose the same simple
interface as a single disk: a linear array of blocks accéssih read and write operations. Storage
vendors took advantage of the freedom to innovate behisdriteérface, and thus developed high-
performance, high-capacity systems that appeared asla,darge, and fast disk to the file system.

No software modifications were required of the host opegagistem, and file systems continued



to operate correctly, in spite of the fact that they wererotiptimized for a single-disk system. In
this case, ignorance was bliss; the arrangement was simgl@arked well.

We term this arrangement of a file system layer on top of a géolayer astorage stack, akin
to networking protocol stacks that are prominent in comroation networks [17]. There are some
similarities between the two: layering is known to simpbfystem design, though potentially at the
cost of performance [83]. However, a crucial differencesexithe layers that comprise network
protocol stacks are derived by design, with the architeatsfally deciding where each specific
element should be placed.

The storage stack, on the other hand, has not been develo@edingle, coherent manner.
Quite to the contrary, the storage stack that exists todayaahved over time based on the ex-
istence of a flexible interface and the objectives of theagferindustry. As more and more com-
plexity is introduced at each layer, the potential for deémntal and difficult-to-predict interactions
increases. These may manifest not only in poor performdndealso in duplication and imple-
mentation complexity, competition between layers, andtéititons on functionality.

For example, performance may suffer if the model that thesfikgem has of the storage layer
is not accurate; thus, layout optimizations that work wellabsingle, traditional disk may not
be appropriate when the logical-block to physical-blockppiag is unknown. In fact, the layout
decisions made by the file system level may compete with (arml/brruled by) those made in an
advanced storage system [36, 88].

Feature duplication is also a potential pitfall. For exaenpl log-structured file system [55] or

a journaling file system [82] could be layered on top of a dis&yathat also performs logging [73,



88], degrading performance, duplicating work, and indreasystem complexity unnecessarily.
Similarly, a large block cache at the storage level may beéersd ineffective if it largely duplicates
the contents of the file system buffer cache [89].

Finally, functionality may be limited, as certain piecedrdbrmation only live at one layer of
the system. For example, the storage system does not knotblalc&s constitute a file and thus
it cannot perform per-file operations. Similarly, the sggaystem does not know that a particular
block no longer contains live data after a file deletion, dngstit cannot optimize operations that

may ignore dead blocke.(. RAID reconstruction).

1.1 Approach

In the end, the abstract, block-baseloscuring interfaceto storage has lead to the development
of independently designed and optimized layers that aiieiobsk to their role in the overall storage
stack. Thus, we believe it is time to re-examine the divisibriabor between the file system
and storage system layers, in an attempt to understand shevbg to structure the storage stack.
Specifically, we advocate designs that enable verticaldination and evenollaboration between
layers in order to achieve the goals of the entire storagdk steurthermore, we believe the key to
achieving these goals lies in information, and therefoggedes on the developmentioforming

interfaces that facilitate such vertical designs.



1.2 Deconstructing Storage Arrays

We begin by proposing a basic informing interface that syngports the configuration pa-
rameters of a RAID, including the number of disks, chunk sieeel of redundancy, and layout
scheme. This interface gives the file system or other clieatigh information to determine the
mapping of blocks from the logical address space to indadidiisks. It also conveys the amount
of reliability that is implemented by the array and the gauttir schemegg. RAID-1 or RAID-5).

This approach is simple in that it merely reports informatibat already exists in the array,
rather than requiring implementation of new mechanismalogious to the Infokernel [3] approach
for operating systems interfaces. Therefore, the onus temse of this information is placed on
the file system. For example, the file system may alter itxc@sito make use of the individual
disks, or it might modify its access pattern to avoid deficies in the RAID scheme.

The most efficient implementation of this informing interéawould be for storage arrays to
support a query that returns their configuration paramektwa/ever, it may be difficult to convince
storage vendors to add this interface in a standard way,eas®wall extensions require industry
deliberation and consensus. Thus, we take a pragmatic agpiemnd treat the RAID as a gray
box [2], inferring its characteristics and configuratiomgsonly its existing logical block interface.

To do so, we introduce Shear, a user-level software systabctiaracterizes RAID storage
arrays. Shear employs a set of controlled workloads condbivith statistical techniques to au-
tomatically determine the RAID configuration parameteest ttonstitute our basic informing in-
terface (the number of disks, chunk size, level of redungaaned layout scheme). We illustrate

the correctness of Shear by running it upon numerous sisdilednfigurations, and then verify



its real-world applicability by running Shear on both sadte-based and hardware-based RAID
systems.

We also demonstrate the utility of Shear and the basic infayrimterface through three case
studies. First, we show how Shear can be used in a storagegeraeat environment to verify
RAID construction and detect failures. Second, we dematestiow the interface can be used to
extract detailed characteristics about the individuadslisithin an array. Third, we show how an
operating system can use the informing interface to auticaibt tune its storage subsystems to

specific RAID configurations.

1.3 Bridging the Information Gap

Although our basic informing interface has shown to be uséfprovides details at a rather
low level. File systems that want to take advantage of theyazonfiguration must be imbued with
particular knowledge of each possible RAID scheme and itgueperformance and reliability
characteristics. Given the number of RAID variants thasetaday, and the potential growth of
new schemes in the future, designing a file system that cavuatdor such a large population
may prove difficult.

To overcome this limitation, we introduce a second inforgnimterface, Exposed RAID, that
encapsulates array information in abstractions that aemmgful to file system objectives. Specif-
ically, the ExRAID address space is divided into a set of regions, each afhwie mapped to a

single disk or a set of disks. Hence, these regions représeperformance and failure boundaries



within the disk array. In addition to this static informatidex RAID provides dynamic informa-
tion about the performance and reliability of each regiat thay be exploited by the file system
to manage its use of the storage.

We make use of the ERAID informing interface to evaluate a new division of labme-
tween the storage system and the file system. In particutadesign an Informed Log-Structured
File System (ILFS) that explicitly manages and takes advantage of thepeédnce and failure
boundaries present in a multiple disk storage system. kxrpets reveal that our prototype imple-
mentation yields benefits in the management, flexibilityabality, and performance of the storage
system, with only a small increase in file system complexiigr example, -.LFS can incorpo-
rate new disks into the system on-the-fly, dynamically begaworkloads across the disks of the
system, allow for user control of file replication, and delaglication of files for increased perfor-
mance. Much of this functionality would be difficult to impheent with the existing relationship

between file systems and storage systems predicated omdlitginal logical block interface.

1.4 Collaborating Layers

Finally, we look beyond information-only interfaces to nevechanisms that allow storage
stack layers to communicate more effectively. Specificallg develop a collaborative approach
using a journaling file system to address the problem of séoan-based, software RAID resyn-
chronization that restores consistency after a systenmchéfe analyze Linux ext3 and introduce

a new mode of operation, declared mode, that guaranteesvalpra record of all outstanding



writes in case of a crash. To utilize this information, we megt the software RAID with an in-
forming interface (verify read) that instructs the RAID éayto inspect and repair the redundant
information for a block. The combination of these featurbews us to provide fast, journal-
guided resynchronization. We evaluate the effect of jobgugded resynchronization and find that
it provides improved software RAID reliability and availbdy after a crash, while suffering little

performance loss during normal operation.

1.5 Contributions

e The development of a set of algorithms and analyses thateutically determine the con-
figuration properties of a RAID array using only the logickldk interface, and the embod-
iment of these techniques in a software system (Shear)rdregforms the existing interface

into a basic informing interface.

e The design and implementation of an informing interface RAID) that provides mean-
ingful abstractions to a new file systemL{FS) that explicitly manages the individual com-

ponents of a disk array to improve the performance and fanatity of the overall system.

e The design and implementation of a collaborative approativden a journaling file system
and a software RAID layer to provide fast, journal-guideslyrechronization after a crash

that improves both the reliability and the availability betstorage system.



1.6 Organization

The remainder of this dissertation is organized as folldw&hapter 2, we introduce Shear and
its algorithms and apply it to the management and perfore&maing of disk arrays. Chapter 3
presents RAID and ILFS and their use of disk information to improve the perfonceaand
functionality of the storage stack. In Chapter 4, we dev@bopnal-guided resynchronization and
evaluate its ability to improve the reliability and avail#ly of the storage system. We present

related work in Chapter 5 and conclude in Chapter 6.
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Chapter 2

Deconstructing Storage Arrays with Shear

Modern storage systems are complex. For example, a higlsterage array can contain tens
of processors and hundreds of disks [21] and a given arraypeaonfigured in many different
ways, most commonly using RAID-0, RAID-1, or RAID-5. Howeyveegardless of their internal
complexity, RAID arrays expose a simple interface consistf a linear array of blocks. All of
the internal complexity is hidden; a large array exportstydhe same interface as a single disk.

This encapsulation has many advantages, the most impoftafitich istransparent operation
of unmodified file systems on top of any storage device. But tilsinsparency also has a cost:
users and applications cannot easily obtain more infoonabout the complexities of the storage
system because of tlobscuring interface. For example, most storage systems do not reveal how
data blocks are mapped to each of the underlying disks, aaaviéll known that RAID configu-
ration has a large impact on performance and reliability 73 61, 88]. Furthermore, despite the
fact that configuring a modern array is difficult and erroope, administrators are given little help

in verifying the correctness of their setup.
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To overcome this information gap, we propose a basic infognmterface that simply exports
the configuration parameters of a RAID, including the nundfetisks, chunk size, level of redun-
dancy, and layout scheme. This interface gives the file systeother client enough information to
determine the mapping of blocks from the logical addressespmindividual disks. It also conveys
the amount of reliability that is implemented by the arrag éme particular scheme.§. RAID-1
or RAID-5).

This approach is simple in that it merely reports informatibat already exists in the array,
rather than requiring implementation of new mechanismalogious to the Infokernel [3] approach
for operating systems interfaces. Therefore, the onus t@mse of this information is placed on
the file system. For example, the file system may alter itx@sito make use of the individual
disks, or it might modify its access pattern to avoid deficies in the RAID scheme.

The most efficient implementation of this informing interéawould be for storage arrays to
support a query that returns their configuration parametéwa/ever, it may be difficult to convince
storage vendors to add this interface in a standard way,eas®wall extensions require industry
deliberation and consensus. Thus, we take a pragmatic agpand treat the RAID as a gray
box [2], inferring its characteristics and configuratiomgsonly its existing logical block interface.

In this chapter, we describe Shear, a user-level softwasteythat automatically identifies
the important RAID configuration parameters of our basiolimfing interface. Using this sys-
tem to characterize a RAID allows developers of higher{lsagétware, including file systems and

database management systems, to tailor their implemensatd the specifics of the array upon
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which they run. Further, administrators can use Shear tenstahd details of their arrays, ver-
ifying that they have configured the RAID as expected or evesenving that a disk failure has
occurred.

As is common in microbenchmarking, the general approact hge&hear is to generate con-
trolled 1/0 request patterns to the disk and to measure the tine requests take to complete. In-
deed, others have applied generally similar techniquesmtpesdisk storage systems [62, 76, 90].
By carefully constructing these 1/0O patterns, Shear caivelerbroad range of RAID array char-
acteristics, including details about block layout strgtagd redundancy scheme.

In building Shear, we applied a number of general technitjussvere critical to its successful
realization. Most important was the applicatiorrahdomness; by generating random I/O requests
to disk, Shear is better able to control its experimentalrenment, thus avoiding a multitude of
optimizations that are common in storage systems. AlsoanacShear is the inclusion of a variety
of statistical clustering techniques; through these techniques, Shear can automatically cothe to
necessary conclusions and thus avoid the need for humapneiation.

We demonstrate the effectiveness of Shear by running it iyotim simulated and real RAID
configurations. With simulation, we demonstrate the bieafiShear, by running it upon a variety
of configurations and verifying its correct behavior. Werttghow how Shear can be used to
discover interesting properties of real systems. By rugi@hear upon the Linux software RAID
driver, we uncover a poor method of parity updates in its RAlDhode. By running Shear upon
an Adaptec 2200S RAID controller, we find that the card usesutfusual left-asymmetric parity

scheme [34].
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Finally, we demonstrate the utility of the Shear system drel hasic informing interface
through three case studies. In the first, we show how admatists can use Shear to verify the
correctness of their configuration and to determine wheshdisk failure has occurred within
the RAID array. Second, we demonstrate how Shear and the bdsiface enable existing
tools [62, 76, 90] to extract detailed information aboutiwdlal disks in an array. Third, we show
how a file system can use knowledge of the underlying RAID tprowe performance. Specifi-
cally, we show that a modified Linux ext2 file system that perfestripe-aware writes improves
sequential I/O performance on a hardware RAID by over a faufttwo.

The rest of this chapter is organized as follows. In Sectidw& describe Shear, illustrating
its output on a variety of simulated configurations and reiduncy schemes. Then, in Section 2.2,
we show the results of running Shear on software and hardR@al® systems, and in Section 2.3,
we show how Shear can be used to improve storage admirostranid file system performance

through three case studies. We conclude in Section 2.5.

2.1 Shear

We now describe Shear, our software for identifying the abi@ristics of a storage system
containing multiple disks. We begin by describing our agstioms about the underlying storage
system. We then present details about the RAID simulatanmtibause to both verify Shear and to

give intuition about its behavior. Finally, we describe #igorithms that compose Shear.
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2.1.1 Assumptions

In this chapter, we focus on characterizing block-basexhgsystems that are composed of
multiple disks. Specifically, given certain assumptiorf®e& is able to determine the mapping of
logical block numbers to individual disks as well as the difsk mirrored copies and parity blocks.
Our model of the storage system captures the common RAIDslI€vel, 4, and 5, and variants
such as P+Q [13] and chained declustering [28].

We assume a storage system with the following propertieda Baallocated to disks at the
block level, where dlock is the minimal unit of data that the file system reads or wifites the
storage system. shunk is a set of blocks that is allocated contiguously within &pvge assume
a constant chunk size. déripeis a set of chunks across each/oflata disks.

Shear assumes that the mapping of logical blocks to indatidisks follows some repeatable,
but unknown, pattern. Thaattern is the minimum sequence of data blocks such that block offset
17 within the pattern is always located on digHikewise, the pattern’s associated mirror and parity
blocks,i,, andi,, are always on disks,, andk,, respectively. Note that in some configurations,
the pattern size is identical to the stripe sieg.( RAID-0 and RAID-5 left-symmetric), whereas
in others the pattern size is largerd., RAID-5 left-asymmetric). Based on this assumption, Shear
cannot detect more complex schemes, such as AutoRAID [8&] migrate logical blocks among
different physical locations and redundancy levels.

Figure 2.1 illustrates a number of the layout configuratitreg we analyze in this chapter.
Each configuration contains four disks and uses a chunk sfpeioblocks, but we vary the layout

algorithm and the level of redundancy.
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Figure 2.1 Examples and Terminology. This picture displays a number of four disk arrays
using several of the layout patterns discussed in this ehaphe numbers represent blocks, P and
Q indicate parity blocks, and redundant data is denoteditailics. In each case, the chunk size is

four blocks and the stripe size and pattern size in blockéistesl. Each array depicts at least two

full patterns for the given layout scheme, the first of whigkhaded in gray.
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RAID systems typically contain significant amounts of meynfmr caching. Shear currently
does not attempt to identify the amount of storage memonherblicy used for replacement;
however, techniques developed elsewhere may be applifehl€2, 84, 90]. Due to its use of
random accesses and steady-state behavior, Shear opsratesly in the presence of a cache,
as long as the cache is small relative to the storage arrath tis assumption, Shear is able to
initiate new read requests that are not cached and perfoit@swhat overwhelm the capacity of
the cache.

Our framework makes a few additional assumptions. Firstaggime that all of the disks are
relatively homogeneous in both performance and capacibyvener, the use of random accesses
again makes Shear more robust to heterogeneity, as debanilbeore detail below. Second, we
assume that Shear is able to access the raw device; that#s) &@ccess blocks directly from the
storage system, bypassing the file system and any assobiaffed cache. Finally, we assume
that there is little traffic from other processes in the systeowever, we have found that Shear is

robust to small perturbations.

2.1.2 Techniques

The basic idea of Shear is that by accessing sets of disk dkol timing those accesses, one
is able to detect which blocks are located on the same disk&hais infer basic properties of block
layout. Intuitively, sets of reads that are “slow” are asedrto be located on the same disk; sets
of reads that are “fast” are assumed to be located on diffelisks. Beyond this basic approach,

Shear employs a number of techniques that are key to its toqera
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Randomness: The key insight employed within Shear is to use random aesessthe storage
device. Random accesses are important for a number of ieaBoat, random accesses increase
the likelihood that each request will actually be sent task die., is not cached or prefetched by the
RAID). Second, the performance of random access is dondrmt¢he number of disk heads that
are servicing the requests; thus Shear is able to more edeiijify the number of disks involved.
Third, random accesses are less likely to saturate intassis and hide performance differences.
Finally, random accesses tend to homogenize the perfoenainslightly heterogeneous disks:
historical data indicates that disk bandwidth improves esrty 40% per year, whereas seek time
and rotational latency improve by less than 10% per year, [@5]a result, disks from different
generations are more similar in terms of random perform#mae sequential performance. Note
that, in the actual implementation, a pseudo-random numpeerator is used to produce the set
of disk accesses.

Steady-state: Shear measures the steady-state performance of the s&ysigen by issuing a
large number of random reads or writegy(, approximately 500 outstanding requests). Examining
steady-state performance ensures that the storage systenable to prefetch or cache all of the
requests. This is especially important for write operatitmat could be temporarily buffered in a
write-back RAID cache.

Statistical inferences: Shear automatically identifies the parameters of the stosgigtem with
statistical techniques. Although Shear provides graplipicsentations of the results for verifica-

tion, a human user is not required to interpret the resuhigs dutomatic identification is performed
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by clustering the observed access times with K-means ancea@m[48]; this clustering allows
Shear to determine which access times are similar and thick\Wwlocks are correlated.

Safe operations:All of the operations that Shear performs on the storagesyste safe; most of
the accesses are read operations and those that are weipgsformed by first reading the existing
data into memory and then writing out the same data (assuexiclgsive access to the array). As
a result, Shear can be run on storage systems containingdiaeand this allows Shear to inspect

RAIDs that appear to have disk failures or other performammemnalies over time.

2.1.3 Simulation Framework

To demonstrate the correct operation of Shear, we have @sela storage system simula-
tor. We are able to simulate storage arrays with a varietytrgdisg, mirroring, and parity con-
figurations; for example, we simulate RAID-0, RAID-1, RAK)-RAID-5 with left-symmetric,
left-asymmetric, right-symmetric, and right-asymmetaygouts [34], P+Q redundancy [13], and
chained declustering [28]. We can configure the number é&isdisd the chunk size per disk. The
storage array can also include a cache.

The disks within the storage array are configured to perfamilaly to an IBM 9LZX disk.
The simulation of each disk within the storage array is Yaiktailed, accurately modeling seek
time, rotation latency, track and cylinder skewing, andrapdé segmented cache. We have con-
figured our disk simulator through a combination of threehuds [62]: issuing SCSI commands
and measuring the elapsed time, by directly querying the disd by using the values provided by

the manufacturer. Specifically, we simulate a rotation tohé ms, head switch time of 0.8 ms, a
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cylinder switch time of 1.8 ms, a track skew of 36 sectors,landgr skew of 84 sectors, 272 sec-
tors per track, and 10 disk heads. The seek time curve is modesing the two-function equation
proposed by Ruemmler and Wilkes [57]; for short seek digaifiess than 400 cylinders) the seek
time is proportional to the square root of the cylinder dist&a(with endpoints at 0.8 and 6.0 ms),
and for longer distances the seek time is proportional tacyfieder distance (with endpoints of

6.0 and 8.0 ms).

