
Non-Invasive I/O Classification Techniques and Applications

By

Leo Prasath Arulraj

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2018

Date of final oral examination: December 13th 2017

The dissertation is approved by the following members of the Final Oral Committee:

Andrea C. Arpaci-Dusseau, Professor, Computer Sciences

Remzi H. Arpaci-Dusseau, Professor, Computer Sciences

Michael M. Swift, Professor, Computer Sciences

Aditya Akella, Professor, Computer Sciences

Jonathan T. Eckhardt, Associate Professor, Management & Human Resources

© Copyright by Leo Prasath Arulraj 2018

All Rights Reserved

i

To my family

ii

Acknowledgments

I am extremely thankful and indebted to my advisors Profs. Andrea and Remzi Arpaci-

Dusseau for accepting me as their student and for their excellent guidance throughout

my Ph.D. program. I always admired their elegant solutions to complex problems.

Often times, I used to go to our weekly meetings without clarity and talking to them

just for a few minutes added clarity to my thoughts. They taught me the essential skill

of converting a complex piece of technology that we built into an engaging high level

presentation that conveys all the necessary points but yet does not bore the listener. When

the papers we submitted to conferences were rejected, they taught me how to handle

rejections with their invaluable guidance on choosing the most important feedback from

the reviews that can be addressed in the available time. I have always been amazed by

their clarity of thought process in steering a project in the right direction.

Prof. Andrea’s detailed comments, technical as well as grammatical corrections,

and insightful questions have always been instrumental in adding clarity and elegance

to all my written work including our published papers and this dissertation. Prof.

Andrea’s “Distributed Systems” course helped me develop a structured approach to

comprehend complex distributed architectures and also encouraged me to further learn

about systems. I took a special topics course on “Virtualization” from Prof. Remzi and

thoroughly enjoyed it. I admired how he steered the class to understand the paper best

by asking the hard questions. I was lucky to continue working on my class project as

my research project which eventually got published and now forms a chapter in this

iii

dissertation. I have benefited a lot by having the privilege of working closely with them

and observing them over the years. They have helped me not just in technical aspects

but have also taught me life lessons over the last several years. They have helped me

overcome several hurdles that I have faced. Once advisors, always advisors. I am happy

that I can always request them for advise. I will always strive to be a good student

worthy of advisors like them.

I am also extremely thankful to Prof. Aditya Akella, Prof. Jonathan Eckhardt and

Prof. Michael Swift for graciously agreeing to be part of my committee and for their

valuable feedback and comments. Prof. Swift’s “Operating Systems” course, which I

took in my first semester, helped me learn the fundamentals and motivated me to pursue

my research in this field. The numerous detailed questions and comments provided by

Prof. Swift during my preliminary exam, my defense talk and my dissertation helped

me improve the quality of my research output. I took courses on “Networking” and

“Software Defined Networks” from Prof. Akella and I thoroughly enjoyed them and

also learned a lot because there was always more emphasis on the learning outcome

rather than traditional class procedures. I took Prof. Eckhardt’s course on “Venture

Creation” as a requirement for my minor but it instilled in me a desire to learn more

about “Entrepreneurship” which led me to earn a Certificate in Entrepreneurship from

the UW School of Business.

I am greatly indebted to the Computer Sciences department and the University of

Wisconsin for accepting me into their prestigious graduate program and for providing

me with all the necessary facilities during my entire graduate study. I also thank the

many Professors whose courses helped me gain knowledge and always created a positive

impact on my daily work life. I feel privileged to have learned these courses alongside

exceptional students who were always a source of inspiration.

I am thankful to Nitin Agarwal for on-boarding me into his final Ph.D. research work

and constantly helping me in implementing it which won a best paper award at the File

iv

and Storage Technologies conference. I am also indebted to Nitin Agarwal, Cristian

Ungureanu and many other esteemed researchers for mentoring me and providing a

very pleasant experience during my internship at NEC Labs, Princeton. I also thank my

several friends and seniors during my tenure at Amazon who helped me learn essential

skills that were useful during my graduate studies and beyond.

I am fortunate to have had the opportunity to work with smart and hardworking

colleagues from the Computer Sciences department who are also my friends: Nitin

Agrawal, Ishani Ahuja, Ramanatthan Alagappan, Samer Al-Kiswany, Ashok Anand,

Lakshmi Bairavasundaram, Siddharth Barman, Jayaram Bobba, Vijay Chidambaram,

Thanh Do, Chris Dragga, Ramakrishnan Durairajan, Aishwarya Ganesan, Akhil Guliani,

Haryadi Gunawi, Tyler Harter, Jun He, Kevin Houck, Joy James Prabhu, Sudarsun

Kannan, Junaid Khalid, Rustam Lalkaka, Jing Liu, Lanyue Lu, Ao Ma, Joe Meehean,

Piramanayagam Arumuga Nainar, Sanketh Nalli, Sriraam Natarajan, Ed Oakes, Sankar-

alingam Panneerselvam, Yuvraj Patel, James Paton, Thanumalayan Pillai, Abhishek

Rajimwale, Deepak Ramamurthi, Matthew Renzelman, Mohit Saxena, Sayandeep Sen ,

Vivek Shrivastava, Srinath Sridharan, Sriram Subramaniam, Swaminathan Sundarara-

man, Venkatanathan Varadarajan, Laxman Visampalli, Raajay Viswanathan , Zev Weiss,

Kan Wu, Leon Yang, Suli Yang, Jongwon Yoon , Wei Zhang, Yiying Zhang, Yupu Zhang

and Dennis Zhou.

I thank my family for their continuous support, prayers to God, and their patience

during the several years that I took to finish my graduate studies. They were my

pillars of strength and my source of happiness during the many troubling times. They

celebrated my small victories with great appreciation and happiness. My parents

took great efforts to lay a very strong foundation in my childhood that has helped me

survive the tempestuous times later in my adulthood. I am also indebted to my parents-

in-law for their prayers to God, constant encouragement and faith in me. My wife

Vinoliya Sebastian provided great support and comforting companionship that made

v

life easier. Although I often could not spend lots of time with her, she understood my

time commitments and encouraged me in finishing my graduate studies. Her continuous

encouragement and her prayers to God have had a tremendous impact on me. I thank my

dear baby daughter Snowlina for supporting me in her own way by being a continuous

source of joy and by not crying often. Her arrival in our lives has brought many blessings.

My brother Joy James Prabhu helped me deviate a bit with his phone calls and video

chats. His questions about both my work and life have had tremendous impacts on me.

I am fortunate to have him as my brother. I also thank my other relatives who have

helped motivate me when I was not in high spirits and have had a positive impact on

my life.

vi

Contents

Acknowledgments ii

Contents vi

List of Tables viii

List of Figures x

Abstract xiv

1 Introduction 1

1.1 I/O Classification . 5

1.2 David: Emulating Goliath Storage Devices 9

1.3 Sky: Improving Virtualized Storage Performance 11

1.4 Corruption Resilient Check and Repair . 14

2 Emulating Goliath Storage Devices 18

2.1 David’s Design . 22

2.2 Block Classification . 24

2.3 Metadata Remapping . 30

2.4 Evaluation . 31

2.5 Summary . 39

vii

3 Improving Virtualized Storage Performance 41

3.1 Motivation . 44

3.2 Design . 46

3.3 Implementation . 61

3.4 Overhead Evaluation . 67

3.5 Case Study #1: Information Gathering . 70

3.6 Case Study #2: iCache . 73

3.7 Case Study #3: iDedup . 78

3.8 Fast Storage Devices . 82

3.9 Deployment Scenarios and Considerations 83

3.10 Summary . 83

4 Corruption Resilient Check and Repair 85

4.1 System Analysis . 89

4.2 DSCK . 106

4.3 Implementation . 113

4.4 Evaluation . 117

4.5 Summary . 124

5 Related Work 126

5.1 David Related Work . 127

5.2 Sky Related Work . 129

5.3 DSCK Related Work . 132

6 Conclusion and Future Work 134

6.1 Learnings . 136

6.2 Future Work . 138

6.3 Summary . 140

viii

Bibliography 141

ix

List of Tables

2.1 Storage Model Parameters in David . 32

2.2 David’s Storage Savings . 33

2.3 David’s Accuracy . 33

2.4 David Software RAID-1 Emulation . 37

3.1 Ease of Adoption . 44

3.2 Information tracked by Sky . 47

3.3 Experimental setup . 67

3.4 System-Call Interception introduced overheads 69

3.5 Accuracy of Sky . 71

3.6 Policy to assign I/O class to disk I/O requests 74

3.7 Sky with SSD Backing Disk . 82

4.1 Corruption resilience of current repair tools 90

4.2 DSCKCassandra default configuration . 115

4.3 Experimental setup . 117

4.4 DSCKCassandra overheads for micro-benchmarks 117

4.5 DSCKCassandra overheads . 117

4.6 DSCKCassandra corruption resilience . 121

4.7 Time to restore failed node . 121

x

4.8 Corruption resilience through Btrfs . 123

xi

List of Figures

2.1 David Architecture . 22

2.2 Memory usage with Journal Snooping . 28

2.3 Storage Space Savings and Model Accuracy 35

2.4 David CPU and Memory Overhead . 38

3.1 System-Call Interception . 48

3.2 Insight-Calls for handling a Small Write . 57

3.3 Split System Call . 63

3.4 Sky Prototype Organization . 66

3.5 CDF of block lifetimes for a synthetic workload 72

3.6 CDF of block lifetimes for Filebench workloads 73

3.7 File Name Search (find) Results . 76

3.8 TPCH on MySQL Server Results . 77

3.9 File Copy Results . 80

3.10 File Encryption Results . 81

4.1 Error detection and recoverability analysis summary 94

4.2 Analysis of files stored by Cassandra . 96

4.3 Analysis of files stored by MongoDB . 99

4.4 Analysis of files stored by Riak . 101

xii

4.5 DSCK components . 107

xiii

NON-INVASIVE I/O CLASSIFICATION TECHNIQUES AND APPLICATIONS

Leo Prasath Arulraj

Under the supervision of

Professors Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau

At the University of Wisconsin-Madison

Storage researchers and developers strive towards creating systems that store and

retrieve data in correct, efficient, available, reliable, durable, fault-tolerant and cost-

effective manner. Achieving these desirable properties for all I/O requests is a very

hard challenge. I/O classification is an effective technique to mitigate this. I/O requests

can be categorized based on their properties and better quality of service, performance

and reliability be provided to the important I/O classes. This dissertation develops

three novel non-invasive I/O classification techniques that work with many different file

systems without significant additional implementation effort. Non-invasive techniques

that do not require extensive modifications to existing systems face little resistance while

making their way into current storage systems.

We build three diverse applications using our novel non-invasive I/O classification

techniques. Our first application, called David, accurately emulates huge, and possibly

futuristic, storage disks using a small physical disk with the aid of storage models. Since

benchmark applications do not use actual I/O content from real applications, David

uses our technique to identify and persistently store only the file system metadata I/O.

Sky, our second application, is a hypervisor extension that improves the performance of

caching and deduplication systems by gathering insights about guest I/O workloads

using system-call interception. Smart caching gives higher priority to small files and file

system metadata while smart deduplication differentially treats encrypted and file-copy

I/O requests. Finally, we study the corruption resilience of the check-and-repair tools

in three modern NoSQL distributed stores – Cassandra, MongoDB and Riak – and use

xiv

what we learned to build DSCK, a framework for improving their corruption resilience.

We empirically show that these tools have poor corruption resilience. We then analyze

the on-disk files of these systems and use what we learned to guide the design of DSCK.

DSCK classifies I/O at file-granularity and transparently replicates and checksums only

a selected set of files for corruption resilience. We use DSCK to build DSCKCassandra,

a check-and-repair tool for Cassandra, that imposes low overheads but significantly

improves corruption resilience.

Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau

xv

Abstract

Storage systems that can efficiently and reliably handle the vast amounts of data being

generated today are the need of the hour. Data plays a crucial role in our daily lives.

Storage developers and researchers need to constantly innovate to keep up with the

challenge posed by the tremendous growth of data - it is expected that the size of

all the data used by humans will grow to be 163 ZB by 2025 [157]. It is also equally

important to get these innovations into real existing storage systems. Non-invasive

innovations that do not extensively alter an existing storage system are easier to be

adopted into existing storage systems because of the ease to deploy and maintain them.

Moreover, non-invasive solutions that work with different configurations of a storage

system without the need for significant additional effort are much more likely to become

a part of existing storage systems.

I/O classification is an effective technique to tackle some of the problems posed by

the vast amounts of data. I/O classification can be defined as the process of grouping

I/O requests into different classes based on their properties and processing them dif-

ferently in order to enhance various desirables like performance [22, 131, 187, 189, 208],

reliability [73, 188], better security [186, 187, 189] and easier storage administration [73].

For example, a file system could classify I/O requests based on the destination file’s

properties in order to enable replication, encryption and compression only for certain

files. I/O classification provides better service to only the important I/O classes.

This dissertation develops three new non-invasive I/O classification techniques

xvi

that work with many different file systems without requiring significant additional

effort. Non-invasive techniques do not require pervasive changes across the storage

stack and interfaces which makes them easier to adopt in existing storage systems. We

then use these techniques to develop three novel applications in diverse areas such as

benchmarking, virtual machines and distributed storage.

David, our first application, is an emulator that allows benchmarking futuristic large

storage devices with existing small disks. The key observation used by David is that

most benchmarking applications do not use the actual data from real applications but

they stress the disk using an I/O pattern similar to the real application they represent.

Therefore, David avoids storing the benchmark application’s data on disk but instead

just stores the file system metadata on disk in a space-efficient fashion. David therefore

needs only a fraction of the actual disk space used by the benchmark application. David

uses an accurate model of the emulated disk to respond to the I/O requests from the

benchmark application after a sufficient delay corresponding to the amount of time the

emulated disk would have needed to service that particular I/O request.

David heavily relies on accurately classifying application data from file system

metadata. To achieve this, we develop a novel technique based on the observation

that: all user data requests originate from the userspace through system calls but file

system metadata I/O requests originate from the kernel. Our technique first captures

the physical addresses of pages behind I/O related write system calls in a hash table.

Subsequently, David, when handling an I/O request to an emulated disk, checks for the

presence of an I/O request’s backing page in the hash table to decide if the I/O request

contains user data. David is able to accurately emulate large storage disks for many

workloads with less than 3% error. We believe that the error rate can be further reduced

with more accurate storage models of the emulated disk.

Sky, our second application, is a hypervisor extension that implements a smart

caching and deduplication system using I/O classification insights that it gathers about

xvii

guest I/O applications. Sky uses the virtualization extension in modern processors to

intercept the entry and exit of I/O related system calls in the guest VM and analyzes their

arguments and return values to gather insights. Sky is able to classify I/O requests based

on: the size of the associated files, whether they contain user data or file system metadata,

are they likely to be encrypted and are they part of a file copy. The overheads imposed

by Sky is small enough to improve the performance of a cache using an LRU policy for

various workloads running on virtualized storage: a file name search workload runs 3.6

to 4.6 times faster, a TPC-H query runs 2.3 to 8.8 times faster, a file copy on a deduplicated

storage is 5.5 to 8.3 times faster and finally, a file encryption on a deduplicated storage is

4.5 to 18.7 times faster.

DSCK, our third application, is a framework that helps implement corruption-

resilient check and repair tools for distributed NoSQL storage systems. DSCK relies on

classifying I/O requests based on the destination file’s semantic information to facilitate

implementing a better check and repair tool. DSCK uses a policy configuration file

that specifies classification using file-path prefixes, patterns and suffixes. In building

DSCK, we first study the corruption resilience of existing check and repair tools that

come with three popular distributed storage systems - Cassandra, MongoDB and Riak -

that significantly differ from each other in their design. Our study shows that the cur-

rent tools for Cassandra and MongoDB have very poor corruption resilience. Riak has

better corruption resilience but still has issues. We also study the corruption-resilience

capability of these distributed systems guided by the following questions: how are files

laid out on the disk?, what type of semantic information do the files contain?, how hard

is to recover a file after corruption?, and does a file have checksums to aid detecting a

corruption?

We design DSCK by using the observations and learnings from our study. These

distributed systems have checksums to detect corruption to most user stored data but

lack checksum protection for small critical system files. These critical system files are

xviii

also hard to recover after a corruption because they often need new specialized recovery

tools to be built. Our study also showed that corrupted files can be recovered using

different techniques.

The three components that make up DSCK are the corruption-resilient store, the

checker and the repairer. The corruption-resilient store takes advantage of the fact that

all these distributed systems are written in the userspace and use standard libraries

like libc and libaio to interact with the storage layer. DSCK classifies I/O requests at the

library-call level in order to transparently maintain local checksummed replicas for a

selected set of files. Such I/O classification is non invasive because it does not need

modifications to the NoSQL store or the file system. Additionally, it does not require

super-user privileges and can work with different NoSQL stores and file systems. DSCK

classifies files based on the semantic file type and employs file-type specific checking

and recovery. We used DSCK to build a corruption resilient check and repair tool for

Cassandra, called DSCKCassandra, that imposes negligible performance overhead but

improves corruption resilience from 37.5% to nearly 100% of files stored by Cassandra;

we also show that local node repair enables full-node restore in minutes rather than

hours.

1

Chapter 1

Introduction

Digitally stored data has become an important aspect of almost all walks of human life

over the past few decades. Correct, efficient, available, reliable, durable, fault-tolerant,

cost-effective storage and retrieval of large quantities of data is a key building block for

many of today’s businesses like stock markets, banks, e-commerce, web servers, smart

phones, cloud computing, movies, entertainment, photography, education, huge scien-

tific experiments, high performance computing, space exploration, weather forecasting

and health care. This is evidence that storage technology plays a critical role in our

daily lives. Storage technology has come a long way over the past few decades. For

example, the cost per GB of storage has decreased from approximately 10 million USD

in 1956 to 6 cents in 2013 [191]. It is imperative for storage researchers and developers

to understand the production, storage and consumption of digital data in the past and

present to design the storage systems of the future.

Several storage technology trends pose a huge challenge for storage designers, de-

velopers and researchers to continuously innovate and build better storage systems.

On the one end, with computers becoming more and more powerful, the need for

faster storage devices and other techniques to hide the storage latency is increasingly

important. Over the last 30 years, the processor cycle time has improved by over 2500

2

times [78]. However, the magnetic disk seek time improved only by 30 times. On the

other end, the amount of data generated is increasing at a staggering rate - it is projected

to increase from approximately 16 ZB in 2017 to 163 ZB by 2025 [157]. Additionally,

on the hardware front, a variety of new storage technologies like Phase Change Mem-

ory [221, 231], Non Volatile Memory [223], Shingled Magnetic Disks [1, 2] are on the

cusp of widespread adoption. These new storage devices that have different physical

properties pose challenges in designing efficient software to manage the data stored

in them. The storage disk capacities has been increasing at a staggering rate over the

past few decades. This dissertation takes a step towards tackling these challenges by

contributing three novel applications in diverse but important areas within the realms

of storage. In the following paragraphs, we will pose three problems faced today in the

world of storage and introduce a solution using our novel I/O classification techniques.

Need for scalable benchmarking: Developing efficient storage software (e.g. file sys-

tem) is a very challenging task. Scientific measurements can help evaluate different

design choices and choose the right ones. Benchmarking enables a storage researcher

or developer to compare competing ideas through measurements and guides the re-

search process in the right direction by pointing out the areas that need improvement.

Benchmarking shapes a field [147]. Storage software of the future must manage data

efficiently on a variety of storage disk technologies. Moreover, future hard disks will

have significantly higher capacity than those available today. Hard disks are doubling

in capacity approximately every 2 years [91, 121]. Designing storage software for the

growing disk sizes is not trivial – there are interesting problems that show up with scale.

For example, the flash translation layer in solid state drives that maps logical disk blocks

to physical blocks poses interesting design tradeoffs between cost, performance and

complexity. How can one benchmark software on the futuristic huge capacity disks

when they are not physically available yet?

3

A novel scalable benchmarking tool: Simulation and emulation are widely used,

proven techniques for researching future systems that are not yet available [30, 33, 164].

However, simulation can hide the benefits by not capturing complex “real system” effects

and by not allowing real application workloads [71]. So, we combine the two themes of

benchmarking and emulation to develop a novel tool that helps efficiently benchmark

software on futuristic, huge-capacity storage disks that are not yet available. Our tool

uses physical storage space that is only a fraction of the emulated disk space thereby

facilitating scalable benchmarking. Moreover, our tool works with many different file

systems without significant additional effort. Our tool has also been used to emulate a

futuristic solid state drive with a novel interface called “nameless writes” that eliminates

the need for huge memory requirements within the disk [229].

Poor virtualized-storage performance and a solution: Managing vast amounts of

data is a tough task that requires lot of attention. Several commercial vendors [45] have

taken advantage of this opportunity by allowing customers to rent storage for costs

much cheaper than buying and managing them – this is made possible by the economy

of scale. Virtualization and virtual machines are part of the key technology powering

this market known as “cloud computing”. Hypervisors or virtual machine monitors

enable running multiple virtual machines on a single physical host. Virtual machines

bring several advantages with them and one important advantage is improved resource

utilization through sharing of resources among different users. There is however a

performance problem with this approach – there are overheads due to virtualization

and layering of software components. An effective technique to handle this is to reserve

higher performance for the more important I/O – e.g. from a premium customer or for

file system metadata that is essential to access data. However, it is very hard to perform

such differentiation on I/O requests at the storage layer because of the lack of enough

information. How can a hypervisor obtain information about I/O requests in a easily

4

deployable fashion without modifying storage layers and interfaces?

Classifying I/O to improve performance: The storage stack in the host operating

system does not have any information to differentiate I/O from different customers. This

is because of the standard interfaces between different layers of the storage stack that have

slowly evolved over time. These interfaces are simple and robust but are also restrictive

in allowing information flow to the lower levels of the storage stack. We develop a

novel technique to bridge this semantic gap between layers of the virtualized storage

stack using the hardware mechanism present in modern processors with virtualization

extensions. We generate I/O classification insights at the hypervisor using technique

and use the insights to enhance the virtualized storage performance by building smart

caching and deduplication systems.

Robust check and repair for modern NoSQL stores: Ensuring the availability and

durability of data amidst failures at the scale of terabytes and petabytes is a complex task.

A research study of a large installation of approximately 1.5 million disks shows that data

corruptions are not uncommon: upto 4% of drives exhibit data corruption in a period of

17 months [20]. It is very important for the storage software managing huge amounts of

data to tolerate data corruptions. A specific kind of distributed storage systems called

“NoSQL” stores are known for their ability to scale and store vast amounts of data. Such

distributed NoSQL stores play an increasingly important role in internet-scale services

and applications. For example, Apple and Netflix have thousand node installations

of Cassandra NOSQL store [138]. NoSQL stores are often used in a configuration that

replicates a single piece of information to three or more different nodes in isolated fault

domains. The expectation is that such replication across different fault domains almost

completely eliminates the possibility of data loss; any disk corruption can be repaired by

using the other two replicas. However, we empirically show that these systems are not

5

completely resilient to corruption: they do not checksum or replicate the local metadata

which is essential to access the data; they often do not use redundancy to recover

from corruption; they often crash when encountering corruption [138]. We develop a

framework for building corruption-resilient check and repair tools for the distributed

systems. Our framework improves the corruption resilience and the corruption recovery

time.

Researchers often face the challenge of innovating without the luxury of starting their

design from scratch. Innovating under the constraints of the existing storage systems is

more harder than developing novel solutions from scratch with complete freedom [13].

Innovations that pose fewer challenges to adopt, deploy and maintain alongside existing

storage systems are more likely to attain success. We call such innovations “non-invasive”

because they do not require extensive modifications across the storage stack. However,

non-invasive innovations that work around existing aspects of a storage system, like

its interface, often become complex and they need additional implementation effort to

make them work with a different storage system. For example, they need significant

changes to work with a different file system or a different storage technology like solid

state drive, shingled drive etc. Non-invasive solutions that do not need additional efforts

to make them work with a different configuration of the storage environment, which

are the focus of this dissertation, have much higher chances of successful adoption in

real storage deployments.

1.1 I/O Classification

Classifying I/O and treating them differentially is an effective technique to achieve

desirable properties like better performance and quality-of-service in a storage system.

While conventional storage systems treat all I/O requests similarly, I/O classification

allows prioritizing and providing better service to an important subset of the I/O

6

requests. With the increasing usage of shared storage systems to lower the costs in

infrastructure settings, I/O classification is essential to deliver on the SLAs (Service

Level Agreements).

I/O classification can be defined as the process of segregating I/O requests into

different classes based on their properties and processing them differently in order to

enhance various desirables like performance [22, 131, 187, 189, 208], reliability [73, 188],

better security [186, 187, 189] and easier storage administration [73]. For example, a

storage application can classify I/O requests based on the user associated with it; an

operating system can classify I/O requests based on the frequency of access to the

associated content; a disk drive can classify I/O requests based on whether they contain

user-supplied data or file system metadata. However, there are challenges associated

with classifying I/O.

1.1.1 Challenges with I/O Classification and Past Solutions

Storage systems are made of several layers/components that talk to each other through

well defined interfaces. Such modularity has several advantages like “easier develop-

ment and testing”, “interchangeable implementations of modules that offer different

trade-offs” and “easier prototyping of changes” [213]. I/O requests take several forms

as they pass through the various layers of the storage stack. Each layer of the storage

talks to the other layer through a well-defined interface that has evolved over several

decades to include only the information that is needed by the majority of the use cases.

Storage interface changes that could improve only a few usage scenarios often are lost

over time and do not become part of the standard interface. Some storage interfaces can

accommodate new changes when needed over time while others are almost impossible

to change due to reasons like necessity to modify the hardware firmware, backward

compatibility, approval from the governing standards committee and the associated

7

implementation complexity. For example, the interface between the virtual file system

(VFS) layer in Linux operating system and the actual file systems can be changed when

necessary with moderate difficulty by following a standard procedure of code testing and

review by others in the kernel community [108]. However, disk interfaces like ATA and

SCSI [10] are much harder to change because they are governed by a standards committee

that accommodates changes after a more stringent process that involves voting, thorough

discussions and debate [202]. Another huge motivation to keep interfaces simple is

to avoid complexity that eventually leads to implementations that are not robust and

reliable. These historical trends have made storage interfaces very restrictive over time.

The lower a layer is in the storage stack, the lesser the amount of information it has about

the I/O request it is processing.

Storage systems are for the most part forced to treat all I/O requests similarly due

to the traditionally restrictive and simple interfaces they provide. Expectations on

performance and reliability for the data stored cannot be conveyed to the storage system.

This is problematic because information about I/O requests is essential for making

decisions that will lead to improved reliability, performance and cost benefits. This loss

of information is termed as “Semantic Gap” in the storage literature and bridging this

semantic gap has been actively researched [13, 22, 131, 187, 189].

One obvious solution is to make the storage interface more expressive so that the

file systems can communicate more details to the storage devices [73, 129, 131, 185, 225].

However, a major hurdle to such explicit I/O classification is the required modifications

across all layers and connecting interfaces of the storage stack for both generating

and passing down classifications. Modification to all component layers is not feasible

in many scenarios. Sometimes, the software components are not open source and

cannot be changed. And in some other scenarios, the work required to implement and

maintain information-passing interfaces is too high. If the interfaces are governed by

standards [131] or are implemented in hardware, it is hard to get them changed. Any

8

new approach that requires wide-scale top-to-bottom software modification will likely

be challenging to maintain and deploy for existing systems.

Other solutions advocate making the file systems learn about the internals of the

storage disks and taking advantage of it or vice versa. Many solutions under this cate-

gory are non-invasive because they do not involve changes to the interfaces between the

storage components. Such solutions are easier to adopt, deploy and maintain when com-

pared to those solutions that require modifying the interfaces. However, these solutions

also have some disadvantages. Because such non-invasive solutions often tend to infer

properties of different subcomponents of the storage system, they are embedded with

the graybox [12] information about these subcomponents. This necessitates additional

implementation effort to make such non-invasive solutions work with a different choice

of storage subcomponents like the file system or the storage disk. Moreover, storage

devices are rapidly evolving with a plethora of internal technologies, like Non-volatile

Memory [223], Shingled Magnetic Disks [1, 2] and Phase Change Memory [221, 231],

making it challenging to make the file systems adapt to all of them. Another impediment

to such solutions is the fact that many details about the internal implementations within

disks are not revealed publicly by the disk manufacturers [7, 203].

Imparting knowledge and intelligence about file systems to the storage disks has its

own disadvantages. The storage disks have to learn about the on-disk data structures

laid out by a variety of file systems and optimize for that. This adds more complexity

to the disk firmware leading to robustness concerns. Moreover, the on-disk structures

of a file system occasionally change over time and keeping the firmware updated is a

cumbersome task. A bigger hurdle is posed by the less powerful memory and compute

resources within the disk that need to be upgraded to handle the additional complexity

thereby increasing the total disk manufacturing costs. Many hardware vendors are

therefore averse to adding more complexity to the firmware.

9

1.1.2 Non-Invasive I/O Classification

In order to avoid the disadvantages with these earlier approaches, we achieve I/O clas-

sification using new techniques that neither change the interfaces nor require extensive

modifications to support different configurations of the storage system with alternate

subcomponents. Specifically, we discuss three non-invasive I/O classification techniques

in this dissertation that also work with a variety of file systems without any additional

implementation effort. We also use these techniques to build and evaluate novel ap-

plications in diverse areas like benchmarking, caching, deduplication and distributed

system check and repair. Based on our evaluation, these techniques impose tolerable

overheads making them usable in diverse scenarios like: a “scale-down” benchmarking

emulator, an intelligent caching and deduplication system for virtualized storage and a

corruption resilient check and repair tool for distributed storage systems. The following

Sections 1.2 to 1.4 give a brief overview of the three techniques and their applications

saving the details for the subsequent Chapters 2 to 4 of this dissertation.

1.2 David: Emulating Goliath Storage Devices

Benchmarking the performance of various applications and workloads on different

kinds of storage devices is essential in making the right design choices when developing

a storage application or a future storage device. David is a novel benchmarking tool that

allows emulating large storage devices using much smaller physical storage space with

the aid of an inline performance model of the large/futuristic storage device. Using

David, a storage developer or researcher can benchmark applications on a variety of

storage devices without having to spend huge amounts of money and effort to procure

them beforehand. David can also be used to benchmark futuristic storage devices that are

not yet available in the market. For example, we successfully used David to benchmark

10

a new solid state drive (SSD) disk that introduces a novel interface called “nameless

writes” [229].

The key observation enabling emulating large storage devices using much smaller

physical storage is that most benchmark applications issue I/O requests to stress the

storage device as the real application does but they do not use the actual content from

the real application. For example, a mailserver benchmark [103] or a fileserver bench-

mark [124] does not use real mail messages or file contents but only issues I/O requests

that mimic the pattern of a real mailserver or fileserver application respectively. David

uses this insight in order to not store the data writes in physical storage but only stores

the file system generated metadata after remapping them to a different destination

location on the available physical disk.

David needs to correctly classify I/O requests containing file system metadata from

the data generated by the benchmark application. We use two different non-invasive

I/O classification techniques. The first technique, derived from past research work on

Semantically Smart Storage [3, 13], uses knowledge about the file system and interposes

on the I/O requests to the disk in order to parse and interpret their content to achieve

block classification. Though this technique is non-invasive and easy to adopt and deploy,

it needs additional implementation effort to make it work with a new file system. This

is because the details about the new file system are necessary to parse and interpret the

I/O requests from that file system to perform the I/O classification.

To alleviate this, we develop a new non-invasive I/O classification technique that

works with many file systems without any additional implementation effort. The key

observation behind this new technique is that all data I/O requests originate from the

userspace benchmark application through system calls while the file system metadata

originates from the file system within the kernel. Therefore, we modify parts of the

operating system in order to add the physical memory addresses of the pages behind

the I/O related system calls into a hash table. Subsequently, when David intercepts

11

and processes the I/O requests to the emulated disk, it checks if the pages behind the

I/O request are present in the hash table. Presence indicates that it is a benchmark

application issued data I/O request while absence indicates that it is a file system

generated metadata I/O request. This technique captures page addresses above the file

system and hence is not affected by the choice of a different file system. However, if

the file system does special processing like encryption or compression that move the

data into a new page, then some more implementation effort is required to capture the

addresses of the final destination pages.

We evaluated the above two techniques and found that they yield similar I/O clas-

sification accuracy but the second technique has lesser overheads when compared to

the first technique. It is also less complex, easier to implement and works with most file

systems without additional special effort. We evaluated our new technique by using

David with the Btrfs file system. David, when using our new technique, was able to pre-

dict the runtime of many workloads including “file search” and “fileserver, mailserver

and webserver benchmarks” with under 3% error. We believe that David will be even

more accurate with a more accurate disk drive model. Our current storage model for

the magnetic disk drive does not model the on-disk cache accurately.

1.3 Sky: Improving Virtualized Storage Performance

Virtualization has become ubiquitous in data center environments and serves as a key

technology enabling cloud computing. Virtualized storage provides several advantages

like lower cost of ownership, easy snapshots/backups, and easier storage administration.

However, the performance of virtualized storage is not as good as native storage devices

due to several reasons including “virtualization costs” and “long I/O path traversing

several layers”. The I/O path from the application to the physical disk is often complex

and composed of several layers spanning multiple servers in such virtualized storage

12

systems [208].

A promising approach to improve performance through additional information is

to explicitly classify I/O requests into different classes and treat these classes differ-

entially [122, 131, 208]. Better performance, quality-of-service, availability, reliability,

durability and security can be reserved for the important I/O classes, for example: by

caching them with higher priority, granting more network bandwidth to them, storing

them on a high performance storage media, creating more replicas, scrubbing them

frequently, encrypting them or skipping deduplication [25, 122, 189, 199, 214]. The lower

layers in such multi-layered storage stacks do not have complete information about what

the upper layers are doing due to the simple and restrictive interfaces governed by stan-

dards. As a result, lower layers are information impoverished, and cannot implement

performance optimizations that require such high-level knowledge.

We implement an improved caching system for virtualized storage that gives higher

priority to small files and file system metadata. We also implement a smart deduplication

system that avoids deduplicating encrypted content and caches the mapping information

for file-copy content that will be written back again soon. Building such smart caching

and deduplication system heavily relies on classifying I/O requests based on size,

metadata vs. data, encrypted writes, file copy I/O pattern.

Changing all the interfaces across the storage layers to enable I/O classification is hard

to adopt, deploy and maintain because of the pervasive changes it requires across the

storage stack. Non-invasive graybox [12] techniques, that use details about the storage

components higher up in the storage stack in order to infer the required classification

information, help overcome this issue but they need additional implementation effort in

order to support a different storage component, like a new file system.

