
20

Redundancy Does Not Imply Fault Tolerance: Analysis

of Distributed Storage Reactions to File-System Faults

AISHWARYA GANESAN, RAMNATTHAN ALAGAPPAN,

ANDREA C. ARPACI-DUSSEAU, and REMZI H. ARPACI-DUSSEAU,

University of Wisconsin—Madison

We analyze how modern distributed storage systems behave in the presence of file-system faults such as data

corruption and read and write errors. We characterize eight popular distributed storage systems and uncover

numerous problems related to file-system fault tolerance. We find that modern distributed systems do not con-

sistently use redundancy to recover from file-system faults: a single file-system fault can cause catastrophic

outcomes such as data loss, corruption, and unavailability. We also find that the above outcomes arise due to

fundamental problems in file-system fault handling that are common across many systems. Our results have

implications for the design of next-generation fault-tolerant distributed and cloud storage systems.

CCS Concepts: • General and reference → Reliability; • Information systems → Distributed storage;

• Computer systems organization → Redundancy; • Software and its engineering → File systems

management;

Additional Key Words and Phrases: File-system faults, data corruption, fault tolerance

ACM Reference format:

Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

2017. Redundancy Does Not Imply Fault Tolerance: Analysis of Distributed Storage Reactions to File-System

Faults. ACM Trans. Storage 13, 3, Article 20 (September 2017), 33 pages.

https://doi.org/10.1145/3125497

1 INTRODUCTION

Cloud-based applications such as Internet search, photo and video services [19, 65, 67], social

networking [91, 94], transportation services [92, 93], and e-commerce [53] depend on modern

distributed storage systems to manage their data. This important class of systems includes key-

value stores (e.g., Redis), configuration stores (e.g., ZooKeeper, LogCabin), document stores (e.g.,

This material was supported by funding from NSF grants CNS-1419199, CNS-1421033, CNS-1319405, and CNS-1218405,

DOE grant DE-SC0014935, as well as donations from EMC, Facebook, Google, Huawei, Microsoft, NetApp, Samsung, Sea-

gate, Veritas, and VMware. Any opinions, findings, and conclusions or recommendations expressed in this material are

those of the authors and may not reflect the views of NSF, DOE, or other institutions. This article is an extended version of

a FAST ’17 article by Ganesan et al. [29]. The additional material here includes a behavior analysis of a few systems (Redis,

Cassandra, and Kafka) in the presence of bit corruptions, a study of Cassandra in a different configuration, more graphics

depicting key on-disk data structures of the various systems, more thorough description of the observations across systems

with figures to aid in understanding, a summary of the results, figures to illustrate our fault injection methodology, and

many other small edits and updates.

Authors’ addresses: A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, 1210 W. Dayton St.,

Madison, WI 53706; emails: {ag, ra, dusseau, remzi}@cs.wisc.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM 1553-3077/2017/09-ART20 $15.00

https://doi.org/10.1145/3125497

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

https://doi.org/10.1145/3125497
mailto:permissions@acm.org
https://doi.org/10.1145/3125497

20:2 A. Ganesan et al.

MongoDB), column stores (e.g., Cassandra), messaging queues (e.g., Kafka), and databases (e.g.,

RethinkDB, CockroachDB).

Modern distributed storage systems store data in a replicated fashion for improved reliability.

Each replica works atop a commodity local file system on commodity hardware to store and man-

age critical user data. In most cases, replication can mask failures such as system crashes, power

failures, and disk or network failures [22, 24, 31, 32, 41, 81]. Unfortunately, storage devices such

as disks and flash drives exhibit a more complex failure model in which certain blocks of data

can become inaccessible (read and write errors) [7, 9, 49, 55, 80, 82] or, worse, data can be silently

corrupted [8, 60, 86]. These complex failures are known as partial storage faults [63].

Previous studies [10, 63, 99] have shown how partial storage faults are handled by file systems

such as ext3, NTFS, and ZFS. File systems, in some cases, simply propagate the faults as-is to

applications; for example, ext4 returns corrupted data as-is to applications if the underlying device

block is corrupted. In other cases, file systems react to the fault and transform it into a different

one before passing onto applications; for example, btrfs transforms an underlying block corruption

into a read error. In either case, we refer to the faults thrown by the file system to its applications

as file-system faults.

The behavior of modern distributed storage systems in response to file-system faults is criti-

cal and strongly affects cloud-based services. Despite this importance, little is known about how

modern distributed storage systems react to file-system faults.

A common and widespread expectation is that redundancy in higher layers (i.e., across replicas)

enables recovery from local file-system faults [12, 22, 36, 42, 82]. For example, an inaccessible block

of data in one node of a distributed storage system would ideally not result in a user-visible data

loss, because the same data are redundantly stored on many nodes. Given this expectation, in this

article, we answer the following questions: How do modern distributed storage systems behave in

the presence of local file-system faults? Do they use redundancy to recover from a single file-system

fault?

To study how modern distributed storage systems react to local file-system faults, we build a

fault injection framework called Cords that includes the following key pieces: errfs, a user-level

FUSE file system that systematically injects file-system faults, and errbench, a suite of system-

specific workloads that drives systems to interact with their local storage. For each injected fault,

Cords automatically observes resultant system behavior. We studied eight widely used systems

using Cords: Redis [66], ZooKeeper [6], Cassandra [4], Kafka [5], RethinkDB [70], MongoDB [52],

LogCabin [46], and CockroachDB [14].

The most important overarching lesson from our study is this: A single file-system fault can

induce catastrophic outcomes in most modern distributed storage systems. Despite the presence

of checksums, redundancy, and other resiliency methods prevalent in distributed storage, a single

file-system fault can lead to data loss, corruption, unavailability, and, in some cases, the spread of

corruption to other intact replicas.

The benefits of our systematic study are twofold. First, our study has helped us characterize file-

system fault handling behaviors of eight systems and also uncover numerous bugs in these widely

used systems. We find that these systems can silently return corrupted data to users, lose data,

propagate corrupted data to intact replicas, become unavailable, or return an unexpected error on

queries. For example, a single write error during log initialization can cause write unavailability

in ZooKeeper. Similarly, corrupted data in one node in Redis and Cassandra can be propagated to

other intact replicas. In Kafka and RethinkDB, corruption in one node can cause a user-visible data

loss. Because distributed storage systems inherently store redundant copies of data and we inject

only one fault at a time, these behaviors are surprising and undesirable.

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

Redundancy Does Not Imply Fault Tolerance 20:3

Second, our study has enabled us to make several observations across all systems concerning

file-system fault handling. We find that the above undesirable outcomes arise due to the following

fundamental root causes in file-system fault tolerance that are common to many distributed storage

systems.

Systems employ diverse data-integrity strategies. We find that systems employ diverse strate-

gies to protect against file-system faults; while some systems carefully use checksums, others com-

pletely trust lower layers in the stack to detect and handle corruption.

Faults are often undetected locally. We find that faults are often locally undetected. Sometimes,

such locally undetected faults lead to immediate harmful global effects.

Crashing is the most common reaction. Even when systems reliably detect faults, in most

cases, they simply crash instead of using redundancy to recover from the fault.

Redundancy is underutilized. Although distributed storage systems replicate data and func-

tionality across many nodes, a single file-system fault on a single node can result in harmful clus-

terwide effects; surprisingly, many distributed storage systems do not consistently use redundancy

as a source of recovery.

Crash and corruption handling are entangled. Systems often conflate recovering from a crash

with recovering from corruption, accidentally invoking the wrong recovery subsystem to handle

the fault, and ultimately leading to poor outcomes such as data loss.

Local fault handling and global protocols interact in unsafe ways. Local fault-handling

behaviors and global distributed protocols, such as read repair, leader election, and re-

synchronization, sometimes interact in an unsafe manner, leading to propagation of corruption

to intact replicas or data loss.

This work makes three major contributions. First, we build a fault injection framework (Cords)

to carefully inject file-system faults into applications (Section 3). Second, we present a behavioral

study of eight widely used modern distributed storage systems on how they react to file-system

faults and also uncover numerous bugs in these storage systems (Section 4.1). We have contacted

developers of seven systems and five of them have acknowledged the problems we found. While

a few problems can be tolerated by implementation-level fixes, tolerating many others require

fundamental design changes. Third, we derive a set of fundamental observations across all systems

showing some of the common data integrity and file-system fault handling problems (Section 4.2).

Our testing framework and bugs we reported are publicly available [1]. We hope that our results

will lead to discussions and future research to improve the resiliency of next generation cloud

storage systems.

The rest of the article is organized as follows. First, we provide a background on file-system

faults and motivate why file-system faults are important in the context of modern distributed

storage systems (Section 2). Then, we describe our fault model and how our framework injects

faults and observes behaviors (Section 3). Next, we present our behavior analysis and observations

across systems (Section 4). Finally, we discuss related work (Section 5) and conclude (Section 6).

2 BACKGROUND AND MOTIVATION

We first provide background on why applications running atop file systems can encounter faults

during operations such as read and write. Next, we motivate why such file-system faults are im-

portant in the context of distributed storage systems and the necessity of end-to-end data integrity

and error handling for these systems.

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

20:4 A. Ganesan et al.

2.1 File-System Faults

The layers in a storage stack beneath the file system consist of many complex hardware and soft-

ware components [2]. At the bottom of the stack is the media (a disk or a flash device). The firmware

above the media controls functionalities of the media. Commands to the firmware are submitted

by the device driver. File systems can encounter faults for a variety of underlying causes, including

media errors, mechanical and electrical problems in the disk, bugs in firmware, and problems in

the bus controller [8, 9, 49, 55, 63, 80, 82]. Sometimes, corruptions can arise due to software bugs

in other parts of the operating system [13], device drivers [89], and sometimes even due to bugs

in file systems themselves [26].

Due to these reasons, two problems arise for file systems: block errors, where certain blocks are

inaccessible (also called latent sector errors), and block corruptions, where certain blocks do not

contain the expected data.

File systems can observe block errors when the disk returns an explicit error on detecting some

problem with the block being accessed (such as in-disk ECC complaining that the block has a bit

rot) [9, 80]. A previous study [9] of over 1 million disk drives over a period of 32 months has

shown that 8.5% of near-line disks and about 1.9% of enterprise class disks developed one or more

latent sector errors. More recent results show similar errors arise in flash-based SSDs [49, 55, 82].

Similarly, a recent study on flash reliability [82] over a period of 6 years has shown that as high as

63% and 2.5% of millions of flash devices experience at least one read and write error, respectively.

File systems can receive corrupted data due to a misdirected or a lost write caused by bugs

in drive firmware [8, 60] or if the in-disk ECC does not detect a bit rot. Block corruptions are

insidious, because blocks become corrupt in a way not detectable by the disk itself. File systems,

in many cases, obliviously access such corrupted blocks and silently return them to applications.

Bairavasundaram et al., in a study of 1.53 million disk drives over 41 months, showed that more

than 400,000 blocks had checksum mismatches [8]. Anecdotal evidence has shown the prevalence

of storage errors and corruptions [18, 38, 76]. Given the frequency of storage corruptions and

errors, there is a non-negligible probability for file systems to encounter such faults.

In many cases, when the file system encounters a fault from its underlying layers, it simply

passes it as-is onto the applications [63]. For example, the default Linux file system, ext4, simply

returns errors or corrupted data to applications when the underlying block is not accessible or is

corrupted, respectively. In a few other cases, the file system may transform the underlying fault

into a different one. For example, btrfs and ZFS transform an underlying corruption into an error—

when an underlying corrupted disk block is accessed, the application will receive an error instead

of corrupted data [99]. In either case, we refer to these faults thrown by the file system to its

applications as file-system faults.

