From WiscKey to Bourbon: A Learned Index for Log-Structured Merge Trees

Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth, Andrea Arpací-Dusseau and Remzi Arpací-Dusseau
Data Lookup

Data lookup is important in systems
How do we perform a lookup given an array of data?
 Linear search

What if the array is sorted?
 Binary search

What if the data is huge?

```
2 1 8 4 5 9 7 3 6
```

```
1 2 3 4 5 6 7 8 9
```
Data Structures to Facilitate Lookups

Assume sorted data

Traditional solution: build specific data structures for lookups
 B-Tree, for example
 Record the position of the data

What if we know the data beforehand?
Bring Learning to Indexing

Lookups can be faster if we know the distribution

The model $f(\cdot)$ learns the distribution

Learned Indexes

Time Complexity – $O(1)$ for lookups

Space Complexity – $O(1)$

Only 2 floating points – slope + intercept

$$f(x) = 0.5x - 50$$

$x = 100 \rightarrow f(x) = 0$

Kraska et al. The Case for Learned Index Structures. 2018
Challenges to Learned Indexes

How to efficiently support insertions/updates?
 Data distribution changed
 Need re-training, or lowered model accuracy

How to integrate into production systems?
Bourbon

A Learned index for LSM-trees
Built into production system (WiscKey)
Handle writes easily

LSM-tree fits learned indexes well
Imutable SSTables with no in-place updates

Learning guidelines
How and when to learn the SSTables

Cost-Benefit Analyzer
Predict if a learning is beneficial during runtime

Performance improvement
1.23x – 1.78x for read-only and read-heavy workloads
~1.1x for write-heavy workloads
LevelDB

Key-value store based on LSM
- 2 in-memory tables
- 7 levels of on-disk SSTables (files)

Update/Insertion procedure
- Buffered in MemTables
- Merging compaction
- From upper to lower levels
- No in-place updates to SSTables

Lookup procedure
- From upper to lower levels
- Positive/Negative internal lookups
Learning Guidelines

Learning at SSTable granularity
 No need to update models
 Models keep a fixed accuracy

Factors to consider before learning:
 1. Lifetime of SSTables
 How long a model can be useful
 2. Number of Lookups into SSTables
 How often a model can be useful
Learning Guidelines

1. Lifetime of SSTables
 How long a model can be useful

Experimental results
 Under 15Kops/s and 50% writes
 Average lifetime of L0 tables: 10 seconds
 Average lifetime of L4 tables: 1 hour
 A few very short-lived tables: < 1 second

Learning guideline 1: Favor lower level tables
 Lower level files live longer

Learning guideline 2: Wait shortly before learning
 Avoid learning extremely short-lived tables
Learning Guidelines

2. Number of Lookups into SSTables
 How often a model can be useful

Affected by various factors
 Depending on workload distribution, load order, etc.
 Higher level files may serve more internal lookups

Learning guideline 3: Do not neglect higher level tables
 Models for them may be more often used

Learning guideline 4: Be workload- and data-aware
 Number of internal lookups affected by various factors
Greedy Piecewise Linear Regression

From Dataset D

Multiple linear segments $f(\cdot)$

$\forall (x, y) \in D, |f(x) - y| < error$

$error$ is specified beforehand

In bourbon, we set $error = 8$

Train complexity: $O(n)$

Typically $\sim 40ms$

Inference complexity: $O(\log \text{#seg})$

Typically $<1\mu s$

Xie et al. Maximum error-bounded piecewise linear representation for online stream approximation. 2014
Bourbon Design

Bourbon: Build upon WiscKey

WiscKey: key-value separation built upon LevelDB
(Key, value_addr) pair in the LSM-tree
A separate value log

Why WiscKey?
Help handle large and variable sized values
Constant-sized KV pairs in the LSM-tree
Prediction much easier

Value Log
Bourbon Design

Find File → Load Index Block

SSTable

Load & Search Chunk → Read Value

Model Lookup → Search Index Block → Load & Search Data block

Bourbon (model) path: 2~3μs

WiscKey (Baseline) path: ~4μs

L0
L1
L2

WiscKey (Baseline) path: ~4μs

Bourbon (model) path: 2~3μs
Evaluation

Read-only workloads: 1.23x – 1.78x

Datasets
Load Orders
Request Distributions

YCSB core workloads: see graph below

SOSD & CBA effectiveness & Experiments on fast storage

In our paper
Conclusion

Bourbon

Integrates learned indexes into a production LSM system
Beneficial on various workloads
Learning guidelines on how and when to learn
Cost-Benefit Analyzer on whether a learning is worthwhile

How will ML change computer system **mechanisms**?

Not just policies
Bourbon improves the lookup process with learned indexes
What other mechanisms can ML replace or improve?
Careful study and deep understanding are required
Thank You for Watching!

The ADvanced Systems Laboratory (ADSL)
https://research.cs.wisc.edu/wind/

Microsoft Gray Systems Laboratory
https://azuredatalab.microsoft.com/