
Towards Efficient, Portable Application-Level Consistency

Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram,
Joo-Young Hwang†, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin, Madison
†

Samsung Electronics Co., LTD.

ABSTRACT
Applications employ complex protocols to ensure consis-
tency after system crashes. Such protocols are a↵ected by
the exact behavior of file systems. However, modern file sys-
tems vary widely in such behavior, reducing the correctness
and performance of applications. In this paper, we study
application-level crash consistency. Through the detailed
study of two popular database libraries (SQLite, LevelDB),
we show that application performance and correctness heav-
ily depend on file-system properties previously ignored in re-
search. We define a number of such properties and show that
they vary widely among file systems. We conclude with im-
plications for future file-system and dependability research.

1. INTRODUCTION
Application complexity is increasing over the years:

compared with simple, modular Unix applications [7],
modern applications are huge monoliths, o↵ering users a rich
set of features and managing a huge amount of user data [5].
In many cases, storing extra data allows the application to
provide new features (e.g., Firefox stores browsing history
to provide autocomplete).

Many applications require that certain invariants on the
data hold across system crashes. For example, Firefox
requires that auto-completed URLs match entries in the
browsing history, while a photo-viewing application requires
that thumbnails match photos [25]. An application is
deemed consistent when its invariants hold.

Unfortunately, implementing crash invariants in an
e�cient manner often requires complex update (and
recovery) protocols on top of the underlying file system.
It is easy to make mistakes in these implementations [14].
Previous research has found bugs in even simple crash-
invariance implementations [24].

It is known that many applications depend (for crash
invariance) on how file systems behave when a file’s contents

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
HotDep’13, November 03-06 2013, Farmington, PA, USA
Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
ACM 978-1-4503-2457-1/13/11 $15.00.
http://dx.doi.org/10.1145/2524224.2524229 .

are fully replaced [21]. Specifically, crash invariants are
held only if the replacement is atomic with respect to a
system crash. This dependency is sometimes a bug, and
is sometimes intentional, to provide reasonable application
performance over di↵erent file systems with widely varying
performance characteristics. For the safe execution of
applications, many modern file systems explicitly ensure
atomic file replacement (during certain sequences of system
calls), even though this is not a part of the POSIX standard.

However, application-level consistency is also a↵ected by
other undocumented (and unexplored) crash-related behav-
ior that di↵ers between file systems. This severely con-
strains the portability of applications. There is no consensus
on what file-system behavior a↵ects application-level consis-
tency, and what behaviors file systems should hence guar-
antee. In addition, the lack of well-defined file-system be-
havior prevents careful applications from optimizing their
crash-invariance protocols, thus reducing e�ciency. Previ-
ous techniques for file-system internal consistency, such as
journaling [22, 23], soft updates [4], copy-on-write [1, 6, 13],
backpointer-based consistency [3], and optimistic crash con-
sistency [2], have not investigated their (unintended) conse-
quences on application-level consistency.

To better understand the problem described above, we
take a two-pronged approach. First, we examine modern
file systems, targeting their post-crash properties: properties
that could potentially a↵ect application-level consistency
(§2). We carefully define these properties and show that they
vary widely among file systems, and even among di↵erent
versions of the same file system.

Second, we carefully study two database libraries,
SQLite [20] and LevelDB [8], recording their exact
relationship with di↵ering file-system behavior. Both
applications are widely-used, provide su�ciently-defined
crash invariants, employ complex protocols to enforce such
invariants, and are yet small enough for a complete study.

We find that both applications are a↵ected by the post-
crash behavior of the underlying file system. In the relatively
younger (and less tested) LevelDB, correctness is a↵ected
(§3). We find and report a number of bugs that get exposed
only under certain file-system behavior. In the more mature
and better-tested SQLite library, performance is a↵ected:
SQLite provides many configuration options that allows
it to be optimized for di↵erent file-system behaviors (§4).
However, the developers note that determining the relevant
properties of a particular storage stack is di�cult. Some of
the configuration options in SQLite and bugs in LevelDB are
directly related to the behavior of common file systems.

