
INFORMATION AND COLLABORATION IN THE STORAGE STACK

by

Timothy Edward Denehy

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Science)

at the

UNIVERSITY OF WISCONSIN–MADISON

2006

c© Copyright by Timothy Edward Denehy 2006

All Rights Reserved

i

TABLE OF CONTENTS

Page

LIST OF TABLES . iv

LIST OF FIGURES . v

ABSTRACT . viii

1 Introduction . 1

1.1 Approach . 4
1.2 Deconstructing Storage Arrays 5
1.3 Bridging the Information Gap 6
1.4 Collaborating Layers 7
1.5 Contributions .. . 8
1.6 Organization .. . 9

2 Deconstructing Storage Arrays with Shear . 10

2.1 Shear . 13
2.1.1 Assumptions . 14
2.1.2 Techniques . 16
2.1.3 Simulation Framework .. 18
2.1.4 Algorithm . 19
2.1.5 Redundancy Simulations .. . 32
2.1.6 Overhead . 43

2.2 Real Platforms .. 44
2.3 Shear Applications 50

2.3.1 Shear Management . 50
2.3.2 Shear Disk Characterization 53
2.3.3 Shear Performance .57

2.4 Discussion .. 57

ii

Page

2.5 Conclusions .. 59

3 Bridging the Information Gap:
Exposed RAID and Informed LFS . 61

3.1 Overview . 63
3.2 Exposed RAID . 64

3.2.1 A Segmented Address Space .. 65
3.2.2 Dynamic Information .. 67
3.2.3 Implementation .68

3.3 Informed LFS .69
3.3.1 On-Line Expansion and Contraction 70
3.3.2 Dynamic Parallelism .. 71
3.3.3 Flexible Redundancy .. 74
3.3.4 Lazy Mirroring . 78

3.4 Evaluation .. 80
3.4.1 Baseline Performance .. 80
3.4.2 On-line Expansion .82
3.4.3 Dynamic Parallelism .. 84
3.4.4 Flexible Redundancy .. 88
3.4.5 Lazy Mirroring . 88

3.5 Discussion .. 91
3.6 Conclusions .. 92

4 Collaborating Layers: Journal-guided Resynchronization 95

4.1 Introduction .. . 95
4.2 The Consistent Update Problem 98

4.2.1 Introduction .98
4.2.2 Failure Models . 99
4.2.3 Measuring Vulnerability 101
4.2.4 Solutions . 104

4.3 ext3 Background .. 107
4.3.1 Modes . 108
4.3.2 Transaction Details .. . 109
4.3.3 Journal Structure .. 110

4.4 Design and Implementation 110
4.4.1 ext3 Write Analysis .. 111
4.4.2 ext3 Declared Mode . 114
4.4.3 Software RAID Interface .. . 116

iii

Page

4.4.4 Recovery and Resynchronization 118
4.5 Evaluation .. 120

4.5.1 ext3 Declared Mode . 120
4.5.2 Journal-guided Resynchronization 132
4.5.3 Complexity . 135

4.6 Conclusions .. 136

5 Related Work . 137

5.1 Gray-box Applications 137
5.2 Storage Performance 138
5.3 Volume Managers and Software RAID 140
5.4 Exploiting Storage Details 141
5.5 Expanding Storage Interfaces 142

6 Conclusions . 145

6.1 Summary and Observations 145
6.2 Future Work .147

6.2.1 Shear . 147
6.2.2 Informed LFS . 148
6.2.3 Journal-guided Resynchronization 149
6.2.4 RAID-aware File Systems .. 150

6.3 The End . 150

LIST OF REFERENCES . 152

iv

LIST OF TABLES

Table Page

4.1 Journal Write Records. 113

4.2 Complexity of Linux Modifications. 135

v

LIST OF FIGURES

Figure Page

2.1 Examples and Terminology. 15

2.2 Pattern Size Detection Algorithm. 20

2.3 Pattern Size Detection: Sample Execution. 21

2.4 Pattern Size Detection: Simulations. 22

2.5 Chunk Size Detection Algorithm. 24

2.6 Chunk Size Detection: Sample Execution. 25

2.7 Chunk Size Detection: Simulations. 26

2.8 Layout Detection Algorithm. 27

2.9 Read Layout Detection: Simulations. 28

2.10 Pattern Size and Chunk Size Detection: RAID-0. 33

2.11 Pattern Size Detection: RAID-5. 35

2.12 Read and Write Layout Detection: RAID-5. 36

2.13 Pattern Size, Chunk Size, and Layout Detection: RAID-4. 37

2.14 Pattern Size, Chunk Size, and Layout Detection: P+Q. 39

2.15 Pattern Size, Chunk Size, and Layout Detection: RAID-1. 41

2.16 Pattern Size, Chunk Size, and Layout Detection: Chained Declustering. 42

vi

Figure Page

2.17 Shear Overhead. 45

2.18 Sensitivity to Region Size. 47

2.19 Avoiding the Write Buffer. 48

2.20 Redundancy Detection. 49

2.21 Detecting Misconfigured Layouts. 51

2.22 Detecting Heterogeneity. 52

2.23 Detecting Failure. 54

2.24 Skippy. .. . 56

2.25 Benefits of Stripe Alignment. 58

3.1 An Example E×RAID Configuration. 66

3.2 The Crossed Pointer Problem. 76

3.3 Baseline Performance Comparison. 81

3.4 Storage Expansion. 83

3.5 Static Storage Heterogeneity. 85

3.6 Dynamic Storage Heterogeneity. 86

3.7 Storage Failure. 89

3.8 Per-file Redundancy. 90

3.9 Lazy Mirroring. 93

4.1 Failure Scenarios. 100

4.2 Software RAID Vulnerability. 103

4.3 Software RAID Resynchronization Time. 106

4.4 Random Write Performance. 121

vii

Figure Page

4.5 Sequential Write Performance. 123

4.6 Sprite Create Performance. 125

4.7 ssh Benchmark Performance. 127

4.8 Postmark Performance. 128

4.9 TPC-B Performance. 130

4.10 TPC-B with Varied sync() Intervals. 131

4.11 Software RAID Resynchronization. 133

viii

ABSTRACT

Though there have been substantial innovations in both file systems and storage systems over

the past twenty-five years, the interface with which they communicate has remained simple and

abstract. The storage stack that exists today was not developed in a coherent manner; rather, it

evolved over time due to the flexible nature of this abstraction. The result is aninformation gap:

the file system no longer understands the nature of its underlying storage, and the storage system

cannot comprehend the semantics of the blocks it stores. In the end, thisobscuring interface has

lead to the development of independent, locally optimized,complex layers whose interactions may

lead to poor performance and limited functionality.

Therefore, we believe it is time to re-examine the structureof the storage stack and the division

of labor between the file system and storage system layers. Specifically, we advocate designs

that enable vertical coordination and evencollaboration between layers in order to achieve the

goals of the entire storage stack. Furthermore, we believe the key to achieving these goals lies in

information, and therefore depends on the development ofinforming interfaces that facilitate such

vertical designs.

ix

In this dissertation, we take three steps in this direction.First, we develop a system that auto-

matically discovers the properties of a RAID storage systemusing only the logical block abstrac-

tion, transforming the obscuring interface into a basic informing interface. Second, we examine

the applicability of such storage level information by designing an improved informing interface

and a file system that explicitly manages the multiple disks of a storage array. Third, we develop a

vertical design for collaboration between journaling file systems and RAID systems that improves

the reliability and availability of the overall storage system.

1

Chapter 1

Introduction

A chasm exists in the world of file storage and management. Though a hierarchical file system

of directories and byte-accessible files has been the norm for almost 30 years [52], the internals of

both file systems and underlying storage systems have evolved substantially.

In file systems, many approaches have been developed to improve performance, including read-

optimized inode and file placement [40], logging of writes [55], improved meta-data update meth-

ods [67], more scalable internal data structures [75], and off-line reorganization strategies [39].

However, almost all such techniques have been developed under the assumption that the file sys-

tem will be run upon a single, traditional disk.

Storage systems have also received much attention from the research community. One of the

most notable innovations is the disk array, or RAID [47]. These storage systems contain multiple

disks and internally manage both parallelism and redundancy to optimize for performance, capac-

ity, or even both [88]. Today, RAID disk arrays have become the dominant form of storage for

high-end applications. These modern storage systems are increasingly complex. For example, an

enterprise storage array can contain tens of processors andhundreds of disks [21], and a given

array can be configured in many different ways.

2

While the changes in both file systems and storage systems have been substantial, they have

also been separate, and the result is aninformation gap: the file system does not understand the

true nature of the storage system it runs upon, and the storage system cannot comprehend the

semantic relations between the blocks it stores. In addition, the layers are unaware of the particular

responsibilities, functionalities, and optimizations being performed by the other. This gap arose

from a historical source: the boundary between software andhardware and the requisite interface

for communicating across it.

The predominant storage interface dates to the introduction of the Small Computer System

Interface (SCSI) standard in 1986. SCSI defined a simple logical block address (LBA) interface for

disks instead of the device level interfaces that were common at the time. This new interface was

independent of the geometry of the device, allowing companies to develop interoperable systems

and peripherals. This abstract view of storage enabled muchof the innovation above and below

the SCSI interface. New file systems and storage devices could be developed independently and

yet used together because they shared a common logical interface.

In fact, the development of RAID systems in particular was enabled by the flexibility of this

abstract interface. Regardless of their internal complexity, RAID arrays expose the same simple

interface as a single disk: a linear array of blocks accessible via read and write operations. Storage

vendors took advantage of the freedom to innovate behind this interface, and thus developed high-

performance, high-capacity systems that appeared as a single, large, and fast disk to the file system.

No software modifications were required of the host operating system, and file systems continued

3

to operate correctly, in spite of the fact that they were often optimized for a single-disk system. In

this case, ignorance was bliss; the arrangement was simple and worked well.

We term this arrangement of a file system layer on top of a storage layer astorage stack, akin

to networking protocol stacks that are prominent in communication networks [17]. There are some

similarities between the two: layering is known to simplifysystem design, though potentially at the

cost of performance [83]. However, a crucial difference exists: the layers that comprise network

protocol stacks are derived by design, with the architects carefully deciding where each specific

element should be placed.

The storage stack, on the other hand, has not been developed in a single, coherent manner.

Quite to the contrary, the storage stack that exists today has evolved over time based on the ex-

istence of a flexible interface and the objectives of the storage industry. As more and more com-

plexity is introduced at each layer, the potential for detrimental and difficult-to-predict interactions

increases. These may manifest not only in poor performance,but also in duplication and imple-

mentation complexity, competition between layers, and limitations on functionality.

For example, performance may suffer if the model that the filesystem has of the storage layer

is not accurate; thus, layout optimizations that work well on a single, traditional disk may not

be appropriate when the logical-block to physical-block mapping is unknown. In fact, the layout

decisions made by the file system level may compete with (and be overruled by) those made in an

advanced storage system [36, 88].

Feature duplication is also a potential pitfall. For example, a log-structured file system [55] or

a journaling file system [82] could be layered on top of a disk array that also performs logging [73,

4

88], degrading performance, duplicating work, and increasing system complexity unnecessarily.

Similarly, a large block cache at the storage level may be rendered ineffective if it largely duplicates

the contents of the file system buffer cache [89].

Finally, functionality may be limited, as certain pieces ofinformation only live at one layer of

the system. For example, the storage system does not know what blocks constitute a file and thus

it cannot perform per-file operations. Similarly, the storage system does not know that a particular

block no longer contains live data after a file deletion, and thus it cannot optimize operations that

may ignore dead blocks (e.g. RAID reconstruction).

1.1 Approach

In the end, the abstract, block-based,obscuring interface to storage has lead to the development

of independently designed and optimized layers that are oblivious to their role in the overall storage

stack. Thus, we believe it is time to re-examine the divisionof labor between the file system

and storage system layers, in an attempt to understand the best way to structure the storage stack.

Specifically, we advocate designs that enable vertical coordination and evencollaboration between

layers in order to achieve the goals of the entire storage stack. Furthermore, we believe the key to

achieving these goals lies in information, and therefore depends on the development ofinforming

interfaces that facilitate such vertical designs.

5

1.2 Deconstructing Storage Arrays

We begin by proposing a basic informing interface that simply exports the configuration pa-

rameters of a RAID, including the number of disks, chunk size, level of redundancy, and layout

scheme. This interface gives the file system or other client enough information to determine the

mapping of blocks from the logical address space to individual disks. It also conveys the amount

of reliability that is implemented by the array and the particular scheme (e.g. RAID-1 or RAID-5).

This approach is simple in that it merely reports information that already exists in the array,

rather than requiring implementation of new mechanisms, analogous to the Infokernel [3] approach

for operating systems interfaces. Therefore, the onus to make use of this information is placed on

the file system. For example, the file system may alter its policies to make use of the individual

disks, or it might modify its access pattern to avoid deficiencies in the RAID scheme.

The most efficient implementation of this informing interface would be for storage arrays to

support a query that returns their configuration parameters. However, it may be difficult to convince

storage vendors to add this interface in a standard way, as even small extensions require industry

deliberation and consensus. Thus, we take a pragmatic approach and treat the RAID as a gray

box [2], inferring its characteristics and configuration using only its existing logical block interface.

To do so, we introduce Shear, a user-level software system that characterizes RAID storage

arrays. Shear employs a set of controlled workloads combined with statistical techniques to au-

tomatically determine the RAID configuration parameters that constitute our basic informing in-

terface (the number of disks, chunk size, level of redundancy, and layout scheme). We illustrate

the correctness of Shear by running it upon numerous simulated configurations, and then verify

6

its real-world applicability by running Shear on both software-based and hardware-based RAID

systems.

We also demonstrate the utility of Shear and the basic informing interface through three case

studies. First, we show how Shear can be used in a storage management environment to verify

RAID construction and detect failures. Second, we demonstrate how the interface can be used to

extract detailed characteristics about the individual disks within an array. Third, we show how an

operating system can use the informing interface to automatically tune its storage subsystems to

specific RAID configurations.

1.3 Bridging the Information Gap

Although our basic informing interface has shown to be useful, it provides details at a rather

low level. File systems that want to take advantage of the array configuration must be imbued with

particular knowledge of each possible RAID scheme and its unique performance and reliability

characteristics. Given the number of RAID variants that exist today, and the potential growth of

new schemes in the future, designing a file system that can account for such a large population

may prove difficult.

To overcome this limitation, we introduce a second informing interface, Exposed RAID, that

encapsulates array information in abstractions that are meaningful to file system objectives. Specif-

ically, the E×RAID address space is divided into a set of regions, each of which is mapped to a

single disk or a set of disks. Hence, these regions representthe performance and failure boundaries

7

within the disk array. In addition to this static information, E×RAID provides dynamic informa-

tion about the performance and reliability of each region that may be exploited by the file system

to manage its use of the storage.

We make use of the E×RAID informing interface to evaluate a new division of laborbe-

tween the storage system and the file system. In particular, we design an Informed Log-Structured

File System (I·LFS) that explicitly manages and takes advantage of the performance and failure

boundaries present in a multiple disk storage system. Experiments reveal that our prototype imple-

mentation yields benefits in the management, flexibility, reliability, and performance of the storage

system, with only a small increase in file system complexity.For example, I·LFS can incorpo-

rate new disks into the system on-the-fly, dynamically balance workloads across the disks of the

system, allow for user control of file replication, and delayreplication of files for increased perfor-

mance. Much of this functionality would be difficult to implement with the existing relationship

between file systems and storage systems predicated on the traditional logical block interface.

1.4 Collaborating Layers

Finally, we look beyond information-only interfaces to newmechanisms that allow storage

stack layers to communicate more effectively. Specifically, we develop a collaborative approach

using a journaling file system to address the problem of slow,scan-based, software RAID resyn-

chronization that restores consistency after a system crash. We analyze Linux ext3 and introduce

a new mode of operation, declared mode, that guarantees to provide a record of all outstanding

8

writes in case of a crash. To utilize this information, we augment the software RAID with an in-

forming interface (verify read) that instructs the RAID layer to inspect and repair the redundant

information for a block. The combination of these features allows us to provide fast, journal-

guided resynchronization. We evaluate the effect of journal-guided resynchronization and find that

it provides improved software RAID reliability and availability after a crash, while suffering little

performance loss during normal operation.

1.5 Contributions

• The development of a set of algorithms and analyses that automatically determine the con-

figuration properties of a RAID array using only the logical block interface, and the embod-

iment of these techniques in a software system (Shear) that transforms the existing interface

into a basic informing interface.

• The design and implementation of an informing interface (E×RAID) that provides mean-

ingful abstractions to a new file system (I·LFS) that explicitly manages the individual com-

ponents of a disk array to improve the performance and functionality of the overall system.

• The design and implementation of a collaborative approach between a journaling file system

and a software RAID layer to provide fast, journal-guided resynchronization after a crash

that improves both the reliability and the availability of the storage system.

9

1.6 Organization

The remainder of this dissertation is organized as follows.In Chapter 2, we introduce Shear and

its algorithms and apply it to the management and performance tuning of disk arrays. Chapter 3

presents E×RAID and I·LFS and their use of disk information to improve the performance and

functionality of the storage stack. In Chapter 4, we developjournal-guided resynchronization and

evaluate its ability to improve the reliability and availability of the storage system. We present

related work in Chapter 5 and conclude in Chapter 6.

10

Chapter 2

Deconstructing Storage Arrays with Shear

Modern storage systems are complex. For example, a high-endstorage array can contain tens

of processors and hundreds of disks [21] and a given array canbe configured in many different

ways, most commonly using RAID-0, RAID-1, or RAID-5. However, regardless of their internal

complexity, RAID arrays expose a simple interface consisting of a linear array of blocks. All of

the internal complexity is hidden; a large array exports exactly the same interface as a single disk.

This encapsulation has many advantages, the most importantof which istransparent operation

of unmodified file systems on top of any storage device. But this transparency also has a cost:

users and applications cannot easily obtain more information about the complexities of the storage

system because of theobscuring interface. For example, most storage systems do not reveal how

data blocks are mapped to each of the underlying disks, and itis well known that RAID configu-

ration has a large impact on performance and reliability [13, 47, 61, 88]. Furthermore, despite the

fact that configuring a modern array is difficult and error-prone, administrators are given little help

in verifying the correctness of their setup.

11

To overcome this information gap, we propose a basic informing interface that simply exports

the configuration parameters of a RAID, including the numberof disks, chunk size, level of redun-

dancy, and layout scheme. This interface gives the file system or other client enough information to

determine the mapping of blocks from the logical address space to individual disks. It also conveys

the amount of reliability that is implemented by the array and the particular scheme (e.g. RAID-1

or RAID-5).

This approach is simple in that it merely reports information that already exists in the array,

rather than requiring implementation of new mechanisms, analogous to the Infokernel [3] approach

for operating systems interfaces. Therefore, the onus to make use of this information is placed on

the file system. For example, the file system may alter its policies to make use of the individual

disks, or it might modify its access pattern to avoid deficiencies in the RAID scheme.

The most efficient implementation of this informing interface would be for storage arrays to

support a query that returns their configuration parameters. However, it may be difficult to convince

storage vendors to add this interface in a standard way, as even small extensions require industry

deliberation and consensus. Thus, we take a pragmatic approach and treat the RAID as a gray

box [2], inferring its characteristics and configuration using only its existing logical block interface.

In this chapter, we describe Shear, a user-level software system that automatically identifies

the important RAID configuration parameters of our basic informing interface. Using this sys-

tem to characterize a RAID allows developers of higher-level software, including file systems and

database management systems, to tailor their implementations to the specifics of the array upon

12

which they run. Further, administrators can use Shear to understand details of their arrays, ver-

ifying that they have configured the RAID as expected or even observing that a disk failure has

occurred.

As is common in microbenchmarking, the general approach used by Shear is to generate con-

trolled I/O request patterns to the disk and to measure the time the requests take to complete. In-

deed, others have applied generally similar techniques to single-disk storage systems [62, 76, 90].

By carefully constructing these I/O patterns, Shear can derive a broad range of RAID array char-

acteristics, including details about block layout strategy and redundancy scheme.

In building Shear, we applied a number of general techniquesthat were critical to its successful

realization. Most important was the application ofrandomness; by generating random I/O requests

to disk, Shear is better able to control its experimental environment, thus avoiding a multitude of

optimizations that are common in storage systems. Also crucial to Shear is the inclusion of a variety

of statistical clustering techniques; through these techniques, Shear can automatically come tothe

necessary conclusions and thus avoid the need for human interpretation.

We demonstrate the effectiveness of Shear by running it uponboth simulated and real RAID

configurations. With simulation, we demonstrate the breadth of Shear, by running it upon a variety

of configurations and verifying its correct behavior. We then show how Shear can be used to

discover interesting properties of real systems. By running Shear upon the Linux software RAID

driver, we uncover a poor method of parity updates in its RAID-5 mode. By running Shear upon

an Adaptec 2200S RAID controller, we find that the card uses the unusual left-asymmetric parity

scheme [34].

13

Finally, we demonstrate the utility of the Shear system and the basic informing interface

through three case studies. In the first, we show how administrators can use Shear to verify the

correctness of their configuration and to determine whethera disk failure has occurred within

the RAID array. Second, we demonstrate how Shear and the basic interface enable existing

tools [62, 76, 90] to extract detailed information about individual disks in an array. Third, we show

how a file system can use knowledge of the underlying RAID to improve performance. Specifi-

cally, we show that a modified Linux ext2 file system that performsstripe-aware writes improves

sequential I/O performance on a hardware RAID by over a factor of two.

The rest of this chapter is organized as follows. In Section 2.1 we describe Shear, illustrating

its output on a variety of simulated configurations and redundancy schemes. Then, in Section 2.2,

we show the results of running Shear on software and hardwareRAID systems, and in Section 2.3,

we show how Shear can be used to improve storage administration and file system performance

through three case studies. We conclude in Section 2.5.

2.1 Shear

We now describe Shear, our software for identifying the characteristics of a storage system

containing multiple disks. We begin by describing our assumptions about the underlying storage

system. We then present details about the RAID simulator that we use to both verify Shear and to

give intuition about its behavior. Finally, we describe thealgorithms that compose Shear.

14

2.1.1 Assumptions

In this chapter, we focus on characterizing block-based storage systems that are composed of

multiple disks. Specifically, given certain assumptions, Shear is able to determine the mapping of

logical block numbers to individual disks as well as the disks for mirrored copies and parity blocks.

Our model of the storage system captures the common RAID levels 0, 1, 4, and 5, and variants

such as P+Q [13] and chained declustering [28].

We assume a storage system with the following properties. Data is allocated to disks at the

block level, where ablock is the minimal unit of data that the file system reads or writesfrom the

storage system. Achunk is a set of blocks that is allocated contiguously within a disk; we assume

a constant chunk size. Astripe is a set of chunks across each ofD data disks.

Shear assumes that the mapping of logical blocks to individual disks follows some repeatable,

but unknown, pattern. Thepattern is the minimum sequence of data blocks such that block offset

i within the pattern is always located on diskj; likewise, the pattern’s associated mirror and parity

blocks,im andip, are always on diskskm andkp, respectively. Note that in some configurations,

the pattern size is identical to the stripe size (e.g., RAID-0 and RAID-5 left-symmetric), whereas

in others the pattern size is larger (e.g., RAID-5 left-asymmetric). Based on this assumption, Shear

cannot detect more complex schemes, such as AutoRAID [88], that migrate logical blocks among

different physical locations and redundancy levels.

Figure 2.1 illustrates a number of the layout configurationsthat we analyze in this chapter.

Each configuration contains four disks and uses a chunk size of four blocks, but we vary the layout

algorithm and the level of redundancy.

15

PPPP

00 1201 02 03 05 06 07 09 10 11 13 14 1504

16 21 25 29191817 20 22 23 24 26 27 28 30 31

Striping: RAID−0, Stripe Size = Pattern Size = 16

12 13 14 15

2928 30 31

4544 46 474140 42 43

2524 26 27

08 09 10 11

2120 22 23

04 05 06 07

3736 38 39

00 01 02 03

16 191817

PPPP

PPP

PPPP

PPPP

Parity: RAID−5 Left−Symmetric, Stripe Size = Pattern Size = 16

3332 34 35

P

08

00 04 08 1201 02 03 05 06 07 09 10 11 13 14 15

29 30 31 25 26 27 20 22 23 16 191817

Striping: ZIG−ZAG, Stripe Size = 16, Pattern Size = 32

6160 62 63

353433 3736 38 39

5756 58 59

4140 42 43

5352 54 55

4544 46 47

48 515049

32

28 2124

00 01 02 03 04 06 0705 00 01 02 03 04 05 06 07

1514131211100908

Mirroring: RAID−1, Stripe Size = Pattern Size = 8

08 09 10 11 12 13 14 15

00 01 02 03

16 191817

04 05 06 07

2120 22 23

08 09 10 11

2524 26 27

12 13 14 15

2928 30 31

12 13 14 15 00 01 02 03 04 05 06 07 08 09 10 11

27262524232221201918171631302928

Mirroring: Chained Declustering, Stripe = Pattern = 16

2120 22 23

08 09 10 11

16 191817

04 06 07

12 13 14 15

00 01 02 03 PPPP

P P P P

Parity: RAID−4, Stripe Size = Pattern Size = 12

05

2120 22 23

4544 46 47

3332 34 35

4140 42 43

2928 30 31

08 09 10 11

16 1817

04 05 06 07

3736 38 39

2524 26 27

12 13 14 15

00 01 02 03

19

PPPP

PPPP

PPPP

Parity: RAID−5 Left−Asymmetric, Stripe = 16, Pattern = 48

50 514948

636160

747372

PPPP

54 555352

66 676564

PPPP

86 878584 90 918988

78 797776

58 595756

PPPP

PPPP

70 716968

82 838180

94 959392

75

62

00 01 02 03

16 191817 2120 22

04 05 06 07

08 09 11

2524 26 27

12 13 14 15

2928 30 31

QQQQPPPP

Q QQQPPPP

QQQQPPPP23

QQQQPPPP

Parity: P+Q, Stripe Size = 8, Pattern Size = 16

10

Figure 2.1 Examples and Terminology. This picture displays a number of four disk arrays
using several of the layout patterns discussed in this chapter. The numbers represent blocks, P and
Q indicate parity blocks, and redundant data is denoted withitalics. In each case, the chunk size is
four blocks and the stripe size and pattern size in blocks arelisted. Each array depicts at least two
full patterns for the given layout scheme, the first of which is shaded in gray.