To overcome these issues, we develop a novel non-invasive I/O classification tech-

nique for virtualized storage that works for most file systems without requiring addi-

tional implementation effort. We then build a hypervisor extension called Sky, in the

13

KVM [109] virtual machine monitor, that implements smart caching and deduplication.

Sky [16] uses the hardware virtualization extensions present in modern processors to

intercept system call entry and exit of I/O related guest applications from within the

hypervisor. Sky performs additional processing on the arguments to the I/O related

system calls and their return values to gather insights for classifying I/O requests. Chap-

ter 3 details this technique explaining how the insights are gathered and used to build a

smart caching and deduplication system.

Sky achieves similar I/O classification insights as past research work that needed

modifications to the interfaces [131, 206]. Moreover, the overheads imposed by our I/O

classification technique are modest enough to use them in building applications like

smart caching and deduplication system. We show the benefits of Sky by using three

case studies.

In the first case study, Sky is used to gather information about guest I/O like the

block-lifetimes from the hypervisor. The second case study is about a smart cache

in the hypervisor that prioritizes file system metadata and small files over large files.

Our smart cache improves the performance of file-name search workload and database

application by 3.6 to 4.6 times and 2.3 to 8.8 times respectively. In our final case study,

we use Sky to improve the performance of a deduplication system in hypervisor by

identifying encryption and file copy I/O patterns. For encryption workloads, Sky skips

deduplication because encrypted content is known to be mostly unique and a bad

candidate for deduplication [206]. For file copy I/O pattern, Sky caches the mapping

between the payload checksum to the deduplicated disk location during reads so that

during the subsequent write of the same content, expensive disk backed mapping table

lookups can be avoided using this cache. We also show that our novel classification

technique that intercepts system calls is portable across operating systems- Sky supports

both Linux and FreeBSD guest operating systems. Such portability is possible because

the system call interface is similar across modern operating systems due to POSIX

14

standards.

1.4 Corruption Resilient Check and Repair

Distributed NoSQL stores are used by many organizations [83, 86, 89, 170] for big-

data analytics and real-time web applications. Ever increasing installation-sizes of

these distributed storage systems, comprising of hundreds of machines and thou-

sands of disks [138], makes storage component failures the norm rather than the excep-

tion [66, 174]. Data corruptions can occur due to a variety of reasons including drive fail-

ures [10, 14, 23, 48, 56, 66, 70, 92, 102, 112, 133, 140, 146, 153, 156, 174, 175, 178, 179, 204],

RAM failures [35, 176, 194] and bugs in software [20, 26, 43, 61, 156, 173, 177, 201, 226].

Anecdotal evidence has shown the prevalence of storage errors and corruptions [136, 139,

165]. Data corruptions affect data stored in frequently accessed disks as well as snapshots

and backups in archival storage [18, 20, 77, 119, 134, 144, 173, 177]. Corruption-free snap-

shots are essential for recovery from failures, analytics, operations and other applications

like Back in Time Execution (BITE) [168, 182] that allow executing queries over historical

snapshots of a database for business reasons including auditing [104, 181, 183, 197, 211].

Failures are a fact that must be coped with, not problems to be solved [148]. Disk

failures, if not coped with in a timely fashion, can lead to significant losses. Each hour

of downtime can be costly, from $200,000 per hour for an Internet service like Amazon

to $6,000,000 per hour for a stock brokerage firm [107, 148]. Downtime and data loss

combine to cost companies and end-users billions of dollars each year [106, 190].

Consequently, a lot of importance is being given to making systems robust to failures

and highly available. Jim Gray has called for Trouble-Free Systems that are used by millions

of people every day and yet managed by a single part-time person [69]. Patterson et al.

hypothesize that the recovery performance is more fruitful for the research community

and more important for society than traditional performance in the 21st century [148].

15

The authors suggest Recovery Oriented Computing and stress the importance of fast repair

because it improves dependability and lowers the cost of ownership. Unfortunately,

we empirically find that the check and repair tools that come with modern distributed

NoSQL stores like MongoDB and Cassandra are not corruption-resilient (details in

Subsection 4.1.1).

A straightforward technique to handle data corruptions in modern distributed stor-

age systems with replicas is to take the corrupted node out of the cluster, replace it

with a new node and bootstrap it with data from the other live replicas. However, this

technique has a few disadvantages: it consumes several hours of time, it consumes

significant network bandwidth for transferring the data from the live replicas to the new

node, it falls short of the user’s reliability expectations because of the loss of a replica

until the recovery is completed and most importantly, this technique cannot be used

to recover corrupted disk-snapshots because there are no online replicas to fetch the

lost data from. There is a need for a fast corruption-resilient check and repair tool that

brings benefits like improved dependability and lower cost of ownership. The need for

good check and repair tools is also evident from a recent research that finds that many

modern distributed NoSQL stores do not consistently use redundancy to recover from

file system faults - a single file-system fault can cause catastrophic outcomes such as

data loss, corruption, and unavailability [62].

We perform a thorough study of the corruption-resilience capability of three dis-

tributed key-value stores: MongoDB [42], Cassandra [113] and Riak [110]. Our study

is guided by the following questions: how does the NoSQL store lay out files on disk?,

what type of semantic information do various files contain?, how hard is it to recover a

file once it is corrupted?, does the file have checksums in order to detect a corruption?

We empirically find that the check and repair tools that come with these distributed

storage systems have poor corruption resilience. We also manually looked at the source

code of the distributed storage systems and inspected the files they store on disk. We

16

conclude our study with a list of observations regarding the corruption resilience of

these distributed storage systems and how they influenced the design of DSCK. One

key observation from our study is that these NoSQL distributed storage systems protect

most of the user-supplied data with checksums and only small critical system files, that

are essential to access the user-supplied data, are not protected with checksums.

We use the results from our study to design and build a framework called DSCK that

can be used to build corruption-resilient check and repair tools. DSCK uses the results

from the study to classify files that need additional help in improving their corruption

recoverability from other files. Such file classification is based on answers to questions

like: does the file have checksums to detect a corruption? and how hard is it to recover

the file after a corruption?. DSCK then intercepts and classifies the I/O related library

calls made by the distributed system in order to keep transparent checksummed local

replicas of only a selected set of files. Files that do not have checksum protection from the

distributed system or file that do not have existing tools to recover them after a corruption

can benefit from such local checksummed replication. DSCK uses a configuration file

specific to the distributed system in order to classify the I/O requests at the library-call

level. The configuration file uses file-path prefixes, patterns and suffixes to specify the

file classification.

Intercepting the library calls makes our implementation non-invasive because it can

work with many different distributed storage systems that run on a variety of local file

systems without any additional implementation effort. Moreover, our interception does

not require super-user or administrator privileges. One alternate invasive approach

would have been to modify the NoSQL store, the lower level storage system and the

system call interface to explicitly specify which files need replicas and checksums.

Another alternate approach is to just modify the NoSQL store to add checksums to

files that don’t have checksums. However, both these invasive approaches require

modifications to every NoSQL store that needs to be supported. Also, maintaining

17

backwards compatibility with previous release versions of the NoSQL store is a challenge.

This makes them hard to adopt, deploy and maintain in existing real systems.

DSCK also uses I/O classification at the file granularity for checking and recovering

a corrupted file by allowing pluggable scripts that handle a specific type of file. We

use DSCK to implement DSCKCassandra, a corruption-resilient check and repair tool

for Cassandra. We show through experiments that DSCKCassandra imposes negligible

performance overhead in the common case but improves corruption resilience from

37.5% to nearly 100% of files stored by Cassandra. We also show that local node repair

enables full-node restore in minutes rather than hours.

The rest of this dissertation is organized as follows: in Chapter 2, we discuss the

design, implementation and evaluation of David; Chapter 3 contains details about

Sky; The results of our study and evaluation of the corruption resilience of modern

distributed storage along with the details about DSCK framework is in Chapter 4. We

discuss related work in Chapter 5 and conclude in Chapter 6. Chapter 6 also contains

some of the learnings from our experience in building these systems and a list of future

work.

18

Chapter 2

Emulating Goliath Storage Devices

For better or for worse, benchmarking shapes a field [147]. Benchmarking plays a very

important role in guiding the design of future file and storage technology. In this chapter,

we develop a novel non-invasive and easy to adopt I/O classification technique and

use it to build a storage emulator, called David [5]. David allows storage developers

and researchers to run benchmarks on a variety of devices, including futuristic large

devices that are not yet physically available, by using accurate storage performance

models. Today, there are a variety of new storage devices [1, 2, 38, 75, 93, 98, 132, 193]

including Phase Change Memory [221, 231], Non Volatile Memory [223] and Shingled

Magnetic Disks [1, 2] that vary significantly in the underlying technology. It is important

for an application developer to run a benchmark on different types of storage disks

to understand its behavior so that the application can be designed correctly to match

the expectations when run on a variety of storage technologies. It is also extremely

useful for a storage system developer or researcher to run various benchmarks with

realistic configurations [135, 158, 192, 196, 209] on a storage technology that is under

development so that the results can be used to guide the design of the storage disk.

David is useful for performing both these kinds of analyses while requiring only a

fraction of the storage space used by the application given an accurate performance

19

model for the storage disk is available. Such analyses help in identifying performance

bottlenecks, fine-tuning optimizations, and for making design decisions [135].

The key observation on which David depends is that many benchmark applications

like postmark [103] and filebench [124] do not use real file contents from the application

they represent but use artificial content that they create. These benchmarks instead focus

on replaying the same I/O pattern as the application that they represent. Therefore, it

is sufficient and also beneficial for a storage emulator built for benchmarking purposes

to not store the contents of individual files on physical disk, but only the structure and

properties of the metadata. Since file data constitutes a significant fraction of the total

file system size, ranging anywhere from 90 to 99% depending on the actual file-system

image [6], avoiding the need to store file data has the potential to significantly reduce

the required storage capacity during benchmarking.

David maintains a “compressed” version of the original file-system image for the

purposes of benchmarking in which unneeded user data blocks (file contents) are omitted

using novel I/O classification techniques to distinguish data from metadata at scale;

file system metadata blocks (e.g., inodes, directories and indirect blocks) are stored

compactly on the available backing store. This enables David to run various workloads

at scale using backing storage disks that are only a fraction of the emulated disk size.

David synthetically generates file contents when necessary to ensure that applications

remain unaware of this interposition.

Classifying file system metadata from user stored data accurately at scale is critical

for David. David employs two different techniques to achieve this classification that

offer different tradeoffs. The first technique, which we call as “implicit classification”,

interposes on the I/O requests sent to the disk and uses file system knowledge in order

to classify file system metadata from user data. This does not require any modifications

to the file system or the operating system. Therefore, it is easy to adopt and run. This

technique is derived from past research work on “Semantically Smart Disks”. We

20

enhance this known technique to accurately classify I/O requests in a timely fashion at

scale using a technique called “journal snooping”. The second technique that David

uses, which we call as “explicit classification”, makes modifications to the system call

layer of the operating system in order to classify file system metadata from data. Because

almost all file systems are implemented inside the operating system kernel, only user-

supplied data passes through system calls. File System metadata is generated within

the kernel file system and hence it will not be intercepted at the system call layer. So,

we capture the physical memory addresses of the page buffers that are used with I/O

related system calls and use them while interposing I/O requests to the emulated disk

to classify file system metadata from data. This technique is file system agnostic and

therefore works with all file systems without any additional effort. In contrast,the first

technique needs to be re-implemented for each new file system using the file system

knowledge. David works under any file system; We implement and evaluate the first

technique for the Ext3 file system [212]. We test that the second technique works with

Btrfs [159], a log-structured file system that is very different from Ext3 in design.

Another important component of David is the storage model for the emulated disk

drive. Since David modifies the original I/O patterns by not storing the user-supplied

data on disk, it needs to model the runtime of the benchmark workload on the original

uncompressed image. David uses an in-kernel model of the disk and storage stack

to predict the run times of all individual requests as they would have executed on

the uncompressed image. Our storage models model the physical magnetic disk and

the I/O request queues with sufficient accuracy. Our in-kernel storage model is fairly

accurate in spite of operating in real-time within the kernel, and for most workloads

predicts a runtime within 5% of the actual runtime. For example, for the Filebench

webserver workload, David provides a 1000-fold reduction in required storage capacity

and predicts a runtime within 0.08% of the actual.

We briefly demonstrate that David is able to emulate multi-disk systems like RAID

21

using a small amount of memory. David maintains modeling state for each individual

disk in the RAID array in order to accurately emulate the entire RAID array. Our

implementation emulates a software RAID array. David can emulate a more complex,

dedicated hardware RAID array provided we have a storage model for the hardware

RAID device.

To demonstrate that David can be used to emulate futuristic storage disks, we use

David to emulate a special large Solid State Drive (SSD) device that exports a new inter-

face called “nameless writes” [229]. The nameless writes interface allows the storage stack

(file system) to write data to the SSD without specifying the logical block address inside

the disk. Instead, the disk chooses the destination physical location and reports it back

to the file system. The file system stores this address in its metadata structures and uses

it to fetch the block during future reads. This avoids the need for huge indirection tables

within the SSD that map logical block addresses to the physical locations. Additionally,

the complete flexibility to choose the on-disk physical location allows more efficient

block allocation, garbage collection and wear leveling.

We additionally use David to emulate a 1 TB magnetic disk while using a 80 GB disk

as the physical backing store. This allowed us to validate that David is able to accurately

predict benchmark times when emulating large disks.

The rest of this chapter is structured as follows. We first describe David’s design in

Section 2.1. We then discuss block classification, which forms a critical component of

David, in Section 2.2). We detail “implicit block classification” which is derived from

prior work and “explicit block classification” which is our new contribution in this

dissertation. David uses block classification to skip application data writes and only

layout the metadata blocks on disk after remapping them as explained in Section 2.3.

We evaluate David in Section 2.4 and summarize in Section 2.5.

22

2.1 David’s Design

Delay
TimeTarget

Device Model

Available
Backing Store

Available
I/O Request

Queue

Inode Journal Unclassified

 Block StoreParser Snooper

Data

Data Or Metadata

Metadata

Storage Model Block Classifier

Original Disk RequestCloned Disk Request

Process
Status

Waiting Requests

List

Read
Read

Write
Or After Write

Write

Read
Target I/O Request Queue

Data GeneratorMetadata

Remapper Remap Table

Remap Bitmap

Reads

Sync

Data Squasher

Disk Request From File System

 Explicit

I/O Classification

Implicit I/O Classification

Figure 2.1: David Architecture. Shows the components of David and the flow of requests handled
within.

This section presents the design and implementation of David by describing its

constituent subsystems and its overall architecture.

David exports a fake storage stack including a fake device of a much higher capacity

than available. This chapter uses the term target to denote the hypothetical larger storage

device, and available to denote the physically available system on which David is running.

David is implemented as a pseudo-device driver that is situated below the file system

and above the backing store, interposing on all I/O requests. This pseudo-device appears

as a regular disk to the file system. Since the driver appears as a regular device, a file

system can be created and mounted on it. Being a loadable module, David can be used

without any change to the application, file system or the kernel. This non-invasive

property makes David easy to adopt and run. Figure 2.1 presents the architecture of

David with all the significant components and also shows the different types of requests

that are handled within. The four important components of David are briefly described

below and are discussed in detail later in Section 2.2 through Section 2.3.

23

Block Classifier: The Block Classifier is responsible for classifying blocks addressed

in an I/O request as user-supplied data or file system metadata. This classification is

used by David to prevent the I/O requests to data blocks from going to the backing store

in order to save on the storage space necessary for the emulation. David intercepts all

writes to data blocks, records the block addresses if necessary, and discards the actual

write using the Data Squasher. I/O requests to metadata blocks are passed on to the

Metadata Remapper.

Metadata Remapper: The Metadata Remapper is responsible for laying out metadata

blocks more efficiently on the backing store. It intercepts all write requests to metadata

blocks, generates a remapping for the set of blocks addressed, and writes out the

metadata blocks to the remapped locations. The remapping is stored in the Metadata

Remapper to service subsequent reads to these metadata blocks.

Data Squasher: The Data Squasher squashes the data writes preventing them from

being stored in the available disk. Such squashing does not lead to correctness issues

for benchmarking applications.

Data Generator: Writes to data blocks are not saved by David, but reads to these blocks

could still be issued by the benchmark application; in order to allow the benchmark

applications to run transparently, the Data Generator is responsible for generating

synthetic content to service subsequent reads to data blocks that were written earlier

and discarded. The Data Generator contains a number of built-in schemes to generate

different kinds of content and also allows the application to provide hints to generate

more tailored content (e.g., binary files). Data Generator can be configured to just

generate junk data for benchmark applications like filebench that do not care about the

returned file contents.

24

Storage Model: David modifies the original I/O request stream because it skips stor-

ing writes to data blocks and remaps writes to metadata blocks. These modifications

in the I/O traffic substantially change the application runtime rendering it useless for

benchmarking. The Storage Model carefully models the target storage subsystem under-

neath to predict the benchmark runtime on the target system. By doing so in an online

fashion with little overhead, the Storage Model makes it feasible to run large workloads

in a space-efficient manner.

2.1.1 Choice of Available Backing Store

David is largely agnostic to the choice of the backing store for available storage: HDDs,

SSDs, or memory can be used depending on the performance and capacity requirements

of the target device being emulated. Through a significant reduction in the number of

device I/Os, David compensates for its internal book-keeping overhead and also for

small mismatches between the emulated and available device. However, if one wishes

to emulate a device much faster than the available device, using random access memory

is the ideal option. For example, as shown in Section 2.4.4, David successfully emulates

a RAID-1 configuration using a limited amount of memory. We have also show that a

fast SSD device can be emulated using David [229]. If the performance mismatch is not

significant, a hard disk as backing store provides much greater scale in terms of storage

capacity. Throughout this chapter, “available storage” refers to the backing store in a

generic sense.

2.2 Block Classification

The primary requirement for David to skip data writes using the Data Squasher is

the ability to classify a block as user-supplied data or file system metadata. David

provides two types of block classification techniques called “implicit” and “explicit”. The

25

implicit approach is more laborious but provides a flexible approach to run unmodified

applications and file systems. The explicit I/O classification approach is straightforward

and much simpler to implement, albeit at the cost of a small modification in the operating

system; both are available in David and can be chosen according to the requirements

of the evaluator. The implicit approach is demonstrated using Ext3 file system and the

explicit approach using Btrfs file system.

2.2.1 Implicit I/O Classification

Implicit I/O classification is based on prior work on Semantically-Smart Disk Systems

(SDS) [189]; an SDS employs three techniques to classify blocks: direct and indirect

classification, and association. With direct classification, blocks are identified simply by

their location on disk. Many block types in Ext2 and Ext3 file systems can be classified by

using their location on disk because they are statically assigned for a given file system size

and configuration at the time of file system creation. Some examples of these block types

include the super block, the group descriptors, the inode and data bitmaps, the inode

blocks and the blocks belonging to the file system journal. Moreover, the location of such

blocks do not change during the lifetime of the file system. With indirect classification,

blocks are identified only with additional information; for example, to identify directory

data or indirect blocks, the corresponding inode must also be examined. Blocks that

are dynamically-allocated need to be classified using indirect classification. Directory

blocks, indirect (single, double, or triple indirect) blocks and data blocks are some

examples. Finally, with association, a data block and its inode are connected.

There are two significant additional challenges David must address. First, as opposed

to SDS, David has to ensure that no metadata blocks are ever misclassified. Second,

benchmark scalability introduces additional memory pressure to handle scenarios where

the blocks cannot be immediately classified as data or metadata but can only be classified

26

after a delay when other related blocks are also written to by the file system. In this

dissertation, only new contributions to make implicit block classification work at scale

are discussed and the details of the basic block-classification techniques can be found in

the original SDS paper [189].

Unclassified Block Store

To infer when a file or directory is allocated and deallocated, David tracks writes to

inode blocks, inode bitmaps and data bitmaps; to enumerate the indirect and directory

blocks that belong to a particular file or directory, it uses the contents of the inode.

It is often the case that the blocks pointed to by an inode are written out before the

corresponding inode block; if a classification attempt is made when a block is being

written, an indirect or directory block will be misclassified as an ordinary data block.

This transient error is unacceptable for David since it leads to the “metadata” block

being discarded prematurely and could cause irreparable damage to the file system. For

example, if a directory or indirect block is accidentally discarded, it could lead to file

system corruption.

To rectify this problem, David temporarily buffers in memory writes to all blocks

which are not yet classified, inside the Unclassified Block Store (UBS). These write requests

remain in the UBS until a classification is made possible upon the subsequent write of

the corresponding inode. When a corresponding inode does get written, blocks that are

classified as metadata are passed on to the Metadata Remapper for remapping; they are

then written out to persistent storage at the remapped location. Blocks classified as data

are discarded at that time. All entries in the UBS corresponding to that inode are also

removed.

The UBS is implemented as a list of block I/O (bio) request structures. An extra

reference to the memory pages pointed to by these bio structures is held by David as long

as they remain in the UBS; this reference ensures that these pages are not mistakenly

27

freed until the UBS is able to classify and persist them on disk, if needed. The caching

of unclassified by the UBS without persisting them to disk makes David not guarantee

crash consistency. This is not a problem for benchmarking applications that David

targets.

Journal Snooping

Storing unclassified blocks in the UBS can cause a strain on available memory in certain

situations. In particular, when Ext3 is mounted on top of David in ordered journaling

mode, all the data blocks are written to disk at journal-commit time but the metadata

blocks are written to disk only at the checkpoint time which occurs much less frequently.

This results in a temporary yet precarious build up of data blocks in the UBS even

though they are bound to be squashed as soon as the corresponding inode is written;

this situation is especially true when large files (e.g., 10s of GB) are written. Such

additional memory pressure also triggers the checkpoint process in Ext3 so that it

happens earlier than when it would have normally happened. In order to ensure the

overall scalability of David, handling large files and the consequent explosion in memory

consumption is critical. To achieve this without any modification to the Ext3 filesystem,

David performs Journal Snooping.

David snoops on the journal commit traffic for inodes and indirect blocks logged

within a committed transaction; this enables block classification even prior to checkpoint.

When a journal-descriptor block is written as part of a transaction, David records the

blocks that are being logged within that particular transaction. In addition, all journal

writes within that transaction are cached in memory until the transaction is committed.

After that, the inodes and their corresponding direct and indirect blocks are processed

to allow block classification; the identified data blocks are squashed from the UBS and

the identified metadata blocks are remapped and stored persistently. The challenge

in implementing Journal Snooping was to handle the continuous stream of unordered

28

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 10 20 30 40 50 60 70 80 90

N
u

m
b

e
r

o
f

4
K

B
 U

n
c
la

s
s
if
ie

d
 B

lo
c
k
s

Time in units of 10 secs

system out of memory

Maximum memory limit

Without Ext3 Journal Snooping
With Ext3 Journal Snooping

Figure 2.2: Memory usage with Journal Snooping. This graph shows the number of 4 KB
block requests present in the UBS sampled at 10 sec intervals.

journal blocks and reconstruct the journal transaction.

Figure 2.2 compares the memory pressure with and without Journal Snooping

demonstrating its effectiveness. It shows the number of 4 KB block I/O requests resident

in the UBS sampled at 10 sec intervals during the creation of a 24 GB file on Ext3 ; the file

system is mounted on top of David in ordered journaling mode with a commit interval

of 5 secs. This experiment was run on a dual core machine with 2 GB memory. Since

this workload is data write intensive, without Journal Snooping, the system runs out of

memory when around 450,000 block I/O requests are in the UBS (occupying roughly 1.8

GB of memory). Journal Snooping ensures that the memory consumed by outstanding

block I/O requests does not go beyond a maximum of 240 MB for this workload.

29

2.2.2 Explicit I/O Classification

David is meant to be useful for a wide variety of file systems; explicit I/O classification

provides a mechanism to rapidly adopt a file system for use with David. Since data

writes can come only from the benchmark application in user-space whereas metadata

writes are issued by the file system, our approach is to identify the data blocks before

they are even written to the file system. Our implementation of explicit I/O classification

is thus file-system agnostic – it relies on a small modification to the system call layer

of the operating system in order to collect additional information. We demonstrate the

benefits of this approach using Btrfs, a file system quite unlike Ext3 in design.

While handling a write related system call, the operating system usually copies the

data from the user buffer, passed as a system call argument, into a kernel allocated page

in the page cache. David captures the physical addresses of the in-memory pages where

the such data content is stored in a hash table. Subsequently, the operating system issues

I/O requests corresponding to these system calls. David intercepts these writes when

they reach the emulated disk. David then checks if the pages behind the I/O request

are in the hash table populated earlier in order to decide whether the write is to file

system metadata or application data. A presence in the hash table indicates that the I/O

request contains benchmark application data while an absence indicates that the I/O

request contains file system created metadata. Once the presence is tested, the pointer

is removed from the hash table since the same page can be reused for metadata writes

in the future. An alternate implementation could avoid the need for a hashtable by

modifying the structure associated with buffer cache pages to store information about

whether they contain benchmark application data.

There are certainly other ways to implement explicit I/O classification. One such

alternate technique is to capture the checksum of the contents of the in-memory pages

instead of their memory addresses in order to track data blocks. Another alternative

30

approach could modify the file system to explicitly flag the metadata blocks. We believe

our approach is easier to implement, does not require any file system modification, and

is also easier to extend to software RAID since parity blocks are automatically classified

as metadata and not discarded. David’s explicit I/O classification technique will need

additional implementation effort to handle file systems that encrypt or compress data.

2.3 Metadata Remapping

Since David exports a target pseudo device of much higher capacity to the file system

than the available storage device, the block I/O (bio) requests issued to the pseudo device

will have addresses in the full target range and thus need to be suitably remapped. For

this purpose, David maintains a remap table called Metadata Remapper which maps

“target” addresses to “available” addresses. Although the Metadata Remapper has

many similarities to other block re-mappers like the Flash Translation Layer in a SSD

or the copy-on-write virtual-disk manager in a hypervisor, it differs from them in that

it does not handle crash recovery. This is not a real problem because David targets

benchmarking applications which can be rerun again in the rare case of a crash. David

contains two implementations of the remap table: one uses a hash table while the other

uses an interval tree. The hash table implementation allows fast lookups and inserts

when using file systems like Ext3 that issue small write requests that always affect a

fixed number of logical blocks. The interval tree implementation is more efficient when

using a log structured file system like Btrfs that issues large write requests that affect a

varying number of logical blocks. Such large writes would translate into several single

block inserts and lookups if a hash table implementation is used.

In addition to the Metadata Remapper, a remap bitmap is maintained to keep track of

free and used blocks on the available physical device; the remap bitmap supports alloca-

tion both of a single remapped block and a range of remapped blocks. The destination

31

(or remapped) location for a request is determined using a simple algorithm which takes

as input the number of contiguous blocks that need to be remapped and finds the first

available chunk of space from the remap bitmap. By allowing an arbitrary range of blocks

to be remapped together, the sequentiality of the blocks is preserved which is beneficial

when a disk is used as the backing store. This can be done statically or at runtime; for

the Ext3 file system, since most of the blocks are statically allocated, the remapping for

these blocks can also be done statically to improve performance. Subsequent writes

to other dynamically allocated metadata blocks are remapped dynamically. From our

experience, this simple algorithm lays out blocks on disk quite efficiently. More sophis-

ticated allocation algorithms based on the locality of reference can be implemented in

the future.

2.4 Evaluation

We seek to answer three important questions. First, how accurately does David predict

benchmark runtime and what storage space savings does it provide? Second, can David

scale to large target devices including RAID? Finally, what is the memory and CPU

overhead of David?

2.4.1 Experimental Platform

We have developed David for the Linux operating system. The hard disks currently

modeled are the 1 TB Hitachi HDS721010KLA330 (referred to as D1TB) and the 80 GB

Hitachi HDS728080PLA380 (referred to asD80GB); table 2.1 lists their relevant parameters.

Unless specified otherwise, the following hold for all the experiments: (1) machine used

has a quad-core Intel processor and 4GB RAM running Linux 2.6.23.1 (2) Ext3 file

system is mounted in ordered-journaling mode with a commit interval of 5 sec (3)

microbenchmarks were run directly on the disk without a file system (4) David predicts

32

Parameter H1 H2
Disk size 80 GB 1 TB
Rotational Speed 7200 RPM 7200 RPM
Number of cylinders 88283 147583
Number of zones 30 30
Sectors per track 567 to 1170 840 to 1680
Cylinders per zone 1444 to 1521 1279 to 8320
On-disk cache size 2870 KB 300 MB
Disk cache segment 260 KB 600 KB
Req scheduling† FIFO FIFO
Cache segments 11 500
Cache R/W partition Varies Varies
Bus Transfer 133 MBps 133 MBps
Seek profile(long) 3800+(cyl*116)/103 3300+(cyl*5)/106

Seek profile(short) 300+
√

(cyl ∗ 2235) 700+
√
cyl

Head switch 1.4 ms 1.4 ms
Cylinder switch 1.6 ms 1.6 ms
Dev driver req queue† 128-160 128-160
Req queue timeout† 3 ms (unplug) 3 ms (unplug)

Table 2.1: Storage Model Parameters in David. Lists important parameters obtained to model
disks Hitachi HDS728080PLA380 (H1) and Hitachi HDS721010KLA330 (H2). †denotes parameters of
I/O request queue (IORQ).

the benchmark runtime for a target D1TB while in fact running on the available D80GB

(5) to validate accuracy, the benchmark application was instead run directly on D1TB.

2.4.2 David Accuracy

Next, we want to measure how accurately David predicts the benchmark runtime.

Table 2.3 lists the accuracy of David for a variety of benchmark applications for both

Ext3 and Btrfs. We have chosen a set of benchmarks that are commonly used and

also stress various paths that disk requests take within David. The first and second

columns of Table 2.2 show the storage space consumed by the benchmark workload

without and with David. The third column shows the percentage savings in storage

space achieved by using David. The first and second columns in Table 2.3 shows the

33

Benchmark Original David Storage
Workload Storage Storage Savings (%)

mkfs 931.5 GB 7.5 GB 99.19
imp 10.7 GB 17.9 MB 99.84
tar 20.6 MB 628 KB 97.03

postmark 199.8 MB 404 KB 99.80
webserver 3.7 GB 3.8 MB 99.89

varmail 7.7 MB 3.8 MB 50.07

Table 2.2: David’s Storage Savings. Shows savings in capacity achieved by David. Webserver
and varmail workloads are generated using the FileBench benchmarking tool [124].

Implicit I/O Classification (Ext3) Explicit I/O Classification (Btrfs)
Benchmark Original David Runtime Original David Runtime
Workload Runtime Runtime Error Runtime Runtime Error

(Secs) (Secs) (%) (Secs) (Secs) (%)
mkfs 278.66 281.81 1.13 0.228 0.049 -
imp 344.18 339.42 -1.38 327.294 324.057 0.99
tar 257.66 255.33 -0.9 146.472 135.014 7.8

grep 250.52 254.40 1.55 141.960 138.455 2.47
virus scan 55.60 47.95 -13.75 27.420 31.555 15.08

find 26.21 26.60 1.5 0.341 0.514 -
du 102.69 101.36 -1.29 0.222 0.474 -

postmark 33.23 29.34 -11.69 22.709 22.243 2.05
webserver 127.04 126.94 -0.08 125.611 126.504 0.71

varmail 126.66 126.27 -0.31 126.019 126.478 0.36
Run directly on the disk (without a file system)
Benchmark Original David Runtime
Workload Runtime Runtime Error

(Secs) (Secs) (%)
sr 40.32 44.90 11.34
rr 913.10 935.46 2.45
sw 57.28 58.96 2.93
rw 308.74 291.40 -5.62

Table 2.3: David’s Accuracy. Shows accuracy of runtime prediction, and the overhead of storage
modeling for different workloads. Webserver and varmail workloads are generated using the FileBench
benchmarking tool [124]; virus scan using AVG antivirus software.

34

original benchmark runtime without David on D1TBand the benchmark runtime with

David on D80GBrespectively. The third sixth column shows the percentage error in the

prediction of the benchmark runtime by David. The first three columns are for the

implicit I/O classification approach using the Ext3 file system. The final three columns

in Table 2.3 show the original and modeled runtime, and the percentage error when

using the explicit I/O classification approach with the Btrfs file system. The storage

space savings are roughly the same for Ext3 and Btrfs file systems. The sr, rr, sw, and

rw workloads are run directly on the raw device and hence are independent of the file

system.

mkfs creates a file system with a 4 KB block size over the 1 TB target device exported

by David. This workload only writes metadata and David remaps writes issued by mkfs

sequentially starting from the beginning of D80GB; no data squashing occurs in this

experiment.

imp creates a realistic file-system image of size 10 GB using the publicly available

Impressions tool [4]. A total of 5000 regular files and 1000 directories are created with

an average of 10.2 files per directory. This workload is a data-write intensive workload

and most of the issued writes end up being squashed by David.

tar uses the GNU tar utility to create a gzipped archive of the file-system image of

size 10 GB created by imp; it writes the newly created archive in the same file system.

This workload is a data read and data write intensive workload. The data reads are

satisfied by the Data Generator without accessing the available disk, while the data

writes end up being squashed.

grep uses the GNU grep utility to search for the expression “nothing” in the content

generated by both imp and tar. This workload issues significant amounts of data reads

and small amounts of metadata reads. virus scan runs the AVG virus scanner on the

file-system image created by imp. find and du run the GNU find and GNU du utilities

over the content generated by both imp and tar. These two workloads are metadata read

35

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800

 0

 100

 200

 300

 400

 500

 600

 700

 800
A

c
tu

a
l
S

to
ra

g
e

 s
p

a
c
e

 u
s
e

d
 (

G
B

)

R
u

n
ti
m

e
 (

1
0

0
s
 o

f
s
e

c
o

n
d

s
)

File System Impression size (GB)

W
O
D
 S

pa
ce

D Space

WOD Time

D Time

WOD Space
D Space

WOD Time
D Time

Figure 2.3: Storage Space Savings and Model Accuracy. The “Space” lines show the savings
in storage space achieved when using David for the impressions workload with file-system images of
varying sizes until 800GB; “Time” lines show the accuracy of runtime prediction for the same workload.
WOD: space/time without David, D: space/time with David.

only workloads.

David works well with both the implicit and explicit I/O techniques demonstrating

its usefulness across two very different file systems. Table 2.2 shows how David provides

tremendous savings in the required storage capacity, upwards of 99% (a 100-fold or

more reduction) for most workloads. David also predicts benchmark runtime quite

accurately. Prediction error for most workloads is less than 3%, although for a few it is

just over 10%. The errors in the predicted runtimes stem from the relative simplicity

of our in-kernel Disk Model; for example, it does not capture the layout of physical

blocks on the magnetic media accurately. This information is not published by the disk

manufacturers and experimental inference is not possible for ATA disks that do not

36

have a command similar to the SCSI mode page.

