e

SRR

.
e

P

SRR

.
e

.

Evolving RPC for Active Storage

.."ir«« "'ﬁi«« n-."tzr«« "'ﬁi«« n-."tzr«« "'ﬁi«« n-."tzr«« "'ﬁi«« n-."tzr«« "'ﬁi«« n-."tzr«« "'ﬁi«« n-."tzr«« "'ﬁi«« n-."tzr«« "'ﬁi«« n-."tzr«« "'ﬁi«« n-."tzr«« "'ﬁi«« n-."tzr«« "'ﬁi«« n-."tzr«« "'ﬁi«« n-."tzr«« "'ﬁi«« n-."tzr«« "'ﬁi«« n-."tzr«« "'ﬁi«« n-."tzr«« "'ﬁi«« 3

Muthian Sivathanu
Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

University of Wisconsin-Madison

Architecture of the future

= Everything is “active”
= Cheaper, faster processing power
= Example: “smart” disks
m Everything is “distributed”
= Network between processors and devices
= Example: Network-attached storage
m Need: Effective software paradigms
m Leverage power of active components
= But remains easy to use

Software systems of the future

m Need: Tools to build “active”, “distributed” systems
m Pragmatic: Easy for system developers to use
= Powerful: Exploit active nature of systems

m Active systems permit extensibility
= Download code to device
= Tailor to needs of applications/system
= Simplicity, maintainability
- Provide primitives, allow clients to compose interface
m Traditional “distributed” systems built w/ RPC
m Simple, easy-to-use communication paradigm
= But not designed for “active” world

m Build better distributed systems w/ "active” components

Scriptable RPC

m SRPC: Paradigm for extensible distributed systems
s Pragmatic: RPC-like development process
= Powerful: Exploit active components easily

m Case study: Active storage
= High Performance
- Efficient “composition” of primitives
= Rapid addition of new functionality
- Powerful: Advanced consistency semantics over NFS
- Simple: Substantial functionality in < 20 lines of code
= Simplicity in design
- Obviate distributed locking, crash recovery

m Compelling paradigm for future systems

Outline

m Scriptable RPC

m Case Study: Active Storage
= Performance
= Functionality
= Simplicity

® Summary

Scriptable RPC (SRPC)

= Evolve Remote Procedure Call (RPC)

m Augment RPC interface of “server” with a
moz_uﬁ_smom_um_u___a\

Active Disk

Script

Client >
< S
Result

Limited execution
context

Script Interpreter

® Prototype uses Tcl as the scripting language

mmUO Key issues

= Migration path
m Efficient execution of scripts
m Safety

Migration path

= Make transition to new paradigm less
intrusive

= Code to embed scripting into server
automatically generated

m Existing unmodified clients co-exist with
scripting clients

= Development process exactly the same

Development: RPC

Development: SRPC

Efficient execution of scripts

= Hide script interpretation overhead
m Script caching

= Exploit efficient Tcl bytecode representation
= Concurrency

= Multiple interpreters run simultaneously

m “Fast” standard library of primitives
= Implemented in C

Safety

m Guard against misbehaving client scripts
= Limited execution environment: SafeTcl
m Even while loops can be turned off
= Runtime type-checking
= Prevent illegal memory references

m Automatic tracking of locks
m Safe concurrent execution

Outline

m Case Study: Active Storage
= Performance
= Functionality
= Simplicity

® Summary

Case Study: Active storage

m Utilize CPU power at disks for client-
m_omo_:o_oﬂoommm_:@

= Previous approaches
= Demonstrate performance benefits

= But, require radically new architectures
- No migration path for existing services

= Limited class of applications
- Parallel database primitives

...................................

Application
. VFS
Linux | NFS - like protocol
Kernel Gric < >

Client

m Platform
= P-lll 550 MHz machines, 1GB mem, 100 Mb/s net
m Linux kernel v2.2.19

m Case studies enhance ScFS using SRPC

ScFS: Performance enhancements

= Combine dependent sequence of
operations into single script

= Reduction in network round-trips needed for
a logical operation

- Benefit sensitive to network delay
- Significant savings over dialup, wide-area
- Even across overloaded “fast” networks

= Reduction in total network traffic
= Helps overcome limitations in interface

Pathname lookup

RPC
o .

ead /;
Lookup (dir page w,
5\._...00= g

A

Client Disk

Pathname lookup

Find inode
number abc (21

Client Disk

Pathname lookup

Find inode

number /
Ge
NN_Q.\. N \.DOQQ AQ&

Client Disk

Pathname lookup

ad (.
Lookup (dir page v,
“/foo” 4
e
e
Find inode 020
number /
G
St (inog,)
R\ 2
ped®”

Client Disk

Pathname lookup

Read page, find
Ao inode number, get
Find inode 20 attributes

number /
ngg. (. ino

Client Disk Client Disk

Pathname lookup

Read page, find
Ao inode number, get
Find inode 20 attributes

number / 7.?«
ngg. 3.30

Client Disk Client Disk

Pathname lookup: Benefits

e e e T T S T St
B B B R R R R B R B R R R R B R B B R R e S PR R e Sy PR R e s,

Performance Of Combined Read-GetAttr

W
o

T
Separate —+—

N
1$)]
T
!