2.2 Why Distributed Storage Systems?

Given that local file systems can return corrupted data or errors, the responsibility of data integrity

and proper error handling falls to applications, as they care about safely storing and managing crit-

ical user data. Most single-machine applications such as stand-alone databases and non-replicated

key-value storage systems solely rely on local file systems to reliably store user data; they rarely

have ways to recover from local file-system faults. For example, on a read, if the local file system

returns an error or corrupted data, then applications have no way of recovering that piece of data.

Their best possible course of action is to reliably detect such faults and deliver appropriate error

messages to users.

Modern distributed storage systems, much like single-machine applications, also rely on the lo-

cal file system to safely manage critical user data. However, unlike single-machine applications,

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

Redundancy Does Not Imply Fault Tolerance 20:5

distributed storage systems inherently store data in a replicated fashion. A carefully designed dis-

tributed storage system can potentially use redundancy to recover from errors and corruptions,

irrespective of the support provided by its local file system. Ideally, even if one replica is corrupted,

the distributed storage system as whole should not be affected as other intact copies of the same

data exist on other replicas. Similarly, errors in one node should not affect the global availability

of the system given that the functionality (application code) is also replicated across many nodes.

The case for end-to-end data integrity and error handling can be found in the classical end-to-

end arguments in system design [79]. Ghemawat et al. also describe the need for such end-to-end

checksum-based detection and recovery in the Google File System as the underlying cheap IDE

disks would often corrupt data in the chunk servers [30]. Similarly, lessons from Google [22] in

building large-scale Internet services emphasize how higher layer software should provide relia-

bility. Given the possibility of end-to-end data integrity and error handling for distributed systems,

we examine if and how well modern distributed storage systems employ end-to-end techniques to

recover from local file-system faults.

3 TESTING DISTRIBUTED SYSTEMS

As we discussed in the previous section, file systems can throw errors or return corrupted data

to applications running atop them; robust applications need to be able to handle such file-system

faults. In this section, we first discuss our file-system fault model. Then, we describe our method-

ology to inject faults defined by our model and observe the effects of the injected faults.

3.1 Fault Model

Our fault model defines what file-system fault conditions an application can encounter. The goal

of our model is to inject faults that are representative of fault conditions in current and future file

systems and to drive distributed systems into error cases that are rarely tested.

Our fault model has two important characteristics. First, our model considers injecting exactly

a single fault to a single file-system block in a single node at a time. While correlated file-system

faults [8, 9] are interesting, we focus on the most basic case of injecting a single fault in a sin-

gle node, because our fault model intends to give maximum recovery leeway for applications.

Correlated faults, on the other hand, might preclude such leeway. For example, if two or more

file-system blocks containing important application-level data structures are corrupted (possible

in a correlated fault model), then there might be less opportunity for the application to salvage its

state.

Second, our model injects faults only into application-level on-disk structures and not file-

system metadata. File systems may be able to guard their own (meta)data [27]; however, if user data

becomes corrupt or inaccessible, the application will either receive a corrupted block or perhaps

receive an error (if the file system has checksums for user data). Thus, it is essential for applications

to handle such cases.

Table 1 shows faults that are possible in our model during read and write operations and some

examples of root causes in most commonly used file systems that can cause a particular fault. For

all further discussion, we use the term block to mean a file-system block.

It is possible for applications to read a block that is corrupted (with zeros or junk) if a previous

write to that block was lost or some unrelated write was misdirected to that block. For example, in

the ext family of file systems and XFS, there are no checksums for user data, and so it is possible

for applications to read such corrupted data without any errors. Our model captures such cases by

corrupting a block with zeros or junk on reads.

Even on file systems such as btrfs and ZFS where user data is checksummed, detection of cor-

ruption may be possible but not recovery (unless mounted with special options such as copies=2

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

20:6 A. Ganesan et al.

Table 1. Possible Faults and Example Causes

Type of Fault Op Example Causes

Block

Corruption

zeros Read lost and misdirected writes in ext and XFS

junk Read lost and misdirected writes in ext and XFS

Block Error

I/O error

(EIO)

Read latent sector errors in all file systems, disk corruptions

in ZFS, btrfs

Write file system mounted read-only, on-disk corruptions in

btrfs

Space

error

(ENOSPC,

EDQUOT)

Write disk full, quota exceeded in all file systems

Bit Corruption Read bit rots not detected by in-device ECC in ext and XFS

The table shows file-systems faults captured by our model and example root causes that lead to a particular fault

during read and write operations.

in ZFS). Although user data checksums employed by btrfs and ZFS prevent applications from ac-

cessing corrupted data, they return errors when applications access corrupted blocks. Our model

captures such cases by returning similar errors on reads. Also, applications can receive EIO on

reads when there is an underlying latent sector error associated with the data being read. This

condition is possible on all commonly used file systems including ext4, XFS, ZFS, and btrfs.

Applications can receive EIO on writes from the file system if the underlying disk sector is not

writable and the disk does not remap sectors, if the file system is mounted in read-only mode, or

if the file being written is already corrupted in btrfs. On writes that require additional space (for

instance, append of new blocks to a file), if the underlying disk is full or if the user’s block quota

is exhausted, applications can receive ENOSPC and EDQUOT, respectively, on any file system.

Our fault model also includes bit corruptions where applications read a similar-looking block

with only a few bits flipped. This condition is possible when the in-disk ECC does not detect bit

rots and the file system also does not detect such conditions (for example, XFS and ext) or when

memory corruptions occur (e.g., corruptions introduced after checksum computation and before

checksum verification [99]).

Our fault model injects faults in what we believe is a realistic manner. For example, if a block

marked for corruption is written, subsequent reads of that block will see the last written data

instead of corrupted data. Similarly, when a block is marked for read or write error and if the

file is deleted and recreated (with a possible allocation of new data blocks), we do not return

errors for subsequent reads or writes of that block. Similarly, when a space error is returned, all

subsequent operations that require additional space will encounter the same space error. Notice

that our model does not try to emulate any particular file system. Rather, it suggests an abstract

set of faults possible on commonly used file systems that applications can encounter.

3.2 Methodology

We now describe our methodology to study how distributed systems react to local file-system

faults. We built Cords, a fault injection framework that consists of errfs, a FUSE [28] file system,

and errbench, a set of workloads and a behavior-inference script for each system.

3.2.1 System Workloads. To study how a distributed storage system reacts to local file-system

faults, we need to exercise its code paths that lead to interaction with its local file system. We

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

Redundancy Does Not Imply Fault Tolerance 20:7

Fig. 1. Cords Methodology. (a) Overview of our methodology to study how distributed systems react to

local file-system faults. (b) How errfs injects faults (corruptions and errors) into a block and how we observe

the local behavior and the global effect of the injected fault.

crafted a workload suite, errbench, for this purpose; our suite consists of two workloads per system:

read an existing data item and insert or update a data item.

3.2.2 Fault Injection. Figure 1(a) illustrates our methodology to analyze the behavior of dis-

tributed systems. We initialize the system under study to a known state by inserting a few data

items and ensuring that they are safely replicated and persisted on disk. Our workloads either read

or update the items inserted as part of the initialization. Next, we configure the application to run

atop errfs by specifying its mount point as the data-directory of the application. Thus, all reads

and writes performed by the application flow through errfs that can then inject faults. We run

the application workload multiple times, each time injecting a single fault for a single file-system

block through errfs. If the application-level data structure spans multiple file-system blocks, then

we inject a fault only in a single file-system block constituting that data structure at a time. For bit

corruptions, we flip a bit in a single field within a block at a time.

errfs can inject two types of block corruptions: corrupted with zeros or junk. For block corrup-

tions, errfs performs the read and changes the contents of the block that is marked for corruption

before returning to the application, as shown in Figure 1(b). errfs can inject three types of block

errors: EIO on reads (read errors), EIO on writes (write errors), or ENOSPC and EDQUOT on writes that

require additional space (space errors). To emulate errors, errfs does not perform the operation but

simply returns an appropriate error code. For bit corruptions, errfs requires application-specific

information consisting of various fields within a block along with their offsets and lengths. To

inject a bit corruption, errfs flips a bit in the field that is marked for corruption before returning

the data.

3.2.3 Behavior Inference. For each run of the workload where a single fault is injected, we

observe how the system behaves. Our system-specific behavior-inference scripts glean system

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

20:8 A. Ganesan et al.

behavior from the system’s log files and client-visible outputs such as server status, return codes,

errors (stderr), and output messages (stdout). Once the system behavior for an injected fault

is known, we compare the observed behavior against expected behaviors. The following are the

expected behaviors we test for:

• Committed data should not be lost

• Queries should not silently return corrupted data

• The cluster should be available for reads and writes

• Queries should not fail after retries.

We believe our expectations are reasonable, since a single fault in a single node of a distributed

system should ideally not result in any undesirable behavior. If we find that an observed behavior

does not match expectations, then we flag that particular run (a combination of the workload and

the fault injected) as erroneous, analyze relevant application code, contact developers, and file

bugs.

Local Behavior and Global Effect. In a distributed system, multiple nodes work with their local

file system to store user data. When a fault is injected in a node, we need to observe two things:

local behavior of the node where the fault is injected and global effect of the fault, as shown in

Figure 1(b).

In most cases, a node locally reacts to an injected fault. As shown in Figure 1(b), a node can

crash or partially crash (only a few threads of the process are killed) due to an injected fault. In

some cases, the node can fix the problem by retrying any failed operation or by using internally

redundant data (cases where the same data is redundant across files within a replica). Alternatively,

the node can detect and ignore the corrupted data or just log an error message. Finally, the node

may not even detect or take any measure against a fault.

The global effect of a fault is the result that is externally visible. The global effect is determined

by how distributed protocols (such as leader election, consensus, recovery, repair) react in response

to the local behavior of the faulty node. For example, even though a node can locally ignore cor-

rupted data and lose it, the global recovery protocol can potentially fix the problem, leading to a

correct externally observable behavior. Sometimes, because of how distributed protocols react, a

global corruption, data loss, read-unavailability, write-unavailability, unavailability, or query failure

might be possible. When a node simply crashes as a local reaction, the system runs with reduced

redundancy until manual intervention.

These local behaviors and global effects for a given workload and a fault might vary depending

on the role played (leader or follower) by the node where the fault is injected. For simplicity, we

uniformly use the terms leader and follower instead of master and slave.

We note here that our workload suite and model are not complete. First, our suite consists only

of simple read and write workloads while more complex workloads may yield additional insights.

Second, our model does not inject all possible file-system faults; rather, it injects only a subset of

faults such as corruptions, read, write, and space errors. However, even our simple workloads and

fault model drive systems into corner cases, leading to interesting behaviors. Our framework can

be extended to incorporate more complex faults and our workload suite can be augmented with

more complex workloads; we leave this as an avenue for future work.

4 RESULTS AND OBSERVATIONS

We studied eight widely used distributed storage systems: Redis (v3.0.4), ZooKeeper (v3.4.8), Cas-

sandra (v3.7), Kafka (v0.9), RethinkDB (v2.3.4), MongoDB (v3.2.0), LogCabin (v1.0), and Cock-

roachDB (beta-20160714). We configured all systems to provide the highest safety guarantees

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

Redundancy Does Not Imply Fault Tolerance 20:9

possible; we enabled checksums, synchronous replication, and synchronous disk writes. We con-

figured all systems to form a cluster of three nodes and set the replication factor at three.

We present our results in four parts. First, we present our detailed behavioral analysis for each

system (Section 4.1). Second, we derive and present a set of observations related to data integrity

and error handling across all eight systems (Section 4.2) and summarize our results (Section 4.3).

