
BEYOND THE BLOCK-BASED INTERFACE FOR

FLASH-BASED STORAGE

by

Sriram Subramanian

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2013

Date of final oral examination: 04/26/2012

The dissertation is approved by the following members of the Final Oral Committee:

Andrea Arpaci-Dusseau, Professor, Computer Science

Remzi Arpaci-Dusseau, Professor, Computer Science

Shan Lu, Assistant Professor, Computer Science

Mike Swift, Assistant Professor, Computer Science

Jon Eckhardt, Associate Professor, School of Business

© Copyright by Sriram Subramanian 2013

All Rights Reserved

i

ii

acknowledgments

I would like to first thank my advisors, Prof. Andrea Arpaci-Dusseau

and Prof. Remzi Arpaci-Dusseau, who have been instrumental in mak-

ing this journey possible. I was fortunate to take the operating systems

class with Prof. Remzi upon getting to graduate school and it eventu-

ally led to an RA-ship with the AD group. I initially saw the RA-ship

as a resume-builder, but by the end of the spring 2009, I realized I was

ready for the long haul. The best part of my initial journey was real-

izing that I loved working on operating systems and more importantly,

the manner in which Prof. Remzi guided me through my indecisive-

ness (to do a phd or not) led me to believe I could not hope for better

advisors. My belief was strengthened by the manner in which they

supported my decision to continue my dissertation at Fusion-IO.

Not only have Prof. Andrea and Prof. Remzi helped shape my

thoughts, they have also taught me the importance of presenting my

ideas clearly and concisely. Though still a work in progress, I have un-

derstood the significance of good writing and for that I have to thank

Prof. Andrea for her immense patience and clarity. I am grateful to

have advisors who shield you from the financial aspects of doing re-

search in the modern world going through one of the worst recessions.

Research was meant to be fun and Prof. Andrea and Prof. Remzi

helped ensure that consistently. Thinking back, I consider myself ex-

tremely lucky: to have been at the right place at the right time.

I would also like to thank Nisha Talagala and Fusion-IO for mak-

ing my research possible. It was a highly unorthodox setup: allowing

a grad-student to work on his thesis while doing something that was

somewhat related to what a company was interested. Without Nisha’s

support, most of the work I did would not have been possible. I am

lucky to have received the help of a third advisor, Nisha, who is prob-

iii

ably one of the sharpest person I have met. Working at Fusion-io feels

like being in grad-school, but with better pay!

As much as people mentioned above have been critical, I would

also like to thank Swaminathan Sundararaman. He was not only my

roommate for the better part of 5 years, he was also a colleague, a

mentor and most importantly, a friend. Throughout the grad-school, I

was always able to get reliable and timely advice from Swami. It was

useful to have someone who had made the decision to transition from

a masters to a phd give you his point of view and this helped me make

my mind. He was also instrumental in making the Fusion-io internship

possible; without his advocacy, my plans for a doing my dissertation

at Fusion would have been impossible. Finally, having a trustworthy

friend in a foreign land is extremely important and I was fortunate to

have Swami.

Lots of other people have made the last 6 years very eventful and

fun. Karthik, who is almost like a brother to me, is one of the most

important friends I have. He has been by my side all along and I am

very lucky to have someone whom I can trust implicitly. Kaushik is

another person who made my life in Madison fun. It was nice to have

someone with whom you can have just about any conversation, any

time without having to worry about anything.

Before wrapping this section (which I believe is too long, yet grossly

incomplete), I would like to thank my sister Shobha and my parents.

They were instrumental in letting me pursue my dreams despite the

financial hardships they faced. They gave me a good education, a good

moral foundation and a chance to succeed.

iv

contents

List of Tables viii

List of Figures ix

Abstract xii

1 Introduction 1

1.1 Snapshots on Flash . 4

1.2 Modern Interfaces to Flash 5

1.3 Contributions . 7

1.4 Outline . 8

2 Background 10

2.1 Flash Background . 10

2.1.1 Operations . 10

2.1.2 Classification . 11

2.1.3 NAND flash : Characteristics and Limitations . . 12

2.1.4 Host-based FTLs 16

2.2 Fusion-io Virtual Storage Layer 16

2.2.1 Log-structured Device 17

2.2.2 Basic data structures and operations 17

2.2.3 Segment Cleaning 20

2.2.4 Crash Recovery 20

3 Snapshots in Flash 22

3.1 Extended Motivation . 24

3.1.1 Flash Awareness and File Systems 25

3.1.2 ioSnap: Block or File system level 26

3.2 Design and Implementation 27

v

3.2.1 Design Goals . 27

3.2.2 Snapshot API . 28

3.2.3 Log Structuring 29

3.2.4 Epochs . 30

3.2.5 Snapshot Tree . 31

3.2.6 Segment Cleaner 32

3.2.7 Crash Recovery 38

3.2.8 Snapshot Activation 40

3.2.9 Rate Limiting . 40

3.2.10 Implementing Snapshot Operations 41

3.3 Evaluation . 42

3.3.1 Regular Operations 43

3.3.2 Snapshot Operations 43

3.3.3 Segment Cleaning 52

3.3.4 Crash Recovery 54

3.4 Discussion and Future Work 56

3.5 Conclusions . 57

4 Modern Interfaces to Flash 59

4.1 The need for newer interfaces 60

4.1.1 How SSDs limits Flash’s capabilities 62

4.2 Axes of control . 64

4.2.1 (Address) Space 64

4.2.2 Time . 65

4.2.3 Persistence and Immutability 66

4.3 High Level Interfaces . 67

4.3.1 Virtualizing Time 69

4.3.2 Virtualizing Space 69

4.4 Lower Level Interfaces 70

4.4.1 Lower Level Interfaces 71

4.4.2 Implementing High-level Interfaces 72

vi

4.5 Implementation Details 76

4.5.1 Need for Two-Level Indirection 76

4.5.2 Operations on a Two-Level System 81

4.5.3 Persisting Second Level 82

4.6 Evaluation of Clones . 83

4.6.1 Regular Operations 83

4.6.2 Range Operations 85

4.6.3 Cost of Breaking Clones 86

4.6.4 Summary of Results 86

4.7 Case studies with clones 86

4.7.1 Direct File System (DirectFS) 87

4.7.2 Atomic Writes through Clones in MySQL 93

4.7.3 Snapshots through Clones 95

4.8 Conclusions . 96

5 Related Work 98

5.1 Snapshots . 98

5.1.1 Block Level or File System? 99

5.1.2 Metadata: Efficiency and Consistency 100

5.1.3 Snapshot Access and Cleanup 102

5.2 Clones . 102

5.2.1 Virtualizing Space and Time 103

5.2.2 Use cases . 106

6 Future Work 108

6.1 Clones Infrastructure . 108

6.1.1 Garbage Collection 108

6.1.2 Crash Recovery 108

6.2 Better Snapshots . 109

6.2.1 Mitigating ioSnap’s Inefficiencies 109

6.2.2 Snapshots through Clones with Lazy Loading . . 110

vii

6.3 Better Writes . 112

6.4 Summary . 113

7 Conclusions 114

7.1 Traditional features: Snapshots through ioSnap 114

7.2 Rethinking interfaces: Clones 115

7.3 Lessons Learned . 115

References 118

viii

list of tables

2.1 NAND Flash Device Characteristics 14

3.1 Regular Operations . 42

3.2 Snapshot Operations: Create and Delete 43

3.3 Memory overheads of Snapshot activation 50

3.4 Overheads of segment cleaning 52

4.1 Performance of Range Operations 83

4.2 Performance of Regular Operations 84

4.3 Performance of Regular Operations with Clones 84

4.4 Summary of Clones use-cases 97

5.1 Versioning Storage Systems 99

ix

list of figures

2.1 Main Components of the VSL 18

2.2 Validity maps . 19

3.1 MySQL Performance on XFS and DirectFS 25

3.2 Snapshots on the log . 29

3.3 Epochs . 30

3.4 Snapshot tree . 32

3.5 Epochs and Validity maps 34

3.6 Segment cleaner in operation 37

3.7 Impact of snapshot creation 44

3.8 Snapshot activation latency 47

3.9 Phases during Snapshot Activation 49

3.10 Random read performance during activation 50

3.11 Impact of Segment Cleaner on user performance 53

3.12 Snapshots and crash recovery 55

4.1 Virtual Address Space (VAS) Operations 68

4.2 Implementation of VAS operations 73

4.3 Garbage collection with Clones 77

4.4 Parallel Two Level Addressing 78

4.5 Layered Two Level Addresses 80

4.6 Address Space Fragmentation in DirectFS 89

4.7 Checkpointed mmap in DirectFS 92

4.8 Atomic Writes through Range Moves 94

6.1 Lazy Activation of Snapshotted Data 111

x

BEYOND THE BLOCK-BASED INTERFACE FOR

FLASH-BASED STORAGE

Sriram Subramanian

Under the supervision of Professors Andrea C. Arpaci-Dusseau and

Remzi H. Arpaci-Dusseau

At the University of Wisconsin-Madison

The block device interface has shaped the storage industry for almost

three decades starting from the tape drives, hard-disks to cdroms. The

block interface provides minimalist functionality of reading and writing

and this simplicity and broad applicability of the block interface made

it a standard. Unsurprisingly, the block interface has not fundamentally

changed and the reasons for this goes back to the wide-spread adoption

of the standard: the economic incentives not to change the interface

outweighs the potential benefits.

The approach of keeping the hardware interface minimal worked

well for hard-disks: hard-disks are slow and implementing features in

software was efficient. But, the arrival of newer media poses a chal-

lenge to this age-old wisdom [19]. Flash can easily outperform tradi-

tional spinning disks, but until recently its exorbitant price made it

uneconomical. With falling prices, triggered by the massive demand

in consumer electronics, flash has suddenly become a very realistic re-

placement for hard-disks in the form of SSDs. Unfortunately, hiding

the raw potential of flash behind a naive block interface is counter

productive in more ways than one.

Applications designed in a flash-oblivious manner perform tasks

that adversely affect performance and device lifetime. Thus, the top

heavy, software-only approach cannot be sustained. In this thesis, we

investigate approaches to refactor the software.

xi

In the first part of the thesis, we explore transitioning a standard

software feature, namely backups or snapshots, to the flash device. We

design and implement ioSnap, which leverages flash to provide fast, file

system independent and light-weight snapshots. Through ioSnap, we

attempt to understand the tradeoffs of such a transition and the type

of support necessary to make such a system feasible.

