
Evolving RPC for Active Storage
Evolving RPC for Active Storage

M
uthian Sivathanu

Andrea C. Arpaci-Dusseau
Rem

zi H. Arpaci-Dusseau

University of W
isconsin-M

adison

Architecture of the future
n

Everything is “active”
n

Cheaper, faster processing power
n

Exam
ple: “sm

art” disks
n

Everything is “distributed”
n

Network between processors and devices
n

Exam
ple: Network-attached storage

n
Need: Effective software paradigm

s
n

Leverage power of active com
ponents

n
But rem

ains easy to use

Software system
s of the future

n
Need: Tools to build “active”, “distributed” system

s
n

Pragm
atic: Easy for system

 developers to use
n

Powerful: Exploit active nature of system
s

n
Active system

s perm
it extensibility

n
Download code to device

n
Tailor to needs of applications/system

n
Sim

plicity, m
aintainability

•
Provide prim

itives, allow clients to com
pose interface

n
Traditional “distributed” system

s built w/ RPC
n

Sim
ple, easy-to-use com

m
unication paradigm

n
But not designed for “active” world

n
Build better distributed system

s w/ “active” com
ponents

Scriptable RPC
n

SRPC: Paradigm
 for extensible distributed system

s
n

Pragm
atic: RPC-like developm

ent process
n

Powerful: Exploit active com
ponents easily

n
Case study: Active storage
n

High Perform
ance

•
Efficient “com

position” of prim
itives

n
Rapid addition of new functionality

•
Powerful: Advanced consistency sem

antics over NFS
•

Sim
ple: Substantial functionality in < 20 lines of code

n
Sim

plicity in design
•

O
bviate distributed locking, crash recovery

n
Com

pelling paradigm
 for future system

s

O
utline

n
M

otivation
n

Scriptable RPC
n

Case Study: Active Storage
n

Perform
ance

n
Functionality

n
Sim

plicity
n

Sum
m

ary

Scriptable RPC (SRPC)
n

Evolve Rem
ote Procedure Call (RPC)

n
Augm

ent RPC interface of “server” with a
scripting capability

Client
Script

Lim
ited execution

context

Active D
isk

Script Interpreter

R
esult

ß
 Prototype uses Tcl as the scripting language

SRPC : Key issues
n

M
igration path

n
Efficient execution of scripts

n
Safety

M
igration path

n
M

ake transition to new paradigm
 less

intrusive
n

Code to em
bed scripting into server

autom
atically generated

n
Existing unm

odified clients co-exist with
scripting clients

n
Developm

ent process exactly the sam
e

Developm
ent: RPC

Interface
definition

Interface
Im

plem
entation

ID
L

Com
piler

Stubs

N
ative

Com
piler

D
istributed Service

Developm
ent: SRPC

Interface
definition

Interface
Im

plem
entation

ID
L

Com
piler

Stubs

N
ative

Com
piler

D
istributed Service

Tcl W
rappers

Interpreter

Efficient execution of scripts
n

Hide script interpretation overhead
n

Script caching
n

Exploit efficient Tcl bytecode representation
n

Concurrency
n

M
ultiple interpreters run sim

ultaneously
n

“Fast” standard library of prim
itives

n
Im

plem
ented in C

Safety
n

G
uard against m

isbehaving client scripts
n

Lim
ited execution environm

ent: SafeTcl
n

Even while loops can be turned off
n

Runtim
e type-checking

n
Prevent illegal m

em
ory references

n
Autom

atic tracking of locks
n

Safe concurrent execution

O
utline

n
M

otivation
n

Scriptable RPC
n

Case Study: Active Storage
n

Perform
ance

n
Functionality

n
Sim

plicity
n

Sum
m

ary

Case Study: Active storage
n

Utilize CPU power at disks for client-
specific processing

n
Previous approaches
n

Dem
onstrate perform

ance benefits
n

But, require radically new architectures
•

No m
igration path for existing services

n
Lim

ited class of applications
•

Parallel database prim
itives

Evaluation environm
ent

n
Platform
n

P-III 550 M
Hz m

achines, 1G
B m

em
, 100 M

b/s net
n

Linux kernel v2.2.19
n

Case studies enhance ScFS using SRPC

Application

VFS

ScFS

A
ctive
D

isk
N

FS - like protocol
Linux

Kernel

C
lien

t

ScFS: Perform
ance enhancem

ents
n

Com
bine dependent sequence of

operations into single script
n

Reduction in network round-trips needed for
a logical operation

•
Benefit sensitive to network delay

•
Significant savings over dialup, wide-area

•
Even across overloaded “fast” networks

n
Reduction in total network traffic

n
Helps overcom

e lim
itations in interface

Pathnam
e lookup

R
ead (dir page “/”)

Client
D

isk

R
PC

Lookup
“/foo”

Pathnam
e lookup

Find inode
num

ber

R
ead (dir page “/”)

Page D
ata

Client
D

isk

R
PC

ab
c

21
d

ef
39

b
ar

52
foo

40

Lookup
“/foo”

Pathnam
e lookup

Find inode
num

ber
Page D

ata

G
etAttr (inode 40)

Client
D

isk

R
PC

Lookup
“/foo”

R
ead (dir page “/”)

Pathnam
e lookup

Find inode
num

ber
Page D

ata

G
etAttr (inode)

Attributes

Client
D

isk

R
PC

Lookup
“/foo”

R
ead (dir page “/”)

Pathnam
e lookup

Find inode
num

ber
Page D

ata

G
etAttr (inode)