Next, we discuss features of current file systems that can impact the problems we found (Sec-

tion 4.4). Finally, we discuss why modern distributed storage systems are not tolerant of single

file-system faults and describe our experience interacting with developers (Section 4.5).

4.1 System Behavior Analysis

We now present our detailed behavioral analysis of all systems. For each system, we describe the

behaviors when block corruptions and block errors are injected into different on-disk structures.

For each system, we also show the format of the on-disk files and the logical data structures in the

system. The on-disk structure names take the form file_name.logical_entity. We derive the logical

entity name from our understanding of the on-disk format of the file. For a few systems (Redis,

Cassandra, and Kafka), we also present the behaviors when bit corruptions are injected.

4.1.1 Redis. Redis is a popular data structure store, used as database, cache, and message bro-

ker. Redis uses asynchronous primary-backup replication; thus, there is a window for data loss.

However, Redis can be configured to accept a write only if at least N followers with a lag of fewer

than M seconds are currently connected to the leader. Redis does not elect a leader automatically

when the current leader fails.

On-disk Structures. Figure 2(a) shows the on-disk structures of Redis. Redis uses a simple appen-

donly log file (aof) to store the sequence of commands or operations that modify the database state.

The appendonly file is not checksummed. Before recording a sequence of operations, a database

identifier is logged; this identifier specifies the database to which the operations are to be applied

when the appendonly file is later replayed. Periodic snapshots are taken from the aof to create a

redis database file (rdb). During startup, the followers re-synchronize the rdb file from the leader.

The entire rdb file is protected by a single checksum.

Behavior Analysis. Figure 2(b) shows the behavior of Redis when block corruptions and block

errors are introduced into different on-disk structures. When there are corruptions in metadata

structures in the appendonly file or errors in accessing the same, the node simply crashes (first

row of local behavior boxes for both workloads in Figure 2(b)). If the leader crashes, then the

cluster becomes unavailable and if the followers crash, then the cluster runs with reduced redun-

dancy (first row of global effect for both workloads). Redis does not use checksums for user data

in the appendonly file; thus, it does not detect corruptions (second row of local behavior for both

workloads). If the leader is corrupted, then it leads to a global user-visible corruption, and if the

followers are corrupted, then there is no harmful global effect (second row of global effect for

read workload). Figure 3(a) shows how the re-synchronization protocol propagates corrupted user

data in aof from the leader to the followers leading to a global user-visible corruption. In contrast,

errors in appendonly file user data lead to crashes (second row of local behavior for both work-

loads); crashes of the leader and followers lead to cluster unavailability and reduced redundancy,

respectively (second row of global effect for both workloads).

Problems in the first block of redis_database are fixed by retrying and creating the redis_

database file again from data in the appendonly file (third row in Figure 2(b)). When the re-

dis_database file on a follower is corrupted, it crashes, leading to reduced redundancy. Since

the leader sends the rdb file during re-synchronization, corruption in the same causes both the

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

20:10 A. Ganesan et al.

Fig. 2. Redis. (a) The on-disk format of the files and the logical data structures of Redis. The logical structures

take the following form: file_name.logical_entity. If a file can be contained in a single file-system block, then

we do not show the logical entity name. (b) System behavior when corruptions (corrupted with either junk

or zeros), read errors, write errors, and space errors are injected in various on-disk logical structures in Redis.

Within each system workload (read and update), there are two boxes—first, local behavior of the node where

the fault is injected and, second, clusterwide global effect of the injected fault. The rightmost annotation

shows the on-disk logical structure in which the fault is injected. Annotations on the bottom show where a

particular fault is injected (L, leader/master; F, follower/slave). A gray box for a fault and a logical structure

combination indicates that the fault is not applicable for that logical structure. For example, write errors are

not applicable for any data structures in the read workload (since they are not written) and hence shown as

gray boxes. (c) The behavior when bit corruptions are injected. For bit corruptions, we flip a single bit in a

field within the on-disk structure. For example, appendonlyfile.db_num is part of appendonlyfile.metadata.

The legend at the bottom is common to both (b) and (c).

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

Redundancy Does Not Imply Fault Tolerance 20:11

Fig. 3. Example Bugs. The figure depicts some of the bugs we discovered in Redis, ZooKeeper, Cassandra,

Kafka, and RethinkDB. Time flows downwards as shown on the left. The black portions denote corruption.

followers to crash. These crashes ultimately make the cluster unavailable for writes (fourth and

fifth rows in Figure 2(b)).

Bit Corruptions. Figure 2(c) shows the behavior of Redis when bit corruptions are injected. A

single flipped bit in most of the appendonly file metadata structures results in a failed deserializa-

tion, ultimately leading to a crash. If the leader crashes, then the cluster becomes unavailable, and

if the followers crash, then the cluster runs with reduced redundancy. On the leader, a bit flip in the

key field results in a silent data loss while a bit flip in the value field results in a silent corruption.

Redis maintains a database identifier (db_num) for each database. When some data are inserted

or updated, first the appropriate database (specifically, the database identifier) is recorded in the

appendonly file followed by the actual update. If a bit in the recorded database identifier (P) flips

and so changes to a new value (Q), then all succeeding operations in the appendonly file are redi-

rected to database Q instead of P . This single bit flip in the database identifier results in a silent

data loss when database P is queried while supplying spurious data when database Q is queried.

In our bit-corruption experiments, we reduce the granularity of our faults: We flip a single bit

in a field within the on-disk structure. Our bit-corruption experiments help uncover interesting

behaviors not discovered through our block-corruption experiments. For instance, consider the

field appendonlyfile.db_num that is part of appendonlyfile.metadata. When we inject a coarse block

corruption in appendonlyfile.metadata on the leader (first row in Figure 2(b)), the leader crashes,

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

20:12 A. Ganesan et al.

Fig. 4. ZooKeeper. (a) The on-disk format of the files and the logical data structures of ZooKeeper. (b) System

behavior when faults are injected in various structures in ZooKeeper.

making the cluster unavailable. In contrast, when we inject a fine-grained bit flip in appendonly-

file.db_num on the leader (second row in Figure 2(c)), it results in a data loss, as described above.

4.1.2 ZooKeeper. ZooKeeper is a popular service for storing configuration information, nam-

ing, and distributed synchronization. ZooKeeper provides a hierarchical name space (a data tree)

and supports operations such as creation and deletion of nodes in the data tree. ZooKeeper imple-

ments state machine replication and uses an atomic broadcast protocol (ZAB) to maintain identi-

cal states in all the nodes in the system. The system remains available as long as a majority of the

nodes are functional. It provides durability by persisting operations in a log and persisting periodic

snapshots of the data tree.

On-disk Structures: Figure 4(a) shows the on-disk structures of ZooKeeper. ZooKeeper uses log

files to append user data. The log contains a log header (magic, version, etc.) followed by a sequence

of transactions. A transaction consists of a transaction header and is protected by a checksum.

The transaction header contains epoch, session id, and so on. ZooKeeper maintains two important

metadata structures: epoch (accepted and current epoch) and myid (node identifier). Epochs are

updated by first writing to epoch_tmp and then renaming it to epoch.

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

Redundancy Does Not Imply Fault Tolerance 20:13

Behavior Analysis. Figure 4(b) shows the behavior when block corruptions and block errors are

introduced in ZooKeeper. ZooKeeper can detect corruptions in the transaction_head and trans-

action_body of the log using checksums but reacts by simply crashing (fourth and fifth rows of

local behavior for both workloads in Figure 4(b)). When epoch and myid are corrupted or cannot

be read, the node simply crashes (first and third rows for both workloads). Similarly, it crashes in

most error cases, leading to reduced redundancy. In all crash scenarios, ZooKeeper can reliably

elect a new leader, thus ensuring availability. ZooKeeper ignores a transaction locally when its tail

is corrupted (sixth row of local behavior for both workloads); the leader election protocol prevents

that node from becoming the leader. Eventually, the corrupted node repairs its log by contacting

the leader, leading to correct behavior (sixth row of global effect for both workloads).

Unfortunately, ZooKeeper does not recover from write errors to the transaction head and log

tail (fourth and eighth rows in Figure 4(b)). Figure 3(b) depicts this scenario. On write errors during

log initialization, the error handling code tries to gracefully shutdown the node but kills only the

transaction processing threads; the quorum thread remains alive (partial crash). Consequently,

other nodes believe that the leader is healthy and do not elect a new leader. However, since the

leader has partially crashed, it cannot propose any transactions, leading to an indefinite write

unavailability. Notice that this scenario does not cause a harmful global effect for the read workload

as reads can be locally served by any ZooKeeper node, without requiring the leader to propose new

transactions.

4.1.3 Cassandra. Cassandra is a Dynamo-like [23] NoSQL store. Unlike other systems we study,

Cassandra is a decentralized system; it does not have a leader and followers. The system divides all

data evenly around a cluster of nodes, which form a ring. Cassandra replicates the data to a number

of nodes specified by the replication factor. It also supports different read and write consistency

levels. In Cassandra, rows are organized into tables and the rows are divided among nodes in the

cluster based on a hash of the primary key. Cassandra also provides a SQL-like query language

(CQL).

On-disk Structures: In Cassandra, the local storage engine is a variation of log-structured merge

(LSM) trees [59] that stores data in sstables. A separate sstable is maintained for each key-space;

we refer to the sstables of user-created key-space as tablesst. Figure 5(a) shows the on-disk files

in an sstable. Each sstable consists of a Bloom filter (tablesst_filter); the filter provides a fast way

to determine whether a given key is present or not. If a key is found in the filter, then the table

summary (tablesst_summary) and table index (tablesst_index) are accessed. The tablesst_index

contains the offset of a data item in the data file (tablesst_data). The tablesst_data contains all the

rows in the table.

Behavior Analysis. Cassandra enables checksum verification on user data only as a side effect of

enabling compression. Therefore, we conduct two experiments in Cassandra—one with compres-

sion disabled for user tables and the other with compression enabled.

Figure 5(b) shows the results for block corruptions and block errors when compression is dis-

abled for user sstables. When compression is turned off, corruptions are not detected on user data

in tablesst_data (third row of local behavior for read workloads in Figure 5(b)). On a read query,

a coordinator node collects and compares digests (hashes) of the data from R replicas [20]. If the

digests mismatch, then conflicts in the values are resolved using a latest timestamp wins policy. If

there is a tie between timestamps, then the lexically greatest value is chosen and installed on other

replicas [39]. As shown in Figure 3(d), on R = 3, if the corrupted value is lexically greater than the

original value, then the corrupted value is returned to the user and the corruption is propagated

to other intact replicas (third row of global effect for R = 3 read workload when corrupted with

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

20:14 A. Ganesan et al.

Fig. 5. Cassandra. (a) The on-disk format of different structures in Cassandra. (b) and (c) System behavior

in the presence of block corruptions (corrupted with either junk (cj) or zeros(cz)), read errors (re), write

errors (we), and space errors (se) when sstable compression is turned off and turned on, respectively. (d) The

behavior in the presence of bit corruptions when sstable compression is off; the annotations on the bottom

indicate the read quorum (R1, quorum of 1; R3, quorum of 3).

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

Redundancy Does Not Imply Fault Tolerance 20:15

junk). On the other hand, if the corrupted value is lexically lesser, it fixes the corrupted node (third

row of global effect for R = 3 read workload when corrupted with zeros). Reads to a corrupted

node with R = 1 always return corrupted data. Faults in tablesst_index cause query failures (fifth

row of global effect for read workloads). In most cases, user-visible problems that are observed in

the R = 1 configuration are not fixed even when run with R = 3.