Based on our study, we present lessons for application
reliability and directions for future file-system research
(§5). We discuss tools that could aid in understanding
application-level consistency, and the requirements for
building such tools. We also speculate on how file systems
can be characterized more thoroughly, paving the way for
file systems on which developers can easily build correct,
e�cient applications.

2. POST-CRASH PROPERTIES
Application-level consistency after a crash depends upon

the contents of the file system that is visible to the
application. We term this the post-crash state: directories,
files, and file data that applications see after a crash. We
define post-crash properties as the properties of flusters that
a↵ect the post-cash state. All post-crash properties that
together define the complete post-crash state of a file system
define the post-crash behavior.

Note that this definition of post-crash properties might
include many characteristics that relate to a particular
file system’s implementation of crash recovery; we are
only interested in properties that a↵ect application-level
dependability or performance. To illustrate, we define five
properties that vary between ext3, ext4, and btrfs:
Ordered directory operations (P1): Consider three
operations that can be performed on directories: unlink(),
creat(), and rename(). Consider a sequence R1,R2,... of
such operations performed on the file system, and a crash
happening at any point in time. This property asserts that,
if the post-crash state of the file system contains the e↵ect
corresponding to some R

i

in the sequence, it will also contain
the e↵ects of R1, R2, ...Ri�1.

Safe appends (P2): Consider a file of size i bytes, and that
an application appends the sequence of bytes hb1, b2, b3...bji
to the end of it using the write() call. Consider no other
write() or truncate() operations happen on the file, and
that a crash happens at any point in time. This property
asserts that, if the size of the file in post-crash state is
i + x, then the last x bytes in the file are hb1, b2, b3...bxi.
A slight variation is, for some y < x, the last x bytes are
hb1, b2, b3...by , {nullbytes}i.
Ordered data appends (P3): Consider two files A and B.
Consider that data hp1, p2, p3...pxi is appended to A, using
the write() call or using memory-mapping interfaces; after
appending to A, data hq1, q2, q3...qyi is then appended to B.
If a crash happens at any point in time, this property asserts
that, if hq1, q2, q3...i is found appended to B in the post-crash
state, then hp1, p2, p3...pxi will be found appended to A.
Safe new file flush (P4): Consider a file that has
been created either using open(O_CREAT) or creat(), some
amount of data (might be zero) is written to it, and a
flushing operation (fsync(), fdatasync(), or msync()) is
made on the file. This property asserts that, the post-
crash state contains the directory entry corresponding to
the created file. Some Linux manpages [10] for fsync()
explicitly warn that this property should not be assumed,
and that a fsync() on the directory itself is required for
guaranteed existence of the directory entry.
Safe rename (P5): Consider that a file A already exists.
Consider that a file B is created either using open(O_CREAT)
or creat(), some amount of data is written to it, and
rename(B,A) is called. On a crash, this property asserts

(P1) (P2) (P3) (P4) (P5)
ext3-ordered X X X X X
ext3-writeback X X X
ext4-original X X X
ext4-current X X X X

btrfs X X X
Table 1: Post-crash properties of file systems.
The row header represents the post-crash properties. ‘ext4-
original’ refers to the ext4 ordered mode using the mount
option ‘noauto da alloc’, that corresponds to the original
behavior of ext4. ‘ext4-current’ refers to the ext4 ordered
mode with the current default behavior.

that, if the e↵ect of rename() is visible on the post-crash
state, all data written to the file B before the crash now
exists on file A.

Table 1 shows the relationship between these properties
and various file systems. It should be noted that our
understanding of which file systems confirm to each property
is not based on any existing specification (a part of the
problem is that clear specifications do not exist). Rather,
it is based on our understanding of the file-system’s source
code, behavior reported by users, and our observation of the
block-level activity of the file systems. To be more specific,
for the values without ‘X’ in Table 1, we have repeatable test
cases that disprove the property in the given file system.
However, for the ‘X’ values, we were not able to find a
disproving test case, and the file-system’s implementation
suggests that the property is present. Also, many values in
Table 1 are sensitive to the source-code version and the file-
system mount options; we used Linux kernel version 3.2.0,
and only the explicitly specified mount options.