2.4.3 David Scalability

David is aimed at providing scalable emulation using commodity hardware; it is impor-

tant that accuracy is not compromised at larger scale. Figure 2.3 shows the accuracy and

storage space savings provided by David while creating file-system images of 100s of GB.

Using an available capacity of only 10 GB, David can model the runtime of Impressions

in creating a realistic file-system image of 800 GB; in contrast to the linear scaling of the

target capacity demanded, David barely requires any extra available capacity. David also

predicts the benchmark runtime within a maximum of 2.5% error even with the huge

disparity between target and available disks at the 800 GB mark, as shown in Figure 2.3.

The reason we limit these experiments to a target capacity of less than 1 TB is because

we had access to only a terabyte sized disk against which we could validate the accuracy

of David. Extrapolating from this experience, we believe David will enable one to

emulate disks of 10s or 100s of TB given the 1 TB disk.

2.4.4 David for RAID

David can also provide effective RAID emulation. To demonstrate simple RAID con-

figurations with David, each component disk is emulated using a memory-backed

“compressed” device underneath software RAID. David exports multiple block devices

with separate major and minor numbers; it differentiates requests to different devices

using the major number. For the purpose of performance benchmarking, David uses

a single memory-based backing store for all the compressed RAID devices. Using

multiple threads, the Storage Model maintains separate state for each of the devices

being emulated. Requests are placed in a single request queue tagged with a device

identifier; individual Storage Model threads for each device fetch one request at a time

37

Num
Disks

Random
Reads

Random
Writes

Sequential
Reads

Sequential
Writes

Measured
3 232.77 72.37 119.29 119.98
2 156.76 72.02 119.11 119.33
1 78.66 71.88 118.65 118.71

Modeled
3 238.79 73.77 119.44 119.40
2 159.36 72.21 119.16 119.21
1 79.56 72.15 118.95 118.83

Table 2.4: David Software RAID-1 Emulation. Shows IOPS for a software RAID-1 setup
using David with memory as backing store; workload issues 20000 read and write requests through
concurrent processes which equal the number of disks in the experiment. 1 disk experiments run w/o
RAID-1.

from this request queue based on the device identifier. Similar to the single device case,

the servicing thread calculates the time at which a request to the device should finish

and notifies completion using a callback after a sufficient delay.

David currently only provides mechanisms for simple software RAID emulation

that do not need a model of a software RAID itself. New techniques might be needed

to emulate more complex commercial RAID configurations, for example, commercial

RAID settings using a hardware RAID card.

We present a brief evaluation and validation of software RAID-1 configurations

using David. Table 2.4 shows a simple experiment where David emulates a multi-disk

software RAID-1 (mirrored) configuration; each device is emulated using a memory-disk

as backing store. However, since the multiple disks contain copies of the same block,

a single physical copy is stored, further reducing the memory footprint. In each disk

setup, a set of threads which equal in number to the number of disks issue a total of

20000 requests. David is able to accurately emulate the software RAID-1 setup upto 3

disks; more complex RAID schemes are left as part of future work.

38

0 %

20 %

40 %

60 %

80 %

100 %

 0 10 20 30 40 50 60 70

 0

 20

 40

 60

 80

 100
C

P
U

 B
u

s
y
 P

e
rc

e
n

ta
g

e

M
e

m
o

ry
 u

s
e

d
 (

M
B

)

Time (in units of 5 Seconds)

SM Mem

D Mem

CPU lines

WOD CPU
SM CPU

D CPU
SM Mem

D Mem

Figure 2.4: David CPU and Memory Overhead. Shows the memory and percentage CPU
consumption by David while creating a 10 GB file-system image using impressions. WOD CPU: CPU
without David, SM CPU: CPU with Storage Model alone, D CPU: total CPU with David, SM Mem:
Storage Model memory alone, D Mem: total memory with David.

2.4.5 David Overhead

David is designed to be used for benchmarking and not as a production system, thus

scalability and accuracy are the more relevant metrics of evaluation; we do however

want to measure the memory and CPU overhead of using David on the available system

to ensure it is practical to use. All memory usage within David is tracked using several

counters; David provides support to measure the memory usage of its different compo-

nents using ioctls. To measure the CPU overhead of the Storage Model alone, David

is run in the model-only mode where block classification, remapping and data squashing

are turned off.

39

In our experience with running different workloads, we found that the memory and

CPU usage of David is acceptable for the purposes of benchmarking. As an example,

Figure 2.4 shows the CPU and memory consumption by David captured at 5 second

intervals while creating a 10 GB file-system image using Impressions. For this exper-

iment, the Storage Model consumes less than 1 MB of memory; the average memory

consumed in total by David is less than 90 MB, of which the pre-allocated cache used

by the Journal Snooping to temporarily store the journal writes itself contributes 80

MB. Amount of CPU used by the Storage Model alone is insignificant, however implicit

classification by the Block Classifier is the primary consumer of CPU using 10% on

average with occasional spikes. The CPU overhead is not an issue at all if one uses

explicit I/O classification.

2.5 Summary

We began this chapter by motivating the need for a better tool to benchmark existing

and futuristic storage devices with huge capacity. The storage technology trend over the

past few decades clearly shows the continuous increase in storage capacities [91, 121]

as well as the introduction of a variety of new physical storage mediums including

Phase Change Memory [221, 231], Non Volatile Memory [223] and Shingled Magnetic

Disks [1, 2].

David allows a storage researcher or developer to make informed design choices

guided by benchmarking results. The key observation behind David is that the bench-

mark applications do not use file content that is the same as their corresponding real

applications but instead only stress the disk with the same I/O pattern as the real

application.

We then discussed the details of David’s design including it’s five core components:

block classifier, metadata remapper, data squasher, data generator and the storage

40

model. The block classifier enables David to classify file system metadata from the

benchmark application’s data. The metadata remapper component remaps and lays out

the metadata writes on the available disk in a space efficient manner. David stores the

file system metadata writes on disk but throws away the data writes. The data squasher

component is responsible for filtering out the benchmark application’s data writes from

reaching the disk. The data generator generates fake content when data blocks are read

by the benchmark application. It is crucial for David to report accurate benchmark

runtime despite throwing away data blocks and remapping metadata blocks. This is

where the storage model component helps by accurately modeling the latency of each

I/O request in the emulated disk. David responds back to the I/O request after the time

reported by the storage model.

We implemented two different non-invasive I/O classification techniques in the

block classifier component. The first technique, called “Explicit I/O classification”, is

borrowed from past research work [3, 189]. We discuss the memory challenge that arises

with this technique when scaling it to emulate huge disks and provide a solution. The

second technique, called “Implicit I/O classification”, is a novel contribution in this

dissertation. It can work with many different file systems without significant additional

effort.

We then detail the thorough evaluation of David. First, we empirically measure its

emulation accuracy for a variety of micro and macro benchmarks. We then test David’s

ability to accurately emulate large storage disks using minimal physically available disk

space. We also show that David can emulate multiple storage disks simultaneously by

using the emulated disks in a software RAID-1 array.

41

Chapter 3

Improving Virtualized Storage

Performance

Virtual machine monitors (VMMs) have become ubiquitous in the past decade. They

form an integral part of the cloud computing infrastructure. In this chapter, we develop

a novel non-invasive I/O classification technique using the hardware virtualization

extensions in modern processors. As we show later in this chapter, this technique is easy

to adopt, deploy and maintain when compared to other approaches that need interface

changes. We then build smart caching and deduplication systems in the hypervisor

using this I/O classification technique.

VMMs offer several important advantages over more traditional approaches, includ-

ing server consolidation [115, 163], reduction in infrastructure costs [216], simpler failure

handling [116], ease of management [142], support for legacy applications [34, 162, 219],

improved security [53, 64, 65, 97, 152], and better reliability [32, 49]. Virtualized storage,

found within said VMMs, adds the benefits of storage consolidation, shared storage

across VMs, out-of-box support across several guest OSes, reduction of costs, improved

availability, efficient backups and quick snapshots [132, 151, 180, 208, 215, 217]. Not

surprisingly, both server and storage virtualization are prominent and together form a

42

central part of all modern cloud computing infrastructures.

As the lowest level in the software stack, the VMM [15] must manage system re-

sources, including memory, disk, CPU, and network. In doing so, the VMM must

optimize their usage for high performance, fairness, and other important system-wide

goals.

Managing resources effectively fundamentally requires information: which I/O re-

quest is latency sensitive, and thus should be scheduled soon? Which block is likely

to be accessed again soon, and thus would benefit from placement within a cache?

Without this type of information, making the decisions a resource manager must make

are at best arduous and often impossible. For example, a VMM cannot typically differ-

entiate whether an I/O request consists of application data or is file-system journaling

traffic. Without such basic knowledge, the VMM is inherently limited in its resource-

management capacity.

The main hypothesis that underlies this chapter is that the VMM can efficiently gain

access to a wealth of important and necessary information through judicious usage of

system-call interposition. In such a configuration, operating system level system call entry

and exit are routed through the VMM. At these critical junctures, the VMM can record

relevant pieces of information as well as take necessary actions in order to gain access to

facts pertinent to its operation.

To explore this hypothesis, we have designed and implemented Sky, a prototype

VMM with system-call interception at its core.1 Sky is implemented for the x86-64 archi-

tecture and it supports Linux and FreeBSD operating systems. Sky extends KVM with

system-call interception to facilitate a range of new information-gathering techniques.

Specifically, Sky implements a core interception framework to track specific processes

and threads, and then obtains storage-specific insights atop this basic machinery. The in-

sights include information such as the size of currently accessed files, the classification of
1The acronym for System Call Interception, SCI, and one possible pronunciation, motivates our name.

43

block I/O into data and metadata, and file content assessment. Some of this information

is approximate (i.e., not guaranteed to be correct); however, as we show, it is still useful

in building various storage-system optimizations. To aid its information gathering, Sky

also (on occasion) injects its own system calls into the OS above; said insightcalls are a

useful general knowledge-acquisition technique atop the base interception mechanism.

We demonstrate the utility of Sky by implementing three case studies, each showcas-

ing different possibilities within the Sky infrastructure. The first is a simple monitoring

tool (Section 3.5), which can provide generic information such as block lifetimes and

the amount of metadata generated by different file systems. With such monitoring in

place, a VMM can serve as a single point of detailed knowledge about guest file-system

behavior.

The second case study, which we refer to as iCache (Section 3.6), implements an

aggressive VMM-level caching policy [131], leading to a 2.3 to 8.8 times improvement in

run time for both search and database workloads. This approach gives higher priority

to small files and file-system metadata and thus can improve run-time significantly. We

also show how an application (the MySQL database server) can provide further hints to

the caching layer via Sky and improve performance further.

The third case study, known as iDedup (Section 3.7), takes advantage of Sky’s file-

content information to improve performance of a block-layer deduplication system [206].

Sky provides hints to iDedup about block usage patterns (Section 3.2.5), and iDedup

uses such hints to avoid expensive lookups and thus improves performance. Specifically,

this optimization reduces run time by 4.5 to 18.7 times for file-copy and encryption

workloads (Section 3.7.2).

In each of these cases, Sky implements improvements within a VMM that previously

had required full-stack modifications to obtain the information needed to implement

said functionality. Sky, in contrast, functions across operating systems (Linux and

FreeBSD), and different file systems (Linux Ext4, Btrfs, and XFS, for example). In this

44

Compared
Number of modified components

(Names of the supported components)
Research Work OS FS Storage Interfaces
Differentiated

Storage
Services [131]

2
(Linux,

Windows)

2
(Ext3,NTFS)

3
(VFS,Block I/O,

iSCSI)
Deduplication

with
hints [122]

1
(Linux)

4
(Ext2/3/4,Nilfs2)

2
(VFS,Block I/O)

Sky
0

(Linux,
FreeBSD)

0
(All)†‡

0
(All)†

Table 3.1: Ease of Adoption. This table compares the number of components of various types that
are supported by Sky and other relevant past research work without any additional implementation effort.
† Sky currently supports file systems that do not change user-supplied content (e.g., due to compression or
encryption within the file system). Sky uses system-call interception and therefore is not affected by the
choice of the storage layers (e.g., file system and device drivers) or their interfaces (e.g., VFS, Block I/O
and SCSI) present in-between the system call and the VMM. ‡We have tested Sky with the file systems
UFS, ZFS in FreeBSD guest operating system and with Ext3, Ext4, XFS, JFS, Nilfs2, Reiserfs, and Btrfs
in Linux guest operating system.

manner, Sky consolidates implementation of its optimizations, instead of replicating

such effort across different file systems and operating systems. We believe that this will

make Sky easier to adopt, deploy and maintain in existing systems.

The rest of this chapter is structured as follows. We first provide further motivation

(Section 3.1). We then describe the design (Section 3.2) and implementation (Section 3.3)

of Sky. Finally, we evaluate Sky (Sections 3.4 to 3.8), discuss related work (Section 5.2),

and summarize in (Section 3.10).

3.1 Motivation

In modern virtualized storage systems, better performance, quality of service, and other

critical optimizations and features can be achieved through access to information. For

example, previous works have shown that classifying I/O requests, and treating each

45

class differently, can greatly improve performance for some workloads [122, 131, 208].

Unfortunately, due to the simple, restrictive interfaces exposed by each of the layers,

information cannot be easily passed through the many layers of the storage stack. This

reality leads to the so-called “semantic gap” [41] across said layers, thus leading to many

missed opportunities in the storage stack [54, 81, 129, 131, 160, 171, 185, 186, 188, 189,

225].

Many examples exist in the literature that showcase the benefits of information

(and control) throughout the storage stack. For example, Thereska et al. classify I/O

requests into flows and associate policies for each of the I/O flows to allow differentiated

treatment [208]. Mesnier et al. explicitly classify I/O requests to improve performance,

by modifying the application, file system, and low-level storage interfaces [131]. Sonam

et al. use I/O classification to improve inline block-layer deduplication by modifying

the application, file system, and block I/O interface to generate hints about file-system

metadata and file contents [122]. All approaches require changes across many layers of

the storage stack.

While these systems all provide significant benefits, we believe there are important

reasons that they often do not reach deployment. One prominent reason is that any

idea that must be realized throughout the storage stack creates a large burden upon

developers. Table 3.1 compares the number of different types of operating systems,

file systems, and storage interfaces that must be modified to support various storage

optimizations [122, 131]. Being able to run underneath multiple operating systems, file

systems, and interfaces has a multiplicative effect on developers, who must modify

each of these components to reach wide-scale deployment. In contrast, as the table

shows, Sky works across different file systems and storage interfaces, and provides

the infrastructure needed to work underneath Linux and FreeBSD; developers of new

storage optimizations can thus implement them once within the Sky framework and

deploy them underneath a wide range of systems.

46

Of course, if all vendors agree on a set of information to pass across layers, it is

possible that new standards could be developed and adopted. However, as others have

discussed, changing interfaces is difficult and time consuming [186]; even small changes

to the low-level disk standards, such as the evolution from block-based to object-based

storage [67], may take many years to come to fruition, or never reach wide-scale adoption

at all.

The best system to support cross-layer optimizations requires modification only at a

single spot in the stack, not requiring changes throughout many layers. The optimiza-

tions realized in such a framework should then work across a broad range of systems

with little or no effort. We now describe one such system that we have built, Sky, which

is implemented as part of the VMM and enables interesting information-based storage

services to be realized.

3.2 Design

This section describes the basic techniques used by Sky (implemented as part of the

VMM) to intercept system calls (Subsections 3.2.1 and 3.2.2) and then details the insights

gained by intercepting I/O-related system calls (Subsections 3.2.3 to 3.2.5). Our design

was influenced by the following desirables:

• Simple and Universal: Favor simple techniques that are widely applicable across oper-

ating systems.

• Timely: Generate reliable hints as early as possible.

• Robust and Lightweight: Keep Sky robust and its overheads low.

Table 3.2 is a summary of all the information tracked by Sky and where the infor-

mation is used. Sky tracks information about processes, threads, process parent-child

relationship and in-progress system calls in order to provide the basic interception

framework upon which meaningful insight gathering techniques can be implemented.

47

Tracked Information Used for

List of monitored processes, their PIDs and their page direc-
tory base address.

Interception
Framework

(Subsec-
tion 3.2.1)

Threads of monitored processes, their TIDs, stack base point-
ers and stack size.

Interception
Framework

(Subsec-
tion 3.2.1)

Parent child relationship between monitored processes.

Interception
Framework

(Subsec-
tion 3.2.1)

System Calls in progress for monitored processes along with
their arguments and userspace stack pointer value.

Interception
Framework

(Subsec-
tion 3.2.1)

A per-process pool of 8KB userspace buffers allocated by Sky
for issuing insightcalls that need their arguments to be in
memory.

Interception
Framework

(Subsec-
tion 3.2.2)

List of monitored file descriptors, their current file offsets and
the maximum file offset accessed so far.

Insight I (Sub-
section 3.2.3)

List of memory-mapped pages for monitored files in moni-
tored processes and their corresponding guest-physical ad-
dresses.

Insight II (Sub-
section 3.2.4)

Checksums of 4096-byte chunks in data payload of I/O-
related system calls are stored while the system call is getting
processed. Checksums of 4096-byte chunks in data read from
or written to the virtual disk are retained for a certain time
period.

Insight II (Sub-
section 3.2.4)

Whether a process has file-copy I/O pattern or is encrypt-
ing files. Detecting file-copy I/O pattern requires storing
checksums of 4096-byte chunks of data read or written by
applications temporarily.

Insight III
(Subsec-

tion 3.2.5)

The checksums of 4096-byte chunks at various file offsets
when block lifetimes need to be calculated.

Block
Lifetime (Sub-

section 3.5.2)

Table 3.2: Information tracked by Sky. This table lists the information tracked by Sky about the
guest operating system and its processes.

48

tim
e

G
u
e
s
t

O
S
 (

K
e
rn

e
ls

p
a
c
e
)

next

instruction

VM entry

VM exit

VM exit

G
u
e
s
t

A
p
p
li
c
a
ti

o
n
 (

U
s
e
rs

p
a
c
e
)

Sky

(VMM)

sysret

instruction

insight

processing

Guest OS

executes

system call

handler

insight

processing

VM entry

syscall

instruction

Figure 3.1: System-Call Interception. This figure shows the control flow between the guest
application, guest operating system and the VMM during a system-call interception in a monitored
process. Sky turns off the hardware interception techniques when unmonitored processes are scheduled on
a processor.

Depending on the insight generated, additional information is tracked by Sky as listed

in Table 3.2.

3.2.1 System-Call Interception

Sky intercepts the entry and exit of a subset of I/O and process-management related

system calls executed by the guest application in order to gain insights that can be

used as hints to improve virtualized-storage performance. Sky configures the processor

49

before a VM entry so that execution of a system call entry or exit instruction causes a

VM exit and transfers control back to Sky (part of VMM). Figure 3.1 shows the control

flow during system-call interception. With this ability to intercept system call entries

and exits, Sky can monitor the arguments and return codes of system calls to gather

insights about the guest application. Being part of the VMM, Sky can access all of the

guest VM’s memory enabling further optimizations and new features.

Selective System-Call Interception

Sky avoids the overheads due to intercepting all userspace applications in the guest

VM by monitoring only a targeted set of I/O-bound processes. Sky automatically moni-

tors and unmonitors the children of the monitored processes by intercepting process-

management related system calls like fork, clone and kill. Sky monitors all threads

in a monitored process by default. Whenever a new guest process is scheduled on a

virtual processor, Sky checks if the new process is monitored or not and turns system-call

interception on or off respectively.

In our prototype, monitoring of applications is bootstrapped by a helper application

calling a library function with its own PID and then launching the benchmark application.

The library function sends the PID to Sky (which is part of the VMM in the host machine)

through the network. Sky automatically monitors the launched benchmark application

and any other processes it subsequently creates. More sophisticated policies could be

built on top of this scheme when necessary in the future: e.g. tracking and identifying

certain applications that are known beforehand to benefit from Sky or periodically

monitoring the latency of I/O-related system calls made by guest applications and

dynamically turning system-call interception on or off based on these latencies. Our

prototype version does not do this.

50

Identifying Processes and Threads: Sky keeps track of the guest operating system

assigned process identifiers (PIDs) and thread identifiers (TIDs) for the monitored

processes and threads respectively. When intercepting system call entries and exits, Sky

uses only the virtual-CPU state to identify the currently executing process or thread.

Specifically, processes are identified using the page directory base register (PDBR) that

contains the guest-physical address of the currently executing process’s page directory

base. Sky maps a PID to the page directory base address by issuing a getpid insight-

call (described in Subsection 3.2.2). Sky captures the userspace stack base address,

stack size and the thread identifier while intercepting thread-creation system calls. Sky

differentiates between threads within a process using the stack pointer (SP) register that

contains the guest-physical address of the top of the userspace stack. Given the values

of the PDBR and SP register, Sky identifies the guest operating system issued process

and thread identifiers respectively. Sky maintains a set of all monitored processes, their

PIDs, PDBRs, threads, thread TIDs, thread SP values and thread stack sizes.

Tracking Guest Operating System Scheduling: Sky intercepts all guest operating sys-

tem process scheduling by intercepting overwrites to the PDBR of the virtual processor

through hardware mechanisms. The PDBR has to be compulsorily overwritten with the

page directory base address of the new process during process context switch. Since

thread rescheduling does not involve a PDBR overwrite, Sky uses the following tech-

nique: during a system-call interception, if Sky detects a different currently running TID

from the one that last executed on the same virtual processor during the last system-call

interception, it knows a thread switch has occurred. Such delayed detection of a thread

switch only when a system call is intercepted is sufficient for matching a system call exit

correctly with its entry.

51

3.2.2 Insight-Calls: Sky-Introduced System Calls

In certain scenarios, Sky needs access to the state maintained by the guest operating

system in order to gather more insights efficiently, easily and in a manner that eases

portability across different guest operating systems. Sky (which is part of the VMM)

issues system calls to the guest operating system in the context of an intercepted guest

application in order to read state from the guest operating system. We call such Sky-

issued system calls as Insight-Calls. Sky currently issues insight-calls only when it is

intercepting an actual system call made by a guest application and to only read state from

the guest operating system. Insight-calls never change the state of the guest operating

system because that would be outside the knowledge of the guest application and could

lead to erroneous application behavior.

Insight-Call: To issue an insight-call, Sky first saves the intercepted system call entry’s

system call number and arguments (call it “syscallinformation”) into a private data struc-

ture and then replaces them with those corresponding to the insight-call that it wishes

to issue to the guest operating system. When Sky subsequently intercepts the system call

exit, it restores back “syscallinformation” into the appropriate registers and additionally

decrements the current instruction pointer (IP) appropriately to point back to the system

call entry instruction. This way, the original guest-issued system call is now executed by

the guest operating system. Sky can also issue a series of such insight-calls when more

complex information needs to be gathered from the guest operating system. Sky uses

insight-calls in several scenarios like: getting the PID of the process currently executing

(Subsection 3.2.1), getting the current size of the file backing an open file descriptor

(Subsection 3.2.3) and handling “misaligned or small I/O requests” (Subsection 3.2.4).

We note that, customers who do not completely trust their service providers (e.g.,

in a IaaS cloud computing model) with the usage of insight-calls could be given an

option to opt-out of Sky during their sign-up process. Also, to improve performance

52

in some cases, it is possible to avoid insight-calls and instead directly access the guest

operating system internal state to get the required information [55]. Sky does not use

such optimizations because the effort does not seem justified given the relatively small

number of insight-calls. Exploring such optimizations is left as future work.

3.2.3 Insight I: Guest File System File Size Information

A storage system cache can achieve improved cache hit rates by knowing whether an

I/O request is issued on a small file or a large file [131]. This is because large files are

usually laid out sequentially on a magnetic disk and therefore cache misses on reads

to small files are costlier than misses on a large file. Moreover, more small files can be

cached in the same cache space occupied by a large file. Sky implicitly classifies I/O

requests based on the size of the corresponding file by keeping track of the current file

sizes of all files opened by a monitored process. An example of such file size based

classification is shown later in Table 3.6 of the iCache case study (Section 3.6).

Sky achieves such file-size based classification by intercepting the I/O-related system

calls like open, read, write, lseek and close in order to capture information like:

current open file descriptors in a process, the current file offsets for those file descriptors,

the files behind those file descriptors and their current file sizes.

Selectively monitoring only certain files: Sky can be instructed to selectively intercept

I/O to only specific files using a control command sent through the network. The current

prototype version of Sky allows specifying such files using their path prefix that denotes

their location in the guest file-system hierarchy. Sky issues a getcwd insight-call in

order to get the current working directory of the process before prefix matching files

opened using relative file paths. A variety of other policies for specifying which files to

selectively monitor are possible. Our current prototype implementation does not handle

symbolic or hard links and requires that separate control commands be used to instruct

53

Sky to monitor such links as well. However, a future version of Sky could use additional

insight-calls during file open time to check for and resolve symbolic or hard links to

verify if they need to be monitored.

Tracking File Sizes: Sky tracks the current file offset and the highest file offset accessed

so far for all the monitored file descriptors whenever an I/O is performed by a guest

application using read, write and other similar system calls. Sky also tracks the current

file size for all monitored file descriptors using an lstat or lseek insight-call.

Sky translates the file size information into an I/O class and hints the VMM-level

storage cache to adjust the priority based on the I/O class. Sky uses checksums of the

payload to match insights obtained by intercepting system calls with their corresponding

I/O requests that occur later. Therefore, Sky always associates gathered insights with a

particular I/O request rather than with the virtual-disk sectors to which the I/O request

is destined. This prevents insights from becoming stale when the corresponding sectors

are reallocated to a different file. A case study on such a smart storage cache called iCache

with its performance compared against a normal storage cache is detailed in Section 3.6.

3.2.4 Insight II: Guest File System Metadata vs. Data Classification

Cache hits can be improved by distinguishing file system metadata from application

data and giving higher priority to file system metadata [131]. The file system inside

the guest operating system kernel organizes information on the virtual disk by writing

metadata information (e.g. block allocation bitmap, file offset to disk block translation)

in addition to the data from the guest application. However, the distinction between

guest file system written metadata and guest-application written data is not available at

the virtual disk in the VMM. Sky provides useful hints to the virtual disk to distinguish

metadata I/O requests from data I/O requests. The basic idea behind this insight is

the observation that all data I/O requests originate from the guest application while

54

all metadata I/O requests originate from the in-kernel file system within the guest

operating system. Sky tracks the set of all data I/O requests that originate from the

guest application using system-call interception and identifies metadata I/O requests

by exclusion from this set. Subsections 3.2.4 to 3.2.4 detail how to handle different types

of I/O system calls using this basic technique.

Handling Synchronous I/O

Synchronous I/O is performed primarily using the read and write system calls. Both

take three arguments: the open file descriptor on which I/O is requested, the address of

a userspace buffer for I/O contents and the number of bytes in the I/O. These system

calls return the number of bytes successfully accessed upon success and a negative error

code upon failure. Other system calls for performing synchronous I/O like pread,

pwrite, preadv and pwritev are handled similarly.

Writes: When a guest application issues a write system call to write data to a file,

Sky intercepts the system call entry and calculates the checksums of every 4096-byte

sized chunk in the userspace buffer supplied by the application. Sky, being part of the

VMM, easily translates the guest-virtual address of the userspace buffer to host-virtual

addresses while accessing the userspace buffer. Sky stores these checksums in a hash

table. The I/O class based on the file size insight described earlier in Subsection 3.2.3

can also be stored in this hash table. When this system call is then serviced by the guest

operating system, it eventually causes a write I/O request to the virtual disk. Sky also

interposes on this subsequent write request to the virtual disk to calculate the checksums

of every 4096-byte chunk and looks up the checksums in the hash table. If the checksum

is found, it indicates that the content originated from the guest application and hence is

a data I/O request. Checksums for metadata I/O requests will never be found in the

hash table. Sky removes the checksums from the hash table after the lookup to avoid

55

any future misclassification.

Reads: Reads have to be handled slightly differently by Sky. When a guest application

issues a read system call, the data is available in the userspace buffer only after the

system call completes because the data has to be read from the virtual disk or the buffer

cache as part of the read system call servicing by the guest operating system. Hence,

Sky interposes all read requests to the virtual disk and calculates the checksums of

every 4096-byte sized chunk being read and stores them in a hash table along with the

corresponding sector number in the virtual disk and a timestamp. Subsequently, Sky

also interposes the exit of the read system call that caused the read request to the

virtual disk, calculates the checksums of every 4096-byte chunk in the userspace buffer

and looks up the checksums from the hash table. If the lookup succeeds, Sky classifies

the request as data I/O and removes the checksums from the hash table. All entries

remaining in the hash table after a configurable sufficiently long delay (currently set

at 4 seconds) are classified as reads due to metadata I/O requests. In the experiments

presented in this chapter, we never had to re-configure this delay value.

Handling Asynchronous I/O:

When a guest application issues an asynchronous I/O system call, the I/O is not complete

when the system call returns. Rather, the I/O completes at a later point in time and

the guest application learns about the completion later using a separate system call.

Hence, for asynchronous read I/O system calls, Sky performs the checksum calculation

and lookups after the I/O request is completed by the guest operating system. For

asynchronous write I/O requests, the checksum calculation occurs during the I/O-

submission system call entry.

56

Handling Memory Mapped I/O:

Memory mapped I/O is performed by mapping a region of the file address space to

a region of the process’s virtual-memory address space. I/O requests to the virtual

disk are automatically issued by the guest operating system when the memory mapped

address space is accessed by the guest application. Because there are no system calls to

intercept for insights when I/O happens, memory-mapped I/O is specially handled by

Sky. Sky intercepts the mmap system call that initially performs the memory mapping

with parameters that specify the starting virtual-memory address and the length of the

memory-mapped region. At this time, Sky write protects the host operating system

memory pages that contain the guest page-table entries behind the memory-mapped

virtual address space. This write protection ensures traps to Sky whenever the guest

operating system changes the guest-physical pages backing the memory-mapped virtual

address space. Thus, Sky continuously keeps track of the most recent guest-physical

pages (and their host-physical pages) backing the memory-mapped virtual address

space in a global hash table.

A memory-mapped I/O request automatically issued by the guest operating system

to the virtual disk always contains the guest-physical address backing the memory-

mapped virtual page that was accessed. This is because memory-mapped I/O skips the

buffer cache in the guest operating system. When Sky intercepts the I/O requests to

the virtual disk, it also looks up the host-physical addresses of the pages behind every

I/O request in the global hash table described above. A successful lookup indicates

a data I/O request while a failure means metadata. Sky removes the old addresses

and adds new ones to the hash table when the guest operating system unmaps the

old guest-physical pages and maps new ones for the memory-mapped virtual address

space.

57

tim
e

systemcall entry and exit
insightcall entry and exit
interception / bypass to avoid guest OS

Guest Application

(Userspace)

G
u
e
s
t

O
S
 (

K
e
rn

e
ls

p
a
c
e
)

Sky

(VMM)

Addr:100

4 Bytes

smal

Sky allocated

userspace bu er.

Size: 8192 Bytes

at Addr: 4000

aaa...

Addr:4000

4092 Bytes

read 4092B at o set 0

to bu er at 4000

Addr: 4000

Success

mmap to allocate

8192B memory

Success

write(fd=5,buf=100,size=4)

current fd o set = 4092; le lled with char 'a';

checksum the 4096B chunk

and issue original syscall

Figure 3.2: Insight-Calls for handling a Small Write. This figure shows how Sky handles an
example small write using a series of insight-calls.

Handling Misaligned and Small I/O:

Sky always calculates checksums of 4096-byte chunks that are aligned with 4096-byte file

offset boundaries so that the checksums remain valid when interposing the I/O requests

to the virtual disk despite the guest operating system splitting or merging I/O requests.

4096 bytes or a sector is the smallest addressable unit for modern disk drives and is

smaller than or equal to the file system block size. However, guest applications can issue

I/O system calls that result in chunks smaller than 4096 bytes either due to small I/O

58

requests or due to I/O requests misaligned with the 4096-byte file offset boundaries.

Sky handles such I/O requests by reading the necessary contents from the file using

Insight-Calls to form 4096-byte chunks as outlined in Figure 3.2 and described below. It

should be noted that because our prototype uses the insights as hints for performance

improvements, it could skip handling misaligned and small I/O requests.

1. Sky allocates a 8192-Byte private anonymous userspace buffer in the guest-application’s

virtual address space using a mmap insight-call. Sky also adds this 8192- byte userspace

buffer into a free memory pool that it maintains for every guest process so that future

Insight-Calls for this process can reuse the same buffer.

2. Sky then reads any necessary additional content located before and after the small or

misaligned I/O request’s file offset as needed using pread insight-call into the first

and second 4096 bytes of the userspace buffer allocated in the previous step.

3. Sky then calculates checksums of resulting aligned 4096-byte chunks before finally

reissuing the original guest-application’s system call. For misaligned reads alone, Sky

issues the original guest-application’s system call before issuing the pread insight-calls

so as to avoid multiple disk requests for large multiblock reads. This way the total

number of disk I/O requests generated remains the same while handling misaligned or

small read requests.

As an optimization, Sky also caches the contents of the most recent I/O along with

the file descriptor, file offset and data size information for monitored processes. Using

this information, misaligned I/O resulting from a strided access pattern that starts at an

unaligned offset can be handled without using the process described above that uses

additional insight-calls.

Note: Certain file systems store both metadata and data in the same virtual-disk block:

e.g. Ext4’s inline data feature stores tiny files inside the inode structure. Sky classifies

59

such blocks as metadata. There is a very small window of chance when a monitored

guest application could generate data blocks that match the metadata blocks generated

by the guest file system within the short duration of the virtual-disk access times for

those data blocks. Since, our prototype uses insights as hints, such small chances of

misclassification are tolerable.

3.2.5 Insight III: Application I/O semantics and patterns

Tracking the I/O semantics and patterns of applications can be helpful in improving their

performance. Sky can detect I/O patterns without any modifications to the application

or the guest operating system. Sky sends the I/O-pattern insights as hints to the storage

system. Example I/O-pattern insights are “knowing when an application is encrypting

data” or “knowing when an application is copying data from one file to another”. We

show how these I/O-pattern insights can be used to improve the performance of a

deduplication system in Section 3.7.

Detecting File Encryption: Sky uses the names of the executables and the file name

extensions of the destination files to derive hints about encryption. Sky issues a sysctl

insight-call or a readlink insight-call to get the name of the executable depending

on whether the guest operating system is Linux or FreeBSD respectively. The file

name extensions are available as an argument while intercepting open system calls.

Sophisticated executable identification and file type detection by examining the contents

of the executable and destination file is left as future work. Alternate generic approaches

could also be explored in future: e.g. Sky could flag processes whose writes repeatedly

fail to get deduplicated so as to skip deduplication for future writes from such flagged

processes.