In the second part of the thesis, we explore new interfaces to the

flash device. New interfaces are necessary since we need a generic and

systematic approach to expose data management abilities of flash. The

new interfaces allow virtualization of address space and time by lever-

aging the characteristics of the underlying media. We demonstrate the

usefulness of the new interfaces by making minimal changes to existing

file-systems and applications to add features or simplify existing ones.

Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau

xii

abstract

The block device interface has shaped the storage industry for almost

three decades starting from the tape drives, hard-disks to cdroms. The

block interface provides minimalist functionality of reading and writing

and this simplicity and broad applicability of the block interface made

it a standard. Unsurprisingly, the block interface has not fundamentally

changed and the reasons for this goes back to the wide-spread adoption

of the standard: the economic incentives not to change the interface

outweighs the potential benefits.

The approach of keeping the hardware interface minimal worked

well for hard-disks: hard-disks are slow and implementing features in

software was efficient. But, the arrival of newer media poses a chal-

lenge to this age-old wisdom [19]. Flash can easily outperform tradi-

tional spinning disks, but until recently its exorbitant price made it

uneconomical. With falling prices, triggered by the massive demand

in consumer electronics, flash has suddenly become a very realistic re-

placement for hard-disks in the form of SSDs. Unfortunately, hiding

the raw potential of flash behind a naive block interface is counter

productive in more ways than one.

Applications designed in a flash-oblivious manner perform tasks

that adversely affect performance and device lifetime. Thus, the top

heavy, software-only approach cannot be sustained. In this thesis, we

investigate approaches to refactor the software.

In the first part of the thesis, we explore transitioning a standard

software feature, namely backups or snapshots, to the flash device. We

design and implement ioSnap, which leverages flash to provide fast, file

system independent and light-weight snapshots. Through ioSnap, we

attempt to understand the tradeoffs of such a transition and the type

of support necessary to make such a system feasible.

xiii

In the second part of the thesis, we explore new interfaces to the

flash device. New interfaces are necessary since we need a generic and

systematic approach to expose data management abilities of flash. The

new interfaces allow virtualization of address space and time by lever-

aging the characteristics of the underlying media. We demonstrate the

usefulness of the new interfaces by making minimal changes to existing

file-systems and applications to add features or simplify existing ones.

1

1 introduction

Storage systems, as we know it, have been designed around the block

interface through which the data residing on the media is accessed.

The block interface provided minimalist functionality of reading and

writing, at the granularity of a hardware-defined block size. The sim-

plicity of the block interface made it popular among mass storage media

that supported write-once or write-in-place access (including magnetic

tape, hard-disks and optical disks), eventually leading to the standard-

ization of the interface along with the transport protocols for these

interfaces [54, 68].

With the overwhelming adoption of the block interface, the soft-

ware that handled reading and writing blocks became progressively

more complex. Users required newer features to help solve their prob-

lems. In an attempt to stay hardware oblivious and avoid disturbing a

standard that was widely accepted (and in turn also avoid the economic

repercussions of said change), new features ended up being pushed to

higher-level software.

A large variety of features have been implemented in software to

support application demands. A bevy of reliability machinery, such as

checksums [14, 122], redundancy [20, 23, 32, 100], and crash consistency

techniques [48, 74, 107], have been exclusively implemented in software.

Other software features like deduplication [143], versioning [6, 51, 99,

109, 113] and archival [103] have also been implemented in software.

The approach of keeping the hardware interface simple and minimal

served the hard-disk era incredibly well. The disks were dumb and slow.

Thus, implementing features in software was almost always faster than

the drive latency. In other words, the performance bottleneck was the

disk and not the application. But, the arrival of newer media poses a

challenge to this age-old wisdom [19].

2

Newer media like flash [108, 115, 126] and persistent memory [30]

have been around for a while, but high prices kept them out of mass-

adoption. But with the falling prices (≈ $10 per GB in 1998 [115] to

≈ $1 per GB in 2012 [46]) and growing capacity (from few 100 GBs to

TBs), NAND flash is a medium that cannot be ignored anymore.

NAND flash was also packaged behind a block interface in the form

of SSDs [56] for rapid adoption. Software designed for hard-disks can

natively run on SSDs without any modification and applications can

leverage the performance edge delivered by the SSDs. In addition to

performance, the power savings enabled by flash-based storage devices

makes it an ideal fit for data centers (where total cost of operation

is more important than just hardware costs [58]). Thus, the block

interface helped in the initial adoption of flash, both in the enterprises

and the personal computing markets. Unfortunately, hiding the raw

potential of flash behind a naive block interface cannot go on forever.

NAND flash is fundamentally different from hard-disks, both with

regards to the technology behind the medium and its performance char-

acteristics. The physics behind NAND flash makes is impractical to

overwrite existing content [9]. Thus, NAND flash SSDs adopt log struc-

turing [107] and logs have very different performance characteristics

compared to write-anywhere mediums.

The raw performance that is available on NAND flash cannot be

fully harnessed by the slow SATA and SCSI busses. SCSI and SATA

protocols were designed with the hard-disk in mind (delivering around

600 MBps) and are not suited for flash (requiring in excess of few

GBps) [88]. Thus, the first step for high performance, enterprise-grade

flash devices was to move to the PCIe bus [40, 55, 82, 130]. By shifting

the bottleneck from the hardware to the software, the real problem is

exposed: the feature-heavy software.

Applications designed for hard-disks perform tasks that are detri-

mental to performance as well as device health. For instance, file

3

system block allocation was designed to improve write throughput on

hard-disks, but are unnecessary on a log-structured SSD. Application

protocols (like data journaling [128], write-ahead logging [84], MySQL

double writes [37]), adopted to ensure consistency, are no longer neces-

sary, since the medium is itself a log. Finally, performing more writes

than necessary (for example, data journaling) reduces device lifetime:

NAND flash devices are designed for a limited volume of writes [12].

One way to alleviate the application bottleneck is to rethink (and

hence, refactor) services expected from a flash device. In this thesis, we

investigate approaches to deliver well known services in a flash-aware

manner. We explore two aspects of this problem: delivering traditional

storage features on flash and initiating a rethink of the interface exposed

by flash to help write better applications.

In the first part of the thesis, we explore offloading a standard soft-

ware feature to the flash layer. When it comes to traditional storage fea-

tures, researchers have explored file systems designed for flash(JFFS [138],

NILFS [67], DirectFS [38]), database engines [33, 70] and other appli-

cations [43, 45]. Thus, we focus on a relatively unexplored feature in

flash, namely backup.

We attempt to address the following question: can snapshots be

added to native flash in a high-performance manner. We explore the

ability of flash to natively support device-level snapshots. We design

and implement ioSnap, which leverages flash to provide fast and light-

weight snapshots.

In the second part of the thesis, we adopt a clean-slate approach

to address the following question: how can the interfaces exposed by

flash be modified to enable applications (old and new) to interact and

work on top of flash in a meaningful manner? We introduce the clones

system that exposes the ability to virtualize space and time on flash.

Virtualizing space allows interacting directly with the flash transla-

tion layer. Traditional storage devices present a static array of blocks

4

with no notion of how data evolved over time. Though the notion of

time can be introduced into the storage system (e.g. snapshots), do-

ing so on top of a write-in-place media requires complex copy-on-write

software to handle operations correctly. Fortunately, flash is not write-

in-place and it is already log structured. More over, the log ordering

of data implicitly represents the chronological order. Thus, interfaces

to virtualize time helps applications express interest in certain parts of

the address space over time.

The clones system provides a set of new APIs that allows applica-

tions to interact directly with flash. The following sections elaborate

on each of these contributions.

1.1 snapshots on flash

Storage system reliability has been a hot topic of research in recent

past [14, 48, 74, 94, 100, 107, 122]. Despite these advancements, en-

terprises continue to backup their data, the reason being both le-

gal [133, 134] and logistical. Enterprises are legally required to keep

a copy of their data for a specified period of time and backups help

achieve this goal. Moreover, backups help get a system back to a run-

ning state after accidental loss of data [15, 124]. Thus, backups are

essential in any enterprise.

An important feature common in disk-based file systems and block

stores is the ability to create and access snapshots [51, 87, 136]. A

snapshot is a point-in-time representation of the state of a storage sys-

tem, and is primarily used in enabling efficient and reliable backup.

For this reason, many modern disk-based systems offer snapshots as an

important and useful feature [51].

Traditionally, the ability to snapshot relies on copy-on-write (COW)

[6, 51, 67, 96] since snapshotted blocks have to be preserved and not

overwritten. Moreover, it is a well known fact that SSDs also rely on

5

COW (through log structuring) to deliver high throughput and manage

device wear [9]. Thus, it seems natural for snapshots to seamlessly work

with SSD’s translation layer (at least in theory, since the log does not

overwrite blocks in-place and implicitly provides time-ordering).

In the first part of the thesis, we design and implement ioSnap,

which explores the tradeoffs involved in adding the ability to snapshot

to a production FTL. We describe the integration of ioSnap into the

existing host-based Fusion-io driver and changes to data structures,

I/O paths, and the background space scavenger. We then present a

careful analysis of ioSnap performance and space overheads. Through

experimentation, we show that ioSnap delivers excellent common case

read and write performance, largely indistinguishable from the standard

Fusion-io VSL. We also measure the costs of creating, deleting, and

accessing snapshots, and show that they are reasonable.

1.2 modern interfaces to flash

Standard block devices have been providing the read/write interface for

a very long time. Thus, any new device, irrespective of the medium,

attempts to first deliver a block interface to encourage adoption. Flash

is no exception to this norm having broken into the market first as

a solid state device (SSD). SSDs primarily behaves as a block device,

with a similar form factor and requiring a standard SCSI or SATA port

to connect. More recently, flash vendors have switched to the PCIe bus

to maximize the throughput the cards can deliver [40, 82, 130].

Though the block device approach was the right approach to ease

the transition into the realm of non-volatile memory, it might not nec-

essarily be the appropriate in the future. Flash devices are fundamen-

tally different from a hard-disk. Besides the fact that the medium on

which the devices based are different, there are other more impactful

differences. Data on flash is log structured. NAND flash is designed

6

for high throughput and in-place writing could prove detrimental to

performance. The second thing to consider is the fact that there ex-

ists an indirection layer to hide the log [47, 118]. Finally, flash devices

employ garbage collection: a log requires cleanup of old, overwritten

data [26, 52, 138].