2.1.4 Algorithm

Shear has four steps; in each step, a different parametéedtorage system is identified.
First, Shear determines the pattern size. Second, Shewifieethe boundaries between disks as
well as the chunk size. Third, Shear extracts more detailfedirmation about the actual layout of
blocks to disks. Finally, Shear identifies the level of rediamcy.

Although Shear behaves correctly with striping, mirroriagd parity, the examples in this
section begin by assuming a storage system without redegddfe show how Shear operates with
redundancy with additional simulations in Section 2.1.5¢ kéw describe the four algorithmic

steps in more detalil.

2.1.4.1 Pattern Size

In the first step, Shear identifies the pattern size. phitern size, P, is defined as the mini-

mum distance such that, for @, blocksB andB+ P are located on the same disk. Shear operates
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for p in 1 to maximum pattern sizé
choose a random offset betweer) andp — 1
foriin 1to NV {
choose a random segmeribased on pattern size
create a request for offset in s

}

issue all requests in parallel and time their completion

}

Figure 2.2 Pattern Size Detection Algorithm.

by testing for an assumed pattern size, varying the assuiregd som a single block up to a pre-
defined maximum (a slight but unimplemented refinement wsimgly continue until the desired
output results). For eagh Shear divides the storage device into a series of nhonagwarig, con-
secutive segments of sipe Then Shear selects a random segment offsgalong with N random
segments, and issues parallel reads to the same offsgathin each segment. This workload of
random requests is repeatBdimes and the completion times are averaged. Incredsihgs the
effect of concurrently examining more segments on the diskeasingR conducts more trials
with different random offsets. Pseudo-code for the algamits shown in Figure 2.2.

The intuition behind this algorithm is as follows. By defiait, if p does not match the actual
pattern size P, then the requests will be sent to different diskg; i§ equal toP, then all of the
requests will be sent to the same disk. When requests aieegia parallel by different disks, the
response time of the storage system is expected to be lesthiétavhen all requests are serviced

by the same disk.
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2 Blocks (8 KB) 4 Blocks (16 KB) 6 Blocks (24 KB) 8 Blocks (32 KB) 10 Blocks (40 KB) 12 Blocks (48 KB) 14 Blocks (56 KB) 16 Blocks (€

Figure 2.3 Pattern Size Detection: Sample Execution. Given 4 disks and a chunk size of 4
blocks, the shaded blocks are read as Shear incrementstiaes pattern size. For compactness,
the figure starts with an assumed pattern size of 2 blocksramdases each time by 2 blocks. The
figure highlights all blocks at the given stride; in realiply N random blocks are read.

To illustrate this behavior, we consider a four disk RAID¥fag with a block size of 4 KB and
a chunk size of 4 blocks (16 KB); thus, the actual pattern szE6 blocks (64 KB). Figure 2.3
shows the location of the reads as the assumed pattern simgessed for a sample execution.
The top graph of Figure 2.4 shows the corresponding timinigenathis workload is run on the
simulator.

The sample execution shows that when the assumed patterd i©o26 blocks, the requests
are sent to all disks; as a result, the timings with a strid®,df6, and 24 KB are at a minimum.
The sample execution next shows that when the assumedmiat&blocks, the requests are sent
to only two disks; as a result, the timing at 32 KB is slightiglner. Finally, when the assumed
pattern size is 16 blocks, all requests are sent to the saskeadd a 64 KB stride results in the
highest time.

To detect pattern size automatically, Shear clusters teerebd completion times using a vari-
ant of the X-means cluster algorithm [48]; this clusteritgpaithm does not require that the num-
ber of clusters be knowapriori. Shear then selects that cluster with the greatest meanletomp
time. The correct pattern siz€, is calculated as the greatest common divisor of the pasiem

assumptions in this cluster.
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Pattern Size Detection: RAID-0 4 Disks 16 KB Chunks
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Figure 2.4 Pattern Size Detection: Simulations. The graphs show the results of running the
pattern size detection algorithm on RAID-0 with 16 KB chuiaksl 4, 6, and 8 disks.
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To demonstrate that Shear is able to detect different pesiees, we configure the simulator
with six and eight disks in the remaining two graphs of Figoi#e As desired, blocks with a stride
of 96 KB (i.e, 6 disksx 16 KB) and 128 KB {.e., 8 disksx 16 KB) are located on the same disk

and mark the length of the pattern.

2.1.4.2 Boundaries and Chunk Size

In the second step, Shear identifies the data boundariegéetdisks and the chunk size. A
data boundary occurs between bloeckandb when blocka is allocated to one disk and bloék
to another. The chunk size is defined as the amount of datésthtidcated contiguously within a
single disk.

Shear operates by assuming that a data boundary occursféetncowithin the pattern. Shear
then varies: from O to the pattern size determined in the previous step.e&ohc, Shear selects
N patterns at random and creates a read request for offgdtin the pattern; Shear then selects
anotherN random patterns and creates a read request at ¢ffset) mod P. All 2N requests for
a givenc are issued in parallel and the completion times are recordlbei$ workload is repeated
for R trials and the times are averaged. Pseudo-code for thathlgds shown in Figure 2.5.

The intuition is that ifc does not correspond to a disk boundary, then all of the régaes sent
to the same disk and the workload completes slowly; whdaes correspond to a disk boundary,
then the requests are split between two disks and completkly(due to parallelism).

To illustrate, we consider the same four disk RAID-0 arragilaeve. Figure 2.6 shows a portion

of a sample execution of the chunk size detection algorithdithe top graph of Figure 2.7 shows



forcinOto P —1{

foriin 1to NV {
choose a random patteprbased on pattern size
create a request for bloeckin p

}

foriin 1to NV {
choose a random patteprbased on pattern size
create a request for blogk — 1) mod P in p

}

issue all requests in parallel and time their completion

}

Figure 2.5 Chunk Size Detection Algorithm.

24
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Block0(0KB)  Block1(4KB)  Block2 (8KB)  Block3(12KB) Block4 (16 KB)  Block 5 (20 KB)  Block 6 (24 KB)  Block 7 (28 K

Figure 2.6 Chunk Size Detection: Sample Execution.Given 4 disks and 4 block chunks, the
shaded blocks are read as Shear increments the offset hihipattern. Although requests are
shown accessing every pattern, oAlyare selected at random.

the timings. The sample execution shows that whenequal to 0 and 4, the requests are sent to
different disks; for all other values @f the requests are sent to the same disk. The timing data
validates this result in that requests with an offset of 0 KB &6 KB are faster than the others.

Shear automatically determines the chunk gizby dividing the observed completion times
into two clusters using the K-Means algorithm and selectirggcluster with the smallest mean
completion time. The data points in this cluster corresptinthe disk boundaries; the RAID
chunk size is calculated as the difference between thesedaoies.

To show that Shear can detect different chunk sizes, we denaifew striping variants. We
begin with RAID-0 and a constant pattern size.( 64 KB); we examine both 8 disks with 8 KB
chunks and 16 disks with 4 KB chunks in the next two graphs gufa 2.7. As desired, the
accesses are slow at 8 KB and 4 KB intervals, respectivelyuifber stress boundary detection,
we consider ZIG-ZAG striping in which alternating stripee allocated in the reverse direction;
this scheme is shown in Figure 2.1. The last graph shows hleatirst and last chunks in each

stripe appear twice as large, as expected.
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Chunk Size Detection: RAID-0 4 Disks 16 KB Chunks
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Figure 2.7 Chunk Size Detection: Simulations. The first three graphs use RAID-0 configura-
tions: 4 disks with 16 KB chunks, 8 disks with 8 KB chunks, aeddisks with 4 KB chunks. The
last graph uses the ZIG-ZAG striping configuration in whitterating stripes are allocated in the
reverse direction; this has 6 disks and 8 KB chunks.
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divide the pattern inta = P/C chunks
forc;in0ton — 14
forcainc ton — 1 {
foriin1to N {
choose a random patteprbased on pattern size
create a request for the first block of chunkin p

}
foriin1to N {

choose a random patteprbased on pattern size
create a request for the first block of chunkn p

}

issue all requests in parallel and time their completion

}
}

Figure 2.8 Layout Detection Algorithm.

2.1.4.3 Layout

The previous two steps allow Shear to determine the patteenasmd the chunk size. In the
third step, Shear infers which chunks within the repeatiaiggon fall onto the same disk.

To determine which chunks are allocated to the same dislgr@xamines in turn each pair of
chunks,c; ande,, in a pattern. First, Shear randomly selebtgpatterns and creates read requests
for chunkc, within each pattern; then Shear selects anatheatterns and creates read requests for
co Within each pattern. All of the requests for a given pair aseied in parallel and the completion
times are recorded. This workload is repeated dverials and the results are averaged. Shear
then examines the next pair. Pseudo-code for the algorgtghown in Figure 2.8.

Figure 2.9 shows that these results can be visualized intaresting way. For these experi-

ments, we configure our simulator to model both RAID-0 and-Z&5 with 6 disks and 8 KB
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Figure 2.9 Read Layout Detection: Simulations. The first graph uses RAID-0; the second
graph uses ZIG-ZAG. Both configurations use 6 disks and 8 KlBkb. The points in the graph

correspond to pairs of chunks within a pattern that are aecksimultaneously. Lighter points
indicate the workload finished more slowly and therefores¢éhchunks reside on the same disk.

chunks. Each point in the graph corresponds to,ad) pair; light points indicate slow access
times and thus fall on the same disk. The diagonal line in gaaph corresponds to pairs where
c¢1 = c9 and thus always fall on the same disk. In RAID-0, no chunk$iwitn pattern are allo-
cated to the same disk; thus, no pairs are shown in conflictveder, in ZIG-ZAG, the second
half of each pattern conflicts with the blocks in the first hallown as the second (upper-left to
lower-right) diagonal line.

To automatically determine which chunks are on the same 8is&ar divides the completion
times into two clusters using K-means and selects the clugth the largest mean completion
time. Shear infers that the chunk pairs from this clusteoarthe same physical disk. By dividing

the chunks into associative sets, Shear can infer the nuofilpeimary data disks in the system.
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The above algorithm elicits read dependencies betwees paichunks. Running the same
algorithm with writes instead of reads allows Shear to idgntrite dependencies, which may
occur due to rotating mirrors as in chained declustering shared parity block in RAID-4 or
RAID-5. For example, consider the RAID-5 left-asymmetriag in Figure 2.1. Writing to blocks
0 and 16 at the same time will result in a short response tincause the operations are spread
across all four disks. Writing to blocks 0 and 52, howevet| meisult in a longer response time
because they share a parity disk. Similarly, writing to ki@ and 20 will take longer because the
parity block for block O resides on the same disk as block 20.

The write layout results can reinforce conclusions fromréal layout results, and they will be
used to distinguish between RAID-4, RAID-5, and P+Q, as aglbetween RAID-1 and chained

declustering. We discuss write layouts further and proexkmple results in Section 2.1.5.

2.1.4.4 Redundancy

In the fourth step, Shear identifies how redundancy is mahagiin the array. Generally, the
ratio between random read bandwidth and random write battdws determined by how the disk
array manages redundancy.

Therefore, to detect how redundancy is managed, Shear cemitee bandwidth for random
reads and writes. Shear creatéblock-sized random reads, issues them in parallel, andstinesr
completion. Shear then timég random writes issued in parallel; these writes can be paddr

safely if needed, by first reading that data from the storggeem and then writing out the same
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values (with extra intervening traffic to flush any cacheshe Tatio between the read and write
bandwidth is then compared to our expectations to deterthemamount and type of redundancy.

For storage arrays with no redundaneyg(, RAID-0), the read and write bandwidths are ex-
pected to be approximately equal. For storage systems wsthghe mirror €.9., RAID-1), the
read bandwidth is expected to be twice that of the write badiiiwsince reads can be balanced
across mirrored disks but writes must propagate to two disksre generally, the ratio of read
bandwidth to write bandwidth exposes the number of mirréi@: systems with RAID-5 parity,
write bandwidth is roughly one fourth of read bandwidthcsim small write requires reading the
existing disk contents and the associated parity, and thigmgvthe new values back to disk. In
RAID-4 arrays, however, the bandwidth ratio varies with thenber of disks because the single
parity disk is a bottleneck. This makes RAID-4 more diffictdtidentify, and we discuss this
further in Section 2.2.

One problem that arises in our redundancy detection algoris that instead of solely using
reads, Shear also uses writes. Using writes in conjunctitin iads is essential to Shear as it
allows us to observe the difference between the case whexthislbeing read and the case when
a block (and any parity or mirrors) is being committed to disk

Unfortunately, depending on the specifics of the storagéesysinder test, writes may be
buffered for some time before being written to stable stera§ome systems do this at the risk
of data loss€.g., a desktop drive that has immediate reporting enabled)redsehigher-end ar-

rays may have some amount of non-volatile RAM that can be tessafely delay writes that have
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been acknowledged. In either case, Shear needs to avoiffébhtsef buffering and move to the
steady-state domain of inducing disk I/O when writes anegds

The manner in which Shear achieves this is through a simgbgteve technique. The basic
idea is that during the redundancy detection algorithm aSingonitors write bandwidth during
the write phase. If write performance is more than twice asda the previously observed read
performance, Shear concludes that some or all of the wrieze twffered and not written to disk,
so another round of writes is initiated. Eventually, thetesgiwill flood the write cache and induce
the storage system into the desired steady-state behdwigiting most of the data to disk; Shear
detects this transition by observing that writes are noéomguch faster than reads (indeed, they

are often slower). We explore this issue more thoroughlyex@erimentation in Section 2.2.

2.1.4.5 Identifying Known Layouts

Finally, Shear uses the pattern size, chunk size, read faywite layout, and redundancy
information in an attempt to match its observations to onésoknown schemes (e.g. RAID-5
left-asymmetric). If a match is found, Shear first re-evedaahe number of disks in the sys-
tem. For instance, the number of disks will be doubled for BAland incremented for RAID-4.
Shear completes by reporting the total number of disks irathey, the chunk size, and the layout
observed.

If a match is not found, Shear reports the discovered churk and number of disks, but
reports that the specific algorithm is unknown. By assuntiag) thunks are allocated sequentially

to disks, Shear can produce a suspected layout based omsés/ations.
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2.1.5 Redundancy Simulations

In this section, we describe how Shear handles storagensystéh redundancy. We begin by
showing results for systems with parity, specifically RAMDRAID-5, and P+Q. We then consider
mirroring variants: RAID-1 and chained declustering. Ihsainulations, we consider a storage
array with six disks and an 8 KB chunk size. For the purposeoaffarison, we present a base

case of RAID-0 in Figure 2.10.

2.1.5.1 Parity

Shear handles storage systems that use parity blocks asn @feedundancy. To demonstrate
this, we consider four variants of RAID-5, RAID-4, and P+@ueadancy [13].
RAID-5: RAID-5 calculates a parity block for each stripe of data, #mllocation of the parity
block is rotated between disks. RAID-5 can have a numberftdrdnt layouts of data and parity
blocks, such as left-symmetric, left-asymmetric, rigitasnetric, and right-asymmetric [34]. Left-
symmetric is known to deliver the best bandwidth [34], anthesonly layout in which the pattern
size is equal to the stripe sized, the same as for RAID-0); in the other RAID-5 layouts, the
pattern size i) — 1 times the stripe size.

The pattern size results for the four RAID-5 systems are shiavirigure 2.11. The first graph
shows that the pattern size for left-symmetric is 48 KB, whgidentical to that of RAID-0; the
other three graphs show that left-asymmetric, right-syinimyend right-asymmetric have pattern

sizes of 240 KB i(e., 30 chunks), as expected. Note that despite the apparesg moihe graphs,
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Pattern Size Detection: RAID-0

2.0
1.5
1.0
0.5
0.0 H

Time (s)

\ \ \ \ \ \ \
0 16 32 48 64 80 96

Pattern Size Assumed (KB)
Chunk Size Detection: RAID-0

2.0 H =y
15
1.0

0.5
0.0 H

Time (s)

Boundary Offset Assumed (KB)

Figure 2.10 Pattern Size and Chunk Size Detection: RAID-0. We simulate RAID-0 with 6
disks and 8 KB chunks. The first graph confirms that the patizinis 48 KB; the second graph
confirms that the chunk size is 8 KB.
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the X-means clustering algorithm is able to correctly idgrthe pattern sizes. The chunk size
algorithm does not behave differently for RAID-5 versus RAD; therefore we omit those results.

Figure 2.12 shows the read layout and write layout graph®#&D-5. Note that each of the
four RAID-5 variants leads to a very distinct visual images Before, light points correspond to
dependent chunk pairs that are slow; points that are darksond to independent chunk pairs
that offer fast concurrent access. A read dependence oatians the two chunks are located on
the same disk. Write dependencies occur when the two cheskder on the same disk, share a
parity disk, or cause interference with a parity disk. Thastances result in an overburdened disk
and a longer response time.

Each graph depicts a pattern-sized grid that accounts fqroakible pairs of chunks. For
example, the RAID-5 left-asymmetric read layout graph i0acBunk by 30 chunk grid. The
points that pair chunk 0 with chunks 5, 10, 15, 20, and 25 drégéit in color because those
chunks are located on the same disk. With this knowledgearSkeable to identify if the storage
system is using one of these standard RAID-5 variants arahitalculate the number of disks.
RAID-4: RAID-4 also calculates a single parity block for each stopdata, but all of the parity
blocks reside on a single disk. The pattern size, chunk ga€, layout, and write layout results for
RAID-4 are shown in Figure 2.13. The pattern size is 40 KB heeahe parity disk is invisible to
the read-based workload. The read layout graph resemiddRAID-0 result because the pattern
size is equal to the stripe size, and therefore each disk®ociy once in the pattern.

On the other hand, the write layout graph for RAID-4 is quitéquie. Because the parity disk is

a bottleneck for writes, all pairs of chunks are limited byragte disk and therefore exhibit similar
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Pattern Size Detection: RAID-5 Left-Symmetric
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Figure 2.11 Pattern Size Detection: RAID-5. We simulate RAID-5 with left-symmetric, left-
-asymmetric, right-symmetric, and right-asymmetric latgo Each configuration uses 6 disks and
a chunk size of 8 KB. The pattern size is 48 KB for RAID-5 lejtyametric and 240 KB for the
rest.
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Figure 2.12 Read and Write Layout Detection: RAID-5. We simulate (from left to right)
RAID-5 left-symmetric, left-asymmetric, right-symmetriand right-asymmetric, with 6 disks.
The first row displays the read layouts and the second row skimewvrite layout graphs.
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Pattern Size Detection: RAID-4
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Figure 2.13Pattern Size, Chunk Size, and Layout Detection: RAID-4. We simulate RAID-4
with 6 disks and 8 KB chunks. The first graph confirms that théepasize of 40 KB is detected;
the second graph shows the chunk size of 8 KB is detected. &dtelayout graph on the right
resembles that for RAID-0, but the write layout graph unigukstinguishes RAID-4 from other
parity-based schemes.
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completion times. This bottleneck produces a relativelyRIAID-4 write layout graph, allowing
us to distinguish RAID-4 from other parity schemes.

P+Q: To demonstrate that Shear handles other parity schemedjametie results of detecting
pattern size and chunk size for P+Q redundancy (RAID-6). hila parity scheme, each stripe
has two parity blocks calculated with Reed-Solomon cod#rwise, the layout looks like left-
symmetric RAID-5. In Figure 2.14, the first graph shows thatpattern size of 48 KB is detected;
the second graph shows an 8 KB chunk size.