Figure 5(c) shows the results when compression is enabled for user sstables. When compres-

sion is enabled, Cassandra maintains a checksum for every compressed block. When the value

in the compressed data become corrupted, decompression fails due to a mismatch between the

stored checksum and computed checksum of the decompressed data. Thus, corruptions to tab-

lesst_data.userdata are detected and results in failures of table scans and point queries to the data

within this block (first row for read workloads in Figure 5(c)); point queries to the data not in

this corrupted block are not affected. The corruption is not fixed automatically even when queries

are run with R = 3 and results in query failures. Since we do not alter the compression feature of

system schema sstables, we do not repeat this experiment for these structures.

Bit Corruptions. Figure 5(d) shows the behavior of Cassandra when bit corruptions are injected

and compression is enabled for user sstables. In Cassandra, the read path involves accessing

several on-disk structures. For a point query of a key, first, the key is queried in the Bloom filter

(tablesst_filter); if the filter indicates the key’s presence, then the table summary (tablesst_

summary) and table index (tablesst_index) are accessed to determine the offset of the entry in

the data file (tablesst_data). Finally, the value is read from the data file. With R = 1, a single bit

corruption in the filter causes a data loss (first row of global effect for R = 1 read workload in

Figure 5(d)). Similarly, a single bit corruption in the key field in the table summary results in a data

loss (second row of global effect for R = 1 read workload). With R = 3, the above two problems

are masked (first and second rows for R = 3 read workload). A flipped bit in the keylength and

offset of the table index results in query failures with both R = 1 and R = 3 (third and fourth rows

of global effect). With R = 1, a corrupted key in the table index leads to a silent data loss (fifth

row of global effect). When a key K in the index is corrupted to K ′, a table scan with R = 3 results

in a surprising outcome: First, the scan result contains a spurious row with key K ′ with the same

value as the one for K ; furthermore, the spurious row is propagated to all other nodes (fifth row

of global effect with R = 3). A single corrupted bit in valuelength or the value in the table data

results in silent corruption and corruption propagation in R = 1 and R = 3, respectively.

Introducing bit corruptions into various fields within a block helps uncover interesting behav-

iors in Cassandra not discovered using block-corruption experiments. For example, consider the

fields keylength, offset, and key that are a part of tablesst_index. When we inject block corruptions

in tablesst_index (fifth row in Figure 5(b)), it results in query failures. In contrast, when we flip

a bit in the key of tablesst_index, it results in the surprising outcome where a spurious row is

silently propagated to all other nodes (fifth row in Figure 5(d)). Similarly, while a block corrup-

tion in tablesst_summary results in a correct behavior (last row in Figure 5(b)), a bit flip in key of

tablesst_summary results in a data loss (second row for R = 1 in Figure 5(d)).

4.1.4 Kafka. Kafka is a distributed persistent message queue in which clients can publish and

subscribe to messages. Kafka is run as a cluster consisting of a leader and a set of followers. The

system stores streams of messages in categories called topics; a topic can have zero or more con-

sumers that subscribe to it. Each message in a topic consists of a key, a value, and a timestamp.

On-disk Structures: The on-disk structures of Kafka are shown in Figure 6(a). Incoming messages

are appended to a log file. Each message is checksummed and is associated with a message id and

an optional key. Kafka maintains an index file that indexes messages to byte offsets within the log.

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

20:16 A. Ganesan et al.

Fig. 6. Kafka. (a) The on-disk format of the files and the logical data structures of Kafka. (b) System behavior

in the presence of block corruptions and block errors. (c) The behavior when bit corruptions are injected.

Important metadata structures (such as the node identifier) are maintained in a file called meta.

The replication_checkpoint and recovery_checkpoint structures indicate how many messages are

replicated to followers so far and how many messages are flushed to disk so far, respectively. The

replication offsets are updated by first writing to a temporary file (repl_checkpoint_tmp) and then

renaming it to the final file.

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

Redundancy Does Not Imply Fault Tolerance 20:17

Behavior Analysis. Figure 6(b) shows the behavior of Kafka when block corruptions and block

errors are introduced into different structures. On read and write errors, Kafka mostly crashes.

Figure 3(c) shows the scenario where Kafka can lose data and become unavailable for writes. When

a log entry is corrupted on the leader, it locally ignores that entry and all subsequent entries in the

log (first and second rows of local behavior boxes for both workloads in Figure 6(b)), resulting in a

data loss. The leader then instructs the followers to do the same. On receiving this instruction from

the leader, the followers check whether the leader’s offset is greater than their checkpointed offset.

If this condition does not hold, then the followers hit a fatal assertion and simply crash. Once the

followers crash, the cluster becomes unavailable for writes (first and second rows of global effect

for write workload).

We conducted another experiment where the corruption on the leader occurs before the follow-

ers checkpoint the message offsets to their recovery-offset-checkpoint file. If the followers have not

checkpointed the entries (that have been truncated on the leader), then they truncate the entries as

instructed by the leader, leading to a silent permanent data loss. In this case, the followers continue

to operate without crashing.

Corruption in index is fixed using internal redundancy (third row of local behavior for both

workloads). Faults in the replication_checkpoint of the leader result in a data loss (sixth row of

global effect for read workload) as the leader is unable to record the replication offsets of the

followers. Kafka becomes unavailable when the leader cannot read or write replication_checkpoint

and replication_checkpoint_tmp, respectively.

Bit Corruptions. Figure 6(c) shows the behavior of Kafka when bit corruptions are injected. On a

bit flip in any field of the message log, the node truncates the corrupted message and all subsequent

messages. If this corruption occurs on the follower, then the leader supplies the truncated messages

to the followers. The same single bit flip on the leader leads to a silent data loss. A bit flip in the

replication offsets sometimes causes a data loss.

4.1.5 RethinkDB. RethinkDB is a distributed database suited for pushing query results to real-

time web applications [73]. RethinkDB uses the Raft consensus protocol to maintain cluster meta-

data. It relies on the underlying storage stack to handle data integrity and does not maintain check-

sums for user data.

On-disk Structures: RethinkDB uses a persistent B-tree to store all data. Transactions are

stored at the leaf nodes of the tree; a transaction consists of three blocks: db.transaction_head,

db.transaction_body, and db.transaction_tail. metablocks in the B-tree point to the data blocks that

constitute the current and the previous version of the database. On an update, new data blocks are

first carefully written and flushed to disk. Then, the metablock with checksums is updated to point

to the new data blocks, thus enabling atomic updates. The B-tree data blocks and the metablocks

are part of a single database file, as shown in Figure 7(a).

Behavior Analysis. Figure 7(b) shows the behavior when block corruptions and block errors are

introduced in RethinkDB. On any fault in database header and internal B-tree nodes, RethinkDB

simply crashes (first and second rows of local behavior for both workloads in Figure 7(b)). If the

leader crashes, then a new leader is automatically elected. RethinkDB relies on the file system to

ensure the integrity of data blocks; hence, it does not detect corruptions in the transaction body

and tail (fifth and sixth rows of local behavior). When these blocks of the leader are corrupted,

RethinkDB silently returns corrupted data (fifth and sixth rows of global effect for the leader).

Figure 3(e) depicts how data are silently lost when the transaction head or the metablock point-

ing to the transaction is corrupted on the leader (last row of global effect for the leader). Even

though there are intact copies of the same data on the followers, the leader does not fix its

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

20:18 A. Ganesan et al.

Fig. 7. RethinkDB. (a) The on-disk format of the files and the logical data structures of RethinkDB. (b) System

behavior when faults are injected in various on-disk logical structures.

corrupted or lost data, even when we perform the reads with the majority option. When the fol-

lowers are corrupted, they are not fixed by contacting the leader. Although this does not lead to

an immediate user-visible corruption or loss (because the leader’s data is the one finally returned),

it does so when the corrupted follower becomes the leader in the future.

4.1.6 MongoDB. MongoDB is a popular document-oriented database that uses JSON-like doc-

uments [52]. MongoDB provides high availability using replica sets. It uses primary-backup repli-

cation with each replica set consisting of a primary and a set of secondaries. All writes and

reads are done on the primary by default. When a primary fails, the replica set automatically

elects its new primary. MongoDB supports multiple storage engines. For our experiments we use

WiredTiger [54] as the storage engine.

On-disk Structures: Figure 8(a) shows the different on-disk files in MongoDB. When an item is

inserted or updated, it is added to the journal and the in-memory database is updated. If the write

operation specifies the option j as true, then WiredTiger forces an fsync of the journal. WiredTiger

uses multi-version concurrency control, and periodically a consistent view of the in-memory data

is checkpointed to the collections file and index file. A master WiredTiger file contains information

on the latest checkpoint files. The storage engine information is stored in a storage_bson file.

Behavior Analysis. Figure 8(b) shows the results for block corruptions and block errors in Mon-

goDB. MongoDB simply crashes on most errors, leading to reduced redundancy. A new leader

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

Redundancy Does Not Imply Fault Tolerance 20:19

Fig. 8. MongoDB. (a) The on-disk format of the files and the logical data structures of MongoDB. (b) System

behavior when faults are injected in various on-disk logical structures.

is automatically elected if the current leader crashes. MongoDB employs checksums for all files;

corruption in any block of any file causes a checksum mismatch and an eventual crash, resulting

in reduced redundancy.

One exception to the above is when blocks other than journal header are corrupted. In this case,

MongoDB detects and ignores the corrupted blocks (sixth row of local behavior in Figure 8(b));

then, the corrupted node truncates its corrupted journal, descends to become a follower, and, fi-

nally, repairs its journal by contacting the leader. In a corner case where there are space errors

while appending to the journal, queries fail (sixth row of global effect in Figure 8(b)).

4.1.7 LogCabin. LogCabin provides a replicated and consistent data store that serves as a place

for other distributed systems to maintain their core metadata such as configuration settings. Log-

Cabin implements state machine replication and uses the Raft consensus protocol [46]. In Log-

Cabin, all reads and writes go through the leader by default.

On-disk Structures: LogCabin implements a segmented log [78] to store data; each segment

is a file on the file system. The format of a segment file is shown in Figure 9(a). There are two

types of segment files—the open segment and the closed segment. The open segment is the current

file to which data is appended. When the open segment is fully utilized, it is closed and a new

segment is opened. Two metadata files (metadata1 and metadata2) maintain the Raft metadata and

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

20:20 A. Ganesan et al.

Fig. 9. LogCabin. (a) The on-disk format of the files and the logical data structures of LogCabin. (b) System

behavior when faults are injected in various on-disk logical structures.

information about the log. The metadata files are updated alternately; when a metadata file is

partially updated or corrupted, LogCabin uses the other metadata file that contains slightly older

metadata.

Behavior Analysis. Figure 9(b) shows the behavior when block corruptions and block errors are

introduced in LogCabin. LogCabin crashes on all read, write, and space errors. Similarly, if an open

segment file header (first row in Figure 9(b)) or blocks in a closed segment (third row in the figure)

are corrupted, LogCabin simply crashes. LogCabin recognizes corruption in any other blocks in an

open segment using checksums and reacts by simply discarding and ignoring the corrupted entry

and all subsequent entries in that segment (second row of local behavior). If a log pointer file is

corrupted, then LogCabin ignores that pointer file and uses the other pointer file (fourth and fifth

rows of local behavior).

In the above two scenarios, the leader election protocol ensures that the corrupted node does

not become the leader; the corrupted node becomes a follower and fixes its log by contacting the

new leader. This ensures that in any fault scenario, LogCabin would not globally corrupt or lose

user data.