16

RAID systems typically contain significant amounts of memory for caching. Shear currently

does not attempt to identify the amount of storage memory or the policy used for replacement;

however, techniques developed elsewhere may be applicable[11, 62, 84, 90]. Due to its use of

random accesses and steady-state behavior, Shear operatescorrectly in the presence of a cache,

as long as the cache is small relative to the storage array. With this assumption, Shear is able to

initiate new read requests that are not cached and perform writes that overwhelm the capacity of

the cache.

Our framework makes a few additional assumptions. First, weassume that all of the disks are

relatively homogeneous in both performance and capacity. However, the use of random accesses

again makes Shear more robust to heterogeneity, as described in more detail below. Second, we

assume that Shear is able to access the raw device; that is, itcan access blocks directly from the

storage system, bypassing the file system and any associatedbuffer cache. Finally, we assume

that there is little traffic from other processes in the system; however, we have found that Shear is

robust to small perturbations.

2.1.2 Techniques

The basic idea of Shear is that by accessing sets of disk blocks and timing those accesses, one

is able to detect which blocks are located on the same disks and thus infer basic properties of block

layout. Intuitively, sets of reads that are “slow” are assumed to be located on the same disk; sets

of reads that are “fast” are assumed to be located on different disks. Beyond this basic approach,

Shear employs a number of techniques that are key to its operation.

17

Randomness:The key insight employed within Shear is to use random accesses to the storage

device. Random accesses are important for a number of reasons. First, random accesses increase

the likelihood that each request will actually be sent to a disk (i.e., is not cached or prefetched by the

RAID). Second, the performance of random access is dominated by the number of disk heads that

are servicing the requests; thus Shear is able to more easilyidentify the number of disks involved.

Third, random accesses are less likely to saturate interconnects and hide performance differences.

Finally, random accesses tend to homogenize the performance of slightly heterogeneous disks:

historical data indicates that disk bandwidth improves by nearly 40% per year, whereas seek time

and rotational latency improve by less than 10% per year [25]; as a result, disks from different

generations are more similar in terms of random performancethan sequential performance. Note

that, in the actual implementation, a pseudo-random numbergenerator is used to produce the set

of disk accesses.

Steady-state: Shear measures the steady-state performance of the storagesystem by issuing a

large number of random reads or writes (e.g., approximately 500 outstanding requests). Examining

steady-state performance ensures that the storage system is not able to prefetch or cache all of the

requests. This is especially important for write operations that could be temporarily buffered in a

write-back RAID cache.

Statistical inferences: Shear automatically identifies the parameters of the storage system with

statistical techniques. Although Shear provides graphical presentations of the results for verifica-

tion, a human user is not required to interpret the results. This automatic identification is performed

18

by clustering the observed access times with K-means and X-means [48]; this clustering allows

Shear to determine which access times are similar and thus which blocks are correlated.

Safe operations:All of the operations that Shear performs on the storage system are safe; most of

the accesses are read operations and those that are writes are performed by first reading the existing

data into memory and then writing out the same data (assumingexclusive access to the array). As

a result, Shear can be run on storage systems containing livedata and this allows Shear to inspect

RAIDs that appear to have disk failures or other performanceanomalies over time.

2.1.3 Simulation Framework

To demonstrate the correct operation of Shear, we have developed a storage system simula-

tor. We are able to simulate storage arrays with a variety of striping, mirroring, and parity con-

figurations; for example, we simulate RAID-0, RAID-1, RAID-4, RAID-5 with left-symmetric,

left-asymmetric, right-symmetric, and right-asymmetriclayouts [34], P+Q redundancy [13], and

chained declustering [28]. We can configure the number of disks and the chunk size per disk. The

storage array can also include a cache.

The disks within the storage array are configured to perform similarly to an IBM 9LZX disk.

The simulation of each disk within the storage array is fairly detailed, accurately modeling seek

time, rotation latency, track and cylinder skewing, and a simple segmented cache. We have con-

figured our disk simulator through a combination of three methods [62]: issuing SCSI commands

and measuring the elapsed time, by directly querying the disk, and by using the values provided by

the manufacturer. Specifically, we simulate a rotation timeof 6 ms, head switch time of 0.8 ms, a

19

cylinder switch time of 1.8 ms, a track skew of 36 sectors, a cylinder skew of 84 sectors, 272 sec-

tors per track, and 10 disk heads. The seek time curve is modeled using the two-function equation

proposed by Ruemmler and Wilkes [57]; for short seek distances (less than 400 cylinders) the seek

time is proportional to the square root of the cylinder distance (with endpoints at 0.8 and 6.0 ms),

and for longer distances the seek time is proportional to thecylinder distance (with endpoints of

6.0 and 8.0 ms).

2.1.4 Algorithm

Shear has four steps; in each step, a different parameter of the storage system is identified.

First, Shear determines the pattern size. Second, Shear identifies the boundaries between disks as

well as the chunk size. Third, Shear extracts more detailed information about the actual layout of

blocks to disks. Finally, Shear identifies the level of redundancy.

Although Shear behaves correctly with striping, mirroring, and parity, the examples in this

section begin by assuming a storage system without redundancy. We show how Shear operates with

redundancy with additional simulations in Section 2.1.5. We now describe the four algorithmic

steps in more detail.

2.1.4.1 Pattern Size

In the first step, Shear identifies the pattern size. Thispattern size, P , is defined as the mini-

mum distance such that, for allB, blocksB andB+P are located on the same disk. Shear operates

20

for p in 1 to maximum pattern size{
choose a random offsetor between0 andp − 1
for i in 1 to N {

choose a random segments based on pattern sizep
create a request for offsetor in s

}
issue all requests in parallel and time their completion

}

Figure 2.2Pattern Size Detection Algorithm.

by testing for an assumed pattern size, varying the assumed sizep from a single block up to a pre-

defined maximum (a slight but unimplemented refinement wouldsimply continue until the desired

output results). For eachp, Shear divides the storage device into a series of non-overlapping, con-

secutive segments of sizep. Then Shear selects a random segment offset,or, along withN random

segments, and issues parallel reads to the same offsetor within each segment. This workload of

random requests is repeatedR times and the completion times are averaged. IncreasingN has the

effect of concurrently examining more segments on the disk;increasingR conducts more trials

with different random offsets. Pseudo-code for the algorithm is shown in Figure 2.2.

The intuition behind this algorithm is as follows. By definition, if p does not match the actual

pattern size,P , then the requests will be sent to different disks; ifp is equal toP , then all of the

requests will be sent to the same disk. When requests are serviced in parallel by different disks, the

response time of the storage system is expected to be less than that when all requests are serviced

by the same disk.

21

2 Blocks (8 KB) 4 Blocks (16 KB) 6 Blocks (24 KB) 8 Blocks (32 KB) 10 Blocks (40 KB) 12 Blocks (48 KB) 14 Blocks (56 KB) 16 Blocks (64 KB)

Figure 2.3 Pattern Size Detection: Sample Execution. Given 4 disks and a chunk size of 4
blocks, the shaded blocks are read as Shear increments the assumed pattern size. For compactness,
the figure starts with an assumed pattern size of 2 blocks and increases each time by 2 blocks. The
figure highlights all blocks at the given stride; in reality,only N random blocks are read.

To illustrate this behavior, we consider a four disk RAID-0 array with a block size of 4 KB and

a chunk size of 4 blocks (16 KB); thus, the actual pattern sizeis 16 blocks (64 KB). Figure 2.3

shows the location of the reads as the assumed pattern size isincreased for a sample execution.

The top graph of Figure 2.4 shows the corresponding timings when this workload is run on the

simulator.

The sample execution shows that when the assumed pattern is 2, 4, or 6 blocks, the requests

are sent to all disks; as a result, the timings with a stride of8, 16, and 24 KB are at a minimum.

The sample execution next shows that when the assumed pattern is 8 blocks, the requests are sent

to only two disks; as a result, the timing at 32 KB is slightly higher. Finally, when the assumed

pattern size is 16 blocks, all requests are sent to the same disk and a 64 KB stride results in the

highest time.

To detect pattern size automatically, Shear clusters the observed completion times using a vari-

ant of the X-means cluster algorithm [48]; this clustering algorithm does not require that the num-

ber of clusters be knowna priori. Shear then selects that cluster with the greatest mean completion

time. The correct pattern size,P , is calculated as the greatest common divisor of the patternsize

assumptions in this cluster.

22

Pattern Size Detection: RAID−0 4 Disks 16 KB Chunks

Pattern Size Assumed (KB)

T
im

e
(s

)

+++++++++++++++
+

+++++++++++++++

+

+++++++++++++++

+

+++++++++++++++

+

+++++++++++++++

+

+++++++++++++++

+

+++++++++++++++

+

+++++++
+
+++++++

+

+++++++++++++++
+

+++++++++++++++

+

+++++++++++++++

+

+++++++++++++++

+

+++++++++++++++

+

+++++++++++++++

+

+++++++++++++++

+

+++++++
+
+++++++

+

0 32 64 96 128 160 192 224 256

0.0

0.5

1.0

1.5

Pattern Size Detection: RAID−0 6 Disks 16 KB Chunks

Pattern Size Assumed (KB)

T
im

e
(s

)

+++++++++++
++++

+
+++++++

+

+++++
+
+
+
+++

+
++++++++

+++

+

+++++++++++
+
+++

+
+++++++

+

+++++++
+
+++

++++++
+
+++++

+

+++++
++++++++++

+
+++++++

+

+++++
+++

+++++++++++
++++

+
+++++++

+

+++++++
+
+++

+
+++++

++++++

+

+++++++++++
+
+++

+
+++++++

+

+++++++
+
+++

++++++
+
+++++

+

+++++++++++++++
+
+++++++

+

+++++
+++

0 32 64 96 128 160 192 224 256

0.0

0.5

1.0

1.5

Pattern Size Detection: RAID−0 8 Disks 16 KB Chunks

Pattern Size Assumed (KB)

T
im

e
(s

)

+++++++++++++++
+
+++++++++++++++

+

+++++++++++++++
+
+++++++++++

++++

+

+++++++++++++++
+
+++++++++

++++++

+

+++++++++++++++
+
+++++++

++++++++

+

+++++++++++++++
+
+++++++++++++++

+

+++++++++++++++
+
+++++++++++++++

+

+++++++++++++++
+
+++++++++++++++

+

+++++++++++++++
+
+++++++++++++++

+

0 32 64 96 128 160 192 224 256

0.0

0.5

1.0

1.5

Figure 2.4 Pattern Size Detection: Simulations. The graphs show the results of running the
pattern size detection algorithm on RAID-0 with 16 KB chunksand 4, 6, and 8 disks.

23

To demonstrate that Shear is able to detect different pattern sizes, we configure the simulator

with six and eight disks in the remaining two graphs of Figure2.4. As desired, blocks with a stride

of 96 KB (i.e., 6 disks× 16 KB) and 128 KB (i.e., 8 disks× 16 KB) are located on the same disk

and mark the length of the pattern.

2.1.4.2 Boundaries and Chunk Size

In the second step, Shear identifies the data boundaries between disks and the chunk size. A

data boundary occurs between blocksa andb when blocka is allocated to one disk and blockb

to another. The chunk size is defined as the amount of data thatis allocated contiguously within a

single disk.

Shear operates by assuming that a data boundary occurs at an offset,c, within the pattern. Shear

then variesc from 0 to the pattern size determined in the previous step. For eachc, Shear selects

N patterns at random and creates a read request for offsetc within the pattern; Shear then selects

anotherN random patterns and creates a read request at offset(c−1) mod P . All 2N requests for

a givenc are issued in parallel and the completion times are recorded. This workload is repeated

for R trials and the times are averaged. Pseudo-code for the algorithm is shown in Figure 2.5.

The intuition is that ifc does not correspond to a disk boundary, then all of the requests are sent

to the same disk and the workload completes slowly; whenc does correspond to a disk boundary,

then the requests are split between two disks and complete quickly (due to parallelism).

To illustrate, we consider the same four disk RAID-0 array asabove. Figure 2.6 shows a portion

of a sample execution of the chunk size detection algorithm and the top graph of Figure 2.7 shows

24

for c in 0 to P − 1 {
for i in 1 to N {

choose a random patternp based on pattern sizeP
create a request for blockc in p

}
for i in 1 to N {

choose a random patternp based on pattern sizeP
create a request for block(c − 1) mod P in p

}
issue all requests in parallel and time their completion

}

Figure 2.5 Chunk Size Detection Algorithm.

25

Block 1 (4 KB) Block 2 (8 KB) Block 3 (12 KB) Block 4 (16 KB) Block 5 (20 KB) Block 6 (24 KB) Block 7 (28 KB)Block 0 (0 KB)

Figure 2.6 Chunk Size Detection: Sample Execution.Given 4 disks and 4 block chunks, the
shaded blocks are read as Shear increments the offset withinthe pattern. Although requests are
shown accessing every pattern, onlyN are selected at random.

the timings. The sample execution shows that whenc is equal to 0 and 4, the requests are sent to

different disks; for all other values ofc, the requests are sent to the same disk. The timing data

validates this result in that requests with an offset of 0 KB and 16 KB are faster than the others.

Shear automatically determines the chunk sizeC by dividing the observed completion times

into two clusters using the K-Means algorithm and selectingthe cluster with the smallest mean

completion time. The data points in this cluster correspondto the disk boundaries; the RAID

chunk size is calculated as the difference between these boundaries.

To show that Shear can detect different chunk sizes, we consider a few striping variants. We

begin with RAID-0 and a constant pattern size (i.e., 64 KB); we examine both 8 disks with 8 KB

chunks and 16 disks with 4 KB chunks in the next two graphs in Figure 2.7. As desired, the

accesses are slow at 8 KB and 4 KB intervals, respectively. Tofurther stress boundary detection,

we consider ZIG-ZAG striping in which alternating stripes are allocated in the reverse direction;

this scheme is shown in Figure 2.1. The last graph shows that the first and last chunks in each

stripe appear twice as large, as expected.

26

Chunk Size Detection: RAID−0 4 Disks 16 KB Chunks

Boundary Offset Assumed (KB)

T
im

e
(s

)

+

+ + + + + + +

+

+ + + + + + +

+

+ + + + + + +

+

+ + + + + + +

+

+ + + + + + +

+

+ + + + + + +

+

+ + + + + + +

+

+ + + + + + +

0 16 32 48 64

0.0

0.5

1.0

1.5

Chunk Size Detection: RAID−0 8 Disks 8 KB Chunks

Boundary Offset Assumed (KB)

T
im

e
(s

)

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

0 16 32 48 64

0.0

0.5

1.0

1.5

Chunk Size Detection: RAID−0 16 Disks 4 KB Chunks

Boundary Offset Assumed (KB)

T
im

e
(s

)

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

0 16 32 48 64

0.0

0.5

1.0

1.5

Chunk Size Detection: ZIG−ZAG 6 Disks 8 KB Chunks

Boundary Offset Assumed (KB)

T
im

e
(s

)

++++

+

+++

+

+++

+

+++

+

+++

+

+++++++

+

+++

+

+++

+

+++

+

+++

+

+++++++

+

+++

+

+++

+

+++

+

+++

+

+++++++

+

+++

+

+++

+

+++

+

+++

+

+++

0 16 32 48 64 80 96

0.0

0.5

1.0

1.5

2.0

Figure 2.7 Chunk Size Detection: Simulations. The first three graphs use RAID-0 configura-
tions: 4 disks with 16 KB chunks, 8 disks with 8 KB chunks, and 16 disks with 4 KB chunks. The
last graph uses the ZIG-ZAG striping configuration in which alternating stripes are allocated in the
reverse direction; this has 6 disks and 8 KB chunks.

27

divide the pattern inton = P/C chunks
for c1 in 0 to n − 1 {

for c2 in c1 to n − 1 {
for i in 1 to N {

choose a random patternp based on pattern sizeP
create a request for the first block of chunkc1 in p

}
for i in 1 to N {

choose a random patternp based on pattern sizeP
create a request for the first block of chunkc2 in p

}
issue all requests in parallel and time their completion

}
}

Figure 2.8 Layout Detection Algorithm.

2.1.4.3 Layout

The previous two steps allow Shear to determine the pattern size and the chunk size. In the

third step, Shear infers which chunks within the repeating pattern fall onto the same disk.

To determine which chunks are allocated to the same disk, Shear examines in turn each pair of

chunks,c1 andc2, in a pattern. First, Shear randomly selectsN patterns and creates read requests

for chunkc1 within each pattern; then Shear selects anotherN patterns and creates read requests for

c2 within each pattern. All of the requests for a given pair are issued in parallel and the completion

times are recorded. This workload is repeated overR trials and the results are averaged. Shear

then examines the next pair. Pseudo-code for the algorithm is shown in Figure 2.8.

Figure 2.9 shows that these results can be visualized in an interesting way. For these experi-

ments, we configure our simulator to model both RAID-0 and ZIG-ZAG with 6 disks and 8 KB

28

0 1 2 3 4 5

0
1

2
3

4
5

Chunk

C
hu

nk

0 2 4 6 8 10

0
2

4
6

8
10

Chunk

C
hu

nk
Figure 2.9 Read Layout Detection: Simulations. The first graph uses RAID-0; the second
graph uses ZIG-ZAG. Both configurations use 6 disks and 8 KB chunks. The points in the graph
correspond to pairs of chunks within a pattern that are accessed simultaneously. Lighter points
indicate the workload finished more slowly and therefore those chunks reside on the same disk.

chunks. Each point in the graph corresponds to a (c1, c2) pair; light points indicate slow access

times and thus fall on the same disk. The diagonal line in eachgraph corresponds to pairs where

c1 = c2 and thus always fall on the same disk. In RAID-0, no chunks within a pattern are allo-

cated to the same disk; thus, no pairs are shown in conflict. However, in ZIG-ZAG, the second

half of each pattern conflicts with the blocks in the first half, shown as the second (upper-left to

lower-right) diagonal line.

To automatically determine which chunks are on the same disk, Shear divides the completion

times into two clusters using K-means and selects the cluster with the largest mean completion

time. Shear infers that the chunk pairs from this cluster areon the same physical disk. By dividing

the chunks into associative sets, Shear can infer the numberof primary data disks in the system.

29

The above algorithm elicits read dependencies between pairs of chunks. Running the same

algorithm with writes instead of reads allows Shear to identify write dependencies, which may

occur due to rotating mirrors as in chained declustering or ashared parity block in RAID-4 or

RAID-5. For example, consider the RAID-5 left-asymmetric array in Figure 2.1. Writing to blocks

0 and 16 at the same time will result in a short response time because the operations are spread

across all four disks. Writing to blocks 0 and 52, however, will result in a longer response time

because they share a parity disk. Similarly, writing to blocks 0 and 20 will take longer because the

parity block for block 0 resides on the same disk as block 20.

The write layout results can reinforce conclusions from theread layout results, and they will be

used to distinguish between RAID-4, RAID-5, and P+Q, as wellas between RAID-1 and chained

declustering. We discuss write layouts further and provideexample results in Section 2.1.5.

2.1.4.4 Redundancy

In the fourth step, Shear identifies how redundancy is managed within the array. Generally, the

ratio between random read bandwidth and random write bandwidth is determined by how the disk

array manages redundancy.

Therefore, to detect how redundancy is managed, Shear compares the bandwidth for random

reads and writes. Shear createsN block-sized random reads, issues them in parallel, and times their

completion. Shear then timesN random writes issued in parallel; these writes can be performed

safely if needed, by first reading that data from the storage system and then writing out the same

30

values (with extra intervening traffic to flush any caches). The ratio between the read and write

bandwidth is then compared to our expectations to determinethe amount and type of redundancy.

For storage arrays with no redundancy (e.g., RAID-0), the read and write bandwidths are ex-

pected to be approximately equal. For storage systems with asingle mirror (e.g., RAID-1), the

read bandwidth is expected to be twice that of the write bandwidth, since reads can be balanced

across mirrored disks but writes must propagate to two disks. More generally, the ratio of read

bandwidth to write bandwidth exposes the number of mirrors.For systems with RAID-5 parity,

write bandwidth is roughly one fourth of read bandwidth, since a small write requires reading the

existing disk contents and the associated parity, and then writing the new values back to disk. In

RAID-4 arrays, however, the bandwidth ratio varies with thenumber of disks because the single

parity disk is a bottleneck. This makes RAID-4 more difficultto identify, and we discuss this

further in Section 2.2.

One problem that arises in our redundancy detection algorithm is that instead of solely using

reads, Shear also uses writes. Using writes in conjunction with reads is essential to Shear as it

allows us to observe the difference between the case when a block is being read and the case when

a block (and any parity or mirrors) is being committed to disk.

Unfortunately, depending on the specifics of the storage system under test, writes may be

buffered for some time before being written to stable storage. Some systems do this at the risk

of data loss (e.g., a desktop drive that has immediate reporting enabled), whereas higher-end ar-

rays may have some amount of non-volatile RAM that can be usedto safely delay writes that have

31

been acknowledged. In either case, Shear needs to avoid the effects of buffering and move to the

steady-state domain of inducing disk I/O when writes are issued.

The manner in which Shear achieves this is through a simple, adaptive technique. The basic

idea is that during the redundancy detection algorithm, Shear monitors write bandwidth during

the write phase. If write performance is more than twice as fast as the previously observed read

performance, Shear concludes that some or all of the writes were buffered and not written to disk,

so another round of writes is initiated. Eventually, the writes will flood the write cache and induce

the storage system into the desired steady-state behavior of writing most of the data to disk; Shear

detects this transition by observing that writes are no longer much faster than reads (indeed, they

are often slower). We explore this issue more thoroughly viaexperimentation in Section 2.2.

2.1.4.5 Identifying Known Layouts

Finally, Shear uses the pattern size, chunk size, read layout, write layout, and redundancy

information in an attempt to match its observations to one ofits known schemes (e.g. RAID-5

left-asymmetric). If a match is found, Shear first re-evaluates the number of disks in the sys-

tem. For instance, the number of disks will be doubled for RAID-1 and incremented for RAID-4.

Shear completes by reporting the total number of disks in thearray, the chunk size, and the layout

observed.

If a match is not found, Shear reports the discovered chunk size and number of disks, but

reports that the specific algorithm is unknown. By assuming that chunks are allocated sequentially

to disks, Shear can produce a suspected layout based on its observations.

32

2.1.5 Redundancy Simulations

In this section, we describe how Shear handles storage systems with redundancy. We begin by

showing results for systems with parity, specifically RAID-4, RAID-5, and P+Q. We then consider

mirroring variants: RAID-1 and chained declustering. In all simulations, we consider a storage

array with six disks and an 8 KB chunk size. For the purpose of comparison, we present a base

case of RAID-0 in Figure 2.10.

2.1.5.1 Parity

Shear handles storage systems that use parity blocks as a form of redundancy. To demonstrate

this, we consider four variants of RAID-5, RAID-4, and P+Q redundancy [13].

RAID-5: RAID-5 calculates a parity block for each stripe of data, andthe location of the parity

block is rotated between disks. RAID-5 can have a number of different layouts of data and parity

blocks, such as left-symmetric, left-asymmetric, right-symmetric, and right-asymmetric [34]. Left-

symmetric is known to deliver the best bandwidth [34], and isthe only layout in which the pattern

size is equal to the stripe size (i.e., the same as for RAID-0); in the other RAID-5 layouts, the

pattern size isD − 1 times the stripe size.

The pattern size results for the four RAID-5 systems are shown in Figure 2.11. The first graph

shows that the pattern size for left-symmetric is 48 KB, which is identical to that of RAID-0; the

other three graphs show that left-asymmetric, right-symmetric, and right-asymmetric have pattern

sizes of 240 KB (i.e., 30 chunks), as expected. Note that despite the apparent noise in the graphs,

33

Pattern Size Detection: RAID−0

Pattern Size Assumed (KB)

T
im

e
(s

)

+++++
+

+
+

+++

+

+++
+

+
+

+++++

+

++
+

++
+

+
+

+++

+

+++
+

+
+

++
+

++

+

+++++
+

+
+

+++

+

++++
+

+
+++++

+

+++++
+

+
+

+++

+

+++
+

+++++++

+

0 16 32 48 64 80 96

0.0

0.5

1.0

1.5

2.0

Chunk Size Detection: RAID−0

Boundary Offset Assumed (KB)

T
im

e
(s

)

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

0 8 16 24 32 40

0.0

0.5

1.0

1.5

2.0

Figure 2.10 Pattern Size and Chunk Size Detection: RAID-0. We simulate RAID-0 with 6
disks and 8 KB chunks. The first graph confirms that the patternsize is 48 KB; the second graph
confirms that the chunk size is 8 KB.