It should be noted that we have not completely described
the properties of each file system. For example, we
have not described any properties corresponding to the
atomicity of writes. Completely describing all post-crash
properties is impossible without studying applications in
detail. Applications could be dependent on only specific
properties: for atomicity, one property of interest might be
that each write() call is atomic; another might be that, each
set of writes to a file between two fsync() calls is atomic.
File systems could provide specific properties; consider the
safe-rename property. A related property might be that
data written to any newly-created file will persist before a
rename() of that file, even if the destination did not exist
beforehand. This related property is not true for ext4-
current, but is true for ext3-ordered.

We believe that there are three generic properties:
the atomicity of file-system operations, the durability of
operations, and the sequentiality (ordering) of operations.
All other properties have a hierarchical relationship, with
more specific properties subsumed by the three generic
properties. For example, consider the property that
all operations are persisted sequentially; such a property
would essentially encompass four properties (all except
P4) we described in this section. Guaranteeing more
generic properties might a↵ect file-system performance;
more specific properties might not su�ciently describe the
requirements for a broad range of applications. Thus,
future research should discuss properties at the appropriate
level. Consequently, though we find it convenient to use
boolean post-crash properties in this paper, we believe
future research would rather introduce more suitable formal

models to describe the post-crash behavior of file systems.

3. CASE STUDY: LevelDB
LevelDB [8] is a persistent key-value store originally

developed in Google. LevelDB is widely deployed; the
Chromium web browser uses it as an embedded storage
library. We discovered four places where LevelDB was
vulnerable to the post-crash behavior of file systems. Some
of these were clearly bugs, causing bad behavior under
commonly-used file systems we had already studied; the
others might lead to bad behavior in the presence of
(POSIX-compliant) file systems that we have not examined.
Consequently, we refer to all of them as vulnerabilities. We
have reported all four of our discovered vulnerabilities to
the LevelDB bug database [9], and they are currently being
investigated by the developers. We also found that there
was one relevant bug reported previously (and subsequently
fixed); this bug also happens only in select file systems.

Analysis methodology: We first understood the required
crash invariants in LevelDB and studied the protocol that
LevelDB uses to persist its data. We then used system-
call traces to find the exact file-system calls issued, and
decoded the vulnerabilities in the sequence of calls. On
discovering a potential vulnerability, we verified it using
some environmental changes to increase the window of
vulnerability, running the corresponding workload, and
inducing a system crash during the window. If the
vulnerability does not correspond to any existing file-system
configuration, we carefully reconstructed the post-crash
state that would result from the vulnerability, and made
LevelDB recover.

3.1 Vulnerabilities
We report only on the interesting parts of the protocol

that lead to each bug, and the behavior required from the file
system to expose the bug. We also provide the ticket number
in the bug database corresponding to the vulnerability; the
interested reader should refer to the database for details.
The following are the vulnerabilities:
Bug #183: During the initial creation of a database,
LevelDB writes initialization data to a newly-created file,
then writes a pointer to the data in another newly-created
file (without any fsync() in-between). If the system crashes
during the creation, the pointer might get written to the disk
first, before the data; after reboot, LevelDB would report an
error if the user tries to recreate (or open) the database.
Since all information is only appended to files, this bug
would be hidden under the Ordered append property.
Bug #187: Another bug related to the Ordered append
property. During Put() operations on the database,
LevelDB keeps appending entries to the end of a log file.
It switches from one log file to another when the first log file
reaches a certain size. During this switch, LevelDB does not
ensure that the first log is completely on disk. If the second
log is persisted but the first one is not, LevelDB recovers the
newer entries in the second log file without being aware of
the loss of older entries, violating its guaranteed invariants.
Bug #189: This would have been hidden under a file
system that possessed the Ordered directory operations
property. LevelDB sometimes compacts a set of log files
containing entries into a single file. The single file is first
created with a temporary name, all data is written to it