4.1.8 CockroachDB. CockroachDB is a distributed SQL database built atop a transactional and

strongly consistent key-value store. It is built to survive disk, machine, rack, and data-center fail-

ures. CockroachDB uses Raft and so long as a majority of replicas remain available, the system can

continue to make progress. It supports strongly consistent ACID transactions and also provides

an SQL-like query language [14].

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

Redundancy Does Not Imply Fault Tolerance 20:21

Fig. 10. CockroachDB. (a) The on-disk format of the files and the logical data structures of CockroachDB.

(b) System behavior when faults are injected in various on-disk logical structures.

On-disk Structures: Figure 10(a) shows the different on-disk files in CockroachDB. CockroachDB

uses a tuned version of RocksDB for its local storage; the storage engine is an LSM tree that appends

incoming data to a persistent log; the in-memory data are then periodically compacted to create

the sst files. The manifest file lists the set of sst files that make up a particular level in the LSM tree,

and the current file points to the latest manifest.

Behavior Analysis. Figure 10(b) shows the results for block corruptions and block errors in Cock-

roachDB. Most of the time, CockroachDB simply crashes on corruptions and errors on any data

structure, resulting in reduced redundancy. Faults in the first block of the log file on the leader

lead to total cluster unavailability as some followers also crash following the crash of the leader

(third row of global effect). Corruptions and errors in a few other log metadata blocks can cause

data loss where CockroachDB silently returns zero rows (fourth row of global effect). Corruptions

in sst files cause queries to fail (fifth row of global effect) with error messages such as table does

not exist or db does not exist. Overall, we found that CockroachDB has many problems in fault han-

dling. However, the reliability may improve in the future, since CockroachDB is still under active

development.

4.2 Observations Across Systems

We now present a set of observations with respect to data integrity and error handling across all

eight systems.

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

20:22 A. Ganesan et al.

Table 2. Data Integrity Strategies

Technique R
ed

is
Z

o
o

K
ee

p
er

C
as

sa
n

d
ra

K
af

k
a

R
et

h
in

k
D

B
M

o
n

g
o

D
B

L
o

g
C

ab
in

C
o

ck
ro

ac
h

D
B

Metadata Checksums P
√ √ √

P
√ √ √

Data Checksums P
√a √$ √ √ √ √

Background Scrubbing
√

External Repair Tools
√ √ √ √

Snapshot Redundancy P∗ P∗ P∗

P , applicable only for some on-disk structures; a, Adler32 check-

sum; ∗, only for certain amount of time; $, unused when com-

pression is off.

The table shows techniques employed by modern systems to

ensure data integrity of user-level application data.

#1: Systems employ diverse data integrity strategies. Table 2 shows different strategies em-

ployed by modern distributed storage systems to ensure data integrity. As shown, systems employ

an array of techniques to detect and recover from corruption. The table also shows the diversity

across systems. On one end of the spectrum, there are systems that try to protect against data cor-

ruption in the storage stack by using checksums (e.g., ZooKeeper, MongoDB, CockroachDB) while

the other end of spectrum includes systems that completely trust and rely on the lower layers in

the storage stack to handle data integrity problems (e.g., RethinkDB and Redis). Despite employing

numerous data integrity strategies, all systems exhibit undesired behaviors.

Sometimes, seemingly unrelated configuration settings affect data integrity. For example, in Cas-

sandra, checksums are verified only as a side effect of enabling compression. Due to this behavior,

corruptions are not detected or fixed when compression is turned off, leading to user-visible silent

corruption.

We also find that a few systems use inappropriate checksum algorithms. For example, ZooKeeper

uses Adler32, which is suited only for error detection after decompression and can have collisions

for very short strings [48]. In our experiments, we were able to inject corruptions that caused

checksum collisions, driving ZooKeeper to serve corrupted data. We believe that it is not unrea-

sonable to expect metadata stores like ZooKeeper to store small entities such as configuration

settings reliably. In general, we believe that more care is needed to understand the robustness of

possible checksum choices.

#2: Faults are often undetected. We find that faults are often locally undetected. Sometimes, this

leads to an immediate harmful global effect. For instance, in Redis, corruptions in the append-

only file of the leader are undetected, leading to global silent corruption. Also, corruptions in the

rdb of the leader are also undetected and, when sent to followers, cause them to crash, leading

to unavailability. Similarly, in Cassandra, corruption of tablesst_data is undetected, which leads

to returning corrupted data to users and sometimes propagating it to intact replicas. Likewise,

RethinkDB does not detect corruptions in the transaction head on the leader, which leads to a

global user-visible data loss. Similarly, corruption in the transaction body is undetected leading to

global silent corruption. The same faults are undetected also on the followers; a global data loss

or corruption is possible if a corrupted follower becomes the leader in future.

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

Redundancy Does Not Imply Fault Tolerance 20:23

While some systems detect and react to faults purposefully, some react to faults only as a side

effect. For instance, ZooKeeper, MongoDB, and LogCabin carefully detect and react to corruptions.

On the other hand, Redis, Kafka, and RethinkDB sometimes react to a corruption only as a side

effect of a failed deserialization.

#3: Crashing is the most common reaction. We observe that crashing is the most common lo-

cal reaction to faults. When systems detect corruption or encounter an error, they simply crash,

resulting in reduced redundancy (as is evident from the abundance of crash symbols in local behav-

iors of the figures in behavior analysis). Although crashing of a single node does not immediately

affect cluster availability, total unavailability becomes imminent as other nodes also can fail subse-

quently. Also, workloads that require writing to or reading from all replicas will not succeed even

if one node crashes. After a crash, simply restarting does not help if the fault is sticky; the node

would repeatedly crash until manual intervention fixes the underlying problem. We also observe

that nodes are more prone to crashes on errors than corruptions.

We also observe that failed operations are rarely retried. While retries help in several cases

where they are used, we observe that sometimes indefinitely retrying operations may lead to more

problems. For instance, when ZooKeeper is unable to write new epoch information (to epoch_tmp)

due to space errors, it deletes and creates a new file keeping the old file descriptor open. Since

ZooKeeper blindly retries this sequence and given that space errors are sticky, the node soon runs

out of descriptors and crashes, reducing availability.

#4: Redundancy is underutilized: A single fault can have disastrous clusterwide effects.

Contrary to the widespread expectation that redundancy in distributed systems can help recover

from single faults, we observe that even a single error or corruption can cause adverse clusterwide

problems such as total unavailability, silent corruption, and loss or inaccessibility of inordinate

amount of data. In many cases, almost all systems do not use redundancy as a source of recovery;

they miss opportunities to use other intact replicas for recovering. Notice that all the bugs and

undesirable behaviors that we discover in our study are due to injecting only a single fault in a

single node at a time. Given that the data and functionality are replicated, ideally, none of the

undesirable behaviors should arise.

A few systems (MongoDB and LogCabin) automatically recover from some (not all) data cor-

ruptions by utilizing other replicas. This recovery involves synergy between the local and the

distributed recovery actions. Specifically, on encountering a corrupted entry, these systems lo-

cally ignore faulty data (local recovery policy). Then, the leader election algorithm ensures that

the node where a data item has been corrupted and hence ignored does not become the leader

(global recovery policy). As a result, the corrupted node eventually recovers the corrupted data by

fetching it from the current leader. In many situations, even these systems do not automatically

recover by utilizing redundancy. For instance, LogCabin and MongoDB simply crash when closed

segments or collections are corrupted, respectively.

We also find that an inordinate amount of data can be affected when only a small portion of data

is faulty. Table 3 shows different scopes that are affected when a small portion of the data is faulty.

The affected portions can be silently lost or become inaccessible. For example, in Redis, all user

data can become inaccessible when metadata in the append-only file is faulty or when there are

read and write errors in append-only file data. Similarly, in Cassandra, an entire table can become

inaccessible when small portions of data are faulty. Kafka can sometimes lose an entire log or all

entries starting from the corrupted entry until the end of the log. RethinkDB loses all the data

updated as part of a transaction when a small portion of it is corrupted or when the metablock

pointing to that transaction is corrupted.

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

20:24 A. Ganesan et al.

Table 3. Scope Affected

Structures Fault Injected Scope Affected

Redis:

appendonlyfile.metadata any All#

appendonlyfile.userdata read, write errors All#

Cassandra:

tablesst_data.block_0 corruptions (junk) First Entry$

tablesst_index corruptions SSTable#

schemasst_compressioninfo corruptions, read error Table#

schemasst_filter corruptions, read error Table#

schemasst_statistics.0 corruptions, read error Table#

Kafka:

log.header corruptions Entire Log$

log.other corruptions, read error Entire Log$*

replication_checkpoint corruptions, read error All$

replication_checkpoint_tmp write errors All#

RethinkDB:

db.transaction_head corruptions Transaction$

db.metablock corruptions Transaction$

$, data loss; #, inaccessible; *, starting from corrupted entry.

The table shows the scope of data (third column) that becomes lost or inaccessible when only a small

portion of data (first column) is faulty.

In summary, we find that redundancy is not effectively used as a source of recovery and the

general expectation that redundancy can help availability of functionality and data is not a reality.

#5: Crash and corruption handling are entangled. We find that in many systems, the detection

and recovery code does not try to distinguish two fundamentally distinct problems: crashes and

data corruption.

Storage systems implement crash-consistent update protocols (i.e., even in the presence of

crashes during an update, data should always be recoverable and should not be corrupted or

lost) [7, 61, 62]. To do this, systems carefully order writes and use checksums to detect partially

updated data or corruptions that can occur due to crashes. On detecting a checksum mismatch due

to corruption, all systems invariably run the crash recovery code (even if the corruption was not

actually due to crash but rather due to a real corruption in the storage stack), ultimately leading

to undesirable effects such as data loss.

One typical example of this problem is RethinkDB. RethinkDB does not use application-level

checksums to handle corruption. However, it does use checksums for its metablocks to recover

from crashes. Whenever a metablock is corrupted, RethinkDB detects the mismatch in metablock

checksum and invokes its crash recovery code. The crash recovery code believes that the system

crashed when the last transaction was committing. Consequently, it rolls back the committed and

already-acknowledged transaction, leading to a data loss.

We observe the same entanglement problem in other systems. For example, Figure 11 shows

how crash and corruption handling are entangled in Kafka. As shown in the figure, all incoming

messages are checksummed and appended to the message log. Figure 11(a) shows the case where

a crash during the append of message 2 leaves that message partially updated, triggering a check-

sum mismatch during recovery. The recovery action that Kafka takes on a checksum mismatch

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

Redundancy Does Not Imply Fault Tolerance 20:25

Fig. 11. Crash and corruption handling entanglement in Kafka. (a) How a crash during an update causes

a checksum mismatch; in this case, the partially updated message is truncated. (b) The case where Kafka

treats a disk corruption as a signal of a crash and truncates committed messages, leading to a data loss.

is to truncate the message whose checksum mismatches and all subsequent messages. In this case,

the mismatch is caused due to a partial update; hence, it is safe to truncate the message because

the client has not been acknowledged of the update. In contrast, consider the case shown in Fig-

ure 11(b); in this case, the second message has been successfully committed and the client has been

acknowledged. Long after that, the disk block holding the first message gets corrupted, causing a

checksum mismatch. However, the recovery code wrongly treats this corruption as a signal of a

crash; hence, it truncates and loses committed messages 1 and 2.

Similarly, ZooKeeper, on detecting a data corruption in log.transaction_tail, concludes that the

system crashed during the last transaction commit. On detecting this corruption, the node ignores

the transaction and descends to become a follower. Eventually, the recovery protocol can recover

the lost transaction from the leader. Even though this scenario does not lead to any global problems,

it informs how crash and corruption handling are entangled.