60

Detecting File Copy: Sky detects file-copy I/O patterns by first targeting certain guest

applications by using the executable names as a hint: e.g. Unix tools like cp and dd. Sky

then stores the checksums of 4096-byte chunks being read by such targeted applications

in a hash table. Finally, Sky looks up the checksums of 4096-byte data chunks being

written by these applications in the hash table to confirm the file-copy I/O pattern.

Repeated matches indicate a file-copy I/O pattern in progress.

3.2.6 Application Supplied Insights

Certain applications already perform or can be easily modified to perform better I/O

classification because they have the most information about the I/O requests that they

issue. The exact policy used for I/O classification depends on the guest application. For

example: a cloud file server can associate its premium customers with a higher priority

I/O classification ensuring a better quality-of-service, a database server can associate

I/O requests to certain data structures like the “secondary index” with lower priority to

ensure better overall throughput (Subsection 3.6.2).

Guest applications can pass the I/O classification information on a per-system-call

basis by calling an alternate library function that is similar to its counterpart in standard

libraries like libc. This alternate function takes an additional last argument for the

I/O class. For example, a C application calls iwrite(file descriptor, buffer,

size, ioclass) library function to perform writes instead of the usual write(file

descriptor, buffer, size) libc function. The iwrite library function issues

the write system call with two additional last arguments: an additional magic number

argument and the I/O classification number. During system-call interception, if Sky sees

that a system call has the magic number as the second-to-last argument, then it indicates

that the guest application is supplying explicit I/O classification information in the last

argument. Therefore, Sky uses the guest application supplied I/O classification and

61

turns off its own implicit I/O classification based on “file size”, “file system metadata vs.

data” and “application I/O semantics” for that I/O request. This approach of passing

I/O classification along with every system call allows fine granular control on every I/O

request rather than over an entire file. Also, it allows passing down the I/O classification

information from the guest application to Sky very efficiently in a timely manner. Guest

applications that directly access a virtual disk without a file system can also pass I/O

classification using this approach.

3.3 Implementation

3.3.1 Interception Techniques

Intercepting System Call entries and exits: Sky uses previously known techniques [53,

152] to intercept all x86-64 system call instructions except the IRET instruction for which

we describe a new technique below. All the experiments in this chapter use 64-bit guest

operating systems and they run on an Intel processor; therefore, they all used the Syscall,

Sysret and IRET instructions for performing system calls. We tested out some of the

other previously known interception techniques [53, 152] listed below but did not use

them with Sky. A comparison of Sky with related work in the field of Virtual Machine

Introspection is in Section 5.2.

• INT 80: The Interrupt Descriptor Table (IDT) size is restricted to cause faults during

software interrupts.

• Syscall and Sysret: The SCE flag is unset so that the syscall/sysret instruction causes

a VM exit.

• Sysenter and Sysexit: The SYSENTER_CS_MSR machine status register is set to NULL

so that the sysenter/sysexit instruction causes a VM exit.

• IRET: Both Linux and FreeBSD kernels use the IRET instruction for returning from

62

a system call during slow return scenarios that include situations where userspace

signal handlers are invoked before returning from the system call. We could not easily

intercept the IRET instruction directly using architectural support with the Intel virtual-

ization extensions unlike the AMD virtualization technology [9, 90].2 Sky intercepts the

system call exits that use IRET instruction using the following technique. Whenever Sky

intercepts a system call entry instruction, Sky subtracts the size of the syscall instruction

from the userspace IP register and keeps track of any such subtraction made. This

subtraction guarantees an interception during the system call exit because the syscall

instruction will be re-executed again artificially upon system call exit. There are two

possibilities during the subsequent system call exit: the guest operating system either

uses the Sysret/Sysexit instruction or uses the IRET instruction. In the former case, Sky

intercepts the Sysret/Sysexit instruction using hardware mechanisms, gathers insight

and undoes the subtraction because it is no longer needed. In the latter case, though the

IRET instruction cannot be intercepted, the artificial re-execution of the syscall instruc-

tion will be intercepted by Sky, at which point Sky completes the insight processing and

skips executing the artificial syscall instruction.

Intercepting Guest Operating System Scheduling: Both Intel and AMD hardware

virtualization extensions allow intercepting writes to the PDBR by setting a specific bit

in the VM execution control register.

3.3.2 Handling Process Rescheduling

Sky gathers insights by analyzing system call arguments and the returned values. How-

ever, there are some tricky scenarios that arise when the guest operating system resched-

ules monitored processes across different virtual processors. In these scenarios, associ-
2The Intel manual [90] mentions that a VM exit occurs upon executing an IRET instruction if the

“NMI-window exiting”, “NMI Blocking”, “Virtual NMIs” and “NMI Exiting” control bits are set. Using
this technique, a VMM can queue a virtual NMI to a guest and subsequently inject a virtual NMI when the
guest is ready after execution of an IRET instruction. However, we have not verified that this technique
can be used for intercepting IRET instructions for the purposes of Sky.

63

Figure 3.3: Split System Call. This figure depicts how Sky handles the scenario when a system
call entry and its exit occur on two different virtual processors due to a context switch during the guest
operating system system call handler execution.

ating the value returned by a system call to its earlier invocation and the corresponding

arguments needs additional effort as detailed in the rest of this subsection.

Matching system call exits with entries: Sky matches system call exits with entries

based on the fact that system calls are synchronous. There is at most one outstanding

system call for any given process (or thread) at any point in time. Sky copies over

the system call number, arguments and the PID of the currently executing process

while intercepting a system call entry on any of the virtual processors. Sky matches

the subsequent system call exit that occurs on a virtual processor with the currently

outstanding system call entry on the same virtual processor.

Split system call entries and exits: I/O-related system calls that usually involve a

disk access often get rescheduled to a different virtual processor after issuing the system

call but before the guest operating system returns after processing the system call. Sky

64

needs to correctly match a system call exit that occurs on the new virtual processor with

its system call entry that occurred earlier on a different virtual processor. To this end,

whenever a new process is scheduled on a virtual processor, Sky checks if there is an

outstanding system call entry in that virtual processor. If so, Sky stores that system

call information into a global hash table with the PID or TID as the key. During system

call exit on a new virtual processor, the contents of the CR3 register and the SP register

are used to identify the process or thread (as detailed in Subsection 3.2.1). In order

to match a system call exit to its system call entry, Sky first looks up in this global

hash table with the PID or TID of the currently executing process or thread for any

matching outstanding system call. If a match is found, it is removed and the system call

is processed for insights. A match won’t be found if the previous virtual processor is

still idle and no new process has been scheduled on it yet by the guest operating system.

In this case, Sky looks up each of the other virtual processors for an outstanding system

call entry that matches the PID or TID for the system call exit being matched. This look

up always succeeds because the outstanding system call entry either has to be in the

global hash table or with one of the other virtual processors.

Handling Signal Handlers: When there are pending signals for a process, the corre-

sponding userspace signal handlers (if any) are invoked by the guest operating system

before a system call exit occurs. The signal handlers could possibly issue new system

calls too even before the previous system call is finished. Since the signal handler is

invoked using a signal stack, the new system call will have a different userspace SP value

during system-call interception. Sky detects such signal-handler invocations by noticing

this difference in userspace SP and stores the outstanding system-call information into

the global hash table. Subsequently, when the outstanding system call’s exit occurs after

the signal-handler invocation is complete, Sky looks up the global hash table to find the

system call information and processes it for gathering insights.

65

3.3.3 Linux vs. FreeBSD System Call Interface

Guest operating system identification: Our prototype takes the guest operating sys-

tem type as a configuration parameter but it is possible to infer this automatically. Known

techniques that use VM memory analysis [118] can be used to distinguish Linux from

Windows. Linux and FreeBSD differ in the system call number for exitwhich is the last

system call executed by a process and it does not return anything. VM memory analysis

coupled with observation of system call numbers, their arguments, return values and

frequencies could be used as a general approach to detect the guest operating system

type automatically in a future version of Sky. Sky depends on the knowledge about the

guest operating system’s system calls, their numbers, their parameters and their return

codes in order to gather insights correctly. System Calls do not change often between

versions of the same operating system but Sky must be able to recognize when such

changes happen in order to support that version of the operating system.

Sky handles the following differences between Linux and FreeBSD system call inter-

faces:

• Thread-related system calls: FreeBSD guest operating system uses system calls like

thr_new, thr_kill and thr_exit for threads while Linux guest operating system

uses clone, kill and exit.

• FreeBSD nosys system call: System-Call numbered 0 in x86-64 FreeBSD is an indirect

system call that takes another system call number as its first argument and invokes

its system call handler. Sky intercepts such nosys system calls and gathers insights

corresponding to the actual system call that gets executed.

• For failed system calls, the FreeBSD guest operating system sets the Carry Flag in

the virtual processor and returns a positive error code integer while the Linux guest

operating system just returns the negated value of the error code integer.

66

Guest OS

(Linux or FreeBSD)

Emulated

Virtual

Disk

Monitored

Guest

Application

#1

Monitored

Guest

Application

#2

Unmonitored

Guest

Applications...

Qemu
(userspace

process)

Emulated

CPU

Other

Emulated

Devices

Physical

Disk

KVM Kernel Module

(with Sky)

Pseudo Device Driver(Sky)

(interpose virtual-disk I/O)

+

iCache, iDedup

Other

Host OS

Applications

CPU with H/W

 Virtualization Support

Other

Physical Devices

Figure 3.4: Sky Prototype Organization. This figure shows how Sky prototype is implemented
for Qemu/KVM as part of the KVM kernel module along with the pseudo device driver within the Linux
host operating system kernel. The guest VMs are userspace processes emulated by Qemu.

3.3.4 Prototype

We implemented a prototype of Sky using the KVM/Qemu VMM for the Linux operating

system on an x86-64 machine. Figure 3.4 shows the organization of a typical setup of

running VMs using KVM/Qemu [27, 109]. The host machine runs a Linux operating

system that has a KVM kernel module. Each of the guest VMs is by itself a userspace

process running the Qemu emulation program. The KVM kernel module exposes the

hardware virtualization features of the processor to accelerate running the userspace

Qemu-emulated guest VM.

Almost all of the Sky logic is implemented within the KVM kernel module. We hope

that Sky will become part of the mainstream KVM with options to turn it off if users

want to. Sky is 7.8 KLOC of new code added to 43.6 KLOC of unmodified KVM source

code. This is a modest increase in the hypervisor codebase. Our prototype uses a pseudo

device driver in the host operating system (3.8 KLOC of source code) to intercept the

I/O requests to the virtual disk rather than intercepting them in the Qemu userspace

emulator. This avoids the overheads associated with the communication between host-

67

Aspect Specification
Host Processor Intel i5,3.3Ghz,VT-x/EPT
Host OS Linux (Kernel v3.11.5)
Guest OS Linux or FreeBSD
Qemu Version Qemu v2.5.0
KVM Version KVM v3.10.1
Host, Guest Memory 16 GB, 6 GB
Virtual Disk 16 GB Paravirt (RAW Disk format)
Backing Disk 80 GB, 7200 RPM Magnetic Disk
Cache Device 2 GB In-Memory Disk
Bcache Version Comes with Linux Kernel
Host FS Ext3

Table 3.3: Experimental setup. This table shows the experimental setup used to evaluate the Sky
prototype.

userspace and host-kernelspace while keeping the number of modified components

minimal. Because the I/O requests to the virtual disk are intercepted within the host

operating system kernel, Sky will also intercept disk I/O requests from the VMM and

the host file system that are necessary for laying out the virtual disk on the backing

physical disk. Sky correctly classifies such I/O requests as metadata because they won’t

be found in the set of data I/O requests tracked by Sky. Sky uses 64 bit checksums

calculated using the 64 bit FNV-1a hash algorithm [60]. Bloom filters are used for quick

lookups when appropriate: to check whether a process is monitored or unmonitored

and to check whether a system call is I/O or process-management related or not. All

the results reported in the following sections (Sections 3.4 to 3.8) are the average of three

trials.

3.4 Overhead Evaluation

Our experimental setup is outlined in Table 3.3. The virtual disk is loaded in KVM/Qemu

with cache parameter as “none” so that the Qemu-provided cache is disabled for evaluat-

ing the effects of the enhanced caching with insights. For all experiments in this chapter,

68

the measurements reported as when running without Sky are taken by disabling the

Sky relevant code in our modified KVM module as opposed to using an untouched

vanilla KVM version. We saw no measured difference in runtime or memory consumed

when running a vanilla KVM version versus our modified KVM with Sky related code

disabled.

During each VM exit caused by a system-call interception KVM code gets executed

in order to figure out the exit reason, to handle the exit and to emulate the instruction

that caused the VM exit. In addition to this, Sky performs some computational work

and hash table lookups to do the following: check whether the current process is

monitored or not, check whether there has been a thread switch since the last system

call interception for the same process, check if this is a split system call or if there has

been a signal-handler invocation and perform statistics update for timing measurements

to aid experimentation. This leads to CPU cache pollution.

We used a set of micro and macro benchmarks to evaluate the overheads due to

Sky. The benchmarks were run both with and without Sky. iDedup and iCache were

both disabled for these experiments. We ran these measurements on two different guest

operating systems: Linux and FreeBSD. When run without Sky, there is no system-call

interception happening. The difference in runtime is used to calculate the overheads

introduced by Sky as shown in Table 3.4. The percentage overhead that Sky introduces

for real applications and macro benchmarks is minimal (under 5%) as seen from the last

five rows of the two Table 3.4. The overall overhead is also split up to show how much

of it is due to VM exits, basic Sky system-call interception and insight generation.

Micro-benchmarks: We use three types of micro benchmarks to measure the overhead

imposed by Sky and their results are presented in Table 3.4. The repeated reads and

writes benchmark accesses the same offset in a file leading to no actual virtual-disk

I/O. When there is high-latency disk I/O (e.g. Random Writes workload), the overhead

69

Workload With Sky
(secs)

Without
Sky (secs)

% Total Overhead
(Splitup: VM Exits
/Sky Interception

/Insights)
With Linux Guest OS and Ext3 FS

Random Reads 99.4 98.5 1 (1/ 0/ 0)
Random Writes 54.9 54.6 1 (1/ 0/ 0)
Sequential Reads 14.6 14.9 -2 (-/ -/ -)
Sequential Writes 25.5 23.4 9 (4/ 2/ 3)
Repeated Reads 20.3 5.7 256 (157/41/ 58)
Repeated Writes 23 6.6 248 (153/36/ 59)
Encryption 33.8 32.3 5 (0/ 0/ 0)
File Search 78.3 76.4 4 (2/ 2/ 0)
File Copy 24.2 24.4 -1 (-/ -/ -)
Mail Server 385.1 381.1 1 (0/ 1/ 0)
TPC-H (MySQL) 36.1 35 3 (3/ 0/ 0)

With FreeBSD Guest OS and UFS FS
Random Reads 185.2 183.3 1 (1/ 0/ 0)
Random Writes 272.5 269.8 1 (1/ 0/ 0)
Sequential Reads 30.1 25.5 18 (13/2/ 3)
Sequential Writes 50.2 39.5 27 (24/1/ 2)
Repeated Reads 31.7 15.4 106 (68/16/ 22)
Repeated Writes 33 15.8 109 (68/16/ 25)
Encryption 25.3 24.8 2 (0/ 1/ 1)
File Search 54.6 53.4 2 (1/ 1/ 0)
File Copy 34.9 34.7 1 (0/ 1/ 0)
Mail Server 163.5 160.8 2 (0/ 1/ 1)
TPC-H (MySQL) 21 21.7 -3 (-/ -/ -)

Table 3.4: System-Call Interception introduced overheads. This table compares the time
taken for various workloads when run with and without Sky on both Linux and FreeBSD guest operating
systems. System-Call Interception was turned on when running with Sky and was turned off when
running without Sky. iCache and iDedup were both disabled. The total percentage overhead is shown
and also splitup into sub components of percentage overhead due to VM exits, Sky interception and Sky
insight computation.

introduced by Sky for every I/O request is negligible when compared to the disk latency.

However, the overhead of Sky is relatively high compared to the I/O request’s latency

when there is no disk I/O (e.g. Repeated Write to the same offset of a file). Sky is

70

designed for I/O applications that issue I/O requests that involve accessing the disk.

The repeated reads and writes micro benchmark is a worst case workload for Sky and

hence system-call interception should be turned off for such applications.

Macro-benchmark and applications: We measured the overhead introduced by Sky

for file encryption using the gpg command, file search using the find command, file copy

using the cp command, Filebench varmail benchmark and TPC-H query on a MySQL

database server. As shown in Table 3.4, the overheads are minimal (under 5%).

Memory overhead: Across all the experiments we ran, Sky used a peak memory usage

of 33 MB of memory for its data structures including the various hash tables (not shown

in Table 3.4). The amount of state maintained by Sky is on the order of 10s of bytes for

every 4096 bytes of in-progress I/O (system call has been issued but virtual-disk I/O is

not yet complete). Therefore, even for write-intensive workloads with 100s of 4K IOPS

and a write delay of 10 seconds due to guest operating system page cache, the memory

overhead will be on the order of 10s of MBs.

3.5 Case Study #1: Information Gathering

In this case study, we show two examples of information gathering using Sky that are

either useful by itself or can be used to improve storage performance.

3.5.1 Accuracy of data classification for different file systems

We ran the varmail workload from the Filebench [124] benchmark suite after configuring

it to finish after running a total of 100000 operations like file delete, file create, file

append, file sync and whole file read. We also modified the Filebench benchmark to

report the total number of 4096-byte chunks of data written to files. Sky classifies all

71

Guest FS Guest OS Misclassification
Error

Ext3,Ext4,XFS,
JFS,Nilfs2,Reiserfs Linux 0%

Btrfs Linux 3.9%
UFS BSD 0%
ZFS BSD 0.7%

Table 3.5: Accuracy of Sky. This table shows the data writes misclassification error percentage for
Filebench varmail on different file systems.

the written data with a zero error percentage for all but two copy-on-write file systems

as shown in Table 3.5. We saw small inaccuracies for the copy-on-write file systems

Btrfs and ZFS (3.9% and 0.7%) which is a limitation of our current prototype. All writes

that are not data are classified as metadata. This information is useful to evaluate the

accuracy of Sky as well as to take a closer look into performance of different guest file

systems as part of a virtualized-storage stack.

3.5.2 Block lifetimes

A VMM could use information about block lifetimes in order to schedule write back

caching using a persistent cache device, to perform data reorganization on the backing

physical disk, to intelligently prefetch content that skips dead blocks or to optimize

recovery by skipping dead blocks [161, 186]. Sky allows a VMM to get the block liveness

information in a virtual machine setting without modifying the guest operating system,

file system or the applications. When the virtual disk and the file system support TRIM

or UNMAP commands, Sky could track block liveness with less effort by tracking only

those blocks that get deleted and are quickly reallocated before a TRIM or UNMAP

command is issued to the virtual disk. Our current prototype of Sky targets applications

that can tolerate a small level of inaccuracy due to checksum collisions. A detailed

comparison with past related work on block liveness is in Section 5.2.

72

0 20 40 60 80

Time(secs)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
Naive approach

Sky approach

Figure 3.5: CDF of block lifetimes for a synthetic workload. This figure shows the CDF of
block lifetimes calculated using two approaches for a synthetic workload that writes 80 MB of data and
deletes the files after a 30 secs delay.

Approach: Sky uniquely identifies files by the guest disk device number and inode

number. Sky maintains checksums of 4096-byte chunks at various file offsets by inter-

cepting write and other related system calls. It detects block lifetimes by detecting

overwrites to content already present at various file offsets. Sky also intercepts unlink,

truncate and related system calls to accurately take into account file deletes and trun-

cates. Figure 3.5 compares the block lifetimes calculated using a naive approach that

just uses block overwrites with that calculated using Sky for a synthetic workload that

writes 80 MB worth of file contents, sleeps for 30 seconds and finally deletes the files.

This synthetic workload helps illustrate that Sky correctly handles file deletes. Since

the naive approach does not know about the file deletes or truncates, it thinks all the

blocks are still alive, while Sky correctly calculates the block lifetimes as approximately

30 seconds for all the blocks.

73

0 10 20 30 40 50 60 70 80 90

Time(secs)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
D

F
Web Proxy

Mail Server

Mongo

TPC

Figure 3.6: CDF of block lifetimes for Filebench workloads. The CDF does not reach 1.0
because there are some blocks still alive at the end of these Filebench workloads.

Figure 3.6 shows the cumulative distribution function (CDF) of block lifetimes for four

Filebench workloads. Sky could use such block lifetime information about the running

workloads to adjust the delay while scheduling write-back from a faster persistent cache

device to the slower disk. The CDF does not reach 1.0 because there are some blocks

still alive at the end of these Filebench workloads.

3.6 Case Study #2: iCache

In this case study, we show how the effectiveness of a storage cache can be improved for

certain workloads by using the policy of caching small files and file system metadata

with higher priority. This policy is complementary to the traditional cache-management

algorithms like LRU, LFU, MQ [232] and ARC [127]. Such traditional cache-management

algorithms differentiate disk blocks only based on their access patterns and do not

74

File Size
(MB) <14 <10 <5 <2 <1 Meta

Data
Skip
Dedup.

I/O class 0 1 2 3 4 5 32

Table 3.6: Policy to assign I/O class to disk I/O requests. The default I/O class is 0. Priority
increases with increasing I/O class values (0-lowest,5-highest). Sky uses I/O class 32 to hint that the
payload is unique and deduplication can be skipped.

associate any semantic meaning to them. Our work adds this missing semantic meaning

to the traditional cache-management algorithms. Sky helps VMs make better use of

their fair share of cache allocated by the hypervisor and is complementary to algorithms

for fair cache partitioning between VMs. We also show how a MySQL server can be

easily modified to pass insights directly to Sky bypassing the guest operating system.

3.6.1 Implementation

Bcache External Disk Caching Module: We integrated the Bcache block device caching

layer from the Linux kernel with Sky’s pseudo device driver. I/O to the slower magnetic

disk that contains the virtual disk is cached using an in-memory disk. We made the

following modifications to the stock Bcache code (adding 10% new code):

• Added statistics collection to track and report sector-level hits and misses rather than

the default request-level reporting.

• Added code to search for the slot holding a particular sector and change its priority.

• Added code to not cache guest file system journal writes so that effects of the iCache

can be compared against the normal cache with more clarity.

• Allowed “clearing the cache” and “reading the list of cached sectors” from the

userspace for experimental convenience.

Enforcing Higher Priority for Metadata and Small File I/O: Bcache sets the priority

of a newly allocated slot to 32K. The priorities of all slots are decremented periodically

75

based on the amount of data handled by the cache. Upon a read hit, the priorities of the

corresponding slots are reset to 32K. The slots with lower priority are reclaimed earlier.

We added code to set the priority of slots containing small file data and metadata to

higher values between 32K to 64K based on the I/O class.

For write requests, the priority of metadata and small file I/O is set appropriately

when new slots are allocated in bcache to hold the data because the insight is available

by then. However, for read requests, the classification insight will be available only at a

later point in time. For data read requests, the insight is known when the corresponding

system call’s exit is intercepted by Sky and its checksums looked up. For metadata read

requests, the insight is known when the remaining checksums are cleared out from

global hash table after a configurable sufficiently long delay. Hence, for read requests,

the priority of the slots is updated when the insight is available. Data readaheads issued

by the guest operating system that are not subsequently read by the guest application

before the 4 seconds delay and still remaining in the bcache will have their priorities

increased as well thereby avoiding a possible miss if at all the guest application reads

them in the future.

3.6.2 Evaluation

We now show how the performance of a variety of real applications and macro bench-

marks can be improved by using this iCache. The policy used by the iCache is to give the

highest priority to metadata followed by lower priorities for data depending on the size

of the file as shown in Table 3.6. The emphasis is on how classification of I/O requests

and their differential treatment can bring benefits rather than the particular choice of

this policy. Applications that fit a different policy profile can use their own policies as

described in Subsection 3.6.2. As an example of such a scenario, we show how a virtual

file server in the cloud that serves customers with different priorities can pass down

76

0%

20%

40%

60%

80%

100%
C

a
c
h
e
 H

it
 %

0

20

40

60

80

100

%
 C

a
c
h
e
 w

it
h
 M

e
ta

d
a
ta

Linux BSD
0

10

20

30

40

50

60

T
im

e
 (

s
e
c
s
)

4.6x
3.6x

Time
bcache iCache

Figure 3.7: File Name Search (find) Results. This figure compares the cache hit percentage,
cache contents and the runtimes for the file name search workload on bcache and iCache. The numbers
above the runtime bars for iCache are the speedups achieved over bcache.

this information to the Virtual Disk with very little modification.

We run the experiments both with a normal cache as well as with the iCache and

compare. The amount of physical resources available is the same for the normal cache

and iCache. Also, when using the normal cache, system calls are not intercepted, thereby

avoiding interception overheads. The differences in results are due to the differential

caching done by iCache.

File Name Search (find)

A Linux kernel source code archive of size 115 MB is unzipped and untarred into a

newly created file system 10 times creating 450K files with total disk usage of 6 GB.

The find command is used to search for a non-existent file. The iCache retains the file

system metadata when the Linux kernel source files are written due to its policy of

77

0%

20%

40%

60%

80%

100%
C

a
c
h
e
 H

it
 %

0

20

40

60

80

100

%
 C

a
c
h
e
 w

it
h
o
u
t

S
e
c
.

In
d
e
x

Linux BSD
0

5

10

15

20

25

30

35

T
im

e
 (

s
e
c
s
)

8.8x

2.3x

Time
bcache iCache

Figure 3.8: TPCH on MySQL Server Results. This figure compares the cache hit percentage,
cache contents and the runtimes for a TPC-H query workload on bcache and iCache. The numbers above
the runtime bars for iCache are the speedups achieved over bcache.

giving higher priority to metadata than for the file contents. Because searching for a file

using the find command only reads the file system metadata, the iCache outperforms the

normal cache for this workload by 3.6 to 4.6 times as shown in Figure 3.7.

TPC-H on MySQL Database Server

We now show how a more sophisticated real world application can be modified in a

way that it can explicitly classify I/O requests for differential caching. We changed the

MySQL database server in order to differentiate I/O requests to the Clustered Index

(which also contains the table data) from those to the Secondary Index by storing a

tag in a thread local store at the various I/O-generating functions. Overheads due to

our modifications to MySQL [145] were negligible. The mechanism described earlier

in Subsection 3.2.6 is used to pass the I/O class along with the system calls. Since the

78

secondary index can be huge in size and is also sequential on disk, the current policy we

use is to give the secondary index data a lower priority than all other I/O requests. This

is similar to the policy used by Mesnier et al. who used filter drivers and kernel changes

to modify storage interfaces to pass I/O classification information in Windows and

Linux operating systems respectively. They then use the I/O classification information

to implement a cache similar to iCache [131]. The advantage of iCache is that it does

need modifications to the operating system or the storage interfaces.

We load the TPC-H tables relevant to query number 16 with scale factor 1.7, create a

few secondary indices on some columns on the tables and finally execute the query [210].

The iCache is able to retain the table data while the secondary index is created due to the

policy of lower priority to secondary data. Hence, as shown in Figure 3.8, query number

16 which performs a join on two tables without using any secondary index executes

faster on the iCache by 2.3 to 8.8 times.

3.7 Case Study #3: iDedup

In this case study, we demonstrate how the performance of a deduplication system can

be improved by using hints about the semantics of the I/O workload gathered by Sky.

First, we show how an application that copies one file to another could greatly benefit

by avoiding expensive disk-backed hash table lookups. Second, we show how such hash

table lookups and additions can be avoided for encryption workloads that very rarely

get deduped [198]. The time taken for hash lookups and additions can be substantial

because hashes are randomly distributed and it is impractical to keep all the hashes in

memory; therefore, a disk-backed hash table that is persisted by frequent flushes leads

to slow random I/Os during lookups and additions [122, 233]. When using iDedup in

real production environments, the hints generation approach could be altered to suit

the target environment. For example, our current implementation detects encryption

79

I/O pattern using application names and destination file name extensions as hints but

an alternate approach could flag processes whose I/O requests repeatedly fail to be

deduplicated.

3.7.1 Implementation

Dmdedup Block Layer Deduplication: We made the following modifications to the

stock dmdedup [206] code (adding 14.5% new code):

• Added code to specially handle writes that are known beforehand to contain unique

payload (e.g. encrypted content) by skipping the initial search and the subsequent

addition to the hash table mapping the block checksums to the corresponding physical

block numbers.

• Added code to maintain an in-memory cache of block checksum to physical-block

number mappings. This in-memory cache is populated during a read issued by a process

flagged by Sky as exhibiting the file-copy I/O pattern. iDedup checks this in-memory

cache for every write before issuing an expensive lookup to the disk backed hash table.

• Added statistics collection to track and report the count of unique and file-copy hints,

the hits in the in-memory cache of checksums to physical-block numbers, and the total

time spent by all write requests in dmdedup.

3.7.2 Evaluation

We compare the performance of two different applications on iDedup against dmdedup.

Dmdedup uses Dmbufio to buffer the I/O accesses to its disk backend. We ran the

following experiments with a Dmbufio size of 1% and 10% of the peak metadata storage

needs for the corresponding workload. 1% to 10% metadata cache sizes are typical in

real deduplication systems [122]. The system calls are not intercepted for gathering

insights when using dmdedup avoiding the overheads of system-call interception.

80

1%
(BSD)

10%
(BSD)

1%
(Linux)

10%
(Linux)

Dedup metadata cache size (%)

0

100

200

300

400

500

T
im

e
 (

s
e
c
s
)

6.6x 5.5x 8.3x 6.5x

No hints File copy hints

Figure 3.9: File Copy Results. The numbers on top of the light colored bars show the speedup
achieved for the file copy workload when run with file-copy hints on iDedup.

File Copy (cp)

The deduplication system is first warmed up by copying a 500 MB file full of random data

on a newly created file system. Next the experiment is run which copies the just copied

500 MB file to another new file using the Unix cp command. Sky detects the file-copy I/O

pattern and sends down hints to iDedup for every read issued by file-copy application.

For such hinted reads, iDedup caches the mapping between the block checksum and the

physical-disk block in memory. Upon a subsequent write of the same payload, iDedup

looks up the in-memory cache and avoids the expensive lookups in the disk-backed

hash table. The stock dmdedup does not get such hints and hence iDedup is faster by 5.5

to 8.3 times as shown in Figure 3.9.

81

1%
(BSD)

10%
(BSD)

1%
(Linux)

10%
(Linux)

Dedup metadata cache size (%)

0

250

500

750

1000

1250

1500

T
im

e
 (

s
e
c
s
)

18.6x 4.5x 18.7x 4.6x

No hints Unique content hints

Figure 3.10: File Encryption Results. The numbers on top of the light colored bars show the
speedup achieved for the file encryption workload when run with unique content hints on iDedup.

File Encryption (gpg)

A 500 MB file full of random data is encrypted using the GNU Privacy Guard (gpg)

program. Sky infers the encryption by using the executable name of the gpg program

and passes down hints to iDedup about unique data content. iDedup uses the hint to

avoid looking up and subsequently adding a new entry to the disk-backed hash table

that maps block checksums to their physical-block numbers. Because most file system

metadata is unique [122], Sky sends unique hints for all guest file system metadata

writes also. iDedup is able to improve the runtime by 4.5 to 18.7 times over dmdedup as

shown in Figure 3.10.

82

Case Study Workload
W

Sky
(secs)

W/O
Sky

(secs)

SSD
Speedup/

(Overhead)

HDD
Speedup

iCache (Section 3.6)
File Name

Search 3.8 4.6 1.2x 4.6x

TPC-H on
MySQL 3.9 3.6 (0.9x) 8.8x

iDedup (Section 3.7)
(with 1%

dedup metadata
cache size)

File Copy 32.3 34.1 1.1x 8.3x

File
Encryption 31.5 468.6 14.9x 18.7x

iDedup (Section 3.7)
(with 10%

dedup metadata
cache size)

File Copy 18.1 24.8 1.4x 6.5x

File
Encryption 33.5 48.2 1.4x 4.6x

Table 3.7: Sky with SSD Backing Disk. Sky provides good improvements when used with
iDedup and provides nominal improvements when used with iCache on a SSD backing disk. Sky poses
about 8% overhead for the TPC-H query on MySQL Server workload alone. The last column shows the
speedup achieved on a magnetic disk for comparision.

3.8 Fast Storage Devices

Sky’s system-call interception imposes an overhead that is independent of whether a

fast or slow storage device is used; therefore, the interception overhead is relatively

higher when used with low-latency storage devices. Because of this, the benefits of

iCache (Section 3.6) on a SSD storage device are not as high as those on a magnetic disk.

Table 3.7 lists the speedups achieved with iCache and iDedup for various workloads on a

Linux guest operating system. iDedup (Section 3.7) has significant benefits even when

used on a SSD storage device (though not as high as when used on a magnetic disk).

Decreasing the system-call interception overhead is a good future research direction in

order to make Sky more beneficial when used with fast storage devices.

83

3.9 Deployment Scenarios and Considerations

Sky allows gathering insights about guest applications’ I/O requests at the hypervisor

layer without modifying storage interfaces in virtualized settings. Big companies that run

large scale services can use Sky in their data centers in order to gather insights without

going through the pains of modifying the guest Operating System and maintaining those

modifications with newer versions of the guest Operating System. Infrastructure as a

service (IaaS) cloud service providers can also allow their customers to sign up for Sky

as a feature that can provide better caching, deduplication and also allow applications to

supply hints. Without Sky, the guest Operating System interfaces have to be modified to

talk to the hypervisor using a pre-agreed API in order to pass hints about I/O requests.

In this work, we demonstrated the utility of Sky in improving the performance of

caching and deduplication systems for a few workloads. Sky is not a generic solution

that is able to improve the performance of all types of workloads and applications. For

example, the overhead due to system-call interception might not be low when compared

to the workload run-times for compute bound applications. Also, for really fast storage

devices, the overhead due to system-call interception might not be low when compared

to the disk I/O latencies. In the future, Sky can be made to mitigate this using self

monitoring. For example, Sky can periodically monitor the performance benefits it

delivers for monitored processes (in terms of higher cache hit ratios and deduplication

benefits) and then turn-off monitoring those applications which are not benefiting. Our

current prototype implementation does not do this yet.

3.10 Summary

We first motivate the need for Sky by discussing the benefits of implementing cross-

layer optimizations at a single spot – the virtual machine monitor in our case. Pervasive

84

changes to many layers and interfaces makes it hard to deploy innovations in real systems

and subsequently in maintaining them. It is essential for Sky to have information in

order to implement optimizations to manage resources efficiently. We present system-

call interception and system call injection as a core mechanism that can be used to gain

necessary insights about a guest virtual machine and the applications running in it

without requiring modifications to the storage layers or their interfaces. We are able

to gather the same insights and reap similar benefits as past research work that had to

modify certain storage layers and their interfaces.