Figure 2.14 also shows the read layout and write layout grégphtP+Q. The read layout graph
resembles that for RAID-0. The write layout graph, howeeghibits three distinct performance
regions. The slowest time occurs when all requests are gsghetsame chunk (and disk) in the
repeating pattern. The fastest time occurs when the rexjaadtparity updates are spread evenly
across four disks, for instance when pairing chunks 0 and midlle performance region occurs
when parity blocks for one chunk conflict with data blockstfoe other chunk. For example, when
testing chunks 0 and 2, about half of the parity updates fankl2 will fall on the disk containing
chunk 0. Again, this unique write layout allows us to distirgl P+Q from the other parity-based

schemes.

2.1.5.2 Mirroring

Using the same algorithms, Shear can also handle storatgers/that contain mirrors. How-
ever, the impact of mirrors is much greater than that of pdibcks, since read traffic can be

directed to mirrors. A key assumption we make is that reae$alanced across mirrors; if reads
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Figure 2.14 Pattern Size, Chunk Size, and Layout Detection: P+Q. We present simulated
results for P+Q redundancy with 6 disks and a chunk size of 8 Kt first graph confirms that
the pattern size of 48 KB is detected; the second graph sHmwshiunk size of 8 KB is detected.
The read layout graph on the right resembles RAID-0, but thieeviayout graph distinguishes

P+Q from other schemes.
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are sent to only a primary copy, then Shear will not be ableeteat the presence of mirrored
copies. To demonstrate that Shear handles mirroring, waaenboth simple RAID-1 and chained
declustering.

RAID-1: The results of running Shear on a six disk RAID-1 system aosvehin Figure 2.15.
Note that the pattern size in RAID-1 is exactly half of thaRAID-0, given the same chunk size
and number of disks. The first graph shows how the RAID-1 paize of 24 KB is inferred. As
Shear reads from different offsets throughout the pattBmrequests are sent to both mirrors. As
desired, the worst performance occurs when the request idfequal to the real pattern size, but
in this case, the requests are serviced by two disks insteadeo This is illustrated by the fact
that the worst-case time for the workload on RAID-1 is exahdlf of that when on RAID-0i(e.,
1.0 instead of 2.0 seconds).

The second graph in Figure 2.15 shows how the chunk size of 8 KiBerred. Again, as Shear
tries to find the boundary between disks, requests are sbathanirrors; Shear now automatically
detects the disk boundary because the workload time inesaglsen requests are sent to two disks
instead of four disks. Since the mapping of chunks to diskiwa single pattern does not contain
any conflicts, the read layout and write layout graphs in fégli15 resemble RAID-O.

Chained Declustering: Chained declustering [28] is a redundancy scheme in whigksdire not
exact mirrors of one another; instead, each disk contaimsreapy instance of a block as well as a
copy of a block from its neighbor. The results of running Sheaa six disk system with chained

declustering are shown in Figure 2.16.
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Pattern Size Detection: RAID-1
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Figure 2.15Pattern Size, Chunk Size, and Layout Detection: RAID-1. We present simulated
results for RAID-1 with 6 disks and a chunk size of 8 KB. Thetfgsaph confirms that the pattern
size of 24 KB is detected; the second graph shows the chuelo$i2 KB is detected. The read
layout and write layout graphs on the right resemble thos®A&ID-0.
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Pattern Size Detection: Chained Declustering
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Figure 2.16 Pattern Size, Chunk Size, and Layout Detection: Chained Ddastering. We
present simulated results for chained declustering withsBsdand a chunk size of 8 KB. The
first graph confirms the pattern size of 48 KB; the second gsdqaiws the chunk size of 8 KB is
detected. The wider bands in the read layout and write lagapghs show that two neighboring
chunks are mirrored across a total of three disks; this wtygdentifies chained declustering.
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The first graph shows that a pattern size of 48 KB is detectedeaired. As with RAID-1,
each read request can be serviced by two disks, and themsizeris identified when all of the
requests are sent to only two disks in the system. Note tbatithined declustering pattern size is
twice that of RAID-1 since each disk contains a unique settd thlocks.

The second graph in Figure 2.16 shows that four block churksgain detected. However,
the ratio between best and worst-case performance diffettis case from RAID-0 and RAID-

1; in chained declustering the ratio is 2:3, whereas in RAIBAd RAID-1, the ratio is 1:2. With
chained declustering, when adjacent requests are locateskaa disk boundary, those requests are
serviced by three disks (instead of four with RAID-1); whequests are located within a chunk,
those requests are serviced by two disks.

The mapping conflicts with chained declustering are alsrasting, as shown in the remaining
graphs in Figure 2.16. With chained declustering, a paihoh&s can be located on two, three, or
four disks; this results in three distinct performance megg. This new case of three shared disks
occurs for chunks that are cyclically adjaceag(, chunks 0 and 1), resulting in the wider bands

in the read and write layout graphs.

2.1.6 Overhead

We now examine the overhead of Shear, by showing how it seal@sore disks are added to
the system. Figure 2.17 plots the total number of 1/0Os thaaBgenerates during simulation of a

variety of disk configurations. On the x-axis, we vary thefaguration, and on the y-axis we plot
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the number of I/Os generated by the tool. Note that the RAIBHSasymmetric results are shown
with a log scale on the y-axis.

From the graphs, we can make a few observations. First, weemthat the total number of
I/Os issued for simple schemes such as RAID-0, RAID-1, antCRA left-symmetric is low (in
the few millions), and scales quite slowly as disks are add¢ke system. Thus, for these RAID
schemes (and indeed, almost all others), Shear scalesoweli¢h larger arrays.

Second, we can see that when run upon RAID-5 with the leftrasgtric layout, Shear gener-
ates many more 1/Os than with other redundancy schemeshartdtal number of I/Os does not
scale as well. The reason for this poor scaling behavior easebn from the read layout and write
layout detection bars, which account for most of the I/OficafAs illustrated in Figure 2.1, the
RAID-5 left-asymmetric pattern size grows with the squairéhe number of disks. Because the
layout algorithms issue requests for all pairs of chunkgaatéern, large patterns lead to large num-
bers of requests (although many of these can be servicedahgdg thus, RAID-5 left-asymmetric
represents an extreme case for Shear. Indeed, in its ctioremt Shear would take roughly a few
days to complete the read layout and write layout detectioriRAID-5 left-asymmetric with 16
disks. However, we believe we could reduce this by a factdemby issuing fewer disk I/Os per

pairwise trial, thus reducing run time but decreasing cemioe in the layout results.

2.2 Real Platforms

In this section, we present results of applying Shear to tifferdnt real platforms. The first

is the Linux software RAID device driver, and the second isAaiaptec 2200S hardware RAID
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Figure 2.17 Shear Overhead. The graph shows the number of I/Os generated by each phase of
Shear. Four simulated redundancy schemes are shown (RARAID-1, RAID-5 left-symmetric,

and RAID-5 left-asymmetric), each with three numbers oksligl, 8, and 16) and 32 KB chunks..
Each bar plots the number of I/Os taken for a phase of Sheapekue last (rightmost) bar which
shows the total. The RAID-5 left-asymmetric results ardtpbbwith a log scale on the y-axis.
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controller. To understand the behavior of Shear on reaksystwe ran it across a large variety
of both software and hardware configurations, varying thelmer of disks, chunk size, and re-
dundancy scheme. Most results were as expected; otheeded\adightly surprising properties of
the systems under tegtg., the RAID-5 mode of the hardware controller employs leftrametric
parity placement). Due to space constraints, we concertiee on the most challenging aspect
of Shear: redundancy detection.

While experimenting with redundancy detection, we uncegtidwo issues that had to be ad-
dressed to produce a robust algorithm. The first of these masize of the region over which
the test was run. Figure 2.18 plots the read/write ratio ahgls disk as the size of the region is
varied.

As we can see from the figure, the size of the region over whehtést is conducted can
strongly influence the outcome of our tests. For exampldy thik Quantum disk, the desired ratio
of roughly 1 is achieved only for very small region sizes, #melratio grows to almost 2 when a
few GB of the disk are used. We believe the reason for thissirai@e inflation is the large settling
time of the Quantum disk. Thus, we conclude that the redunddatection algorithm should be
run over as small of a portion of the disk as possible.

Unfortunately, at odds with the desire to run over a smaltiporof the disk is our second
issue: the possible presence of a write-back cache witkiR&iD. The Adaptec 2200S card can
be configured to perform write buffering; thus, to the hdsése writes complete quickly, and are
sent to the disk at some later time. Note that the presenagchfa buffer can affect data integrity

(i.e. if the buffer is non-volatile).
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Figure 2.18Sensitivity to Region Size.The figure plots the bandwidth ratio of a series of random
read requests as compared to a series of random write reqUdst x-axis varies the size of the
region over which the experiment was run. In each run, 50bsszed read or write requests are
issued. Lines are plotted for three different disks: a Quanitlas 10K 18WLS, an IBM 9LZX,
and a Seagate Cheetah X15.
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The Effect of Write Buffering
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Figure 2.19 Avoiding the Write Buffer. The figure plots the performance of writes on top of the
RAID-5 hardware with write-buffering enabled. The x-ax@ries the number of writes issued,
and the y-axis plots the achieved bandwidth.

Because the redundancy detection algorithm needs to issteeraquests to disk to compare
with read request timings, Shear must circumvent cachifegtst Recall that Shear uses a simple
adaptive scheme to detect and bypass buffering by issutcwpssive rounds of write requests and
monitoring their performance. At some point, the write baittih decreases, indicating the RAID
system has moved into the steady-state of writing data toid&ead of to memory, and thus a
more reliable result can be generated. Figure 2.19 denatestthis technique on the Adaptec
hardware RAID adapter with write caching enabled.

With these enhancements in place, we study redundancytidetacross both the software and
hardware RAID systems. Figure 2.20 plots the read bandwadttrite bandwidth ratio across a
number of different configurations. Recall that the readéamatio is the key to differentiating the

redundancy scheme that is used; for example, a ratio of tates that there is no redundancy, a
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Figure 2.20 Redundancy Detection. The figure plots the ratio of read to write bandwidth over
a variety of disk configurations. The x-axis varies the numifedisks and the configuration:
RAID-0, RAID-1, RAID-4, or RAID-5 left-asymmetric, with #her software or hardware RAID.

ratio of 2 indicates a mirrored scheme, and a ratio of 4 irtdg&a RAID-5 style parity encoding.
Note that our hardware RAID card does not support RAID-4 aildnet configure RAID-5 on
two disks.

The figure shows that Shear’s redundancy detection does @ jgboof identifying which
scheme is being used. As expected, we see read/write rdtigpooximately 1 for RAID-0,
near 2 for RAID-1, and 4 for RAID-5. There are a few other psittt make. First, the bandwidth
ratios for RAID-4 scale with the number of disks due to thetgatisk bottleneck. This makes
it more difficult to identify RAID-4 arrays. To do so, we relyndhe write layout test described
previously that exhibits this same bottleneck in write parfance. The unique results from the

write layout test allow us to distinguish RAID-4 from the etlparity-based schemes.
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Second, note the performance of software RAID-5 on 5 and I&sdiastead of the expected
read/write ratio of 4, we instead measure a ratio near 5.ifigabe disk activity and inspecting
the source code revealed the cause: the Linux software RafDraler does not utilize the usual
RAID-5 small write optimization of reading the old block apdrity, and then writing the new
block and parity. Instead, it will read in the entire strifeot blocks and then write out the new
block and parity. Finally, the graph shows how RAID-5 withigks$ and a 2-disk mirrored system

are not distinguishable; at two disks RAID-5 and mirrorimgeerge.

2.3 Shear Applications

In this section, we illustrate a few of the benefits of using&h We begin by showing how
Shear can be used to detect RAID configuration errors andaliskes. We then show how Shear
can be used to discover information about individual diskam array. Finally, we present an
example of how the storage system parameters uncoveredday &&n be used to better tune the
file system; specifically, we show how the file system can imgpgequential bandwidth by writing

data in full stripes.

2.3.1 Shear Management

One of our intended uses of Shear is as an administrativieyutl discover configuration,
performance, and safety problems. Figure 2.21 shows howuaefdo identify a known scheme
may suggest a storage misconfiguration. The upper set ohgrae the expected read layout

graphs for the four common RAID-5 levels. The lower are teilting read layout graphs when



51

Figure 2.21 Detecting Misconfigured Layouts. For RAID-5 left-symmetric, left-asymmetric,
right-symmetric, and right-asymmetric, the upper grapbwshthe read layout graph when the
RAID of IBM disks is correctly configured. The lower graphsoshthe read layout when two
logical partitions are misconfigured such that they areqaaamn the same physical device.

the disk array is misconfigured such that two logical pantisi actually reside on the same physical
disk. These graphs were generated using disk arrays cadpisfour logical disks built using
Linux software RAID and the IBM disks. Although the visuation makes it obvious, manual
inspection is not necessary; Shear automatically detesnimat these results do not match any
existing known schemes.

Shear can also be used to detect unexpected performancedeeteity among disks. In this
next experiment, we run Shear across a range of simulatedolgeineous disk configurations; in
all experiments, one disk is either slower or faster tharréisé Figure 2.22 shows results when
run upon these heterogeneous configurations.

As one can see from the figure, a faster or slower disk makgseatgence known in obvious
ways in both the read layout graphs as well as in the chunkdgisstion output (the pattern size

detection is relatively unaffected). Thus, an adminisirabuld view these outputs and clearly
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Chunk Size Detection: RAID-0
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Figure 2.22Detecting Heterogeneity. The first graph shows the output of the chunk size detec-
tion algorithm run upon an array with a single heterogendasisotating disk. The second row of
figures shows the results of the read layout algorithm on éfterent simulated disk configura-
tions. In each configuration, a single disk has differenttépy than the others. A fast rotating,
slow rotating, fast seeking, and slow seeking disk is degiat each of the figures.
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observe that there is a serious and perhaps unexpectedmpanice differential among the disks
and take action to correct the problem.

Finally, the chunk size detection algorithm in Shear candeduo identify safety hazards by
determining when a redundant array is operating in degradste. Figure 2.23 shows the chunk
size detection results for a ten disk software RAID systeimguthe IBM disks. The upper graph
shows the chunk size detection correctly working after tihayawas first built. The lower graph
shows how chunk size detection is changed after we phygicathove the fifth disk from the
array. Recall that chunk size detection works by guessisgipte boundaries and timing sets of
requests on both sides of the boundary. Vertical downwailcesshould be half the height of
the plateaus and indicate that the guessed boundary ixtbaeause the requests are serviced in
parallel on two disks. The plateaus are false boundariehiohaall the requests on both sides of
the guessed boundary actually are incurred on just one dis&.lower graph identifies that the
array is operating in degraded mode because the boundarisfor the missing disk disappear,

and its plateau is higher due to the extra overhead of penfigron-the-fly reconstruction.

2.3.2 Shear Disk Characterization

Related projects have concentrated on extracting preseofi individual disk drives [62, 76,
90]. Several techniques have been built on top of this clriatic knowledge, such as aligning
files to track boundaries [63] and free-block schedulind.[Shear enables such optimizations in
the context of storage arrays. Shear can expose the boesderiween disks, and then existing

tools can be used to determine specific properties of thabediial disks.



54

Chunk Size Detection: RAID-5 Left-Symmetric
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Figure 2.23 Detecting Failure. Using the chunk size detection algorithm, Shear can discove
failed devices within a RAID system. The upper graph showesitiitial chunk size detection
results collected after building a 10 disk software RAIDteys using the IBM disks. The lower
graph is for the same system after the fifth disk was removed.
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We demonstrate this ability using the Skippy disk charaaéion tool [76]. Skippy uses a
sequence of write operations at increasing strides tom@terthe disk sector to track ratio, rotation
time, head positioning time, head switch time, cylindertstwtime, and the number of recording
surfaces. The first graph in Figure 2.24 shows the patterergésd by Skippy on a single Quantum
disk.

The second graph in Figure 2.24 shows the results of runningdified version of Skippy on a
RAID-0 array with two disks. This version of Skippy uses tineag information provided by Shear
to map its block reference stream to the corresponding d&diocks residing on the first disk in
the array. This results in a pattern that is nearly identizéhat running on a single disk, allowing
us to extract the individual disk parameters. The final giagfigure 2.24 shows the results of the
same technique applied to a two disk RAID-1 array. Again,rdseilts are nearly identical to the
single disk pattern except for some small perturbationsdbanot affect our analysis.

There are some limitations to this approach, however. Famgie, in the case of RAID-1, the
Skippy write workload performs as expected, but a read waidklproduces spurious results due to
the fact that reads are balanced across disks. Conversatis work well under RAID-5 whereas
writes do not due to the need to update parity informatiordifanally, because the parity blocks
under RAID-5 cannot be directly accessed, characterizatiols may obtain an incomplete set
of data. Despite these limitations, we have tested a readebeersion of Skippy on RAID-5 and

successfully extracted all parameters from the individiisds.
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Figure 2.24 Skippy. The figures plot the results of running the Skippy disk chizréation tool
on a single Quantum disk, a two disk RAID-0 array, and a twé& &AID-1 array.
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2.3.3 Shear Performance

The stripe size within a disk array can have a large impacesfopnance [12, 14]. This effect
is especially important for RAID-5 storage, since writeslegs than a complete stripe require
additional I/0. Previous work has focused on selecting el stripe size for a given workload.
We instead show how the file system can adapt the size andradigiof its writes as a function of
a given stripe size.

The basic idea is that the file system should adjust its wtddse stripe aligned as much as
possible. This optimization can occur in multiple places; wave modified the Linux 2.4 device
scheduler so that it properly coalesces and/or dividesiihgial requests such that they are sent to
the RAID in stripe-sized units. This modification is straigbrward: only about 20 lines of code
were added to the kernel.

This simple change to make the file system stripe-aware leatdt®mendous performance
improvements. The experiments shown in Figure 2.25 aremanhardware RAID-5 configuration
with four Quantum disks and a 16 KB chunk size. These resuitta shat a stripe-aware file system
noticeably improves bandwidth for moderately-sized filed emproves bandwidth for larger files

by over a factor of two.

2.4 Discussion

Our approach to uncovering the details of a storage arragtigvithout its weaknesses. First,
the requirement of homogeneous disks limits the scope désysthat Shear can successfully

examine. The key to overcoming this limitation lies in detaring the pattern size over a set of
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The Effects of Stripe-Alignment
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Figure 2.25 Benefits of Stripe Alignment. The figure plots the bandwidth of a series of file
creations of an average size, as varied along the x-axis.véwants are shown: one in which the
file system generates stripe-sized writes and the defaoltd.iThe workload consists of creating
100 files. The x-axis indicates the mean size of the files, lware uniformly distributed between

0.5 x mean and 1.5 mean.
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heterogeneous disks. We believe the same algorithmic apipi@an be utilized, but the trials con-
ducted may need to be deterministic, and the analysis phageaguire modifications to establish
the performance differences of the array components. $ed¢ba Shear detection process may
take a long time depending on the size and particular laybtheoarray. It may be possible to
use fewer requests during the individual microbenchmarkeduce this runtime, but we have not
explored the sensitivity of our analysis to this paramet@rally, Shear requires that it is the only
process accessing the array, and this prohibits the testistprage systems that cannot be taken
offline. In the future, it may be possible to position Sheaawgment an existing workload to in-
duce the desired microbenchmarks in an online system, thdaing so without severe detriment

to foreground performance will be challenging.