(and flushed), then atomically renamed; finally, the older
files are unlinked. However, the rename is not explicitly
persisted before unlinking the old files. On a crash, the
old files might be permanently deleted, while the new file
still exists under the temporary name (and is hence not
recognized by LevelDB). After recovery, either corruption
is reported, or some (previously existing) key-value pairs
disappear without any indication of an error.
Bug #190: LevelDB always assumes the Safe new file
flush property. If this property is not guaranteed, there are
multiple chances of corruption within LevelDB.
Bug #68: This bug had been previously reported (not
by us) and fixed. When opening a database, LevelDB
updates a file by first creating a temporary file, writing the
required contents to it, then renaming it over the original
file. However, LevelDB does not flush the contents of the
file to disk before issuing the rename(). On a file system
not obeying Safe rename, a system crash might result in the
(renamed) file not containing the desired contents; LevelDB
reports corruption in this case.

3.2 Observations
Based on our study, we make the following observations:

• The complete absence of fsync() calls on parent
directories, combined with the dependence of the
recovery protocol on the Ordered directory operations
and Safe new file flush properties (#189 and #190),
suggest that the developers assume these properties.

• Although btrfs does not obey Ordered directory
operations, it seems to re-order directory operations
only in such a way that #189 does not get exposed.
More specifically, given {rename(); unlink()}, both
operations get persisted only in the issued order; re-
ordering happens only when, for example, the issued
sequence is {unlink(); rename()}.

• If all operations are persisted in-order, and Safe new
file flush is guaranteed, all discussed vulnerabilities
would be hidden (i.e., tolerated).

• The existence of these vulnerabilities, and their
intricate relationship to post-crash behavior, suggests
that this is an area for further exploration.

4. CASE STUDY: SQLite
SQLite [20] is a relational database that provides ACID

guarantees, and is widely used as an embedded library in
desktop and mobile applications. SQLite features an inbuilt
crash-recovery test suite [18] that rigorously tests SQLite’s
crash invariants during power failures. This, combined with
the long history of bug fixing in SQLite, seemingly leaves
it portable across file systems: on analyzing it similarly to
LevelDB, we found no evidence of vulnerabilities. A few past
bugs are interesting, and are described further in Section 4.2.

Consequently, the protocol used by SQLite to ensure crash
invariants is pessimistic: performance is sacrificed. The
developers recognize this, and present a solution in the
form of a set of configurable options, each of which slightly
changes the protocol (thus improving performance). The
developers suspect that, given di↵erent underlying storage
and file systems, a subset of these configuration options can
be switched on without sacrificing correctness. Thus, each

option depends on a specific post-crash property; however,
the developers do not understand how existing file systems
relate to the properties [15]. Thus, this directly motivates
the need to document post-crash behaviors of file systems.

In this section, we describe the configuration options
(related to post-crash properties) that SQLite provides, and
show the performance improvements they provide. We
note that SQLite has two implementations of the recovery
protocol; while both can be considered ideal candidates for
generalizing the types of protocols applications use, our
study assumes rollback journaling.

Protocol: In rollback journaling, when the user modifies a
database, SQLite first creates a temporary journal file, and
appends a copy of some information in the database file to
the journal file. The database file is then actually updated
and the journal file deleted. If the update was interrupted
due to a crash, the temporary journal file will be left on-
disk; if SQLite finds a journal while opening the database,
it recovers the contents from the journal.

4.1 Configurable post-crash expectations
We present here five relevant configuration options in

SQLite. For brevity, we omit detailed explanations.
Safe append: This option corresponds to the post-crash
property of the same name in §2. During recovery after
a system crash, SQLite must find out if the journal file is
valid, or if a crash happened while the journal file was being
written to. Validity is checked using a header in the journal
file; the header is marked valid only after the rest of the
journal file is updated and flushed using fsync(). Since
all writes to the journal file are appends, if Safe append is
satisfied, the extra fsync() can be omitted.