Despite differences from hard-disks, applications can still work on

top of flash and stay oblivious of the fact. But applications designed

for hard-disks may eventually prove detrimental to performance and

device lifetime. For example, a smart block allocation algorithm in a

file system is an overkill on top of a log structured device. Allocating

blocks at the file system layer is nullified by the log, which only appends

data.

Being a log, flash has the potential to provide simple (yet powerful)

transactional interfaces, which applications requiring consistency guar-

antees can benefit from (for example, file systems and databases can

do away their journal or log [64, 84, 127] and move to the atomic write

interface [92]). Finally, applications that run on the simple block inter-

faces may have a negative effect on device lifetime. By doubling writes

(to the journal and in-place when in data journaling mode), file systems

may reduce a flash device lifetime by half (device lifetimes are directly

related to the volume of writes). Thus, applications can not only per-

form better with more native interfaces to flash, they also indirectly

bring down capital expenses by improving device lifetime [95].

Thus, both the applications and the interfaces they use to interact

with flash needs a revamp. In this part of the thesis, we explore the new

interfaces that are enabled by the log structured nature of the device

and its indirection layer. We expose address space virtualization as

a native operation on flash that enables simple copying, moving and

merging of data. We take this further and leverage these interfaces

to virtualize time. This interface supports versioning of data at any

granularity (full volumes to a single sector). We finally explore use cases

7

that demonstrate the usefulness of these interfaces. Through small

changes to DirectFS [38] and MySQL [121], we were able to implement

features like file snapshots, zero-copy file copy, file-level dedup, and

atomic writes in MySQL. We also demonstrate the practicality of these

new interfaces with a detailed evaluation of the costs of each operation.

A simple block interface not only limits the capabilities of flash, it

also can be detrimental to performance and device life. In order to fully

realize the potential of flash devices, we need to explore newer, native

interfaces. In this part of the thesis, we take the first step towards a

more native interface to flash by exposing the ability to virtualize the

address space and demonstrate the power of the new interface through

multiple use cases.

1.3 contributions

The contributions of this thesis are as follows:

• We outline the elements required for an efficient production flash

translation layer (FTL) and adds snapshot support in a low-

overhead and non-intrusive manner.

• ioSnap’s design delivers predictable, high performance with min-

imal overheads on regular operation. The demands on a produc-

tion FTL are stringent. It has to have predictable performance

while maintaining endurance, and reliability. Our design achieves

high performance by keeping the common case (creation, dele-

tion) extremely fast, while deferring work for others (activation).

• We use snapshot-aware rate-limiting algorithms on background

threads that perform deferred work. Rate-limiting helps minimize

impact on foreground activity.

8

• We present a case for newer interfaces for flash. Block interface

was designed for hard-disks and are insufficient for flash.

• We describe newer interfaces that help realize the true potential

of flash. These newer interfaces allow better communications be-

tween application and the storage by expressing the intent better.

By virtualizing address space and time, complex operations can

be simplified. We demonstrate the usefulness of these interfaces

by making some simple changes to DirectFS and MySQL.

1.4 outline

The rest of this thesis is organized as follows.

• Background: Chapter 2 provides a brief overview of flash rang-

ing from a description of the physics behind the medium to the

types of flash devices. Next, we present a summary of the Fusion-

io device driver. The Fusion-io device driver is an enterprise grade

production FTL and it forms the backdrop of the rest of the the-

sis.

• Snapshots in Flash: In Chapter 3, we describe the work in-

volved in adding snapshots capability to the Fusion-io driver. We

present the design and implementation of ioSnap, which focusses

on providing low overhead, flash-aware snapshots. We discuss the

tradeoffs involved and evaluate the performance of ioSnap.

• Modern Interfaces for Flash: Chapter 4 describes the new

interfaces we propose for flash. Newer interfaces allow realization

of the full potential of flash and have the ability to improve device

lifetime as well. We demonstrate the usefulness of these interfaces

by making simple changes to DirectFS and MySQL to add a

multitude of new features.

9

• Related Work: In Chapter 5, we present a summary of the

related work, to the best of our abilities, in the realm of snapshots,

newer flash interfaces, and research efforts that provide similar

features as our use cases demonstrated.

• Future Work and Conclusions: We discuss some of the future

work we envision that would make our interface more powerful

and benefit application performance in Chapter 6. Finally, we

summarize the highlights of our work and conclude in Chapter 7.

10

2 background

In modern computer systems (personal computers, smart-phones and,

enterprise systems), flash-based storage has become a very important

component to deliver high performance as well as energy and space

savings. In this chapter, we discuss some of the fundamentals of flash:

the types of flash, their characteristics, operations supported and lim-

itations. In the second part of this chapter, we describe the internal

details of the Fusion-io block driver. Among the various form factors

available for modern flash, Fusion-io produces PCIe-based, enterprise

grade flash cards. We present the various components including the

FTL, segment cleaner and the crash recovery mechanism.

2.1 flash background

Flash is a type of EEPROM (electrically erasable programmable read-

only memory). We provide a brief description of the operations sup-

ported on flash and the various types of flash memory cells available in

the market.

2.1.1 Operations

Typical flash supports a Read, Program and an Erase operation. Bits

(one or more) of information can be stored and retrieved from a Floating

Gate Transistor (FGT [77]).

Reading a bit corresponds to identifying the charge present in the

cell by applying appropriate gate voltage. The absence of a charge

results in a current that can be detected by the controller (logical 1).

The presence of a charge results in no current (logical 0).

Programming or writing to a cell also involves applying a gate

voltage (much higher than the voltage applied during read) and forcing

11

electrons to flow into the gate (FN tunnelling [71]). Programming a "0"

is different from programming a "1". The memory cell is at 1 by default

and programming a "0" involves forcing electrons into the floating gate.

The erase operations is used to reset cells back to the "1" state

(i.e., discharge cells), which is accomplished by applying a significantly

higher voltage to drain the charge.

The read and program operations take about 15 usec and 68 usec

respectively [83] while erasing a page takes up to 100s of msec. Typical

flash controllers amortize the cost of an erase over multiple pages.

2.1.2 Classification

Based on the internal organization and the type of gates used, flash

may be classified as:

• SLC, MLC, or TLC: A single memory cell or FGT (floating gate

transistor [77]) can be used to represent one or more bits of in-

formation. The simplest cell (SLC or single level cell) stores only

two states: a logical 0 or 1. Thus, the presence of a charge rep-

resents logical 0 and absence represents logical 1. MLC or Multi

Level Cell can represent 4 states (00, 01, 10 and 11) depending on

the amount of charge stored in the cell. By varying the voltage

applied during programming, the charge can be controlled, which

directly controls the current flowing through the gate during a

read. By sensing the current, the logical state of the cell can be

determined. TLC or tri-level cell can similarly store up to to 8

states [83, 108].

• NAND or NOR: The two most popular types of flash are NAND

and NOR. Both offer very different design points and are used in

very different scenarios. NOR flash offers faster read and random

access capabilities and thus is preferred for storing code in mobile

12

devices [126]. Unfortunately, NOR flash is extremely slow to write

and erase (up to a second [76]). On the other hand, NAND

flash provides relatively faster program and erase operations (few

microseconds to milliseconds [40]), but does not support random

access. NAND flash accesses are at a page granularity. NAND

flash is also considerably denser (in theory up to 2x [3]) , which

makes it more suitable for large scale deployment.

2.1.3 NAND flash : Characteristics and Limitations

In the rest of the thesis, we only deal with NAND flash due to its

large scale deployment and relevance within the enterprise market. In

this section, we explore the various form factors of NAND flash in the

market and its quantifiable characteristics. We also discuss some of the

limitations of commercial NAND flash and the techniques employed to

overcome the same.

2.1.3.1 Form Factor and Characteristics

NAND flash is commercially available in a multitude of form factors

all the way from the inexpensive consumer grade usb drives to enter-

prise grade NAS boxes containing flash drives. We present some of the

commonly available enterprise grade NAND flash form factors.

Traditionally, NAND flash has been packaged and sold as Solid

State Drives (SSDs). SSDs provide the traditional block device inter-

face over SCSI or SATA and share the same form factor as a magnetic

hard disk. Manufacturers of SSDs include Intel [56] and OCZ [89].

All the processing is performed inside the SSD and no host resources

are consumed for NAND flash related operations. Unfortunately, since

the drives are available over SCSI or SATA interfaces, which are con-

nected to slower system buses on the south bridge, SSDs are not highly

performant [90]. The cost of such SSDs are at around $1 per GB [125].

13

In order to fully exploit the performance of a NAND flash drive,

newer drives have moved to the PCIe bus instead. Drives like Fusion-io

IoDrive [40] and more recently, Micron [82], Intel [55] and Violin Mem-

ory [130] leverage the proximity to the CPU by making themselves

available on the PCIe bus. These cards may also use an on-load archi-

tecture: portions of the device block driver resides on the host memory

(e.g. Fusion-io IODrive). The price per GB of these cards are around

$1 to $10 per GB.

Finally, some vendors have also started producing stand-alone net-

work attached devices with its primary storage medium being flash

(e.g. Fusion-io ION [41], PureStorage [101]). These NAS devices are

similar to the standard NetApp or EMC filers with the data available

over NFS or CIFS. The NAS boxes also employ RAID schemes to keep

the data secure and may also support transparent snapshots and other

advanced features [102]. These devices also cost up to $10 per GB of

useful data.

Table 2.1 presents a brief summary of the various form factors and

their characteristics.

2.1.3.2 Limitations

While NAND flash can deliver significant performance compared to

traditional hard-disks, it does come with its own limitations. These

limitations are caused by the nature of the material used and the or-

ganization of the cells. Some of the well-known limitations of NAND

flash are listed below.

Erase cycles

NAND flash, based on the cells used (SLC, MLC or TLC), can only

be erased a limited number of times. SLC NAND is rated for around

100K erase cycles, MLC at 5K-10K and TLC at 1K cycles. The process

of charging and discharging the cell takes its toll on the material. As

14

Form Type Capa- Write Read Cost
Factor city Seq. Rand. Seq. Rand. $/GB

(MBps) (IOPS) (MBps) (IOPS)

Intel MLC 480 GB 550 70K 520 40K

≈ 1
SSD520

OCZ MLC 512 GB 510 85K 560 90K
Vertex4

(SATA 3.0)

Fusion-io MLC 3 TB 1330 140K 1530 110K
≈ 1

IODrive2
Micron SLC 350 GB 1120 145K 1840 415K

≈ 1
P320h

(PCIe 2.0)

Fusion-io MLC 20 TB 6100 800K 6100 1000K ≈ 5
ION to 10

(NAS)

Table 2.1: NAND Flash Device Characteristics. The table above
presents the device characteristics of the commonly available form factors.
The sequential read and write bandwidth are reported in terms of MBps or
GBps, while the random read and write are reported in terms of number of
4K IOPS.

the cells gets worn out, it takes a higher voltage to charge the cells

to the same state, thus requiring the firmware to be re-calibrated to

work with the old device. The moment a cell fails during a program

operation or a read operations, it has to be retired. At times, after a

period of dormancy, the cells may be reusable [86].