2.5 Conclusions

In this chapter we have presented Shear, a system that aidaltyadetects important charac-
teristics of modern storage arrays, including the numbelisks, chunk size, level of redundancy,
and layout scheme. The keys to Shear are its use of randortmesact steady-state perfor-
mance and its use of statistical techniques to deliver aatednand reliable detection. We have
verified that Shear works as desired through a series of atinok over a variety of layout and
redundancy schemes. We have subsequently applied Sheathtedftware and hardware RAID
systems, revealing properties of both. Specifically, wentbthat Linux software RAID exhibits
poor performance for RAID-5 parity updates, and the Adag@@0S RAID adapter implements

RAID-5 left-asymmetric layout.
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We have also shown how Shear could be used through threetodsess Storage administra-
tors can use Shear to verify properties of their storagesyrraonitor their performance, and detect
disk failures. Shear can help extract individual paransdtem disks within an array, enabling per-
formance enhancements previously limited to single diskesyis. Finally, we have shown a factor
of two improvement in performance from a file system tunirsgwrites to the stripe size of its

RAID storage.
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Chapter 3

Bridging the Information Gap:
Exposed RAID and Informed LFS

Although our basic informing interface has shown to be uséfprovides details at a rather
low level. File systems that want to take advantage of theyazonfiguration must be imbued with
particular knowledge of each possible RAID scheme and itgueperformance and reliability
characteristics. Given the number of RAID variants thasetdaday, and the potential growth of
new schemes in the future, designing a file system that cavuatdor such a large population
may prove difficult.

To overcome this limitation, we introduce a second inforgnimterface, Exposed RAID, that
encapsulates array information in abstractions that aemmgful to file system objectives. Specif-
ically, the ExRAID address space is divided into a set of regions, each afhwie mapped to a
single disk or a set of disks. Hence, these regions représeperformance and failure boundaries
within the disk array. In addition to this static informatidex RAID provides dynamic informa-
tion about the performance and reliability of each regiat thay be exploited by the file system

to manage its use of the storage.
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We make use of the ERAID informing interface to evaluate a new division of labme-
tween the storage system and the file system. In particuéadesign an Informed Log-Structured
File System (ILFS) that explicitly manages and takes advantage of thepe&nce and failure
boundaries present in a multiple disk storage system. Bybaang the information provided by
ExRAID along with file-system specific knowledgel.FS is more flexible and manageable than
a traditional file system, and can deliver higher perfornesarad availability as well. For example,
adding a disk to-LFS on-line is easily accomplished; furthed .FS accounts for the potential
heterogeneity introduced by a new disk, and dynamicallgii@ds load across the disks of the sys-
tem, whatever their rates:LIFS also increases the flexibility of storage by enabling gsatrol
over redundancy on a per-file basis, and implements lazyonmg to defer replication to a later
time, potentially increasing performance of the system sltgit decrease in reliability. Crucial
to I.LFS/ExRAID is the implementation of the aforementioned benefitthaut a significant in-
crease in overall complexity (and thus maintainability}te storage stack. Via careful design, all
the functionality mentioned above is implemented with anll9% increase in overall code size as
compared to a traditional system.

The rest of the chapter is structured as follows. We give arvaew of our approach in
Section 3.1, and then we describe BAID and I-LFS in Sections 3.2 and 3.3, respectively. We
present an evaluation of our system in Section 3.4, a digmussSection 3.5, and we conclude in

Section 3.6.
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3.1 Overview

In the next two sections, we present the design and implatientof ExRAID and |-LFS. Our
primary goal in designing the system is to exploit the infatimn made available by*RAID, thus
allowing I-LFS to implement functionality that would be difficult to aele in a more traditional
layering. In particular, we aim to increase: (1) the easeafge management, (2) performance,
especially when considering multiple heterogeneous daskd (3) functionality, so as to meet the
demands of a diverse set of applications.

Our primary goal in designing and implementingc BEAID is to facilitate the use of array
information in the most efficient and simplest possible wayg to allow non-informed legacy
file systems to be built on top of ERAID with no changes. Our primary goal in implementing
I-.LFS is to minimize the impact of transforming the file systenutilize the new storage interface.
For example, changes that would require a re-design of tbeesitayer were ruled out, as that
would mandate that all other file systems be changed in oad&rmiction in our system. Thus,
throughout our implementation effort, we integrate chanigéo |-LFS in a highly localized and
modular fashion — the fewer lines of code that changed, thierbe

One question that must be addressed is our decision to mioe8yand not a more traditional
(or perhaps more popular) FFS-like or journaling file systebmne reason we chose LFS is its
natural flexibility in data placement; LFS is a modern exangl a “write anywhere” storage
system [27, 32]. Write-anywhere systems provide an exuel & indirection such that writes can
be placed in any location on the storage medium, and we explsiaspect of LFS in part of our

implementation. However, with this in mind, we do believatta humber of our implementation
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techniques are general and could be applied to other filemgstand hope to investigate doing so
in the future. Those interested in general LFS file systerfopmance issues should consult the
work of Rosenblum and Ousterhout [55], or subsequent relsdsr Seltzeet al. [65, 66].

All of our software was developed within the context of thetB®D 1.5 operating system.
The ExRAID layer was implemented as a set of hooks on the lowerleeek-driver calls, and
is described in more detail in Section 3.2LHS was implemented by extending the NetBSD
version of LFS, which is based on the original LFS for BSD Ujti%], and is described in detail
in Section 3.3. We chose the NetBSD version of LFS as it is kntiawbe a relatively stable and

solid implementation.

3.2 Exposed RAID

We now describe the Exposed RAID storage interface. It sbsif two major components: a
segmented address space which exposes some or all of thlelgmeof the storage system to the
file system, and functions used to inform the file system otifheamic state of the storage system.

The purpose of the £RAID layer is to encapsulate information about a storagayaim ab-
stractions that are meaningful to the file system. Thus, lhsyistem, its designers, and its imple-
mentors are insulated from the particular implementaticth® array, and can focus on notions of
functionality, performance, and reliability.

The realization of this abstraction may occur in a number afsv For instance, a storage
system could provide native support for the RAID interface. Alternatively, the interface could

be implemented as a software layer on top of our basic infagnmterface, performing block
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remapping to provide ERAID regions and dynamic monitoring of performance. Aduhtlly,
Shear could be used to automatically determine the parasnatéhe basic informing interface if

the underlying array is a legacy system.

3.2.1 A Segmented Address Space

A traditional RAID array presents the storage subsysterhedite system as a linear array of
blocks, underneath of which the true complexity of the gattir RAID scheme is hidden. File
systems interact with RAID systems by either reading orimgithe blocks. In keeping with our
desire to minimize change and preserve backwards comiitgitigix RAID also provides a linear
array of blocks which can be read or written as the basicfater

However, because we wish to expose information about thhagesystem to the file system,
the address spacesggmented; specifically, it is organized as a series of contiguagsons, each
of which is mapped directly to a single disk (or set of disks)J these region boundaries are made
known to the file system above, if it so desires. For example, four-disk storage system with
each disk capable of storing blocks, the address spacexRAID presents might be segmented
as follows: block$) throughN — 1 map to disk), blocks N through2 N — 1 map to diskl, and so
forth.

By exposing this information, ERAID enables the file system to understand the performance
and failure boundaries of the storage system. As we shalhdater sections, the file system can
take advantage of this to place data on a particular regiace meelligently, potentially improving

performance, reliability, or other aspects of the storagtesn.
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Linear address space of blocks

Region 0 Region 1
Mirror pair Mirror pair

Figure 3.1 An Example ExRAID Configuration.
configuration in which each of two disks is combined into arorigd pair. Two regions, each half

The diagram depicts an examplexRAID

of the size of the total address space, are presented ta¢héfde system.
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Within ExRAID, a region may represent more than just a single disk.eikample, a region
could be configured to represent a mirrored pair of disks,venea RAID-5 collection. Thus,
each region can be viewed as a configurable software-bas#d, RAd the entire KRAID ad-
dress space as a single representation of the conglomedditsnch RAID subsystems. In such a
scenario, some information is hidden from the file systemhchoss-region optimizations are still
possible, if more than one region exists. An example of aREID configuration over mirrored
pairs is shown in Figure 3.1.

Allowing each region to represent more than just a singleltiés two primary benefits. First, if
each region is configured as a RAID (such as a mirrored paiisksll the file system is not forced
to manage redundancy itself, though it can choose to do sodésired. Second, this arrangement
allows for backwards compatibility, as<ERAID can be configured as a single striped, mirrored,

or RAID-5 region, thus allowing unmodified file systems to tiseithout change.

3.2.2 Dynamic Information

Although the segmented address space exposes the natime whderlying disk system to
the file system (either in part or in full), this knowledge fem not enough to make intelligent
decisions about data placement or replication. Thus, thRAID layer exposes dynamic infor-
mation about the state of each region to the file system alaonkit is in this way that KRAID
distinguishes itself from traditional volume managers.

Two pieces of information are needed. First, the file systeag desire to haveerformance

information on a per-region basis. Th&RAID layer tracks queue lengths and current throughput
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levels, and makes these pieces of information availablbedike system. Historical tracking of
information is left to the file system.

Second, the file system may wish to know about the resilieheach regionj.e., when fail-
ures occur, and how many more failures a region can tolefldtas, E<RAID also presents this
information to the file system. For example, in Figure 3.%, fite system would know that each
mirror pair could tolerate a single disk failure, and wousdibformed when such a failure occurs.
The file system could then take action, perhaps by directitigequent writes to other regions,
or even by moving important data from the “bad” region intbest more reliable portions of the

ExRAID address space.

3.2.3 Implementation

In our current implementation >ERAID is implemented as a thin layer between the file system
and the storage system. In order to implement a stripedprenly or RAID-5 region, we simply
utilize the standard software RAID layer provided with NSIB. However, our prototypeRAID
layer is not completely generalized as of this date, andithiis current form would require some
effort to allow a file system other tharLFS to utilize it.

The segmented address space is built by interposing on tiaegtrategy call, which allows
us to remap requests from their logical block number withia ¥irtual address space presented
by ExRAID into a physical disk number and block offset, which chert be issued to underlying

disk or RAID.
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Dynamic performance information is collected by monitgrthe current performance levels
of reads and writes. In the prototype, region boundarigkjréainformation, and performance
levels (throughput and queue length) are tracked in thelé»els of the file system. A more
complete implementation would make the information awddahrough anioct1 () interface to
the ExRAID device. Also note that we focus primarily on utiliziniget performance information

in this chapter.

3.3 Informed LFS

We now describe thellFS file system. Our current design has four major pieces ditiadal
functionality, as compared to the standard LFS: on-lineaegiability of the storage system, dy-
namic parallelism to account for performance heteroggniéxible user-managed redundancy,
and lazy mirroring of writes. In sum total, these added feztumake the system more manageable
(the administrator can easily add a new disk, without wofrgamfiguration), more flexible (users
have control over if replication occurs), and have highefggenance (ILFS delivers the full band-
width of the system even in heterogeneous configuratiortsflerible mirroring avoids some of
the costs of more rigid redundancy schemes). For most ofiiceission, we focus on the case that
most separateslUFS/ExRAID from a traditional RAID, where the £RAID layer exposes each

disk of the storage system as a separate regioh kSl
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3.3.1 On-Line Expansion and Contraction

Design: The ability to upgrade a storage system incrementally isiatuAs the performance or
capacity demands of a site increase, an administrator may teeadd more disks. Ideally, such
an addition should be simple to perfored;, a single command issued by the administrator, or an
automatic addition when the disk is detected by the hardweequire no down-time (thus keeping
availability of storage high), and immediately make the@performance and capacity of the new
disk available.

In older systems, on-line expansion is not possible. Evehefstorage system could add a
new disk on-the-fly, it is likely the case that an adminigiratould have to unmount the partition,
expand it (perhaps with a tool similar to that described Bl),7and then re-mount the file system.
Worse, some systems require that a new file system be buitinfpthe administrator to restore
data from tape. More modern volume managers [85] allow felirmmexpansion, but still need file
system support.

Thus, our ILFS design includes the ability to incorporate new disksil{ye new ExRAID
regions) on-line with a single command given to the file systdlo complicated support is neces-
sitated across many layers of the system. If the hardwaneostgohot-plug and detection of new
disks without a power-cycle;LFS can add new disks without any down time and thus reduation
data availability. Overall, the amount of work an admirastr must put forth to expand the system
is quite small.

Contraction is also important, as the removal of a regiorukhbe as simple as the addition

of one. Therefore, we also incorporate the ability to remavegion on the fly. Of course, if the
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file system has been configured in a non-redundant manneg data will likely be lost. The
difference between-LFS and a traditional system in this scenario is thRES knows exactly
which files are available and can deliver them to application

Implementation: To allow for on-line expansion and contraction of storage,ftle system views
regions that have not yet been added as extant and yet fillgedt thus, when a new region is
added to the system, the blocks of that disk are made avaifabhllocation, and the file system
will immediately begin to write data to them. Converselygegion that is removed is viewed as
fully allocated. This technique is general and could be i@pio other file systems, and similar
ideas have been used elsewhere [27].

More specifically, because a log-structured file systemunspmsed of a collection of LFS seg-
ments, it is natural to expand capacity withibFS by adding more free segments. To implement
this functionality, thenewfs_ilfs program creates an expanded LFS segment table for the file
system. The entries in the segment table record the curtatet af each segment. When a new
ExRAID region is added to the file system, the pertinent infararais added to the superblock,
and an additional portion of the segment table is activaiéuds approach limits the number of
regions that can be added to a fixed number (currently, 16)nfwe flexible growth, the segment

table could be placed in its own file and expanded as necessary

3.3.2 Dynamic Parallelism

Design: One problem introduced by the flexibility an administratashn growing a system is

the increased potential for performance heterogeneithierdisk subsystem; in particular, a new
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disk or ExRAID segment may have different performance charactesisbian the other disks of
the system. In such a case, traditional striping and RAIGesw@s do not work well, as they all
assume that disks run at identical rates [5, 19].

Traditionally, the presence of multiple disks is hidden bg storage layer from the file sys-
tem. Thus, current systems must handle any disk performagtegogeneity in the storage layer
— the file system does not have enough information to do slb. ifBkee research community has
proposed schemes to deal with static disk heterogeneity9459, 91], though many of these so-
lutions require careful tuning by an administrator. As Vanabsen notes, “Experience shows that
anything that needs to be configured will be misconfigure@].[3

Further complicating the issue is that the delivered perforce of a device could change over
time. Such changes could result from workload imbalancegechaps from the “fail-stutter”
nature of modern devices, which may present correct operdiut degraded performance to
clients [6]. Even if more advanced heterogeneous data tesahemes are utilized, they will not
work well under dynamic shifts in performance.

To handle such static and dynamic performance differenoesg disks, we include a dynamic
segment placement mechanism withibAS [5]. A segment can logically be written to any free
space in the file system; we exploit this by writing segmeatEx RAID regions in proportion
to their current rate of performance, exploiting the dynastate presented to the file system by
ExRAID. By doing so, we can dynamically balance the write lo&adhe system to account for

static or dynamic heterogeneity in the disk subsystem. Nweif performance of the disks is
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roughly equivalent, this dynamic scheme will degenerattdaadard RAID-0 striping of segments
across disks.

This style of dynamic placement could also be performed irogertraditional storage system
(e.g., AutoRAID has the basic mechanisms in place to do so [88]w&ler, doing so unduly adds
complexity into the system, dwmth the file system and the storage system have to track where
blocks are placed; by pushing dynamic segment placemeanttiatfile system, overall complexity
is reduced, as the file system already tracks where the btdck§le are located.

Implementation: The original version of LFS allocates segments sequepntalbed on availabil-
ity; in other words, all free segments are treated equatib&iter manage parallelism among disks
inI-LFS, we develop aegment indirection technique. Specifically, we modify tHé fs_newseg()
routine to invoke a data placement strategy. Thes newseg() routine is used to find the next
free segment to write to; here, we alter it to be “region aWared thus allow for a more informed
segment-placement decision. By choosing disks in accosdasith their performance levels (in-
formation provided by & RAID), the load across a set of heterogeneously-performagmns can
be balanced.

The major advantage of our decision to implement this fmetiity within theilfs newseg()
routine is that it localizes the knowledge of multiple disks very small portion of the file system;
the vast majority of code in the file system is not aware of #ggan boundaries within the disk
address space, and thus remains unchanged. The slightatiawgthat the decision of which
region to place a segment upon is made early, before the sedras been written to; if the

performance level of the disk changes as the segment fillssigraficant way, the placement
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decision could potentially be a poor one. In practice, weshast found this to be a performance

problem.

3.3.3 Flexible Redundancy

Design: Typically, redundancy is implemented in a one-size-fitsvanner, as a single RAID
scheme (or two, as in AutoRAID) is applied to all the blocksef storage system. The file system
is typically neither involved nor aware of the details ofaa¢plication within the storage layer.
This traditional approach is limiting, as much semantioinfation is available in the file system
as well as in smart users or applications, which could beoégal to improve performance or
better utilize capacity.

Thus, in ILFS, we explore the management of redundancy strictly withe file system, as
managing redundancy in the file system provides greatetbflgyxiand control to users. In our
current design, we allow users or applications to selecthéra file should be made redundant (in
particular, if it should be mirrored). If a file is mirroredsers pay the cost in terms of performance
and capacity. If a file is not mirrored, performance increah&ing writes to that file, and capacity
is saved, but the chances of losing the file are increasediniuoff redundancy is thus well-suited
for temporary files, files that can easily be regeneratedyapdiles.

Because-LFS performs the replication, better accounting is alsaiids, as the system knows
exactly which files (and hence which users) are using whigtsiphl blocks. In contrast, with a

traditional file system mounted on top of an advanced stosggeem such as AutoRAID [88],
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users are charged based on the logical capacity they arg, wgnereas the true usage of storage
depends on access patterns and usage frequency.

Because redundancy schemes are usually implemented #ithiRAID storage system (where
no notion of a file exists), our scheme would not easily be eanm@nted in a traditionally-layered
system. The storage system is wholly unaware of which bleckstitute a file and therefore
cannot receive input from a user as to which blocks to regdicanly if both the file system and
storage system were altered could such functionality bézegh In the future, it would be inter-
esting to investigate a range of policies on top of our redumog mechanisms that automatically
apply different redundancy strategies according to thesobd a file, akin to how the Elephant file
system segregates files for different versioning techrago@].

Implementation: To accomplish our goal of per-file redundancy, we decideditze separate
and unique meta-data for original and redundant files. Tp@a@ach is natural within the file
system as it does not require changes to on-disk data stegctu

In our implementation, we use a straight-forward schemeaksigns even inode numbers to
original files and odd inode numbers to their redundant copiehis method has several advan-
tages. Because the original and redundant files have unimqaies, the data blocks can be dis-
tributed arbitrarily across disks (given certain constigdescribed below), thus allowing us to use
redundancy in combination with our other file system featufdso, the number of LFS inodes is
unlimited because they are written to the log, and the inodp isistored in a regular file which is

expanded as necessary. The prime disadvantage of our appsdhat it limits redundancy to one
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Figure 3.2 The Crossed Pointer Problem. The figure illustrates the problem with using a
separate file as a means for redundancy; specifically, evargkheach element of a file (inode,
data block) has been replicated, a single lost disk coulldnstike it difficult to find a particular
data block, due to the extra requirement that for each blgginter chain to the block must still
be live. In the example, the file with inode numb¥€rand its mirror, inodeV + 1, consist of a
single data block (block 0). If either disk crashes, it is possible to find the corresponding data
block, even though a copy of it exists on the remaining wagldisk.
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copy, but this could easily be extended to/grway mirroring scheme by reserving i-numbers
per file.