34

the X-means clustering algorithm is able to correctly identify the pattern sizes. The chunk size

algorithm does not behave differently for RAID-5 versus RAID-0; therefore we omit those results.

Figure 2.12 shows the read layout and write layout graphs forRAID-5. Note that each of the

four RAID-5 variants leads to a very distinct visual image. As before, light points correspond to

dependent chunk pairs that are slow; points that are dark correspond to independent chunk pairs

that offer fast concurrent access. A read dependence occurswhen the two chunks are located on

the same disk. Write dependencies occur when the two chunks reside on the same disk, share a

parity disk, or cause interference with a parity disk. Theseinstances result in an overburdened disk

and a longer response time.

Each graph depicts a pattern-sized grid that accounts for all possible pairs of chunks. For

example, the RAID-5 left-asymmetric read layout graph is a 30 chunk by 30 chunk grid. The

points that pair chunk 0 with chunks 5, 10, 15, 20, and 25 are all light in color because those

chunks are located on the same disk. With this knowledge, Shear is able to identify if the storage

system is using one of these standard RAID-5 variants and it can calculate the number of disks.

RAID-4: RAID-4 also calculates a single parity block for each stripeof data, but all of the parity

blocks reside on a single disk. The pattern size, chunk size,read layout, and write layout results for

RAID-4 are shown in Figure 2.13. The pattern size is 40 KB because the parity disk is invisible to

the read-based workload. The read layout graph resembles the RAID-0 result because the pattern

size is equal to the stripe size, and therefore each disk occurs only once in the pattern.

On the other hand, the write layout graph for RAID-4 is quite unique. Because the parity disk is

a bottleneck for writes, all pairs of chunks are limited by a single disk and therefore exhibit similar

35

Pattern Size Detection: RAID−5 Left−Symmetric

Pattern Size Assumed (KB)

T
im

e
(s

)

++++++
+

+
+++

+

+++
+

++
+++++

+

++
+

++++
+

+++

+

+++
+

+
+

++
+

++

+

+++++++
+

+++

+

+++
+

+++++++

+

++
+

++++
+

+++

+

+++
+

+
+

+++++

+

0 16 32 48 64 80 96

0.0

0.5

1.0

1.5

2.0

Pattern Size Detection: RAID−5 Left−Asymmetric

Pattern Size Assumed (KB)

T
im

e
(s

)

+++++++++

+

+
+
+++++++

+

+++

+
+++++

+

+++++++++

+

+++++++
+
+
+
+++++++++

+

+++++++++
+

+
+

++
+
++++

+

+++
++++++

+

+++++
+
+++

+

++++
+++
+
+

+

+++++++++

+

+++++++++

+

+
+
+++++++

+

+++

+
+++++

+

+++++
+
+++

+

+++++++
+
+

+
+++++++++

+

+++++++++
+

+
+
+++++++

+

+++
++++++

+

+++++
+
+++

+

++++
+++++

+

+++++++++

+

+++++++++
+
+++++++++

+

+++++++++
+
+++++++++

+

+++++++++
+
+++++++++

+

+++++++++
+
+++++++++

+

+++++++++
+
+++++++++

+

+++++++++
+
+++++++++

+

+++++++++
+
+++++++++

+

+++++++++
+
+++++++++

+

+++++++++
+
+++++++++

+

+++++++++
+
+++++++++

+

+++++++++++++++++++

+

++++
+++++

+
+++++++++

+

0 64 128 192 256 320 384 448

0.0

0.5

1.0

1.5

2.0

Pattern Size Detection: RAID−5 Right−Symmetric

Pattern Size Assumed (KB)

T
im

e
(s

)

+++++++
+
++++++

+
+
+++++++

+

+++++

+

+
+
+++++++

+
++++

+

++
+
+++++++

+
+++

+

+++
+
+++++++

+

++

+

++++
+
+++++++

+
+

+

+++++

+

+++++++
+
+

++++++
+
+++++++

+

+++++++
+
++++++

+
+
+++++++

+

+++++

+

+
+
+++++++

+
++++

+

++

+

+++++++
+
+++

+

+++
+
+++++++

+

++
+

++++

+

+++++++
+
+

+

+++++

+

+++++++
+
+

++++++
+
+++++++

+

+++++++
+
++++++

++
+++++++

+

+++++

+

+
+
+++++++

+
++++
+
++

+

+++++++
+
+++

+

+++
+
+++++++

+

+++++++
+
+++++++

+
+++++++

+

+++++++
++
++++++

+
+++++++

+

+++++++
+
++++++

++
+++++++

+
+++++

+
+
+
+++++++

+
++++
+
++
+
+++++++

+
+++

+

+++
+
+++++++

+
++
+
++++
+
+++++++

+
+
+
+++++

+

+++++++
++
++++++

+
+++++++

+

0 64 128 192 256 320 384 448

0.0

0.5

1.0

1.5

2.0

Pattern Size Detection: RAID−5 Right−Asymmetric

Pattern Size Assumed (KB)

T
im

e
(s

)

+++++++++
+
++++
+
++++

+

+++++++++

+

+++++++++

+

++++
+
++++

+

+++++++++

+

+++++++++
+

++++
+
++++

+

+++++++++

+

+++++++++

+

++++
+
++++

+

+++++++++

+

+++++++++

+

++++
+++++

+

+++++++++

+

+++++++++

+

++++
+
++++
+
+++++++++

+

+++++++++
+
++++
+
++++

+

+++++++++
+
+++++++++

+

++++
+
++++

+

+++++++++

+

+++++++++
+
++++
+++++

+

+++++++++
+
+++++++++

+

++++
+++++

+
+++++++++

+
+++++++++

+
+++++++++

+

+++++++++++++++++++

+

++++
+
++++
+
+++++++++

+

+++++++++
+
+++++++++

+

+++++++++++++++++++

+

+++++++++
+
+++++++++

+

+++++++++
+
+++++++++

+

+++++++++++++++++++

+

+++++++++
+
+++++++++

+

0 64 128 192 256 320 384 448

0.0

0.5

1.0

1.5

2.0

Figure 2.11 Pattern Size Detection: RAID-5. We simulate RAID-5 with left-symmetric, left-
-asymmetric, right-symmetric, and right-asymmetric layouts. Each configuration uses 6 disks and
a chunk size of 8 KB. The pattern size is 48 KB for RAID-5 left-symmetric and 240 KB for the
rest.

36

Figure 2.12 Read and Write Layout Detection: RAID-5. We simulate (from left to right)
RAID-5 left-symmetric, left-asymmetric, right-symmetric, and right-asymmetric, with 6 disks.
The first row displays the read layouts and the second row shows the write layout graphs.

37

Pattern Size Detection: RAID−4

Pattern Size Assumed (KB)

T
im

e
(s

)

+++++++++

+

+++++++++

+

+++++++++

+

+++++++++

+

+++++++++

+

+++++++++

+

+++++++++

+

+++++++++

+

0 16 32 48 64 80

0.0

0.5

1.0

1.5

2.0

Read Layout

Chunk Size Detection: RAID−4

Boundary Offset Assumed (KB)

T
im

e
(s

)

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

0 8 16 24 32

0.0

0.5

1.0

1.5

2.0

Write Layout

Figure 2.13Pattern Size, Chunk Size, and Layout Detection: RAID-4. We simulate RAID-4
with 6 disks and 8 KB chunks. The first graph confirms that the pattern size of 40 KB is detected;
the second graph shows the chunk size of 8 KB is detected. The read layout graph on the right
resembles that for RAID-0, but the write layout graph uniquely distinguishes RAID-4 from other
parity-based schemes.

38

completion times. This bottleneck produces a relatively flat RAID-4 write layout graph, allowing

us to distinguish RAID-4 from other parity schemes.

P+Q: To demonstrate that Shear handles other parity schemes, we show the results of detecting

pattern size and chunk size for P+Q redundancy (RAID-6). In this parity scheme, each stripe

has two parity blocks calculated with Reed-Solomon codes; otherwise, the layout looks like left-

symmetric RAID-5. In Figure 2.14, the first graph shows that the pattern size of 48 KB is detected;

the second graph shows an 8 KB chunk size.

Figure 2.14 also shows the read layout and write layout graphs for P+Q. The read layout graph

resembles that for RAID-0. The write layout graph, however,exhibits three distinct performance

regions. The slowest time occurs when all requests are sent to the same chunk (and disk) in the

repeating pattern. The fastest time occurs when the requests and parity updates are spread evenly

across four disks, for instance when pairing chunks 0 and 1. Amiddle performance region occurs

when parity blocks for one chunk conflict with data blocks forthe other chunk. For example, when

testing chunks 0 and 2, about half of the parity updates for chunk 2 will fall on the disk containing

chunk 0. Again, this unique write layout allows us to distinguish P+Q from the other parity-based

schemes.

2.1.5.2 Mirroring

Using the same algorithms, Shear can also handle storage systems that contain mirrors. How-

ever, the impact of mirrors is much greater than that of parity blocks, since read traffic can be

directed to mirrors. A key assumption we make is that reads are balanced across mirrors; if reads

39

Pattern Size Detection: P+Q

Pattern Size Assumed (KB)

T
im

e
(s

)

+++++++
++++

+

+++
+
+
+
+++++

+

+++++
+
+
+
+++

+

+++
+
++++

+
++

+

+++++++
++++

+

+++
+
+++++++

+

+++++
+
+
+
+++

+

+++
+
++

+++
++

+

0 16 32 48 64 80 96

0.0

0.5

1.0

1.5

2.0

Read Layout

Chunk Size Detection: P+Q

Boundary Offset Assumed (KB)

T
im

e
(s

)

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

0 8 16 24 32 40

0.0

0.5

1.0

1.5

2.0

Write Layout

Figure 2.14 Pattern Size, Chunk Size, and Layout Detection: P+Q. We present simulated
results for P+Q redundancy with 6 disks and a chunk size of 8 KB. The first graph confirms that
the pattern size of 48 KB is detected; the second graph shows the chunk size of 8 KB is detected.
The read layout graph on the right resembles RAID-0, but the write layout graph distinguishes
P+Q from other schemes.

40

are sent to only a primary copy, then Shear will not be able to detect the presence of mirrored

copies. To demonstrate that Shear handles mirroring, we consider both simple RAID-1 and chained

declustering.

RAID-1: The results of running Shear on a six disk RAID-1 system are shown in Figure 2.15.

Note that the pattern size in RAID-1 is exactly half of that inRAID-0, given the same chunk size

and number of disks. The first graph shows how the RAID-1 pattern size of 24 KB is inferred. As

Shear reads from different offsets throughout the pattern,the requests are sent to both mirrors. As

desired, the worst performance occurs when the request offset is equal to the real pattern size, but

in this case, the requests are serviced by two disks instead of one. This is illustrated by the fact

that the worst-case time for the workload on RAID-1 is exactly half of that when on RAID-0 (i.e.,

1.0 instead of 2.0 seconds).

The second graph in Figure 2.15 shows how the chunk size of 8 KBis inferred. Again, as Shear

tries to find the boundary between disks, requests are sent toboth mirrors; Shear now automatically

detects the disk boundary because the workload time increases when requests are sent to two disks

instead of four disks. Since the mapping of chunks to disks within a single pattern does not contain

any conflicts, the read layout and write layout graphs in Figure 2.15 resemble RAID-0.

Chained Declustering:Chained declustering [28] is a redundancy scheme in which disks are not

exact mirrors of one another; instead, each disk contains a primary instance of a block as well as a

copy of a block from its neighbor. The results of running Shear on a six disk system with chained

declustering are shown in Figure 2.16.

41

Pattern Size Detection: RAID−1

Pattern Size Assumed (KB)

T
im

e
(s

)

+ +
+

+ +
+

+ +
+

+ +

+

+ +
+

+ +
+

+ +
+

+ +

+

+ +
+

+ +
+

+ +
+

+ +

+

+ +
+

+ +
+

+ +
+

+ +

+

0 8 16 24 32 40 48

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Read Layout

Chunk Size Detection: RAID−1

Boundary Offset Assumed (KB)

T
im

e
(s

)

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

0 4 8 12 16 20

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Write Layout

Figure 2.15Pattern Size, Chunk Size, and Layout Detection: RAID-1. We present simulated
results for RAID-1 with 6 disks and a chunk size of 8 KB. The first graph confirms that the pattern
size of 24 KB is detected; the second graph shows the chunk size of 8 KB is detected. The read
layout and write layout graphs on the right resemble those for RAID-0.

42

Pattern Size Detection: Chained Declustering

Pattern Size Assumed (KB)

T
im

e
(s

)

+++++++++++
+
+++++++++++

+

+++++++++++
+
+++++++++++

+

+++++++++++
+
+++++++++++

+

+++++++++++
+
+++++++++++

+

0 16 32 48 64 80 96

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Read Layout

Chunk Size Detection: Chained Declustering

Boundary Offset Assumed (KB)

T
im

e
(s

)

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

0 8 16 24 32 40

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Write Layout

Figure 2.16 Pattern Size, Chunk Size, and Layout Detection: Chained Declustering. We
present simulated results for chained declustering with 6 disks and a chunk size of 8 KB. The
first graph confirms the pattern size of 48 KB; the second graphshows the chunk size of 8 KB is
detected. The wider bands in the read layout and write layoutgraphs show that two neighboring
chunks are mirrored across a total of three disks; this uniquely identifies chained declustering.

43

The first graph shows that a pattern size of 48 KB is detected, as desired. As with RAID-1,

each read request can be serviced by two disks, and the pattern size is identified when all of the

requests are sent to only two disks in the system. Note that the chained declustering pattern size is

twice that of RAID-1 since each disk contains a unique set of data blocks.

The second graph in Figure 2.16 shows that four block chunks are again detected. However,

the ratio between best and worst-case performance differs in this case from RAID-0 and RAID-

1; in chained declustering the ratio is 2:3, whereas in RAID-0 and RAID-1, the ratio is 1:2. With

chained declustering, when adjacent requests are located across a disk boundary, those requests are

serviced by three disks (instead of four with RAID-1); when requests are located within a chunk,

those requests are serviced by two disks.

The mapping conflicts with chained declustering are also interesting, as shown in the remaining

graphs in Figure 2.16. With chained declustering, a pair of chunks can be located on two, three, or

four disks; this results in three distinct performance regimes. This new case of three shared disks

occurs for chunks that are cyclically adjacent (e.g., chunks 0 and 1), resulting in the wider bands

in the read and write layout graphs.

2.1.6 Overhead

We now examine the overhead of Shear, by showing how it scalesas more disks are added to

the system. Figure 2.17 plots the total number of I/Os that Shear generates during simulation of a

variety of disk configurations. On the x-axis, we vary the configuration, and on the y-axis we plot

44

the number of I/Os generated by the tool. Note that the RAID-5left-asymmetric results are shown

with a log scale on the y-axis.

From the graphs, we can make a few observations. First, we cansee that the total number of

I/Os issued for simple schemes such as RAID-0, RAID-1, and RAID-5 left-symmetric is low (in

the few millions), and scales quite slowly as disks are addedto the system. Thus, for these RAID

schemes (and indeed, almost all others), Shear scales well to much larger arrays.

Second, we can see that when run upon RAID-5 with the left-asymmetric layout, Shear gener-

ates many more I/Os than with other redundancy schemes, and the total number of I/Os does not

scale as well. The reason for this poor scaling behavior can be seen from the read layout and write

layout detection bars, which account for most of the I/O traffic. As illustrated in Figure 2.1, the

RAID-5 left-asymmetric pattern size grows with the square of the number of disks. Because the

layout algorithms issue requests for all pairs of chunks in apattern, large patterns lead to large num-

bers of requests (although many of these can be serviced in parallel); thus, RAID-5 left-asymmetric

represents an extreme case for Shear. Indeed, in its currentform, Shear would take roughly a few

days to complete the read layout and write layout detection for RAID-5 left-asymmetric with 16

disks. However, we believe we could reduce this by a factor often by issuing fewer disk I/Os per

pairwise trial, thus reducing run time but decreasing confidence in the layout results.

2.2 Real Platforms

In this section, we present results of applying Shear to two different real platforms. The first

is the Linux software RAID device driver, and the second is anAdaptec 2200S hardware RAID

45

 0

 1

 2

 3

 4

RAID-5-LS
16 8 4

RAID-1
16 8 4

RAID-0
16 8 4

I/O
 O

pe
ra

tio
ns

 (
M

ill
io

ns
)

Shear Overhead

Redundancy
Read Pattern
Write Pattern

Chunk Size
Pattern Size

Total

RAID-5-LA
16 8 4

 1

 10

 100

Figure 2.17 Shear Overhead. The graph shows the number of I/Os generated by each phase of
Shear. Four simulated redundancy schemes are shown (RAID-0, RAID-1, RAID-5 left-symmetric,
and RAID-5 left-asymmetric), each with three numbers of disks (4, 8, and 16) and 32 KB chunks..
Each bar plots the number of I/Os taken for a phase of Shear except the last (rightmost) bar which
shows the total. The RAID-5 left-asymmetric results are plotted with a log scale on the y-axis.

46

controller. To understand the behavior of Shear on real systems, we ran it across a large variety

of both software and hardware configurations, varying the number of disks, chunk size, and re-

dundancy scheme. Most results were as expected; others revealed slightly surprising properties of

the systems under test (e.g., the RAID-5 mode of the hardware controller employs left-asymmetric

parity placement). Due to space constraints, we concentrate here on the most challenging aspect

of Shear: redundancy detection.

While experimenting with redundancy detection, we uncovered two issues that had to be ad-

dressed to produce a robust algorithm. The first of these was the size of the region over which

the test was run. Figure 2.18 plots the read/write ratio of a single disk as the size of the region is

varied.

As we can see from the figure, the size of the region over which the test is conducted can

strongly influence the outcome of our tests. For example, with the Quantum disk, the desired ratio

of roughly 1 is achieved only for very small region sizes, andthe ratio grows to almost 2 when a

few GB of the disk are used. We believe the reason for this undesirable inflation is the large settling

time of the Quantum disk. Thus, we conclude that the redundancy detection algorithm should be

run over as small of a portion of the disk as possible.

Unfortunately, at odds with the desire to run over a small portion of the disk is our second

issue: the possible presence of a write-back cache within the RAID. The Adaptec 2200S card can

be configured to perform write buffering; thus, to the host, these writes complete quickly, and are

sent to the disk at some later time. Note that the presence of such a buffer can affect data integrity

(i.e. if the buffer is non-volatile).

47

1.0

1.2

1.4

1.6

1.8

2.0

2.2

 100 1000 10000

R
ea

d/
W

rit
e

R
at

io

Region Size (MB)

The Effect of Region Size

Quantum Atlas 10K
IBM UltraStar 9LZX

Seagate Cheetah X15

Figure 2.18Sensitivity to Region Size.The figure plots the bandwidth ratio of a series of random
read requests as compared to a series of random write requests. The x-axis varies the size of the
region over which the experiment was run. In each run, 500 sector-sized read or write requests are
issued. Lines are plotted for three different disks: a Quantum Atlas 10K 18WLS, an IBM 9LZX,
and a Seagate Cheetah X15.

48

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0.1 1 10 100

B
an

dw
id

th
 (

M
B

/s
)

Amount Written (MB)

The Effect of Write Buffering

Figure 2.19Avoiding the Write Buffer. The figure plots the performance of writes on top of the
RAID-5 hardware with write-buffering enabled. The x-axis varies the number of writes issued,
and the y-axis plots the achieved bandwidth.

Because the redundancy detection algorithm needs to issue write requests to disk to compare

with read request timings, Shear must circumvent caching effects. Recall that Shear uses a simple

adaptive scheme to detect and bypass buffering by issuing successive rounds of write requests and

monitoring their performance. At some point, the write bandwidth decreases, indicating the RAID

system has moved into the steady-state of writing data to disk instead of to memory, and thus a

more reliable result can be generated. Figure 2.19 demonstrates this technique on the Adaptec

hardware RAID adapter with write caching enabled.

With these enhancements in place, we study redundancy detection across both the software and

hardware RAID systems. Figure 2.20 plots the read bandwidthto write bandwidth ratio across a

number of different configurations. Recall that the read/write ratio is the key to differentiating the

redundancy scheme that is used; for example, a ratio of 1 indicates that there is no redundancy, a

49

10

8

6

4

2
1
0

RAID-5-LA
65432

RAID-4
65432

RAID-1
642

RAID-0
65432

R
/W

 R
at

io
Read/Write Bandwidth Ratios

Software RAID
Hardware RAID

Figure 2.20 Redundancy Detection. The figure plots the ratio of read to write bandwidth over
a variety of disk configurations. The x-axis varies the number of disks and the configuration:
RAID-0, RAID-1, RAID-4, or RAID-5 left-asymmetric, with either software or hardware RAID.

ratio of 2 indicates a mirrored scheme, and a ratio of 4 indicates a RAID-5 style parity encoding.

Note that our hardware RAID card does not support RAID-4 and will not configure RAID-5 on

two disks.

The figure shows that Shear’s redundancy detection does a good job of identifying which

scheme is being used. As expected, we see read/write ratios of approximately 1 for RAID-0,

near 2 for RAID-1, and 4 for RAID-5. There are a few other points to make. First, the bandwidth

ratios for RAID-4 scale with the number of disks due to the parity disk bottleneck. This makes

it more difficult to identify RAID-4 arrays. To do so, we rely on the write layout test described

previously that exhibits this same bottleneck in write performance. The unique results from the

write layout test allow us to distinguish RAID-4 from the other parity-based schemes.

50

Second, note the performance of software RAID-5 on 5 and 6 disks; instead of the expected

read/write ratio of 4, we instead measure a ratio near 5. Tracing the disk activity and inspecting

the source code revealed the cause: the Linux software RAID controller does not utilize the usual

RAID-5 small write optimization of reading the old block andparity, and then writing the new

block and parity. Instead, it will read in the entire stripe of old blocks and then write out the new

block and parity. Finally, the graph shows how RAID-5 with 2 disks and a 2-disk mirrored system

are not distinguishable; at two disks RAID-5 and mirroring converge.

2.3 Shear Applications

In this section, we illustrate a few of the benefits of using Shear. We begin by showing how

Shear can be used to detect RAID configuration errors and diskfailures. We then show how Shear

can be used to discover information about individual disks in an array. Finally, we present an

example of how the storage system parameters uncovered by Shear can be used to better tune the

file system; specifically, we show how the file system can improve sequential bandwidth by writing

data in full stripes.

2.3.1 Shear Management

One of our intended uses of Shear is as an administrative utility to discover configuration,

performance, and safety problems. Figure 2.21 shows how a failure to identify a known scheme

may suggest a storage misconfiguration. The upper set of graphs are the expected read layout

graphs for the four common RAID-5 levels. The lower are the resulting read layout graphs when

51

Figure 2.21 Detecting Misconfigured Layouts. For RAID-5 left-symmetric, left-asymmetric,
right-symmetric, and right-asymmetric, the upper graph shows the read layout graph when the
RAID of IBM disks is correctly configured. The lower graphs show the read layout when two
logical partitions are misconfigured such that they are placed on the same physical device.

the disk array is misconfigured such that two logical partitions actually reside on the same physical

disk. These graphs were generated using disk arrays comprised of four logical disks built using

Linux software RAID and the IBM disks. Although the visualization makes it obvious, manual

inspection is not necessary; Shear automatically determines that these results do not match any

existing known schemes.

Shear can also be used to detect unexpected performance heterogeneity among disks. In this

next experiment, we run Shear across a range of simulated heterogeneous disk configurations; in

all experiments, one disk is either slower or faster than therest. Figure 2.22 shows results when

run upon these heterogeneous configurations.

As one can see from the figure, a faster or slower disk makes itspresence known in obvious

ways in both the read layout graphs as well as in the chunk sizedetection output (the pattern size

detection is relatively unaffected). Thus, an administrator could view these outputs and clearly

52

Chunk Size Detection: RAID−0

Boundary Offset Assumed (KB)

T
im

e
(s

)

+

+ + +

+

+ + +

+ + + + +

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+ + + + +

+ + +

+

+ + +

+

+ + +

0 8 16 24 32 40

0.0
0.5
1.0
1.5
2.0
2.5

Figure 2.22Detecting Heterogeneity. The first graph shows the output of the chunk size detec-
tion algorithm run upon an array with a single heterogeneousfast rotating disk. The second row of
figures shows the results of the read layout algorithm on fourdifferent simulated disk configura-
tions. In each configuration, a single disk has different capability than the others. A fast rotating,
slow rotating, fast seeking, and slow seeking disk is depicted in each of the figures.

53

observe that there is a serious and perhaps unexpected performance differential among the disks

and take action to correct the problem.

Finally, the chunk size detection algorithm in Shear can be used to identify safety hazards by

determining when a redundant array is operating in degradedmode. Figure 2.23 shows the chunk

size detection results for a ten disk software RAID system using the IBM disks. The upper graph

shows the chunk size detection correctly working after the array was first built. The lower graph

shows how chunk size detection is changed after we physically remove the fifth disk from the

array. Recall that chunk size detection works by guessing possible boundaries and timing sets of

requests on both sides of the boundary. Vertical downward spikes should be half the height of

the plateaus and indicate that the guessed boundary is correct because the requests are serviced in

parallel on two disks. The plateaus are false boundaries in which all the requests on both sides of

the guessed boundary actually are incurred on just one disk.The lower graph identifies that the

array is operating in degraded mode because the boundary points for the missing disk disappear,

and its plateau is higher due to the extra overhead of performing on-the-fly reconstruction.