Access restrictions

NAND flash, unlike NOR, cannot be accessed at random. NOR

flash, like standard DRAM, can be read and written to at random

over the memory bus. NAND, on the other hand, sits on the IO bus,

requiring a larger granularity read and program operation. NAND

flash programming is a high voltage, high energy operation and so it

is performed at a block granularity [85]. A block consists of a large

number of individual pages (e.g. Micron NAND blocks have 64 pages

15

or 128KB [2]).

Write in-place

Write in-place can be very expensive in NAND flash. Updating a

single bit in-place is an energy intensive operation requiring a charge

or a discharge of a cell depending on its original state. Due to the high

voltage applied on the cell, it may cause disturbance in the nearby

cells. Overcoming the disturbance also consumes energy [117]. Thus,

updates in-place are prohibited. Writes may translate to a (costly)

copy-erase-program cycle or writing to a new location and remapping

the data.

2.1.3.3 Overcoming NAND Limitations

Most NAND flash vendors use a couple of techniques to overcome the

limitations listed above.

Log-style writing

The write in-place restriction is alleviated through log style writ-

ing. Data is never written in-place. Instead, in most flash devices, the

physical space is structured as a log and data is appended to the head

of the log [107]. An indirection table (or the flash translation layer,

FTL) is maintained to help construct a notion of a contiguous address

space [47, 118].

Almost all NAND flash manufacturers employ an FTL, in one form

or the other. FTLs impose space overheads on the device as the map-

pings in the FTL also have to be persisted [47]. The size of the FTL

only grows with updates to the data on the device (fragmentation of

address space). Other approaches have attempted to do away with

the use of FTLs by delaying logical address allocation until write-

completion [142].

Wear leveling

NAND flash cells have limited erase cycles. When data is appended

16

to a log, the old data (i.e., the physical space that is now invalid) can be

reclaimed by erasing the page. Once erased, the pages can be added to

the free list and reused. Thus, the more often a page is reused, the more

erase cycles it would go through making it important to level the wear

experienced by each page [81]. By maintaining a count of the number

of times a page has been erased, the drive can balance the wear.

2.1.4 Host-based FTLs

Most SSDs employ hardware-based FTLs, which is suitable for the

block interface. The FTLs are present within the device, with on-board

memory and storage space reserved.

More recently, host-based designs are becoming popular. Host-

based FTLs split the FTL logic into two parts: the host-based soft-

ware and the firmware on the device. The host-based software stores

the mapping layer and may also take care of garbage collection. The

firmware built into the device is responsible for persisting the data in

an efficient manner.

Host-based design makes experimenting with new features practical.

Host-based FTLs can be easily modified and redeployed (since most of

the interesting features reside in the software running on the host). But,

host-based software raises portability and maintainability concerns and

comes with considerable cost.

Fusion-io deploys a host-based FTL. Thus, for the remainder of the

thesis, we rely on the Fusion-io FTL to act as the backbone for various

features we are implementing.

2.2 fusion-io virtual storage layer

Fusion-io flash cards are host-based, which means a large portion of the

device functionality resides in a driver running on the host (and not on

17

the card).

In this section, we describe the basic operations of the Fusion-io Vir-

tual Storage Layer (VSL) that provides flash management for Fusion-io

ioMemory devices. The host based FTL (the VSL driver) aggregates

NAND flash modules, performs flash management and presents a con-

ventional block device interface to the user. This opens up a tremen-

dous opportunity to experiment with new features by modifying the

driver and not having to tweak a hardware based FTL.

We provide a high-level overview of the FTL; our discussion ad-

dresses a previous-generation (though still high performance) FTL, and

thus does not necessarily reflect the details of the current generation of

Fusion-io devices or drivers.

2.2.1 Log-structured Device

The VSL is log structured since NAND flash does not support efficient

overwrites of physical locations (requiring an expensive read, erase and

write cycle [9]). Also, the NAND flash chips can be erased and pro-

grammed only a certain number of times before the raw bit error rates

become too high [46]. To circumvent this costly process, data is never

immediately overwritten, but instead appended to the head of the log.

Thus, the address exposed by the block device maps to a new address

on the log every time the block is modified.

2.2.2 Basic data structures and operations

The two main data structures that manage the copy-on-write oper-

ation are the FTL and the validity bitmap (Figure 2.1 shows a block

diagram of the driver). The FTL uses a variant of a B+tree and runs in

host memory and translates logical block addresses (or LBA, exposed

to higher layers by the block device) to physical addresses (physical

18

VFS

File System

FTL
B+tree

Logical

Physical

Validity
Bitmap

Segment
Cleaner

PCIE

IODrive

Figure 2.1: Main Components of the VSL. The figure above shows
the main components of the Fusion-io VSL device driver. The FTL (also
known as the forward map) is a b+tree that translates the logical addresses
(exposed to the file system or user) to physical NAND addresses. The validity
bitmap is used to track the liveness of physical blocks on the NAND and the
segment cleaner is tasked with reclaiming the invalid blocks. As indicated in
the figure, the hardware resides over the PCIe bus.

locations on flash).

The validity bitmap indicates the validity of each physical block on

the log. The physical block size is dependent on the format-time block

size and this directly impacts the size of the validity bitmap. Block

overwrites translate to log appends followed by invalidation of the older

blocks. Thus, an LBA overwrite results in the bit corresponding to the

old block’s physical address being cleared in the validity map and a

new bit being set corresponding to the new location as illustrated in

Fig. 2.2.

A read operation involves looking up the FTL to translate a range of

19

10 20 30 -- -- --40 --

1 1 11 0 0 0 0

Segment
Boundary

10 20 30 10 70 4040 60

1 1 00 1 1 0 1

[A]

[B]

Figure 2.2: Validity maps. The figure above describes the use of valid-
ity maps to help the segment cleaner. The example shows a log with 8 blocks
spread over two segments. The validity map shown in Fig. A represents 4
blocks 10, 20, 30 and 40. The remaining blocks are unused and the validity
bits are cleared. Fig. B represents a point in the future where 4 more blocks
have been written to the log namely 60, 10, 70 and 40. As we can observe,
blocks 10 and 40 have been overwritten and so the corresponding bits from
the validity map are cleared.

LBAs to one or more ranges of physical addresses. The driver submits

read requests for the physical addresses and returns the data back to

the requesting file system or user application.

A write request requires a range of LBAs and the data to be written.

New blocks are always written to the head of the log. The FTL is used

to look up the range of LBAs to figure out if a portion of the write

involves an overwrite. If blocks are being overwritten, in addition to

modifying the FTL to indicate the new physical addresses, the driver

must alter the validity bitmap to invalidate older data and validate the

new physical locations.

20

2.2.3 Segment Cleaning

Segment cleaning is the process of compacting older segments, so as

to get rid of all invalid data, thus releasing unused space [107]. Over

the life of a device, data on the log is continuously invalidated. Over-

writes (and subsequent invalidation) can lead to invalid data being

interspersed with valid data. Without the ability to overwrite in place,

the driver must erase one or more pages that contain invalid data to

regain lost space while copying valid data to ensure correctness. The

segment cleaner also modifies the FTL to indicate the new location of

the block after moving the data.

The segment cleaner can also have significant performance impli-

cations. The erase operation is relatively expensive (erase times are

in the order of a few milliseconds for currently available NAND mod-

ules), and so must be performed in bulk to amortize latency. The log

is divided into equal-sized segments and the segments form the unit

of the erase operation. The segment to erase is chosen on the basis

of various factors, such as the extent of invalid data contained in the

segment and the relative age of the blocks present (degree of hotness

or coldness of data). The choice of the segment to clean determines

the volume of copy-forward (write-amplification) and how frequently

a segment gets erased (wear-leveling), and thus indirectly impacts the

overall performance of the system.

2.2.4 Crash Recovery

A clean shutdown of the driver would result in the FTL and valid-

ity bitmap being completely de-staged to the log. Upon restart, the

metadata can be read from the log and driver state can be restored.

An unclean shutdown would leave the device without some of the

metadata (the FTL and the validity bitmaps) needed to run the system,

21

thus requiring reconstruction.

The reconstruction essentially involves a replay of all the writes to

the log (in the same order it occurred) and reconstruct the metadata

during the replay. But such a replay would require the logical address

corresponding to each block of data on the log. Thus, to enable re-

construction in the event of an unclean shutdown, the media stores

information about the physical to logical translation for all blocks.

The logical-to-physical mappings are read, processed, and used to

create the data structures (FTL and validity bitmap) used for device

operation. In an early 2002 version of the driver, the logical to physical

translation information is sorted based on logical addresses and log-

order. The log-order is necessary to figure out the order of writes to the

same logical address: data appearing earlier in the log are overwritten

by ones later in the log. Finally, the sorted addresses are used to rebuild

the FTL and the validity bitmaps.

22

3 snapshots in flash

An important feature common in disk-based file systems and block

stores is the ability to create and access snapshots [51, 87, 136]. A

snapshot is a point-in-time representation of the state of a storage sys-

tem, and is primarily used to enable efficient and reliable backup. For

this reason, many modern disk-based systems offer snapshots as an

important and useful feature [51].

Snapshots are generally implemented at one of two possible layers:

the file system layer or the block layer. Block layer snapshots are file

system independent and so are easier to deploy and maintain [136].

Unfortunately, they require the help of the file system or application to

take consistent snapshots [87]. For example, XFS [123, 139] provides

the ability to freeze the file system and allow the volume management

system to take a consistent snapshot. Certain file systems like Btrfs [6],

ZFS [21, 120] provides the ability to create and access snapshots. Such

snapshots are implicitly consistent: the file system can easily track the

status of each on-going request and create a snapshot only when it is

convinced the state of the file system is consistent.