One problem introduced by our decision to utilize sepanatelés to track the primary and
mirrored copy of a file is what we refer to as the crossed poprigblem. Figure 3.2 illustrates the
difficulty that can arise. Simply requiring each compondra file (e.g., the inode, indirect blocks,
and data blocks) be replicated is not sufficient to guarathtaeall data can be recovered easily
under a single disk failure. Instead, we must ensure thdit éata block igeachable under a disk
failure; a block being reachable implies that a pointer chaiit exists.

Consider the example in the figure: a file with inode numbers replicated within inode
numberN + 1. Inode N is located on the first disk, as is the first data block of theanicopy
(file N + 1). InodeN + 1 is on the other disk, as is the first data block of the primanyyddile
N). However, if either disk fails, the first data block is nos#arecovered, as the inode on the
surviving disk points to the data block on the failed disk.sbme file systems, this would be a
fatal flaw, as the data block would be unrecoverable. In LES,anly a performance issue, as the
extra information found within segment summary blocksvafidor full recovery; however, a disk
crash would mandate a full scan of the disk to recover all dimteks.

There are a number of possible remedies to the problem. Ronghe, one could perform an
explicit replication of each inode and all other pointerrgiang structures, such as indirect blocks,
doubly-indirect blocks, and so forth. However, this woutdjuire the on-disk format to change,
and would be inefficient in its usage of disk space, as eadfeimmd indirect block would have

four logical copies in the file system.
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Instead, we take a much simpler approackligide and conquer. The disks of the system are
divided into two sets. When writing a redundant file to diskFIS decides which set the primary
copy should be placed within; the redundant copy is placekimvihe other set. Thus, because no
pointers cross from either set into the other, we can gueeatiiat a single failure will cause no
harm (in fact, we can tolerate any number of failures to diskbat set).

Finally, incorporating redundancy intedLFS also presents us with a difficult implementation
challenge: how should we replicate the data and inodesmilid file system, without re-writing
every routine that creates or modifies data on disk? We deald applyrecursive vnode invoca-
tionto ease the task. We embellish moEHS vnode operations with a short recursive tail; therein,
the routine is invoked recursively (with appropriate argums) if the routine is currently operating
on an even i-number and therefore on the primary copy of tte, @dad if the file is designated
for redundancy by the user. For instance, when a file is alegmgilfs _create(), a recursive
calltoilfs_create() is used to create a redundant file. The recursion is brokdnnte call to

perform the identical operation to the redundant file.

3.3.4 Lazy Mirroring

Design: User-controlled replication allows users to contifoleplication occurs, but nathen.
As has been shown in previous work, many potential benefige @ allowing flexible control
over when redundant copies are made or parity is updated Die8aying parity updates has been
shown to be beneficial in RAID-5 schemes to avoid the smailievproblem [61], and could also

reduce load under mirrored schemes. Implementing suchtaréeat the file system level allows
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the user to decide the window of vulnerability for each file,l@sing data in certain files may
likely be more tolerable than in others. Note that eitherhalse enhancements would be difficult
to implement in a traditional system, as the informatioruregf resides in both the file system and
RAID, necessitating non-trivial changes to both.

In I-.LFS, we incorporatéazy mirroring into our user-controlled replication scheme. Thus,
users can designate a file as non-replicated, immediataigaéed, or lazily replicated. By choos-
ing a lazy replica, the user is willing to increase the chasfaata loss for improved performance.
Lazy mirroring can improve performance for one of two reasdirst, by delaying file replication,
the file system may reduce load under a burst of traffic and dedework of replication to a later
period of lower system load. Second, if a file is written tckdisd then deleted before the replica-
tion occurs, the cost of replication is removed entirely.ndast systems buffer files in memory for
a short period of timegg., 30 seconds), and file lifetimes have recently been showe toriger
than this on average [53], this second scenario may be manenom than previously thought.
Implementation: Lazy mirroring is implemented inlLFS as an embellishment to the file-system
cleaner. For files that are designated as lazy replicas, @a bit is set in the segment usage
table indicating their status. When the cleaner scans aesgamd finds blocks that need to be
replicated, it simply performs the replication directlyaking sure to place replicated blocks so
as to avoid the crossed pointer problem, and associateswitbnthe mirrored inode. When the
replication is complete, the bit is cleared. Currently,fileesystem replicates files after a 2-minute

delay, though in the future this could be set directly by therwor application.
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3.4 Evaluation

In this section, we present an evaluation of BAID and I-LFS. Experiments are performed
upon an Intel-based PC with 128 MB of physical memory. Themnpaocessor is a 1-GHz Intel
Pentium Il Xeon, and the system houses four 10,000 RPM $e&jB818305LC Cheetah 36XL
disks (which we will refer to as the “fast” disks), and fouR@) RPM Seagate ST34572W Bar-
racuda 4XL disks (the “slow” disks). The fast disks can daligtata at roughly 21.6 MB/s each,
and the slow disks at approximately 7.5 MB/s apiece. Forgleeaments, we perform 30 trials
and show both the average and standard deviation.

In some experiments, we compare the performancelL®f3/ExRAID to standard RAID-0
striping. Stripe sizes are chosen so as to maximize perfuwenaf the RAID-0 given the workload

at hand, making the comparison as fair as possible, or eigtlglunfair towards ILFS/Ex RAID.

3.4.1 Baseline Performance

In this first experiment, we demonstrate the baseline padorce of ILFS and E<RAID on
top of two different homogeneous storage configurations,with four slow disks, and one with
four fast disks. The experiment consists of sequentialewsequential read, random write, and
random read phases (based on patterns generated by theeB@jramd 10zone [43] benchmarks).
We perform this experiment to demonstrate that there is eapgcted overhead in our implemen-

tation, and that it scales to higher-performance diskstifely.
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Figure 3.3 Baseline Performance Comparison. The figure plots the performance of
|-.LFS/ExRAID under sequential writes, sequential reads, randortesyrand random reads. The
tests are run on four disks, varying whether the disks usedharfour slow disks or the four fast
ones. In all cases, requests generated by the tests are 8 §iBeinand the total data-set size is
200 MB.
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As we can see in Figure 3.3, sequential write, sequentidl i@ad random writes all perform
excellently, achieving high bandwidth across both diskfigamations. Not surprisingly for a log-
based file system, random reads perform much more poorlig\acg roughly 0.9 MB/s on the
four slow disks, and 1.8 MB/s on the four fast disks, in linehaivhat one would expect from

these disks in a typical RAID configuration.

3.4.2 On-line Expansion

We now demonstrate the performance of the system underswagalisks are added to the
system on-line. In this experiment, the disks are alreadggmt within the PC, and thus the
expansion stresses the software infrastructure and ndivlaae capabilities.

Figure 3.4 plots the performance of sequential writes awez s disks are added to the system
(random writes perform similarly, due to the nature of LESpng the x-axis, the amount of data
written to disk is shown, and the y-axis plots the rate thatrttost recent 64 MB was committed
to disk. As one can see from the grapt,AS immediately starts using the disks for write traffic
as they are added to the system. However, read traffic wilirmoa to be directed to the original
disks for older data. The LFS cleaner could redistributsteng data over the newly-added disks,

either explicitly or through cleaning, but we have not ygtlexed this possibility.
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Figure 3.4 Storage Expansion. The graph plots the performance dffS during storage expan-
sion. The experiment begins withLFS writing to a single disk. Each time 256 MB is written, a
new disk is brought on-line, anelFS immediately begins writing to it for increased perfomea.
Disk expansion is accomplished via a simple command, widds #he disk (or region) to the file
system without down time.
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3.4.3 Dynamic Parallelism

We next explore the ability of LFS to place segments dynamically in different regions 8ase
on the current performance characteristics of the systerorder to demonstrate the ability of
I-LFS to react to static and dynamic performance differencessa devices.

There are many reasons for performance variation amongdrikor example, when new disks
are added, they can likely be faster than older ones; fyrtihexpected dynamic performance
variations due to bad-block remapping or “hot spots” in tleekload are not uncommon [6], and
therefore can also lead to performance heterogeneitysdisiks. Indeed, the ability to expand the
disk system on-line (as shown above) induces a workloadlanbe, as read traffic is not directed
to the newly-added disks until the cleaner has reorganiaedatross all of the disks in the system.

We experiment with both static and dynamic performanceatians in this subsection. Fig-
ure 3.5 shows the results of our static heterogeneity tés s€quential write performance dffFS
with its dynamic segment placement scheme is plotted alatigh#S on top of the NetBSD con-
catenated disk driver (CCD) configured to stripe data in alRBIfashion. In all experiments, data
is written to four disks. Along the x-axis, we increase thenber of slow disks in the system; thus,
at the extreme left, all of the four disks are fast ones, atitite they are all slow ones, and in the
middle are different heterogeneous configurations.

As we can see in the figure, by writing segments dynamicallyraportion to delivered disk
performance,-.LFS/ExRAID is able to deliver the full bandwidth of the underlyingsage system

to applications — overall performance degrades graceédlynore slow disks replace fast ones in
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Performance Under Static Heterogeneity
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Figure 3.5 Static Storage Heterogeneity. The figure plots the performance of.FS versus
FFS/CCD with standard RAID-0 striping, both under a seriedisk configurations. Along the
x-axis, the number of fast and slow disks are varigth fmplies f fast disks and slow ones).
By adjusting where segments are written dynamicallyi-$/ExRAID is able to deliver the full
bandwidth of disks. In contrast, standard striping perfoanhthe rate of the slowest disk in the
system. For each test, 200 MB is written to disk.
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Performance Under Dynamic Heterogeneity
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Figure 3.6 Dynamic Storage Heterogeneity. The figure plots the performance of

I-.LFS/ExRAID and FFS/CCD under a dynamic performance variation. im@uthe experiment,
the performance of a single disk is temporarily degradeslifdablty disk delays requests for a fixed
time, reducing throughput of the disk from 21.6 MB/s to 5.8 MIBBy adaptively writing more
data to the other disksUFS/Ex RAID with dynamic segment placement is better able to adpust
the imbalance and deliver higher throughpuit.
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the storage system. RAID-0 striping performs at the ratdnefslowest disk, and thus performs
poorly in any heterogeneous configuration.

We also perform a “misconfiguration” test. In this experimere configure the storage system
to utilize two partitions on theame disk, emulating a misconfiguration by an administrator {l&im
in spirit to tests performed by Brown and Patterson [10])ug;iwhile the disk system appears to
contain four separate disks, it really only contains thhe¢his case,-LFS/ExRAID writes data to
disk at 65 MB/s, whereas standard striping delivers only 4B/ The dynamic segment striping
of I-.LFS is successfully able to balance load across the diskbijsrtase properly assigning less
load to each partition within the accidentally over-burei@ilisk.

In our final heterogeneity experiment, we introduce an aidifi“performance fault” into a
storage system consisting of four fast disks, in order tdiocarthat our load balancing works well
in the face of dynamic performance variations. Figure 3@\shthe performance during a write
of both I LFS/ExRAID with dynamic segment placement and FFS/CCD using RAIS¥Fiping in
a case where a single disk of the four exhibits a performaegeadiation. After one third of the
data is written, a kernel-based utility is used to temptyakelay completed requests from one of
the disks. The delay has the effect of reducing its througfrpmn 21.6 MB/s to 5.8 MB/s. The
impaired disk is returned to normal operation after an @oitktl one third of the data is written. As
we can see from the figureLFS/ExRAID does a better job of tolerating the fluctuations induced
during the second phase of the experiment, improving padoce by over a factor of two as

compared to FFS/CCD.
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3.4.4 Flexible Redundancy

In our first redundancy experiment, we verify the operatibouw system in the face of failure.
Figure 3.7 plots the performance of a set of processes parigrrandom reads from redundant
files on ILFS. Initially, the bandwidth of all four disks is utilizedylbalancing the read load
across the mirrored copies of the data. As the experimegtesses, a disk failure is simulated by
disabling reads to one of the diskd_FS continues providing data from the available replicas, b
overall performance is reduced.

Next, we demonstrate the flexibility of per-file redundandyew the redundancy is managed
by the file system. A total of 20 files are written concurrentlya system consisting of four fast
disks, while the percentage of those files that are mirrar@ttreased along the x-axis. The results
are shown in Figure 3.8.

As expected, the net throughput of the system decreasesliiraess more files are mirrored, and
when all are mirrored, overall throughput is roughly halvédus, with per-file redundancy, users
“get what they pay for”; if users want a file to be redundang, prerformance cost of replication
is paid during the write, and if not, the performance of thé@eureflects the full bandwidth of the

underlying disks.

3.4.5 Lazy Mirroring

In our final experiment, we demonstrate some of the perfoomaharacteristics of lazy mir-
roring. Figure 3.9 plots the write performance to a set afyanirrored files. After a delay of 20

seconds, the cleaner begins replicating data, and the hblergystem traffic suffers from a small
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Figure 3.7 Storage Failure. The figure plots the random read performance to a set of regiror
files across four disks onlFS. At the labeled points in the graph, a disk is taken oféJiand
performance decreases becaut€&$ can no longer balance the read load between the replicas.
Note that in this example;UIFS/ExRAID can survive any single disk failure; however, after the
first failure, FLFS/ExRAID can only tolerate the loss of the other disk in the set.
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Figure 3.8Per-file Redundancy. The figure plots the performance of writes to 20 separatedges
the percent of those files that are mirrored increases. As files are mirrored, the net bandwidth
of the system drops to roughly half of its peak rate, as exgaecthe peak bandwidth achieved is
lower than the previous experiments due to the increasedbauaf files and subsequent meta-data
operations. In each experiment, 200 MB is written out to disk
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decline in performance. The default replication delay far $ystem is two minutes in length, but
an abbreviated delay is used here to reduce the time of thexiexgnts.

From the figure, we can see the potential benefits of lazy nmgpas well as its potential
costs. If lazily mirrored files are indeed deleted befordicafion begins, the full throughput of
the storage layer will be realized. However, if many or aflillamirrored files are not deleted
before replication, the system incurs an extra penaltyhaset files must be read back from disk
and then replicated, which will affect subsequent file aysteaffic. Therefore, lazy mirroring
should be used carefully, either in systems with highly tyutsaffic (i.e., idle time for the lazy

replicas to be created), or with files that are easily distisigable as short-lived.

3.5 Discussion

In implementing ILFS/ExRAID, we were concerned that by pushing more functionatitp i
the file system, the code would become unmanageably conipihes, one of our primary goals is
to minimize code complexity. We believe we achieve this gmdéégrating the three major pieces
of functionality with only an additional 1,500 lines of cqda 19% increase over the original
size of the LFS implementation. Of this additional code,gtuy half is due to the redundancy
management.

From the design standpoint, we find that managing redundaitbin the file system has many
benefits, but also causes many difficulties. For examplelt@she crossed-pointer problem, we
applied a divide-and-conquer technique. By placing theary copy of a file into one of two sets,

and its mirror in the other, we enable fast operation undésré&a However, our solution limits
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data placement flexibility, in that once a file is assigned $etaany subsequent writes to that file
must be written to that set. This limitation affects perfamue, particularly under heterogeneous
configurations where one set has significantly differenfgserance characteristics than the other.
Though we can relax these placement restricties, by choosing which disks constitute a set
on a per-file basis, the problem is fundamental to our appréadile-system management of
redundancy.

From the implementation standpoint, file-system managedn@ancy is also problematic, in
that the vnode layer is designed with a single underlyings dismind. Though our recursive
invocation technique was successful, it stretched thedimii what was possible in the current
framework, and new additions or modifications to the codenatealways straightforward to im-
plement. To truly support file-system managed redundancgdesign of the vnhode layer may be

beneficial [56].

3.6 Conclusions

In terms of abstractions, block-level storage systems sgc8CSI have been quite success-
ful: disks hide low-level details from file systems such as ¢lxact mechanics of arm movement
and head positioning, but still export a simple performamaelel upon which file systems could
optimize. As Lampson said: “[...] an interface can combimngpdicity, flexibility, and high perfor-
mance together by solving one problem and leaving the reéketolient” [33]. In early single-disk

systems, this balance was struck nearly perfectly.
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Figure 3.9 Lazy Mirroring.  The figure plots the write performance to a set of lazy redohda
files on ILFS with a replication delay of 20 seconds. Peak performameehieved during the
initial portion of the test, but performance is reducedtsligas the cleaner begins replicating data.
After the write test completes, the cleaner continues tbaae data in the background.
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As storage systems evolved from a single drive into a RAIDwwiultiple disks, the interface
remained simple, but the RAID itself did not. The result isyatem full of misinformation: the
file system no longer has an accurate model of disk behavidittee now-complex storage system
does not have a good understanding of what to expect fromléhgy/stem.

ExRAID and I-LFS bridge this information gap by design: the presence dfipte regions is
exposed directly to the file system, enabling new functibydh this chapter, we have explored the
implementation of on-line expansion, dynamic paralle|iiexible redundancy, and lazy mirroring
in I-LFS. All were implemented in a relatively straight-forwamthnner within the file system,
increasing system manageability, performance, and fomality, while maintaining a reasonable
level of overall system complexity. Some of these aspectsLéiS would be difficult to build
in the traditional storage stack, highlighting the impaoda of informing interfaces that allow

functionality to be placed in the correct layer of the system
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Chapter 4

Collaborating Layers: Journal-guided Resynchronization

4.1 Introduction

In this chapter, we look beyond information-only interfate new interfaces that allow storage
stack layers to communicate more effectively. Our goal islémtify a problem that is best solved
in a coordinated manner across layers, and to develop areeffimforming interface that allows
for such collaboration. Specifically, we address the pmobté maintaining consistency at the
RAID level.

The task of a RAID is to maintain consistency between the aatkthe redundant information
it stores. This invariant provides the ability to recovetadia the case of a disk failure. However,
because the blocks reside on more than one disk, updatestdamapplied atomically. Hence,
maintaining these invariants in the face of crashes is ehgihg. If a crash occurs during a write
to an array, its blocks may be left in an inconsistent stakgs ihconsistency introducesmndow
of vulnerability; if a data disk fails before the stripe is made consistemtddta on that disk will
be lost. Automatic reconstruction of the missing data bldesed on the inconsistent parity, will

silently return bad data to the client.
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High-end storage arrays circumvent this problem gracefwith non-volatile memory. By
buffering an update in NVRAM until the disks have been caesidy updated, a hardware-based
approach avoids the window of vulnerability entirely. Theame is ideal: both performance
and reliability are excellent. Unfortunately, the extradveare entails extra cost; many of these
solutions come with multi-million dollar price tags [21].

In commodity RAID systems that lack non-volatile memory,eafprmance versus reliability
trade-off must be made. Most current software RAID impletagons choose performance over
reliability [78]: they simply issue writes to the disks inrp#iel, hoping that an untimely crash does
not occur in between. If a crash does occur, these systemsgapexpensiveesynchronization
process: by scanning the entire volume, such discrepacarebe found and repaired. For large
volumes, this process can take hours or even days.

The alternate software RAID approach chooses reliabiligr performance [16]. By applying
write-ahead logging within the array to record the locatadrpending updates before they are
issued, these systems avoid time-consuming resynchtamzauring recovery, the RAID simply
repairs the locations as recorded in its log. Unfortunatelsnoving the window of vulnerability
comes with a high performance cost: each update within thEDRust now be preceded by a
synchronous write to the log, greatly increasing the td@llbad on the disks.