We then detail the design of Sky and the interception framework it provides. Sky

selectively intercepts I/O related system calls from specific guest processes. Sky main-

tains a lot of detailed information about the processes that it monitors. We also discuss

a technique called insight-calls which is used by Sky to read the guest operating system

state. We then describe the three insights that Sky gathers for every I/O request: file

size information, file system metadata vs. data and application I/O patterns. Sky also

allows applications to supply insights as additional arguments to existing system calls.

We then discuss the implementation details for the prototype Sky we developed as

an extension to the KVM hypervisor. Our prototype supports both Linux and FreeBSD

guest operating systems. We then measure the overhead imposed by Sky for a variety

of micro and macro benchmarks. We then perform three case studies using Sky. The

first case study allows gathering information about guest applications like: the block

lifetimes and the accuracy of guest file system metadata vs. data classification. The

second case study implements and evaluates a smart caching system in the hypervisor

called iCache that gives higher priority to small files and file system metadata. The third

case study is about a smart inline deduplication system called iDedup in the hypervisor

that handles encrypted and file-copy content differently. We finally show that Sky is

also effective for the faster solid state drives; though not as much as for the hard disk

drives.

85

Chapter 4

Corruption Resilient Check and Repair

With the advent of large scale distributed storage systems that are made up of hundreds

and thousands of disks, it is very important to handle disk failures like corruptions.

In this chapter, we study the corruption resilience of NoSQL distributed systems and

classify I/O requests to selectively enhance corruption resilience and recovery. We

selectively store certain files along with replicas and checksums to protect them from

corruption. Additionally, we use I/O Classification on file granularity during recovery

from corruptions.

A new breed of scalable storage systems plays an increasingly important role in the

modern datacenter. Loosely (and occasionally, inaccurately) referred to as “NoSQL”

storage, these systems (including Cassandra [113], MongoDB [42], and many others [36,

39, 52, 99, 110]) are designed to be hugely scalable and resilient to faults, while serving

a variety of application requirements. Thus it is no surprise to see these systems widely

deployed in production; for example, thousand-node Cassandra clusters exist within

Apple and Netflix [138].

However, unlike traditional storage, these systems do not yet enjoy the benefits of

a rich and well-developed storage management toolchain. For example, features such

as cluster-wide, consistent snapshots and wholesale backup/restore are not widely

86

available [82, 85, 88]. Instead, users rely upon these systems to stay up and working,

hoping that the data redundancy within the storage system is enough to keep data

available.

One particular area that has received little attention in these storage systems is that of

storage checking and recovery. In traditional systems, tools such as fsck [29, 125, 126]

form a critical part of the overall storage management toolchain. Such tools were essential

to recover corruptions resulting from the improper shutdown procedures [126] and other

errors. Techniques such as journaling [155, 212] or copy-on-write [31, 80, 159] provide a

way for file systems to maintain consistency in the presence of crashes and improper

shutdown procedures. But “bad” images still arise due to disk drive failures [10, 14, 14,

23, 48, 56, 66, 70, 92, 102, 112, 133, 140, 146, 153, 156, 174, 175, 178, 179], RAM failures [35,

176, 194] and bugs in software [43, 61, 201, 226]. Software bugs could cause corruptions

in three different ways: they can (i) directly alter or corrupt the data being written to disk,

or (ii) cause a torn write, wherein only a portion of the data block is written successfully,

or (iii) lead to a misdirected write, wherein the data is written to either the wrong disk or

the wrong location on disk, thus overwriting and corrupting data [26, 156]. Latent sector

errors occur when a sector becomes inaccessible and such errors may occur five times

more often than absolute disk failures [20, 173, 177]. Anecdotal evidence has shown the

prevalence of storage errors and corruptions [136, 139]. Checker tools are necessary to

help a user recover most of their data successfully in such scenarios.

One might think that a sophisticated and complete check-and-recover tool is unneces-

sary in the era of redundant storage. For instance, each data item is generally replicated

and thus a crash of a single node should not lead to data loss; furthermore, the entire

system is unlikely to crash and thus leave the system in an incorrect or inconsistent state.

However, we believe that check-and-recovery tools are needed in this environment

for the following reasons. First, catastrophic failures are indeed possible; the likelihood

of system-wide outages, perhaps leaving the system in a hard-to-recover state, is low but

87

(unfortunately) non-zero [8, 24, 44, 46, 50, 51, 59, 68, 76, 105, 141, 207, 227]. In such a case,

a check-and-repair tool may be needed to fix critical data structures and restart the system.

Second, as snapshotting tools become commonplace [104, 168, 181–183, 197, 211], users

wishing to access (potentially inconsistent or damaged) snapshots could first make use

of a check-and-repair tool, thus enabling them to access the snapshot for further usage.

Finally, effective single-node check-and-repair has the potential to speed up local node

crash recovery; after a crash, local data structure repair can likely operate more quickly

than a full-state restore (via copy from a remote node).

In this chapter, we first analyze existing NoSQL storage systems, in order to better

understand their deficiencies and needs with regards to check and repair. Specifically, we

perform a thorough study of the corruption-resilience capability of three distributed key-

value stores: MongoDB [42], Cassandra [113] and Riak [110]. We empirically find that

the check and repair tools that come with these distributed storage systems have poor

corruption resilience. For example, in all the three systems we study, the checker tool

often leads to poor results (e.g., further corruption) when attempting repair. Specifically,

in Cassandra and MongoDB, more than 99.9% of the bytes on disk are not properly

recoverable by existing tools.

Based on our analysis, we design and implement DSCK, a distributed storage-system

check and repair framework. DSCK includes three major components to enable the

construction of a robust check-and-repair tool for a NoSQL storage system. The first

component is a local redundant store for critical (and otherwise, non-replicated) meta-

data. DSCK intercepts I/O requests at the library-call level and classifies them based on

the destination file to enable transparent checksummed local replication only for those

specific files for which the NoSQL store does not already maintain checksums. DSCK

uses a configuration file with file-path prefixes, patterns and suffixes to achieve the file

classification.

Our I/O interception and classification technique is non invasive because it does not

88

require any modifications to the NoSQL store, the operating system or the file system.

Moreover, it does not need super-user or administrator privileges. This makes it easy to

adopt DSCK in existing deployments. One alternate invasive approach to achieve the

same results would have been to modify the NoSQL store and the system call interface

to allow the NoSQL store to explicitly specify to the lower level storage about which files

need additional checksums and replication. Another alternate invasive approach would

be to just modify the NoSQL store to add checksums for the files that currently don’t

have checksums. Both these invasive approaches require that these changes be done

again in order to support a new NoSQL store. Maintaining backwards compatibility

with the past release version of the NoSQL store is also a challenge. This makes it hard

to adopt, deploy and maintain such invasive approaches in real deployments.

The second component of DSCK is a generic checker framework that classifies I/O

at the file granularity and invokes the checker module for the specific file-type. The

checker uses checksums (whether inherent in the system, or added by the interception

layer) to determine whether corruption has occurred within the data or metadata of a

system. The third component is a recovery tool that classifies the corrupted files based

on their file-type and chooses the appropriate recovery strategy. The recovery tool uses

the local redundant store as well as a host of other techniques to perform an exhaustive

fix of on-disk structures.

We evaluate DSCK by implementing DSCKCassandra, a check-and-repair tool that

can find and fix problems in a Cassandra storage system. We find that our approach

(including I/O interception and additional integrity protection) imposes negligible

overhead when adding recoverability to most files stored by Cassandra; additional

protection (of the Commit Log) incurs modest overheads under write-heavy workloads.

We also show that DSCKCassandra greatly improves the amount of data that can be

recovered via repair. Standard Cassandra tools recover only 37.5% of its files and less

than 1% of data when corrupted; DSCKCassandra can recover 99% of files and 89% of

89

data with little performance overhead, and nearly all files and data if some performance

loss can be tolerated. Finally, we show that DSCKCassandra greatly improves local-

node restore time, replacing a multi-hour process with a repair that takes minutes, in

proportion to the size of the corrupted file rather than the entire node’s data.

The rest of the chapter is organized as follows. We first analyze existing systems and

their recovery tools (Section 4.1). We then discuss DSCK’s design (Section 4.2) and its

implementation of the Cassandra check/repair tool (Section 4.3). Finally, we perform

various experiments (Section 4.4) and summarize in (Section 4.5).

4.1 System Analysis

To better understand the state of the art in modern NoSQL storage systems, we first

analyze the behavior of three popular systems – MongoDB, Cassandra, and Riak – that

are widely used in deployment [83, 86, 89]. We choose these systems for their importance

(each is used in production), source-code diversity (MongoDB, Cassandra, and Riak are

written in C++, Java, and Erlang, respectively), and architectural diversity (they each

apply different techniques for replica management).

We perform five distinct analyses. First, we perform corruption resilience analysis

to understand how effective the standard check and repair tools that come with each

system is. Second, we enact file category analysis to understand what each system stores

in the file system and how each item should likely be protected. Third, we introduce

corruption recoverability analysis to understand the impact of corruption upon files within

each system. Fourth, we perform essential file analysis to determine which files must be

intact during node or system startup. Finally, we find out which files have checksums

associated with them for detecting corruption through corruption detectability analysis.

Our first analysis unveils weaknesses in existing systems, highlighting problematic

aspects of existing tools. The latter four are then critical in identifying how to improve

90

Distributed
System

Repair
Results

Num. Files
(%)

Data Size
MB (%)

MongoDB
(Total

26 Files)

Data Lost (Permanent) 21 (81%) 1238 (99.99)
Fails w/ Error 1 (3.8%) 7x10−5 (6x10−6)
Finishes w/o Repair 2 (7.6%) 0.004 (3x10−4)
Repairs 2 (7.6%) 0.006 (4x10−4)

Cassandra
(Total

194 Files)

Fails w/ Error 100 (51.6%) 16 (2.6)
Infinite Loop 20 (10.3%) 528.4 (86.4)
Not Repaired 2 (1%) 67.1 (10.9)
Repairs 72 (37.1%) 0.14 (0.02)

Riak (Total
442 Files)

Not Repaired 68 (15%) 0.03 (0.004)
Repairs (Eventually) 374 (85%) 853 (99.99)

Table 4.1: Corruption resilience of current repair tools. This table shows the efficacy of the
check and repair tools that come packaged with the distributed systems in repairing corrupted files.

each system, and thus realize a more robust check-and-recover tool.

4.1.1 Corruption Resilience of Current Tools

We now evaluate how effective the standard check and repair tools that come with these

distributed storage systems are in detecting and recovering from data corruptions? We

empirically find that these tools are not resilient to data corruptions. Cassandra’s check

and repair tool, called scrubber, fails to even run to successful completion when any one

of the 61.9% of files it stores on disk is corrupted (Table 4.1). Similarly, MongoDB’s tools

repair corruption only for two small files.

We perform this empirical evaluation using a temporary Btrfs [159] snapshot of the

uncorrupted disk-state for each of the distributed storage system being studied. This

uncorrupted snapshot is taken after loading the systems with 500K entries that each

consist of an id field and 10 other 100 bytes sized fields containing random data using

the YCSB [47] benchmark. We corrupt one single file in this temporary uncorrupted

snapshot by overwriting it completely with random data or zeroes. Then, we run the

repair tool that comes packaged with the distributed storage system and collect its

91

output. The entire experiment is repeated three times to validate the results. We ignore

files containing metrics, configuration settings and diagnostic logs for this experiment

because these files are not repaired by the standard check and repair tools. We now

discuss the results from this experiment.

Cassandra: The standard disk-state check and repair tool in Cassandra is called a scrubber.

There are two versions of this tool. One called sstablescrub that is run offline when the

node is down and another called nodetool scrub which is run while the node is online [87].

For this experiment, we run both tools one after another on a corrupted disk-state. As

shown in Table 4.1, the scrub tools (both offline and online) output an Error or throw

a Java Exception for 51.6% of the files. They get into an infinite loop for 10.3% of the

files. The looping arises because the scrubber is not able to handle corrupted data when

trying to read old SSTables (sorted string tables) and replace them with new ones. The

scrub tools run successfully without any errors only for the remaining 37.1% of the files

that comprise solely of all the SSTable component files that end with “Summary.db”,

“Digest.crc32”, and “TOC.txt”. These files are not used by the scrub tools for reading the

contents of the old SSTables.

MongoDB: MongoDB’s repairDatabase tool aims to be analogous to the fsck tool for

file-systems but it comes with a few warnings: it must be avoided when there are other

replicas or backups available that can be used to restore the corrupted data because it can

loose data during recovery. This tool removes the corrupted data but does not recover

it [137]. MongoDB allows plugging in a lower-level storage engine like RocksDB or

WiredTiger. We configured MongoDB to use RocksDB as the lower-level storage engine.

RocksDB is a local key-value store written in C++ that uses log structured merge trees

for storing data on disk. MongoDB’s repairDatabase tool is not properly integrated with

the lower-level RocksDB’s repair tool and therefore does not invoke RocksDB’s repair

tool during recovery. Thus, we ran our experiments with a two-step repair procedure:

first, the lower-level RocksDB’s repair tool is run followed by MongoDB’s repairDatabase

92

tool.

The corruption resilience of this repair procedure is shown in Table 4.1. Only two files

are repaired after a corruption (that too by RocksDB’s repair tool and not by MongoDB’s

repairDatabase tool). MongoDB, when used with the RocksDB storage-engine, stores the

bulk of the data in SST (sorted string table) files. Corrupted SST files are archived by

RocksDB’s repair tool (along with an alert that some data might have been lost). This

removes corruption and allows running the repairDatabase tool without any errors but

data is permanently lost in this process. Alternatively, when we ran the repairDatabase

tool without first running RocksDB’s repair tool, it always crashed with errors like

“invariant failed”, “out of memory”, and “assertion failed” when dealing with corrupt

SST files. Since MongoDB does not have read-repair or anti-entropy features that could

recover the lost data over time, this data loss is permanent. Others with extensive

experience with MongoDB also make a similar claim: that the MongoDB repair tools are

really “corruption-ectomies” because they remove corruption but may not leave behind

much clean data and that though these tools are not great, they allow one to get the

server running again [42].

Riak: Riak has different techniques for repairing different types of files like secondary

indices, search indices, LevelDB files, and partitions [84]. We used a custom repair script

that first invokes the LevelDB repair, then clears the Anti-Entropy state, invokes a repair

on the affected partition and then finally rebuilds the Anti-Entropy state. As shown

in Table 4.1, this repair procedure recovers from corruption in almost all files except

for 68 critical files that store cluster state, virtual nodes state, and ring status. These

files do not have any checksum protection on them. When these files are corrupted, it

mostly results in the node failing to boot up or subsequently failing while serving read

requests. For the rest of the 374 files that are repaired, the appropriate Anti-Entropy

repair procedures must be invoked right away in order to recover the data from the

other replicas. The current policy in Riak is to trigger Anti-Entropy check periodically

93

(when it is enabled). Any data lost during repair will be recovered only during the next

scheduled Anti-Entropy check or during a read-repair when the lost data is read by the

user.

4.1.2 File Category Analysis

The following analyses focus on how data is stored by each system, in order to better

understand how to detect and recover from corruptions within each. Each system

distributes data and metadata across many nodes within a distributed system, and

within each node utilizes a local file system for all such information. Thus, we must first

understand how data and metadata are stored within the local file system of each node.

To do so, we perform a file category analysis. This empirical evaluation determines

what type of content is stored in each file. For example, does a file contain user-supplied

data, an index, or configuration information? We automatically classify files into one of

ten semantic categories.

Knowledge of file contents is critical for any check-and-recovery tool. For example, a

file that contains diagnostic logs need not necessarily be protected from data corruptions

using checksums; in contrast, a file containing metadata essential for user-data access

must be properly protected to enable detection and repair.

Our analysis automatically categorizes files into one of ten semantic file-types (with

occasional manual intervention required). These semantic file-types were created con-

sidering how the files differ on aspects like: the information that they contain, the

purpose of the information in them, their effect on the distributed storage system when

they are corrupted, the possibility of detecting a corruption in them, the possibility of

recovery after corruption, the difficulty of recovery, etc. The results of this analysis for

the three distributed storage systems is shown under the column titled “File Category”

in Figures 4.1 to 4.4.

94

Fi
gu

re
4.

1:
Er

ro
rd

et
ec

tio
n

an
d

re
co

ve
ra

bi
lit

y
an

al
ys

is
su

m
m

ar
y.

Th
is

fig
ur

es
ho

w
st

he
am

ou
nt

of
da

ta
st

or
ed

on
di

sk
by

a
sin

gl
e

no
de

fo
rt

he
YC

SB
[4

7]
be

nc
hm

ar
k

by
M

on
go

D
B,

Ca
ss

an
dr

a,
an

d
Ri

ak
.T

he
on

-d
isk

fil
es

ar
ec

at
eg

or
iz

ed
by

th
et

yp
eo

fc
on

te
nt

th
ey

co
nt

ai
n,

th
e

da
ta

-in
te

gr
ity

pr
ot

ec
tio

n
th

ey
ha

ve
an

d
th

eir
re

co
ve

ra
bi

lit
y

af
te

ra
co

rr
up

tio
n.

95

The description about the ten different semantic file types follows. The data supplied

by the user is stored in three categories of files. The actual table files, categorized as

Data Table, are the final storage locations of the user-supplied data. Often, the user-data

is first written to a write-ahead log for consistent recovery from a crash [170]. Such logs

are categorized as Data Log. Indices created for the efficient data retrieval from the Data

Table files are categorized as Data Index.

Files containing information about the distributed cluster of nodes such as peer

details, ring topology, token ranges, and partition maps are classified under the Cluster

State category. The Consensus State category contains files with information about the

consensus reached among the distributed nodes. Files containing information about

the divergence of state across peer-nodes with identical data for future reconciliation

through anti-entropy protocols are classified as Anti-Entropy State. Files categorized as

BookKeeping contain information like process identities, locks, checksum digests, list of

files, identifiers, and manifests. In the cumulative summary graph in Figure 4.1, Cluster

State, Consensus State, Anti-Entropy State, and BookKeeping categories are represented by

a single new category called Internal State for brevity.

Files containing debug, error or information logs generated while the system runs

are classified as Diagnostic Logs. Config files contain configuration information used to

tune the behavior of the distributed storage systems. Files containing metrics about

the various operations that have been completed in the past are categorized as Metrics.

These three categories are represented as a single new category called Metrics, Conf, Log

in the cumulative summary graph in Figure 4.1.

As seen in the column titled “File Category” in Figure 4.1, most of the on-disk files

stored by the distributed storage system are related to the user-supplied data – they fall

under the Data Table, Data Log, and Data Index categories. Compared to other distributed

storage systems, Riak maintains more internal state on disk. The major contributor to

this is the active anti-entropy state that Riak always maintains about the divergence

96

(a
)L

eg
en

d

(b
)C

as
sa

nd
ra

Fi
gu

re
4.

2:
A

na
ly

si
s

of
fil

es
st

or
ed

by
C

as
sa

nd
ra

.
Th

is
fig

ur
es

ho
w

st
he

va
rio

us
fil

es
cr

ea
te

d
by

Ca
ss

an
dr

a
al

on
g

w
ith

in
fo

rm
at

io
n

lik
e:

th
et

yp
eo

fc
on

te
nt

sto
re

d
in

th
em

,t
he

da
ta

-in
te

gr
ity

pr
ot

ec
tio

n
av

ai
la

bl
ef

or
th

em
an

d
th

er
ec

ov
er

ab
ili

ty
af

te
ra

da
ta

co
rr

up
tio

n.
Th

es
iz

eo
ft

he
ba

r
gr

ap
hs

is
in

lo
g-

lev
el

sc
al

et
o

im
pr

ov
et

he
vi

sib
ili

ty
of

sm
al

ld
at

a
siz

es
.

97

of state across peer-nodes. Cassandra, on the other hand, creates anti-entropy state

only during a repair session [57]. The total on-disk storage used by MongoDB is almost

twice that of Cassandra because all the data inserted using the YCSB benchmark are also

stored in the oplog collection along with a timestamp for replicating it from the primary

to the secondary nodes of a replica set. Old entries in the oplog collection has not yet

been reclaimed because the total size allocated for it is 990 MB out of which only 596 MB

has been used.

Figures 4.2 to 4.4 show how the different categories of files are spread out under the

file-system hierarchy for the three distributed storage systems. Files that are of the same

type are often stored in the same directory. The directories are named and laid out on

disk based on the type of information stored in the files residing in them. This is useful

for implementing file-specific check and repair because prefix strings over file names and

paths can be used to specify how different file categories need to be protected against

corruption, checked for detecting a corruption and recovered from a corruption. For

example, prefixes can be used in Cassandra to specify that all files within the system and

system_schema directories are important and they need to be protected against corruption

even if the associated costs are high.

4.1.3 Corruption Recoverability Analysis

Our next analysis focuses on corruption within the data and metadata of each NoSQL

system. Specifically, within this corruption recoverability analysis, we classify each file

based on the techniques that can be used to recover lost content after a data corruption

or inconsistency. To perform this analysis, we both scrutinize source code as well as

created automation in order to categorize files into four categories based on: “possibility

of recovery”, “the ease of recovery”, and “the need for new tools for recovery”. The

results of our analysis are shown under the column titled “Recoverability” in Figures 4.1

98

to 4.4. The description about the four categories is as follows.

Certain files are not essential for the correct functioning of the system and hence

do not need any recovery technique. For example, files used to log what happened in

the system for manual analysis during a future debugging session and files that are

useful to know the metrics on the various operations that happened in the past. Such

files are categorized as Non critical. Files that can be recovered using remote replicas are

classified under the Using Replica category. Files that do not have any other replica but

are important for the health of the distributed storage system are classified as Critical.

Files that can be recovered by regenerating them using the tools that come with the

distributed storage system are classified as Regenerate.

4.1.4 Essential Files Analysis

We also experimentally evaluate the corruption resilience of each system. We first

identify the files that are essential for these systems to start up and call them essential

files. These files are read by the distributed storage system when it is starting up. When

corrupted, these files will prevent the distributed storage system node to start up even

after running the standard repair tools that come with the distributed storage system.

Our approach for detecting essential files consists of two phases. In the first phase, we

bring up a 3-node cluster from scratch, load data using the YCSB [47] benchmark, bring

the cluster down, and finally take a snapshot of each local disk using the Btrfs [159] file

system. In the second phase, we load the Btrfs snapshot, corrupt one particular file in

one of the three nodes by overwriting it completely with random data, run the recovery

tools that come with the distributed storage system on the corrupted disk-state, and

finally try to bring the cluster up. If the cluster fails to come back up, then the corrupted

file is an essential file. To speed up this detection process, we automate the process for

each of the three distributed storage systems. We confirmed our findings by repeating

99

(a
)L

eg
en

d

(b
)M

on
go

D
B

Fi
gu

re
4.

3:
A

na
ly

si
s

of
fil

es
st

or
ed

by
M

on
go

D
B.

Th
is

fig
ur

es
ho

w
st

he
va

rio
us

fil
es

cr
ea

te
d

by
M

on
go

D
B

al
on

g
w

ith
in

fo
rm

at
io

n
lik

e:
th

et
yp

eo
fc

on
te

nt
sto

re
d

in
th

em
,t

he
da

ta
-in

te
gr

ity
pr

ot
ec

tio
n

av
ai

la
bl

ef
or

th
em

an
d

th
er

ec
ov

er
ab

ili
ty

af
te

ra
da

ta
co

rr
up

tio
n.

Th
es

iz
eo

ft
he

ba
r

gr
ap

hs
is

in
lo

g-
lev

el
sc

al
et

o
im

pr
ov

et
he

vi
sib

ili
ty

of
sm

al
ld

at
a

siz
es

.

100

the experiment until confidence was assured.

We correlate the resulting information about these essential files against the other

classifications that we do based on “File Category”, “Corruption Detectability”, and

“Corruption Recoverability”. This correlation spread out under the file-system hierarchy

in these distributed storage systems is shown using a light grey shade in Figures 4.2

to 4.4. As seen in the graphs, files containing Cluster State, Config, BookKeeping, and

MongoDB’s system-state constitute the essential files. These files do not always have

checksum protection. Some of them can be recovered using a replica or regenerated

while the rest are Critical and cannot be recovered easily.

4.1.5 Corruption Detectability Analysis

Detecting data corruption is a prerequisite for recovery from the corruption. We now

analyze the existing data-integrity protection provided by the three distributed storage

systems for the various files they store on disk. This analysis will help us in designing

an appropriate solution to make the distributed storage systems completely resilient to

data corruptions.

We read through the relevant parts of the source code of the three distributed storage

systems to understand the various on-disk file formats they use. We combined this

information along with details about well-known file-formats such as BSON and XML

to automatically categorize files into one of four levels of checksum-categories that vary

in terms of (1) the data-integrity protection they provide over different portions of the

file, (2) the computing resources they consume during file access, (3) the complexity

of the software needed to maintain the checksums during writes and updates, and (4)

the amount of data that needs to be recovered upon a corruption. The results of this

corruption detectability analysis are shown under the column titled “Checksum Category”

in Figures 4.1 to 4.4. The description of the four different categories follows.

101

(a
)L

eg
en

d

(b
)R

ia
k

Fi
gu

re
4.

4:
A

na
ly

si
s

of
fil

es
st

or
ed

by
R

ia
k.

Th
is

fig
ur

es
ho

w
st

he
va

rio
us

fil
es

cr
ea

te
d

by
Ri

ak
al

on
g

w
ith

in
fo

rm
at

io
n

lik
e:

th
et

yp
eo

f
co

nt
en

ts
to

re
d

in
th

em
,t

he
da

ta
-in

te
gr

ity
pr

ot
ec

tio
n

av
ai

la
bl

ef
or

th
em

an
d

th
er

ec
ov

er
ab

ili
ty

af
te

ra
da

ta
co

rr
up

tio
n.

Th
es

iz
eo

ft
he

ba
rg

ra
ph

si
si

n
lo

g-
lev

el
sc

al
et

o
im

pr
ov

et
he

vi
sib

ili
ty

of
sm

al
ld

at
a

siz
es

.

102

Files that do not have any sort of checksum based data-integrity protection for

detecting file corruptions are placed under the No Checksum category. Files that only

have checksums over the header (the first few bytes of the file) are categorized as Header

Checksum. Corruptions in such files that also modify any part of the checksum-protected

header portion can be detected. Files that have complete data-integrity protection are

categorized under the Per-block Checksum or Whole-file Checksum categories. These files

have checksums over chunks of data that they contain or over the entire file respectively.

Corruptions in any part of the file can be detected. With per-block checksum, the specific

chunk that is corrupted can be identified so that recovery can be performed only for the

corrupted chunk instead of the entire file.

As seen in the column titled “Checksum Category” in Figure 4.1, most of the on-disk

files stored by the three distributed storage systems are protected using checksums. A

new corruption-resilient check and repair tool only needs to add checksums for those

files that do not already have checksum-protection by the distributed storage system.

4.1.6 Observations from the Study

We now make several observations relevant to data corruption detection and recovery

in MongoDB, Cassandra, and Riak and discuss their implications for a new corruption-

resilient check and repair tool.

A small amount of on-disk data including important system-state does not have data-

integrity protection: All the on-disk files that store user-supplied data, which form

the bulk of the on-disk state, are protected with checksums by MongoDB, Cassandra,

and Riak. However, the auxiliary files generated from the user-data like those that store

indices, bloom filters, and statistics are not always protected with checksums. Moreover,

other important files that store system-state like table namespaces, list of tables, other

metadata, peer-node details, consensus state, configurations, identities, and security

103

keys are also not always protected with checksums. Corruptions to these important

files that store critical system-state can make all the other uncorrupted data in the node

inaccessible. For example, in Cassandra, the files that store the statistics and index

components of the SSTables (sorted string tables) containing the system-state are not

protected with checksums. Even essential files that are necessary for the system to start

up are not always protected by checksums as shown in Figures 4.2 to 4.4.

Without checksums, it is hard to detect a data corruption and fail-fast. Although

traditional file system checkers [29, 125, 126] relied on parsing on-disk state and validat-

ing their integrity and sanity in order to detect corruption, many modern file systems

use checksums to detect corruptions in metadata, data or both [31, 111, 159, 172, 224].

Therefore, when the distributed storage system reads the corrupted content and in-

terprets it, unknown erratic behavior could occur. It is computationally exhaustive to

quantify the ill effects of corruption because it varies based on the specific value of

the corrupted content and it also depends on the distributed storage system’s code

that interprets the corrupted data. For example, when corrupted files containing the

bloom filter component of certain Cassandra SSTable files are accessed and interpreted

by Cassandra’s code, it leads to either “Out of Memory” errors or does not cause any

error depending on the specific corrupted value. Cassandra is known to even propagate

corrupted data to other correct replicas when compression is turned off [62]. Therefore,

when implementing an enhanced corruption-resilient check and repair tool, developer(s)

must make sure all the important and critical files stored on disk are protected with

checksums.

MongoDB, when used with RocksDB storage-engine, stores system-state and user-

data in the same SST (sorted string table) file on disk: It is not a good idea to combine

system-state that is critical to the correct functioning of the system along with the user

data and store them in a single file because it complicates recovery. For example, Mon-

104

goDB, when using the RocksDB storage engine, stores cluster state, indices and user-data

all into a single RocksDB store. This leads to both system-state and user data getting

stored in a single SSTable file on disk. A small corruption to the user-data stored in a

SST file that contains both user-data and system-state could lead to the entire SSTable

file along with the system-state getting archived by the RocksDB recovery tool. A robust

check and repair tool must know such behavior in order to recover corrupted data

correctly and completely by leveraging the existing lower-level recovery tools.

File formats used by some low-level storage engines are not corruption resilient: The

SST file-format used by low-level data stores like LevelDB, RocksDB and the BitCask

file-format used by Riak are not corruption resilient. They lose uncorrupted data while

recovering from a corruption. For example, in BitCask data format used by Riak, if there

is a corruption in the start of the file and the corresponding index file is also corrupted,

then the entire BitCask data file is lost. A new corruption-resilient check and repair tool

can perform a complete recovery only if it is aware of all the uncorrupted data that gets

lost due to a corruption.

Fixing a corrupted block in an immutable SST file requires creation of a new SST file

with the uncorrupted data: The SST file-format used by LevelDB, RocksDB and the

SSTable file-format used by Cassandra are not ideal for fixing corrupted blocks. The

easiest way is to create a new SSTable containing the uncorrupted data. Ad hoc so-

lutions that do not require a full data copy are possible in certain cases but they are

not guaranteed to work with future versions of distributed system software. A new

corruption-resilient check and repair tool will have to delete the corrupted SSTables and

regenerate them by using techniques like read-repair and anti-entropy or by explicitly

fetching the relevant content from a remote replica.

105

Recovery tools in some low-level storage engines are not thorough and they are not

integrated with the repair tools in the high-level distributed storage system: The re-

covery tools in RocksDB and LevelDB archive the entire SST (sorted string table) file

when a single block of data is corrupted. The tools output that some data could be

lost because of archiving but do not explicitly say what data has been lost. Moreover,

these low-level storage engines are not integrated with the higher-level repair tools. For

example, MongoDB’s repairDatabase tool does not invoke RocksDB’s repair tool. In such

scenarios, a system administrator needs to know enough details about the internals of

the distributed system to figure out what data has been lost and how to recover the

lost data. Alternatively, a full repair, if available, needs to be run which could consume

significant time and resources. A new corruption-resilient check and repair tool that

leverages the existing recovery tools must be wary of this behavior to implement a

correct and complete recovery.

Certain corrupted files can be regenerated by just deleting them and triggering their

regeneration: There are some files that, when corrupted, lead to incorrect behavior of

the distributed storage system but do not cause harm if they are deleted and regenerated.

Some such files are regenerated by the distributed storage system software automatically

after detecting their absence. While others can be regenerated by invoking certain

tools. For example, in Riak: a file named “riak_core_ring.default.20161018190730” that

contains information about the ring containing the distributed nodes is successfully

regenerated after a corruption by just deleting it and then restarting the node. In

Cassandra, auxiliary Index.db components in a SSTable can be deleted after a corruption

and the scrubber tool can be executed to regenerate them. However, when these files

are left corrupted, the distributed storage system fails to boot up even after running the

check and repair tools that come with the distributed storage system. A new corruption-

resilient check and repair tool can take advantage of this observation by just deleting

106

and regenerating corrupted files instead of repairing them.

4.1.7 Summary

Most of the user-stored data is protected using checksums while some small files that

are critical for accessing the rest of the data are not protected with checksums. An

unrecoverable corruption to these critical files could make all other data inaccessible.

Some critical files can be regenerated after a corruption by just deleting them and

triggering their regeneration using existing tools. The repair procedure in all the three

systems do not use the remote replicas to immediately recover corrupted content that is

also available in a remote replica; Cassandra and Riak rely on anti-entropy to eventually

recover the lost data while MongoDB permanently loses data.

4.2 DSCK

DSCK is a framework that can be used to implement file-specific corruption detection

and recovery. It provides a corruption-resilient store that can be used to store important

files that are hard to recover after a corruption. Mirrored copies of such files are kept

along with checksums. DSCK allows writing customized plug-in scripts that can check

and recover specific file categories. The goal of DSCK’s check and repair tool is to be able

to detect and recover from data corruption in files. DSCK works on the offline disk-state

when the node is not running. We expect DSCK to be invoked by the user, the system

administrator or through a watchdog daemon that notices that the NoSQL application

has crashed. DSCK does not attempt repairs of file-system metadata. DSCK avoids the

need to fall back on the time-consuming recovery option of replacing the entire node.

107

Process 1

I/O library calls

....

libc, libaio, etc.

(I/O shared libraries)

DSCK shared library

Process N

System Calls

DSCK's

Check and

Repair

Program

Application

File System(s)

Usual

on-disk

files

DSCK's

corruption resilient

store files

Disk(s)

Figure 4.5: DSCK components. This figure shows the components of DSCK: the shared library
used to maintain the corruption-resilient store, the checker and the repairer placed alongside the other
components of the distributed storage system and the operating system.

4.2.1 Design

DSCK comprises of three main components. Figure 4.5 shows the various components

of DSCK and where they are placed with respect to the distributed storage system.

Corruption-Resilient Store: This component transparently stores a selected set of files,

that do not have any data-integrity protection provided by the distributed storage system,

in a corruption-resilient fashion by maintaining locally mirrored copies of the files along

with checksums over 4 KB chunks. The mirrored copies and the corresponding checksum

files are stored on disk at a location that is spatially distant from the original file that is

being protected. The corruption-resilient store makes the task of writing checkers easier

108

because the checksums can be used to verify a file’s integrity instead of parsing the file

contents to validate by checking for sane values.

Checker: This component uses the checksums to detect any data corruptions on the

offline disk-state of the distributed storage system.