So the following question arises: when attempting to support snap-

shots on flash, should we attempt to build a block-layer snapshotting

solution or rely on top level file systems? We chose to implement snap-

shots inside the FTL to leverage the flash-awareness and minimize file

system involvement. By residing withing the FTL, we believe, we can

provide tighter integration between snapshots and various processes

that take place inside the driver. We provide a detailed explanation for

this choice in the next section and also address this issue later during

evaluation.

In this chapter, we describe the design, implementation, and eval-

uation of ioSnap,a system that adds flash-optimized snapshots to the

23

Fusion-io Virtual Storage Layer (VSL). The design and implementa-

tion of ioSnap required us to address two significant challenges. Flash

is employed by enterprises for its performance. Thus, the first challenge

is to ensure performance is not affected in the presence of snapshots.

ioSnap is carefully designed to add no overhead to the common I/O

paths, thus ensuring that using snapshots does not affect application

performance. In addition to this main performance goal, ioSnap also

includes novel machinery to rate-limit more expensive background ac-

tivities (such as snapshot activation), thus ensuring the predictable and

high performance customers expect from flash-based products.

The second (and a Fusion-io specific) challenge we face is com-

patibility. ioSnap is implemented within the Fusion-io device driver.

Fusion-io flash cards are host-based, which means a large portion of

the device functionality resides in a driver running on the host (and

not on the card). Host-based design makes experimenting with new

features practical. Significant development effort has gone into achiev-

ing VSL’s high performance and endurance. Thus, adding new features,

however useful, can never come at the expense of user performance, and

snapshots are no exception. We thus carefully integrate our snapshot

design into the existing VSL I/O paths and data structures, adding

little or no overhead and minimizing changes to hardened code.

We describe the ioSnap design and implementation in detail, includ-

ing its integration into the existing VSL framework and changes to data

structures, I/O paths, and the background space scavenger. We then

present a careful analysis of ioSnap performance and space overheads.

Through experimentation, we show that ioSnap delivers excellent com-

mon case read and write performance, largely indistinguishable from

the standard Fusion-io VSL. We also measure the costs of creating,

deleting, and accessing snapshots, showing that they are reasonable;

in addition, we show how our rate-limiting machinery can reduce the

impact of ioSnap activity substantially, ensuring little impact on fore-

24

ground I/O traffic.

The main contributions of ioSnap are as follows:

• Adds snapshot support to a production FTL in a low-overhead

and non-intrusive manner.

• Explores a unique design space that focuses on avoiding time

and space overheads in common-case operations (data access and

snapshot creation, deletion) by sacrificing performance of rarely

used operations (snapshot access).

• Novel rate-limiting algorithms to minimize impact of background

snapshot work on user activity.

• Careful and thorough analysis depicting the costs and benefits of

ioSnap.

The rest of this chapter is structured as follows. First, we provide a

detailed description of our motivation behind moving ioSnap into the

FTL (Section 3.1). Next, we build on the NAND flash and Fusion-

IO device driver background to design and implement ioSnap (Section

3.2). We describe the techniques used to deal with the garbage collector

(Section 3.2.6) and crash recovery (Section 3.2.7) among others. Next,

we present a detailed evaluation (Section 3.3), followed by a discussion

of our results (Section 3.4), and finally conclude (Section 3.5).

3.1 extended motivation

The design of ioSnap is based on one major assumption: file systems

are not the best place for a flash-aware snapshotting system. In this

section, we attempt to provide preliminary evidence to supports the

following claim: file systems that are not built ground up for flash

perform badly compared to a file system like DirectFS [38] and hence

are not suitable for handling more complex functionality like snapshots.

25

0 10 5020 30 40 60 70 80

Time (sec)

TPCC on Percona 5.5.27

Figure 3.1: MySQL Performance on XFS and DirectFS. The
graph above presents a comparison of TPCC performance with MySQL run-
ning on XFS and DirectFS.The setup contains two instances of MySQL (Per-
cona 5.5.27) of 700 GB each with 25 GB buffer pool both running on the same
physical machine. Both instances run on top of a single 3 TB flash card. The
y-axis presents transactions per second with time on the x-axis. As we can
observe, DirectFS with atomic writes outperforms XFS by almost 2x. The
reason for the massive difference in performance is due to the fact MySQL
on XFS needs its logging infrastructure and can safely turn the loggin off
with DirectFS.

3.1.1 Flash Awareness and File Systems

Most file systems are designed for hard disks and unfortunately, this

does not necessarily work well on top of flash. In this section, we

demonstrate the superiority of a flash aware file system (DirectFS [38])

when compared to spinning media file systems (XFS [123]). DirectFS

is a flash aware file system developed at Fusion-io that avoids hav-

ing a journal and complex block allocation algorithms. DirectFS also

supports atomic writes that makes transactional consistency trivial to

support. A detailed description of DirectFS appears later in this thesis

and it is also available at Josephson et al [62].

We performed a simple test to compare TPCC performance with

MySQL on XFS and DirectFS. The setup contains two instances of

26

MySQL (Percona 5.5.27) of 700 GB each with 25 GB buffer pool both

running on the same physical machine. Both instances run on top of a

single 3 TB flash drive. Figure 3.1 presents the transactions per second

on the y-axis and the time on the x axis. As we can observe, DirectFS

with atomic writes outperforms XFS by almost 2x. The reason for the

massive difference is due to the fact MySQL on XFS needs its logging

infrastructure and can safely turn the logging off with DirectFS. Thus,

media awareness is essential to achieving the full potential of flash.

3.1.2 ioSnap: Block or File system level

Most file systems are designed primarily to provide a namespace and

operational consistency on top of a simple block interface (of the hard

disk). So, file systems continue to treat flash as a block device and

perform certain tasks that are not very suitable for flash (like journal-

ing and disk style block allocation). Flash awareness is important as

file systems can derive great benefits (performance and complexity) by

tailoring their code for flash. Flash has the ability to provide atomic

writes [92], making the consistency problem trivial to solve. So having

complex machinery like copy-on-write btree [105] or journaling [127] is

an overkill for a file system on flash. Thus, flash awareness is important

and the lack thereof leads to poor performance as we observed earlier.

We expect the problem will magnify when more functionality (like

snapshots) is pushed into the file system. File systems snapshots are

unaware of the capabilities and the complexities (segment cleaning,

background scrubbing) of the medium underneath and may inadver-

tently interfere with data management done by the flash driver.

On the other hand, flash, thanks to the nature of the medium, is

uniquely capable of delivering snapshots in a manner not possible on

disks. Flash devices are log structured and so data is never overwritten.

This plays well with snapshots since snapshots are all about retaining

27

relevant older versions of data. The presence of snapshots also impacts

the segment cleaner as old snapshotted data cannot be discarded. By

implementing snapshots within flash, the segment cleaner, in theory,

can help choose the hot and cold segments better: a segment containing

snapshotted data is always cold (never modified).

Of course, a block device taking snapshots of user data may re-

sult in inconsistent snapshots. A block device would need the file sys-

tems assistance in taking consistent snapshots. For example, certain

file systems like XFS supports a freeze operation to pause all ongoing

reads/writes.

Thus, to keep snapshots flash-aware and generic, we have designed

and implemented ioSnap at the block layer, inside the Fusion-io FTL.

3.2 design and implementation

In this section, we describe ioSnap’s design and implementation in de-

tail, focusing on the design goals, APIs and individual portions of the

VSL that were restructured to work with snapshots.

3.2.1 Design Goals

One of the goals of this thesis was to explore mechanisms to create

efficient block-level snapshots in flash. Thus, our primary design goal

relates broadly to performance. Users of flash-based storage expect

predictable high I/O throughput; thus, any design that sacrifices fore-

ground I/O performance to add snapshot support is not tenable.

A secondary, Fusion-io specific goal deals with integration into the

existing VSL. Significant development effort has gone into achieving

VSL’s high performance and endurance. Thus, it is important that

our design integrate effectively within VSL’s existing data structures,

algorithms and I/O paths.

28

ioSnap also makes two assumptions about how the snapshots are

used. First, it assumes that snapshot creation is common. Modern

storage systems are configured to create snapshots every day, hour,

and perhaps even every few minutes [29, 66]. We expect this trend

to increase with higher throughput devices. Thus snapshot creation is

fairly common and must be low overhead.

The second assumption is that snapshot access is (much) less com-

mon than creation. Typically, snapshots are activated only when the

system or certain files need to be restored from backup. Thus, acti-

vations do not match in frequency to creation. Given the expected

discrepancy between snapshot creation and usage, it is natural to op-

timize snapshot creation and defer the bulk of the snapshot work to

snapshot activation.

3.2.2 Snapshot API

The basic snapshot operations are minimal: snapshot create, delete, ac-

tivate and deactivate. Snapshot create and delete are straightforward,

allowing the user to persistently create or delete a snapshot (ioSnap

implicitly retains all snapshots unless explicitly deleted). Activation

is the process of making a snapshot accessible. Not all systems re-

quire activations. We make activation a formal step because ioSnap

defers snapshot work until activation in many cases. Finally, ioSnap

also needs to provide the ability to deactivate a snapshot. The snap-

shot APIs are meant to provide a set of mechanisms, on top of which

workload-specific creation and retention policies may be applied.

Putting it all together, the typical use case may look something like

this. The user performs I/O on the device, while periodically creat-

ing snapshots, say one every hour. Old snapshots are backed-up and

deleted continuously. Occasionally, the user realizes that she needs to

restore a few deleted files and has to activate an old snapshot. More-

29

10 20 30 10 10 20 30 10

S1 - Snapshot

Invalid Block Valid in S1, invalid in active

Fig A - Log structuring in Flash Fig B - Snapshots on Flash

L
o
g

L
o
g

Figure 3.2: Snapshots on the log. This figure illustrates how a log-
based device can naturally support snapshots. Each rectangle represents a
log, with each square indicating a block, with the logical block address (LBA)
mentioned inside. In Fig. A, we show a log with four blocks with LBAs
10, 20, 30 and one block overwritten at address 10. The key aspect is the
presence of the invalidated block on the log (until garbage collection). The
log in Fig. B, shows how the log can be leveraged to implements snapshots.
If we were to write blocks at addresses 10, 20 and 30 and then create a
snapshot (call it S1, indicated by the dashed line) and overwrite block 10,
then according to snapshot S1, the original block at address 10 is still valid
while the active log only see the new block at address 10. Thus by selectively
retaining blocks, the log can naturally support snapshots.

over, the old snapshots have to be moved out of flash to free space and

this operation also requires snapshot activation. Following activation,

the user may have to mount the file system present in the snapshot to

perform any file operations on the device. The user may unmount the

file system and deactivate the snapshot later.