Attributes

Client
D

isk
Client

D
isk

ExecScript
(Read-G

etAttr)

R
ead page, find

inode num
ber, get

attributes

R
PC

SR
PC

Lookup
“/foo”

Lookup
“/foo”

R
ead (dir page “/”)

Pathnam
e lookup

Find inode
num

ber
Page D

ata

G
etAttr (inode)

Attributes

Client
D

isk
Client

D
isk

ExecScript
(Read-G

etAttr)

R
ead page, find

inode num
ber, get

attributes

Attributes

R
PC

SR
PC

Lookup
“/foo”

Lookup
“/foo”

R
ead (dir page “/”)

Pathnam
e lookup: Benefits

Pathnam
e lookup: Benefits

Pathnam
e lookup: Benefits

Pathnam
e lookup: Benefits

Perform
ance: Sum

m
ary

n
Exam

ples only illustrative
n

O
ther “com

positions” possible too!
n

M
icro-benchm

arks
n

Benefit due to reduced network roundtrips
n

M
acro-benchm

arks
n

Postm
ark: 54%

 less network traffic
n

TPC-B: 96%
 less network traffic

n
Facilitates working around m

inim
al interfaces

O
utline

n
M

otivation
n

Scriptable RPC
n

Case Study: Active Storage
n

Perform
ance

n
Functionality

n
Sim

plicity
n

Sum
m

ary

ScFS: Functionality enhancem
ents

n
Im

plem
ent enhanced virtual protocols

over physical protocols
n

State can be added to stateless protocols
n

System
 provides prim

itives
•

Clients com
pose them

 into desired functionality
n

Exam
ples

n
AFS consistency sem

antics over NFS
n

Sprite consistency sem
antics over NFS

Consistency sem
antics: NFS vs AFS

n
NFS
n

Stateless server
n

Client checks periodically for updates
n

AFS
n

W
rite-on-close sem

antics
n

Server tracks clients caching a file
•

Notifies clients when m
odified file written

n
Requires server-side state, participation

•
Cannot im

plem
ent using existing paradigm

s

Scripted AFS consistency

Client A

Client B

Scripted AFS consistency

Client A

Client B

ExecScript (AFS_O
PEN

)

O
pen

Scripted AFS consistency

Client A

Client B

File D
ata

A

ExecScript (AFS_O
PEN

)

Callback list

Cached file

Scripted AFS consistency

Client A

Client B

ExecScript (AFS_O
PEN

)

O
pen

A
Callback list

Cached file

Scripted AFS consistency

Client A

Client B
File D

ata

AB
ExecScript (AFS_O

PEN
)

Callback list

Cached file

Scripted AFS consistency

Client A

Client B
ExecScript

(AFS_CLO
SE_D

IRTY)

AB

File Close

Callback list

Cached file

Scripted AFS consistency

Client A

Client B

B

IN
VALID

ATE_CACH
E

ExecScript

(AFS_CLO
SE_D

IRTY)
Callback list

Cached file

Functionality: Sum
m

ary
n

SRPC: Powerful
n

Possible to add com
plex functionality

n
Even those requiring augm

enting server state
n

SRPC: Sim
ple

n
AFS consistency

•
2 scripts, < 10 lines each

n
Sprite consistency

•
3 scripts, < 20 lines each

n
Sim

ple base system
, com

pact scripts to extend it

ScFS: Sim
plicity enhancem

ents

n
Ability to group operations at server
n

Sim
plifies im

plem
entation of atom

ic sets of
operations

n
O

ften, obviates need for distributed locks,
distributed crash recovery

n
Exam

ple - concurrent directory updates

Concurrent directory updates

Client A
Client B

ab
c

21
d

ef
39

Concurrent directory updates

Client A
Client B

READ
ab

c
21

d
ef

39

ab
c

21
d

ef
39

Create(“/foo”)

Concurrent directory updates

Client A
Client B

READ

ab
c

21
d

ef
39

ab
c

21
d

ef
39

Create(“/foo”)
Create(“/bar”)

ab
c

21
d

ef
39

Concurrent directory updates

Client A
Client B

ab
c

21
d

ef
39

ab
c

21
d

ef
39

foo
41

ab
c

21
d

ef
39

b
ar

52

Concurrent directory updates

Client A
Client B

WRITE

ab
c

21
d

ef
39

foo
41

ab
c

21
d

ef
39

foo
41

ab
c

21
d

ef
39

b
ar

52

Concurrent directory updates

Client A
Client B

W
RITE

ab
c

21
d

ef
39

b
ar

52

ab
c

21
d

ef
39

foo
41

ab
c

21
d

ef
39

b
ar

52

Concurrent directory updates
n

Non-scripting
n

Distributed locking, distributed crash recovery
•

Clients acquire locks before read-m
odify-write

•
Recover from

 client failures while holding locks
n

SRPC
n

Script acquires in-m
em

ory lock at server
n

Just enforce m
utual exclusion within single

address space

Sum
m

ary
n

SRPC
n

High Perform
ance, rapid extensibility, sim

plicity
n

M
akes effective use of “active” architecture

n
All scripts less than 20 lines of code
n

Som
e im

plem
ent non-trivial functionality

n
Fewer lines of code =>
n

Fewer bugs, m
ore robust system

s
n

Ease of building system
s with active com

ponents
n

Don’t have a com
plex system

 catering to all
client requirem

ents
n

Provide prim
itives, enhance with com

pact scripts

W
isconsin N

etw
ork D

isks G
roup

http://w
w

w
.cs.w

isc.edu/w
ind

Q
uestions ?