2.3.2 Shear Disk Characterization

Related projects have concentrated on extracting properties of individual disk drives [62, 76,

90]. Several techniques have been built on top of this characteristic knowledge, such as aligning

files to track boundaries [63] and free-block scheduling [38]. Shear enables such optimizations in

the context of storage arrays. Shear can expose the boundaries between disks, and then existing

tools can be used to determine specific properties of those individual disks.

54

Chunk Size Detection: RAID−5 Left−Symmetric

Boundary Offset Assumed (KB)

T
im

e
(s

)

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

0 16 32 48 64 80

0.0

0.5

1.0

1.5

Chunk Size Detection: RAID−5 Left−Symmetric

Boundary Offset Assumed (KB)

T
im

e
(s

)

+

+ + +

+

+ + +

+

+ + +

+

+ + + +

+ + +

+ + + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

+

+ + + +

+ + +

+ + + +

+

+ + +

+

+ + +

+

+ + +

+

+ + +

0 16 32 48 64 80

0.0

0.5

1.0

1.5

2.0

Figure 2.23 Detecting Failure. Using the chunk size detection algorithm, Shear can discover
failed devices within a RAID system. The upper graph shows the initial chunk size detection
results collected after building a 10 disk software RAID system using the IBM disks. The lower
graph is for the same system after the fifth disk was removed.

55

We demonstrate this ability using the Skippy disk characterization tool [76]. Skippy uses a

sequence of write operations at increasing strides to determine the disk sector to track ratio, rotation

time, head positioning time, head switch time, cylinder switch time, and the number of recording

surfaces. The first graph in Figure 2.24 shows the pattern generated by Skippy on a single Quantum

disk.

The second graph in Figure 2.24 shows the results of running amodified version of Skippy on a

RAID-0 array with two disks. This version of Skippy uses the array information provided by Shear

to map its block reference stream to the corresponding logical blocks residing on the first disk in

the array. This results in a pattern that is nearly identicalto that running on a single disk, allowing

us to extract the individual disk parameters. The final graphin Figure 2.24 shows the results of the

same technique applied to a two disk RAID-1 array. Again, theresults are nearly identical to the

single disk pattern except for some small perturbations that do not affect our analysis.

There are some limitations to this approach, however. For example, in the case of RAID-1, the

Skippy write workload performs as expected, but a read workload produces spurious results due to

the fact that reads are balanced across disks. Conversely, reads work well under RAID-5 whereas

writes do not due to the need to update parity information. Additionally, because the parity blocks

under RAID-5 cannot be directly accessed, characterization tools may obtain an incomplete set

of data. Despite these limitations, we have tested a read-based version of Skippy on RAID-5 and

successfully extracted all parameters from the individualdisks.

56

 0
 2
 4
 6
 8

 10

 0 50 100 150 200 250 300 350 400 450 500

W
rit

e
T

im
e

(m
s)

Request Number

Skippy: 1 Disk

 0
 2
 4
 6
 8

 10

 0 50 100 150 200 250 300 350 400 450 500

W
rit

e
T

im
e

(m
s)

Request Number

Skippy: RAID-0 2 Disks

 0
 2
 4
 6
 8

 10

 0 50 100 150 200 250 300 350 400 450 500

W
rit

e
T

im
e

(m
s)

Request Number

Skippy: RAID-1 2 Disks

Figure 2.24Skippy. The figures plot the results of running the Skippy disk characterization tool
on a single Quantum disk, a two disk RAID-0 array, and a two disk RAID-1 array.

57

2.3.3 Shear Performance

The stripe size within a disk array can have a large impact on performance [12, 14]. This effect

is especially important for RAID-5 storage, since writes ofless than a complete stripe require

additional I/O. Previous work has focused on selecting the optimal stripe size for a given workload.

We instead show how the file system can adapt the size and alignment of its writes as a function of

a given stripe size.

The basic idea is that the file system should adjust its writesto be stripe aligned as much as

possible. This optimization can occur in multiple places; we have modified the Linux 2.4 device

scheduler so that it properly coalesces and/or divides individual requests such that they are sent to

the RAID in stripe-sized units. This modification is straight-forward: only about 20 lines of code

were added to the kernel.

This simple change to make the file system stripe-aware leadsto tremendous performance

improvements. The experiments shown in Figure 2.25 are run on a hardware RAID-5 configuration

with four Quantum disks and a 16 KB chunk size. These results show that a stripe-aware file system

noticeably improves bandwidth for moderately-sized files and improves bandwidth for larger files

by over a factor of two.

2.4 Discussion

Our approach to uncovering the details of a storage array is not without its weaknesses. First,

the requirement of homogeneous disks limits the scope of systems that Shear can successfully

examine. The key to overcoming this limitation lies in determining the pattern size over a set of

58

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 500 1000 1500 2000

B
an

dw
id

th
 (

M
B

/s
)

Average File Size (KB)

The Effects of Stripe-Alignment

Stripe-Aligned
Default

Figure 2.25 Benefits of Stripe Alignment. The figure plots the bandwidth of a series of file
creations of an average size, as varied along the x-axis. Twovariants are shown: one in which the
file system generates stripe-sized writes and the default Linux. The workload consists of creating
100 files. The x-axis indicates the mean size of the files, which are uniformly distributed between
0.5× mean and 1.5× mean.

59

heterogeneous disks. We believe the same algorithmic approach can be utilized, but the trials con-

ducted may need to be deterministic, and the analysis phase may require modifications to establish

the performance differences of the array components. Second, the Shear detection process may

take a long time depending on the size and particular layout of the array. It may be possible to

use fewer requests during the individual microbenchmarks to reduce this runtime, but we have not

explored the sensitivity of our analysis to this parameter.Finally, Shear requires that it is the only

process accessing the array, and this prohibits the testingof storage systems that cannot be taken

offline. In the future, it may be possible to position Shear toaugment an existing workload to in-

duce the desired microbenchmarks in an online system, though doing so without severe detriment

to foreground performance will be challenging.

2.5 Conclusions

In this chapter we have presented Shear, a system that automatically detects important charac-

teristics of modern storage arrays, including the number ofdisks, chunk size, level of redundancy,

and layout scheme. The keys to Shear are its use of randomnessto extract steady-state perfor-

mance and its use of statistical techniques to deliver automated and reliable detection. We have

verified that Shear works as desired through a series of simulations over a variety of layout and

redundancy schemes. We have subsequently applied Shear to both software and hardware RAID

systems, revealing properties of both. Specifically, we found that Linux software RAID exhibits

poor performance for RAID-5 parity updates, and the Adaptec2200S RAID adapter implements

RAID-5 left-asymmetric layout.

60

We have also shown how Shear could be used through three case studies. Storage administra-

tors can use Shear to verify properties of their storage arrays, monitor their performance, and detect

disk failures. Shear can help extract individual parameters from disks within an array, enabling per-

formance enhancements previously limited to single disk systems. Finally, we have shown a factor

of two improvement in performance from a file system tuning its writes to the stripe size of its

RAID storage.

61

Chapter 3

Bridging the Information Gap:
Exposed RAID and Informed LFS

Although our basic informing interface has shown to be useful, it provides details at a rather

low level. File systems that want to take advantage of the array configuration must be imbued with

particular knowledge of each possible RAID scheme and its unique performance and reliability

characteristics. Given the number of RAID variants that exist today, and the potential growth of

new schemes in the future, designing a file system that can account for such a large population

may prove difficult.

To overcome this limitation, we introduce a second informing interface, Exposed RAID, that

encapsulates array information in abstractions that are meaningful to file system objectives. Specif-

ically, the E×RAID address space is divided into a set of regions, each of which is mapped to a

single disk or a set of disks. Hence, these regions representthe performance and failure boundaries

within the disk array. In addition to this static information, E×RAID provides dynamic informa-

tion about the performance and reliability of each region that may be exploited by the file system

to manage its use of the storage.

62

We make use of the E×RAID informing interface to evaluate a new division of laborbe-

tween the storage system and the file system. In particular, we design an Informed Log-Structured

File System (I·LFS) that explicitly manages and takes advantage of the performance and failure

boundaries present in a multiple disk storage system. By combining the information provided by

E×RAID along with file-system specific knowledge, I·LFS is more flexible and manageable than

a traditional file system, and can deliver higher performance and availability as well. For example,

adding a disk to I·LFS on-line is easily accomplished; further, I·LFS accounts for the potential

heterogeneity introduced by a new disk, and dynamically balances load across the disks of the sys-

tem, whatever their rates. I·LFS also increases the flexibility of storage by enabling user control

over redundancy on a per-file basis, and implements lazy mirroring to defer replication to a later

time, potentially increasing performance of the system at aslight decrease in reliability. Crucial

to I·LFS/E×RAID is the implementation of the aforementioned benefits without a significant in-

crease in overall complexity (and thus maintainability) ofthe storage stack. Via careful design, all

the functionality mentioned above is implemented with onlya 19% increase in overall code size as

compared to a traditional system.

The rest of the chapter is structured as follows. We give an overview of our approach in

Section 3.1, and then we describe E×RAID and I·LFS in Sections 3.2 and 3.3, respectively. We

present an evaluation of our system in Section 3.4, a discussion in Section 3.5, and we conclude in

Section 3.6.

63

3.1 Overview

In the next two sections, we present the design and implementation of E×RAID and I·LFS. Our

primary goal in designing the system is to exploit the information made available by E×RAID, thus

allowing I·LFS to implement functionality that would be difficult to achieve in a more traditional

layering. In particular, we aim to increase: (1) the ease of storage management, (2) performance,

especially when considering multiple heterogeneous disks, and (3) functionality, so as to meet the

demands of a diverse set of applications.

Our primary goal in designing and implementing E×RAID is to facilitate the use of array

information in the most efficient and simplest possible way,and to allow non-informed legacy

file systems to be built on top of E×RAID with no changes. Our primary goal in implementing

I·LFS is to minimize the impact of transforming the file system to utilize the new storage interface.

For example, changes that would require a re-design of the vnode layer were ruled out, as that

would mandate that all other file systems be changed in order to function in our system. Thus,

throughout our implementation effort, we integrate changes into I·LFS in a highly localized and

modular fashion – the fewer lines of code that changed, the better.

One question that must be addressed is our decision to modifyLFS and not a more traditional

(or perhaps more popular) FFS-like or journaling file system. One reason we chose LFS is its

natural flexibility in data placement; LFS is a modern example of a “write anywhere” storage

system [27, 32]. Write-anywhere systems provide an extra level of indirection such that writes can

be placed in any location on the storage medium, and we exploit this aspect of LFS in part of our

implementation. However, with this in mind, we do believe that a number of our implementation

64

techniques are general and could be applied to other file systems, and hope to investigate doing so

in the future. Those interested in general LFS file system performance issues should consult the

work of Rosenblum and Ousterhout [55], or subsequent research by Seltzeret al. [65, 66].

All of our software was developed within the context of the NetBSD 1.5 operating system.

The E×RAID layer was implemented as a set of hooks on the lower-level block-driver calls, and

is described in more detail in Section 3.2. I·LFS was implemented by extending the NetBSD

version of LFS, which is based on the original LFS for BSD Unix[65], and is described in detail

in Section 3.3. We chose the NetBSD version of LFS as it is known to be a relatively stable and

solid implementation.

3.2 Exposed RAID

We now describe the Exposed RAID storage interface. It consists of two major components: a

segmented address space which exposes some or all of the parallelism of the storage system to the

file system, and functions used to inform the file system of thedynamic state of the storage system.

The purpose of the E×RAID layer is to encapsulate information about a storage array in ab-

stractions that are meaningful to the file system. Thus, the file system, its designers, and its imple-

mentors are insulated from the particular implementation of the array, and can focus on notions of

functionality, performance, and reliability.

The realization of this abstraction may occur in a number of ways. For instance, a storage

system could provide native support for the E×RAID interface. Alternatively, the interface could

be implemented as a software layer on top of our basic informing interface, performing block

65

remapping to provide E×RAID regions and dynamic monitoring of performance. Additionally,

Shear could be used to automatically determine the parameters of the basic informing interface if

the underlying array is a legacy system.

3.2.1 A Segmented Address Space

A traditional RAID array presents the storage subsystem to the file system as a linear array of

blocks, underneath of which the true complexity of the particular RAID scheme is hidden. File

systems interact with RAID systems by either reading or writing the blocks. In keeping with our

desire to minimize change and preserve backwards compatibility, E×RAID also provides a linear

array of blocks which can be read or written as the basic interface.

However, because we wish to expose information about the storage system to the file system,

the address space issegmented; specifically, it is organized as a series of contiguousregions, each

of which is mapped directly to a single disk (or set of disks),and these region boundaries are made

known to the file system above, if it so desires. For example, in a four-disk storage system with

each disk capable of storingN blocks, the address space E×RAID presents might be segmented

as follows: blocks0 throughN − 1 map to disk0, blocksN through2N − 1 map to disk1, and so

forth.

By exposing this information, E×RAID enables the file system to understand the performance

and failure boundaries of the storage system. As we shall seein later sections, the file system can

take advantage of this to place data on a particular region more intelligently, potentially improving

performance, reliability, or other aspects of the storage system.

66

.

Mirror pairMirror pair

Linear address space of blocks

Region 0 Region 1

Figure 3.1 An Example E×RAID Configuration. The diagram depicts an example E×RAID
configuration in which each of two disks is combined into a mirrored pair. Two regions, each half
of the size of the total address space, are presented to the client file system.

67

Within E×RAID, a region may represent more than just a single disk. Forexample, a region

could be configured to represent a mirrored pair of disks, or even a RAID-5 collection. Thus,

each region can be viewed as a configurable software-based RAID, and the entire E×RAID ad-

dress space as a single representation of the conglomeration of such RAID subsystems. In such a

scenario, some information is hidden from the file system, but cross-region optimizations are still

possible, if more than one region exists. An example of an E×RAID configuration over mirrored

pairs is shown in Figure 3.1.

Allowing each region to represent more than just a single disk has two primary benefits. First, if

each region is configured as a RAID (such as a mirrored pair of disks), the file system is not forced

to manage redundancy itself, though it can choose to do so if so desired. Second, this arrangement

allows for backwards compatibility, as E×RAID can be configured as a single striped, mirrored,

or RAID-5 region, thus allowing unmodified file systems to useit without change.

3.2.2 Dynamic Information

Although the segmented address space exposes the nature of the underlying disk system to

the file system (either in part or in full), this knowledge is often not enough to make intelligent

decisions about data placement or replication. Thus, the E×RAID layer exposes dynamic infor-

mation about the state of each region to the file system above,and it is in this way that E×RAID

distinguishes itself from traditional volume managers.

Two pieces of information are needed. First, the file system may desire to haveperformance

information on a per-region basis. The E×RAID layer tracks queue lengths and current throughput

68

levels, and makes these pieces of information available to the file system. Historical tracking of

information is left to the file system.

Second, the file system may wish to know about the resilience of each region,i.e., when fail-

ures occur, and how many more failures a region can tolerate.Thus, E×RAID also presents this

information to the file system. For example, in Figure 3.1, the file system would know that each

mirror pair could tolerate a single disk failure, and would be informed when such a failure occurs.

The file system could then take action, perhaps by directing subsequent writes to other regions,

or even by moving important data from the “bad” region into other, more reliable portions of the

E×RAID address space.

3.2.3 Implementation

In our current implementation, E×RAID is implemented as a thin layer between the file system

and the storage system. In order to implement a striped, mirrored, or RAID-5 region, we simply

utilize the standard software RAID layer provided with NetBSD. However, our prototype E×RAID

layer is not completely generalized as of this date, and thusin its current form would require some

effort to allow a file system other than I·LFS to utilize it.

The segmented address space is built by interposing on the vnodestrategy call, which allows

us to remap requests from their logical block number within the virtual address space presented

by E×RAID into a physical disk number and block offset, which can then be issued to underlying

disk or RAID.

69

Dynamic performance information is collected by monitoring the current performance levels

of reads and writes. In the prototype, region boundaries, failure information, and performance

levels (throughput and queue length) are tracked in the low-levels of the file system. A more

complete implementation would make the information available through anioctl() interface to

the E×RAID device. Also note that we focus primarily on utilizing the performance information

in this chapter.

3.3 Informed LFS

We now describe the I·LFS file system. Our current design has four major pieces of additional

functionality, as compared to the standard LFS: on-line expandability of the storage system, dy-

namic parallelism to account for performance heterogeneity, flexible user-managed redundancy,

and lazy mirroring of writes. In sum total, these added features make the system more manageable

(the administrator can easily add a new disk, without worry of configuration), more flexible (users

have control over if replication occurs), and have higher performance (I·LFS delivers the full band-

width of the system even in heterogeneous configurations, and flexible mirroring avoids some of

the costs of more rigid redundancy schemes). For most of the discussion, we focus on the case that

most separates I·LFS/E×RAID from a traditional RAID, where the E×RAID layer exposes each

disk of the storage system as a separate region to I·LFS.

70

3.3.1 On-Line Expansion and Contraction

Design: The ability to upgrade a storage system incrementally is crucial. As the performance or

capacity demands of a site increase, an administrator may need to add more disks. Ideally, such

an addition should be simple to perform (e.g., a single command issued by the administrator, or an

automatic addition when the disk is detected by the hardware), require no down-time (thus keeping

availability of storage high), and immediately make the extra performance and capacity of the new

disk available.

In older systems, on-line expansion is not possible. Even ifthe storage system could add a

new disk on-the-fly, it is likely the case that an administrator would have to unmount the partition,

expand it (perhaps with a tool similar to that described in [79]), and then re-mount the file system.

Worse, some systems require that a new file system be built, forcing the administrator to restore

data from tape. More modern volume managers [85] allow for on-line expansion, but still need file

system support.

Thus, our I·LFS design includes the ability to incorporate new disks (really, new E×RAID

regions) on-line with a single command given to the file system. No complicated support is neces-

sitated across many layers of the system. If the hardware supports hot-plug and detection of new

disks without a power-cycle, I·LFS can add new disks without any down time and thus reductionin

data availability. Overall, the amount of work an administrator must put forth to expand the system

is quite small.

Contraction is also important, as the removal of a region should be as simple as the addition

of one. Therefore, we also incorporate the ability to removea region on the fly. Of course, if the

71

file system has been configured in a non-redundant manner, some data will likely be lost. The

difference between I·LFS and a traditional system in this scenario is that I·LFS knows exactly

which files are available and can deliver them to applications.

Implementation: To allow for on-line expansion and contraction of storage, the file system views

regions that have not yet been added as extant and yet fully utilized; thus, when a new region is

added to the system, the blocks of that disk are made available for allocation, and the file system

will immediately begin to write data to them. Conversely, a region that is removed is viewed as

fully allocated. This technique is general and could be applied to other file systems, and similar

ideas have been used elsewhere [27].

More specifically, because a log-structured file system is composed of a collection of LFS seg-

ments, it is natural to expand capacity within I·LFS by adding more free segments. To implement

this functionality, thenewfs ilfs program creates an expanded LFS segment table for the file

system. The entries in the segment table record the current state of each segment. When a new

E×RAID region is added to the file system, the pertinent information is added to the superblock,

and an additional portion of the segment table is activated.This approach limits the number of

regions that can be added to a fixed number (currently, 16); for more flexible growth, the segment

table could be placed in its own file and expanded as necessary.

3.3.2 Dynamic Parallelism

Design: One problem introduced by the flexibility an administrator has in growing a system is

the increased potential for performance heterogeneity in the disk subsystem; in particular, a new

72

disk or E×RAID segment may have different performance characteristics than the other disks of

the system. In such a case, traditional striping and RAID schemes do not work well, as they all

assume that disks run at identical rates [5, 19].

Traditionally, the presence of multiple disks is hidden by the storage layer from the file sys-

tem. Thus, current systems must handle any disk performanceheterogeneity in the storage layer

– the file system does not have enough information to do so itself. The research community has

proposed schemes to deal with static disk heterogeneity [4,19, 59, 91], though many of these so-

lutions require careful tuning by an administrator. As Van Jacobsen notes, “Experience shows that

anything that needs to be configured will be misconfigured” [30].

Further complicating the issue is that the delivered performance of a device could change over

time. Such changes could result from workload imbalances, or perhaps from the “fail-stutter”

nature of modern devices, which may present correct operation but degraded performance to

clients [6]. Even if more advanced heterogeneous data layout schemes are utilized, they will not

work well under dynamic shifts in performance.

To handle such static and dynamic performance differences among disks, we include a dynamic

segment placement mechanism within I·LFS [5]. A segment can logically be written to any free

space in the file system; we exploit this by writing segments to E×RAID regions in proportion

to their current rate of performance, exploiting the dynamic state presented to the file system by

E×RAID. By doing so, we can dynamically balance the write load of the system to account for

static or dynamic heterogeneity in the disk subsystem. Notethat if performance of the disks is

73

roughly equivalent, this dynamic scheme will degenerate tostandard RAID-0 striping of segments

across disks.

This style of dynamic placement could also be performed in a more traditional storage system

(e.g., AutoRAID has the basic mechanisms in place to do so [88]). However, doing so unduly adds

complexity into the system, asboth the file system and the storage system have to track where

blocks are placed; by pushing dynamic segment placement into the file system, overall complexity

is reduced, as the file system already tracks where the blocksof a file are located.

Implementation: The original version of LFS allocates segments sequentially based on availabil-

ity; in other words, all free segments are treated equally. To better manage parallelism among disks

in I·LFS, we develop asegment indirection technique. Specifically, we modify theilfs newseg()

routine to invoke a data placement strategy. Theilfs newseg() routine is used to find the next

free segment to write to; here, we alter it to be “region aware”, and thus allow for a more informed

segment-placement decision. By choosing disks in accordance with their performance levels (in-

formation provided by E×RAID), the load across a set of heterogeneously-performingregions can

be balanced.

The major advantage of our decision to implement this functionality within theilfs newseg()

routine is that it localizes the knowledge of multiple disksto a very small portion of the file system;

the vast majority of code in the file system is not aware of the region boundaries within the disk

address space, and thus remains unchanged. The slight drawback is that the decision of which

region to place a segment upon is made early, before the segment has been written to; if the

performance level of the disk changes as the segment fills in asignificant way, the placement

74

decision could potentially be a poor one. In practice, we have not found this to be a performance

problem.

3.3.3 Flexible Redundancy

Design: Typically, redundancy is implemented in a one-size-fits-all manner, as a single RAID

scheme (or two, as in AutoRAID) is applied to all the blocks ofthe storage system. The file system

is typically neither involved nor aware of the details of data replication within the storage layer.

This traditional approach is limiting, as much semantic information is available in the file system

as well as in smart users or applications, which could be exploited to improve performance or

better utilize capacity.

Thus, in I·LFS, we explore the management of redundancy strictly within the file system, as

managing redundancy in the file system provides greater flexibility and control to users. In our

current design, we allow users or applications to select whether a file should be made redundant (in

particular, if it should be mirrored). If a file is mirrored, users pay the cost in terms of performance

and capacity. If a file is not mirrored, performance increases during writes to that file, and capacity

is saved, but the chances of losing the file are increased. Turning off redundancy is thus well-suited

for temporary files, files that can easily be regenerated, or swap files.

Because I·LFS performs the replication, better accounting is also possible, as the system knows

exactly which files (and hence which users) are using which physical blocks. In contrast, with a

traditional file system mounted on top of an advanced storagesystem such as AutoRAID [88],

75

users are charged based on the logical capacity they are using, whereas the true usage of storage

depends on access patterns and usage frequency.

Because redundancy schemes are usually implemented withinthe RAID storage system (where

no notion of a file exists), our scheme would not easily be implemented in a traditionally-layered

system. The storage system is wholly unaware of which blocksconstitute a file and therefore

cannot receive input from a user as to which blocks to replicate; only if both the file system and

storage system were altered could such functionality be realized. In the future, it would be inter-

esting to investigate a range of policies on top of our redundancy mechanisms that automatically

apply different redundancy strategies according to the class of a file, akin to how the Elephant file

system segregates files for different versioning techniques [60].

Implementation: To accomplish our goal of per-file redundancy, we decided to utilize separate

and unique meta-data for original and redundant files. This approach is natural within the file

system as it does not require changes to on-disk data structures.

In our implementation, we use a straight-forward scheme that assigns even inode numbers to

original files and odd inode numbers to their redundant copies. This method has several advan-

tages. Because the original and redundant files have unique inodes, the data blocks can be dis-

tributed arbitrarily across disks (given certain constraints described below), thus allowing us to use

redundancy in combination with our other file system features. Also, the number of LFS inodes is

unlimited because they are written to the log, and the inode map is stored in a regular file which is

expanded as necessary. The prime disadvantage of our approach is that it limits redundancy to one

76

block 0block 0

inode N inode N+1

file N+1 file N

Figure 3.2 The Crossed Pointer Problem. The figure illustrates the problem with using a
separate file as a means for redundancy; specifically, even though each element of a file (inode,
data block) has been replicated, a single lost disk could still make it difficult to find a particular
data block, due to the extra requirement that for each block,a pointer chain to the block must still
be live. In the example, the file with inode numberN and its mirror, inodeN + 1, consist of a
single data block (block 0). If either disk crashes, it is notpossible to find the corresponding data
block, even though a copy of it exists on the remaining working disk.

77

copy, but this could easily be extended to anN-way mirroring scheme by reservingN i-numbers

per file.

One problem introduced by our decision to utilize separate inodes to track the primary and

mirrored copy of a file is what we refer to as the crossed pointer problem. Figure 3.2 illustrates the

difficulty that can arise. Simply requiring each component of a file (e.g., the inode, indirect blocks,

and data blocks) be replicated is not sufficient to guaranteethat all data can be recovered easily

under a single disk failure. Instead, we must ensure that each data block isreachable under a disk

failure; a block being reachable implies that a pointer chain to it exists.