3.2.3 Log Structuring

The log-structured nature of flash devices naturally supports snapshots.

New blocks written are appended to the head of the log, leaving behind

the invalidated data to be reclaimed by the segment cleaner. Thus, sup-

porting snapshots requires selectively retaining older blocks and allow-

ing the segment cleaner to discern snapshot blocks from invalid blocks.

Fig. 3.2 shows a detailed example.

30

10 20 30 10 40 60

40 60 10 20 70 30

10 20 30 10 40 60
1 1 1 2 2 2

40 60 10 20 70 30
2 2 1 1 2 1

Epoch 1 Epoch 2

Log

Log

S1 Active

Log

Active

10

S1 Active S1

Fig (A)

Fig (B)

Active

Segment
Boundary

nnn
x

Key

LBA

Epoch

10
2

Before
Cleaning

After
Cleaning

Before
Cleaning

After
Cleaning

Figure 3.3: Epochs. The figure illustrates the impact of the garbage
collector on the time order of the log and the need for Epochs. In Fig.
A, we write blocks at LBAs 10, 20, 30, create a snapshot S1 and continue
writing blocks to LBAs 10, 40 and 60. The segment boundaries are indicated
by the thick black line. While blocks are moved, newer writes may also
be processed resulting in active data (LBAs 40,60,10 and 70) getting mixed
with blocks from S1 as shown by the log at the bottom of Fig. A and makes
distinguishing blocks impossible. Fig. B shows the use of epochs to delineate
blocks belonging to various snapshots. Epoch numbers are assigned to all
blocks as indicated by the number in the small box on the left top of each
block.

3.2.4 Epochs

Log structuring inherently creates time-ordering within the blocks and

the time ordering of blocks can easily allow us to associate a group

of blocks to a snapshot. Unfortunately, the segment cleaner moves

valid blocks to the head of the log and disrupts the time-ordering.

Once blocks from distinct time frames get mixed with active writes, it

becomes hard to distinguish blocks that belong to one snapshot from

another. Fig. 3.3(A) illustrates the impact of segment cleaning on a

31

sample log. Simply put: when blocks are moved, active data can be

mixed with blocks from older snapshots.

In order to implement snapshots in a log-structured medium, ioSnap

leverages the notion of Epochs [96, 103]. Epochs divide operations

(writes) into log-time based sets that segregate operations that took

place between subsequent snapshot operations. Every epoch is assigned

an epoch number that is a monotonically increasing counter. The log

maintains the current epoch number in its block header (i.e., OOB

or out of band area) and new blocks written to the log are assigned

the current epoch number. By associating every block with an epoch

number, ioSnap can (loosely) maintain the notion of log-time despite

intermixing induced by the segment cleaner. Fig. 3.3(B) shows how

associating epoch numbers to blocks can help manage the block mix-

ing situation. Epochs are incremented when snapshots are created or

activated. Every snapshot is associated with an epoch number that

indicates the epoch number of blocks that were written after the last

known snapshot operation.

3.2.5 Snapshot Tree

A snapshot created at any point in time is related to a select set of

snapshots created before. The moment a snapshot is created, every

block of data on the drive is (logically) pointed to by two entities: the

active tree (the device the user issues reads and writes to) and the

snapshot that was created. In other words, the active tree implicitly

inherits blocks from the snapshot that was created. As subsequent

writes are issued, the state of the active tree diverges from the state

of the snapshot until the moment another snapshot is created. The

newly created snapshot captures the set of all changes that took place

between the first snapshot and the present. Finally, as more snapshots

are created and activated, ioSnap keeps track of the relationships be-

32

S1

S2

S3

S4

(S1)f1
(S1)f2

(S2)f1
(S1)f2

(S1)f2
(S3)f3

(S2)f1
(S1)f2
(S4)f4

(a) Snapshot Tree (b) Data dependancy

Figure 3.4: Snapshot tree. The figure illustrates the relationship
between snapshots based on data they share. The tree to the left shows the
relationship between snapshots and the tree to the right shows the data associ-
ated with each snapshot (as files for simplicity with the snapshot it originated
from in parentheses). Snapshot S1 has two files, f1 and f2. After updating
file f1, snapshot S2 is created followed by S4, which adds a file f4. S4’s state
contains files from S1 and S2. At some point, S1 was activated and file f1
was deleted and a new file f3 was created. Deleting file f2 does not affect
the file stored in S1. Activating S1 creates a fork in the tree and after some
changes, S3 is created.

tween the snapshots through a snapshot tree [10] Fig. 3.4 illustrates an

example depicting four snapshots and their relationships.

3.2.6 Segment Cleaner

The segment cleaner is responsible for reclaiming space left by invali-

dated data. Not surprisingly, adding snapshots to the VSL necessitates

changes to the cleaner.

33

3.2.6.1 Implementation Challenges

There are two major issues that the cleaner must address to operate

correctly in the presence of snapshots. Originally, as mentioned in

Section 2.2.3, the cleaner simply examines the validity bitmap to infer

the validity of a block. Unfortunately, when snapshot data is present

on the log, a block that is invalid in the current state of the device

may still be used in some snapshot. The first challenge for the segment

cleaner is thus to figure out if there exists at least one older snapshot

that still uses the block, as seen in Fig. 3.3.

Second, in the presence of snapshots, the choice of segment to clean

needs to be rethought, the reason being the fact that the segment

cleaner has a tendency to mix blocks belonging to various epochs and

we would ideally like to keep the degree of intermixing minimal (we do

not address the policies required for segment cleaning in the presence of

snapshots). By keeping intermixing minimal, snapshot activation can

be made more efficient.

3.2.6.2 Copy-on-write validity bitmap

Validity bitmaps are used to indicate the validity of a block with respect

to the active log. In the presence of snapshots, a block that is valid

with respect to one snapshot may have been overwritten in the active

log, thus making maintenance of validity bitmaps tricky.

ioSnap solves the validity bitmap problem by maintaining bitmaps

for each epoch (similar to bitmaps in WAFL [51]). During the course

of an epoch, the validity bitmap is modified in the same manner as

described in Section 2.2.2. When a snapshot is created, the state of

the validity bitmap at that point corresponds to the state of the device

captured by the snapshot. Having copies of the validity bitmap for

each snapshot allows us to know exactly which blocks were valid in a

snapshot.

34

10
1

20
1

30
1

40
1

60
1

Epoch 1 1 1 11 1 0 0 0

Epoch 1

Segment
Boundary

10
1

20
1

30
1

10
2

40
1

60
1

Epoch 1 1 1 11 1 0 0 0

1 1 10 1 1 0 0Epoch 2
(Step 2)

Epoch 1 Epoch 2

Validity Map COW

bits needed to
be flipped

1 1 11 1 0 0 0Epoch 2
(Step 1)

Fig. A

Fig. B

Figure 3.5: Epochs and Validity maps. The figure describes the
use of per epoch validity maps to help the segment cleaner. The example
shows a simple case with two epochs spread over two segments. The validity
map named Epoch 1 corresponds to the validity map of the log at snapshot
creation. The validity map in Fig. A shows 5 valid blocks on the log. After
snapshot creation, block 10 is overwritten, involving clearing one bit and
setting another. The bits that need to be cleared and set are shown in gray
in Fig. B and clearly these belong to Epoch 1 and hence read-only. Thus,
the first step is to create copies of these validity blocks (shown in step 1).
Next, the bits in the newly created epoch 2 are set and cleared to represent
the updated state.

A snapshot’s validity bitmap is never modified unless the segment

cleaner moves blocks (more details in Section 3.2.6.3). Like epochs,

the validity bitmap for a snapshot inherits the validity bitmap of its

35

parent to represent the state of the blocks inherited. The active log

can continue to modify the inherited validity bitmap.

The naive design would be to copy the validity bitmap at snapshot

creation time, which would guarantee a unique set of bitmaps that ac-

curately represent the state of the blocks belonging to the snapshot.

Clearly, such a system would be highly space inefficient since every

snapshot would require a large amount of memory to represent its va-

lidity bitmaps (for example, for a 2 TB drive, 512 MB per snapshot

with 512 byte blocks).

Instead ioSnap takes an approach that relies on copy-on-write for

the validity bitmap blocks. It leverages the fact that time ordering of

the log typically guarantees spatial collocation of blocks belonging to

the same epoch. So, until blocks are moved by the segment cleaner

to the head of the log, the validity bitmaps corresponding to an epoch

would also be relatively localized. ioSnap uses this observation to em-

ploy copy-on-write on validity bitmaps after a snapshot operation where

all validity bitmap blocks are marked COW. When an attempt is made

to modify a block marked COW, a copy is created and linked to the

snapshot (or epoch) whose state it represents. The validity bitmap

pages that were copied are read-only (until reclamation) and can be

de-staged to the log. Fig. 3.5 illustrates an example where validity

bitmaps are inherited and later modified by the active log.

3.2.6.3 Segment Cleaning: Putting It All Together

Segment cleaning in the presence of snapshots is significantly different

from the standard block device segment cleaner. The segment cleaner

needs to decide if a block is valid or not and the validity of a block

cannot be derived just by looking at one validity bitmap. The following

steps need to be followed to clean a segment:

Merge validity bitmaps: The validity information for each block is

36

spread across multiple validity bitmaps. To obtain a global view of the

device across epochs, ioSnap merges the validity bitmaps (logical OR)

and produce a cumulative map for the segment. Epochs corresponding

to deleted snapshots need not be merged unless there exists at least one

descendant epoch still inheriting the validity bitmap. Fig. 3.6 illustrates

this process. Fig. 3.6(A) shows the state of the drive before segment

cleaning and Fig. 3.6(B) shows the state of the drive after segment

cleaning. Fig. 3.6(C) illustrates an example with a deleted snapshot:

Epoch 1 has been deleted and so it will not contribute blocks to the

merged map. While handling deleted snapshots, the validity maps cor-

responding to the epoch may or may not be merged. If there exists at

least one child epoch (of the deleted epoch) that still relies on the valid-

ity information of the deleted epoch, then we must merge the validity

information from a deleted epoch.