Repairer: DSCK allows custom scripts to be plugged in that can be used to check and

recover files of a specific file-type in a given distributed storage system. Often, existing

check and repair tools that come with the distributed storage systems can be leveraged

in writing such scripts. The recovery tool uses the techniques described elsewhere

(Subsection 4.2.4) to recover any corrupted files.

4.2.2 Corruption-Resilient Store

The corruption-resilient store maintains local replicas of a selected set of files along with

32-bit CRC checksums over 4 KB blocks to detect corruptions to the files stored in the

corruption-resilient store. Only those files that do not (originally) have data-integrity

protection within the distributed storage system are chosen for storage in the corruption-

resilient store. Ideal candidates for corruption resilience through this store are: files

that are critical to the health of the system but have a complex format that makes it

challenging to write robust checkers and validators. DSCK places the local replicas

on a separate disk or in regions of the same disk that are spatially distant from each

other as well as the protected file because of the spatial locality exhibited by latent sector

errors [19, 173]. Our current implementation of DSCK uses a modified libjio [28] library

to atomically update the corruption-resilient store.

Selective I/O Interception

MongoDB, Cassandra, and Riak maintain application-level checksums for user-supplied

data which occupies the bulk of the disk space as shown in Figures 4.2 to 4.4. However,

109

there is no data-integrity protection for some files that are critical to access the rest

of the data. For example, Cassandra does not have data-integrity protection for the

non-data files within an SSTable. Our goal is to complement the pre-existing partial

data-integrity protection provided by the distributed storage system. DSCK does not

add checksums for those files that already have data-integrity protection provided by

the distributed storage system and for those files that can be easily recovered after a

corruption. DSCK uses a configuration file for each distributed storage system that

dictates which files need corruption resilience through DSCK by using patterns, prefixes,

and suffixes over file names and paths. We evaluate DSCK’s overhead with different

configurations for Cassandra in Section 4.4. These configurations differ in the overheads

they impose (Table 4.5), the corruption-resilience improvement they provide and the

corruption recovery time.

All three distributed storage systems studied use standard libraries like libc and libaio

to interact with the operating system. We intercept the I/O related standard library

calls by using a shim shared-library that is preloaded before the standard libraries. The

library calls made by the application invoke the shim library which acts a proxy to the

standard library calls. Using the shim library, DSCK transparently maintains checksum-

protected local replicas of a selected set of files by intercepting write related library

calls. More details about how the I/O interception shim library is implemented can be

found later (Section 4.3). This approach is minimally invasive making it easy to adopt

and deploy. It does not require superuser privileges and it works with any file system

chosen by the system administrator and does not require modifications to the distributed

storage system, runtime engines, libraries or the operating system. Moreover, adding

checksums at a higher level in the storage stack instead of a lower level provides better

data-integrity protection [167, 230]. Although we have not ported DSCK to different

operating systems, this technique of using a preloaded shim library is known to be

portable across Linux, Windows, and Solaris [123].

110

Maintaining I/O Related State

DSCK maintains certain I/O-related information about each process in per-process

map (from C++ standard library) data structures. Information is maintained only for

those files for which DSCK selectively intercepts the I/O as described in the previous

section. A map called fdinfo, with the open file-descriptor number as key, contains

information about open file descriptors like: the corresponding file path, the device id,

the inode number, whether it is a directory file or a normal file, whether it is opened in

synchronous mode and a read-only file descriptor if the file was opened in write-only

mode. A second map called filedirtyinfo, with the device id and the inode number as the

key, contains the regions of the file that were dirtied since the last time the on-disk state

was synchronized for this file using library calls like fsync and fdatasync. A third

map called mmapinfo, with the memory-mapped regions of the address space as key,

contains information including the original application specified memory protection

during the mmap library call, the backing file description, the offset in the file at which

the mapping starts and the set of pages that have been dirtied since the last time the

on-disk state was synchronized using the msync library call.

Maintaining Locally Mirrored File Copies

DSCK intercepts write related library-calls like write, pwrite, pwritev, etc., and

performs different actions based on whether the file was opened in synchronous mode or

asynchronous mode. If the file was opened in synchronous mode, then DSCK atomically

updates the corruption-resilient store with the write before returning control back to

the application. If the file was opened in asynchronous mode, then DSCK updates the

filedirtyinfo map with the regions of the file that are being modified. DSCK also intercepts

the library calls that synchronize the on-disk state like fsync and fdatasync to

update the corruption-resilient store atomically with the changes to the file since the

111

last synchronization of the on-disk state.

Handling Memory-mapped I/O

DSCK intercepts the initial mmap library call and checks if the request is backed by a file

for which a corruption-resilient copy must be maintained as dictated by the configuration

file. It then checks if the file is writable and if this is not a read-only memory map request.

If all these checks evaluate positive, then DSCK write protects the memory-mapped

address space region. Moreover, during initialization at the process-creation time,

the DSCK shim library registers its own Segmentation-Fault handler in order to trap

segmentation faults.

Any write accesses to the memory-mapped address space region will lead to a

segmentation fault causing DSCK’s segmentation fault handler to be invoked. Upon

intercepting a write access to a page, DSCK notes down that the region of the file address

space has been modified in the mmapinfo map before removing the write protection

on the page. Subsequently, when an msync library-call is intercepted, DSCK updates

the corruption-resilient storage atomically with the modifications since the last syn-

chronization of the on-disk state. DSCK also write protects the associated pages before

synchronizing the modifications in order to detect future writes to these pages. The

DSCK installed segmentation-fault handler forwards the fault to the original fault han-

dler pre-installed before itself in case the faulting address is not a memory-mapped

address that DSCK monitors.

Ensuring Crash Consistency

After a crash, DSCK first uses the recovery function provided by libjio [28] library to

bring the files that were being modified during the crash to a consistent state. Then,

DSCK ensures that the special files and their replicas in the corruption-resilient store

match. This step is necessary because after a crash the special files could contain writes

112

that have not yet been synchronized by the distributed storage system using library

calls like fsync. In this scenario, their versions in the corruption-resilient store will

not contain these writes. The distributed storage system does not expect these writes

to be persisted to the disk because it has not yet called any synchronizing library calls

like fsync. We want to prevent the distributed storage system from reading the writes

that are not yet in the corruption-resilient store, because it could lead to divergence

between the data stored in the corruption-resilient store and the actual files stored by

the distributed storage system. Ensuring that the distributed storage system starts with

an on-disk state that has the same content as the corruption-resilient store avoids this

problem.

4.2.3 Checker

The checker component of DSCK uses the checksums that are provided by the distributed

storage system and the checksums it additionally maintains in the corruption-resilient

storage to detect corruptions. DSCK leverages any checker tools that come as part of the

distributed storage system to detect corruptions using the checksums that were added

by the distributed storage system. DSCK detects any corruptions to files stored in the

corruption-resilient storage using the checksums that it additionally maintains.

4.2.4 Repairer

We will now discuss the various recovery techniques that DSCK uses to recover the lost

data once a corruption has been detected.

From DSCK’s Corruption-Resilient Store: If a local corruption-free mirrored copy of the file

is available in the corruption-resilient store, then the file is recovered using this copy.

From a Remote Replica: DSCK allows using recovery scripts that can recover data lost due

to data corruptions using a remote replica when possible. These scripts use any repair

113

tools that already come with the distributed storage system. The advantage of these

recovery scripts is that they invoke the appropriate recovery tools automatically based

on what data is corrupted. Without the DSCK recovery scripts, the repair tools that

come with the distributed storage systems need to be invoked manually by the system

administrator appropriately depending on the data that was corrupted. Alternatively, a

full repair needs to be run which could consume significant time and resources.

Using Software Regeneration: We observed that, for some corrupted files, just deleting

them and triggering their regeneration suffices. For example, an easy way to recover a

corrupted immutable Cassandra SSTable is to just delete all the files for that SSTable and

then invoke the nodetool repair command for the keyspace and tablename that contained

the corrupted SSTable. However, this technique should be used with caution because

regeneration could be time consuming for some files.

Node Replacement: In the unlikely scenario when an alternate ideal faster recovery op-

tion does not exist, DSCK falls back to the time-consuming straightforward recov-

ery technique of taking out this node and replacing it with a new node. However,

DSCKCassandra, a corruption-resilient check and repair tool we built using DSCK for

Cassandra, does not yet use node replacement for recovery.

4.3 Implementation

We now discuss two critical aspects of our implementation. The first is a generic I/O

interception mechanism; any check-and-recover tool built with DSCK could utilize this

library as needed. The second is the detailed implementation of DSCKCassandra, a

thorough check-and-recover tool for the Cassandra storage system.

114

4.3.1 I/O Interception Mechanism

DSCK uses a preloaded shim shared-library that has proxy functions for the standard

I/O-related library calls in libraries like libc and libaio. The DSCK shared-library is

written in C++ and is approximately 3800 LOC. Proxy functions for multiple libraries

like libc and libaio can coexist in a single shim library. Listing 4.1 shows the pseudo-code

of a typical DSCK proxy function.

4.3.2 Check and Repair for Cassandra

We now discuss implementation details of the corruption-resilient check and repair tool

we built for Cassandra using DSCK known as DSCKCassandra. We first discuss which

data we must protect, then how the corruption-resilient store is utilized, and finally how

the check and repair tools operate.

Cassandra Data: The bulk of the data stored by a Cassandra node falls under the

/node/var/lib/cassandra/data directory which contains SSTables that each store a variety of

information including system-state and user-supplied data. The SSTables containing the

system-state are small in size, on the order of a few hundred KBs. SSTables, by design,

are immutable and are written once but read many times. Each SSTable is composed of

8 different files. A compressed SSTable is made up of 8 files with a common prefix like

mb-1-big- and the following suffixes: CompressionInfo.db, Data.db, Digest.crc32, Filter.db,

Index.db, Statistics.db, Summary.db, and TOC.txt. An uncompressed SSTable contains a file

ending with CRC.db instead of the file ending with CompressionInfo.db. Of these 8 files,

the file ending with Data.db contains the actual user-supplied data and is checksummed

by Cassandra. The other 7 auxiliary files, including the files that end with CRC.db and

CompressionInfo.db that are critical to access the checksums, are not themselves protected

with checksums.

Corruption-Resilient Store: The default policy used by DSCKCassandra is to store all

115

Listing 4.1: Pseudo-code for a typical proxy function in DSCK’s shim library.
ret_type fn_name(arg1 ,arg2 ,..,argN){

//set real_fn_name = original lib func
if(unlikely (! lib_initialized ())) initialize_lib ();
//pre -process this intercepted call
pre_process_fn_name(arg1 ,arg2 ,..,argN);
//call the original library function
ret_type res=real_fn_name(arg1 ,arg2 ,..,argN);
//post -process this intercepted call
post_process_fn_name(res,arg1 ,arg2 ,..,argN);
return res;

}

Criteria Configuration Values

Exclusion
File Name Prefix

“mb_txn_flush”,
“mb_txn_compaction”,

“-CommitLog”
File Path Contains “/hints/”, “/saved_caches”
File Name Suffix “-Data.db”, “-Index.db”

Forced
Inclusion File Path Contains “/data/system”

Table 4.2: DSCKCassandra default configuration. This table shows the files that are protected
using the corruption-resilient store with the default configuration used by DSCKCassandra. Files that
match the “Forced Inclusion” criteria are protected even if they match an “Exclusion” criteria.

files except the following in the corruption-resilient store: the CommitLog, the tempo-

rary logs maintained during SSTable creation or compaction, the cache and hints files

that are used for performance enhancement and the files ending with Data.db and In-

dex.db containing user-supplied data. However, DSCKCassandra maintains transparent

corruption-resilient copies of files ending with Data.db and Index.db that contain system-

state. Table 4.2 shows this default configuration. The Cassandra CommitLog files are

temporary log files that are 32 MB in size each and are created periodically. These files

are read from only during recovery after a crash.

An alternate policy that includes files skipped by this default policy is possible but

will incur additional overheads. The overheads imposed by a few such alternate policies

are shown in Table 4.5. Apart from the default policy, we evaluate three more policies

116

that additionally protect the following files using DSCK’s corruption-resilient store:

CommitLog files, Index.db component files for SSTables storing user-supplied data, and

both. Each of these policies protects a different set of files using DSCK’s corruption-

resilient store and therefore differ in the overheads they impose, the corruption resilience

they provide and the corruption recovery time.

Checker: The DSCKCassandra checker, when invoked over the on-disk state of a Cas-

sandra node, first checks for any data corruptions. DSCKCassandra uses the Cassandra

created checksums to verify the integrity of files ending with Data.db that contain user-

supplied data. For the files ending with Index.db that contain indices over user-supplied

data, the checker verifies their integrity by using the knowledge about the format of the

Index.db file and Data.db file. An inconsistency at this stage indicates a corruption of the

Index.db file because the integrity of the Data.db file is verified in the previous step using

Cassandra created checksums. For the remaining files that are protected by DSCK using

the corruption-resilient store, DSCKCassandra uses the checksums that it maintains to

verify their integrity. Corruptions in the hints and cache files that are used by Cassandra

for performance enhancement are neither checked nor recovered but are simply deleted

during recovery. We wrote the core checker logic for Cassandra in the Java language in

451 LOC by reusing the classes that come with the Cassandra source code.

Repairer: DSCKCassandra uses the following techniques to bring the on-disk state to

a corruption-free state: the corruption-resilient store is used to recover corrupt files

that are protected by it, a modified version of the nodetool scrub tool that comes with

Cassandra is used to regenerate the corrupted Index.db files from the corresponding

Data.db files, the remote replicas are used to recover corrupted Data.db files containing

user-supplied data by first deleting the SSTables containing them and then using either

the anti-entropy [57] (with the nodetool repair command) or the read-repair [58] feature

in Cassandra. We wrote part of our recovery tools in the Java language in 556 LOC. We

also use shell scripts to invoke the core checker logic and then the appropriate recovery

117

Aspect Specification
Memory 128 GB
Processor 2x Intel E5-2630 2.4GHz (16 cores)
Disk Drive 1.2 TB HDD and 480 GB SSD
Network Onboard 1Gb
OS, FS Linux (Kernel 4.4.0), Ext4
Software MongoDB-3.2.9, Cassandra-3.11.0, Riak-2.0.2

Table 4.3: Experimental setup. This table shows the setup used for our experiments.

Workload Without With % Runtime % DSCK % DSCK
DSCK (secs) DSCK (secs) Overhead Added Writes Added Reads

Seq. Reads 2.13 2.09 -1.88 - -
Seq. Writes 2.27 6.82 200 201 -
Seq. RW Mix 2.11 2.89 37 201 -
Rand. Reads 3.42 3.43 0.29 - -
Rand. Writes 2.27 23.9 952 815 -
Rand. RW Mix 3.4 12.34 263 425 28

Table 4.4: DSCKCassandra overheads for micro-benchmarks. This table shows the run
time of flexible I/O tester (fio) tool for various micro-benchmarks when run with and without DSCK.

Setup Runtime (secs) Overhead
Standard 530.4 –
DSCK (default) 533.1 0.5%
DSCK (+index) 662.5 24.9%
DSCK (+log) 771.3 45.4%
DSCK (+index,log) 774.2 46%

Table 4.5: DSCKCassandra overheads. The table shows the run time of Cassandra when using
varying levels of protection using the corruption-resilient store.

techniques depending on the corruption. These shell scripts total 312 LOC.

4.4 Evaluation

We answer three questions in the evaluation of DSCKCassandra. First, what is the cost

of using it during runtime, under a write-heavy workload? Second, how effective is it as

118

compared to standard Cassandra repair tools? Finally, how much more quickly can we

repair a node rather than reinstall it from scratch?

4.4.1 DSCK’s Overhead

In the following experiments, we measure the costs involved in using DSCK to maintain

checksummed replicas by using micro-benchmarks as well as the Cassandra NoSQL

store.

Micro-benchmarks: We first measure the overhead imposed by DSCK on various

micro-benchmarks using the flexible I/O tester (fio) benchmark tool [17]. All these

workloads work on 20 different files each of size 50 MB amounting to a total of 1 GB. For

the read-write mix workloads, we use a 60-40 configuration that issues 60% reads and

40% writes. All the I/O requests issued are synchronized to the disk using an fsync at

the end of the workload. We configured DSCK to use a separate SSD disk other than the

SSD disk used by the workload. As seen in Table 4.4, DSCK does not add any overheads

for read only workloads. For the sequential writes and the sequential read-write mix

workloads, DSCK introduces 2x the total number of writes to maintain checksummed

replicas. This is because DSCK first duplicates the dirty data to a journal file and then

checkpoints them to the actual replica file. The additional work done by DSCK for the

sequential writes and the sequential read-write mix workloads leads to 200% and 37%

overhead in the runtime. Our current implementation of DSCK handles random writes,

when maintaining checksummed replicas, by reading chunks of sequential file regions

that cover the dirty random writes. This reduces the total number of I/O requests

but introduces writes for non-dirty data too. Therefore, DSCK introduces 8x and 4x

additional writes for random writes and random read-write mix workloads leading to a

runtime overhead of 9.5x and 2.6x respectively. For the random read-write mix workload,

119

28% additional reads are required by DSCK because our current implementation reads

non-dirty file regions between dirty random writes.

Cassandra: We now measure the overhead imposed by DSCK on a Cassandra cluster

from the client side. For this purpose, we run the YCSB benchmark with 4000 threads

against a 3-node Cassandra cluster with the machine configuration as listed in Table 4.3.

We run each Cassandra daemon as a single docker [128] container on each node. The 1.2

TB magnetic disk is used by the Cassandra daemon while the 480 GB SSD is used by

DSCK for the corruption-resilient store. Because DSCK does not intercept library calls

that perform reads, we use an insert-only workload that inserts 25 million entries. This

workload is a worst-case scenario for DSCK as realistic workloads will contain reads as

well. The average total runtime reported by the YCSB benchmark when running with

and without DSCK are shown in Table 4.5. When running with DSCK, we use different

configuration files that alter which files are protected using the corruption-resilient store.

The average total runtime when using DSCKCassandra with the default configuration is

just 0.5% more than the average total runtime without DSCK. When using the default

configuration, corrupted Index files are recovered in time proportional to their size by

regenerating them from the corresponding Data file using the scrub tool. Their recovery

times can be improved to under 5 minutes if the Index files are also protected in the

corruption-resilient store; this configuration incurs a 25% runtime overhead under write-

heavy workloads. Similarly, a configuration that also protects the CommitLog incurs a

45.4% runtime overhead but allows quick recovery of said files.

4.4.2 Corruption Resilience

We now use an experiment similar to the one we used earlier (Subsection 4.1.1) to

evaluate the corruption resilience of the standard check and repair tool except for two

differences: first, we run the DSCK check and repair tool for Cassandra instead of the

120

standard repair tool that comes with the distributed system and second, in every run,

we corrupt multiple files belonging to the same file category instead of just one file to

reduce the experiment time. The results, when using the default configuration detailed

in Subsection 4.3.2, are shown in Table 4.6. The DSCK check and repair tool, when

using the default configuration shown in Table 4.2, recovers all corrupted files except the

CommitLog and improves corruption recovery to 89% of bytes stored on disk and to 99%

of files stored on disk. When using a configuration that additionally protects the Index

files similar corruption recovery results are achieved. If DSCK is run in a configuration

where the CommitLog files are also protected (using the corruption-resilient store), then

DSCKCassandra can recover all the files and 100% of the bytes on disk. Alternately, if

recovery time is not an issue, then the corrupted CommitLog files can be deleted and a

full anti-entropy repair [57] can be run to recover any lost data.

4.4.3 Alternate Corruption Resilience Techniques

Replacing an Entire Node

When a node’s disk state is corrupted and cannot be recovered using the repair tools

that come with the distributed storage system, it can be replaced with a new node that

is bootstrapped from other live replicas. Recovering lost data from other replicas takes

significant time and reduces reliability. We measured the node replacement time for

MongoDB, Cassandra, and Riak. The time taken to recover a single node is on the

order of several hours for all systems (Table 4.7). In contrast, in many cases a small

corruption can be repaired with a better check-and-recover tool. The table also shows the

performance of DSCKCassandra under four different configurations in repairing a local

corruption within one node of the cluster. Instead of taking many hours to repair the

node via full-store reconstruction from other nodes, DSCKCassandra can repair many

corruptions in minutes: most Index and Data files are repaired in under 30 minutes; all

121

Setup Files Data
Recovered (%) Recovered (%)

DSCK (“default” or “+index”) 192 (99%) 544.5 MB (89%)
DSCK (“+log” or “+index,log”) 194 (100%) 611.6 MB (100%)

Table 4.6: DSCKCassandra corruption resilience. This table shows the number of files and the
data on disk that DSCKCassandra recovers after a corruption when used with the different configurations
described in Subsection 4.3.2.

Setup Description

Standard MongoDB: 12.1 hrs or 2 hrs (using FS copy);
Cassandra: 6.1 hrs; Riak: 70 hrs

DSCKCassandra (default)
<30 mins (most Index, Data corruptions);

<5 mins (files in corruption-resilient store);
CommitLog files need full anti-entropy recovery.

DSCKCassandra (+index)
<30 mins (most Data corruptions);

<5 mins (Index, other files in corruption-resilient store);
CommitLog files need full anti-entropy recovery.

DSCKCassandra (+log) <30 mins (most Index, Data corruptions);
<5 mins (CommitLog, other files in corruption-resilient store)

DSCKCassandra (+index,log) <30 mins (most Data corruptions);
<5 mins (Index, CommitLog, other files in corruption-resilient store)

Table 4.7: Time to restore failed node. This table shows the time taken to replace a failed node
using the other live replicas and the time taken by DSCKCassandra’s check and repair tool to fix the failed
node.

small system files protected using the corruption-resilient store are repaired in under 5

minutes.

Using File System’s Corruption Resilience Features

File Systems like Btrfs and ZFS provide inbuilt RAID [149] protection. We now evaluate

using Btrfs how its RAID protection features can be used to improve the corruption

resilience of Cassandra. Modern NoSQL stores need to maintain replicas on separate

machines spread across fault domains to handle various failure scenarios like power

failures and hardware failures. Not keeping another local replica of the content that is

already replicated remotely saves storage space and is preferable. Therefore, we craft

a scheme that avoids locally replicating content that is already replicated on a remote

machine. We partition two hard disk drives each into two 200 GB partitions. We then

122

create two Btrfs file systems each using a single partition from each of the two disks. In

one Btrfs file system, which we call file system 1, we configure all data and metadata to be

protected using RAID1 replication along with checksums. In the other Btrfs file system,

which we call file system 2, we configure the data to not be replicated by choosing one

of three different configurations: (a) we just use a single partition in which case there is

a single copy for data but there are two copies for the metadata placed within a single

partition; (b) we use two partitions and chose Btrfs’s “single” option for data which

spreads the files between the two partitions but uses RAID1 for metadata; or (c) we use

two partitions and choose RAID0 striping across the two partitions for data but use

RAID1 mirroring across the two partitions for metadata. It must be noted that in the file

system 2, we ensure metadata always has two copies.

We store the on-disk folders maintained by Cassandra into one of the two Btrfs file

systems and use symbolic links to create the file layout that Cassandra expects. We

store the following folders in the Btrfs file system 2 that does not replicate data: “ycsb”

folder that contains user stored content, “saved_caches” and “hints” folders that can be

deleted if they get corrupted because they are needed for performance improvement

and not correctness. All other folders are stored in the Btrfs file system 1 which protects

everything including data using RAID1. Table 4.8 shows the time taken for inserting

25 million entries each of size approx. 1 KB using the YCSB benchmark application

on the various Btrfs configurations. When using a single Btrfs file system without any

corruption resilience, the time taken is 518.6 seconds. When using a configuration

where the file system 2 just uses a single partition where only metadata is duplicated

within the same partition, the time taken is 516.1 seconds. When the file system 2 is

configured to store data in RAID0 striped fashion, the time taken for this workload is

391.5 seconds because of the increased disk parallelism due to striping. When the file

system 2 is configured to store data in a “single” mode which allocates files between the

two partitions, the time taken is 494.3 seconds.

123

Btrfs Main FS 1 Btrfs User Data FS 2 Time Taken [Std. Dev.]
Configuration Configuration (secs)
No replication at all Not present 518.6 [28]
All RAID1 Single Partition Used 516.1 [23]
All RAID1 Data RAID0; Others RAID1 391.5 [4]
All RAID1 Data single; Others RAID1 494.3 [31]

DSCK Results from Table 4.5 Time Taken (secs) [Std. Dev.]
Without DSCK 530.4 [17]
DSCK (default) 533.1 [37]
DSCK (+index) 662.5 [17]

DSCK (+log) 771.3 [9]
DSCK (+index,log) 774.2 [3]

Table 4.8: Corruption resilience through Btrfs. The top portion of the table shows the average
time taken in seconds out of 8 trials along with the standard deviation for a YCSB workload benchmark that
inserts 25 million entries each of size approx. 1 KB when using Btrfs file systems with varying replication
configurations. For convenient comparison, the bottom portion of the table shows the time taken for the
same workload with different configurations of DSCK copied over from Table 4.5.

The Btrfs scrub tool allows manually checking for disk corruptions and repairing

them using the replicas. When compared to DSCK, the Btrfs approach has both advan-

tages and disadvantages. The advantage is that the performance of the Btrfs approach

is very high because the replication and checksumming is integrated within the file

system and is implemented very efficiently. The main disadvantage is that we need to

create multiple file systems and we can only control at the folder level which files go into

which file system. For example, this limitation is manifested in our configurations as

not being able to replicate the very small auxiliary files associated with the user stored

data. This is because these files are in the same folder as the files that store user stored

data which are already replicated remotely and therefore we do not want them to be

replicated locally as well. Another disadvantage with the Btrfs approach is that it takes

away the freedom to use any file system.

124

4.5 Summary

We started this chapter by motivating the need for robust check and repair programs

in distributed NoSQL stores. NoSQL stores are increasingly prevalent because they

are linearly scalable. It is not uncommon to see thousand node deployments of such

NoSQL stores. Such systems often maintain three or more replicas of the data in isolated

fault domains to guarantee data availability in the presence of failures. However, the

storage management toolchain is poorly developed in such NoSQL systems. For example,

there is a lack of robust check and repair tools which are necessary in various scenarios

like: during cluster-wide failures, to repair corrupted snapshots, and to quickly repair

corruptions without requiring time-consuming full-node replacement from the other

replicas. We also empirically show that the check and repair tools/techniques that come

with three modern NoSQL stores – MongoDB, Cassandra and Riak – are very simplistic

in design and do not handle data corruptions well.

We then take a “measure twice cut once” approach to this problem by first thoroughly

studying the corruption resilient capability of the three NoSQL stores. We analyse

these systems along the following questions: what semantic content do various files

contain and how they are laid out hierarchically on the file system?, how hard is it

to recover a corrupted file?, and what sort of data integrity protection is available to

detect a corruption? We also specially look at certain essential files that are necessary

for the system to start up. We make several observations from our study and state their

implications for building a robust check and repair tool.

We then discuss the design of a framework, called DSCK, which enables imple-

menting robust check and repair tools. DSCK consists of three main components - a

corruption-resilient store, a checker and a repairer. The corruption-resilient store in-

tercepts I/O related library calls made by the NoSQL system and classifies the I/O

requests based on the destination file in order to transparently maintain checksummed

125

local replicas only for a selected set of files. Files that do not already have any data

integrity protection from the NoSQL store or are hard to recover after a corruption are

good candidates for protection through the corruption-resilient store. DSCK uses a

configuration file with file-path prefixes, patterns and suffixes in order to guide the I/O

classification. The checker relies on checksums – either those provided by the NoSQL

store or the ones transparently added by DSCK – to detect corruptions using a file-type

specific approach. The repairer uses several techniques to recover corrupted files. The

appropriate recovery technique is chosen based on the type of file that is corrupted.

Files protected through the corruption-resilient store are recovered from it. Data that is

remotely replicated by the NoSQL store is recovered by fetching the corrupted content

from the remote replica. Content that can be regenerated from other files using software

are recovered using regeneration.

We then discuss the implementation and evaluation of DSCKCassandra, a check and

repair tool for Cassandra, that imposes negligible overhead during normal operation

but improves the corruption resilience tremendously. DSCKCassandra is able to recover

all files except the commit log files after corruption in the default configuration. A

different configuration is able to recover the commit log files too but with approximately

45% overhead for a worst-case write only workload. Moreover, the recovery times for

DSCKCassandra is in the order of minutes while a full-node restore from replicas takes

several hours.

126

Chapter 5

Related Work

Several researchers have worked on I/O classification in the past. The D-GRAID [188]

RAID array classifies all I/O on semantically related data into a single class and places

them in within a unit of fault containment. Using this strategy, D-GRAID achieves

graceful degradation and quick-recovery in the presence of disk failures. X-RAY [22]

uses graybox [12] techniques to classify data that is likely to be in the cache from the

rest. Using this I/O classification, X-RAY implements an exclusive RAID cache that

does not store data that is already present in the file system cache above it. Muthian et

al. classify live blocks from dead blocks in a storage disk using two different techniques.

They use this classification to implement a secure deleting disk that shreds logically

deleted block so that deleted data can never be recovered. They also list out a range of

other applications of classifying live blocks from dead blocks.

Self* [130] classifies files in an NFS server using machine learning techniques (de-

cision trees). It exploits the strong associations between a file’s properties and the

names/attributes assigned to it. XN, the stable storage system for the Xok exoker-

nel [101] also dealt with issues of classifying data blocks from metadata blocks. XN

employed a template of metadata translation functions called UDFs specific to each

file type. The responsibility of providing UDFs rested with the file system developer,

127

allowing the kernel to handle arbitrary metadata layouts without understanding the

layout itself. We develop three new I/O classification techniques that are non-invasive

and work under a variety of file systems without significant implementation effort.

5.1 David Related Work

Memulator [71] makes a great case for why storage emulation provides the unique

ability to explore non-existent storage components and take end-to-end measurements.

Memulator is a “timing-accurate” storage emulator that allows a simulated storage

component to be plugged into a real system running real applications. Memulator can

use the memory of either a networked machine or the local machine as the storage media

of the emulated disk, enabling full system evaluation of hypothetical storage devices.

Although this provides flexibility in device emulation, high-capacity devices requires

an equivalent amount of memory; David provides the necessary scalability to emulate

such devices. In turn, David can benefit from the networked-emulation capabilities of

Memulator in scenarios when either the host machine has limited CPU and memory

resources, or when the interference of running David on the same machine competing

for the same resources is unacceptable.

One alternative to emulation is to simply buy a larger capacity or newer device and

use it to run the benchmarks. This is sometimes feasible, but often not desirable. Even if

one buys a larger disk, in the future they would need an even larger one; David allows

one to keep up with this arms race without always investing in new devices. Note that

we chose 1 TB as the upper limit for evaluation in this chapter because we could validate

our results for that size. Having a large disk will also not address the issue of emulating

much faster devices such as SSDs or RAID configurations. David emulates faster devices

through an efficient use of memory as backing store.

Another alternative is to simulate the storage component under test; disk simulators

128

like Disksim [33] allow such an evaluation flexibly. However, simulation results are

often far from perfect [63] – they fail to capture system dependencies and require the

generation of representative I/O traces which is a challenge in itself. Finally, one might

use analytical modeling for the storage devices; while very useful in some circumstances,

it is not without its own set of challenges and limitations [184]. In particular, it is

extremely hard to capture the interactions and complexities in real systems. Wherever

possible, David does leverage well-tested analytical models for individual components

to aid the emulation. Both simulation and analytical modeling are complementary

to emulation, perfectly useful in their own right. Emulation does however provide a

reasonable middle ground in terms of flexibility and realism.

Evaluation of how well an I/O system scales has been of interest in prior research

and is becoming increasingly more relevant [228]. Chen and Patterson proposed a “self-

scaling” benchmark that scales with the I/O system being evaluated, to stress the system

in meaningful ways [40]. Although useful for disk and I/O systems, the self-scaling

benchmarks are not directly applicable for file systems. The evaluation of the XFS file

system from Silicon Graphics uses a number of benchmarks specifically intended to test

its scalability [200]; such an evaluation can benefit from David to employ even larger

benchmarks with greater ease; SpecSFS [220] also contains some techniques for scalable

workload generation.

Similar to our emulation of scale in a storage system, Gupta et al. from UCSD propose

a technique called time dilation for emulating network speeds orders of magnitude faster

than available [74]. Time dilation allows one to experiment with unmodified applications

running on commodity operating systems by subjecting them to much faster network

speeds than actually available.

The classic text on disk drive modeling by Ruemmler and Wilkes [166] describes the

different components of a disk drive in detail, and evaluates the ones that are necessary

to model in order to achieve a high level of accuracy. While disk drive technology

129

and capacity have changed a lot since the paper was originally published, much of the

underlying phenomena discussed then are still relevant.

Extraction of disk drive parameters has also been the subject of previous research

to facilitate more accurate storage emulation. Skippy [203], developed by Talagala

et al., is a tool for microbenchmark-based extraction of disk characteristics. Skippy

linearly increases the stride while writing to the disk to factor out rotational effects

from seek. Our disk model is optimized to run for large disks by introducing artificial

delays between successive requests; a linear increase in stride is unacceptably slow for

extracting parameters of large disks.

Worthington et al. describe techniques to extract disk drive parameters such as the

seek profile, rotation time, and detailed information about disk layout and caching [222].

However, their techniques and the subsequent tool DIXtrac that automates the process,

rely on the SCSI command interface [169], a limitation that is not acceptable since the

majority of high capacity drives today use non-SCSI interfaces like IDE, ATA and SATA.

An orthogonal approach for disk modeling is to maintain runtime statistics in the

form of a table, and use the information on past performance to predict the service times

for future requests [11]. Popovici et al. develop the Disk Mimic [154], a table-based

disk simulator that is embedded inside the I/O scheduler; in order to make informed

scheduling decisions, the I/O scheduler performs on-line simulation of the underlying

disk. One major drawback of table-based approaches is the amount of statistics that

need to be maintained in order to deliver acceptable accuracy of prediction.

5.2 Sky Related Work

Mesnier et al. implement I/O classification by modifying the operating system and

application to pass down classification information that can be used by the storage system

for better caching [131]. IOFlow, a software defined storage architecture, classified

130

I/O requests at the VM granularity and enforced policies at various points in the I/O

path [208]. Sonam et al. improve the performance of the dmdedup deduplication system

by modifying the guest applications and file systems to generate hints [122]. In contrast,

Sky obtains I/O-classification hints on a per system call basis without modifying the

guest operating system or the file systems and reaps similar benefits. Sky also provides

an equally expressive interface to modified I/O applications when compared to the

above previous works as discussed in Subsection 3.2.6. However, Sky targets virtualized-

storage in the context of VMM while the previous works are more broadly applicable.