Consider the example in the figure: a file with inode numberN is replicated within inode

numberN + 1. InodeN is located on the first disk, as is the first data block of the mirror copy

(file N + 1). InodeN + 1 is on the other disk, as is the first data block of the primary copy (file

N). However, if either disk fails, the first data block is not easily recovered, as the inode on the

surviving disk points to the data block on the failed disk. Insome file systems, this would be a

fatal flaw, as the data block would be unrecoverable. In LFS, it is only a performance issue, as the

extra information found within segment summary blocks allows for full recovery; however, a disk

crash would mandate a full scan of the disk to recover all datablocks.

There are a number of possible remedies to the problem. For example, one could perform an

explicit replication of each inode and all other pointer-carrying structures, such as indirect blocks,

doubly-indirect blocks, and so forth. However, this would require the on-disk format to change,

and would be inefficient in its usage of disk space, as each inode and indirect block would have

four logical copies in the file system.

78

Instead, we take a much simpler approach ofdivide and conquer. The disks of the system are

divided into two sets. When writing a redundant file to disk, I·LFS decides which set the primary

copy should be placed within; the redundant copy is placed within the other set. Thus, because no

pointers cross from either set into the other, we can guarantee that a single failure will cause no

harm (in fact, we can tolerate any number of failures to disksin that set).

Finally, incorporating redundancy into I·LFS also presents us with a difficult implementation

challenge: how should we replicate the data and inodes within the file system, without re-writing

every routine that creates or modifies data on disk? We develop and applyrecursive vnode invoca-

tion to ease the task. We embellish most I·LFS vnode operations with a short recursive tail; therein,

the routine is invoked recursively (with appropriate arguments) if the routine is currently operating

on an even i-number and therefore on the primary copy of the data, and if the file is designated

for redundancy by the user. For instance, when a file is created usingilfs create(), a recursive

call toilfs create() is used to create a redundant file. The recursion is broken within the call to

perform the identical operation to the redundant file.

3.3.4 Lazy Mirroring

Design: User-controlled replication allows users to controlif replication occurs, but notwhen.

As has been shown in previous work, many potential benefits arise in allowing flexible control

over when redundant copies are made or parity is updated [18]. Delaying parity updates has been

shown to be beneficial in RAID-5 schemes to avoid the small-write problem [61], and could also

reduce load under mirrored schemes. Implementing such a feature at the file system level allows

79

the user to decide the window of vulnerability for each file, as losing data in certain files may

likely be more tolerable than in others. Note that either of these enhancements would be difficult

to implement in a traditional system, as the information required resides in both the file system and

RAID, necessitating non-trivial changes to both.

In I·LFS, we incorporatelazy mirroring into our user-controlled replication scheme. Thus,

users can designate a file as non-replicated, immediately replicated, or lazily replicated. By choos-

ing a lazy replica, the user is willing to increase the chanceof data loss for improved performance.

Lazy mirroring can improve performance for one of two reasons. First, by delaying file replication,

the file system may reduce load under a burst of traffic and defer the work of replication to a later

period of lower system load. Second, if a file is written to disk and then deleted before the replica-

tion occurs, the cost of replication is removed entirely. Asmost systems buffer files in memory for

a short period of time (e.g., 30 seconds), and file lifetimes have recently been shown to be longer

than this on average [53], this second scenario may be more common than previously thought.

Implementation: Lazy mirroring is implemented in I·LFS as an embellishment to the file-system

cleaner. For files that are designated as lazy replicas, an extra bit is set in the segment usage

table indicating their status. When the cleaner scans a segment and finds blocks that need to be

replicated, it simply performs the replication directly, making sure to place replicated blocks so

as to avoid the crossed pointer problem, and associates themwith the mirrored inode. When the

replication is complete, the bit is cleared. Currently, thefile system replicates files after a 2-minute

delay, though in the future this could be set directly by the user or application.

80

3.4 Evaluation

In this section, we present an evaluation of E×RAID and I·LFS. Experiments are performed

upon an Intel-based PC with 128 MB of physical memory. The main processor is a 1-GHz Intel

Pentium III Xeon, and the system houses four 10,000 RPM Seagate ST318305LC Cheetah 36XL

disks (which we will refer to as the “fast” disks), and four 7,200 RPM Seagate ST34572W Bar-

racuda 4XL disks (the “slow” disks). The fast disks can deliver data at roughly 21.6 MB/s each,

and the slow disks at approximately 7.5 MB/s apiece. For all experiments, we perform 30 trials

and show both the average and standard deviation.

In some experiments, we compare the performance of I·LFS/E×RAID to standard RAID-0

striping. Stripe sizes are chosen so as to maximize performance of the RAID-0 given the workload

at hand, making the comparison as fair as possible, or even slightly unfair towards I·LFS/E×RAID.

3.4.1 Baseline Performance

In this first experiment, we demonstrate the baseline performance of I·LFS and E×RAID on

top of two different homogeneous storage configurations, one with four slow disks, and one with

four fast disks. The experiment consists of sequential write, sequential read, random write, and

random read phases (based on patterns generated by the Bonnie [9] and IOzone [43] benchmarks).

We perform this experiment to demonstrate that there is no unexpected overhead in our implemen-

tation, and that it scales to higher-performance disks effectively.

81

0

10

20

30

40

50

60

70

80

90

Seq Write Seq Read Rand Write Rand Read

T
hr

ou
gh

pu
t (

M
B

/s
)

Access Pattern

Baseline Performance

Slow Disks
Fast Disks

Figure 3.3 Baseline Performance Comparison. The figure plots the performance of
I·LFS/E×RAID under sequential writes, sequential reads, random writes, and random reads. The
tests are run on four disks, varying whether the disks used are the four slow disks or the four fast
ones. In all cases, requests generated by the tests are 8 KB insize, and the total data-set size is
200 MB.

82

As we can see in Figure 3.3, sequential write, sequential read, and random writes all perform

excellently, achieving high bandwidth across both disk configurations. Not surprisingly for a log-

based file system, random reads perform much more poorly, achieving roughly 0.9 MB/s on the

four slow disks, and 1.8 MB/s on the four fast disks, in line with what one would expect from

these disks in a typical RAID configuration.

3.4.2 On-line Expansion

We now demonstrate the performance of the system under writes as disks are added to the

system on-line. In this experiment, the disks are already present within the PC, and thus the

expansion stresses the software infrastructure and not hardware capabilities.

Figure 3.4 plots the performance of sequential writes over time as disks are added to the system

(random writes perform similarly, due to the nature of LFS).Along the x-axis, the amount of data

written to disk is shown, and the y-axis plots the rate that the most recent 64 MB was committed

to disk. As one can see from the graph, I·LFS immediately starts using the disks for write traffic

as they are added to the system. However, read traffic will continue to be directed to the original

disks for older data. The LFS cleaner could redistribute existing data over the newly-added disks,

either explicitly or through cleaning, but we have not yet explored this possibility.

83

0

10

20

30

40

50

60

70

80

90

0 128 256 384 512 640 768 896 1024

T
hr

ou
gh

pu
t (

M
B

/s
)

Amount Written (MB)

Performance During Expansion

Disk 2 Added

Disk 3 Added

Disk 4 Added

Figure 3.4Storage Expansion. The graph plots the performance of I·LFS during storage expan-
sion. The experiment begins with I·LFS writing to a single disk. Each time 256 MB is written, a
new disk is brought on-line, and I·LFS immediately begins writing to it for increased performance.
Disk expansion is accomplished via a simple command, which adds the disk (or region) to the file
system without down time.

84

3.4.3 Dynamic Parallelism

We next explore the ability of I·LFS to place segments dynamically in different regions based

on the current performance characteristics of the system, in order to demonstrate the ability of

I·LFS to react to static and dynamic performance differences across devices.

There are many reasons for performance variation among drives. For example, when new disks

are added, they can likely be faster than older ones; further, unexpected dynamic performance

variations due to bad-block remapping or “hot spots” in the workload are not uncommon [6], and

therefore can also lead to performance heterogeneity across disks. Indeed, the ability to expand the

disk system on-line (as shown above) induces a workload imbalance, as read traffic is not directed

to the newly-added disks until the cleaner has reorganized data across all of the disks in the system.

We experiment with both static and dynamic performance variations in this subsection. Fig-

ure 3.5 shows the results of our static heterogeneity test. The sequential write performance of I·LFS

with its dynamic segment placement scheme is plotted along with FFS on top of the NetBSD con-

catenated disk driver (CCD) configured to stripe data in a RAID-0 fashion. In all experiments, data

is written to four disks. Along the x-axis, we increase the number of slow disks in the system; thus,

at the extreme left, all of the four disks are fast ones, at theright they are all slow ones, and in the

middle are different heterogeneous configurations.

As we can see in the figure, by writing segments dynamically inproportion to delivered disk

performance, I·LFS/E×RAID is able to deliver the full bandwidth of the underlying storage system

to applications – overall performance degrades gracefullyas more slow disks replace fast ones in

85

0

10

20

30

40

50

60

70

80

90

4:0 3:1 2:2 1:3 0:4

T
hr

ou
gh

pu
t (

M
B

/s
)

Heterogeneity Configuration (Fast Disks:Slow Disks)

Performance Under Static Heterogeneity

I.LFS/ExRAID
FFS/CCD

Figure 3.5 Static Storage Heterogeneity. The figure plots the performance of I·LFS versus
FFS/CCD with standard RAID-0 striping, both under a series of disk configurations. Along the
x-axis, the number of fast and slow disks are varied (f :s implies f fast disks ands slow ones).
By adjusting where segments are written dynamically, I·LFS/E×RAID is able to deliver the full
bandwidth of disks. In contrast, standard striping performs at the rate of the slowest disk in the
system. For each test, 200 MB is written to disk.

86

0

10

20

30

40

50

60

70

80

90

0 256 512 768 1024 1280 1536

T
hr

ou
gh

pu
t (

M
B

/s
)

Amount Written (MB)

Performance Under Dynamic Heterogeneity

I.LFS/ExRAID
FFS/CCD

Figure 3.6 Dynamic Storage Heterogeneity. The figure plots the performance of
I·LFS/E×RAID and FFS/CCD under a dynamic performance variation. During the experiment,
the performance of a single disk is temporarily degraded; the faulty disk delays requests for a fixed
time, reducing throughput of the disk from 21.6 MB/s to 5.8 MB/s. By adaptively writing more
data to the other disks, I·LFS/E×RAID with dynamic segment placement is better able to adjustto
the imbalance and deliver higher throughput.

87

the storage system. RAID-0 striping performs at the rate of the slowest disk, and thus performs

poorly in any heterogeneous configuration.

We also perform a “misconfiguration” test. In this experiment, we configure the storage system

to utilize two partitions on thesame disk, emulating a misconfiguration by an administrator (similar

in spirit to tests performed by Brown and Patterson [10]). Thus, while the disk system appears to

contain four separate disks, it really only contains three.In this case, I·LFS/E×RAID writes data to

disk at 65 MB/s, whereas standard striping delivers only 46 MB/s. The dynamic segment striping

of I·LFS is successfully able to balance load across the disks, inthis case properly assigning less

load to each partition within the accidentally over-burdened disk.

In our final heterogeneity experiment, we introduce an artificial “performance fault” into a

storage system consisting of four fast disks, in order to confirm that our load balancing works well

in the face of dynamic performance variations. Figure 3.6 shows the performance during a write

of both I·LFS/E×RAID with dynamic segment placement and FFS/CCD using RAID-0 striping in

a case where a single disk of the four exhibits a performance degradation. After one third of the

data is written, a kernel-based utility is used to temporarily delay completed requests from one of

the disks. The delay has the effect of reducing its throughput from 21.6 MB/s to 5.8 MB/s. The

impaired disk is returned to normal operation after an additional one third of the data is written. As

we can see from the figure, I·LFS/E×RAID does a better job of tolerating the fluctuations induced

during the second phase of the experiment, improving performance by over a factor of two as

compared to FFS/CCD.

88

3.4.4 Flexible Redundancy

In our first redundancy experiment, we verify the operation of our system in the face of failure.

Figure 3.7 plots the performance of a set of processes performing random reads from redundant

files on I·LFS. Initially, the bandwidth of all four disks is utilized by balancing the read load

across the mirrored copies of the data. As the experiment progresses, a disk failure is simulated by

disabling reads to one of the disks. I·LFS continues providing data from the available replicas, but

overall performance is reduced.

Next, we demonstrate the flexibility of per-file redundancy when the redundancy is managed

by the file system. A total of 20 files are written concurrentlyto a system consisting of four fast

disks, while the percentage of those files that are mirrored is increased along the x-axis. The results

are shown in Figure 3.8.

As expected, the net throughput of the system decreases linearly as more files are mirrored, and

when all are mirrored, overall throughput is roughly halved. Thus, with per-file redundancy, users

“get what they pay for”; if users want a file to be redundant, the performance cost of replication

is paid during the write, and if not, the performance of the write reflects the full bandwidth of the

underlying disks.

3.4.5 Lazy Mirroring

In our final experiment, we demonstrate some of the performance characteristics of lazy mir-

roring. Figure 3.9 plots the write performance to a set of lazily mirrored files. After a delay of 20

seconds, the cleaner begins replicating data, and the normal file system traffic suffers from a small

89

0

1

2

3

4

5

6

7

0 128 256 384 512 640 768

T
hr

ou
gh

pu
t (

M
B

/s
)

Amount Read (MB)

Performance During Failure

Disk 1 Failed

Disk 2 Failed

Figure 3.7 Storage Failure. The figure plots the random read performance to a set of mirrored
files across four disks on I·LFS. At the labeled points in the graph, a disk is taken off-line, and
performance decreases because I·LFS can no longer balance the read load between the replicas.
Note that in this example, I·LFS/E×RAID can survive any single disk failure; however, after the
first failure, I·LFS/E×RAID can only tolerate the loss of the other disk in the set.

90

0

10

20

30

40

50

60

70

80

90

0% 20% 40% 60% 80% 100%

T
hr

ou
gh

pu
t (

M
B

/s
)

Percent of Files Written Redundantly

The Cost of Redundancy

Figure 3.8Per-file Redundancy. The figure plots the performance of writes to 20 separate filesas
the percent of those files that are mirrored increases. As more files are mirrored, the net bandwidth
of the system drops to roughly half of its peak rate, as expected. The peak bandwidth achieved is
lower than the previous experiments due to the increased number of files and subsequent meta-data
operations. In each experiment, 200 MB is written out to disk.

91

decline in performance. The default replication delay for the system is two minutes in length, but

an abbreviated delay is used here to reduce the time of the experiments.

From the figure, we can see the potential benefits of lazy mirroring, as well as its potential

costs. If lazily mirrored files are indeed deleted before replication begins, the full throughput of

the storage layer will be realized. However, if many or all lazily mirrored files are not deleted

before replication, the system incurs an extra penalty, as those files must be read back from disk

and then replicated, which will affect subsequent file system traffic. Therefore, lazy mirroring

should be used carefully, either in systems with highly bursty traffic (i.e., idle time for the lazy

replicas to be created), or with files that are easily distinguishable as short-lived.

3.5 Discussion

In implementing I·LFS/E×RAID, we were concerned that by pushing more functionality into

the file system, the code would become unmanageably complex.Thus, one of our primary goals is

to minimize code complexity. We believe we achieve this goal, integrating the three major pieces

of functionality with only an additional 1,500 lines of code, a 19% increase over the original

size of the LFS implementation. Of this additional code, roughly half is due to the redundancy

management.

From the design standpoint, we find that managing redundancywithin the file system has many

benefits, but also causes many difficulties. For example, to solve the crossed-pointer problem, we

applied a divide-and-conquer technique. By placing the primary copy of a file into one of two sets,

and its mirror in the other, we enable fast operation under failure. However, our solution limits

92

data placement flexibility, in that once a file is assigned to aset, any subsequent writes to that file

must be written to that set. This limitation affects performance, particularly under heterogeneous

configurations where one set has significantly different performance characteristics than the other.

Though we can relax these placement restrictions,e.g., by choosing which disks constitute a set

on a per-file basis, the problem is fundamental to our approach to file-system management of

redundancy.

From the implementation standpoint, file-system managed redundancy is also problematic, in

that the vnode layer is designed with a single underlying disk in mind. Though our recursive

invocation technique was successful, it stretched the limits of what was possible in the current

framework, and new additions or modifications to the code arenot always straightforward to im-

plement. To truly support file-system managed redundancy, aredesign of the vnode layer may be

beneficial [56].

3.6 Conclusions

In terms of abstractions, block-level storage systems suchas SCSI have been quite success-

ful: disks hide low-level details from file systems such as the exact mechanics of arm movement

and head positioning, but still export a simple performancemodel upon which file systems could

optimize. As Lampson said: “[...] an interface can combine simplicity, flexibility, and high perfor-

mance together by solving one problem and leaving the rest tothe client” [33]. In early single-disk

systems, this balance was struck nearly perfectly.

93

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

Performance with Lazy Redundancy

I.LFS/ExRAID
Cleaner

Figure 3.9 Lazy Mirroring. The figure plots the write performance to a set of lazy redundant
files on I·LFS with a replication delay of 20 seconds. Peak performanceis achieved during the
initial portion of the test, but performance is reduced slightly as the cleaner begins replicating data.
After the write test completes, the cleaner continues to replicate data in the background.

94

As storage systems evolved from a single drive into a RAID with multiple disks, the interface

remained simple, but the RAID itself did not. The result is a system full of misinformation: the

file system no longer has an accurate model of disk behavior, and the now-complex storage system

does not have a good understanding of what to expect from the file system.

E×RAID and I·LFS bridge this information gap by design: the presence of multiple regions is

exposed directly to the file system, enabling new functionality. In this chapter, we have explored the

implementation of on-line expansion, dynamic parallelism, flexible redundancy, and lazy mirroring

in I·LFS. All were implemented in a relatively straight-forwardmanner within the file system,

increasing system manageability, performance, and functionality, while maintaining a reasonable

level of overall system complexity. Some of these aspects ofI·LFS would be difficult to build

in the traditional storage stack, highlighting the importance of informing interfaces that allow

functionality to be placed in the correct layer of the system.

95

Chapter 4

Collaborating Layers: Journal-guided Resynchronization

4.1 Introduction

In this chapter, we look beyond information-only interfaces to new interfaces that allow storage

stack layers to communicate more effectively. Our goal is toidentify a problem that is best solved

in a coordinated manner across layers, and to develop an efficient, informing interface that allows

for such collaboration. Specifically, we address the problem of maintaining consistency at the

RAID level.

The task of a RAID is to maintain consistency between the dataand the redundant information

it stores. This invariant provides the ability to recover data in the case of a disk failure. However,

because the blocks reside on more than one disk, updates cannot be applied atomically. Hence,

maintaining these invariants in the face of crashes is challenging. If a crash occurs during a write

to an array, its blocks may be left in an inconsistent state. This inconsistency introduces awindow

of vulnerability; if a data disk fails before the stripe is made consistent, the data on that disk will

be lost. Automatic reconstruction of the missing data block, based on the inconsistent parity, will

silently return bad data to the client.

96

High-end storage arrays circumvent this problem gracefully with non-volatile memory. By

buffering an update in NVRAM until the disks have been consistently updated, a hardware-based

approach avoids the window of vulnerability entirely. The outcome is ideal: both performance

and reliability are excellent. Unfortunately, the extra hardware entails extra cost; many of these

solutions come with multi-million dollar price tags [21].

In commodity RAID systems that lack non-volatile memory, a performance versus reliability

trade-off must be made. Most current software RAID implementations choose performance over

reliability [78]: they simply issue writes to the disks in parallel, hoping that an untimely crash does

not occur in between. If a crash does occur, these systems employ an expensiveresynchronization

process: by scanning the entire volume, such discrepanciescan be found and repaired. For large

volumes, this process can take hours or even days.

The alternate software RAID approach chooses reliability over performance [16]. By applying

write-ahead logging within the array to record the locationof pending updates before they are

issued, these systems avoid time-consuming resynchronization: during recovery, the RAID simply

repairs the locations as recorded in its log. Unfortunately, removing the window of vulnerability

comes with a high performance cost: each update within the RAID must now be preceded by a

synchronous write to the log, greatly increasing the total I/O load on the disks.

To solve the consistent update problem in the commodity RAIDenvironment, and to develop

a solution with both high performance and reliability, we take a global view of the storage stack:

can we find acollaborative approach that leverages functionality in other layers of the system to

assist us? In many cases, the client of the RAID system will bea modern journaling file system,

97

such as the default Linux file system, ext3 [80, 81, 82], or ReiserFS [51], JFS [8], or Windows

NTFS [71]. Although standard journaling techniques maintain the consistency of file system data

structures, they do not solve the consistent update problemat the RAID level. We find, however,

that journaling can be readily augmented to do so.

Specifically, we introduce a new mode of operation within Linux ext3:declared mode. Before

writing to any permanent locations, declared mode records its intentions in the file system journal.

This functionality guarantees a record of all outstanding writes in the event of a crash. By consult-

ing this activity record, the file system knows which blocks were in the midst of being updated and

hence can dramatically reduce the window of vulnerability following a crash.

To complete the process, the file system must be able to communicate its information about

possible vulnerabilities to the RAID layer below. For this purpose, we add a new informing inter-

face to the RAID layer: theverify read. Upon receiving a verify read request, the RAID layer reads

the requested block as well as its mirror or parity group and verifies the redundant information. If

an irregularity is found, the RAID layer re-writes the mirror or parity to produce a consistent state.

We combine these features to integrate journal-guided resynchronization into the file system

recovery process. Using our record of write activity vastlydecreases the time needed for resyn-

chronization, in some cases from a period of days to mere seconds. Hence, our approach avoids the

performance versus reliability trade-off found in commodity RAID systems: performance remains

high and the window of vulnerability is greatly reduced.

In general, we believe the key to our solution is itscollaborative nature. By removing the

strict isolation between the file system above and the RAID layer below, these two subsystems

98

can worktogether to solve the consistent update problem without sacrificing either performance or

reliability.

The rest of the chapter is organized as follows. Section 4.2 illustrates the RAID consistent up-

date problem and quantifies the likelihood that a crash will lead to data vulnerability. Section 4.3

provides an introduction to the ext3 file system and its operation. In Section 4.4, we analyze ext3’s

write activity, introduce ext3 declared mode and an addition to the RAID interface, and merge

RAID resynchronization into the journal recovery process.Section 4.5 evaluates the performance

of declared mode and the effectiveness of journal-guided resynchronization. We conclude in Sec-

tion 4.6.

4.2 The Consistent Update Problem

4.2.1 Introduction

The task of a RAID is to maintain an invariant between the dataand the redundant information

it stores. These invariants provide the ability to recover data in the case of a disk failure. For

RAID-1, this means that each mirrored block contains the same data. For parity schemes, such as

RAID-5, this means that the parity block for each stripe stores the exclusive-or of its associated

data blocks.

However, because the blocks reside on more than one disk, updates cannot be applied atomi-

cally. Hence, maintaining these invariants in the face of failure is challenging. If a crash occurs

during a write to an array, its blocks may be left in an inconsistent state. Perhaps only one mirror

was successfully written to disk, or a data block may have been written without its parity update.

99

We note here that the consistent update problem and its solutions are distinct from the tradi-

tional problem of RAID disk failures. When such a failure occurs, all of the redundant information

in the array is lost, and thus all of the data is vulnerable to asecond disk failure. This situation is

solved by the process of reconstruction, which regeneratesall of the data located on the failed disk.

4.2.2 Failure Models

We illustrate the consistent update problem with the example shown in Figure 4.1. The diagram

depicts the state of a single stripe of blocks from a four diskRAID-5 array as time progresses from

left to right. The software RAID layer residing on the machine is servicing a write to data block

Z, and it must also update the parity block,P. The machine issues the data block write at time 1, it

is written to disk at time 3, and the machine is notified of its completion at time 4. Similarly, the

parity block is issued at time 2, written at time 5, and its notification arrives at time 6. After the

data write to blockZ at time 3, the stripe enters awindow of vulnerability, denoted by the shaded

blocks. During this time, the failure of any of the first threedisks will result in data loss. Because

the stripe’s data and parity blocks exist in an inconsistentstate, the data residing on a failed disk

cannot be reconstructed. This inconsistency is corrected at time 5 by the write toP.

We consider two failure models to allow for the possibility of independent failures between the

host machine and the array of disks. We will discuss each in turn and relate their consequences to

the example in Figure 4.1. Themachine failure model includes events such as operating system

crashes and machine power losses. In our example, if the machine crashes between times 1 and 2,

100

Time

iZ cPcZiP

3 521 64

1 2 3 4 5 6

P

X

Y

Z

D
is

k
A

rr
ay

M
ac

h
in

e

Figure 4.1 Failure Scenarios. The diagram illustrates the sequence of events for a data block
write and a parity update to a four disk RAID-5 array as time progresses from left to right. The
boxes labeledi indicate a request being issued, and those labeledc represent completions. The
shaded blocks denote a window of vulnerability.

101

and the array remains active, the stripe will be left in an inconsistent state after the write completes

at time 3.

Our second model, thedisk failure model, considers power losses at the disk array. If such a

failure occurs between time 3 and time 5 in our example, the stripe will be left in a vulnerable state.

Note that the disk failure model encompasses non-independent failures such as a simultaneous

power loss to the machine and the disks.

4.2.3 Measuring Vulnerability

To determine how often a crash or failure could leave an arrayin an inconsistent state, we

instrument the Linux software RAID-5 layer and the SCSI driver to track several statistics. First,

we record the amount of time between the first write issued fora stripe and the last write issued

for a stripe. This measures the difference between times 1 and 2 in Figure 4.1, and corresponds

directly to the period of vulnerability under the machine failure model.