LogCabin tries to distinguish crashes from corruption using the following logic: If a block in a

closed segment (a segment that is full) is corrupted, it correctly flags that problem as a corruption

and reacts by simply crashing. On the other hand, if a block in an open segment (still in use

to persist transactions) is corrupted, it detects it as a crash and invokes its usual crash recovery

procedure. MongoDB also differentiates corruptions in collections from journal corruptions in a

similar fashion. Even systems that attempt to discern crashes from corruption do not always do

so correctly.

There is an important consequence of entanglement of detection and recovery of crashes and

corruptions. During corruption (crash) recovery, some systems fetch an inordinate amount of data to

fix the problem. For instance, when a log entry is corrupted in LogCabin and MongoDB, they can fix

the corrupted log by contacting other replicas. Unfortunately, they do so by ignoring the corrupted

entry and all subsequent entries until the end of the log and subsequently fetching all the ignored

data instead of simply fetching only the corrupted entry. Since a corruption is identified as a crash

during the last committing transaction, these systems assume that the corrupted entry is the last

entry in the log. Similarly, Kafka followers also fetch additional data from the leader instead of

only the corrupted entry.

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

20:26 A. Ganesan et al.

#6: Local fault handling and global protocols interact in unsafe ways. We find that local

fault-handling behaviors and commonly used distributed protocols such as leader election, read

repair [23], and re-synchronization interact in unsafe ways; such unsafe interaction leads to un-

desirable outcomes such as propagation of corruption or data loss.

For instance, in Kafka, the local fault-handling behavior on a corrupted node interacts unsafely

with the leader election protocol, turning a local data loss on the node into a global data loss.

Kafka maintains a piece of metadata called the in-sync-replicas (ISR); any node in this set contains

all committed data and is eligible to become a leader. When a log entry is corrupted on a Kafka

node, it ignores the current and all subsequent entries in the log and truncates the log until the

last correct entry. Ideally, now this node should not be part of the ISR because it has lost some

committed log entries. However, this node is not removed from the ISR and so can still become

the leader. Thus, read requests issued to the leader result in a silent data loss. Furthermore, the

leader also instructs the followers to truncate the log to match its log, which triggers an assertion

on the followers, resulting in their crash. Thus, all future writes become unavailable (as shown in

Figure 3(c)). The unsafe interaction between local behavior (i.e., to truncate the log) and the global

protocol (leader election) in Kafka leads to a data loss and write unavailability. This behavior is in

contrast with the leader election protocols of ZooKeeper, MongoDB, and LogCabin where a node

that has truncated log entries does not become the leader.

Read-repair protocols are used in Dynamo-style quorum systems to fix any replica that has stale

data. On a read request, the coordinator collects the digest of the data being read from a configured

number of replicas. If all digests match, then the local data from the coordinator is simply returned.

If the digests do not match, then an internal conflict-resolution policy is applied, and the resolved

value is installed on replicas. In Cassandra, which implements read repair, the conflict resolution

resolves to the lexically greater value; if the injected corrupted bytes are lexically greater than the

original value, then the corrupted value is propagated to all other intact replicas.

Similarly, in Redis, when a data item is corrupted on the leader, it is not detected. Subsequently,

the re-synchronization protocol propagates the corrupted data to the followers from the leader,

overriding the correct version of data present on the followers.

4.3 Results Summary

We now summarize our behavior analysis results. Table 4(a) summarizes the catastrophic out-

comes across all distributed storage systems that we studied. The table shows that redundancy

does not provide fault tolerance in many systems: A single file-system fault on one node leads

to catastrophic outcomes such as silent user-visible corruption, unavailability, data loss, query

failures, or sometimes even the spread of corrupted data to other intact replicas. Ideally, none of

these catastrophic outcomes should arise, since we inject only a single file-systems fault on a single

node in the system at a time.

Table 4(b) shows the fundamental root causes in file-system fault handling that result in unde-

sirable behaviors. As shown, these fundamental problems are common across all systems. First, in

many systems, faults are often locally undetected. Even if faults are detected, the most common

local reaction is to crash the node. All systems miss opportunities to use redundancy as a source

of recovery from local file-system faults. We also find that crash and corruption handling are en-

tangled in many systems. Finally, local fault-handling behaviors and global protocols interact in

unsafe ways, leading to catastrophic outcomes.

4.4 File System Implications

All the bugs that we find can occur on XFS and all ext file systems including ext4, the default

Linux file system. Given that these file systems are commonly used as local file systems in replicas

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

Redundancy Does Not Imply Fault Tolerance 20:27

Table 4. Results Summary

Catastrophic Outcomes R
ed

is
Z

o
o

K
ee

p
er

C
as

sa
n

d
ra

K
af

k
a

R
et

h
in

k
D

B
M

o
n

g
o

D
B

L
o

g
C

ab
in

C
o

ck
ro

ac
h

D
B

Silent Corruption × × ×
Unavailability × × × × ×
Data Loss × × × × ×
Query Failures × × ×

(a) Outcomes Summary

Fundamental Problem R
ed

is
Z

o
o

K
ee

p
er

C
as

sa
n

d
ra

K
af

k
a

R
et

h
in

k
D

B
M

o
n

g
o

D
B

L
o

g
C

ab
in

C
o

ck
ro

ac
h

D
B

Locally Undetected Faults × × × × ×
Crashing on Faults × × × × × × × ×
Redundancy Underutilized × × × × × × × ×
Crash Corruption Entangled × × × × ×
Unsafe Protocol Interaction × × ×

(b) Observations Summary

The table shows the summary of our results. (a) Shows the cata-

strophic outcomes caused by a single file-system fault across all

systems we studied. A cross mark for a system denotes that we en-

countered at least one instance of the outcome specified on the left.

(b) Shows the summary of fundamental problems observed across

all systems. A cross mark for a system denotes that we observed at

least one instance of the fundamental problem mentioned on the

left.

of large distributed storage deployments and recommended by developers [51, 56, 64, 77], our

findings have important implications for such real-world deployments.

File systems such as btrfs and ZFS employ checksums for user data; on detecting a corruption,

they return an error instead of letting applications silently access corrupted data. Hence, bugs that

occur due to an injected block corruption will not manifest on these file systems. We also find that

applications that use end-to-end checksums when deployed on such file systems, surprisingly, lead

to poor interactions. Specifically, applications crash more often due to errors than corruptions. In

the case of corruption, a few applications (e.g., LogCabin, ZooKeeper) can use checksums and

redundancy to recover, leading to correct behavior; however, when the corruption is transformed

into an error, these applications crash, resulting in reduced availability.

4.5 Discussion

We now consider why distributed storage systems are not tolerant of single file-system faults. In

a few systems (e.g., RethinkDB and Redis), we find that the primary reason is that they expect

the underlying storage stack layers to reliably store data. As more deployments move to the cloud

where reliable storage hardware, firmware, and software might not be the reality, storage systems

need to start employing end-to-end integrity strategies.

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

20:28 A. Ganesan et al.

Next, we believe that recovery code in distributed systems is not rigorously tested, contribut-

ing to undesirable behaviors. Although many systems employ checksums and other techniques,

recovery code that exercises such machinery is not carefully tested. We suggest that future dis-

tributed systems need to rigorously test failure recovery code using fault injection frameworks

such as ours.

Third, although a body of research work [25, 80, 84, 85, 95] and enterprise storage systems [50,

57, 58] provide software guidelines to tackle partial faults, such wisdom has not filtered down to

commodity distributed storage systems. Our findings provide motivation for distributed systems

to build on existing research work to tolerate practical faults other than crashes [17, 45, 98].

Finally, although redundancy is effectively used to provide improved availability, it remains un-

derutilized as a source of recovery from file-system and other partial faults. To effectively use

redundancy, first, the on-disk data structures have to be carefully designed so corrupted or inac-

cessible parts of data can be identified. Next, corruption recovery has to be decoupled from crash

recovery to fix only the corrupted or inaccessible portions of data. Sometimes, recovering the cor-

rupted data might be impossible if the intact replicas are not reachable. In such cases, the outcome

should be defined by design rather than left as an implementation detail.

We contacted the developers of the systems regarding the behaviors we found. RethinkDB and

Redis rely on the underlying storage layers to ensure data integrity [68, 69]. The RethinkDB devel-

opers intend to change the design to include application-level checksums in the future and have

updated the documentation to reflect the bugs we reported [71, 72] until this is fixed. They also

confirmed the entanglement between corruption and crash handling [74].

The write-unavailability bug in ZooKeeper discovered by Cords was encountered by real-world

users and has been fixed [100, 102]. The ZooKeeper developers mentioned that crashing on detect-

ing corruption was not a conscious design decision [101]. The LogCabin developers also confirmed

the entanglement between corruption and crash handling in open segments; they added that it is

hard to distinguish a partial write from corruption in open segments [47]. The developers of Cock-

roachDB and Kafka have also responded to our bug reports [15, 16, 40].

5 RELATED WORK

Our work draws inspiration from several bodies of prior research on file-system faults, fault injec-

tion, reliability testing, and bug studies. We now describe how our work relates to each of these

avenues.

Corruption and errors in storage stack. Several past studies have analyzed storage errors and

corruption in detail [8, 9, 49, 55, 80, 82]. Specifically, Bairavasundaram et al. and Schroeder et al.

show the prevalence of latent sector errors in disks. Similarly, studies have also shown the preva-

lence of data corruption in the real world [8, 60]. Furthermore, studies have shown that cheap

near-line disks are more prone to errors and corruption than enterprise-class devices [7]. Since

large-scale deployments often tend to use cheap hardware (and build reliability into the software),

problems such as disk errors and corruption are increasingly important. These prior studies moti-

vated us to study the effects of such faults in distributed storage systems.

Generic fault injection. Our work is related to efforts that inject faults into systems and test

their robustness [11, 33, 83, 90]. Several efforts have built generic fault injectors for distributed

systems [21, 37, 87]. Most of these fault-injection frameworks aim to inject various types of faults

and also emphasize the portability of the framework to several platforms and systems. For example,

Han et al. described Doctor [37], a comprehensive framework that can inject processor, memory,

and communication faults. Cords differs from generic fault injectors through its specific focus on

file-system faults.

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

Redundancy Does Not Imply Fault Tolerance 20:29

File-system fault injection studies. A few studies have shown how file systems such as ext3,

IBM JFS, ReiserFS, ZFS, and so on, react specifically to storage and memory faults [10, 63, 99].

These studies carefully inject disk faults just beneath the file system and observe how the file

system reacts to the fault. The injection methodology used in these studies is type-aware: Faults

are not injected at random; rather, they are injected into various specific on-disk structures of

the file system. Type-aware fault injection helps in quickly exercising several file-system code

paths compared to random fault injection techniques. The fault-injection methodology in Cords

is similar to such type-aware injectors. The results from these studies show that some file systems

(such as ext3) simply propagate corruption to applications, since they do not employ checksums

for user data. The results also show that some file systems (such as ZFS) use checksums for user

data and hence transform an underlying corruption into read errors. These results imply that

applications that desire to maintain data integrity have to handle such situations, motivating our

study.

Application fault injection studies. A few studies [88, 98] have shown how applications run-

ning atop file systems react to file-system faults. For example, Subramanian et al. study how the

MySql database engine reacts to disk corruption. Similarly, Zhang et al. study how file synchro-

nization services (such as Dropbox) react in the presence of local file-system corruption. However,

none of the studies examined modern distributed storage systems. Our work focuses on testing

the behavior of distributed systems under storage faults. We believe our work is the first to com-

prehensively examine the effects of storage faults across many distributed storage systems.