Several caching algorithms have been proposed in the past such as LRU-K [143],

ARC [127], 2Q [94], MQ [232], LRFU [114] etc. Our work on associating priorities

with insights is complementary to these caching algorithms because these algorithms

differentiate between disk blocks only based on their access patterns while Sky associates

semantic meaning to the blocks. For example, Sky allows hits on data from a high-paying

customer to be better than hits on data from a low-paying customer.

Several past research works have shown that insights can be gained by the storage

systems using the knowledge of the on-disk layout of file systems [5, 186, 188, 189, 205].

Having more complex logic in the storage systems can make them less robust and more

expensive. Sky generates insights with considerably lesser complexity in the storage.

Virtual Machine Introspection [79] in general and system-call interception specifi-

cally [53, 152] have been applied for malware analysis and other security applications in

the past. LibVMI [118, 150] is a library to access the guest VM details that primarily sup-

ports memory accesses and events based on memory accesses. LibVMI has examples to

show how to intercept system call entries but not system call exits. Sky uses system-call

interception on both system call entry and exit for generating hints to improve storage

performance. Sky introduces a new technique to intercept system call exits that use the

IRET instruction in the Intel processors when compared to the past work on system-call

interception using hardware extensions [53, 152]. Virtuoso [55] automatically generates

131

programs for accessing guest operating system information using training programs,

trace collection and dynamic slicing. Techniques in Virtuoso could be used to fasten up

certain parts of Sky like getting the PID of a process.

Roselli et al. use the auditing infrastructure in UNIX and the filter driver in Windows

NT in order to collect and analyze traces to understand different file system workloads

(e.g. block lifetimes) [161]. Sky obtains similar information about the block lifetimes

through system-call interception. FADED [186] provides secure file deletes by providing

block liveness to the storage device. It detects file deletes and truncates implicitly by

tracking file system on-disk data structures and also making small modification to

file systems when necessary. Sky directly intercepts unlink, truncate and related

system calls to know about file deletes and truncates. Because Sky uses checksums,

there is a loss of accuracy in rare scenarios when file system metadata and data content

generate the same checksums. A more sophisticated future version of Sky could avoid

this inaccuracy by using file system knowledge.

VirtFS is a paravirtualized file system that avoids the overheads associated with

a generic networked file system by leveraging the 9p distributed file system protocol

directly on top of a paravirtualized transport [100]. Sky could be used with VirtFS

in order to allow guest applications to pass hints to VMM without modifying the 9p

protocol and the VirtIO transport.

Gu et al. bridge the semantic gap between a VM and the VMM by running a process

from the host on the guest VM under the cover of an existing running process in the

guest [72]. Such an approach will be costly for Sky because intercepting system calls

at userspace level is expensive due to the kernel boundary crossings and the context

switches between the monitored and monitoring processes.

Geiger [96] explores techniques to passively infer useful information about guest

operating system’s unified buffer cache and virtual memory system in order to provide

eviction based cache placement. Sky is complementary to Geiger and gives higher prior-

132

ity to small files, file system metadata and application classified higher priority content.

Antfarm [95] describes techniques used by the VMM for tracking the existence and

activities of guest operating system processes without detailed knowledge of a guest’s

internal architecture or implementation. Sky tracks threads in addition to processes.

Moreover, Sky intercepts system calls to track I/O performed by processes.

5.3 DSCK Related Work

Many past research works have studied the corruption resilience of storage systems.

Ganesan et al. studied the effects of corruption on eight modern distributed storage

systems and find that they do not consistently use redundancy to recover from file-

system errors [62]. Another observation from their work is that modern distributed

systems often crash when handling corruption locally leading to more severe global

cluster-wide effects. Lakshmi et al. use type-aware pointer corruption to evaluate the

corruption resilience of Windows NTFS and Linux Ext3 file systems [21]. They find that

both these file systems do not recover from most corruptions including those scenarios

where there is enough redundant information to perform recovery. Sriram et al. inject

faults into the MySQL [145] DBMS system and find that corruptions can lead to untimely

crashes, data loss and incorrect results [195]. All these systems show poor corruption

resilience. We also find poor corruption resilience in the check and repair tools that ship

with the modern distributed storage systems that we investigated in this paper.

Marinescu et al. intercept library calls made by an application using the LD_PRELOAD

technique to inject faults [123]. They build a tool called LFI that automatically prepares

fault scenarios and use them to inject faults. Patterson et al. build a tool called FIG

(Fault injection in glibc) for injecting faults at the application/system boundary. DSCK

uses the same interception technique as previous works but for a different purpose: to

maintain corruption-resilient replicas for a selected set of files. Maintaining replicas

133

of files for performance and reliability is a widely used technique in several file and

storage systems [31, 149, 159]. DSCK maintains local replicas of a selected set of files

along with checksums and protects them from the effects of corruption.

File systems have had check and repair tools for a long time [29, 37, 120, 125, 126].

Such tools often use the redundancy of certain file system structures to recover from

a corruption. DSCK also maintains local replicas of the distributed storage system’s

metadata in order to enhance corruption-resilience and recovery.

Many systems have selectively replicated metadata to enhance performance and

reliability. D-GRAID [188] is a RAID storage array that selectively replicates semantically

critical data to ensure that the storage array gracefully degrades in the presence of

failures. IRON file system [156] also selectively replicates metadata in order to improve

the robustness in the presence of failures. Gnothi [218] is a block-replication system that

selectively replicates metadata to enhance availability and failure recovery. PARTE [117]

is a parallel file system that replicates and distributes a file’s metadata in order to provide

high availability. DSCK also selectively replicas the distributed storage system’s local

node metadata to improve availability in the presence of failures.

134

Chapter 6

Conclusion and Future Work

This dissertation focused on “non-invasive I/O classification” as a means to improve

storage systems by developing novel easily deployable applications. We developed three

new non-invasive I/O classification techniques that further work with many different

file systems without the need for significant additional effort. Our contributions with

the three novel applications are in diverse but important areas like benchmarking,

virtualized storage and corruption-resilience of distributed NoSQL storage. We believe

that our applications are more widely adoptable when compared to other solutions that

require extensive modifications to one or more components in the storage stack to make

them work with a particular storage configuration.

The first novel application we develop is a novel benchmarking emulator called

David that removes the frustration in doing large-scale experimentation on realistic

storage hardware – a problem many in the storage community face. David makes it

practical to experiment with benchmarks that were otherwise infeasible to run on a

given system, by transparently scaling down the storage capacity required to run the

workload. David creates a “compressed” version of the original file-system image by

omitting all file data and laying out metadata more efficiently; an online storage model

determines the runtime of the benchmark workload on the original uncompressed image.

135

We showed that David reduces storage requirements by orders of magnitude; David is

able to emulate a 1 TB target workload using only an 80 GB available disk, and predicts

the actual runtime accurately. David can also emulate newer or faster devices, e.g., we

showed how David can effectively emulate a multi-disk RAID and a futuristic SSD disk

using a limited amount of memory. David works under any file system as demonstrated

in this paper with Ext3 and Btrfs.

Our second contribution is a smart caching and deduplication system in the hyper-

visor that classifies I/O requests and treats them differentially – file system metadata

and small files get higher priority in the cache, encrypted file content and file-copy are

handled efficiently during deduplication. We achieve this using Sky, an extension to the

VMM that gathers insights and information by intercepting system calls made by guest

applications. We use system-call interception as a core technique so that a VMM can

gather insights and information without requiring modifications to the guest operating

system or the guest application. Sky uses system-call interception to gather insights

about guest application issues I/O requests. We showed through experiments that

system-call interception is an efficient way to obtain useful insights about I/O-bound

guest applications with minimal overheads (under 5%). We showed how Sky gains

three specific insights – guest file-size information, metadata-data distinction, and file-

content hints – and uses said information to enhance virtualized-storage performance.

By caching small files and metadata with higher priority, Sky reduces the runtime by 2.3

to 8.8 times for certain workloads. Sky also achieves 4.5 to 18.7 times reduction in the

runtime of an open-source block-layer deduplication system by exploiting hints about

file contents. Sky works underneath both Linux and FreeBSD guests, as well as under

a range of file systems, thus enabling portable and general VMM-level optimization

underneath a wide range of storage stacks.

Our third contribution enhances the corruption-resilience of the check and repair

tools that come with modern distributed NoSQL stores. Check-and-recover tools have

136

long formed a core part of the storage management toolchain. As we have shown,

modern NoSQL systems do not yet have such robust check-and-recover, and thus a gap

exists in how such systems are managed. We introduced DSCK, a generic framework

to aid in the construction of check-and-recover tools for such systems. Our analysis of

the check and repair tools that come with MongoDB, Cassandra, and Riak showed that

they are not resilient to various data corruptions. The results of our analysis directly

feed into the design of DSCK, which provides a local corruption-resilient store, an I/O

interception library, and a base check/repair framework, all of which can be customized

to meet the needs of a specific storage system. We have implemented DSCKCassandra, a

full-fledged check-and-recover tool for Cassandra. DSCKCassandra improves corruption

recoverability from 37.5% of the files to nearly 100% of the files stored by Cassandra

while inducing little to modest performance overheads. We also showed that using

DSCKCassandra to repair certain file corruptions enables full-node restore in minutes

rather than hours.

6.1 Learnings

We now describe some of our learnings from the systems we build towards this disser-

tation.

Non-Invasive techniques are possible: With careful thought, it is feasible to develop

non-invasive, easy to adopt techniques that can provide the same benefits as their

invasive counterparts. We showed three examples in this dissertation where a non-

invasive design was chosen in preference over an invasive approach. Depending on the

final application being built, one has to be careful about the overheads imposed by the

non-invasive approach.

137

I/O classification is easier higher up in the storage stack: There is more information

higher up in the storage stack making it is easier to classify I/O requests. More im-

portantly, classifying I/O requests higher up can often tolerate changes in the storage

components below it in the storage hierarchy. For example, implementing DSCK by

intercepting library calls and implementing David and Sky by implementing system

calls makes our techniques tolerate different file systems.

Innovators can explore farther when unconstrained by physical resources: Procure-

ment of physical resources can hamper innovations; especially if the resources are in

the design stage. We were able to explore a new disk interface called “nameless writes”

that helps lower the cost of huge capacity SSD drives with the aid of David emulator

tool. We would not have been able to perform this innovation if we did not have David.

Hardware mechanisms are well suited for novel applications: Hardware mecha-

nisms are a very powerful means to implement novel applications. They impose low

overheads and are well tested for robustness. We used the hardware mechanisms in the

modern processors with virtualization extensions to intercept system call entry and exit

in order to gather insights with Sky.

The uncommon failure scenarios don’t get the attention they deserve: Uncommon

failures in distributed storage can cause catastrophic damages like permanent data loss

or several days of service interruption. The financial impact of such catastrophic failures

can be huge [8, 24, 44, 46, 50, 51, 59, 68, 105, 207, 227]. The check and repair tools in the

distributed storage systems studied in Chapter 4 do not safely handle the uncommon

scenario of corruption to critical system files. They lose access to existing user data or

need the help of an expert to salvage the uncorrupted data. In rare scenarios, such errors

can lead to much more serious failures like multi-hour service outages. The repair tools

in LevelDB and RocksDB lower level database engines handle corruption by archiving

138

the affected SST files in their entirety. Such archived SST files often have uncorrupted

data too. Instead, these tools need to try and recover the lost data along with cooperation

from the higher level distributed NoSQL stores.

6.2 Future Work

In this section, we list out opportunities for future research work related to this disserta-

tion.

Speed-up mode for David: It will be beneficial for the file system benchmarking

community to make David work in a speed-up mode that resembles simulation; either

completely or partially during certain phases of the workload. The speed-up mode can

significantly reduce the total benchmark time. However, the challenge is to accurately

predict the benchmark runtime.

Develop Storage Models for more devices: We have emulated a magnetic disk, a

simple software RAID-1 device and an SSD device using David. In the future, it will be a

worthwhile exercise to make David emulate more devices including complex hardware

RAID configurations. This will make David a versatile and widely usable tool.

Sky for windows operating systems: Sky currently supports the Linux and FreeBSD

operating systems. Making Sky support a much different operating system like Windows

will make it more universal. We expect some new challenges here because Windows

differs significantly from the Unix-flavored operating systems.

Evaluate workloads that use mmap exhaustively with Sky: Although Sky handles

memory-mapped workloads, our evaluation did not extensively test this. In the future,

139

evaluating applications like database servers that exhaustively use mmap will add

additional data points to the evaluation of Sky.

Alternate techniques for use with Sky: There is scope for evaluating three alternate

techniques for use with Sky: (1) Sky currently uses insight-calls to read the guest

operating system state. In the future, Sky could explore other techniques [55] that can

be used to fetch the required information directly from the guest operating system’s

memory. (2) Sky uses executable names and file extensions to detect applications that

encrypt files. In the future, more sophisticated techniques that examine the contents of

the executable binary as well as the file contents could be developed. (3) Our current

prototype Sky implementation uses a configuration parameter to identify the guest

operating system. A future version of Sky could identify the guest operating system

by using VM memory analysis [118] and details about system calls like the numbers,

arguments, return values and frequencies.

Further decrease the system-call interception overheads: The overheads due to system-

call interception in Sky are low enough for real I/O workloads (under 5%). This overhead

could be reduced with further research so that Sky is useful for a wider variety of appli-

cations.

Gather more insights using Sky: Exploring more insights for improving the virtualized-

storage or for achieving broader goals is a promising research direction. Sky, being part

of the hypervisor, is in a unique powerful position to gather insights with less difficulty.

Corruption resilient check and repair for MongoDB and Riak: We used DSCK to im-

plement a corruption resilient check and repair tool for Cassandra called DSCKCassandra.

Implementing similar tools for MongoDB, Riak and other distributed NoSQL stores will

definitely prove useful in improving their corruption resilience.

140

6.3 Summary

I/O classification is a well known technique that has a wide range of applications [22,

117, 131, 188, 218]. This dissertation emphasizes the need for deployable, non-invasive

I/O classification techniques that work in different configurations without significant

additional effort. Our approach avoids the need to change existing interfaces or compo-

nents in a storage stack unless it is absolutely necessary. We believe that our techniques

lead to easier adoption in existing storage environments. We built three diverse, novel

applications using such I/O classification techniques.

David, our first application, allows a storage researcher to accurately benchmark

futuristic, huge capacity storage disks using much smaller available storage. David

classifies I/O requests containing file system metadata from those that contain appli-

cation data in order to reduce the amount of physical storage needed. Sky, our second

contribution, gathers insights about guest I/O applications in a virtual machine using

system-call interception. We use these insights to classify I/O requests and treat them

differentially at the hypervisor level to implement smart caching and deduplication sys-

tems. Finally, we built DSCK, a framework for implementing corruption-resilient check

and repair tools in modern distributed NoSQL stores. DSCKCassandra, our corruption-

resilient check and repair tool for Cassandra, imposes modest overheads but improves

corruption-resilience and recovery times.

141

Bibliography

[1] Abutalib Aghayev and Peter Desnoyers. Skylight—A Window on Shingled Disk Operation. In 13th

USENIX Conference on File and Storage Technologies (FAST 15), pages 135–149, Santa Clara, CA, 2015.

USENIX Association.

[2] Abutalib Aghayev, Theodore Ts’o, Garth Gibson, and Peter Desnoyers. Evolving Ext4 for Shingled

Disks. In Proceedings of the 15th Usenix Conference on File and Storage Technologies, FAST’17, pages

105–119, Berkeley, CA, USA, 2017. USENIX Association.

[3] Nitin Agrawal. Representative, Reproducible, and Practical Benchmarking of File and Storage Systems.

PhD thesis, University of Wisconsin-Madison, August 2009.

[4] Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Generating Realistic

Impressions for File-System Benchmarking.

[5] Nitin Agrawal, Leo Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Emulating

Goliath Storage Systems with David. In Proceedings of the 9th USENIX Conference on File and Stroage

Technologies, FAST’11, Berkeley, CA, USA, 2011. USENIX Association.

[6] Nitin Agrawal, William J. Bolosky, John R. Douceur, and Jacob R. Lorch. A Five-Year Study of

File-System Metadata.

[7] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse, and Rina Panigrahy.

Design Tradeoffs for SSD Performance. In Proceedings of the Usenix Annual Technical Conference

(USENIX ’08), Boston, MA, June 2008.

[8] Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj Patel, Thanumalayan Sankaranarayana Pillai,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Correlated Crash Vulnerabilities. In

142

Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16,

pages 151–167, Berkeley, CA, USA, 2016. USENIX Association.

[9] AMD Technology. AMD64 Architecture Programmer’s Manual Volume 2: System Programming.

http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf, 2012.

[10] Dave Anderson, Jim Dykes, and Erik Riedel. More Than an Interface—SCSI vs. ATA. In Proceedings

of the 2nd USENIX Conference on File and Storage Technologies, FAST ’03, pages 245–257, Berkeley, CA,

USA, 2003. USENIX Association.

[11] Eric Anderson. Simple table-based modeling of storage devices. Technical Report HPL-SSP-2001-04,

HP Laboratories, July 2001.

[12] Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau. Information and Control in Gray-box

Systems. In Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles, SOSP ’01,

pages 43–56, New York, NY, USA, 2001. ACM.

[13] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Lakshmi N. Bairavasundaram, Timothy E.

Denehy, Florentina I. Popovici, Vijayan Prabhakaran, and Muthian Sivathanu. Semantically-smart

Disk Systems: Past, Present, and Future. SIGMETRICS Perform. Eval. Rev., 33(4):29–35, March 2006.

[14] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Fail-Stutter fault tolerance. In Proceedings Eighth

Workshop on Hot Topics in Operating Systems, pages 33–38, May 2001.

[15] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems: Three Easy Pieces.

Arpaci-Dusseau Books, 0.91 edition, May 2015.

[16] Leo Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Improving Virtualized

Storage Performance with Sky. In Proceedings of the 13th ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments, VEE ’17, pages 112–128, New York, NY, USA, 2017.

ACM.

[17] Jens Axboe. Flexible I/O Tester. https://github.com/axboe/fio, 2018.

[18] Eitan Bachmat and Jiri Schindler. Analysis of Methods for Scheduling Low Priority Disk Drive

Tasks. In Proceedings of the 2002 ACM SIGMETRICS International Conference on Measurement and

Modeling of Computer Systems, SIGMETRICS ’02, pages 55–65, New York, NY, USA, 2002. ACM.

http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
https://github.com/axboe/fio

143

[19] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupathy, and Jiri Schindler. An

Analysis of Latent Sector Errors in Disk Drives. In Proceedings of the International Conference on

Measurements and Modeling of Computer Systems (SIGMETRICS’07), San Diego, California, June 2007.

[20] Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca Schroeder, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. An Analysis of Data Corruption in the Storage Stack. In Proceedings

of the 6th USENIX Conference on File and Storage Technologies (FAST ’08), San Jose, California, February

2008.

[21] Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin Agrawal, Andrea C. Arpaci-Dusseau,

Remzi H. Arpaci-Dusseau, and Michael M. Swift. Analyzing the Effects of Disk-Pointer Cor-

ruption. In Proceedings of the International Conference on Dependable Systems and Networks (DSN’08),

Anchorage, Alaska, June 2008.

[22] Lakshmi N. Bairavasundaram, Muthian Sivathanu, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. X-RAY: A Non-Invasive Exclusive Caching Mechanism for RAIDs. In Proceedings

of the 31st Annual International Symposium on Computer Architecture, ISCA ’04, Washington, DC, USA,

2004. IEEE Computer Society.

[23] Mary Baker, Mehul Shah, David S. H. Rosenthal, Mema Roussopoulos, Petros Maniatis, TJ Giuli,

and Prashanth Bungale. A Fresh Look at the Reliability of Long-term Digital Storage. SIGOPS Oper.

Syst. Rev., 40(4):221–234, April 2006.

[24] Mehmet Bakkaloglu, Jay J Wylie, Chenxi Wang, and Gregory R Ganger. On Correlated Failures in

Survivable Storage Systems . Technical report, DTIC Document, 2002.

[25] P. R. Barham. A fresh approach to file system quality of service. In Network and Operating System

Support for Digital Audio and Video, 1997., Proceedings of the IEEE 7th International Workshop on, pages

113–122, May 1997.

[26] W. Bartlett and L. Spainhower. Commercial fault tolerance: a tale of two systems. IEEE Transactions

on Dependable and Secure Computing, 1(1):87–96, Jan 2004.

[27] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In USENIX Annual Technical

Conference, FREENIX Track, pages 41–46, 2005.

[28] Alberto Bertogli. libjio - A library for Journaled I/O. https://blitiri.com.ar/p/libjio/.

https://blitiri.com.ar/p/libjio/

144

[29] E.J. Bina and P.A. Emrath. A Faster Fsck for BSD UNIX. Report. University of Illinois at Urbana-

Champaign, Center for Supercomputing Research and Development, 1988.

[30] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava

Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey

Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The Gem5 Simulator.

SIGARCH Comput. Archit. News, 39(2):1–7, August 2011.

[31] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, and Mark Shellenbaum. The zettabyte file

system. In Proc. of the 2nd Usenix Conference on File and Storage Technologies, volume 215, 2003.

[32] T. C. Bressoud and F. B. Schneider. Hypervisor-based Fault Tolerance. In Proceedings of the Fifteenth

ACM Symposium on Operating Systems Principles, SOSP ’95, pages 1–11, New York, NY, USA, 1995.

ACM.

[33] John S. Bucy, Jiri Schindler, Steven W. Schlosser, and Gregory R. Ganger. The DiskSim Simulation

Environment Version 4.0 Reference Manual. Technical Report CMU-PDL-08-101, Carnegie Mellon

University, May 2008.

[34] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco: Running Commodity Operating

Systems on Scalable Multiprocessors. pages 143–156.

[35] W. Burleson, O. Mutlu, and M. Tiwari. Invited: Who is the major threat to tomorrow’s security?

You, the hardware designer. In 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC),

pages 1–5, June 2016.

[36] Josiah L. Carlson. Redis in Action. Manning Publications Co., Greenwich, CT, USA, 2013.

[37] João Carlos Menezes Carreira, Rodrigo Rodrigues, George Candea, and Rupak Majumdar. Scalable

Testing of File System Checkers. In Proceedings of the 7th ACM European Conference on Computer

Systems, EuroSys ’12, pages 239–252, New York, NY, USA, 2012. ACM.

[38] Adrian M. Caulfield, Laura M. Grupp, and Steven Swanson. Gordon: Using Flash Memory to Build

Fast, Power-efficient Clusters for Data-intensive Applications. In Proceedings of the 14th International

Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS XIV,

pages 217–228, New York, NY, USA, 2009. ACM.

145

[39] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows,

Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A Distributed Storage System for

Structured Data. ACM Trans. Comput. Syst., 26(2):4:1–4:26, June 2008.

[40] Peter M. Chen and David A. Patterson. A New Approach to I/O Performance Evaluation–Self-

Scaling I/O Benchmarks, Predicted I/O Performance. pages 1–12.

[41] P.M. Chen and B.D. Noble. When virtual is better than real [operating system relocation to virtual

machines]. In Hot Topics in Operating Systems, 2001. Proceedings of the Eighth Workshop on, pages

133–138, 2001.

[42] Kristina Chodorow. MongoDB: The Definitive Guide: Powerful and Scalable Data Storage. O’Reilly, 2nd

edition, 2013.

[43] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. An Empirical Study

of Operating Systems Errors. In Proceedings of the Eighteenth ACM Symposium on Operating Systems

Principles, SOSP ’01, pages 73–88, New York, NY, USA, 2001. ACM.

[44] Asaf Cidon, Stephen M. Rumble, Ryan Stutsman, Sachin Katti, John Ousterhout, and Mendel

Rosenblum. Copysets: Reducing the Frequency of Data Loss in Cloud Storage. In Proceedings of the

2013 USENIX Conference on Annual Technical Conference, USENIX ATC’13, pages 37–48, Berkeley,

CA, USA, 2013. USENIX Association.

[45] Clutch. Best Cloud Service Providers. https://clutch.co/cloud, 2017.

[46] ComputerWorldUK. Lightning strikes Amazon and Microsoft data cen-

tres. http://www.computerworlduk.com/galleries/infrastructure/

ten-datacentre-disasters-that-brought-firms-offline-3593580/#5.

[47] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. Bench-

marking Cloud Serving Systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud

Computing, SoCC ’10, pages 143–154, New York, NY, USA, 2010. ACM.

[48] Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven Kleiman, James Leong, and Sunitha

Sankar. Row-diagonal Parity for Double Disk Failure Correction. In Proceedings of the 3rd USENIX

Conference on File and Storage Technologies, FAST’04, pages 1–14, Berkeley, CA, USA, 2004. USENIX

Association.

https://clutch.co/cloud
http://www.computerworlduk.com/galleries/infrastructure/ten-datacentre-disasters-that-brought-firms-offline-3593580/#5
http://www.computerworlduk.com/galleries/infrastructure/ten-datacentre-disasters-that-brought-firms-offline-3593580/#5

146

[49] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson, and Andrew

Warfield. Remus: High Availability via Asynchronous Virtual Machine Replication. In Proceedings of

the 5th USENIX Symposium on Networked Systems Design and Implementation, NSDI’08, pages 161–174,

Berkeley, CA, USA, 2008. USENIX Association.

[50] DataCenterDynamics. Lessons from the Singapore Exchange fail-

ure. http://www.datacenterdynamics.com/power-cooling/

lessons-from-the-singapore-exchange-failure/94438.fullarticle.

[51] DataCenterKnowledge. Lightning Disrupts Google Cloud Services.

http://www.datacenterknowledge.com/archives/2015/08/19/

lightning-strikes-google-data-center-disrupts-cloud-services/ .

[52] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Laksh-

man, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo:

Amazon’s Highly Available Key-value Store. In Proceedings of Twenty-first ACM SIGOPS Symposium

on Operating Systems Principles, SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM.

[53] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: malware analysis via hardware

virtualization extensions. In Proceedings of the 15th ACM conference on Computer and communications

security, CCS ’08, pages 51–62, New York, NY, USA, 2008. ACM.

[54] Xiaoning Ding, Song Jiang, Feng Chen, Kei Davis, and Xiaodong Zhang. DiskSeen: Exploiting Disk

Layout and Access History to Enhance I/O Prefetch. In Proc. of USENIX’07, 2007.

[55] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and Wenke Lee. Virtuoso: Narrowing the Semantic

Gap in Virtual Machine Introspection. In Security and Privacy (SP), 2011 IEEE Symposium on, pages

297–312, 2011.

[56] J. G. Elerath and S. Shah. Server class disk drives: how reliable are they? In Annual Symposium

Reliability and Maintainability, 2004 - RAMS, pages 151–156, Jan 2004.

[57] Datastax Enterprise. Manual repair: Anti-entropy repair. http://docs.datastax.com/en/

cassandra/3.0/cassandra/operations/opsRepairNodesManualRepair.html, 2017.

[58] Datastax Enterprise. Read Repair: repair during read path. http://docs.datastax.com/en/

cassandra/3.0/cassandra/operations/opsRepairNodesReadRepair.html, 2017.

http://www.datacenterdynamics.com/power-cooling/lessons-from-the-singapore-exchange-failure/94438.fullarticle
http://www.datacenterdynamics.com/power-cooling/lessons-from-the-singapore-exchange-failure/94438.fullarticle
http://www.datacenterknowledge.com/archives/2015/08/19/lightning-strikes-google-data-center-disrupts-cloud-services/
http://www.datacenterknowledge.com/archives/2015/08/19/lightning-strikes-google-data-center-disrupts-cloud-services/
http://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsRepairNodesManualRepair.html
http://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsRepairNodesManualRepair.html
http://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsRepairNodesReadRepair.html
http://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsRepairNodesReadRepair.html

147

[59] Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh Truong, Luiz Barroso,

Carrie Grimes, and Sean Quinlan. Availability in Globally Distributed Storage Systems. In Presented

as part of the 9th USENIX Symposium on Operating Systems Design and Implementation, Berkeley, CA,

2010. USENIX.

[60] Glenn Fowler, Landon C. Noll, and Phong Vo. Fowler / Noll / Vo (FNV) Hash, 1991.

[61] Daniel Fryer, Mike Qin, Jack Sun, Kah Wai Lee, Angela Demke Brown, and Ashvin Goel. Checking

the Integrity of Transactional Mechanisms. Trans. Storage, 10(4):17:1–17:23, October 2014.

[62] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. Redundancy Does Not Imply Fault Tolerance: Analysis of Distributed Storage Reactions

to Single Errors and Corruptions. In 15th USENIX Conference on File and Storage Technologies (FAST

17), pages 149–166, Santa Clara, CA, 2017. USENIX Association.

[63] Gregory R. Ganger and Yale N. Patt. Using system-level models to evaluate i/o subsystem designs.

IEEE Trans. Comput., 47(6):667–678, 1998.

[64] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: A Virtual Machine-

based Platform for Trusted Computing. In Proceedings of the Nineteenth ACM Symposium on Operating

Systems Principles, SOSP ’03, pages 193–206, New York, NY, USA, 2003. ACM.

[65] Tal Garfinkel, Mendel Rosenblum, et al. A Virtual Machine Introspection Based Architecture for

Intrusion Detection. In NDSS, volume 3, pages 191–206, 2003.

[66] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System. In Proceedings

of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, pages 29–43, New York,

NY, USA, 2003. ACM.

[67] Garth A. Gibson, David Rochberg, Jim Zelenka, David F. Nagle, Khalil Amiri, Fay W. Chang,

Eugene M. Feinberg, Howard Gobioff, Chen Lee, Berend Ozceri, and Erik Riedel. File server scaling

with network-attached secure disks. pages 272–284.

[68] Google. Google Cloud Status. https://status.cloud.google.com/incident/compute/

15056#5719570367119360.

[69] Jim Gray. What Next?: A Dozen Information-technology Research Goals. J. ACM, 50(1):41–57,

January 2003.

https://status.cloud.google.com/incident/compute/15056#5719570367119360
https://status.cloud.google.com/incident/compute/15056#5719570367119360

148

[70] Jim Gray and Catharine van Ingen. Empirical Measurements of Disk Failure Rates and Error Rates.

CoRR, abs/cs/0701166, 2007.

[71] John Linwood Griffin, Jiri Schindler, Steven W. Schlosser, John S. Bucy, and Gregory R. Ganger.

Timing-accurate Storage Emulation.

[72] Zhongshu Gu, Zhui Deng, Dongyan Xu, and Xuxian Jiang. Process Implanting: A New Active

Introspection Framework for Virtualization. In Proceedings of the 2011 IEEE 30th International

Symposium on Reliable Distributed Systems, SRDS ’11, pages 147–156, Washington, DC, USA, 2011.

IEEE Computer Society.

[73] Haryadi S. Gunawi, Vijayan Prabhakaran, Swetha Krishnan, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. Improving File System Reliability with I/O Shepherding. In Proceedings

of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07, pages 293–306,

New York, NY, USA, 2007. ACM.

[74] Diwaker Gupta, Kenneth Yocum, Marvin McNett, Alex C. Snoeren, Amin Vahdat, and Geoffrey M.

Voelker. To infinity and beyond: time-warped network emulation. In Proceedings of the 3rd conference

on Networked Systems Design and Implementation (NSDI’06), San Jose, CA, 2006.

[75] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke. DRPM: dynamic speed control

for power management in server class disks. In 30th Annual International Symposium on Computer

Architecture, 2003. Proceedings., pages 169–179, June 2003.

[76] Andreas Haeberlen, Alan Mislove, and Peter Druschel. Glacier: Highly Durable, Decentralized

Storage Despite Massive Correlated Failures. In Proceedings of the 2Nd Conference on Symposium on

Networked Systems Design & Implementation - Volume 2, NSDI’05, pages 143–158, Berkeley, CA, USA,

2005. USENIX Association.

[77] J. L. Hafner, V. Deenadhayalan, W. Belluomini, and K. Rao. Undetected disk errors in RAID arrays.

IBM Journal of Research and Development, 52(4.5):413–425, July 2008.

[78] Tom’s Hardware. The Mother of All CPU Charts 2005/2006. http://www.tomshardware.com/

reviews/mother-cpu-charts-2005,1175.html, 2005.

http://www.tomshardware.com/reviews/mother-cpu-charts-2005,1175.html
http://www.tomshardware.com/reviews/mother-cpu-charts-2005,1175.html

149

[79] Y. Hebbal, S. Laniepce, and J. M. Menaud. Virtual Machine Introspection: Techniques and Applica-

tions. In 2015 10th International Conference on Availability, Reliability and Security, pages 676–685, Aug

2015.

[80] Dave Hitz, James Lau, and Michael A Malcolm. File System Design for an NFS File Server Appliance.

In USENIX winter, volume 94, 1994.

[81] Hai Huang, A Hung, and Kang G. Shin. FS2: dynamic data replication in free disk space for

improving disk performance and energy consumption. In Proceedings of 20th ACM Symposium on

Operating System Principles, pages 263–276. ACM Press, 2005.

[82] Basho Technologies Inc. Backing Up. https://www.tiot.jp/riak-docs/riak/kv/2.0.2/

using/cluster-operations/backing-up/, 2017.

[83] Basho Technologies Inc. Riak Customers. http://basho.com/about/customers/, 2017.

[84] Basho Technologies Inc. Riak KV Repair Techniques. https://github.com/basho/basho_

docs/blob/master/content/riak/kv/2.2.3/using/repair-recovery/repairs.

md, 2017.

[85] DataStax Inc. About snapshots. https://docs.datastax.com/en/cassandra/3.0/

cassandra/operations/opsAboutSnapshots.html?hl=backup, 2017.

[86] DataStax Inc. Cassandra Customers. https://www.datastax.com/customers, 2017.

[87] DataStax Inc. Cassandra Repair Tools: ‘sstablescrub’ and ‘nodetool scrub’. http:

//docs.datastax.com/en/cassandra/3.0/cassandra/tools/toolsSSTableScrub.

html?hl=sstablescrub

http://docs.datastax.com/en/cassandra/3.0/cassandra/tools/toolsScrub.

html?hl=nodetool%2Cscrub, 2017.

[88] MongoDB Inc. MongoDB Backup Methods. https://docs.mongodb.com/manual/core/

backups/, 2017.