Second, we record the amount of time between the first write completion for a stripe and the

last write completion for a stripe. This measures the difference between time 4 and time 6 in our

example. Note, however, that the vulnerability under the disk failure model occurs between time

3 and time 5, so our measurement is an approximation. Our results may slightly overestimate or

underestimate the actual vulnerability depending on the time it takes each completion to be sent to

and processed by the host machine. Finally, we track the number of stripes that are vulnerable for

each of the models. This allows us to calculate the percent oftime that any stripe in the array is

vulnerable to either type of failure.

102

Our test workload consists of multiple threads performing synchronous, random writes to a set

of files on the array. All of the experiments in this chapter are performed on an Intel Pentium Xeon

2.6 GHz processor with 512 MB of RAM running Linux kernel 2.6.11. The machine has five IBM

9LZX disks configured as a 1 GB software RAID-5 array. The RAIDvolume is sufficiently large

to perform our benchmarks yet small enough to reduce the execution time of our resynchronization

experiments.

Figure 4.2 plots the percent of time (over the duration of theexperiment) that any array stripe

is vulnerable as the number of writers in the workload is increased along the x-axis. As expected,

the cumulative window of vulnerability increases as the amount of concurrency in the workload

is increased. The vulnerability under the disk failure model is greater because it is dependent on

the response time of the write requests. Even for a small number of writers, it is more than likely

that a disk failure will result in an inconsistent state. Forhigher concurrency, the array exists in a

vulnerable state for up to 80% of the length of the experiment.

The period of vulnerability under the machine failure modelis lower because it depends only

on the processing time needed to issue the write requests. Inour experiment, vulnerability reaches

approximately 40%. At much higher concurrencies, however,the ability to issue requests could be

impeded by full disk queues. In this case, the machine vulnerability will also depend on the disk

response time and will increase accordingly.

103

 0

 20

 40

 60

 80

100

 0 2 4 6 8 10 12 14 16 18 20

V
u
ln

e
ra

b
le

 T
im

e
 (

%
)

Number of Writers

Software RAID Vulnerability

Disk failure model (write completion)
Machine failure model (write issue)

Figure 4.2Software RAID Vulnerability. The graph plots the percent of time (over the duration
of the experiment) that an inconsistent disk state exists inthe RAID-5 array as the number of
writers increases along the x-axis. Vulnerabilities due todisk failure and machine failure are
plotted separately.

104

4.2.4 Solutions

To solve this problem, high-end RAID systems make use of non-volatile storage, such as

NVRAM. When a write request is received, a log of the request and the data are first written

to NVRAM, and then the updates are propagated to the disks. Inthe event of a crash, the log

records and data present in the NVRAM can be used to replay thewrites to disk, thus ensuring a

consistent state across the array. This functionality comes at an expense, not only in terms of raw

hardware, but in the cost of developing and testing a more complex system.

Software RAID, on the other hand, is frequently employed in commodity systems that lack

non-volatile storage. When such a system reboots from a crash, there is no record of write activity

in the array, and therefore no indication of where RAID inconsistencies may exist. Linux software

RAID rectifies this situation by laboriously reading the contents of the entire array, checking the

redundant information, and correcting any discrepancies.For RAID-1, this means reading both

data mirrors, comparing their contents, and updating one iftheir states differ. Under a RAID-5

scheme, each stripe of data must be read and its parity calculated, checked against the parity on

disk, and re-written if it is incorrect.

This approach fundamentally affects both reliability and availability. The time-consuming pro-

cess of scanning the entire array lengthens the window of vulnerability during which inconsistent

redundancy may lead to data loss under a disk failure. Additionally, the disk bandwidth devoted

to resynchronization has a deleterious effect on the foreground traffic serviced by the array. Con-

sequently, there exists a fundamental tension between the demands of reliability and availability:

105

allocating more bandwidth to recover inconsistent disk state reduces the availability of foreground

services, but giving preference to foreground requests increases the time to resynchronize.

As observed by Brown and Patterson [10], the default Linux policy addresses this trade-off

by favoring availability over reliability, limiting resynchronization bandwidth to 1000 KB/s per

disk. Unfortunately, such a slow rate may equate to days of repair time and vulnerability for even

moderately sized arrays of hundreds of gigabytes. Figure 4.3 illustrates this problem by plotting

an analytical model of the resynchronization time for a five disk array as the raw size of the array

increases along the x-axis. With five disks, the default Linux policy will take almost four minutes

of time to scan and repair each gigabyte of disk space, which equates totwo and a half days for a

terabyte of capacity. Disregarding the availability of thearray, even modern interconnects would

need approximately an hour at their full bandwidth to resynchronize the same one terabyte array.

One possible solution to this problem is to add logging to theRAID system in a manner similar

to that discussed above. This approach suffers from two drawbacks, however. First, logging to the

array disks themselves would likely decrease the overall performance of the array by interfering

with foreground requests. The high-end solution discussedpreviously benefits from fast, inde-

pendent storage in the form of NVRAM. Second, adding loggingand maintaining an acceptable

level of performance could add considerable complexity to the software. For instance, the Linux

software RAID implementation uses little buffering, discarding stripes when their operations are

complete. A logging solution, however, may need to buffer requests significantly in order to batch

updates to the log and improve performance.

106

42 days

4.2 days

10 hours

1 hour

6 mins

10 TB1 TB100 GB10 GB1 GB

T
im

e

Raw Array Size

Software RAID Resynchronization Time

Linux default (1 MB/s/disk)
Gigabit Ethernet (119 MB/s)
SATA (179 MB/s)
Fibre Channel (238 MB/s)
Ultra320 SCSI (320 MB/s)
Serial Attached SCSI (358 MB/s)

Figure 4.3Software RAID Resynchronization Time. The graph plots the time to resynchronize
a five disk array as the raw capacity increases along the x-axis.

107

Another solution is to perform intent logging to a bitmap representing regions of the array. This

mechanism is used by the Solaris Volume Manager [74] and the Veritas Volume Manager [86] to

provide optimized resynchronization. An implementation for Linux software RAID is also in

development [16], though it has not been merged into the mainkernel. Like logging to the array,

this approach is likely to suffer from poor performance. Forinstance, the Linux implementation

performs a synchronous write to the bitmap before updating data in the array to ensure proper

resynchronization. Performance may be improved by increasing the bitmap granularity, but this

comes at the cost of performing scan-based resynchronization over larger regions.

Software RAID is just one layer in the storage hierarchy. Onelikely configuration contains

a modern journaling file system in the layer above, logging disk updates to maintain consistency

across its on-disk data structures. In the next sections, weexamine how a journaling file system

can be used to solve the RAID resynchronization problem.

4.3 ext3 Background

In this section, we discuss the Linux ext3 file system, its operation, and its data structures.

These details will be useful in our analysis of its write activity and the description of our modi-

fications to support journal-guided resynchronization in Section 4.4. Although we focus on ext3,

we believe our techniques are general enough to apply to other journaling file systems, such as

ReiserFS and JFS for Linux, and NTFS for Windows.

Linux ext3 is a modern journaling file system that aims to keepcomplex on-disk data structures

in a consistent state. To do so, all file system updates are first written to a log called the journal.

108

Once the journal records are stored safely on disk, the updates can be applied to their home loca-

tions in the main portion of the file system. After the updatesare propagated, the journal records

are erased and the space they occupied can be re-used.

This mechanism greatly improves the efficiency of crash recovery. After a crash, the journal is

scanned and outstanding updates are replayed to bring the file system into a consistent state. This

approach constitutes a vast improvement over the previous process (i.e. fsck [41]) that relied on a

full scan of the file system data structures to ensure consistency. It seems natural, then, to make

use of the same journaling mechanism to improve the process of RAID resynchronization after a

crash.

4.3.1 Modes

The ext3 file system offers three modes of operation: data-journaling mode, ordered mode,

and writeback mode. In data-journaling mode, all data and metadata is written to the journal,

coordinating all updates to the file system. This provides very strong consistency semantics, but at

the highest cost. All data written to the file system is written twice: first to the journal, then to its

home location.

Ordered mode, the ext3 default, writes all file system metadata to the journal, but file data is

written directly to its home location. In addition, this mode guarantees a strict ordering between

the writes: all file data for a transaction is written to disk before the corresponding metadata is

written to the journal and committed. This guarantees that file metadata will never reference a data

109

block before it has been written. Thus, this mechanism provides strong consistency without the

expense of multiple writes for file data.

In writeback mode, only file system metadata is written to thejournal. Like ordered mode,

file data is written directly to its home location; unlike ordered mode, however, writeback mode

provides no ordering guarantees between metadata and data,therefore offering much weaker con-

sistency. For instance, the metadata for a file creation may be committed to the journal before the

file data is written. In the event of a crash, journal recoverywill restore the file metadata, but its

contents could be filled with arbitrary data. We will not consider writeback mode for our purposes

because of its weaker consistency and its lack of write ordering.

4.3.2 Transaction Details

To reduce the overhead of file system updates, sets of changesare grouped together into com-

pound transactions. These transactions exist in several phases over their lifetimes. Transactions

start in therunning state. All file system data and metadata updates are associated with the current

running transaction, and the buffers involved in the changes are linked to the in-memory transac-

tion data structure. In ordered mode, data associated with the running transaction may be written

at any time by the kernel pdflush daemon, which is responsiblefor cleaning dirty buffers. Period-

ically, the running transaction is closed and a new transaction is started. This may occur due to a

timeout, a synchronization request, or because the transaction has reached a maximum size.

Next, the closed transaction enters thecommit phase. All of its associated buffers are written

to disk, either to their home locations or to the journal. After all of the transaction records reside

110

safely in the journal, the transaction moves to thecheckpoint phase, and its data and metadata are

copied from the journal to their permanent home locations. If a crash occurs before or during

the checkpoint of a committed transaction, it will be checkpointed again during the journalrecov-

ery phase of mounting the file system. When the checkpoint phase completes, the transaction is

removed from the journal and its space is reclaimed.

4.3.3 Journal Structure

Tracking the contents of the journal requires several new file system structures. A journal su-

perblock stores the size of the journal file, pointers to the head and tail of the journal, and the

sequence number of the next expected transaction. Within the journal, each transaction begins

with a descriptor block that lists the permanent block addresses for each of the subsequent data

or metadata blocks. More than one descriptor block may be needed depending on the number of

blocks involved in a transaction. Finally, acommit block signifies the end of a particular transac-

tion. Both descriptor blocks and commit blocks begin with a magic header and a sequence number

to identify their associated transaction.

4.4 Design and Implementation

The goal of resynchronization is to correct any RAID inconsistencies that result from system

crash or failure. If we can identify the outstanding write requests at the time of the crash, we

can significantly narrow the range of blocks that must be inspected. This will result in faster

resynchronization and improved reliability and availability. Our hope is to recover such a record

111

of outstanding writes from the file system journal. To this end, we begin by examining the write

activity generated by each phase of an ext3 transaction.

4.4.1 ext3 Write Analysis

In this section, we examine each of the ext3 transaction operations in detail. We emphasize the

write requests generated in each phase, and we characterizethe possible disk states resulting from

a crash. Specifically, we classify each write request as targeting a known location, an unknown

location, or a bounded location, based on its record of activity in the journal. Our goal, upon

restarting from a system failure, is to recover a record ofall outstanding write requests at the time

of the crash.

Running:

1. In ext3 ordered mode, the pdflush daemon may write dirty pages to disk while the transaction

is in the running state. If a crash occurs in this state, the affected locations will be unknown,

asno record of the ongoing writes will exist in the journal.

Commit:

1. ext3 writes all un-journaled dirty data blocks associated with the transaction to their home

locations, and waits for the I/O to complete. This step applies only to ordered mode, since all

data in data-journaling mode is destined for the journal. Ifa crash occurs during this phase,

the locations of any outstanding writes will be unknown.

112

2. ext3 writes descriptors, journaled data, and metadata blocks to the journal, and waits for the

writes to complete. In ordered mode, only metadata blocks will be written to the journal,

whereas all blocks are written to the journal in data-journaling mode. If the system fails

during this phase, no specific record of the ongoing writes will exist, but all of the writes

will be bounded within the fixed location journal.

3. ext3 writes the transaction commit block to the journal, and waits for its completion. In the

event of a crash, the outstanding write is again bounded within the journal.

Checkpoint:

1. ext3 writes journaled blocks to their home locations and waits for the I/O to complete. If the

system crashes during this phase, the ongoing writes can be determined from the descriptor

blocks in the journal, and hence they affect known locations.

2. ext3 updates the journal tail pointer in the superblock tosignify completion of the check-

pointed transaction. A crash during this operation involves an outstanding write to the jour-

nal superblock, which resides in a known, fixed location.

Recovery:

1. ext3 scans the journal checking for the expected transaction sequence numbers (based on the

sequence in the journal superblock) and records the last committed transaction.

2. ext3 checkpoints each of the committed transactions in the journal, following the steps spec-

ified above. All write activity occurs to known locations.

113

Block Type Data-journaling Mode
superblock known, fixed location

journal bounded, fixed location
home metadata known, journal descriptors

home data known, journal descriptors

Block Type Ordered Mode
superblock known, fixed location

journal bounded, fixed location
home metadata known, journal descriptors

home data unknown

Table 4.1 Journal Write Records. The table lists the block types written during transaction
processing and how their locations can be determined after acrash.

Table 4.1 summarizes our ability to locate ongoing writes after a crash for the data-journaling

and ordered modes of ext3. In the case of data-journaling mode, the locations of any outstanding

writes can be determined (or at least bounded) during crash recovery, be it from the journal de-

scriptor blocks or from the fixed location of the journal file and superblock. Thus, the existing ext3

data-journaling mode is quite amenable to assisting with the problem of RAID resynchronization.

On the down side, however, data-journaling typically provides the least performance of the ext3

family.

For ext3 ordered mode, on the other hand, data writes to permanent home locations are not

recorded in the journal data structures, and therefore cannot be located during crash recovery. We

now address this deficiency with a modified ext3 ordered mode:declared mode.

114

4.4.2 ext3 Declared Mode

In the previous section we concluded that, if a crash occurs while writing data directly to its

permanent location, the ext3 ordered mode journal will contain no record of those outstanding

writes. The locations of any RAID level inconsistencies caused by those writes will remain un-

known upon restart. To overcome this deficiency, we introduce a new variant of ordered mode,

declared mode.

Declared mode differs from ordered mode in one key way: it guarantees that a write record for

each data block resides safely in the journal before that location is modified. Effectively, the file

system mustdeclare its intent to write to any permanent location before issuing the write.

To keep track of these intentions, we introduce a new journalblock, thedeclare block. A

set of declare blocks is written to the journal at the beginning of each transaction commit phase.

Collectively, they contain a list of all permanent locations to which data blocks in the transaction

will be written. Though their construction is similar to that of descriptor blocks, their purpose is

quite different. Descriptor blocks list the permanent locations for blocks that appear in the journal,

whereas declare blocks list the locations of blocks thatdo not appear in the journal. Like descriptor

and commit blocks, declare blocks begin with a magic header and a transaction sequence number.

Declared mode thus adds a single step to the beginning of the commit phase, which proceeds as

follows:

115

Declared Commit:

1. ext3 writes declare blocks to the journal listing each of the permanent data locations to be

written as part of the transaction, and it waits for their completion.

2. ext3 writes all un-journaled data blocks associated withthe transaction to their home loca-

tions, and waits for the I/O to complete.

3. ext3 writes descriptors and metadata blocks to the journal, and waits for the writes to com-

plete.

4. ext3 writes the transaction commit block to the journal, and waits for its completion.

The declare blocks at the beginning of each transaction introduce an additional space cost in

the journal. This cost varies with the number of data blocks each transaction contains. In the best

case, one declare block will be added for every 506 data blocks, for a space overhead of 0.2%.

In the worst case, however, one declare block will be needed for a transaction containing only a

single data block. We investigate the performance consequences of these overheads in Section 4.5.

Implementing declared mode in Linux requires two main changes. First, we must guarantee

that no data buffers are written to disk before they have beendeclared in the journal. To accomplish

this, we refrain from setting the dirty bit on modified pages managed by the file system. This

prevents the pdflush daemon from eagerly writing the buffersto disk during the running state. The

same mechanism is used for all metadata buffers and for data buffers in data-journaling mode,

ensuring that they are not written before they are written tothe journal.

116

Second, we need to track data buffers that require declarations, and write their necessary de-

clare blocks at the beginning of each transaction. We start by adding a newdeclare tree to the

in-memory transaction structure, and ensure that all declared mode data buffers are placed on this

tree instead of the existingdata list. At the beginning of the commit phase, we construct a set of

declare blocks for all of the buffers on the declare tree and write them to the journal. After the

writes complete, we simply move all of the buffers from the declare tree to the existing transaction

data list. The use of a tree ensures that the writes occur in a more efficient order, sorted by block

address. From this point, the commit phase can continue without modification. This implementa-

tion minimizes the changes to the shared commit procedure; the other ext3 modes simply bypass

the empty declare tree.

4.4.3 Software RAID Interface

Initiating resynchronization at the file system level requires a mechanism to repair suspected

inconsistencies after a crash. A viable option for RAID-1 arrays is for the file system to read and

re-write any blocks it has deemed vulnerable. In the case of inconsistent mirrors, either the newly

written data or the old data will be restored to each block. This achieves the same results as the

current RAID-1 resynchronization process. Because the RAID-1 layer imposes no ordering on

mirrored updates, it cannot differentiate new data from olddata, and merely chooses one block

copy to restore consistency.

This read and re-write strategy is unsuitable for RAID-5, however. When the file system re-

writes a single block, our desired behavior is for the RAID layer to calculate its parity across

117

the entire stripe of data. Instead, the RAID layer could perform a read-modify-write by reading

the target block and its parity, re-calculating the parity,and writing both blocks to disk. This

operation depends on the consistency of the data and parity blocks it reads from disk. If they are

not consistent, it will produce incorrect results, simply prolonging the discrepancy. In general,

then, a new interface is required for the file system to communicate possible inconsistencies to the

RAID layer.

We consider two options for the new interface. The first requires the file system to read each

vulnerable block and then re-write it with an explicitreconstruct write request. In this option, the

RAID layer is responsible for reading the remainder of the block’s parity group, re-calculating

its parity, and then writing the block and the new parity to disk. We are dissuaded from this

option because it may perform unnecessary writes to consistent stripes that could cause further

vulnerabilities in the event of another crash.

Instead, we opt to add an explicitverify read request to the RAID interface. In this case, the

RAID layer reads the requested block along with the rest of its stripe and checks to make sure

that the parity is consistent. If it is not, the newly calculated parity is written to disk to correct the

problem.

The Linux implementation for the verify read request is rather straight-forward. When the file

system wishes to perform a verify read request, it marks the corresponding buffer head with a new

RAID synchronize flag. Upon receiving the request, the software RAID-5 layer identifies the flag

and enables an existingsynchronizing bit for the corresponding stripe. This bit is used to perform

118

the existing resynchronization process. Its presence causes a read of the entire stripe followed by

a parity check, exactly the functionality required by the verify read request.

Finally, an option is added to the software RAID-5 layer to disable resynchronization after a

crash. This is our most significant modification to the strictlayering of the storage stack. The

RAID module is asked to entrust its functionality to anothercomponent for the overall good of

the system. Instead, an apprehensive RAID implementation may delay its own efforts in hopes of

receiving the necessary verify read requests from the file system above. If no such requests arrive,

it could start its own resynchronization to ensure the integrity of its data and parity blocks.

4.4.4 Recovery and Resynchronization

Using ext3 in either data-journaling mode or declared mode guarantees an accurate view of

all outstanding write requests at the time of a crash. Upon restart, we utilize this information

and our verify read interface to perform fast, file system guided resynchronization for the RAID

layer. Because we make use of the file system journal, and because of ordering constraints between

their operations, we combine this process with journal recovery. The dual process of file system

recovery and RAID resynchronization proceeds as follows:

Recovery and Resync:

1. ext3 performs verify reads for its superblock and the journal superblock, ensuring their con-

sistency in case they were being written during the crash.

119

2. ext3 scans the journal checking for the expected transaction sequence numbers (based on the

sequence in the journal superblock) and records the last committed transaction.

3. For the first committed transaction in the journal, ext3 performs verify reads for the home

locations listed in its descriptor blocks. This ensures theintegrity of any blocks undergoing

checkpoint writes at the time of the crash. Only the first transaction need be examined

because checkpoints must occur in order, and each checkpointed transaction is removed

from the journal before the next is processed. Note that these verify reads must take place

before the writes are replayed below to guarantee the parityis up-to-date. Adding the explicit

reconstruct write interface mentioned earlier would negate the need for this two step process.

4. ext3 issues verify reads beyond the last committed transaction (at the head of the journal) for

the length of the maximum transaction size. This corrects any inconsistent blocks as a result

of writing the next transaction to the journal.

5. While reading ahead in the journal, ext3 identifies any declare blocks and descriptor blocks

for the next uncommitted transaction. If no descriptor blocks are found, it performs verify

reads for the permanent addresses listed in each declare block, correcting any data writes

that were outstanding at the time of the crash. Declare blocks from transactions containing

descriptors can be ignored, as their presence constitutes evidence for the completion of all

data writes to permanent locations.

6. ext3 checkpoints each of the committed transactions in the journal as described in Sec-

tion 4.4.1.

120

The implementation re-uses much of the existing framework for the journal recovery process.

Issuing the necessary verify reads means simply adding the RAID synchronize flag to the buffers

already used for reading the journal or replaying blocks. The verify reads for locations listed in

descriptor blocks are handled as the replay writes are processed. The journal verify reads and

declare block processing for an uncommitted transaction are performed after the final pass of the

journal recovery.

4.5 Evaluation

In this section, we evaluate the performance of ext3 declared mode and compare it to ordered

mode and data-journaling mode. We hope that declared mode adds little overhead despite writing

extra declare blocks for each transaction. After our performance evaluation, we examine the ef-

fects of journal-guided resynchronization. We expect thatit will greatly reduce resync time and

increase available bandwidth for foreground applications. Finally, we examine the complexity of

our implementation.

4.5.1 ext3 Declared Mode

We begin our performance evaluation of ext3 declared mode with two microbenchmarks, ran-

dom write and sequential write. First, we test the performance of random writes to an existing

100 MB file. A call to fsync() is used at the end of the experiment to ensure that all data reaches

disk. Figure 4.4 plots the bandwidth achieved by each ext3 mode as the amount written is increased

along the x-axis. All of our graphs plot the mean of five experimental trials.

121

 0

 1

 2

 3

 4

 5

 6

B
a
n
d
w

id
th

 (
M

B
/s

)

Random Write Performance

ext3 ordered sorted
ext3 declared
ext3 ordered

ext3 journaled

 -2
 0
 2

 0 10 20 30 40 50 60 70 80 90 100S
lo

w
d
o
w

n
 (

%
)

Amount Written (MB)

Figure 4.4 Random Write Performance. The top graph plots random write performance as the
amount of data written is increased along the x-axis. Data-journaling mode achieves 11.07 MB/s
when writing 5 MB of data. The bottom graph shows the relativeperformance of declared mode
as compared to ordered mode with sorting.

122

We identify two points of interest on the graph. First, data-journaling mode underperforms or-

dered mode as the amount written increases. Note that data-journaling mode achieves 11.07 MB/s

when writing only 5 MB of data because the random write streamis transformed into a large se-

quential write that fits within the journal. As the amount of data written increases, it outgrows

the size of the journal. Consequently, the performance of data-journaling decreases because each

block is written twice, first to the journal, and then to its home location. Ordered mode garners

better performance by writing data directly to its permanent location.

Second, we find that declared mode greatly outperforms ordered mode as the amount written

increases. Tracing the disk activity of ordered mode reveals that part of the data is issued to disk in

sorted order based on walking the dirty page tree. The remainder, however, is issued unsorted by

the commit phase as it attempts to complete all data writes for the transaction. Adding sorting to

the commit phase of ordered mode solves this problem, as evidenced by the performance plotted

in the graph. The rest of our performance evaluations are based on this modified version of ext3

ordered mode with sorted writing during commit.

Finally, the bottom graph in Figure 4.4 shows the slowdown ofdeclared mode relative to or-

dered mode (with sorting). Overall, the performance of the two modes is extremely close, differing

by no more than 3.2%.

Our next experiment tests sequential write performance to an existing 100 MB file. Figure 4.5

plots the performance of the three ext3 modes. Again, the amount written is increased along the

x-axis, andfsync() is used to ensure that all data reaches disk. Ordered mode anddeclared mode

greatly outperform data-journaling mode, achieving 22 to 23 MB/s compared to just 10 MB/s.

123

 0

 5

 10

 15

 20

 25

B
a
n
d
w

id
th

 (
M

B
/s

)

Sequential Write Performance

ext3 ordered
ext3 declared
ext3 journaled

 0

 5

 0 10 20 30 40 50 60 70 80 90 100S
lo

w
d
o
w

n
 (

%
)

Amount Written (MB)

Figure 4.5 Sequential Write Performance. The top graph plots sequential write performance
as the amount of data written is increased along the x-axis. The bottom graph shows the relative
performance of declared mode as compared to ordered mode.