Power-safe overwrite: This option assumes that no data
in a given file, other than those explicitly over-written,
are ever a↵ected by a system crash. SQLite decides the
granularity of information copied to the journal file based
on this parameter. This property is probably true in most
modern file systems (and storage stacks), and is switched on
by default in the current version of SQLite.
Atomic writes: Given a granularity of atomicity, this
option assumes that all write() calls lesser than that
granularity are atomic (with respect to system crash).
Thus, if a modification to the database is smaller than
this granularity, SQLite can directly modify the database
without using a journal file.
Sequential writes: This option assumes that, if a sequence
of write() calls are issued, all calls only get persisted in-
order. Thus, all fsync() operations required while creating
the journal file and writing information to it, can be omitted.

Synchronous directory operations: When the tempo-
rary journal file is created, and also during a couple of other
directory operations, SQLite normally flushes the directory
after the operation. This configuration option omits the
directory flushes. Thus, for safe operation, the file system
should guarantee Safe new file flush, and also that unlink()
gets persisted immediately.

We evaluated SQLite’s performance when each of
these options are (separately) toggled, using two micro-
benchmarks. The insert benchmark creates six tables of two
columns each, and inserts a number of rows in each of them;
each insert is a separate transaction. The update benchmark
first inserts 300 rows into each table, then measures the

Post-crash Throughput (X/s)
Expectations Insert Update

Default 10.25 9.23
Atomic writes 33.39 (+226%) 32.62 (+253%)
Safe append 14.47 (+41%) 12.62 (+37%)
Sequential write 33.88 (+231%) 32.52 (+252%)
Power-safe overwrite 10.43 (+2%) 10.33 (+12%)
Synchronous directory 11.24 (+10%) 9.98 (+8%)

Table 2: SQLite performance. The table represents
throughput obtained when di↵erent configuration options
are toggled. “Default” represents running SQLite without
changing any of the defaults (this switches on power-safe
overwrite, and switches o↵ the others). The “Power-safe
overwrite” row represents the performance when the option
is switched o↵. “Atomic writes” represent a configuration in
which all writes are atomic.

performance of the SQL UPDATE statement on all rows
in each table; each update (containing all rows in a table)
is a transaction. We used a single core machine running
Ubuntu 12.04, a 80 GB hard drive with ext4-current, and
SQLite version 3.7.17.

The observed performance is shown in Table 2. Each
option seems to significantly a↵ect throughput. Especially
important are the performance e↵ects of safe append : this is
an option that can be safely switched on with ext4-current.
Also, we modified SQLite to implement a new option
corresponding to (only) Safe new file flush, which can again
be safely switched on with ext4. The performance is the
same as synchronous directory operations. We believe that
power-safe overwrite improves performance because writes
to the journal now happen at file-system-block granularity.

4.2 Past bugs
We examined all bugs from October 2009 to May 2013

in SQLite’s bug database; we also studied a few older bugs
that seemed interesting. Among the studied bugs, three
specifically a↵ect system-crash invariants [16, 17, 19].

An early bug reported in SQLite [16] (before the
introduction of the crash-test suite) concerns Safe new file
flush; SQLite was modified to fsync() the parent directory
after creating files. We should note that the developers were
concerned about performance while fixing this issue.

A later bug [19] deals with recovery. During recovery,
SQLite wrote the contents of the journal file to the database
file, and then deleted the journal file; the database file
was never flushed in-between. Thus, if a system crash
happened again during recovery, the database file might
be permanently left in a partially-recovered (corrupt) state.
One post-crash property that would hide this bug is all write
operations getting persisted before any directory operation.
Note that the bug would not be hidden under any of the
properties discussed in §2; specifically, no renames or data-
appends are involved.

The third bug [17] deals with entries being appended to a
log file, in SQLite’s other crash-invariance protocol (write-
ahead logging). When the log of entries exceeds a certain
threshold, SQLite wraps around, and starts writing entries
again from the beginning of the log. However, without any
flushes, such a wrap-around of the log could cause an older,
invalid transaction to get replayed during recovery, causing
corruption. If the file system had the Sequential writes

property described in §4.1, this would not happen.