37

10
1

20
1

30
1

10
2

70
2

60
210

1
60

1

Epoch 1 1 1 10 1 0 0 0

1 1 00 0 1 1 1Epoch 2

Epoch 1 Epoch 2

1 1 10Merged

10
2

70
2

60
260

1

Epoch 1Epoch 2

20
1

30
1

10
1Cleaned

Segment

Epoch 1 1 1 11 0 0 0

1 1 00 1 1 1Epoch 2

Fig A - Before segment cleaning

Fig B - After segment cleaning

Invalid Block

Valid Block

Segment
Boundary

Epoch 1

10
1

20
1

30
1

10
2

70
2

60
210

1
60

1

Epoch 1
(Deleted)

1 1 10 1 0 0 0

1 1 00 0 1 1 1Epoch 2

Epoch 1 Epoch 2

1 1 00Merged

Fig C - Merged bitmaps with

deleted epochs

Deleted
Epoch

Invalid Block

Valid Block

Segment
Boundary

Figure 3.6: Segment cleaner in operation. The figure illustrates
the segment cleaner operation in the presence of snapshots. Fig. A and B
show the state of the drive before and after segment cleaning. The log in Fig.
A uses two segments with 4 blocks each and has one snapshot (indicated by
the epochs 1 and 2) with the corresponding validity maps shown below. The
segment cleaner merges the validity maps to create the merged map. Based
on the validity of blocks in the merged maps, blocks 20,30,10 (from Epoch 1)
are copy forwarded to Segment 3 as shows in Fig. B. While moving blocks
forward, the segment cleaner has to re-adjust the validity maps to reflect
block state in Segment 3. Finally, Fig. C shows an example with a deleted
epoch (Epoch 1). The merged bitmap is equivalent to the only valid epoch,
Epoch 2. This automatically invalidates blocks from Epoch 1.

38

Check for validity of blocks: The merged validity bitmap for a

segment represent the globally valid blocks in that segment. The blocks

that are invalid are the ones that have been overwritten within the same

epoch or the ones that may belong to deleted snapshots.

Move and reset validity bits: For every valid block copy-forwarded,

the validity bits need to be adjusted. One or more epochs may refer

to the block, which means ioSnap needs to set and clear the validity

bitmap at more than one location. In the worst case, every valid epoch

may refer to this block, in which case ioSnap may be required to set as

many bits as there are epochs.

3.2.7 Crash Recovery

The device state needs to be reconstructed after a crash. In the version

of the driver we use, the device state is fully checkpointed only on a

clean shutdown. On an unclean shutdown, some elements of in-memory

state are reconstructed from metadata stored in the log.

3.2.7.1 FTL Reconstruction

The FTL of the active tree is reconstructed by processing logical to

physical block translations present in the log. In our prototype, ioSnap

only reconstructs the active trees and does not build trees correspond-

ing to all the snapshots. This goes back to the design choice we made

early on to keep operations on the active tree fast and attempting to re-

construct snapshot FTL would impose both space and time overheads.

The reconstruction of the FTL in the presence of snapshots is in-

tegrated with the standard crash recovery mechanisms in the driver.

The recovery process occurs in two phases and we describe what has

been added to each of these phases in order to recreate snapshot state.

In the first phase, the snapshot are identified (using snapshot creation

notes in the log) and the snapshot tree is constructed. Once the snap-

39

shot tree is constructed, ioSnap has the lineage of the active tree whose

FTL needs to be constructed. In the second pass, ioSnap selectively

processes the translations that are relevant to the active trees. The

relevant blocks for the active tree are those that belong to the epoch

of the active tree or any of its parent in the snapshot tree. ioSnap also

processes the snapshot deletion and activation blocks in the second pass

and update the snapshot tree. Once all blocks are processed, ioSnap

sorts the entries on their LBA and reconstruct the FTL in a bottom

up fashion.

3.2.7.2 Validity-bitmap Reconstruction

Validity bitmap reconstruction happens in multiple phases. In the first

phase, ioSnap sorts FTL entries (in block headers) based on the epoch

in which the data was created (sorting is required due to the segment

cleaner, which disrupts log-time ordering). ioSnap then eliminates du-

plicate (or older) entries and uniquely identify blocks that are valid

and active in the epoch under consideration. Once the valid entries

are identified, it constructs the validity bitmap for each epoch starting

from the root of the snapshot tree until it reaches the leaf nodes in a

breadth first manner. The final validity map for each epoch is recon-

structed by merging the epochs that could contribute blocks to this

epoch (namely, the parent epochs). While merging, ioSnap eliminates

duplicates or invalidated entries. The snapshot tree is traversed in a

breadth first manner and validity maps constructed for every epoch in

the manner described above. The number of phases needed to recon-

struct the validity bitmap depends on the number of snapshots created

in the device.

40

3.2.8 Snapshot Activation

In order to access a snapshot, the user needs to activate it. The pri-

mary reason for an activation operation is due to the fact that ioSnap

only maintains the mappings of the active tree prior to an activation

since keeping multiple FTLs in memory (even under copy-on-write) is

prohibitively expensive. Moreover, having multiple maps may require

multiple updates to the map when a shared block is moved by the

segment cleaner.

Upon activation, ioSnap produces a new writable device that resem-

bles the snapshot (but never overwrites the snapshot). Thus, activation

also results in creation of a new epoch to absorb all the blocks writ-

ten to the new block device. The steps to construct the FTL of an

activated snapshot are the same as that of FTL reconstruction of the

active tree. The only difference is that the reconstruction starts from

the epoch number of the snapshot that needs to be activated instead

of the epoch number of the active tree.

3.2.9 Rate Limiting

Snapshot activations and segment cleaning can impact foreground I/O

performance. Specifically, activating a snapshot requires reading block

headers (i.e., OOB data) from the log and recreating the FTL; sim-

ilar background traffic is inherent in segment cleaning. This traffic

competes with foreground I/Os for device bandwidth and as a result

could introduce jitters (or spikes) in foreground workloads, which is

unacceptable.

To alleviate the problem, ioSnap rate-limits background I/O traffic

during snapshot activation and segment cleaning. Background activa-

tion traffic is rate-limited by providing a tunable knob that determines

the rate at which snapshots are activated at the expense of activation

41

time. In the case of segment cleaning, ioSnap improves the vanilla rate-

limiter by providing a better estimate of the amount of work that needs

to be done to clean the segment as default structures do not account

for snapshotted data.

3.2.10 Implementing Snapshot Operations

Given our understanding of the log, epochs, and the snapshot tree, we

now describe the actions taken during various snapshotting activities.

For snapshot creation, the following four actions take place. First,

the application must quiesce writes before issuing a snapshot create.

Second, ioSnap writes a snapshot-create note to the log indicating the

epoch that was snapshotted. A note is a special data block that records

a specific metadata operation. Third, it increments the epoch counter,

and finally, add the snapshot to the snapshot tree.

Snapshot deletions require two steps. First, ioSnap synchronously

write a snapshot-delete note to the log. The presence of the note per-

sists the delete operation. Second, it marks the snapshot deleted in

the snapshot-tree. This prevents future attempts to access the snap-

shot. Once a snapshot is marked deleted, the blocks from the epoch

corresponding to the snapshot are eventually reclaimed by the segment

cleaner in background as described earlier in Fig. 3.6. Thus, deleting a

snapshot does not directly impact performance.

The process of snapshot activation is more complicated as a result

of our design decision to defer work to the rarer case of old-snapshot

access, and requires five steps. First, ioSnap validates the existence

of the requested snapshot in the snapshot tree. Second, ioSnap syn-

chronously writes a snapshot-activate note to the log. The note ensures

accurate reconstruction in the event of a crash by ensuring that the

correct tree would be reconstructed to recreate the state of the system.

Third, it increments the epoch counter. Activating a snapshot creates

42

Vanilla ioSnap
(MB/s) (MB/s)

Sequential Write 1617.34 ± 1.63 1615.47 ± 5.44
Random Write 1375.16 ± 84.6 1380.46 ± 88.9

Sequential Read 1238.28 ± 10.8 1240.51 ± 0.24
Random Read 312.15 ± 1.05 310.23 ± 0.71

Table 3.1: Regular Operations. The table compares the performance
of vanilla FTL driver and ioSnap for regular read and write operations.
We issued 4K read and writes to the log using two threads. Writes were
performed asynchronously and 16 GB of data was read or written to the log
in each experiment (repeated 5 times).

a new epoch that inherits blocks from the aforementioned snapshot.

Fourth, ioSnap reconstruct the FTL and validity bitmap as described

in Sec 3.2.7 Though our design permits for both readable and writable

snapshots, we have only prototyped readable snapshots. Snapshot de-

activation only requires writing a note on the log recording the action.

3.3 evaluation

In this section, we evaluate ioSnap in terms of the impact on user

performance during regular read/write operations, snapshot operations,

and segment cleaning. We also evaluate the impact on crash-recovery.

All experiments were performed on a quad core Intel i7 processor, with a

1.2 TB NAND Flash drive, 12 GB of RAM, running Linux 2.6.35, and a

older generation of the VSL driver. The flash device was formatted with

a sector size of 4KB (unless otherwise explicitly stated). The overall

development effort in implementing ioSnap involved around 4500 lines

of code added and 200 existing lines modified, with a large portion

of code changes required to handle the copy-on-write of the validity

bitmaps during regular operations as well as during segment cleaning.

43

Operation Time Metadata
(usec) (KB)

Creation 50 4
Deletion 50 4

Table 3.2: Snapshot Operations: Create and Delete. The table
presents the time spent creating and deleting a snapshot. We issued a large
number of 4KB writes to the device and after a few seconds, we issued a
snapshot creation call. After a while, we deleted the snapshot. In both cases,
we measure the time spent during snapshot creation and deletion and found
them to be around 50 usec, which is equivalent to the time spent writing a
snapshot note on the log.

3.3.1 Regular Operations

An important goal of ioSnap was to have minimal performance impact

on the VSL driver. We employ micro-benchmarks to understand the

impact of snapshot support in ioSnap during regular operations. We

used sequential and random read/write benchmarks to measure the

performance of the vanilla VSL driver and ioSnap. Table 3.1 presents

the result of our micro benchmark. From the table, we see that the

performance impact of running ioSnap when there are no snapshot-

related activity is negligible. This is in tune with our design goal of

being close to the raw device performance.

3.3.2 Snapshot Operations

The design of ioSnap introduces multiple overheads that may directly

or indirectly impact user performance. Users may observe performance

degradation (lower throughput, higher latencies) or increased memory

consumption due to snapshot-related activity in the background. We

now discuss the implication of snapshot operations on user performance

and VSL metadata.