To solve the consistent update problem in the commodity R&tironment, and to develop
a solution with both high performance and reliability, wkeia global view of the storage stack:
can we find acollaborative approach that leverages functionality in other layers efdfstem to

assist us? In many cases, the client of the RAID system will beodern journaling file system,
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such as the default Linux file system, ext3 [80, 81, 82], orsBe&tS [51], JFS [8], or Windows
NTFS [71]. Although standard journaling techniques mamthe consistency of file system data
structures, they do not solve the consistent update proatehe RAID level. We find, however,
that journaling can be readily augmented to do so.

Specifically, we introduce a new mode of operation withinuxrext3: declared mode. Before
writing to any permanent locations, declared mode recdsdatentions in the file system journal.
This functionality guarantees a record of all outstandimiges in the event of a crash. By consult-
ing this activity record, the file system knows which blocker&in the midst of being updated and
hence can dramatically reduce the window of vulnerabibtiofving a crash.

To complete the process, the file system must be able to comatarits information about
possible vulnerabilities to the RAID layer below. For thigpose, we add a new informing inter-
face to the RAID layer: theerify read. Upon receiving a verify read request, the RAID layer reads
the requested block as well as its mirror or parity group aarifies the redundant information. If
an irregularity is found, the RAID layer re-writes the mirgr parity to produce a consistent state.

We combine these features to integrate journal-guidechaspnization into the file system
recovery process. Using our record of write activity vastbcreases the time needed for resyn-
chronization, in some cases from a period of days to meransiscéience, our approach avoids the
performance versus reliability trade-off found in commgdRAID systems: performance remains
high and the window of vulnerability is greatly reduced.

In general, we believe the key to our solution isdtdlaborative nature. By removing the

strict isolation between the file system above and the RAN2rddelow, these two subsystems
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can worktogether to solve the consistent update problem without sacrificitigee performance or
reliability.

The rest of the chapter is organized as follows. Sectionli&rates the RAID consistent up-
date problem and quantifies the likelihood that a crash edtlito data vulnerability. Section 4.3
provides an introduction to the ext3 file system and its dpmraln Section 4.4, we analyze ext3’s
write activity, introduce ext3 declared mode and an additm the RAID interface, and merge
RAID resynchronization into the journal recovery proceSsction 4.5 evaluates the performance
of declared mode and the effectiveness of journal-guidsgh@hronization. We conclude in Sec-

tion 4.6.

4.2 The Consistent Update Problem

4.2.1 Introduction

The task of a RAID is to maintain an invariant between the daththe redundant information
it stores. These invariants provide the ability to recovatadn the case of a disk failure. For
RAID-1, this means that each mirrored block contains theesdata. For parity schemes, such as
RAID-5, this means that the parity block for each stripe etaihe exclusive-or of its associated
data blocks.

However, because the blocks reside on more than one disktegpdannot be applied atomi-
cally. Hence, maintaining these invariants in the face dfifa is challenging. If a crash occurs
during a write to an array, its blocks may be left in an incetesit state. Perhaps only one mirror

was successfully written to disk, or a data block may have adten without its parity update.
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We note here that the consistent update problem and its@wudre distinct from the tradi-
tional problem of RAID disk failures. When such a failure ors; all of the redundant information
in the array is lost, and thus all of the data is vulnerable $e@nd disk failure. This situation is

solved by the process of reconstruction, which regenesaditesthe data located on the failed disk.

4.2.2 Failure Models

We illustrate the consistent update problem with the exarspbwn in Figure 4.1. The diagram
depicts the state of a single stripe of blocks from a four 88kD-5 array as time progresses from
left to right. The software RAID layer residing on the maahin servicing a write to data block
Z, and it must also update the parity blo€k,The machine issues the data block write at time 1, it
is written to disk at time 3, and the machine is notified of dsnpletion at time 4. Similarly, the
parity block is issued at time 2, written at time 5, and itsifitcdtion arrives at time 6. After the
data write to blockZ at time 3, the stripe entersvandow of vulnerability, denoted by the shaded
blocks. During this time, the failure of any of the first thidieks will result in data loss. Because
the stripe’s data and parity blocks exist in an inconsiss¢aie, the data residing on a failed disk
cannot be reconstructed. This inconsistency is corredtéoha 5 by the write tdP.

We consider two failure models to allow for the possibilifyradependent failures between the
host machine and the array of disks. We will discuss eachrmdud relate their consequences to
the example in Figure 4.1. Thweachine failure model includes events such as operating system

crashes and machine power losses. In our example, if theingactashes between times 1 and 2,
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Figure 4.1 Failure Scenarios. The diagram illustrates the sequence of events for a datk blo
write and a parity update to a four disk RAID-5 array as timegpesses from left to right. The

boxes labeled indicate a request being issued, and those labelegresent completions. The

shaded blocks denote a window of vulnerability.
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and the array remains active, the stripe will be left in amimsistent state after the write completes
at time 3.

Our second model, thdisk failure model, considers power losses at the disk array. If such a
failure occurs between time 3 and time 5 in our example, tiygestvill be left in a vulnerable state.
Note that the disk failure model encompasses non-indeperidéures such as a simultaneous

power loss to the machine and the disks.

4.2.3 Measuring Vulnerability

To determine how often a crash or failure could leave an amagn inconsistent state, we
instrument the Linux software RAID-5 layer and the SCSI drito track several statistics. First,
we record the amount of time between the first write issueéfsiripe and the last write issued
for a stripe. This measures the difference between timesi®2an Figure 4.1, and corresponds
directly to the period of vulnerability under the machinguee model.

Second, we record the amount of time between the first writepbetion for a stripe and the
last write completion for a stripe. This measures the dffiee between time 4 and time 6 in our
example. Note, however, that the vulnerability under trsk ilure model occurs between time
3 and time 5, so our measurement is an approximation. Oultsesay slightly overestimate or
underestimate the actual vulnerability depending on the it takes each completion to be sent to
and processed by the host machine. Finally, we track the auoflstripes that are vulnerable for
each of the models. This allows us to calculate the percetitnef that any stripe in the array is

vulnerable to either type of failure.
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Our test workload consists of multiple threads performiyigchironous, random writes to a set
of files on the array. All of the experiments in this chapter performed on an Intel Pentium Xeon
2.6 GHz processor with 512 MB of RAM running Linux kernel 6. The machine has five IBM
9LZX disks configured as a 1 GB software RAID-5 array. The RAMume is sufficiently large
to perform our benchmarks yet small enough to reduce thauéredime of our resynchronization
experiments.

Figure 4.2 plots the percent of time (over the duration ofdkgeriment) that any array stripe
is vulnerable as the number of writers in the workload iseased along the x-axis. As expected,
the cumulative window of vulnerability increases as the ant@f concurrency in the workload
is increased. The vulnerability under the disk failure maslgreater because it is dependent on
the response time of the write requests. Even for a small eowfbwriters, it is more than likely
that a disk failure will result in an inconsistent state. Rher concurrency, the array exists in a
vulnerable state for up to 80% of the length of the experiment

The period of vulnerability under the machine failure moddbwer because it depends only
on the processing time needed to issue the write requestsir experiment, vulnerability reaches
approximately 40%. At much higher concurrencies, howeterability to issue requests could be
impeded by full disk queues. In this case, the machine valikty will also depend on the disk

response time and will increase accordingly.
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Figure 4.2 Software RAID Vulnerability. The graph plots the percent of time (over the duration
of the experiment) that an inconsistent disk state existhénRAID-5 array as the number of
writers increases along the x-axis. Vulnerabilities dualigk failure and machine failure are
plotted separately.
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4.2.4 Solutions

To solve this problem, high-end RAID systems make use of valatile storage, such as
NVRAM. When a write request is received, a log of the request the data are first written
to NVRAM, and then the updates are propagated to the diskshdrevent of a crash, the log
records and data present in the NVRAM can be used to replayiites to disk, thus ensuring a
consistent state across the array. This functionality soat@n expense, not only in terms of raw
hardware, but in the cost of developing and testing a moregptensystem.

Software RAID, on the other hand, is frequently employedammodity systems that lack
non-volatile storage. When such a system reboots from & dfaere is no record of write activity
in the array, and therefore no indication of where RAID ingistencies may exist. Linux software
RAID rectifies this situation by laboriously reading the tamts of the entire array, checking the
redundant information, and correcting any discrepanci@s. RAID-1, this means reading both
data mirrors, comparing their contents, and updating otieeif states differ. Under a RAID-5
scheme, each stripe of data must be read and its parity atddylchecked against the parity on
disk, and re-written if it is incorrect.

This approach fundamentally affects both reliability amdikbility. The time-consuming pro-
cess of scanning the entire array lengthens the window oifevability during which inconsistent
redundancy may lead to data loss under a disk failure. Awtuatly, the disk bandwidth devoted
to resynchronization has a deleterious effect on the foreut traffic serviced by the array. Con-

sequently, there exists a fundamental tension betweenetimaids of reliability and availability:
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allocating more bandwidth to recover inconsistent distestaduces the availability of foreground
services, but giving preference to foreground requesteases the time to resynchronize.

As observed by Brown and Patterson [10], the default Linukcpaddresses this trade-off
by favoring availability over reliability, limiting resyechronization bandwidth to 1000 KB/s per
disk. Unfortunately, such a slow rate may equate to dayspairéime and vulnerability for even
moderately sized arrays of hundreds of gigabytes. Fig8dldstrates this problem by plotting
an analytical model of the resynchronization time for a filgkérray as the raw size of the array
increases along the x-axis. With five disks, the default kipalicy will take almost four minutes
of time to scan and repair each gigabyte of disk space, wlijoates tdwo and a half days for a
terabyte of capacity. Disregarding the availability of Hreay, even modern interconnects would
need approximately an hour at their full bandwidth to resyaonize the same one terabyte array.

One possible solution to this problem is to add logging toRIAD system in a manner similar
to that discussed above. This approach suffers from twolthaks, however. First, logging to the
array disks themselves would likely decrease the overatbpeance of the array by interfering
with foreground requests. The high-end solution discugsediously benefits from fast, inde-
pendent storage in the form of NVRAM. Second, adding loggind maintaining an acceptable
level of performance could add considerable complexityheodoftware. For instance, the Linux
software RAID implementation uses little buffering, distiag stripes when their operations are
complete. A logging solution, however, may need to buffguests significantly in order to batch

updates to the log and improve performance.
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Figure 4.3Software RAID Resynchronization Time. The graph plots the time to resynchronize
a five disk array as the raw capacity increases along thes¢-axi
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Another solution is to perform intent logging to a bitmapnesgenting regions of the array. This
mechanism is used by the Solaris Volume Manager [74] and ¢nigag Volume Manager [86] to
provide optimized resynchronization. An implementation Einux software RAID is also in
development [16], though it has not been merged into the kexinel. Like logging to the array,
this approach is likely to suffer from poor performance. Fstance, the Linux implementation
performs a synchronous write to the bitmap before updatatg ¢th the array to ensure proper
resynchronization. Performance may be improved by inargabte bitmap granularity, but this
comes at the cost of performing scan-based resynchraorizatier larger regions.

Software RAID is just one layer in the storage hierarchy. Okedy configuration contains
a modern journaling file system in the layer above, loggirgk dipdates to maintain consistency
across its on-disk data structures. In the next sectiongxamine how a journaling file system

can be used to solve the RAID resynchronization problem.

4.3 ext3 Background

In this section, we discuss the Linux ext3 file system, itsrafien, and its data structures.
These details will be useful in our analysis of its write atyi and the description of our modi-
fications to support journal-guided resynchronization éction 4.4. Although we focus on ext3,
we believe our techniques are general enough to apply to @henaling file systems, such as
ReiserFS and JFS for Linux, and NTFS for Windows.

Linux ext3 is a modern journaling file system that aims to kempplex on-disk data structures

in a consistent state. To do so, all file system updates ateniiitten to a log called the journal.
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Once the journal records are stored safely on disk, the apdatn be applied to their home loca-
tions in the main portion of the file system. After the updatespropagated, the journal records
are erased and the space they occupied can be re-used.

This mechanism greatly improves the efficiency of crashveigo After a crash, the journal is
scanned and outstanding updates are replayed to bringdhsy$tem into a consistent state. This
approach constitutes a vast improvement over the previmceps i(e. fsck [41]) that relied on a
full scan of the file system data structures to ensure camigt It seems natural, then, to make
use of the same journaling mechanism to improve the proddR8kD resynchronization after a

crash.

4.3.1 Modes

The ext3 file system offers three modes of operation: daterpding mode, ordered mode,
and writeback mode. In data-journaling mode, all data anthdaga is written to the journal,
coordinating all updates to the file system. This provideg s&ong consistency semantics, but at
the highest cost. All data written to the file system is wntteice: first to the journal, then to its
home location.

Ordered mode, the ext3 default, writes all file system megattathe journal, but file data is
written directly to its home location. In addition, this neduarantees a strict ordering between
the writes: all file data for a transaction is written to digfdre the corresponding metadata is

written to the journal and committed. This guarantees thatietadata will never reference a data
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block before it has been written. Thus, this mechanism pies/strong consistency without the
expense of multiple writes for file data.

In writeback mode, only file system metadata is written tojthenal. Like ordered mode,
file data is written directly to its home location; unlike erdd mode, however, writeback mode
provides no ordering guarantees between metadata andtiatefore offering much weaker con-
sistency. For instance, the metadata for a file creation mayolnmitted to the journal before the
file data is written. In the event of a crash, journal recoveilyrestore the file metadata, but its
contents could be filled with arbitrary data. We will not ciaies writeback mode for our purposes

because of its weaker consistency and its lack of write arder

4.3.2 Transaction Details

To reduce the overhead of file system updates, sets of changgsouped together into com-
pound transactions. These transactions exist in sevesaslgghover their lifetimes. Transactions
start in therunning state. All file system data and metadata updates are assbwidh the current
running transaction, and the buffers involved in the charage linked to the in-memory transac-
tion data structure. In ordered mode, data associated gthunning transaction may be written
at any time by the kernel pdflush daemon, which is respongibleleaning dirty buffers. Period-
ically, the running transaction is closed and a new traimsacs started. This may occur due to a
timeout, a synchronization request, or because the traosdmas reached a maximum size.

Next, the closed transaction enters toenmit phase. All of its associated buffers are written

to disk, either to their home locations or to the journal.eifall of the transaction records reside
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safely in the journal, the transaction moves to ¢heckpoint phase, and its data and metadata are
copied from the journal to their permanent home locatiorisa ¢rash occurs before or during
the checkpoint of a committed transaction, it will be cheakped again during the journadcov-

ery phase of mounting the file system. When the checkpoint phaspletes, the transaction is

removed from the journal and its space is reclaimed.

4.3.3 Journal Structure

Tracking the contents of the journal requires several nexnsfistem structures. A journal su-
perblock stores the size of the journal file, pointers to thachand tail of the journal, and the
sequence number of the next expected transaction. Witkinotlrnal, each transaction begins
with a descriptor block that lists the permanent block addresses for eacheo$ubsequent data
or metadata blocks. More than one descriptor block may bdatedepending on the number of
blocks involved in a transaction. Finallycammit block signifies the end of a particular transac-
tion. Both descriptor blocks and commit blocks begin withagie header and a sequence number

to identify their associated transaction.

4.4 Design and Implementation

The goal of resynchronization is to correct any RAID incstencies that result from system
crash or failure. If we can identify the outstanding writguests at the time of the crash, we
can significantly narrow the range of blocks that must beentgd. This will result in faster

resynchronization and improved reliability and availejilOur hope is to recover such a record
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of outstanding writes from the file system journal. To thislewe begin by examining the write

activity generated by each phase of an ext3 transaction.

4.4.1 ext3 Write Analysis

In this section, we examine each of the ext3 transactionadioais in detail. We emphasize the
write requests generated in each phase, and we charadtexipessible disk states resulting from
a crash. Specifically, we classify each write request astiaug a known location, an unknown
location, or a bounded location, based on its record of igtim the journal. Our goal, upon
restarting from a system failure, is to recover a record bbutstanding write requests at the time

of the crash.

Running:

1. Inext3 ordered mode, the pdflush daemon may write dirtgpamdisk while the transaction
is in the running state. If a crash occurs in this state, tfextdd locations will be unknown,

asno record of the ongoing writeswill exist in the journal.
Commit:

1. ext3 writes all un-journaled dirty data blocks assodatéh the transaction to their home
locations, and waits for the 1/0 to complete. This step asabinly to ordered mode, since all
data in data-journaling mode is destined for the journah dfash occurs during this phase,

the locations of any outstanding writes will be unknown.
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2. ext3 writes descriptors, journaled data, and metadatkblto the journal, and waits for the
writes to complete. In ordered mode, only metadata blocKsb&iwritten to the journal,
whereas all blocks are written to the journal in data-jolingamode. If the system fails
during this phase, no specific record of the ongoing writdsexist, but all of the writes

will be bounded within the fixed location journal.

3. ext3 writes the transaction commit block to the journat] avaits for its completion. In the

event of a crash, the outstanding write is again boundedmiitie journal.

Checkpoint:

1. ext3 writes journaled blocks to their home locations aadswfor the I/O to complete. If the
system crashes during this phase, the ongoing writes caatbeniined from the descriptor

blocks in the journal, and hence they affect known locations

2. ext3 updates the journal tail pointer in the superblockigmify completion of the check-
pointed transaction. A crash during this operation invelae outstanding write to the jour-

nal superblock, which resides in a known, fixed location.

Recovery:

1. ext3 scans the journal checking for the expected traiosestquence numbers (based on the

sequence in the journal superblock) and records the lasinitdead transaction.

2. ext3 checkpoints each of the committed transactionsafotlrnal, following the steps spec-

ified above. All write activity occurs to known locations.
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Block Type Data-journaling Mode

superblock known, fixed location
journal bounded, fixed location
home metadata known, journal descriptor
home data | known, journal descriptor

(Y22}

Block Type Ordered Mode
superblock known, fixed location
journal bounded, fixed location
home metadata known, journal descriptors
home data unknown

Table 4.1 Journal Write Records. The table lists the block types written during transaction
processing and how their locations can be determined attexsd.

Table 4.1 summarizes our ability to locate ongoing writéerad crash for the data-journaling
and ordered modes of ext3. In the case of data-journalingentbe locations of any outstanding
writes can be determined (or at least bounded) during cresbvery, be it from the journal de-
scriptor blocks or from the fixed location of the journal filedessuperblock. Thus, the existing ext3
data-journaling mode is quite amenable to assisting wittptioblem of RAID resynchronization.
On the down side, however, data-journaling typically pded the least performance of the ext3
family.

For ext3 ordered mode, on the other hand, data writes to permhdome locations are not
recorded in the journal data structures, and thereforeatdselocated during crash recovery. We

now address this deficiency with a modified ext3 ordered mdedetared mode.
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4.4.2 ext3 Declared Mode

In the previous section we concluded that, if a crash occinitewvriting data directly to its
permanent location, the ext3 ordered mode journal will amnho record of those outstanding
writes. The locations of any RAID level inconsistenciesseiby those writes will remain un-
known upon restart. To overcome this deficiency, we intredacmew variant of ordered mode,
declared mode.

Declared mode differs from ordered mode in one key way: itguizzes that a write record for
each data block resides safely in the journal before thattime is modified. Effectively, the file
system mustleclare itsintent to write to any permanent location before issuing the write.