4.3 Observations
Based on our study, we make the following observations:

• Except for the Safe new file flush, SQLite historically
seems to have had few expectations from the file
system. Specifically, two of the three bugs [17, 19] seem
to only have occurred because the developers did not
carefully consider the corresponding workload. Adding
the workloads to the crash-test suite reveals the bugs.

• Similar to LevelDB, if all operations were persisted in-
order and Safe new file flush is guaranteed, the three
discussed bugs would be hidden.

• Many of the (specific) post-crash properties that are
related to SQLite considering either performance or
correctness, are di↵erent from LevelDB (or those
illustrated in §2). However, they seem to be “high-
level” properties. This emphasizes our previous
observation (in §2) that boolean descriptions of specific
post-crash properties is not a su�cient model.

5. FUTURE DIRECTIONS
Alternate file system interfaces: Transactional file
systems and similar interfaces can reduce the complexity
of writing crash-invariance protocols. However, such
interfaces do not seem to be widely adopted; we believe
the reasons are a few practical disadvantages. For example,
the implementation might assume a specific file system
(or device), resulting in unpredictable performance with
a generic storage stack. Another problem is that the
implementation can be complex by itself, thus not reducing
the overall chance of bugs.
Designing safer file systems: Research is also needed
on designing e�cient file systems that safely tolerate
application vulnerabilities. There seems to traditionally
have been an inverse relationship between performance and
its safety; ext3 ordered mode, while seemingly safer, is also
rumored to be slower than many other file systems. Some
previous research has partially focused on this direction.
For example, xsyncfs [12] provides the illusion of sequential
and durable file-system updates, but can also be a↵ected by
unrelated application behavior, a practical disadvantage.
Finding application vulnerabilities: Tools and tech-
niques for discovering application vulnerabilities will be help-
ful both to make sure a certain application is portable, and
to find common expectations of post-crash behavior (across
applications) that help design more useful file systems. Pre-
vious work in this area, such as eXplode [24] and SQLite’s
crash-test suite, use a given set of unit tests to find applica-
tion vulnerabilities. Designing unit tests with a good cover-
age is hard, however: e↵ective tests require understanding
which aspects of the protocol a↵ect post-crash behaviors of
the file system, in addition to knowledge of the application’s
recovery protocol. Moreover, it is unclear whether current
work will scale to abstract post-crash behaviors: eXplode

targets a single given file system, and SQLite’s suite targets
only a subset of the file-system interface.
Characterizing existing file systems: It is currently
hard to verify if a file system satisfies a particular post-crash

property, or to describe the post-crash behavior of a file
system in su�cient detail. Research is needed on techniques
for verification, on verifiable file systems, and on formal
models of describing post-crash behavior. Such research
should also concentrate on characterizing the performance
of file systems as they relate to post-crash behavior, and on
ways to export this to applications.

6. CONCLUSION
Consistency is an important requirement for modern

applications. By chance, or on purpose, application
consistency is dependent on certain properties of the
underlying file systems. Although there seems to have
been much discussion on this issue, and some attempt
at designing file systems that provide related features to
applications [11], the dependencies are not fully studied.
Our paper demonstrates the dependencies; we hope future
research could better address the full problem, such as
modeling techniques to describe the post-crash behavior of
file systems in su�cient detail, or tools that detect these
dependencies in applications.

Acknowledgments

We thank the anonymous reviewers for their insightful
comments. We thank members of the ADSL lab, Sankar-
alingam Panneerselvam, and Venkatanathan Varadarajan
for their feedback. We thank the developers and users of
SQLite and LevelDB for helping us understand their soft-
ware in detail. This material is based upon work supported
by the NSF under CNS-1319405 and CNS-1218405 as well as
donations from EMC, Facebook, Fusion-io, Google, Huawei,
Microsoft, NetApp, Samsung, Sony, and VMware. Any
opinions, findings, and conclusions, or recommendations ex-
pressed herein are those of the authors and do not necessarily
reflect the views of the NSF or other institutions.