124

The bottom graph in Figure 4.5 shows the slowdown of ext3 declared mode as compared to

ext3 ordered mode. Declared mode performs quite well, within 5% of ordered mode for most data

points. Disk traces reveal that the performance loss is due to the fact that declared mode waits

for fsync() to begin writing declare blocks and data. Because of this, ordered mode begins writing

data to disk slightly earlier than declared mode. To alleviate this delay, we implement an early

declare mode that begins writing declare blocks to the journal as soon as possible, that is, as soon

as enough data blocks have been modified to fill a declare block. Unfortunately, this modification

does not result in a performance improvement. The early writing of a few declare blocks and data

blocks is offset by the seek activity between the journal andthe home data locations (not shown).

Next, we examine the performance under the Sprite LFS microbenchmark [55], which creates,

reads, and then unlinks a specified number of 4 KB files. Figure4.6 plots the number of create

operations completed per second as the number of files is increased along the x-axis. The bottom

graph shows the slowdown of declared mode relative to ordered mode. Declared mode performs

well, within 4% of ordered mode for all cases. The performance of declared mode and ordered

mode are nearly identical for the other phases of the benchmark.

The ssh benchmark unpacks, configures, and builds version 2.4.0 of the ssh program from a

tarred and compressed distribution file. Figure 4.7 plots the performance of each mode during

the three stages of the benchmark. The execution time of eachstage is normalized to that of ext3

ordered mode, and the absolute times in seconds are listed above each bar. Data-journaling mode

is slighter faster than ordered mode for the configure phase,but it is 12% slower during build and

125

 0

 500

1000

1500

2000

2500

3000

3500

O
p
e
ra

ti
o
n
s
 p

e
r

S
e
c
o
n
d

Sprite Microbenchmark - Create Phase

ext3 ordered
ext3 declared
ext3 journaled

 -3
 0
 3

 0 5000 10000 15000 20000S
lo

w
d
o
w

n
 (

%
)

Number of Files

Figure 4.6Sprite Create Performance. The top graph plots the performance of the create phase
of the Sprite LFS microbenchmark as the number of files increases along the x-axis. The bottom
graph shows the slowdown of declared mode when compared to ordered mode.

126

378% slower during unpack. Declared mode is quite comparable to ordered mode, running about

3% faster during unpack and configure, and 0.1% slower for thebuild phase.

Next, we examine ext3 performance on a modified version of thepostmark benchmark that

creates 5000 files across 71 directories, performs a specified number of transactions, and then

deletes all files and directories. Our modification involvesthe addition of a call tosync() after each

phase of the benchmark to ensure that data is written to disk.The unmodified version exhibits

unusually high variances for all three modes of operation.

The execution time for the benchmark is shown in Figure 4.8 asthe number of transactions

increases along the x-axis. Data-journaling mode is extremely slow, and therefore we concentrate

on the other two modes, for which we identify two interestingpoints. First, for large numbers

of transactions, declared mode compares favorably to ordered mode, differing by approximately

5% in the worst cases. Second, with a small number of transactions, declared mode outperforms

ordered mode by up to 40%. Again, disk traces help to reveal the reason. Ordered mode relies on

the sorting provided by the per-file dirty page trees, and therefore its write requests are scattered

across the disk. In declared mode, however, the sort performed during commit has a global view

of all data being written for the transaction, thus sending the write requests to the device layer in a

more efficient order.

Finally, we examine the performance of a TPC-B-like workload that performs a financial trans-

action across three files, adds a history record to a fourth file, and commits the changes to disk

by callingsync(). The execution time of the benchmark is plotted in Figure 4.9as the number of

127

0.0

0.2

0.4

0.6

0.8

1.0

BuildConfigureUnpack

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

ssh Benchmark

ext3 ordered ext3 journaled ext3 declared

0.201 19.41 65.39

0.962

18.81

73.76

0.196 18.76
65.48

Figure 4.7ssh Benchmark Performance. The graph plots the normalized execution time of the
unpack, configure, and build phases of the ssh benchmark as compared to ext3 ordered mode. The
absolute execution times in seconds are listed above each bar.

128

 0

 10

 20

 30

 40

 50

 60

 70

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Postmark

ext3 journaled
ext3 ordered

ext3 declared

 -60
 -40
 -20
 0

 20

 0 20000 40000 60000 80000 100000S
lo

w
d
o
w

n
 (

%
)

Number of Transactions

Figure 4.8 Postmark Performance. The top graph plots the execution time of the postmark
benchmark as the number of transactions increases along thex-axis. The bottom graph shows the
slowdown of declared mode when compared to ordered mode.

129

transactions is increased along the x-axis. In this case, declared mode consistently underperforms

ext3 ordered mode by approximately 19%, and data-journaling mode performs slightly worse.

The highly synchronous nature of this benchmark presents a worst case scenario for declared

mode. Each TPC-B transaction results in a very small ext3 transaction containing only four data

blocks, a descriptor block, a journaled metadata block, anda commit block. The declare block at

the beginning of each transaction adds 14% overhead in the number of writes performed during

the benchmark. To compound this problem, the four data writes are likely serviced in parallel by

the array of disks, accentuating the penalty for the declareblocks.

To examine this problem further, we test a modified version ofthe benchmark that forces data to

disk less frequently. This has the effect of increasing the size of each application level transaction,

or alternatively simulating concurrent transactions to independent data sets. Figure 4.10 shows

the results of running the TPC-B benchmark with 500 transactions as the interval between calls to

sync() increases along the x-axis. As the interval increases, the performance of declared mode and

data-journaling mode quickly converge to that of ordered mode. Declared mode performs within

5% of ordered mode forsync() intervals of five or more transactions.

In conclusion, we find that declared mode routinely outperforms data-journaling mode. Its

performance is quite close to that of ordered mode, within 5%(and sometimes better) for our

random write, sequential write, and file creation microbenchmarks. It also performs within 5% of

ordered mode for two macrobenchmarks, ssh and postmark. Theworst performance for declared

mode occurs under TPC-B with small application-level transactions, but it improves greatly as

130

 0

 10

 20

 30

 40

 50

 60

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

TPC-B

ext3 journaled
ext3 declared
ext3 ordered

 0
 10
 20

 100 200 300 400 500 600 700 800 900 1000S
lo

w
d
o
w

n
 (

%
)

Number of Transactions

Figure 4.9 TPC-B Performance. The top graph plots the execution time of the TPC-B bench-
mark as the number of transactions increases along the x-axis. The bottom graph shows the slow-
down of declared mode as compared to ordered mode.

131

 0

 5

 10

 15

 20

 25

 30

 35

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

TPC-B with Varied sync() Intervals

ext3 journaled
ext3 declared
ext3 ordered

 0
 5
 10

 50 45 40 35 30 25 20 15 10 5 1S
lo

w
d
o
w

n
 (

%
)

TPC-B Transactions per sync()

Figure 4.10TPC-B with Varied sync() Intervals. The top graph plots the execution time of the
TPC-B benchmark as the interval between calls to sync() increases along the x-axis. The bottom
graph shows the slowdown of declared mode as compared to ordered mode.

132

the effective transaction size increases. Overall, these results indicate that declared mode is an

attractive option for enabling journal-guided resynchronization.

4.5.2 Journal-guided Resynchronization

In our final set of experiments, we examine the effect of journal-guided resynchronization.

We expect a significant reduction in resync time, thus shortening the window of vulnerability

and improving reliability. In addition, faster resynchronization should increase the amount of

bandwidth available to foreground applications after a crash, thus improving their availability. We

compare journal-guided resynchronization to the Linux software RAID resync at the default rate

and at two other rates along the availability versus reliability spectrum.

The experimental workload consists of a single foreground process performing sequential reads

to a set of large files. The amount of read bandwidth it achieves is measured over one second inter-

vals. Approximately 30 seconds into the experiment, the machine is crashed and rebooted. When

the machine restarts, the RAID resynchronization process begins, and the foreground process re-

activates as well.

Figure 4.11 shows a series of such experiments plotting the foreground bandwidth on the y-axis

as time progresses on the x-axis. Note that the origin for thex-axis coincides with the beginning

of resynchronization, and the duration of the process is shaded in grey. The top left graph in the

figure shows the results for the default Linux resync limit of1000 KB/s per disk, which prefers

availability over reliability. The process takes 254 seconds to scan the 1.25 GB of raw disk space

in our RAID-5 array. During that time period, the foregroundprocess bandwidth drops to 29 MB/s

133

 0

 5

 10

 15

 20

 25

 30

 35

 40

-60 0 60 120 180 240 300

B
a
n
d
w

id
th

 (
M

B
/s

)

Time (s)

Software RAID Resync - Default 1000 KB/s/disk

254 s

 0

 5

 10

 15

 20

 25

 30

 35

 40

-60 0 60 120 180 240 300

B
a
n
d
w

id
th

 (
M

B
/s

)

Time (s)

Software RAID Resync - 5 MB/s/disk

50.4 s

 0

 5

 10

 15

 20

 25

 30

 35

 40

-60 0 60 120 180 240 300

B
a

n
d

w
id

th
 (

M
B

/s
)

Time (s)

Software RAID Resync - 200 MB/s/disk

38.4 s

 0

 5

 10

 15

 20

 25

 30

 35

 40

-60 0 60 120 180 240 300

B
a

n
d

w
id

th
 (

M
B

/s
)

Time (s)

Software RAID Resync - Journal-guided

0.21 s

Resync Resync Foreground Vulnerability Vulnerability
Type Rate Limit Bandwidth Window vs. Default

Default 1000 KB/s/disk 29.58± 1.69 MB/s 254.00 s 100.00%
Medium 5 MB/s/disk 29.70± 9.48 MB/s 50.41 s 19.84%

High 200 MB/s/disk 29.87± 10.65 MB/s 38.44 s 15.13%
Journal-guided 34.09± 1.51 MB/s 0.21 s 0.08%

Figure 4.11Software RAID Resynchronization. The graphs plot the bandwidth achieved by a
foreground process performing sequential scans of files on asoftware RAID array during a system
crash and the ensuing array resynchronization. The recovery period is highlighted in grey and its
duration is listed. In the first three graphs, the bandwidth allocated to resynchronization is varied:
the default of 1000 KB/s per disk, 5 MB/s per disk, and 200 MB/sper disk. The final graph
depicts recovery using journal guidance. The table lists the availability of the foreground service
and the vulnerability of the array compared to the default resynchronization period of 254 seconds
following restart.

134

from the unimpeded rate of 34 MB/s. After resynchronizationcompletes, the foreground process

receives the full bandwidth of the array.

Linux allows the resynchronization rate to be adjusted via asysctl variable. The top right graph

in Figure 4.11 shows the effect of raising the resync limit to5 MB/s per disk, representing a middle

ground between reliability and availability. In this case,resync takes only 50.41 seconds, but the

bandwidth afforded the foreground activity drops to only 9.3 MB/s. In the bottom left graph, the

resync rate is set to 200 MB/s per disk, favoring reliabilityover availability. This has the effect of

reducing the resync time to 38.44 seconds, but the foreground bandwidth drops to just 2.6 MB/s

during that period.

The bottom right graph in the figure demonstrates the use of journal-guided resynchronization.

Because of its knowledge of write activity before the crash,it performs much less work to correct

any array inconsistencies. The process finishes in just 0.21seconds, greatly reducing the window

of vulnerability present with the previous approach. When the foreground service activates, it has

immediate access to the full bandwidth of the array, increasing its availability.

The results of the experiments are summarized in the table inFigure 4.11. Each metric is cal-

culated over the 254 second period following the restart of the machine in order to compare to the

default Linux resynchronization. The 5 MB/s and 200 MB/s resync processes sacrifice availability

(as seen in the foreground bandwidth variability) to improve the reliability of the array, reducing

the vulnerability windows to 19.84% and 15.13% of the default, respectively. The journal-guided

resync process, on the other hand, improves both the availability of the foreground process and the

reliability of the array, reducing its vulnerability to just 0.08% of the default case.

135

Orig. Mod. New Percent
Module Lines Lines Lines Change
Software

RAID 3475 2 16 0.52%
ext3 8621 22 47 0.80%

Journaling 3472 43 265 8.87%
Total 15568 67 328 2.53%

Table 4.2 Complexity of Linux Modifications. The table lists the lines of code (counting
semicolons and braces) in the original Linux 2.6.11 source and the number that were modified or
added to each of the software RAID, ext3 file system, and journaling modules.

It is important to note here that the execution time of the scan-based approach scales linearly

with the raw size of the array. Journal-guided resynchronization, on the other hand, is dependent

only on the size of the journal, and therefore we expect it to complete in a matter of seconds even

for very large arrays.

4.5.3 Complexity

Table 4.2 lists the lines of code, counted by the number of semicolons and braces, that were

modified or added to the Linux software RAID, ext3 file system,and journaling modules. Very few

modifications were needed to add the verify read interface tothe software RAID module because

the core functionality already existed and merely needed tobe activated for the requested stripe.

The ext3 changes involved hiding dirty buffers for declaredmode and using verify reads during

recovery. The majority of the changes occurred in the journaling module for writing declare blocks

in the commit phase and performing careful resynchronization during recovery.

136

As a point of comparison, the experimental version of Linux RAID-1 bitmap logging consists

of approximately 1200 lines of code, a 38% increase over RAID-1 alone. Most of our changes are

to the journaling module, increasing its size by about 9%. Overall, our modifications consist of

395 lines of code, a 2.5% change across the three modules. These observations support our claim

that leveraging functionality across collaborating layers can reduce the complexity of the software

system.

4.6 Conclusions

We have examined the ability of a journaling file system to provide support for faster RAID

resynchronization. In order to obtain a record of the outstanding writes at the time of a crash, we

introduce ext3 declared mode. This new mode guarantees to declare its intentions in the journal

before writing data to disk. Despite this extra write activity, declared mode performs within 5% of

its predecessor.

In order to communicate this information to the RAID layer, the file system utilizes a new

verify read request. This request instructs the RAID layer to read the block and repair its redundant

information, if necessary. Combining these features allows us to implement fast, journal-guided

resynchronization. This process improves both RAID reliability and availability by hastening the

recovery process after a crash.

Our general approach advocates a system-level view for developing the storage stack as a set of

collaborating layers. Using the file system journal to improve the RAID system leverages existing

functionality, maintains performance, and avoids duplicating complexity in multiple components.

137

Chapter 5

Related Work

5.1 Gray-box Applications

Using gray-box techniques [2] to automatically uncover thebehavior of underlying software

and hardware layers has been explored in a number of different domains. Some of the earliest

work in this area targeted the memory subsystem; for example, by measuring the time for reads of

different amounts and with different strides, Saavedra andSmith reveal many interesting aspects

of the memory hierarchy, including details about both caches and TLBs [58]. Similar techniques

have been applied to identify aspects of a TCP protocol stack[24, 45], to determine processor cycle

time [72], CPU scheduling policies [50], and buffer cache replacement policies [11].

The work most related to Shear is that which has targeted characterizing a single disk within

the storage system. For example, in [90], Worthingtonet al. identify various characteristics of

disks, such as the mapping of logical block numbers to physical locations, the costs of low-level

operations, the size of the prefetch window, the prefetching algorithm, and the caching policy.

Later, Schindleret al. and Talagalaet al. build similar but more portable tools to achieve similar

138

ends [62, 76]. We have shown how Shear can be used in conjunction with such low-level tools to

discover properties of single disks inside arrays.

Semantically-Smart Disk Systems [70] take the opposite viewpoint of Shear, looking up at the

interface from a storage system and inferring information about the file system. This gives the

storage system an understanding of how its blocks relate to file system structures like files and

directories, as well as semantic understanding of the operations occurring in the file system. This

technique has been used to improve reliability [69], array caching [7], and security [68].

5.2 Storage Performance

There have been many studies of file system workloads and performance [20, 44, 53], focusing

on metrics such as file access patterns, lifetimes, and caching effects. There have also been several

studies of RAID performance, such as building an analytic model of a RAID [35] and determining

the best stripe size for RAID-0 [14] and RAID-5 [12]. This research has largely been done in

isolation, however, studying file systems on single disks orRAID systems under parameterized

workloads.

Benchmarks of storage systems have usually focused on measuring performance for a given

workload [9, 31, 43] rather than uncovering underlying properties, as is done by Shear. One inter-

esting synthetic benchmark adapts its behavior to the underlying storage system [15]; this bench-

mark examines sensitivity to parameters such as the size of requests, the read to write ratio, and

the amount of concurrency.

139

Livny et al. [37] studied the choice of clustered versus declustered filelayout for synthetic

database workloads on multiple disk storage systems. They found that declustered layout (strip-

ing files across disks) was preferable in most situations dueto parallelism, but clustered layout

(allocating a file to a single disk) was preferable under uniform access patterns and high utiliza-

tion. We hope our work on Shear will promote research effortsto reevaluate these multiple disk

management decisions in the context of modern file systems, disk drives, and workloads.

The HP AutoRAID [88] storage system uses a hierarchy of RAID levels beneath a logical block

interface. Frequently written data blocks are stored in a mirrored region to improve performance,

while infrequently written blocks are stored in RAID-5 to increase capacity. Data blocks are also

migrated automatically between levels based on changes in access pattern. Like I·LFS, AutoRAID

supports the addition of disk drives, and it uses log-structured writes to avoid the RAID-5 small

write problem. Similar migration techniques could be supported in the I·LFS environment (akin

to flexible redundancy), with the addition of file-level semantic knowledge for tracking access

patterns, and greater freedom of block migration among disks.

Stodolskyet al. [73] examine parity logging in the RAID layer to improve the performance

of small writes. Instead of writing new parity blocks directly to disk, they store a log of parity

update images which are batched and written to disk in one large sequential access. Similar to

NVRAM logging for resynchronization, the authors require the use of a fault tolerant buffer to

store their parity update log, both for reliability and performance. These efforts to avoid small

random writes support our argument that maintaining performance with RAID level logging is a

complex undertaking.

140

The AFRAID [61] storage system overcomes the RAID-5 small write penalty be delaying

the update of parity information (similar to the delayed mirroring implemented in I·LFS). This

has the effect of increasing the window of vulnerability andtrading reliability for improvements

in performance. By adjusting the parity update policy, the system can offer a smooth transition

between these qualities, and the authors find that a large performance improvement can be gained

for a small reduction in reliability. Again, this system makes use of an NVRAM bitmap to record

the location of stripes whose parities must be updated.

5.3 Volume Managers and Software RAID

Volume managers have long been used to ease the management ofstorage across multiple

devices [78]. The E×RAID layer is a new type of volume manager that exposes more information

to file systems (specifically, on-line performance and failure information); further, E×RAID is

built with the presupposition that a single mounted file system will utilize multiple volumes for

its data, whereas most volume managers assume that there is aone-to-one mapping between each

mounted file system and a volume. One volume manager that is similar to E×RAID is the Pool

Driver, a volume manager for SANs that has a “sub-pool” concept which may be used by a file

system to group related data [77]. In that work, the GFS file system uses sub-pools to separate

journaled meta-data and normal user data.

Brown and Patterson [10] examine three different software RAID systems in their work on

availability benchmarks. They find that the Linux, Solaris,and Windows implementations offer

differing policies during reconstruction, the process of regenerating data and parity after a disk

141

failure. Solaris and Windows both favor reliability, whilethe Linux policy favors availability.

Unlike our work on journal-guided resynchronization, the authors do not focus on improving the

reconstruction processes, but instead on identifying the software RAID characteristics via a general

benchmarking framework.

The Veritas Volume Manager [86] provides two facilities to address faster resynchronization.

A dirty region log can be used to speed RAID-1 resynchronization by examining only those re-

gions that were active before a crash. Because the log requires extra writes, however, the author

warns that coarse-grained regions may be needed to maintainacceptable write performance. The

Volume Manager also supports RAID-5 logging, but non-volatile memory or a solid state disk

is recommended to support the extra log writes. In contrast,our ext3 declared mode offers fine-

grained journal-guided resynchronization with little performance degradation and without the need

for additional hardware.

5.4 Exploiting Storage Details

Part of our motivation for informing the file system (I·LFS) of the nature of the storage system

is reminiscent of work on the Berkeley Fast File System (FFS)[40]. FFS is an early demonstration

of the benefits of having a low-level understanding of disk technology; by co-locating correlated

inodes and data blocks, performance was improved, especially as compared to the old Unix file

system. Our work has the same goal, but with multi-disk storage systems in mind; however, we

believe that the file system should base its decisions upon reliably-obtained information about the

142

characteristics of storage, instead of relying upon assumptions which may or may not hold across

time (e.g. that seek costs dominate rotational costs).

Another example of the benefits of low-level knowledge of disk characteristics is found in

Schindleret al.’s recent work on track-aligned extents [63]. Therein, the authors explore the range

of performance improvements possible when allocating and accessing data on disk-track bound-

aries, thereby avoiding rotational latency and track-crossing overheads in a single-disk setting. In

contrast, E×RAID exposes disk boundaries of a RAID to file systems above, and not such detailed

lower-level information; in the future, it would be interesting to investigate the benefits of having

lower-level knowledge of the specifics of a RAID-based storage system.

Network Appliance pioneered some of the ideas we discuss here in their work on file server

appliances [27]. In the development of WAFL, a write-anywhere file layout technique, Hitzet al.

hint at how some information normally hidden inside of the RAID layer can be taken advantage of

by a file system. For example, they ensure that writes to the RAID-4 layer occur in full-stripe-sized

units, and thus avoid the small-write penalty that normallymanifests itself on RAID-4 and RAID-5

systems. We take this a step further by formalizing the E×RAID layer, showing that a traditional

file system can easily be modified to take advantage of the information provided by E×RAID, and

demonstrating that a broader range of optimizations are attainable within such a framework.

5.5 Expanding Storage Interfaces

Roselliet al. discuss the file system/storage system gap in their talk on file system fingerprint-

ing [54]. Their solution is to enrich the interface between file systems and storage systems, by

143

giving the storage system more information about which blocks are related, and which blocks are

likely to be accessed again in the near future. Thus, their approach gives the storage system some

of the information that the file system might have collected,and presumes that the storage layer

can make good use of such information. One potential problemwith such an approach is that it

may require agreement on a particular set of interfaces among cooperating storage vendors and

file-system implementors.

Schindleret al. [64] augment the RAID interface to provide information about individual disks.

Their Atropos volume manager exposes disk boundary and track information to provide efficient

semi-sequential access to two-dimensional data structures such as database tables. The authors

have since extended this work to higher dimensions [46] based on the observation that times for

short seeks (tens of tracks) are roughly equivalent to the delay of seeking a single track during

sequential access. Shear enables the use of such low-level information in multiple disk systems

without the need for an enhanced interface.

Exposing each disk of a storage system to the file system is an extension of the arguments

made by Engler and Kaashoek [22]. Therein, the authors arguethat software abstractions made by

operating systems are fundamentally problematic, as they are often too high-level and thus may

limit power and functionality. The authors advocate a solution of exposing all hardware features to

the user. Missing from this argument for minimalism is the observation that hardware itself often

provides abstractions that users (and operating systems) cannot change. Apropos to data storage,

the abstraction put forth by RAID systems is a particularly high-level one, which our informing

interfaces break by revealing details that are often hiddenfrom the file system.

144

Some distributed file systems such as Zebra [26] and xFS [1] manage each disk of the system

individually, in a manner similar to I·LFS. However, both of these systems use traditional storage

management techniques (such as RAID-5 striping) and do not take advantage of the many potential

possibilities that the E×RAID layer makes available. In the future, we hope to extend some of our

ideas into the distributed arena, and thus allow for a more direct comparison.

More recently, the NASD object interface has been introduced as a higher-level data repository

for SAN-based distributed file systems [23]. This interfaceallows more advanced functionality

to be placed into the storage layer, whereas our informing interfaces are designed to allow more

functionality to be placed within the file system. Earlier work at HP on DataMesh also proposes

more sophisticated interfaces for network-attached storage [87].

Our informed approach is also similar to a large body of work in parallel file systems [29, 42].

Most parallel file systems expose disk parallelism, but theyallow the application itself, and not the

file system, to manage it. Better control over redundancy in aparallel file system has also been

proposed [18]. In that work, the computation of parity is putunder user control, and in doing so,

allows the user to avoid the well-known performance penaltyof RAID-4 and RAID-5 under small

writes.

145

Chapter 6

Conclusions

In this dissertation, we examined the storage stack with a goal of overcoming the informa-

tion gap between file systems and storage systems stemming from the obscuring interface they

share. We believe the key to overcoming this obstacle lies ininformation, and hence relies on the

development of informing interfaces that enable vertical coordination and collaboration between

layers.

6.1 Summary and Observations

In Chapter 2, we presented Shear, a system that automatically detects the important parameters

of a RAID, thus transforming the obscuring logical block interface into our basic informing inter-

face that reveals the internal structure of the array. The keys to Shear are its use of randomness to

extract steady-state performance and its use of statistical techniques to deliver automated detection.

We verified that Shear works as desired through a series of simulations over a variety of layout and

redundancy schemes. We also showed how Shear could be used toimprove the management and

performance of storage arrays through its acquired information.

146

Overall, we found that Shear is an accurate and reliable system for uncovering RAID proper-

ties. The technique of extracting the lowest performance from the system was invaluable, though

doing so meant carefully avoiding the features designed to increase performance. We imagine

this technique would prove useful in characterizing other systems, as well. In general, we believe

the gray-box approach is a realistic method for overcoming the limitations in current systems and

demonstrating the merits of proposals for future systems.

In Chapter 3, we introduced our second informing interface,E×RAID, which built upon our

basic interface to provide file system appropriate information about an array. We showed how

I·LFS uses the information provided by E×RAID to bridge the gap between file systems and stor-

age systems. We explored the implementation of on-line expansion, dynamic parallelism, flexible

redundancy, and lazy mirroring. All were implemented in a relatively straight-forward manner

within the file system, increasing system manageability, performance, and functionality, while

maintaining a reasonable level of overall system complexity.