N
o
T

-4
o

)

O | |] 1
0 1 2 3 4 5

Additional Network Delay (ms)

Average Cost Per ReadDir and GetAttr (ms)
o

Pathname lookup: Benefits

Performance Of Combined Read-GetAttr

T T
OIS

.7

Combined: Tel (Uncached) —w—

W
o

N
n
T
|

N
o
T
|

—
o

o

Average Cost Per ReadDir and GetAttr (ms)
o o

o
—n

2 3 4 5
Additional Network Delay (ms)

athname lookup: Benefits

R S R S S T e = = : RO = S 2 S
e e e S S R R R R R R R R e S S S e S S S R S e S S S S S

Performance Of Combined Read-GetAttr

W
o

T T T

mmnmﬁm_ﬁm sang—
Combined: Tcl (Uncached) —»—
Combined: C —»— -

N
an
T

N
o
T

-4
o

&)

1 1 |

Average Cost Per ReadDir and GetAttr (ms)
o o

o
—

2 3 4 5
Additional Network Delay (ms)

Pathname lookup: Benefits

O T T B T T T S T T S T S S S S T S s e i
R R R R R R B P R P R e O S PO R R

Performance Of Combined Read-GetAttr

W
o

| mmnmwmg ——
Combined: Tcl (Uncached) —»—
Combined: C —=—

S B ..i:g. _3 F
Cambines fC:arhed)
Lompined. |Cl (ached)

N
n
T

—_— e
=]

A §

N
o

—
o

o

Average Cost Per ReadDir and GetAttr (ms)
o o

Additional Network Delay (ms)

Performance: Summary

m Examples only illustrative

m Other “compositions” possible too!
m Micro-benchmarks

= Benefit due to reduced network roundtrips
m Macro-benchmarks

m Postmark: 54% less network traffic
m TPC-B: 96% less network traffic

m Facilitates working around minimal interfaces

Outline

.............................. e SEEEE

D,

= Functionality
= Simplicity
® Summary

ScFS: Functionality enhancements

m Implement enhanced virtual protocols
over physical protocols
m State can be added to stateless protocols
m System provides primitives
- Clients compose them into desired functionality
m Examples
= AFS consistency semantics over NFS
m Sprite consistency semantics over NFS

Consistency semantics: NFS vs AFS

m NFS

m Stateless server
= Client checks periodically for updates

m AFS

m Write-on-close semantics

m Server tracks clients caching a file
- Notifies clients when modified file written

= Requires server-side state, participation
- Cannot implement using existing paradigms

Callback list

Scripted AFS consistency

Cached file

Callback list

mo:EmQ AFS oo:m_mﬁm:Q\

Callback list

Scripted AFS consistency

Cached file

Callback list

File Close

cripted AFS consistency

Callback list

Functionality: Summary

m SRPC: Powerful

m Possible to add complex functionality
= Even those requiring augmenting server state

m SRPC: Simple

m AFS consistency
-« 2 scripts, < 10 lines each

m Sprite consistency
3 scripts, < 20 lines each

= Simple base system, compact scripts to extend it

ScFS: Simplicity enhancements

= Ability to group operations at server

= Simplifies implementation of atomic sets of
ocmqm:o:m

m Often, obviates need for distributed locks,
distributed crash recovery

m Example - concurrent directory updates

Concurrent directory updates

Create("/foo") */bar”

Cu

I

ent dir

e

ctor

y up

d

a

:

Concurrent directory updates

abc |21
def |39
foo (41

21
39
52

Concurrent directory updates

abc |21
def |39
foo (41

Concurrent directory updates

= Non-scripting
= Distributed locking, distributed crash recovery

- Clients acquire locks before read-modify-write
- Recover from client failures while holding locks

m SRPC

= Script acquires in-memory lock at server

= Just enforce mutual exclusion within single
address space

Summary

m SRPC
= High Performance, rapid extensibility, simplicity
m Makes effective use of “active” architecture
m All scripts less than 20 lines of code
= Some implement non-trivial functionality
m Fewer lines of code =>
= Fewer bugs, more robust systems
m Ease of building systems with active components
m Don’t have a complex system catering to all
client requirements
= Provide primitives, enhance with compact scripts

Questions ?

Wisconsin Network Disks Group

http://www.cs.wisc.edu/wind