[89] MongoDB Inc. MongoDB Customers. https://www.mongodb.com/who-uses-mongodb,

2017.

https://www.tiot.jp/riak-docs/riak/kv/2.0.2/using/cluster-operations/backing-up/
https://www.tiot.jp/riak-docs/riak/kv/2.0.2/using/cluster-operations/backing-up/
http://basho.com/about/customers/
https://github.com/basho/basho_docs/blob/master/content/riak/kv/2.2.3/using/repair-recovery/repairs.md
https://github.com/basho/basho_docs/blob/master/content/riak/kv/2.2.3/using/repair-recovery/repairs.md
https://github.com/basho/basho_docs/blob/master/content/riak/kv/2.2.3/using/repair-recovery/repairs.md
https://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsAboutSnapshots.html?hl=backup
https://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsAboutSnapshots.html?hl=backup
https://www.datastax.com/customers
http://docs.datastax.com/en/cassandra/3.0/cassandra/tools/toolsSSTableScrub.html?hl=sstablescrub
http://docs.datastax.com/en/cassandra/3.0/cassandra/tools/toolsSSTableScrub.html?hl=sstablescrub
http://docs.datastax.com/en/cassandra/3.0/cassandra/tools/toolsSSTableScrub.html?hl=sstablescrub
http://docs.datastax.com/en/cassandra/3.0/cassandra/tools/toolsScrub.html?hl=nodetool%2Cscrub
http://docs.datastax.com/en/cassandra/3.0/cassandra/tools/toolsScrub.html?hl=nodetool%2Cscrub
https://docs.mongodb.com/manual/core/backups/
https://docs.mongodb.com/manual/core/backups/
https://www.mongodb.com/who-uses-mongodb

150

[90] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Combined Volumes: 1, 2ABC,

3ABCD. https://software.intel.com/sites/default/files/managed/39/c5/

325462-sdm-vol-1-2abcd-3abcd.pdf, 2016.

[91] Laurence James. 10 years of Kryder’s Law: how flash will shape the next 10 years. https://

thestack.com/data-centre/2015/12/09/10-years-of-kryders-law-how-flash

-will-shape-the-next-10-years/, 2015.

[92] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady Kanevsky. Are Disks the Domi-

nant Contributor for Storage Failures?: A Comprehensive Study of Storage Subsystem Failure

Characteristics. Trans. Storage, 4(3):7:1–7:25, November 2008.

[93] Heeseung Jo, Youngjin Kwon, Hwanju Kim, Euiseong Seo, Joonwon Lee, and Seungryoul Maeng.

SSD-HDD-hybrid Virtual Disk in Consolidated Environments. In Proceedings of the 2009 International

Conference on Parallel Processing, Euro-Par’09, pages 375–384, Berlin, Heidelberg, 2010. Springer-

Verlag.

[94] Theodore Johnson and Dennis Shasha. 2Q: A Low Overhead High Performance Buffer Management

Replacement Algorithm. In Proceedings of the 20th International Conference on Very Large Data Bases,

VLDB ’94, pages 439–450, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[95] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Antfarm: Tracking

Processes in a Virtual Machine Environment. In in Proc. of the USENIX Annual Technical Conf, 2006.

[96] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Geiger: monitoring

the buffer cache in a virtual machine environment. SIGARCH Comput. Archit. News, 34(5):14–24,

October 2006.

[97] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. VMM-based Hid-

den Process Detection and Identification Using Lycosid. In Proceedings of the Fourth ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments, VEE ’08, pages 91–100,

New York, NY, USA, 2008. ACM.

[98] William K. Josephson, Lars A. Bongo, Kai Li, and David Flynn. DFS: A File System for Virtualized

Flash Storage. Trans. Storage, 6(3):14:1–14:25, September 2010.

https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://thestack.com/data-centre/2015/12/09/10-years-of-kryders-law-how-flash-will-shape-the-next-10-years/
https://thestack.com/data-centre/2015/12/09/10-years-of-kryders-law-how-flash-will-shape-the-next-10-years/
https://thestack.com/data-centre/2015/12/09/10-years-of-kryders-law-how-flash-will-shape-the-next-10-years/

151

[99] Ashok Joshi, Sam Haradhvala, and Charles Lamb. Oracle NoSQL databasescalable, transactional

key-value store. In Proc. the 2nd International Conference on Advances in Information Mining and

Management, pages 75–78, 2012.

[100] V. Jujjuri, E. Van Hensbergen, A. Liguori, and B. Pulavarty. VirtFS – A virtualization aware File

System pass-through. In Proceedings of the Ottawa Linux Symposium, 2010.

[101] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Héctor Briceño, Russell Hunt, David

Mazières, Thomas Pinckney, Robert Grimm, John Jannotti, and Kenneth Mackenzie. Application

Performance and Flexibility on Exokernel Systems. pages 52–65.

[102] H. H. Kari, H. Saikkonen, and F. Lombardi. Detection of defective media in disks. In Proceedings of

1993 IEEE International Workshop on Defect and Fault Tolerance in VLSI Systems, pages 49–55, Oct 1993.

[103] Jeffrey Katcher. Postmark Source Code. http://linuxcompressed.sourceforge.net/

linux24-cc/statistics/testsuite/postmark-1_5.c, 2007.

[104] Atish Kathpal and Priya Sehgal. BARNS: Towards Building Backup and Recovery for NoSQL

Databases. In 9th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 17), Santa

Clara, CA, 2017. USENIX Association.

[105] Kimberley Keeton, Cipriano Santos, Dirk Beyer, Jeffrey Chase, and John Wilkes. Designing for

Disasters. In Proceedings of the 3rd USENIX Conference on File and Storage Technologies, FAST ’04, pages

59–62, Berkeley, CA, USA, 2004. USENIX Association.

[106] Kimberly Keeton and John Wilkes. Automating Data Dependability. In Proceedings of the 10th

Workshop on ACM SIGOPS European Workshop, EW 10, pages 93–100, New York, NY, USA, 2002.

ACM.

[107] Robert W. Kembel. Fibre Channel A Comprehensive Introduction. Northwest Learning Assoc, 2009.

[108] The kernel development community. Submitting patches: the essential guide to get-

ting your code into the kernel. https://www.kernel.org/doc/html/v4.12/process/

submitting-patches.html, 2017.

[109] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. KVM: the Linux virtual

machine monitor. In Proceedings of the Linux Symposium, volume 1, pages 225–230, 2007.

http://linuxcompressed.sourceforge.net/linux24-cc/statistics/testsuite/postmark-1_5.c
http://linuxcompressed.sourceforge.net/linux24-cc/statistics/testsuite/postmark-1_5.c
https://www.kernel.org/doc/html/v4.12/process/submitting-patches.html
https://www.kernel.org/doc/html/v4.12/process/submitting-patches.html

152

[110] Rusty Klophaus. Riak Core: Building Distributed Applications Without Shared State. In ACM

SIGPLAN Commercial Users of Functional Programming, CUFP ’10, New York, NY, USA, 2010. ACM.

[111] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hifumi, Seiji Kihara, and Satoshi Moriai. The

Linux Implementation of a Log-structured File System. SIGOPS Oper. Syst. Rev., 40(3):102–107, July

2006.

[112] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and Sumith Makam. High Performance Metadata

Integrity Protection in the WAFL Copy-on-Write File System. In 15th USENIX Conference on File and

Storage Technologies (FAST 17), pages 197–212, Santa Clara, CA, 2017. USENIX Association.

[113] Avinash Lakshman and Prashant Malik. Cassandra: A Decentralized Structured Storage System.

SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[114] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim. LRFU: A Spectrum of Policies

That Subsumes the Least Recently Used and Least Frequently Used Policies. IEEE Trans. Comput.,

50(12):1352–1361, December 2001.

[115] Sangmin Lee, Rina Panigrahy, Vijayan Prabhakaran, Venugopalan Ramasubramanian, Kunal Talwar,

Lincoln Uyeda, and Udi Wieder. Validating Heuristics for Virtual Machines Consolidation. Technical

Report MSR-TR-2011-9, Microsoft Research, January 2011.

[116] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. Unmodified Device Driver Reuse

and Improved System Dependability via Virtual Machines. In Proceedings of the 6th Conference

on Symposium on Opearting Systems Design & Implementation, OSDI’04, Berkeley, CA, USA, 2004.

USENIX Association.

[117] J. Liao and Y. Ishikawa. Partial Replication of Metadata to Achieve High Metadata Availability in

Parallel File Systems. In 2012 41st International Conference on Parallel Processing, pages 168–177, Sept

2012.

[118] libvmi.com. Libvmi: Virtual machine introspection library. http://libvmi.com/

https://github.com/libvmi/libvmi, 2016.

[119] J. Liu, K. Zhou, L. Pang, Z. Wang, Y. Deng, and D. Feng. A Novel Cost-Effective Disk Scrubbing

Scheme. In 2009 Fifth International Joint Conference on INC, IMS and IDC, pages 686–691, Aug 2009.

http://libvmi.com/
https://github.com/libvmi/libvmi

153

[120] Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Marshall Kirk

Mckusick. Ffsck: The Fast File-System Checker. Trans. Storage, 10(1):2:1–2:28, January 2014.

[121] Jean Jacques Maleval. History: Milestones in HDD Capacity. https://www.

storagenewsletter.com/2013/08/29/milestones-in-hdd-capacity/, 2013.

[122] Sonam Mandal, Geoff Kuenning, Dongju Ok, Varun Shastry, Philip Shilane, Sun Zhen, Vasily

Tarasov, and Erez Zadok. Using Hints to Improve Inline Block-layer Deduplication. In 14th USENIX

Conference on File and Storage Technologies (FAST 16), pages 315–322, Santa Clara, CA, February 2016.

USENIX Association.

[123] P. D. Marinescu and G. Candea. LFI: A practical and general library-level fault injector. In 2009

IEEE/IFIP International Conference on Dependable Systems Networks, pages 379–388, June 2009.

[124] Richard McDougall and Jim Mauro. FileBench. http://filebench.sourceforge.net/, 2005.

[125] Marshall Kirk McKusick. Running "Fsck" in the Background. In Proceedings of the BSD Conference

2002 on BSD Conference, BSDC’02, Berkeley, CA, USA, 2002. USENIX Association.

[126] Marshall Kirk Mckusick and T. J. Kowalski. Fsck - The UNIX File System Check Program, 1994.

[127] Nimrod Megiddo and Dharmendra S. Modha. ARC: A Self-Tuning, Low Overhead Replacement

Cache. In Proceedings of the 2Nd USENIX Conference on File and Storage Technologies, FAST ’03, pages

115–130, Berkeley, CA, USA, 2003. USENIX Association.

[128] Dirk Merkel. Docker: Lightweight Linux Containers for Consistent Development and Deployment.

Linux J., 2014(239), March 2014.

[129] M. Mesnier, G. R. Ganger, and E. Riedel. Object-based storage. IEEE Communications Magazine,

41(8):84–90, Aug 2003.

[130] M. Mesnier, E. Thereska, G. R. Ganger, D. Ellard, and M. Seltzer. File classification in self-* storage

systems. In International Conference on Autonomic Computing, 2004. Proceedings., pages 44–51, May

2004.

[131] Michael Mesnier, Feng Chen, Tian Luo, and Jason B. Akers. Differentiated storage services. In

Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages

57–70, New York, NY, USA, 2011. ACM.

https://www.storagenewsletter.com/2013/08/29/milestones-in-hdd-capacity/
https://www.storagenewsletter.com/2013/08/29/milestones-in-hdd-capacity/
http://filebench.sourceforge.net/

154

[132] Dutch T. Meyer, Gitika Aggarwal, Brendan Cully, Geoffrey Lefebvre, Michael J. Feeley, Norman C.

Hutchinson, and Andrew Warfield. Parallax: Virtual Disks for Virtual Machines. In Proceedings

of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008, Eurosys ’08, pages

41–54, New York, NY, USA, 2008. ACM.

[133] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. A Large-Scale Study of Flash Memory

Failures in the Field. In Proceedings of the 2015 ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems, SIGMETRICS ’15, pages 177–190, New York, NY,

USA, 2015. ACM.

[134] Ningfang Mi, A. Riska, E. Smirni, and E. Riedel. Enhancing data availability in disk drives through

background activities. In 2008 IEEE International Conference on Dependable Systems and Networks With

FTCS and DCC (DSN), pages 492–501, June 2008.

[135] Ethan L. Miller. Towards scalable benchmarks for mass storage systems. In 5th NASA Goddard

Conference on Mass Storage Systems and Technologies, 1996.

[136] Rich Miller. Ma.gnolia Data is Gone For Good. http://www.datacenterknowledge.com/

archives/2009/02/19/magnolia-data-is-gone-for-good/, 2009.

[137] MongoDB Inc. MongoDB’s ‘repairDatabase’ Tool and its Wrappers. https://docs.mongodb.

com/manual/reference/command/repairDatabase/, 2017.

[138] Timothy Prickett Morgan. Cassandra Carves Storage Niche, Aims At Microservers. https://www.

nextplatform.com/2015/04/15/cassandra-carves-storage-niche-aims-at-

microservers/, 2017.

[139] James Myers. Data Integrity in Solid State Drives: What Supernovas Mean to You. https:

//itpeernetwork.intel.com/data-integrity-in-solid-state-drives-what-

supernovas-mean-to-you/, 2014.

[140] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash Sharma, Laura Caulfield, Anand Sivasubra-

maniam, Ben Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid. SSD Failures in Datacenters:

What? When? And Why? In Proceedings of the 9th ACM International on Systems and Storage Conference,

SYSTOR ’16, pages 7:1–7:11, New York, NY, USA, 2016. ACM.

http://www.datacenterknowledge.com/archives/2009/02/19/magnolia-data-is-gone-for-good/
http://www.datacenterknowledge.com/archives/2009/02/19/magnolia-data-is-gone-for-good/
https://docs.mongodb.com/manual/reference/command/repairDatabase/
https://docs.mongodb.com/manual/reference/command/repairDatabase/
https://www.nextplatform.com/2015/04/15/cassandra-carves-storage-niche-aims-at-microservers/
https://www.nextplatform.com/2015/04/15/cassandra-carves-storage-niche-aims-at-microservers/
https://www.nextplatform.com/2015/04/15/cassandra-carves-storage-niche-aims-at-microservers/
https://itpeernetwork.intel.com/data-integrity-in-solid-state-drives-what-supernovas-mean-to-you/
https://itpeernetwork.intel.com/data-integrity-in-solid-state-drives-what-supernovas-mean-to-you/
https://itpeernetwork.intel.com/data-integrity-in-solid-state-drives-what-supernovas-mean-to-you/

155

[141] Suman Nath, Haifeng Yu, Phillip B. Gibbons, and Srinivasan Seshan. Subtleties in Tolerating

Correlated Failures in Wide-area Storage Systems. In Proceedings of the 3rd Conference on Networked

Systems Design & Implementation - Volume 3, NSDI’06, Berkeley, CA, USA, 2006. USENIX Association.

[142] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast Transparent Migration for Virtual

Machines. In Proceedings of the Annual Conference on USENIX Annual Technical Conference, ATEC ’05,

Berkeley, CA, USA, 2005. USENIX Association.

[143] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. The LRU-K Page Replacement Algo-

rithm for Database Disk Buffering. In Proceedings of the 1993 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’93, pages 297–306, New York, NY, USA, 1993. ACM.

[144] Alina Oprea and Ari Juels. A Clean-slate Look at Disk Scrubbing. In Proceedings of the 8th USENIX

Conference on File and Storage Technologies, FAST’10, Berkeley, CA, USA, 2010. USENIX Association.

[145] Oracle Corporation. MySQL White Papers, 2016. https://www.mysql.com/why-mysql/

white-papers/.

[146] Bernd Panzer-Steindel. Data integrity. CERN/IT, 2007.

[147] David Patterson. For Better or Worse, Benchmarks Shape a Field: Technical Perspective. Commun.

ACM, 55(7), July 2012.

[148] David Patterson, Aaron Brown, Pete Broadwell, George Candea, Mike Chen, James Cutler, Patri-

cia Enriquez, Armando Fox, Matthew Merzbacher, et al. Recovery-oriented computing (ROC):

Motivation, definition, techniques, and case studies. Technical report, 2002.

[149] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant Arrays of Inexpensive

Disks (RAID). In Proceedings of the 1988 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’88, pages 109–116, New York, NY, USA, 1988. ACM.

[150] B. D. Payne, M. D. P. D. A. Carbone, and W. Lee. Secure and Flexible Monitoring of Virtual Machines.

In Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007), pages 385–397, Dec

2007.

[151] Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. Virtualization Aware File Systems: Getting

Beyond the Limitations of Virtual Disks. In Proceedings of the 3rd Conference on Networked Systems

Design and Implementation - Volume 3, NSDI’06, Berkeley, CA, USA, 2006. USENIX Association.

https://www.mysql.com/why-mysql/white-papers/
https://www.mysql.com/why-mysql/white-papers/

156

[152] Jonas Pfoh, Christian Schneider, and Claudia Eckert. Nitro: Hardware-Based System Call Tracing for

Virtual Machines, pages 96–112. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[153] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. Failure Trends in a Large Disk

Drive Population. In Proceedings of the 5th USENIX Conference on File and Storage Technologies, FAST

’07, Berkeley, CA, USA, 2007. USENIX Association.

[154] Florentina I. Popovici, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Robust, Portable

I/O Scheduling with the Disk Mimic. pages 297–310.

[155] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Analysis and

Evolution of Journaling File Systems. In Proceedings of the Annual Conference on USENIX Annual

Technical Conference, ATEC ’05, Berkeley, CA, USA, 2005. USENIX Association.

[156] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. IRON File Systems. In Proceedings of the Twentieth

ACM Symposium on Operating Systems Principles, SOSP ’05, pages 206–220, New York, NY, USA, 2005.

ACM.

[157] David Reinsel, John Gantz, and John Rydning. Total WW Data to Reach

163ZB by 2025. https://www.storagenewsletter.com/2017/04/05/

total-ww-data-to-reach-163-zettabytes-by-2025-idc/, 2017.

[158] Erik Riedel, Mahesh Kallahalla, and Ram Swaminathan. A Framework for Evaluating Storage

System Security. pages 14–29.

[159] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The Linux B-Tree Filesystem. Trans. Storage,

9(3):9:1–9:32, August 2013.

[160] Ohad Rodeh and Avi Teperman. zFS: A Scalable Distributed File System Using Object Disks. In

Proceedings of the 20 th IEEE/11 th NASA Goddard Conference on Mass Storage Systems and Technologies

(MSS’03), MSS ’03, Washington, DC, USA, 2003. IEEE Computer Society.

[161] Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson. A Comparison of File System Workloads.

In Proceedings of the Annual Conference on USENIX Annual Technical Conference, ATEC ’00, Berkeley,

CA, USA, 2000. USENIX Association.

https://www.storagenewsletter.com/2017/04/05/total-ww-data-to-reach-163-zettabytes-by-2025-idc/
https://www.storagenewsletter.com/2017/04/05/total-ww-data-to-reach-163-zettabytes-by-2025-idc/

157

[162] M. Rosenblum and T. Garfinkel. Virtual Machine Monitors: Current Technology and Future Trends.

Computer, pages 39–47, 2005.

[163] Mendel Rosenblum. The Reincarnation of Virtual Machines. Queue, 2(5), 2004.

[164] Mendel Rosenblum, Edouard Bugnion, Scott Devine, and Stephen A. Herrod. Using the SimOS

Machine Simulator to Study Complex Computer Systems. ACM Trans. Model. Comput. Simul.,

7(1):78–103, January 1997.

[165] Paul Rubin. Shipwrecked! A MongoDB Data Recovery Tale. https://www.compose.com/

articles/shipwrecked-a-mongodb-data-recovery-tale/, 2013.

[166] Chris Ruemmler and John Wilkes. An Introduction to Disk Drive Modeling. 27(3):17–28, March

1994.

[167] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end Arguments in System Design. ACM Trans.

Comput. Syst., 2(4):277–288, November 1984.

[168] J. Schaffner, D. Jacobs, B. Eckart, J. Brunnert, and A. Zeier. Towards enterprise software as a service

in the cloud. In 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010),

pages 52–59, March 2010.

[169] J. Schindler and G. Ganger. Automated disk drive characterization. Technical Report CMU-CS-99-

176, Carnegie Mellon University, November 1999.

[170] Jiri Schindler. I/O Characteristics of NoSQL Databases. Proc. VLDB Endow., 5(12):2020–2021, August

2012.

[171] Jiri Schindler, John Linwood Griffin, Christopher R. Lumb, and Gregory R. Ganger. Track-Aligned

Extents: Matching Access Patterns to Disk Drive Characteristics. In Proceedings of the 1st USENIX

Conference on File and Storage Technologies, FAST ’02, Berkeley, CA, USA, 2002. USENIX Association.

[172] Frank Schmuck and Roger Haskin. Gpfs: A shared-disk file system for large computing clusters. In

FAST ’02: Proceedings of the 1st USENIX Conference on File and Storage Technologies, page 19, Berkeley,

CA, USA, 2002. USENIX Association.

[173] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill. Understanding Latent Sector Errors and

How to Protect Against Them. Trans. Storage, 6(3):9:1–9:23, September 2010.

https://www.compose.com/articles/shipwrecked-a-mongodb-data-recovery-tale/
https://www.compose.com/articles/shipwrecked-a-mongodb-data-recovery-tale/

158

[174] Bianca Schroeder and Garth A. Gibson. Disk Failures in the Real World: What Does an MTTF

of 1,000,000 Hours Mean to You? In Proceedings of the 5th USENIX Conference on File and Storage

Technologies, FAST ’07, Berkeley, CA, USA, 2007. USENIX Association.

[175] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. Flash Reliability in Production: The

Expected and the Unexpected. In Proceedings of the 14th Usenix Conference on File and Storage

Technologies, FAST’16, pages 67–80, Berkeley, CA, USA, 2016. USENIX Association.

[176] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. DRAM Errors in the Wild: A

Large-scale Field Study. In Proceedings of the Eleventh International Joint Conference on Measurement

and Modeling of Computer Systems, SIGMETRICS ’09, pages 193–204, New York, NY, USA, 2009.

ACM.

[177] T. J. E. Schwarz, Qin Xin, E. L. Miller, D. D. E. Long, A. Hospodor, and S. Ng. Disk scrubbing in large

archival storage systems. In Modeling, Analysis, and Simulation of Computer and Telecommunications

Systems, 2004. (MASCOTS 2004). Proceedings. The IEEE Computer Society’s 12th Annual International

Symposium on, pages 409–418, Oct 2004.

[178] S. Shah and J. G. Elerath. Disk drive vintage and its effect on reliability. In Annual Symposium

Reliability and Maintainability, 2004 - RAMS, pages 163–167, Jan 2004.

[179] S. Shah and J. G. Elerath. Reliability analysis of disk drive failure mechanisms. In Annual Reliability

and Maintainability Symposium, 2005. Proceedings., pages 226–231, Jan 2005.

[180] Mohammad Shamma, Dutch T. Meyer, Jake Wires, Maria Ivanova, Norman C. Hutchinson, and

Andrew Warfield. Capo: Recapitulating Storage for Virtual Desktops. In Proceedings of the 9th

USENIX Conference on File and Storage Technologies, FAST’11, Berkeley, CA, USA, 2011. USENIX

Association.

[181] Ross Shaull, Liuba Shrira, and Hao Xu. Skippy: A New Snapshot Indexing Method for Time

Travel in the Storage Manager. In Proceedings of the 2008 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’08, pages 637–648, New York, NY, USA, 2008. ACM.

[182] L. Shrira and H. Xu. SNAP: efficient snapshots for back-in-time execution. In 21st International

Conference on Data Engineering (ICDE’05), pages 434–445, April 2005.

159

[183] Liuba Shrira and Hao Xu. Thresher: An Efficient Storage Manager for Copy-on-write Snapshots. In

Proceedings of the Annual Conference on USENIX ’06 Annual Technical Conference, ATEC ’06, Berkeley,

CA, USA, 2006. USENIX Association.

[184] Elizabeth Shriver. Performance modeling for realistic storage devices. PhD thesis, New York, NY, USA,

1997.

[185] Gopalan Sivathanu, Swaminathan Sundararaman, and Erez Zadok. Type-Safe Disks. In Proceedings

of the 7th Symposium on Operating Systems Design and Implementation, OSDI ’06, pages 15–28, Berkeley,

CA, USA, 2006. USENIX Association.

[186] Muthian Sivathanu, Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. Life or Death at Block-level. In Proceedings of the 6th Conference on Symposium on

Operating Systems Design and Implementation - Volume 6, OSDI’04, Berkeley, CA, USA, 2004. USENIX

Association.

[187] Muthian Sivathanu, Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. Database-aware Semantically-smart Storage. In Proceedings of the 4th Conference

on USENIX Conference on File and Storage Technologies - Volume 4, FAST’05, Berkeley, CA, USA, 2005.

USENIX Association.

[188] Muthian Sivathanu, Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. Improving Storage System Availability with D-GRAID. Trans. Storage, 1(2):133–170, May

2005.

[189] Muthian Sivathanu, Vijayan Prabhakaran, Florentina I. Popovici, Timothy E. Denehy, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Semantically-Smart Disk Systems. In Proceedings

of the 2Nd USENIX Conference on File and Storage Technologies, FAST ’03, pages 73–88, Berkeley, CA,

USA, 2003. USENIX Association.

[190] David M. Smith. The Cost of Lost Data. https://gbr.pepperdine.edu/2010/08/the-cost

-of-lost-data, 2010.

[191] Ivan Smith. Cost of Hard Drive Storage Space. http://ns1758.ca/winch/winchest.html,

2013.

[192] sortbenchmark.org. GraySort Benchmark. http://sortbenchmark.org/.

https://gbr.pepperdine.edu/2010/08/the-cost-of-lost-data/
https://gbr.pepperdine.edu/2010/08/the-cost-of-lost-data/
http://ns1758.ca/winch/winchest.html
http://sortbenchmark.org/

160

[193] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan, and Ted Wobber. Extending

SSD Lifetimes with Disk-based Write Caches. In Proceedings of the 8th USENIX Conference on File and

Storage Technologies, FAST’10, Berkeley, CA, USA, 2010. USENIX Association.

[194] Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Ferreira, Jon Stearley, John Shalf,

and Sudhanva Gurumurthi. Memory Errors in Modern Systems: The Good, The Bad, and The

Ugly. SIGARCH Comput. Archit. News, 43(1):297–310, March 2015.

[195] Sriram Subramanian, Yupu Zhang, Rajiv Vaidyanathan, Haryadi S. Gunawi, Andrea C. Arpaci-

Dusseau, Remzi H. Arpaci-Dusseau, Jeffrey F. Naughton. Impact of Disk Corruption on Open-

Source DBMS. In Proceedings of the 26th International Conference on Data Engineering, Long Beach,

California, March 2010.

[196] Standard Performance Evaluation Corporation. SPECmail2009 Benchmark. http://www.spec.

org/mail2009/.

[197] Michael Stonebraker. The Design of the POSTGRES Storage System. In Proceedings of the 13th

International Conference on Very Large Data Bases, VLDB ’87, pages 289–300, San Francisco, CA, USA,

1987. Morgan Kaufmann Publishers Inc.

[198] Mark W. Storer, Kevin Greenan, Darrell D.E. Long, and Ethan L. Miller. Secure Data Deduplication.

In Proceedings of the 4th ACM International Workshop on Storage Security and Survivability, StorageSS

’08, pages 1–10, New York, NY, USA, 2008. ACM.

[199] V. Sundaram and P. Shenoy. A Practical Learning-based Approach for Dynamic Storage Bandwidth

Allocation. Technical report, Amherst, MA, USA, 2002.

[200] Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto, and Geoff Peck.

Scalability in the XFS File System.

[201] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the Reliability of Commodity

Operating Systems. In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles,

SOSP ’03, pages 207–222, New York, NY, USA, 2003. ACM.

[202] Technical Committee T10. SCSI Storage Interfaces. http://t10.org/, 2017.

http://www.spec.org/mail2009/
http://www.spec.org/mail2009/
http://t10.org/

161

[203] Nisha Talagala, Remzi H. Arpaci-Dusseau, and Dave Patterson. Microbenchmark-based Extraction

of Local and Global Disk Characteristics. Technical Report CSD-99-1063, University of California,

Berkeley, 1999.

[204] Nisha Talagala and David Patterson. An Analysis of Error Behaviour in a Large Storage System. In

The IEEE Workshop on Fault Tolerance in Parallel and Distributed Systems, San Juan, Puerto Rico, April

1999.

[205] Vasily Tarasov, Deepak Jain, Dean Hildebrand, Renu Tewari, Geoff Kuenning, and Erez Zadok.

Improving I/O Performance Using Virtual Disk Introspection. In Presented as part of the 5th USENIX

Workshop on Hot Topics in Storage and File Systems, Berkeley, CA, 2013. USENIX.

[206] Vasily Tarasov, Sonam Mandal, Philip Shilane, Deepak Jain, Geoff Kuenning, Karthikeyani

Palanisami, Sagar Trehan, and Erez Zadok. Dmdedup: Device Mapper Target for Data Deduplica-

tion.

[207] TheRegister. Admin downs entire Joyent data center. http://www.theregister.co.uk/

2014/05/28/joyent_cloud_down/.

[208] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Antony Rowstron, Tom Talpey,

Richard Black, and Timothy Zhu. IOFlow: A Software-defined Storage Architecture. In Proceedings

of the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, pages 182–196, New

York, NY, USA, 2013. ACM.

[209] Avishay Traeger and Erez Zadok. How to cheat at benchmarking. In USENIX FAST Birds of a feather

session, San Francisco, CA, February 2009.

[210] Transaction Processing Council. TPC Benchmark H Standard Specification, Revision 2.17.1. http:

//www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf, 2014.

[211] Vassilis J. Tsotras and Nickolas Kangelaris. The snapshot index: An i/o-optimal access method for

timeslice queries. Information Systems, 20(3):237 – 260, 1995.

[212] Stephen C. Tweedie. Journaling the Linux ext2fs File System. In The Fourth Annual Linux Expo,

Durham, North Carolina, May 1998.

[213] Karl Ulrich. Fundamentals of Product Modularity, pages 219–231. Springer Netherlands, Dordrecht,

1994.

http://www.theregister.co.uk/2014/05/28/joyent_cloud_down/
http://www.theregister.co.uk/2014/05/28/joyent_cloud_down/
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf

162

[214] Sandeep Uttamchandani, Kaladhar Voruganti, Sudarshan Srinivasan, John Palmer, and David

Pease. Polus: Growing Storage QoS Management Beyond a "4-Year Old Kid". In Proceedings of the

3rd USENIX Conference on File and Storage Technologies, FAST ’04, pages 31–44, Berkeley, CA, USA,

2004. USENIX Association.

[215] VMware Inc. VMware VMFS product datasheet. http://www.vmware.com/pdf/vmfs_

datasheet.pdf.

[216] Werner Vogels. Beyond Server Consolidation. Queue, 6(1):20–26, 2008.

[217] Carl Waldspurger and Mendel Rosenblum. I/O Virtualization. Commun. ACM, 55(1):66–73, January

2012.

[218] Yang Wang, Lorenzo Alvisi, and Mike Dahlin. Gnothi: Separating Data and Metadata for Efficient

and Available Storage Replication. In Proceedings of the 2012 USENIX Conference on Annual Technical

Conference, USENIX ATC’12, Berkeley, CA, USA, 2012. USENIX Association.

[219] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale and Performance in the Denali

Isolation Kernel. SIGOPS Oper. Syst. Rev., 36(SI):195–209, December 2002.

[220] M. Wittle and Bruce E. Keith. LADDIS: The Next Generation in NFS File Server Benchmarking. In

USENIX Summer, 1993.

[221] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E.

Goodson. Phase Change Memory. Proceedings of the IEEE, 98(12):2201–2227, Dec 2010.

[222] Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt, and John Wilkes. On-Line Extraction of

SCSI Disk Drive Parameters. Technical Report CSE-TR-323-96, Carnegie Mellon University, 19 1996.

[223] Michael Wu and Willy Zwaenepoel. eNVy: A Non-volatile, Main Memory Storage System. SIGPLAN

Not., 29(11):86–97, November 1994.

[224] Jian Xu and Steven Swanson. NOVA: A log-structured file system for hybrid volatile/non-volatile

main memories. In 14th USENIX Conference on File and Storage Technologies (FAST 16), pages 323–338,

Santa Clara, CA, 2016. USENIX Association.

[225] Chaitanya Yalamanchili, Kiron Vijayasankar, Erez Zadok, and Gopalan Sivathanu. DHIS: Dis-

criminating Hierarchical Storage. In Proceedings of SYSTOR 2009: The Israeli Experimental Systems

Conference, SYSTOR ’09, pages 9:1–9:12, New York, NY, USA, 2009. ACM.

http://www.vmware.com/pdf/vmfs_datasheet.pdf
http://www.vmware.com/pdf/vmfs_datasheet.pdf

163

[226] Junfeng Yang, Can Sar, and Dawson Engler. EXPLODE: A Lightweight, General System for Finding

Serious Storage System Errors. In Proceedings of the 7th USENIX Symposium on Operating Systems

Design and Implementation - Volume 7, OSDI ’06, Berkeley, CA, USA, 2006. USENIX Association.

[227] YCombinator. Joyent us-east-1 rebooted due to operator error. https://news.ycombinator.

com/item?id=7806972.

[228] Erez Zadok. File and storage systems benchmarking workshop. UC Santa Cruz, CA, May 2008.

[229] Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

De-indirection for Flash-based SSDs with Nameless Writes. In Proceedings of the 10th USENIX

Conference on File and Storage Technologies, FAST’12, Berkeley, CA, USA, 2012. USENIX Association.

[230] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

End-to-end Data Integrity for File Systems: A ZFS Case Study. In Proceedings of the 8th USENIX

Conference on File and Storage Technologies, FAST’10, Berkeley, CA, USA, 2010. USENIX Association.

[231] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A Durable and Energy Efficient Main Memory

Using Phase Change Memory Technology. SIGARCH Comput. Archit. News, 37(3):14–23, June 2009.

[232] Yuanyuan Zhou, James Philbin, and Kai Li. The Multi-Queue Replacement Algorithm for Second

Level Buffer Caches. In Proceedings of the General Track: 2001 USENIX Annual Technical Conference,

pages 91–104, Berkeley, CA, USA, 2001. USENIX Association.

[233] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the Disk Bottleneck in the Data Domain

Deduplication File System. In Proceedings of the 6th USENIX Conference on File and Storage Technologies,

FAST’08, pages 18:1–18:14, Berkeley, CA, USA, 2008. USENIX Association.

https://news.ycombinator.com/item?id=7806972
https://news.ycombinator.com/item?id=7806972

	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	I/O Classification
	David: Emulating Goliath Storage Devices
	Sky: Improving Virtualized Storage Performance
	Corruption Resilient Check and Repair

	Emulating Goliath Storage Devices
	David's Design
	Block Classification
	Metadata Remapping
	Evaluation
	Summary

	Improving Virtualized Storage Performance
	Motivation
	Design
	Implementation
	Overhead Evaluation
	Case Study #1: Information Gathering
	Case Study #2: iCache
	Case Study #3: iDedup
	Fast Storage Devices
	Deployment Scenarios and Considerations
	Summary

	Corruption Resilient Check and Repair
	System Analysis
	DSCK
	Implementation
	Evaluation
	Summary

	Related Work
	David Related Work
	Sky Related Work
	DSCK Related Work

	Conclusion and Future Work
	Learnings
	Future Work
	Summary

	Bibliography