Testing Distributed Systems. Several model checkers have succeeded in uncovering bugs in dis-

tributed systems [35, 44, 96]. Cords exposes bugs that cannot be discovered by model checkers.

Model checkers typically reorder network messages and inject crashes to find bugs; they do not

inject storage-related faults. Similarly to model checkers, tools such as Jepsen [43] that test dis-

tributed systems under faulty networks are complementary to Cords. Our previous work [3] stud-

ies how file-system crash behaviors affect distributed systems. However, these faults occur only

on a crash, unlike block corruption and errors introduced by Cords. Our targeted fault-injection

framework can examine large storage systems faster than model checkers, which typically suffer

from state-space explosion.

Bug Studies. A few recent bug studies [34, 97] have given insights into common problems found

in distributed systems. Yuan et al. show that 34% of catastrophic failures in their study are due to

unanticipated error conditions. Our results also show that systems do not handle read and write

errors well; this poor error handling leads to harmful global effects in many cases. We believe that

bug studies and fault injection studies are complementary to each other; while bug studies suggest

constructing test cases by examining sequences of events that have led to bugs encountered in the

wild, fault injection studies like ours concentrate on injecting one type of fault and uncovering

new bugs and design flaws.

6 CONCLUSIONS

We show that tolerance of file-system faults is not ingrained in modern distributed storage systems.

These systems are not equipped to effectively use redundancy across replicas to recover from

local file-system faults; user-visible problems such as data loss, corruption, and unavailability can

manifest due to a single local file-system fault. As distributed storage systems are emerging as

the primary choice for storing critical user data, carefully designing them for all types of faults is

important. Our study is a step in this direction and we hope our work will lead to more work on

building next generation fault-resilient distributed systems.

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

20:30 A. Ganesan et al.

ACKNOWLEDGMENTS

We thank the anonymous reviewers of FAST’17 for their insightful comments. We thank the

members of the ADSL and the developers of CockroachDB, LogCabin, Redis, RethinkDB, and

ZooKeeper for their valuable discussions. Finally, we thank CloudLab [75] for providing a great

environment for running our experiments.

REFERENCES

[1] Cords Tool and Results. 2017. Retrieved from http://research.cs.wisc.edu/adsl/Software/cords/.

[2] Ramnatthan Alagappan, Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Aws Albarghouthi, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2015. Beyond storage APIs: Provable semantics for storage stacks.

In Proceedings of the 15th USENIX Conference on Hot Topics in Operating Systems (HOTOS’15).

[3] Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj Patel, Thanumalayan Sankaranarayana Pillai, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2016. Correlated crash vulnerabilities. In Proceedings of the 12th

USENIX Conference on Operating Systems Design and Implementation (OSDI’16).

[4] Apache. Cassandra. Retrieved from http://cassandra.apache.org/.

[5] Apache. Kakfa. Retrieved from http://kafka.apache.org/.

[6] Apache. ZooKeeper. Retrieved from https://zookeeper.apache.org/.

[7] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. 2015. Operating Systems: Three Easy Pieces (0.91 ed.).

Arpaci-Dusseau Books.

[8] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Garth R. Goodson, and Bianca

Schroeder. 2008. An analysis of data corruption in the storage stack. In Proceedings of the 6th USENIX Symposium

on File and Storage Technologies (FAST’08).

[9] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupathy, and Jiri Schindler. 2007. An analysis of latent

sector errors in disk drives. In Proceedings of the 2007 ACM SIGMETRICS Conference on Measurement and Modeling

of Computer Systems (SIGMETRICS’07).

[10] Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin Agrawal, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-

Dusseau, and Michael M. Swift. 2008. Analyzing the effects of disk-pointer corruption. In Proceedings of the In-

ternational Conference on Dependable Systems and Networks (DSN’08).

[11] J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek. 1990. Fault injection experiments using FIAT. IEEE Trans.

Comput. 39, 4 (April 1990), 575–582.

[12] Eric Brewer, Lawrence Ying, Lawrence Greenfield, Robert Cypher, and Theodore T’so. 2016. Disks for Data Centers.

Technical Report. Google.

[13] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. 2001. An empirical study of operating

system errors. In Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP’01).

[14] CockroachDB. CockroachDB. Retrieved from https://www.cockroachlabs.com/.

[15] CockroachDB. Disk corruptions and read/write error handling in CockroachDB. Retrieved from https://forum.

cockroachlabs.com/t/disk-corruptions-and-read-write-error-handling-in-cockroachdb/258.

[16] CockroachDB. Resiliency to disk corruption and storage errors. Retrieved from https://github.com/cockroachdb/

cockroach/issues/7882.

[17] Miguel Correia, Daniel Gómez Ferro, Flavio P. Junqueira, and Marco Serafini. 2012. Practical hardening of crash-

tolerant systems. In Proceedings of the 2012 USENIX Annual Technical Conference (USENIX ATC’12).

[18] Data Center Knowledge. Ma.gnolia data is gone for good. Retrieved from http://www.datacenterknowledge.com/

archives/2009/02/19/magnolia-data-is-gone-for-good/.

[19] Datastax. Netflix Cassandra Use Case. Retrieved from http://www.datastax.com/resources/casestudies/netflix.

[20] DataStax. Read Repair: Repair during Read Path. Retrieved from http://docs.datastax.com/en/cassandra/3.0/

cassandra/operations/opsRepairNodesReadRepair.html.

[21] S. Dawson, F. Jahanian, and T. Mitton. 1996. ORCHESTRA: A probing and fault injection environment for testing

protocol implementations. In Proceedings of the 2nd International Computer Performance and Dependability Sympo-

sium (IPDS’96).

[22] Jeff Dean. Building Large-Scale Internet Services. Retrieved from http://static.googleusercontent.com/media/

research.google.com/en//people/jeff/SOCC2010-keynote-slides.pdf.

[23] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-

value store. In Proceedings of the 21st ACM Symposium on Operating Systems Principles (SOSP’07). Stevenson, WA.

[24] Jon Elerath. 2009. Hard-disk drives: The good, the bad, and the ugly. Commun. ACM 52, 6 (June 2009), 38–45.

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

http://research.cs.wisc.edu/adsl/Software/cords/
http://cassandra.apache.org/
http://kafka.apache.org/
https://zookeeper.apache.org/
https://www.cockroachlabs.com/
https://forum.cockroachlabs.com/t/disk-corruptions-and-read-write-error-handling-in-cockroachdb/258
https://github.com/cockroachdb/cockroach/issues/7882
http://www.datacenterknowledge.com/archives/2009/02/19/magnolia-data-is-gone-for-good/
http://www.datastax.com/resources/casestudies/netflix
http://docs.datastax.com/en/cassandra/3.0/penalty -@M cassandra/operations/opsRepairNodesReadRepair.html
http://static.googleusercontent.com/media/penalty -@M research.google.com/en//people/jeff/SOCC2010-keynote-slides.pdf

Redundancy Does Not Imply Fault Tolerance 20:31

[25] David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira, and Ron Brightwell. 2012. Detection and

correction of silent data corruption for large-scale high-performance computing. In Proceedings of the International

Conference on High Performance Computing, Networking, Storage and Analysis (SC’12).

[26] Daniel Fryer, Dai Qin, Jack Sun, Kah Wai Lee, Angela Demke Brown, and Ashvin Goel. 2014. Checking the in-

tegrity of transactional mechanisms. In Proceedings of the 12th USENIX Symposium on File and Storage Technologies

(FAST’14).

[27] Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng, Shaun Benjamin, Ashvin Goel, and Angela Demke Brown.

2012. Recon: Verifying file system consistency at runtime. In Proceedings of the 10th USENIX Symposium on File and

Storage Technologies (FAST’12).

[28] FUSE. Linux FUSE (Filesystem in Userspace) interface. Retrieved from https://github.com/libfuse/libfuse.

[29] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2017. Re-

dundancy does not imply fault tolerance: Analysis of distributed storage reactions to single errors and corruptions.

In Proceedings of the 15th USENIX Symposium on File and Storage Technologies (FAST’17). 149–166.

[30] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file system. In Proceedings of the 19th

ACM Symposium on Operating Systems Principles (SOSP’03).

[31] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding network failures in data centers: Mea-

surement, analysis, and implications. In Proceedings of the ACM SIGCOMM 2011 Conference.

[32] Jim Gray. 1985. Why Do Computers Stop and What Can Be Done About It? Technical Report PN87614. Tandem.

[33] Weining Gu, Z. Kalbarczyk, Ravishankar K. Iyer, and Zhenyu Yang. 2003. Characterization of linux kernel behavior

under errors. In Proceedings of the International Conference on Dependable Systems and Networks (DSN’03).

[34] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-anake, Thanh Do, Jeffry Adity-

atama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F. Lukman, Vincentius Martin, and Anang D. Satria. 2014. What

bugs live in the cloud? A study of 3000+ issues in cloud systems. In Proceedings of the ACM Symposium on Cloud

Computing (SOCC’14).

[35] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang, and Lintao Zhang. 2011. Practical software model

checking via dynamic interface reduction. In Proceedings of the 23rd ACM Symposium on Operating Systems Principles

(SOSP’11).

[36] James R. Hamilton and others. 2007. On designing and deploying internet-scale services. In Proceedings of the 21st

Annual Large Installation System Administration Conference (LISA’07).

[37] Seungjae Han, Kang G. Shin, and Harold A. Rosenberg. 1995. DOCTOR: An integrated software fault injection

environment for distributed real-time systems. In Proceedings of the International Computer Performance and De-

pendability Symposium (IPDS’95).

[38] James Myers. Data Integrity in Solid State Drives. Retrieved from http://intel.ly/2cF0dTT.

[39] Jerome Verstrynge. Timestamps in Cassandra. Retrieved from http://docs.oracle.com/cd/B12037_01/

server.101/b10726/apphard.htm.

[40] Kafka. Data corruption or EIO leads to data loss. https://issues.apache.org/jira/browse/KAFKA-4009.

[41] Kimberley Keeton, Cipriano Santos, Dirk Beyer, Jeffrey Chase, and John Wilkes. 2004. Designing for disasters. In

Proceedings of the 3rd USENIX Symposium on File and Storage Technologies (FAST’04).

[42] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels, Ramakrisha Gummadi,

Sean Rhea, Hakim Weatherspoon, Westley Weimer, Chris Wells, and Ben Zhao. 2000. OceanStore: An architecture

for global-scale persistent storage. In Proceedings of the 9th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS’00).

[43] Kyle Kingsbury. Jepsen. Retrieved from http://jepsen.io/.

[44] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F. Lukman, and Haryadi S. Gunawi. 2014. SAMC:

Semantic-aware model checking for fast discovery of deep bugs in cloud systems. In Proceedings of the 11th Sympo-

sium on Operating Systems Design and Implementation (OSDI’14).

[45] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko Vukolic. 2016. XFT: Practical fault tolerance

beyond crashes. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation

(OSDI’16).

[46] LogCabin. LogCabin. Retrieved from https://github.com/logcabin/logcabin.

[47] LogCabin. Reaction to disk errors and corruptions. Retrieved from https://groups.google.com/forum/#!topic/

logcabin-dev/wqNcdj0IHe4.

[48] Mark Adler. Adler32 Collisions. Retrieved from http://stackoverflow.com/questions/13455067/horrific-collisions-

of-adler32-hash.

[49] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. 2015. A large-scale study of flash memory failures in the

field. In Proceedings of the 2015 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer

Systems (SIGMETRICS’15).