References
[1] Je↵ Bonwick and Bill Moore. ZFS: The Last

Word in File Systems. http://opensolaris.org/os/
community/zfs/docs/zfs_last.pdf, 2007.

[2] Vijay Chidambaram, Thanumalayan Sankaranarayana
Pillai, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Optimistic Crash Consistency. In
SOSP ’13, Farmington, Pennsylvania, November 2013.

[3] Vijay Chidambaram, Tushar Sharma, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Con-
sistency Without Ordering. In FAST ’12, San Jose, CA,
February 2012.

[4] Gregory R. Ganger and Yale N. Patt. Metadata Update
Performance in File Systems. InOSDI ’94, pages 49–60,
Monterey, CA, November 1994.

[5] Tyler Harter, Chris Dragga, Michael Vaughn, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
A File Is Not a File: Understanding the I/O Behavior
of Apple Desktop Applications. In SOSP ’11, Cascais,
Portugal, October 2011.

[6] Dave Hitz, James Lau, and Michael Malcolm. File
System Design for an NFS File Server Appliance. In
USENIX Winter ’94, San Francisco, CA, January 1994.

[7] Butler Lampson. Computer Systems Research – Past
and Present. SOSP 17 Keynote Lecture, December
1999.

[8] LevelDB. LevelDB: a fast and lightweight keyvalue
database library by Google. http://code.google.com/
p/leveldb/.

[9] LevelDB. LevelDB Issues List. http://code.google.
com/p/leveldb/issues/list.

[10] Linux. fsync(2) - Linux Programmer’s Manual. http://
man7.org/linux/man-pages/man2/fsync.2.html.

[11] Microsoft. Alternatives to using Transactional
NTFS. http://msdn.microsoft.com/en-us/library/
windows/desktop/hh802690(v=vs.85).aspx.

[12] Edmund B. Nightingale, Kaushik Veeraraghavan,
Peter M Chen, and Jason Flinn. Rethink the Sync. In
OSDI ’06, pages 1–16, Seattle, Washington, November
2006.

[13] Mendel Rosenblum and John Ousterhout. The Design
and Implementation of a Log-Structured File System.
ACM Transactions on Computer Systems, 10(1):26–52,
February 1992.

[14] Stewart Smith. Eat My Data: How everybody gets file
I/O wrong. In OSCON, Portland, Oregon, July 2008.

[15] SQLite. Atomic Commit In SQLite. http://sqlite.
org/atomiccommit.html.

[16] SQLite. Creation and deltions of files should fsync()
directory. https://www2.sqlite.org/cvstrac/
tktview?tn=410.

[17] SQLite. Database corruption following power-loss
in WAL mode. http://www.sqlite.org/src/info/
ff5be73dee.

[18] SQLite. How SQLite Is Tested. http://www.sqlite.
org/testing.html.

[19] SQLite. Missing call to xSync() following rollback.
http://www.sqlite.org/src/info/015d3820f2.

[20] SQLite. SQLite Documentations. http://www.sqlite.
org/.

[21] Theodore Ts’o. Don’t fear the fsync!
http://thunk.org/tytso/blog/2009/03/15/
dont-fear-the-fsync/.

[22] Stephen C. Tweedie. Journaling the Linux ext2fs File
System. In The Fourth Annual Linux Expo, Durham,
North Carolina, May 1998.

[23] Stephen C. Tweedie. EXT3, Journaling File System.
olstrans.sourceforge.net/release/OLS2000-ext3/
OLS2000-ext3.html, July 2000.

[24] Junfeng Yang, Can Sar, and Dawson Engler. EX-
PLODE: A Lightweight, General System for Finding
Serious Storage System Errors. In OSDI ’06, Seattle,
Washington, November 2006.

[25] Yupu Zhang, Chris Dragga, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Box:
Towards Reliability and Consistency in Dropbox-like
File Synchronization Services. In HotStorage ’13, San
Jose, California, June 2013.