Some of these aspects of I·LFS would be difficult to build in the traditional storage stack. We

believe this highlights our argument for vertical design and the importance of informing interfaces

that allow functionality to be placed in the correct layer ofthe system. However, determining the

proper division of labor across these layers may depend uponthe metrics of importance, the prop-

erties of individual components, and the system environment. Defining interfaces that generalize

to such diverse requirements will be a challenge for storageresearch in the future.

In Chapter 4, we took a collaborative approach in examining the ability of a journaling file

system to provide support for faster software RAID resynchronization. We introduced both ext3

147

declared mode and the software RAID verify read interface, the combination of which allows us

to implement fast, journal-guided resynchronization. This process improves both software RAID

reliability and availability by hastening the recovery process after a crash, all while maintaining

good performance in the common case.

Moving forward, we believe such collaborative designs willprove to be the most powerful

for envisioning the storage stack of the future. Such designs could facilitate a system in which

layers negotiate to define their responsibilities and actively coordinate their operations to achieve

the overall goals of the system.

6.2 Future Work

6.2.1 Shear

The Shear detection process may take a long time depending onthe size and particular layout

of the array. To improve the runtime, it may be possible to usefewer requests during the individual

microbenchmarks. The current algorithms also take a somewhat naive approach in exhaustively

searching the parameter space. More refined algorithms might be able to reduce the search space

based on initial findings. For example, after determining a candidate chunk size for the first disk,

perhaps only the points corresponding to that estimate could be checked for the remaining disks.

The requirement of homogeneous disks limits the scope of systems that Shear can successfully

examine. The key to overcoming this limitation lies in determining the pattern size over a set of

148

heterogeneous disks. We believe the same algorithmic approach can be utilized, but the trials con-

ducted may need to be deterministic, and the analysis phase may require modifications to establish

the performance differences of the array components.

Shear also requires that it is the only process accessing thearray, and this prohibits the testing

of storage systems that cannot be taken offline. In the future, it may be possible to position Shear to

augment an existing workload to induce the desired microbenchmarks in an online system, though

doing so without severe detriment to foreground performance will be challenging.

6.2.2 Informed LFS

The current implementation of I·LFS flexible redundancy supports only striped and mirrored

layouts. It would be interesting to add parity-based redundancy (similar to RAID-5) to allow for

another choice in capacity and performance, and to examine the interplay of various schemes in the

same file system. Prabhakaranet al. proposed similar parity based redundancy schemes for single

disks in their work on IRON file systems [49]. Similar to the AFRAID storage system [61], I·LFS

could also migrate blocks between different redundancy schemes based on file access pattern.

We also imagine that many optimizations are possible with the LFS cleaner. For example, as

data is laid out on disk according to current performance characteristics and access patterns, it

may not meet the needs of subsequent potentially non-sequential reads from other applications.

Similarly, as new disks are added, the cleaner may want to runin order to lay out older data across

the new disks. Thus, the cleaner could be used to re-organizedata across drives for better read

149

performance in the presence of heterogeneity and new drives, similar to the work of Neefeet al.,

but generalized to operate in a heterogeneous multiple disksetting [39].

6.2.3 Journal-guided Resynchronization

Our current analysis for journal-guided resynchronization is limited to the ext3 file system for

Linux. We expect the same design is applicable to other journaling file systems (such as Reis-

erFS [51], JFS [8], and NTFS [71]), but it would be beneficial to evaluate its complexity and

performance impact in these environments. It would also be interesting to extend our system-wide

view to consider opportunities for collaboration with the application layer. For example, database

systems that manage their own storage typically use a form oflogging to recover from failure, and

therefore they could replace the file system in the role of RAID adviser.

A collaborative approach between the file system and RAID could also be used to implement

intelligent reconstruction. When a disk fails in an array, the failed disk blocks are typically recon-

structed onto a spare disk using the redundant information stored on its peers. With direction from

the file system, however, the RAID layer could reconstruct only live data from the failed disk rather

than blindly regenerating the entire disk, substantially lowering the time to perform the operation.

Another benefit of this arrangement is that the file system could give preference to certain files

over others, reconstructing higher-priority files first andthus increasing the availability of those

files under failure.

150

6.2.4 RAID-aware File Systems

A natural extension of this dissertation research is an exploration of designing RAID-aware

file systems based on the information obtained by Shear. Although I·LFS explored new file sys-

tem functionality, there remain many design questions for basic file system responsibilities in the

presence of multiple disks and different RAID levels.

For instance, existing operating system disk schedulers treat storage arrays as a single large

disk, choosing requests based on logical block distance. Inreality, those logical blocks are dis-

tributed across independent disks, a fact which could be exploited by an aware scheduler to produce

a more efficient ordering.

In the realm of file layout, existing file systems still place data based on the single disk cylinder

group model used by FFS [40]. A RAID-aware file system, however, could make a variety of layout

decisions based on the metric of importance. If performanceis paramount, the file system could

explicitly distribute a file across disks to guarantee efficient use of the parallelism in the array. If

the goal is reduced power consumption, the file system could place a file within an individual disk

to reduce the number of active spindles required to access its content.

6.3 The End

Storage systems, and computer systems in general, are becoming more complex, yet their

layers of interacting components remain concealed by abstract simplicity. Our general approach

advocates a system-wide view for developing the storage stack based on greater information, en-

abling vertical integration across a set of collaborating layers. Though we have examined a few

151

points in the design space of storage stacks, other arrangements are possible and perhaps prefer-

able; we hope that they will be explored. Whatever the conclusion of research on the division of

labor between file systems and storage systems, we believe the proper alignment should be arrived

upon through design, implementation, and experimentation, rather than via historical artifact. Each

of these layers may implement its own abstractions, protocols, mechanisms, and policies, but it is

their interaction that will define the properties of the system.

152

LIST OF REFERENCES

[1] T.E. Anderson, M.D. Dahlin, J.M. Neefe, D.A. Patterson,and R.Y. Wang. Serverless Net-
work File Systems. InProceedings of the 15th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’95), pages 109–26, Copper Mountain Resort, Colorado, December1995.

[2] Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau. Information and Control in Gray-
Box Systems. InProceedings of the 18th ACM Symposium on Operating Systems Principles
(SOSP ’01), pages 43–56, Banff, Canada, October 2001.

[3] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Nathan C. Burnett, Timothy E.
Denehy, Thomas J. Engle, Haryadi S. Gunawi, James Nugent, and Florentina I. Popovici.
Transforming Policies into Mechanisms with Infokernel. InProceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP ’03), pages 90–105, Bolton Landing
(Lake George), New York, October 2003.

[4] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, David E. Culler, Joseph M. Heller-
stein, and Dave Patterson. High-Performance Sorting on Networks of Workstations. InPro-
ceedings of the 1997 ACM SIGMOD International Conference on Management of Data (SIG-
MOD ’97), Tucson, Arizona, May 1997.

[5] Remzi H. Arpaci-Dusseau, Eric Anderson, Noah Treuhaft,David E. Culler, Joseph M. Heller-
stein, Dave Patterson, and Kathy Yelick. Cluster I/O with River: Making the Fast Case Com-
mon. InThe 1999 Workshop on Input/Output in Parallel and Distributed Systems (IOPADS
’99), Atlanta, Georgia, May 1999.

[6] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Fail-Stutter Fault Tolerance.
In The Eighth Workshop on Hot Topics in Operating Systems (HotOS VIII), pages 33–38,
Schloss Elmau, Germany, May 2001.

[7] Lakshmi N. Bairavasundaram, Muthian Sivathanu, AndreaC. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. X-RAY: A Non-Invasive Exclusive Caching Mechanism for RAIDs. In
Proceedings of the 31st Annual International Symposium on Computer Architecture (ISCA
’04), pages 176–187, Munich, Germany, June 2004.

[8] Steve Best. JFS Overview. www.ibm.com/developerworks/library/l-jfs.html, 2000.

153

[9] Tim Bray. The Bonnie File System Benchmark. http://www.textuality.com/bonnie/.

[10] Aaron Brown and David A. Patterson. Towards Maintainability, Availability, and Growth
Benchmarks: A Case Study of Software RAID Systems. InProceedings of the USENIX
Annual Technical Conference (USENIX ’00), pages 263–276, San Diego, California, June
2000.

[11] Nathan C. Burnett, John Bent, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Exploiting Gray-Box Knowledge of Buffer-Cache Contents. In Proceedings of the USENIX
Annual Technical Conference (USENIX ’02), pages 29–44, Monterey, California, June 2002.

[12] Peter Chen and Edward K. Lee. Striping in a RAID Level 5 Disk Array. In Proceedings
of the 1995 ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’95), pages 136–145, Ottawa, Canada, May 1995.

[13] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A. Patter-
son. RAID: High-performance, Reliable Secondary Storage.ACM Computing Surveys,
26(2):145–185, June 1994.

[14] Peter M. Chen and David A. Patterson. Maximizing Performance in a Striped Disk Array. In
Proceedings of the 17th Annual International Symposium on Computer Architecture (ISCA
’90), pages 322–331, Seattle, Washington, May 1992.

[15] Peter M. Chen and David A. Patterson. A New Approach to I/O Performance Evaluation–
Self-Scaling I/O Benchmarks, Predicted I/O Performance. In Proceedings of the 1993 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems (SIGMET-
RICS ’93), pages 1–12, Santa Clara, California, May 1993.

[16] Paul Clements and James Bottomley. High Availability Data Replication. InProceedings of
the 2003 Linux Symposium, Ottawa, ON, Canada, June 2003.

[17] Douglas Comer.Internetworking with TCP/IP Vol. 1: Principles, Protocols and Architecture.
Prentice Hall, London, 2 edition, 1991.

[18] Thomas H. Cormen and David Kotz. Integrating Theory AndPractice In Parallel File Sys-
tems. InProceedings of the 1993 DAGS/PC Symposium (The Dartmouth Institute for Ad-
vanced Graduate Studies), pages 64–74, Hanover, NH, June 1993.

[19] Toni Cortes and Jesus Labarta. Extending Heterogeneity to RAID level 5. InProceedings of
the USENIX Annual Technical Conference (USENIX ’01), Boston, Massachusetts, June 2001.

[20] Daniel Ellard, Jonathan Ledlie, Pia Malkani, and MargoI. Seltzer. Passive NFS Tracing of
Email and Research Workloads. InProceedings of the 2nd USENIX Symposium on File and
Storage Technologies (FAST ’03), pages 203–216, San Francisco, California, April 2003.

154

[21] EMC Corporation. Symmetrix Enterprise Information Storage Systems.
http://www.emc.com, 2002.

[22] Dawson R. Engler and M. Frans Kaashoek. Exterminate AllOperating System Abstractions.
In The Fifth Workshop on Hot Topics in Operating Systems (HotOS V), Orcas Island, Wash-
ington, May 1995.

[23] Garth A. Gibson, David Rochberg, Jim Zelenka, David F. Nagle, Khalil Amiri, Fay W.
Chang, Eugene M. Feinberg, Howard Gobioff, Chen Lee, BerendOzceri, and Erik Riedel.
File server scaling with network-attached secure disks. InProceedings of the 1997 Joint
International Conference on Measurement and Modeling of Computer Systems (SIGMET-
RICS/PERFORMANCE ’97), pages 272–284, Seattle, Washington, June 1997.

[24] Thomas Glaser. TCP/IP Stack Fingerprinting Principles.
http://www.sans.org/newlook/resources/IDFAQ/ TCPfingerprinting.htm, October 2000.

[25] Edward Grochowski. Emerging Trends in Data Storage on Magnetic Hard Disk Drives.
Datatech, September 1999.

[26] J.H. Hartman and J.K. Ousterhout. The Zebra Striped Network File System. InProceedings
of the 14th ACM Symposium on Operating Systems Principles (SOSP ’93), pages 29–43,
Asheville, North Carolina, December 1993.

[27] Dave Hitz, James Lau, and Michael Malcolm. File System Design for an NFS File Server
Appliance. InProceedings of the 1994 USENIX Winter Technical Conference, Berkeley, CA,
January 1994.

[28] Hui-I Hsiao and David DeWitt. Chained Declustering: A New Availability Strategy for
Multiprocessor Database Machines. InProceedings of 6th International Conference on Data
Engineering (ICDE ’90), pages 456–465, Los Angeles, California, February 1990.

[29] Jay Huber, Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, and David S. Blumen-
thal. PPFS: A High Performance Portable Parallel File System. In Proceedings of the 9th
ACM International Conference on Supercomputing, pages 385–394, Barcelona, Spain, July
1995.

[30] Van Jacobson. How to Kill the Internet. ftp://ftp.ee.lbl.gov/talks/vj-webflame.ps.Z, 1995.

[31] Jeffrey Katcher. PostMark: A New File System Benchmark. Technical Report TR-3022,
Network Appliance Inc., October 1997.

[32] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Summer. One-level Storage System.
IRE Transactions on Electronic Computers, EC-11:223–235, April 1962.

[33] Butler W. Lampson. Hints for Computer System Design. InProceedings of the 9th ACM
Symposium on Operating System Principles (SOSP ’83), pages 33–48, Bretton Woods, New
Hampshire, October 1983.

155

[34] Edward K. Lee and Randy H. Katz. Performance Consequences of Parity Placement in Disk
Arrays. In Proceedings of the 4th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS IV), pages 190–199, Santa Clara,
California, April 1991.

[35] Edward K. Lee and Randy H. Katz. An analytic performancemodel of disk arrays. In
Proceedings of the 1993 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS ’93), pages 98–109, Santa Clara, California, May 1993.

[36] Zhenmin Li, Zhifeng Chen, Sudarshan M. Srivivasan, andYuanyuan Zhou. C-miner: Mining
block correlations in storage systems. InProceedings of the 3rd USENIX Symposium on File
and Storage Technologies (FAST ’04), pages 173–186, San Francisco, California, April 2004.

[37] Miron Livny, Setrag Khoshafian, and Haran Boral. Multi-disk management algorithms. In
Proceedings of the 1987 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS ’87), pages 69–77, Banff, Alberta, Canada, May 1987.

[38] C. Lumb, J. Schindler, G.R. Ganger, D.F. Nagle, and E. Riedel. Towards Higher Disk Head
Utilization: Extracting “Free” Bandwidth From Busy Disk Drives. InProceedings of the 4th
Symposium on Operating Systems Design and Implementation (OSDI ’00), pages 87–102,
San Diego, California, October 2000.

[39] Jeanna Neefe Matthews, Drew Roselli, Adam M. Costello,Randolph Y. Wang, and
Thomas E. Anderson. Improving the Performance of Log-Structured File Systems with
Adaptive Methods. InProceedings of the 16th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’97), pages 238–251, Saint-Malo, France, October 1997.

[40] Marshall K. McKusick, William N. Joy, Sam J. Leffler, andRobert S. Fabry. A Fast File
System for UNIX.ACM Transactions on Computer Systems, 2(3):181–197, August 1984.

[41] Marshall Kirk McKusick, Willian N. Joy, Samuel J. Leffler, and Robert S. Fabry. Fsck -
The UNIX File System Check Program. Unix System Manager’s Manual - 4.3 BSD Virtual
VAX-11 Version, April 1986.

[42] Nils Nieuwejaar and David Kotz. The Galley Parallel File System. InProceedings of the
10th ACM International Conference on Supercomputing, pages 374–381, Philadelphia, PA,
May 1996. ACM Press.

[43] William Norcutt. The IOzone Filesystem Benchmark. http://www.iozone.org/.

[44] John K. Ousterhout, Herve Da Costa, David Harrison, John A. Kunze, Mike Kupfer, and
James G. Thompson. A Trace-Driven Analysis of the UNIX 4.2 BSD File System. InPro-
ceedings of the 10th ACM Symposium on Operating System Principles (SOSP ’85), pages
15–24, Orcas Island, Washington, December 1985.

156

[45] Jitendra Padhye and Sally Floyd. Identifying the TCP Behavior of Web Servers. InProceed-
ings of SIGCOMM ’01, San Diego, California, August 2001.

[46] Steven W. Schlosserand Jiri Schindlerand Stratos Papadomanolakis, Minglong Shao, Anas-
tassia Ailamaki, Christos Faloutsos, and Gregory R. Ganger. On Multidimensional Data and
Modern Disks. InProceedings of the 4th USENIX Symposium on File and Storage Technolo-
gies (FAST ’05), pages 225–238, San Francisco, California, December 2005.

[47] David Patterson, Garth Gibson, and Randy Katz. A Case for Redundant Arrays of Inexpen-
sive Disks (RAID). InProceedings of the 1988 ACM SIGMOD Conference on the Manage-
ment of Data (SIGMOD ’88), pages 109–116, Chicago, Illinois, June 1988.

[48] Dan Pelleg and Andrew Moore. X-means: Extending K-means with Efficient Estimation of
the Number of Clusters. InProceedings of the 17th International Conference on Machine
Learning, June 2000.

[49] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. IRON File Systems. InProceedings
of the 20th ACM Symposium on Operating Systems Principles (SOSP ’05), pages 206–220,
Brighton, United Kingdom, October 2005.

[50] John Regehr. Inferring Scheduling Behavior with Hourglass. InProceedings of the USENIX
Annual Technical Conference (FREENIX Track), Monterey, California, June 2002.

[51] Hans Reiser. ReiserFS. www.namesys.com, 2004.

[52] Dennis M. Ritchie and Ken Thompson. TheUNIX Time-Sharing System.Communications
of the ACM, 17(7):365–375, July 1974.

[53] Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson. A Comparison of File System
Workloads. InProceedings of the USENIX Annual Technical Conference (USENIX ’00),
pages 41–54, San Diego, California, June 2000.

[54] Drew Roselli, Jeanna Neefe Matthews, and Thomas E. Anderson. File System Fingerprint-
ing. Works-In-Progress at the Third Symposium on OperatingSystems Design and Imple-
mentation (OSDI ’99), February 1999.

[55] Mendel Rosenblum and John Ousterhout. The Design and Implementation of a Log-
Structured File System.ACM Transactions on Computer Systems, 10(1):26–52, February
1992.

[56] David S. H. Rosenthal. Evolving the Vnode Interface. InProceedings of the 1990 USENIX
Summer Technical Conference, pages 107–118, Anaheim, CA, 1990.

[57] Chris Ruemmler and John Wilkes. An Introduction to DiskDrive Modeling. IEEE Com-
puter, 27(3):17–28, March 1994.

157

[58] Rafael H. Saavedra and Alan Jay Smith. Measuring Cache and TLB Performance and Their
Effect on Benchmark Runtimes.IEEE Transactions on Computers, 44(10):1223–1235, 1995.

[59] Jose Renato Santos and Richard Muntz. Performance Analysis of the RIO Multimedia Stor-
age System with Heterogeneous Disk Configurations. InACM Multimedia ’98, December
1998.

[60] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Alistair C. Veitch, Ross W.
Carton, and Jacob Ofir. Deciding When To Forget In The Elephant File System. InPro-
ceedings of the 17th ACM Symposium on Operating Systems Principles (SOSP ’99), pages
110–123, Kiawah Island Resort, South Carolina, December 1999.

[61] Stefan Savage and John Wilkes. AFRAID — A Frequently Redundant Array of Independent
Disks. In Proceedings of the USENIX Annual Technical Conference (USENIX ’96), pages
27–39, San Diego, California, January 1996.

[62] Jiri Schindler and Greg Ganger. Automated Disk Drive Characterization. Technical Report
CMU-CS-99-176, Carnegie Mellon University, November 1999.

[63] Jiri Schindler, John Linwood Griffin, Christopher R. Lumb, and Gregory R. Ganger. Track-
aligned Extents: Matching Access Patterns to Disk Drive Characteristics. InProceedings of
the 1st USENIX Symposium on File and Storage Technologies (FAST ’02), Monterey, Cali-
fornia, January 2002.

[64] Jiri Schindler, Steven W. Schlosser, Minglong Shao, Anastassia Ailamaki, and Gregory R.
Ganger. Atropos: A Disk Array Volume Manager for Orchestrated Use of Disks. InPro-
ceedings of the 3rd USENIX Symposium on File and Storage Technologies (FAST ’04), San
Francisco, California, April 2004.

[65] Margo Seltzer, Keith Bostic, Marshall Kirk McKusick, and Carl Staelin. An Implementation
of a Log-Structured File System for UNIX. InProceedings of the USENIX Winter Technical
Conference (USENIX Winter ’93), pages 307–326, San Diego, California, January 1993.

[66] Margo Seltzer, Keith A. Smith, Hari Balakrishnan, Jacqueline Chang, Sara McMains, and
Venkata Padmanabhan. File System Logging versus Clustering: A Performance Comparison.
In Proceedings of the USENIX Annual Technical Conference (USENIX ’95), pages 249–264,
New Orleans, Louisiana, January 1995.

[67] Margo I. Seltzer, Gregory R. Ganger, M. Kirk McKusick, Keith A. Smith, Craig A. N. Soules,
and Christopher A. Stein. Journaling Versus Soft Updates: Asynchronous Meta-data Protec-
tion in File Systems. InProceedings of the USENIX Annual Technical Conference (USENIX
’00), pages 71–84, San Diego, California, June 2000.

158

[68] Muthian Sivathanu, Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Life or Death at Block Level. InProceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSDI ’04), pages 379–394, San Francisco,
California, December 2004.

[69] Muthian Sivathanu, Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Improving Storage System Availability with D-GRAID. In Proceedings of the
3rd USENIX Symposium on File and Storage Technologies (FAST ’04), pages 15–30, San
Francisco, California, April 2004.

[70] Muthian Sivathanu, Vijayan Prabhakaran, Florentina I. Popovici, Timothy E. Denehy, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Semantically-Smart Disk Systems.
In Proceedings of the 2nd USENIX Symposium on File and Storage Technologies (FAST ’03),
pages 73–88, San Francisco, California, April 2003.

[71] David A. Solomon.Inside Windows NT (Microsoft Programming Series). Microsoft Press,
1998.

[72] Carl Staelin and Larry McVoy. mhz: Anatomy of a micro-benchmark. InProceedings of
the USENIX Annual Technical Conference (USENIX ’98), pages 155–166, New Orleans,
Louisiana, June 1998.

[73] Daniel Stodolsky, Garth Gibson, and Mark Holland. Parity logging overcoming the small
write problem in redundant disk arrays. InProceedings of the 20th Annual International
Symposium on Computer Architecture (ISCA ’93), pages 64–75, San Diego, California, May
1993.

[74] Sun. Solaris Volume Manager Administration Guide. http://docs.sun.com/app/docs/doc/816-
4520, July 2005.

[75] Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto, and Geoff Peck.
Scalability in the XFS File System. InProceedings of the USENIX Annual Technical Con-
ference (USENIX ’96), San Diego, California, January 1996.

[76] Nisha Talagala, Remzi H. Arpaci-Dusseau, and Dave Patterson. Microbenchmark-based Ex-
traction of Local and Global Disk Characteristics. Technical Report CSD-99-1063, Univer-
sity of California, Berkeley, 1999.

[77] David Teigland. The Pool Driver: A Volume Driver for SANs. Master’s thesis, University of
Minnesota, December 1999.

[78] David Teigland and Heinz Mauelshagen. Volume Managersin Linux. In Proceedings of
the USENIX Annual Technical Conference (FREENIX Track), Boston, Massachusetts, June
2001.

[79] Theodore Ts’o. http://e2fsprogs.sourceforge.net/ext2.html, June 2001.

159

[80] Theodore Ts’o and Stephen Tweedie. Future Directions for the Ext2/3 Filesystem. InPro-
ceedings of the USENIX Annual Technical Conference (FREENIX Track), Monterey, Califor-
nia, June 2002.

[81] Stephen C. Tweedie. Journaling the Linux ext2fs File System. InThe Fourth Annual Linux
Expo, Durham, North Carolina, May 1998.

[82] Stephen C. Tweedie. EXT3, Journaling File System. olstrans.sourceforge.net/
release/OLS2000-ext3/OLS2000-ext3.html, July 2000.

[83] Robert van Renesse. Masking the Overhead of Protocol Layering. InProceedings of SIG-
COMM ’96, pages 96–104, Stanford, California, August 1996.

[84] Elizabeth Varki, Arif Merchant, Jianzhang Xu, and Xiaozhou Qiu. Issues and challenges in
the performance analysis of real disk arrays.IEEE Transactions on Parallel and Distributed
Systems, 15(6):559–574, June 2004.

[85] Veritas. http://www.veritas.com, June 2001.

[86] Veritas. Features of VERITAS Volume Manager for Unix and VERITAS File System.
http://www.veritas.com/us/products/ volumemanager/whitepaper-02.html, July 2005.

[87] John Wilkes. DataMesh— scope and objectives: a commentary. Technical Report HP-DSD-
89-44, Hewlett-Packard, July 1989.

[88] John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan. The HP AutoRAID Hierar-
chical Storage System.ACM Transactions on Computer Systems, 14(1):108–136, February
1996.

[89] Theodore M. Wong and John Wilkes. My Cache or Yours? Making Storage More Exclu-
sive. InProceedings of the USENIX Annual Technical Conference (USENIX ’02), Monterey,
California, June 2002.

[90] Bruce L. Worthington, Greg R. Ganger, Yale N. Patt, and John Wilkes. On-Line Extraction
of SCSI Disk Drive Parameters. InProceedings of the 1995 ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS ’95), pages 146–156,
Ottawa, Canada, May 1995.

[91] Roger Zimmermann and Shahram Ghandeharizadeh. HERA: Heterogeneous Extension of
RAID. Technical Report USC-CS-TR98-685, University of Southern California, 1998.