To keep track of these intentions, we introduce a new joubfadk, thedeclare block. A
set of declare blocks is written to the journal at the begigrof each transaction commit phase.
Collectively, they contain a list of all permanent locagdon which data blocks in the transaction
will be written. Though their construction is similar to thaf descriptor blocks, their purpose is
quite different. Descriptor blocks list the permanent tamas for blocks that appear in the journal,
whereas declare blocks list the locations of blocksdoatot appear in the journal. Like descriptor
and commit blocks, declare blocks begin with a magic headi@aaransaction sequence number.
Declared mode thus adds a single step to the beginning ofotimend phase, which proceeds as

follows:
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Declared Commit:

1. ext3 writes declare blocks to the journal listing eachhaf permanent data locations to be

written as part of the transaction, and it waits for their pbetion.

2. ext3 writes all un-journaled data blocks associated thightransaction to their home loca-

tions, and waits for the 1/0 to complete.

3. ext3 writes descriptors and metadata blocks to the jbuand waits for the writes to com-

plete.

4. ext3 writes the transaction commit block to the journad waits for its completion.

The declare blocks at the beginning of each transactiondote an additional space cost in
the journal. This cost varies with the number of data blo@dchdransaction contains. In the best
case, one declare block will be added for every 506 data b|dck a space overhead of 0.2%.
In the worst case, however, one declare block will be needed fransaction containing only a
single data block. We investigate the performance consegsef these overheads in Section 4.5.

Implementing declared mode in Linux requires two main clegngd-irst, we must guarantee
that no data buffers are written to disk before they have deefared in the journal. To accomplish
this, we refrain from setting the dirty bit on modified pageanmaged by the file system. This
prevents the pdflush daemon from eagerly writing the buffedisk during the running state. The
same mechanism is used for all metadata buffers and for dédfier$in data-journaling mode,

ensuring that they are not written before they are writtethéjournal.



116

Second, we need to track data buffers that require de@astand write their necessary de-
clare blocks at the beginning of each transaction. We staddaling a newdeclare tree to the
in-memory transaction structure, and ensure that all deglanode data buffers are placed on this
tree instead of the existindpta list. At the beginning of the commit phase, we construct a set of
declare blocks for all of the buffers on the declare tree anitevhem to the journal. After the
writes complete, we simply move all of the buffers from theldee tree to the existing transaction
data list. The use of a tree ensures that the writes occur iara gfficient order, sorted by block
address. From this point, the commit phase can continuewittimodification. This implementa-
tion minimizes the changes to the shared commit procedoeepther ext3 modes simply bypass

the empty declare tree.

4.4.3 Software RAID Interface

Initiating resynchronization at the file system level regaia mechanism to repair suspected
inconsistencies after a crash. A viable option for RAID-flags is for the file system to read and
re-write any blocks it has deemed vulnerable. In the caseaminsistent mirrors, either the newly
written data or the old data will be restored to each blockis Hehieves the same results as the
current RAID-1 resynchronization process. Because theDRBlayer imposes no ordering on
mirrored updates, it cannot differentiate new data fromadth, and merely chooses one block
copy to restore consistency.

This read and re-write strategy is unsuitable for RAID-5whweer. When the file system re-

writes a single block, our desired behavior is for the RAIPeiato calculate its parity across
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the entire stripe of data. Instead, the RAID layer could quenfa read-modify-write by reading
the target block and its parity, re-calculating the parégd writing both blocks to disk. This
operation depends on the consistency of the data and p#witiksit reads from disk. If they are
not consistent, it will produce incorrect results, simplplpnging the discrepancy. In general,
then, a new interface is required for the file system to comoat@ possible inconsistencies to the
RAID layer.

We consider two options for the new interface. The first regputhe file system to read each
vulnerable block and then re-write it with an explicitonstruct write request. In this option, the
RAID layer is responsible for reading the remainder of theckls parity group, re-calculating
its parity, and then writing the block and the new parity tekdi We are dissuaded from this
option because it may perform unnecessary writes to cemistripes that could cause further
vulnerabilities in the event of another crash.

Instead, we opt to add an expliegrify read request to the RAID interface. In this case, the
RAID layer reads the requested block along with the restsitipe and checks to make sure
that the parity is consistent. If it is not, the newly caldathparity is written to disk to correct the
problem.

The Linux implementation for the verify read request is eatstraight-forward. When the file
system wishes to perform a verify read request, it marksdhesponding buffer head with a new
RAID synchronize flag. Upon receiving the request, the software RAID-5 lagentifies the flag

and enables an existirggnchronizing bit for the corresponding stripe. This bit is used to perform
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the existing resynchronization process. Its presencessausead of the entire stripe followed by
a parity check, exactly the functionality required by theifyeread request.

Finally, an option is added to the software RAID-5 layer teattle resynchronization after a
crash. This is our most significant modification to the stidgtering of the storage stack. The
RAID module is asked to entrust its functionality to anothemponent for the overall good of
the system. Instead, an apprehensive RAID implementatendelay its own efforts in hopes of
receiving the necessary verify read requests from the fdeegy above. If no such requests arrive,

it could start its own resynchronization to ensure the inte@f its data and parity blocks.

4.4.4 Recovery and Resynchronization

Using ext3 in either data-journaling mode or declared maggrantees an accurate view of
all outstanding write requests at the time of a crash. Upstare we utilize this information
and our verify read interface to perform fast, file systentdgdiresynchronization for the RAID
layer. Because we make use of the file system journal, andibecd ordering constraints between
their operations, we combine this process with journalveop The dual process of file system

recovery and RAID resynchronization proceeds as follows:

Recovery and Resync:

1. ext3 performs verify reads for its superblock and thenatsuperblock, ensuring their con-

sistency in case they were being written during the crash.
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2. ext3 scans the journal checking for the expected traiosestquence numbers (based on the

sequence in the journal superblock) and records the lasinitbead transaction.

3. For the first committed transaction in the journal, ext&grens verify reads for the home
locations listed in its descriptor blocks. This ensuresitibegrity of any blocks undergoing
checkpoint writes at the time of the crash. Only the first $eantion need be examined
because checkpoints must occur in order, and each chet&gdiansaction is removed
from the journal before the next is processed. Note thaethesfy reads must take place
before the writes are replayed below to guarantee the patify-to-date. Adding the explicit

reconstruct write interface mentioned earlier would neg¢fa¢ need for this two step process.

4. ext3issues verify reads beyond the last committed tctiosa(at the head of the journal) for
the length of the maximum transaction size. This correcysrasonsistent blocks as a result

of writing the next transaction to the journal.

5. While reading ahead in the journal, ext3 identifies anyatedlocks and descriptor blocks
for the next uncommitted transaction. If no descriptor kioare found, it performs verify
reads for the permanent addresses listed in each decladle larrecting any data writes
that were outstanding at the time of the crash. Declare Blfickn transactions containing
descriptors can be ignored, as their presence constitvigsnee for the completion of all

data writes to permanent locations.

6. ext3 checkpoints each of the committed transactions enjgbrnal as described in Sec-

tion4.4.1.
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The implementation re-uses much of the existing frameworkie journal recovery process.
Issuing the necessary verify reads means simply adding B Bynchronize flag to the buffers
already used for reading the journal or replaying blockse Vérify reads for locations listed in
descriptor blocks are handled as the replay writes are psece The journal verify reads and
declare block processing for an uncommitted transactierparformed after the final pass of the

journal recovery.

45 Evaluation

In this section, we evaluate the performance of ext3 deglarede and compare it to ordered
mode and data-journaling mode. We hope that declared matieligite overhead despite writing
extra declare blocks for each transaction. After our pertorce evaluation, we examine the ef-
fects of journal-guided resynchronization. We expect thatill greatly reduce resync time and
increase available bandwidth for foreground applicatidrinally, we examine the complexity of

our implementation.

45.1 ext3 Declared Mode

We begin our performance evaluation of ext3 declared motietwio microbenchmarks, ran-
dom write and sequential write. First, we test the perforceanof random writes to an existing
100 MB file. A call tofsync() is used at the end of the experiment to ensure that all dathesa
disk. Figure 4.4 plots the bandwidth achieved by each exi®aas the amount written is increased

along the x-axis. All of our graphs plot the mean of five exental trials.
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Random Write Performance
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Figure 4.4 Random Write Performance. The top graph plots random write performance as the
amount of data written is increased along the x-axis. Dati@qaling mode achieves 11.07 MB/s
when writing 5 MB of data. The bottom graph shows the relgpggormance of declared mode
as compared to ordered mode with sorting.
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We identify two points of interest on the graph. First, dgiarnaling mode underperforms or-
dered mode as the amount written increases. Note thataataaling mode achieves 11.07 MB/s
when writing only 5 MB of data because the random write streatransformed into a large se-
guential write that fits within the journal. As the amount @ita written increases, it outgrows
the size of the journal. Consequently, the performance t&a-pghaurnaling decreases because each
block is written twice, first to the journal, and then to itsnt location. Ordered mode garners
better performance by writing data directly to its permdnecation.

Second, we find that declared mode greatly outperforms edd@ode as the amount written
increases. Tracing the disk activity of ordered mode resbedt part of the data is issued to disk in
sorted order based on walking the dirty page tree. The rategihowever, is issued unsorted by
the commit phase as it attempts to complete all data writethéotransaction. Adding sorting to
the commit phase of ordered mode solves this problem, agmestd by the performance plotted
in the graph. The rest of our performance evaluations aredbas this modified version of ext3
ordered mode with sorted writing during commit.

Finally, the bottom graph in Figure 4.4 shows the slowdowde&tlared mode relative to or-
dered mode (with sorting). Overall, the performance of themodes is extremely close, differing
by no more than 3.2%.

Our next experiment tests sequential write performance texating 100 MB file. Figure 4.5
plots the performance of the three ext3 modes. Again, theuamaritten is increased along the
x-axis, andfsync() is used to ensure that all data reaches disk. Ordered modgeatated mode

greatly outperform data-journaling mode, achieving 223dviB/s compared to just 10 MB/s.
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Sequential Write Performance
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Figure 4.5 Sequential Write Performance. The top graph plots sequential write performance
as the amount of data written is increased along the x-adig. bbttom graph shows the relative
performance of declared mode as compared to ordered mode.
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The bottom graph in Figure 4.5 shows the slowdown of ext3atedl mode as compared to
ext3 ordered mode. Declared mode performs quite well, wiBb of ordered mode for most data
points. Disk traces reveal that the performance loss is dubé fact that declared mode waits
for fsync() to begin writing declare blocks and data. Because of thagrad mode begins writing
data to disk slightly earlier than declared mode. To allevihis delay, we implement an early
declare mode that begins writing declare blocks to the jalusie soon as possible, that is, as soon
as enough data blocks have been modified to fill a declare bldefortunately, this modification
does not result in a performance improvement. The earlyngritf a few declare blocks and data
blocks is offset by the seek activity between the journal tiechome data locations (not shown).

Next, we examine the performance under the Sprite LFS mércitimark [55], which creates,
reads, and then unlinks a specified number of 4 KB files. Figuseplots the number of create
operations completed per second as the number of files isagsed along the x-axis. The bottom
graph shows the slowdown of declared mode relative to odderade. Declared mode performs
well, within 4% of ordered mode for all cases. The perforneaatdeclared mode and ordered
mode are nearly identical for the other phases of the bendhma

The ssh benchmark unpacks, configures, and builds versiob @f the ssh program from a
tarred and compressed distribution file. Figure 4.7 plotspgarformance of each mode during
the three stages of the benchmark. The execution time ofsage is normalized to that of ext3
ordered mode, and the absolute times in seconds are listee @ach bar. Data-journaling mode

is slighter faster than ordered mode for the configure pHasget is 12% slower during build and
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Figure 4.6 Sprite Create Performance. The top graph plots the performance of the create phase
of the Sprite LFS microbenchmark as the number of files irsgealong the x-axis. The bottom
graph shows the slowdown of declared mode when compared évext mode.
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378% slower during unpack. Declared mode is quite compartabbrdered mode, running about
3% faster during unpack and configure, and 0.1% slower fobtiild phase.

Next, we examine ext3 performance on a modified version optismark benchmark that
creates 5000 files across 71 directories, performs a spkcifiember of transactions, and then
deletes all files and directories. Our modification involthesaddition of a call taync() after each
phase of the benchmark to ensure that data is written to dible. unmodified version exhibits
unusually high variances for all three modes of operation.

The execution time for the benchmark is shown in Figure 4.8hashnumber of transactions
increases along the x-axis. Data-journaling mode is exhgsiow, and therefore we concentrate
on the other two modes, for which we identify two interestpajnts. First, for large numbers
of transactions, declared mode compares favorably to edderode, differing by approximately
5% in the worst cases. Second, with a small number of traiosactdeclared mode outperforms
ordered mode by up to 40%. Again, disk traces help to revealdhson. Ordered mode relies on
the sorting provided by the per-file dirty page trees, andefloee its write requests are scattered
across the disk. In declared mode, however, the sort peediaring commit has a global view
of all data being written for the transaction, thus sendimegwrite requests to the device layer in a
more efficient order.

Finally, we examine the performance of a TPC-B-like workltiaat performs a financial trans-
action across three files, adds a history record to a foughdid commits the changes to disk

by callingsync(). The execution time of the benchmark is plotted in Figureas ®$he number of
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Figure 4.7 ssh Benchmark Performance. The graph plots the normalized execution time of the
unpack, configure, and build phases of the ssh benchmarkgsaced to ext3 ordered mode. The
absolute execution times in seconds are listed above each ba
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Figure 4.8 Postmark Performance. The top graph plots the execution time of the postmark
benchmark as the number of transactions increases alomxgakie. The bottom graph shows the
slowdown of declared mode when compared to ordered mode.
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transactions is increased along the x-axis. In this cas#aikel mode consistently underperforms
ext3 ordered mode by approximately 19%, and data-jourgatiade performs slightly worse.

The highly synchronous nature of this benchmark presentsratwase scenario for declared
mode. Each TPC-B transaction results in a very small ext&#etion containing only four data
blocks, a descriptor block, a journaled metadata block,eacdmmit block. The declare block at
the beginning of each transaction adds 14% overhead in thbewuof writes performed during
the benchmark. To compound this problem, the four data svate likely serviced in parallel by
the array of disks, accentuating the penalty for the dedlbreks.

To examine this problem further, we test a modified versidghebenchmark that forces data to
disk less frequently. This has the effect of increasing the af each application level transaction,
or alternatively simulating concurrent transactions tdejpendent data sets. Figure 4.10 shows
the results of running the TPC-B benchmark with 500 transastas the interval between calls to
sync() increases along the x-axis. As the interval increases,dthfenqmance of declared mode and
data-journaling mode quickly converge to that of orderedlenddeclared mode performs within
5% of ordered mode fasync() intervals of five or more transactions.

In conclusion, we find that declared mode routinely outpenf data-journaling mode. Its
performance is quite close to that of ordered mode, within(&%@ sometimes better) for our
random write, sequential write, and file creation microtbenarks. It also performs within 5% of
ordered mode for two macrobenchmarks, ssh and postmarkwdist performance for declared

mode occurs under TPC-B with small application-level teati®ns, but it improves greatly as
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Figure 4.9 TPC-B Performance. The top graph plots the execution time of the TPC-B bench-
mark as the number of transactions increases along thesx-Bixeé bottom graph shows the slow-
down of declared mode as compared to ordered mode.
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Figure 4.10TPC-B with Varied sync() Intervals. The top graph plots the execution time of the
TPC-B benchmark as the interval between calls to sync(eas®s along the x-axis. The bottom
graph shows the slowdown of declared mode as compared tcedrdede.
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the effective transaction size increases. Overall, theselts indicate that declared mode is an

attractive option for enabling journal-guided resynchization.

4.5.2 Journal-guided Resynchronization

In our final set of experiments, we examine the effect of jalnguided resynchronization.
We expect a significant reduction in resync time, thus shortethe window of vulnerability
and improving reliability. In addition, faster resynchization should increase the amount of
bandwidth available to foreground applications after alerghus improving their availability. We
compare journal-guided resynchronization to the Linuxvgafe RAID resync at the default rate
and at two other rates along the availability versus rdiiglgpectrum.

The experimental workload consists of a single foregroundgss performing sequential reads
to a set of large files. The amount of read bandwidth it aclsieveneasured over one second inter-
vals. Approximately 30 seconds into the experiment, thelmacis crashed and rebooted. When
the machine restarts, the RAID resynchronization procegib, and the foreground process re-
activates as well.

Figure 4.11 shows a series of such experiments plottingpttegfound bandwidth on the y-axis
as time progresses on the x-axis. Note that the origin foxtheis coincides with the beginning
of resynchronization, and the duration of the process idethan grey. The top left graph in the
figure shows the results for the default Linux resync limitl600 KB/s per disk, which prefers
availability over reliability. The process takes 254 setoto scan the 1.25 GB of raw disk space

in our RAID-5 array. During that time period, the foregroyrdcess bandwidth drops to 29 MB/s
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Medium 5 MB/s/disk| 29.70+ 9.48 MB/s 50.41s 19.84%
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Figure 4.11 Software RAID Resynchronization. The graphs plot the bandwidth achieved by a
foreground process performing sequential scans of filessmftvare RAID array during a system
crash and the ensuing array resynchronization. The reg@egiod is highlighted in grey and its
duration is listed. In the first three graphs, the bandwidlithcated to resynchronization is varied:
the default of 1000 KB/s per disk, 5 MB/s per disk, and 200 Mpés disk. The final graph
depicts recovery using journal guidance. The table listsatrailability of the foreground service
and the vulnerability of the array compared to the defaglymehronization period of 254 seconds
following restart.
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from the unimpeded rate of 34 MB/s. After resynchronizattompletes, the foreground process
receives the full bandwidth of the array.

Linux allows the resynchronization rate to be adjusted \@gsztl variable. The top right graph
in Figure 4.11 shows the effect of raising the resync limk tdB/s per disk, representing a middle
ground between reliability and availability. In this casesync takes only 50.41 seconds, but the
bandwidth afforded the foreground activity drops to onl$ ®MB/s. In the bottom left graph, the
resync rate is set to 200 MB/s per disk, favoring reliabitityer availability. This has the effect of
reducing the resync time to 38.44 seconds, but the foregrbandwidth drops to just 2.6 MB/s
during that period.

The bottom right graph in the figure demonstrates the useuoh@-guided resynchronization.
Because of its knowledge of write activity before the crasperforms much less work to correct
any array inconsistencies. The process finishes in just€e2dnds, greatly reducing the window
of vulnerability present with the previous approach. WhHesnfbreground service activates, it has
immediate access to the full bandwidth of the array, inénegiss availability.

The results of the experiments are summarized in the taliteggure 4.11. Each metric is cal-
culated over the 254 second period following the restarhefmhachine in order to compare to the
default Linux resynchronization. The 5 MB/s and 200 MB/g/resprocesses sacrifice availability
(as seen in the foreground bandwidth variability) to imgrdive reliability of the array, reducing
the vulnerability windows to 19.84% and 15.13% of the ddfaelspectively. The journal-guided
resync process, on the other hand, improves both the aWiylaih the foreground process and the

reliability of the array, reducing its vulnerability to ju8.08% of the default case.
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Orig. | Mod. | New | Percent
Module | Lines | Lines | Lines | Change
Software

RAID 3475 2 16| 0.52%
ext3 8621 22 47| 0.80%
Journaling| 3472 43 265| 8.87%
Total 15568 67 328| 2.53%

Table 4.2 Complexity of Linux Modifications.  The table lists the lines of code (counting
semicolons and braces) in the original Linux 2.6.11 sountethe number that were modified or
added to each of the software RAID, ext3 file system, and plurg modules.

It is important to note here that the execution time of thendwased approach scales linearly
with the raw size of the array. Journal-guided resynchiaion, on the other hand, is dependent
only on the size of the journal, and therefore we expect ibtoglete in a matter of seconds even

for very large arrays.