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

https://github.com/libfuse/libfuse
http://intel.ly/2cF0dTT
http://docs.oracle.com/cd/B12037_01/penalty -@M server.101/b10726/apphard.htm
https://issues.apache.org/jira/browse/KAFKA-4009
http://jepsen.io/
https://github.com/logcabin/logcabin
https://groups.google.com/forum/#!topic/logcabin-dev/wqNcdj0IHe4
http://stackoverflow.com/questions/13455067/horrific-collisions-penalty -@M of-adler32-hash

20:32 A. Ganesan et al.

[50] Ningfang Mi, A. Riska, E. Smirni, and E. Riedel. 2008. Enhancing data availability in disk drives through background

activities. In Proceedings of the International Conference on Dependable Systems and Networks (DSN’08), Anchorage,

Alaska.

[51] Michael Rubin. Google moves from ext2 to ext4. Retrieved from http://lists.openwall.net/linux-ext4/2010/01/04/8.

[52] MongoDB. MongoDB. Retrieved from https://www.mongodb.org/.

[53] MongoDB. MongoDB at eBay. Retrieved from https://www.mongodb.com/presentations/mongodb-ebay.

[54] MongoDB. MongoDB WiredTiger. Retrieved from https://docs.mongodb.org/manual/core/wiredtiger/.

[55] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben

Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid. 2016. SSD failures in datacenters: What? When? And why?

In Proceedings of the 9th ACM International on Systems and Storage Conference (SYSTOR’16).

[56] Netflix. Cassandra at Netflix. Retrieved from http://techblog.netflix.com/2011/11/benchmarking-cassandra-

scalability-on.html.

[57] Oracle. Fusion-IO Data Integrity. Retrieved from https://blogs.oracle.com/linux/entry/fusion_io_showcases_

data_integrity.

[58] Oracle. Preventing Data Corruptions with HARD. Retrieved from http://docs.oracle.com/cd/B12037_01/server.

101/b10726/apphard.htm.

[59] Patrick ONeil, Edward Cheng, Dieter Gawlick, and Elizabeth ONeil. 1996. The log-structured merge-tree (LSM-tree).

Acta Inform. 33, 4 (1996).

[60] Bernd Panzer-Steindel. 2007. Data integrity. CERN/IT (2007).

[61] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Alagappan, Samer Al-Kiswany, Andrea

C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2014. All file systems are not created equal: On the complexity

of crafting crash-consistent applications. In Proceedings of the 11th Symposium on Operating Systems Design and

Implementation (OSDI’14).

[62] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2005. Model-based failure analysis

of journaling file systems. In The Proceedings of the International Conference on Dependable Systems and Networks

(DSN’05).

[63] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. 2005. IRON file systems. In Proceedings of the 20th ACM Symposium on Operating

Systems Principles (SOSP’05).

[64] Rahul Bhartia. MongoDB on AWS Guidelines and Best Practices. Retrieved from http://media.amazonwebservices.

com/AWS_NoSQL_MongoDB.pdf.

[65] Redis. Instagram Architecture. Retrieved from http://highscalability.com/blog/2012/4/9/the-instagram-

architecture-facebook-bought-for-a-cool-billio.html.

[66] Redis. Redis. Retrieved from http://redis.io/.

[67] Redis. Redis at Flickr. Retrieved from http://code.flickr.net/2014/07/31/redis-sentinel-at-flickr/.

[68] Redis. Silent data corruption in Redis. Retrieved from https://github.com/antirez/redis/issues/3730.

[69] RethinkDB. Integrity of read results. Retrieved from https://github.com/rethinkdb/rethinkdb/issues/5925.

[70] RethinkDB. RethinkDB. Retrieved from https://www.rethinkdb.com/.

[71] RethinkDB. RethinkDB Data Storage. Retrieved from https://www.rethinkdb.com/docs/architecture/#data-storage.

[72] RethinkDB. RethinkDB Doc Issues. Retrieved from https://github.com/rethinkdb/docs/issues/1167.

[73] RethinkDB. RethinkDB Faq. Retrieved from https://www.rethinkdb.com/faq/.

[74] RethinkDB. Silent data loss on metablock corruptions. Retrieved from https://github.com/rethinkdb/

rethinkdb/issues/6034.

[75] Robert Ricci, Eric Eide, and CloudLab Team. 2014. Introducing CloudLab: Scientific infrastructure for advancing

cloud architectures and applications. USENIX ;login: 39, 6 (2014).

[76] Robert Harris. Data corruption is worse than you know. Retrieved from http://www.zdnet.com/article/

data-corruption-is-worse-than-you-know/.

[77] Ron Kuris. Cassandra From tarball to production. Retrieved from http://www.slideshare.net/planetcassandra/

cassandra-from-tarball-to-production-2.

[78] Mendel Rosenblum and John Ousterhout. 1992. The design and implementation of a log-structured file system. ACM

Trans. Comput. Syst. 10, 1 (February 1992), 26–52.

[79] J. H. Saltzer, D. P. Reed, and D. D. Clark. 1984. End-to-end arguments in system design. ACM Trans. Comput. Syst. 2,

4 (1984), 277–288.

[80] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill. 2010. Understanding latent sector errors and how to protect

against them. In Proceedings of the 8th USENIX Symposium on File and Storage Technologies (FAST’10).

[81] Bianca Schroeder and Garth A. Gibson. 2007. Disk failures in the real world: What does an MTTF of 1,000,000 hours

mean to you? In Proceedings of the 5th USENIX Symposium on File and Storage Technologies (FAST’07).

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

http://lists.openwall.net/linux-ext4/2010/01/04/8
https://www.mongodb.org/
https://www.mongodb.com/presentations/mongodb-ebay
https://docs.mongodb.org/manual/core/wiredtiger/
http://techblog.netflix.com/2011/11/benchmarking-cassandra-penalty -@M scalability-on.html
https://blogs.oracle.com/linux/entry/fusion_io_showcases_penalty -@M data_integrity
http://docs.oracle.com/cd/B12037_01/server.penalty -@M 101/b10726/apphard.htm
http://media.amazonwebservices.com/AWS_NoSQL_MongoDB.pdf
http://highscalability.com/blog/2012/4/9/the-instagram-penalty -@M architecture-facebook-bought-for-a-cool-billio.html
http://redis.io/
http://code.flickr.net/2014/07/31/redis-sentinel-at-flickr/
https://github.com/antirez/redis/issues/3730
https://github.com/rethinkdb/rethinkdb/issues/5925
https://www.rethinkdb.com/
https://www.rethinkdb.com/docs/architecture/#data-storage
https://github.com/rethinkdb/docs/issues/1167
https://www.rethinkdb.com/faq/
https://github.com/rethinkdb/penalty -@M rethinkdb/issues/6034
http://www.zdnet.com/article/data-corruption-is-worse-than-you-know/
http://www.slideshare.net/planetcassandra/penalty -@M cassandra-from-tarball-to-production-2

Redundancy Does Not Imply Fault Tolerance 20:33

[82] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. 2016. Flash reliability in production: The expected and the

unexpected. In Proceedings of the 14th USENIX Conference on File and Storage Technologies (FAST’16).

[83] D. P. Siewiorek, J. J. Hudak, B. H. Suh, and Z. Z. Segal. 1993. Development of a benchmark to measure system

robustness. In Proceedings of the 23rd International Symposium on Fault-Tolerant Computing (FTCS’23).

[84] Gopalan Sivathanu, Charles P. Wright, and Erez Zadok. 2005. Ensuring data integrity in storage: Techniques and

applications. In The 1st International Workshop on Storage Security and Survivability (StorageSS’05).

[85] Mike J. Spreitzer, Marvin M. Theimer, Karin Petersen, Alan J. Demers, and Douglas B. Terry. 1999. Dealing with

server corruption in weakly consistent replicated data systems. Wirel. Netw. 5, 5 (October 1999), 357–371.

[86] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Ferreira, Jon Stearley, John Shalf, and Sudhanva

Gurumurthi. 2015. Memory errors in modern systems: The good, the bad, and the ugly. In Proceedings of the 20th

International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’15).

[87] David T. Stott, Benjamin Floering, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. 2000. A framework for assessing

dependability in distributed systems with lightweight fault injectors. In Proceedings of the 4th International Computer

Performance and Dependability Symposium (IPDS’00).

[88] Sriram Subramanian, Yupu Zhang, Rajiv Vaidyanathan, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, Remzi H.

Arpaci-Dusseau, and Jeffrey F. Naughton. 2010. Impact of disk corruption on open-source DBMS. In Proceedings of

the 26th International Conference on Data Engineering (ICDE’10).

[89] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. 2003. Improving the reliability of commodity operating

systems. In Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP’03).

[90] T. K. Tsai and R. K. Iyer. 1995. Measuring fault tolerance with the FTAPE fault injection tool. In Proceedings of the

8th International Conference on Modelling Techniques and Tools for Computer Performance Evaluation: Quantitative

Evaluation of Computing and Communication Systems (MMB’95).

[91] Twitter. Kafka at Twitter. Retrieved from https://blog.twitter.com/2015/handling-five-billion-sessions-a-day-in-

real-time.

[92] Uber. The Uber Engineering Tech Stack, Part I: The Foundation. Retrieved from https://eng.uber.com/

tech-stack-part-one/.

[93] Uber. The Uber Engineering Tech Stack, Part II: The Edge And Beyond. Retrieved from https://eng.uber.com/

tech-stack-part-two/.

[94] Voldemort. Project Voldemort. http://www.project-voldemort.com/voldemort/.

[95] Yang Wang, Manos Kapritsos, Zuocheng Ren, Prince Mahajan, Jeevitha Kirubanandam, Lorenzo Alvisi, and Mike

Dahlin. 2013. Robustness in the salus scalable block store. In Proceedings of the 10th Symposium on Networked Systems

Design and Implementation (NSDI’13).

[96] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang,

and Lidong Zhou. 2009. MODIST: Transparent model checking of unmodified distributed systems. In Proceedings of

the 6th Symposium on Networked Systems Design and Implementation (NSDI’09).

[97] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle Zhang, Pranay U. Jain, and Michael

Stumm. 2014. Simple testing can prevent most critical failures: An analysis of production failures in distributed data-

intensive systems. In Proceedings of the 11th Symposium on Operating Systems Design and Implementation (OSDI’14).

[98] Yupu Zhang, Chris Dragga, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. 2014. ViewBox: Integrating local

file systems with cloud storage services. In Proceedings of the 12th USENIX Symposium on File and Storage Technologies

(FAST’14).

[99] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2010. End-to-end

data integrity for file systems: A ZFS case study. In Proceedings of the 8th USENIX Symposium on File and Storage

Technologies (FAST’10).

[100] ZooKeeper. Cluster unavailable on space and write errors. Retrieved from https://issues.apache.org/jira/browse/

ZOOKEEPER-2495.

[101] ZooKeeper. Crash on detecting a corruption. Retrieved from http://mail-archives.apache.org/mod_mbox/

zookeeper-dev/201701.mbox/browser.

[102] ZooKeeper. Zookeeper service becomes unavailable when leader fails to write transaction log. Retrieved from

https://issues.apache.org/jira/browse/ZOOKEEPER-2247.

Received June 2017; accepted July 2017

ACM Transactions on Storage, Vol. 13, No. 3, Article 20. Publication date: September 2017.

https://blog.twitter.com/2015/handling-five-billion-sessions-a-day-in-penalty -@M real-time
https://eng.uber.com/tech-stack-part-one/
https://eng.uber.com/tech-stack-part-two/
http://www.project-voldemort.com/voldemort/
https://issues.apache.org/jira/browse/ZOOKEEPER-2495
http://mail-archives.apache.org/mod_mbox/zookeeper-dev/201701.mbox/browser
https://issues.apache.org/jira/browse/ZOOKEEPER-2247