4.5.3 Complexity

Table 4.2 lists the lines of code, counted by the number ofic@dons and braces, that were
modified or added to the Linux software RAID, ext3 file systamqg journaling modules. Very few
modifications were needed to add the verify read interfacbdsoftware RAID module because
the core functionality already existed and merely needdaktactivated for the requested stripe.
The ext3 changes involved hiding dirty buffers for declaneode and using verify reads during
recovery. The majority of the changes occurred in the jdurganodule for writing declare blocks

in the commit phase and performing careful resynchroromaduring recovery.
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As a point of comparison, the experimental version of LinMR-1 bitmap logging consists
of approximately 1200 lines of code, a 38% increase over RAHone. Most of our changes are
to the journaling module, increasing its size by about 9%er@N, our modifications consist of
395 lines of code, a 2.5% change across the three modulese Bhservations support our claim
that leveraging functionality across collaborating layesn reduce the complexity of the software

system.

4.6 Conclusions

We have examined the ability of a journaling file system tovpte support for faster RAID
resynchronization. In order to obtain a record of the outditag writes at the time of a crash, we
introduce ext3 declared mode. This new mode guarantee<sctardats intentions in the journal
before writing data to disk. Despite this extra write adjivileclared mode performs within 5% of
its predecessor.

In order to communicate this information to the RAID laydre tfile system utilizes a new
verify read request. This request instructs the RAID lageetad the block and repair its redundant
information, if necessary. Combining these features alaw to implement fast, journal-guided
resynchronization. This process improves both RAID rdliigtand availability by hastening the
recovery process after a crash.

Our general approach advocates a system-level view fotaj@ng the storage stack as a set of
collaborating layers. Using the file system journal to inyarthe RAID system leverages existing

functionality, maintains performance, and avoids dupligacomplexity in multiple components.
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Chapter 5

Related Work

5.1 Gray-box Applications

Using gray-box techniques [2] to automatically uncover ie&avior of underlying software
and hardware layers has been explored in a number of diffel@nains. Some of the earliest
work in this area targeted the memory subsystem; for exgrbplmeasuring the time for reads of
different amounts and with different strides, Saavedra@mith reveal many interesting aspects
of the memory hierarchy, including details about both cacired TLBs [58]. Similar techniques
have been applied to identify aspects of a TCP protocol $8ld5], to determine processor cycle
time [72], CPU scheduling policies [50], and buffer cachelaeement policies [11].

The work most related to Shear is that which has targetedactaizing a single disk within
the storage system. For example, in [90], Worthingtbial. identify various characteristics of
disks, such as the mapping of logical block numbers to phay$ications, the costs of low-level
operations, the size of the prefetch window, the prefetglalgorithm, and the caching policy.

Later, Schindleet al. and Talagalaet al. build similar but more portable tools to achieve similar
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ends [62, 76]. We have shown how Shear can be used in corganiih such low-level tools to
discover properties of single disks inside arrays.

Semantically-Smart Disk Systems [70] take the oppositep@nt of Shear, looking up at the
interface from a storage system and inferring informatibawd the file system. This gives the
storage system an understanding of how its blocks relatdet@yfstem structures like files and
directories, as well as semantic understanding of the tipasaoccurring in the file system. This

technique has been used to improve reliability [69], ar@shing [7], and security [68].

5.2 Storage Performance

There have been many studies of file system workloads andrpeahce [20, 44, 53], focusing
on metrics such as file access patterns, lifetimes, andragelfffiects. There have also been several
studies of RAID performance, such as building an analytidehof a RAID [35] and determining
the best stripe size for RAID-0 [14] and RAID-5 [12]. This easch has largely been done in
isolation, however, studying file systems on single disk®RAiD systems under parameterized
workloads.

Benchmarks of storage systems have usually focused on nreagerformance for a given
workload [9, 31, 43] rather than uncovering underlying gndigs, as is done by Shear. One inter-
esting synthetic benchmark adapts its behavior to the ndgrstorage system [15]; this bench-
mark examines sensitivity to parameters such as the sizegogsts, the read to write ratio, and

the amount of concurrency.
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Livny et al. [37] studied the choice of clustered versus declustereddyleut for synthetic
database workloads on multiple disk storage systems. Theydfthat declustered layout (strip-
ing files across disks) was preferable in most situationstdygarallelism, but clustered layout
(allocating a file to a single disk) was preferable underamif access patterns and high utiliza-
tion. We hope our work on Shear will promote research effrteeevaluate these multiple disk
management decisions in the context of modern file systeisisddves, and workloads.

The HP AutoRAID [88] storage system uses a hierarchy of RAN&2Is beneath a logical block
interface. Frequently written data blocks are stored inm@ared region to improve performance,
while infrequently written blocks are stored in RAID-5 tahease capacity. Data blocks are also
migrated automatically between levels based on changesésa pattern. LikellFS, AutoRAID
supports the addition of disk drives, and it uses log-stmact writes to avoid the RAID-5 small
write problem. Similar migration techniques could be supgbin the ILFS environment (akin
to flexible redundancy), with the addition of file-level settia knowledge for tracking access
patterns, and greater freedom of block migration amongsdisk

Stodolskyet al. [73] examine parity logging in the RAID layer to improve therformance
of small writes. Instead of writing new parity blocks dirgcto disk, they store a log of parity
update images which are batched and written to disk in o Isequential access. Similar to
NVRAM logging for resynchronization, the authors requine tuse of a fault tolerant buffer to
store their parity update log, both for reliability and perhance. These efforts to avoid small
random writes support our argument that maintaining peréorce with RAID level logging is a

complex undertaking.



140

The AFRAID [61] storage system overcomes the RAID-5 smaitevpenalty be delaying
the update of parity information (similar to the delayed nariing implemented in-LFS). This
has the effect of increasing the window of vulnerability dratling reliability for improvements
in performance. By adjusting the parity update policy, thstem can offer a smooth transition
between these qualities, and the authors find that a largerpemce improvement can be gained
for a small reduction in reliability. Again, this system neskuse of an NVRAM bitmap to record

the location of stripes whose parities must be updated.

5.3 Volume Managers and Software RAID

Volume managers have long been used to ease the managenstatagfe across multiple
devices [78]. The ERAID layer is a new type of volume manager that exposes mdoenration
to file systems (specifically, on-line performance and failinformation); further, ERAID is
built with the presupposition that a single mounted file eyswill utilize multiple volumes for
its data, whereas most volume managers assume that thepaésta-one mapping between each
mounted file system and a volume. One volume manager thahitasto ExRAID is the Pool
Driver, a volume manager for SANs that has a “sub-pool” cpheghich may be used by a file
system to group related data [77]. In that work, the GFS filgesy uses sub-pools to separate
journaled meta-data and normal user data.

Brown and Patterson [10] examine three different softwad¢CRsystems in their work on
availability benchmarks. They find that the Linux, Solaasd Windows implementations offer

differing policies during reconstruction, the process edanerating data and parity after a disk
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failure. Solaris and Windows both favor reliability, whitee Linux policy favors availability.
Unlike our work on journal-guided resynchronization, thethers do not focus on improving the
reconstruction processes, but instead on identifyingdftevare RAID characteristics via a general
benchmarking framework.

The Veritas Volume Manager [86] provides two facilities tideess faster resynchronization.
A dirty region log can be used to speed RAID-1 resynchroionadby examining only those re-
gions that were active before a crash. Because the log e=gextra writes, however, the author
warns that coarse-grained regions may be needed to maatdeg@ptable write performance. The
Volume Manager also supports RAID-5 logging, but non-vt#danemory or a solid state disk
is recommended to support the extra log writes. In contmastext3 declared mode offers fine-
grained journal-guided resynchronization with little foemance degradation and without the need

for additional hardware.

5.4 Exploiting Storage Details

Part of our motivation for informing the file systeml(FS) of the nature of the storage system
is reminiscent of work on the Berkeley Fast File System (HES). FFS is an early demonstration
of the benefits of having a low-level understanding of digihtelogy; by co-locating correlated
inodes and data blocks, performance was improved, esjyeagacompared to the old Unix file
system. Our work has the same goal, but with multi-disk gf@rsystems in mind; however, we

believe that the file system should base its decisions upiabhgobtained information about the
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characteristics of storage, instead of relying upon assiompwhich may or may not hold across
time (e.g. that seek costs dominate rotational costs).

Another example of the benefits of low-level knowledge okdibaracteristics is found in
Schindleret al.’s recent work on track-aligned extents [63]. Therein, thtéhars explore the range
of performance improvements possible when allocating aeeéssing data on disk-track bound-
aries, thereby avoiding rotational latency and tracksirgsoverheads in a single-disk setting. In
contrast, ExRAID exposes disk boundaries of a RAID to file systems abave ret such detailed
lower-level information; in the future, it would be inteteg to investigate the benefits of having
lower-level knowledge of the specifics of a RAID-based sjeraystem.

Network Appliance pioneered some of the ideas we discussihaheir work on file server
appliances [27]. In the development of WAFL, a write-anyvehile layout technique, Hitet al.
hint at how some information normally hidden inside of thelRAayer can be taken advantage of
by a file system. For example, they ensure that writes to th&RWPayer occur in full-stripe-sized
units, and thus avoid the small-write penalty that normadgnifests itself on RAID-4 and RAID-5
systems. We take this a step further by formalizing theRRAID layer, showing that a traditional
file system can easily be modified to take advantage of thenre&ton provided by i RAID, and

demonstrating that a broader range of optimizations aaeatble within such a framework.

5.5 Expanding Storage Interfaces

Roselliet al. discuss the file system/storage system gap in their talk @system fingerprint-

ing [54]. Their solution is to enrich the interface betweda fiystems and storage systems, by
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giving the storage system more information about which kdaare related, and which blocks are
likely to be accessed again in the near future. Thus, th@irageh gives the storage system some
of the information that the file system might have collectag presumes that the storage layer
can make good use of such information. One potential proll@msuch an approach is that it
may require agreement on a particular set of interfaces groaperating storage vendors and
file-system implementors.

Schindleret al. [64] augment the RAID interface to provide information abimglividual disks.
Their Atropos volume manager exposes disk boundary ank indarmation to provide efficient
semi-sequential access to two-dimensional data striectueh as database tables. The authors
have since extended this work to higher dimensions [46]dasethe observation that times for
short seeks (tens of tracks) are roughly equivalent to theyd# seeking a single track during
sequential access. Shear enables the use of such low+eehation in multiple disk systems
without the need for an enhanced interface.

Exposing each disk of a storage system to the file system ixt@mson of the arguments
made by Engler and Kaashoek [22]. Therein, the authors dngiisoftware abstractions made by
operating systems are fundamentally problematic, as thepféen too high-level and thus may
limit power and functionality. The authors advocate a sohubf exposing all hardware features to
the user. Missing from this argument for minimalism is the@tvation that hardware itself often
provides abstractions that users (and operating systeangpt change. Apropos to data storage,
the abstraction put forth by RAID systems is a particulaityhklevel one, which our informing

interfaces break by revealing details that are often hidd®n the file system.



144

Some distributed file systems such as Zebra [26] and XFS [hhgaeach disk of the system
individually, in a manner similar toLFS. However, both of these systems use traditional storage
management techniques (such as RAID-5 striping) and d@ketadvantage of the many potential
possibilities that the ERAID layer makes available. In the future, we hope to extemdesof our
ideas into the distributed arena, and thus allow for a maecticomparison.

More recently, the NASD object interface has been introdusea higher-level data repository
for SAN-based distributed file systems [23]. This interfatiews more advanced functionality
to be placed into the storage layer, whereas our informiteyfaces are designed to allow more
functionality to be placed within the file system. Earliernrwat HP on DataMesh also proposes
more sophisticated interfaces for network-attached geof@7].

Our informed approach is also similar to a large body of warkarallel file systems [29, 42].
Most parallel file systems expose disk parallelism, but ek the application itself, and not the
file system, to manage it. Better control over redundancy parallel file system has also been
proposed [18]. In that work, the computation of parity is patler user control, and in doing so,
allows the user to avoid the well-known performance per@ifgAID-4 and RAID-5 under small

writes.
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Chapter 6

Conclusions

In this dissertation, we examined the storage stack witha gbovercoming the informa-
tion gap between file systems and storage systems stemnoimgtifre obscuring interface they
share. We believe the key to overcoming this obstacle li@sformation, and hence relies on the
development of informing interfaces that enable verticardination and collaboration between

layers.

6.1 Summary and Observations

In Chapter 2, we presented Shear, a system that automatieddicts the important parameters
of a RAID, thus transforming the obscuring logical blockeriace into our basic informing inter-
face that reveals the internal structure of the array. Tlys k@ Shear are its use of randomness to
extract steady-state performance and its use of statis@aniques to deliver automated detection.
We verified that Shear works as desired through a series olaiions over a variety of layout and
redundancy schemes. We also showed how Shear could be usegrtye the management and

performance of storage arrays through its acquired infaona
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Overall, we found that Shear is an accurate and reliablesy&ir uncovering RAID proper-
ties. The technique of extracting the lowest performanomfthe system was invaluable, though
doing so meant carefully avoiding the features designeadoease performance. We imagine
this technique would prove useful in characterizing otlystems, as well. In general, we believe
the gray-box approach is a realistic method for overcontiregimitations in current systems and
demonstrating the merits of proposals for future systems.

In Chapter 3, we introduced our second informing interf&&eRAID, which built upon our
basic interface to provide file system appropriate inforomatibout an array. We showed how
I-.LFS uses the information provided byRAID to bridge the gap between file systems and stor-
age systems. We explored the implementation of on-lineresipa, dynamic parallelism, flexible
redundancy, and lazy mirroring. All were implemented in ktreely straight-forward manner
within the file system, increasing system manageabilityfopmance, and functionality, while
maintaining a reasonable level of overall system compjexit

Some of these aspects ofFS would be difficult to build in the traditional storage cta We
believe this highlights our argument for vertical desigd #me importance of informing interfaces
that allow functionality to be placed in the correct layettloé system. However, determining the
proper division of labor across these layers may depend thgometrics of importance, the prop-
erties of individual components, and the system environmeafining interfaces that generalize
to such diverse requirements will be a challenge for storagearch in the future.

In Chapter 4, we took a collaborative approach in examiniggability of a journaling file

system to provide support for faster software RAID resyonimation. We introduced both ext3



147

declared mode and the software RAID verify read interfaee,cdombination of which allows us
to implement fast, journal-guided resynchronization. sTpiiocess improves both software RAID
reliability and availability by hastening the recovery pess after a crash, all while maintaining
good performance in the common case.

Moving forward, we believe such collaborative designs wibve to be the most powerful
for envisioning the storage stack of the future. Such desguld facilitate a system in which
layers negotiate to define their responsibilities and abicoordinate their operations to achieve

the overall goals of the system.

6.2 Future Work

6.2.1 Shear

The Shear detection process may take a long time dependitige@ize and particular layout
of the array. To improve the runtime, it may be possible tofaser requests during the individual
microbenchmarks. The current algorithms also take a somemdive approach in exhaustively
searching the parameter space. More refined algorithmstinégable to reduce the search space
based on initial findings. For example, after determininguadedate chunk size for the first disk,
perhaps only the points corresponding to that estimateddmeichecked for the remaining disks.

The requirement of homogeneous disks limits the scope tésyssthat Shear can successfully

examine. The key to overcoming this limitation lies in detaring the pattern size over a set of
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heterogeneous disks. We believe the same algorithmic apipi@an be utilized, but the trials con-
ducted may need to be deterministic, and the analysis phageaguire modifications to establish
the performance differences of the array components.

Shear also requires that it is the only process accessiraytag and this prohibits the testing
of storage systems that cannot be taken offline. In the fuitureay be possible to position Shear to
augment an existing workload to induce the desired microfsearks in an online system, though

doing so without severe detriment to foreground perforreamiti be challenging.

6.2.2 Informed LFS

The current implementation ofUFS flexible redundancy supports only striped and mirrored
layouts. It would be interesting to add parity-based redumagt (similar to RAID-5) to allow for
another choice in capacity and performance, and to exatméiaterplay of various schemes in the
same file system. Prabhakarmtral. proposed similar parity based redundancy schemes foresingl
disks in their work on IRON file systems [49]. Similar to the RKID storage system [61];LFS
could also migrate blocks between different redundancgmses based on file access pattern.

We also imagine that many optimizations are possible wighlRS cleaner. For example, as
data is laid out on disk according to current performanceatiaristics and access patterns, it
may not meet the needs of subsequent potentially non-stgluerads from other applications.
Similarly, as new disks are added, the cleaner may want towrarder to lay out older data across

the new disks. Thus, the cleaner could be used to re-orgdaitzeacross drives for better read



149

performance in the presence of heterogeneity and new dgiragar to the work of Neefet al.,

but generalized to operate in a heterogeneous multiplesaigiag [39].

6.2.3 Journal-guided Resynchronization

Our current analysis for journal-guided resynchronizatslimited to the ext3 file system for
Linux. We expect the same design is applicable to other plimg file systems (such as Reis-
erFS [51], JFS [8], and NTFS [71]), but it would be beneficalevaluate its complexity and
performance impact in these environments. It would alsomteresting to extend our system-wide
view to consider opportunities for collaboration with thggp#cation layer. For example, database
systems that manage their own storage typically use a fologging to recover from failure, and
therefore they could replace the file system in the role of[RAdIviser.

A collaborative approach between the file system and RAIDcalso be used to implement
intelligent reconstruction. When a disk fails in an array, the failed disk blocks aredgfly recon-
structed onto a spare disk using the redundant informatared on its peers. With direction from
the file system, however, the RAID layer could reconstruty bve data from the failed disk rather
than blindly regenerating the entire disk, substantialydring the time to perform the operation.
Another benefit of this arrangement is that the file systenidcgive preference to certain files
over others, reconstructing higher-priority files first ahds increasing the availability of those

files under failure.
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6.2.4 RAID-aware File Systems

A natural extension of this dissertation research is anaapbn of designing RAID-aware
file systems based on the information obtained by Shear.oAgh ILFS explored new file sys-
tem functionality, there remain many design questions &sidbfile system responsibilities in the
presence of multiple disks and different RAID levels.

For instance, existing operating system disk scheduleeg storage arrays as a single large
disk, choosing requests based on logical block distanceedlity, those logical blocks are dis-
tributed across independent disks, a fact which could biggd by an aware scheduler to produce
a more efficient ordering.

In the realm of file layout, existing file systems still placgalbased on the single disk cylinder
group model used by FFS [40]. A RAID-aware file system, howeaild make a variety of layout
decisions based on the metric of importance. If performas@aramount, the file system could
explicitly distribute a file across disks to guarantee edffitiuse of the parallelism in the array. If
the goal is reduced power consumption, the file system cdateb file within an individual disk

to reduce the number of active spindles required to accessiitent.

6.3 The End

Storage systems, and computer systems in general, are ingcaomre complex, yet their
layers of interacting components remain concealed by atissimplicity. Our general approach
advocates a system-wide view for developing the storagd tased on greater information, en-

abling vertical integration across a set of collaboratenggels. Though we have examined a few
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points in the design space of storage stacks, other arraergerare possible and perhaps prefer-
able; we hope that they will be explored. Whatever the caictuof research on the division of
labor between file systems and storage systems, we belieyedper alignment should be arrived
upon through design, implementation, and experimentatather than via historical artifact. Each
of these layers may implement its own abstractions, présoocsechanisms, and policies, but it is

their interaction that will define the properties of the syst
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