44

Time (sec)
(a)

0 0.2 0.4 0.6 0.8 1 1.2W
rit

e
la

te
nc

y
(u

se
c)

0

100

200

300

Time (sec)
(b)

0 0.2 0.4 0.6 0.8 1 1.2

N
o.

 o
f C

O
W

s

0

5

10

15

Figure 3.7: Impact of snapshot creation. The figure above illus-
trates the impact of a snapshot creation operation on the latency observed by
the user. In this experiment, we first write 512 byte blocks to arbitrary logical
addresses (total data of 3GB and not shown in the figure). Then, at time
t=0 sec, we created a snapshot and then continue writing blocks to random
locations (of 8 MB). The process of creating a snapshot and writing 8 MB
was repeated after about 1 sec into the benchmark. We depict the latency by
the solid gray line on the primary Y axis and the number of validity bitmap
copy-on-write occurrences with the solid black line on the secondary Y axis.

3.3.2.1 Creation and Deletion

Snapshot creation and deletion are invoked more frequently compared

to activation. These two operations have to be extremely fast to avoid

user-visible performance degradation. To measure the performance of

snapshot creation and deletion, we ran micro benchmarks described in

Table 3.1 and varied the amount of data before the create or delete

was issued. In all our experiments, we observed a latency of about 50

µsec and the metadata on log was 4KB (Table 3.2). This is due to

the fact that only a snapshot creation (or deletion) note is written to

45

the log and is independent of the amount of data written to the log.

The metadata block of 4KB per snapshot is insignificant (on a 1.2 TB

drive).

Though snapshot creation is extremely fast, it could impact the

performance of subsequent writes. After a snapshot is created, requests

that overwrite existing data result in the corresponding validity bitmap

to be copied (Section 3.2.6.2). On the other hand, read operations

are not impacted after snapshot creation and snapshot deletes do not

impact read and write performance.

We wrote a micro benchmark to understand the worst case perfor-

mance impact of COW. In our micro benchmark, we first wrote 3GB

of data to the log to populate the validity bitmaps. Then, we created a

snapshot (at time t=0 sec) and issued synchronous 512 byte random-

writes of 8MB data to overwrite portions of the 3GB data on the log;

we repeated the same process again (at time t=1 sec). Also, for this

experiment, we formatted the device with 512 byte sectors to highlight

the worst case performance overheads. Fig. 3.7 illustrates the impact

on user observed write latency.

Latency:

From Fig. 3.7a, we can see that the write latencies shoot up (to at

most 350 µsec) for a brief period of time (≈ 50 msec) before return-

ing to the pre-snapshot values. The period of perturbation obviously

depends on the amount of copy-on-write to be performed; which, in

turn, depends on the total amount of data in the previous epochs. We

observe similar behavior upon the creation of a second snapshot (at

around t=1 sec). Note that this is the worst case performance (validity

bitmap copy for every write) and the latency spike would be smaller

for other workloads.

Space Overheads:

Snapshot creation directly adds a metadata block in the log (de-

scribed earlier) and indirectly causes metadata overheads due to addi-

46

tional validity bitmap pages created as part of COW (bitmaps are kept

in-memory). The validity bitmap COW overhead is directly propor-

tional to both data present on the log and data overwritten to distinct

logical addresses after a snapshot. Fig. 3.7b displays the count of the

validity bitmaps that were copied during the execution of the micro

benchmark described above. In the experiment, we observed 196 va-

lidity bitmap blocks being copied after the first snapshot incurring an

overhead of 784 KB per snapshot (or about 0.024% per snapshot). Note

that the validity bitmap COW overheads will decrease with larger block

sizes as fewer validity bitmaps would be copied.

In summary, snapshot creation and deletion operations are light-

weight (50 usec) and adds a metadata block in the log. But snapshot

creation could also impact subsequent synchronous write performance

due to COW of validity bitmap pages. The amount of validity bitmaps

created is directly proportional to data on the log and the distinct

logical addresses that got overwritten.

3.3.2.2 Activation

Snapshot activation requires a scan of the device to identify blocks

associated (with the snapshot being activated) and followed by the

recreation of the FTL. The log scan and FTL recreation incur both

memory and performance overheads. Also, foreground operations could

be impacted due to the activation process. We now evaluate the cost

of activating a snapshot.

47

Data per Snapshot
4M 40M 400M 800M 1.6G

A
ct

iv
at

io
n

La
te

nc
y

(m
se

c)

0

200

400

600

800

1000

1200

1400 Snapshot_1

Snapshot_2

Snapshot_3

Snapshot_4

Snapshot_5

Figure 3.8: Snapshot activation latency. The figure illustrates the
time spent in activating snapshots of various sizes. Each cluster represents
a fixed volume of data written between snapshots. For e.g., the first cluster
labeled 4M represents creation of five snapshots with 4MB of data written
between each snapshot create operation. The five columns in each cluster
indicates the time taken to activate each of the five snapshots. Within each
cluster, every column (i.e, snapshot) requires data from all the columns to
its left for its activation.

Time overheads:

The time taken to activate a snapshot directly depends on the size of

the snapshot. To measure snapshot activation time, we first prepare the

device by writing a fixed amount of data and then create a snapshot.

We then repeat the process for 4 more times (i.e., 5 snapshots are

created with equal amount of data). The amount of data written to

the device was varied between 4M and 1.6GB. Fig. 3.8 and present

the time spent in activating snapshots of various sizes. In this figure,

each column within the cluster indicates the time spent in activating

a specific snapshot (for example, the first column corresponds to the

activation of first snapshot).

From the figure, we make two important observations. First, the

more data on the log, the longer it takes to activate a snapshot. Second,

48

more time is required to activate snapshots that are deeper (i.e., they

are derived from other snapshots) in the snapshot tree. The increase in

activation time is due to the fact that to create the FTL of a snapshot,

all of its ancestors in the snapshot tree have to be processed in a top-

down manner (Section 3.2.8).

Upon looking at the time spent at various phases of activation

(Fig. 3.9), we observed that for fixed log size, irrespective of the num-

ber of snapshots present, the time taken to identify blocks associated

with a snapshot is constant. The constant time is due to the fact that

the segment cleaner could have moved blocks in the log and hence, the

entire log needs to be read to ensure all the blocks belonging to the

snapshot are identified correctly. For example, to read a log containing

8 GB of data (the column named 1.6 GB), we spend around 600 msec

scanning the log followed by the reconstruction phase that may vary

from 60 msec (snapshot 1, no dependencies) to 750 msec (snapshot 5,

dependent on all 4 snapshots before it).

Space overheads:

Activation also results in memory overheads as we need to create the

FTL of the activated snapshot. To measure the in-memory overheads,

we first created a log with five snapshots each with 1.6 GB worth of

data (using random 4K block writes). We activate each of the 5 snap-

shots and measure the in-memory FTL size of the activated snapshot.

Table 3.3 presents the results.

49

1.6G

A
ct

iv
at

io
n

T
im

e
(m

se
c)

0

200

400

600

800

1000

1200

1400

Setup & Teardown

Scan Log

Tree Construction

Figure 3.9: Phases during Snapshot Activation. The figure
illustrates the time spent during various phases of activating snashots. The
workload is identical to the one used in Figure 3.8 and we have shown the
breaddown of the various stages for the 1.6 GB cluster. The three main
phases are: Setup/Teardown, Log Scan and Tree construction. As we can
observer from the figure above, the scan phase is fixed for a given size of the
log (8 GB) and the tree construction phase depends (almost linearly) on the
depth of the snapshot in the tree.

From the table, we make two observations: first, with an increase

in data present in the snapshot, the memory footprint of the new tree

also increases. Second, the tree created by activation tends to be more

compact than the active tree with exactly the same state. The reason

for better compaction is due to the fact that the original tree is frag-

mented, while the tree created by the activation is as compact as the

tree can be.

50

Snapshot Size of tree Size of tree
no. at snapshot after snapshot

activated creation (MB) activation (MB)
1 1.38 0.84
2 4.41 3.63
3 7.91 7.09
4 11.20 10.51
5 14.44 13.72

Table 3.3: Memory overheads of Snapshot activation. The table
above presents the memory overheads incurred when snapshots are activated.
In the experiment we created five snapshots with 1.6 GB of of random 4K
block writes being issues between each subsequent snapshot create operations.
After each snapshot create operation we measure the size of the tree in terms
of the number of tree nodes present. After five snapshots are created, we
activate each of those snapshots and measure the in-memory sizes of newly
created FTL.

No Rate Limiting

Time (sec)
(a)

0 1 2 3 4

R
ea

d
la

te
nc

y
(m

se
c)

0

0.5

1

1.5

50usec/250msec

Time (sec)
(b)

0 1 2 3 4

R
ea

d
la

te
nc

y
(m

se
c)

0

0.5

1

1.5

1usec/250msec

Time (sec)
(c)

0 1 2 3 4

R
ea

d
la

te
nc

y
(m

se
c)

0

0.5

1

1.5

Figure 3.10: Random read performance during activation. The
figure above illustrates the performance overhead imposed by activation on
random read operations and how rate-limiting activation can help mitigate
performance impact. We perform random read operations of 4K sized blocks
on the drive with 1 GB of data spread across two snapshots. About 500
msec into the workload we activate the first snapshot that contains 500 MB
of data. The random reads average about 100 usec before activation. The
naive performance is show in (a) and two rate-limiting schemes are shown
in (b), and (c). In each of the rate-limiting scheme, the parameters shown
as "x usec/y msec", meaning for every x usec of activation work done, the
activation thread has to sleep for y msecs. The dashed lines in each plot
indicates the time when activation started and completed.

51

Impact on foreground requests:

Activating a snapshot may also interfere with on-going operations.

To quantify the interference, we performed a simple experiment where

we issued 4K random reads with 1 GB of data spread over two snap-

shots. Fig. 3.10 shows the results of the experiment. From the figure,

we see that the random reads, which average 0.1 msec before activation,

shoots up during activation, and finally stabilizes. From Fig. 3.10a, we

observe that latency has gone up by almost 10x. Such latency spikes are

unacceptable for many performance sensitive enterprise applications.

We implemented a simple rate-limiting scheme to control the amount

of work done by for activation. In rate-limiting, we trade-off activation

time in favor of user latency (for every ’x’ usec of work done, activa-

tion is forced to sleep for ’y’ msecs, expressed as ’x usec / y msecs’).

Figs 3.10b (50usec/250msec) and 3.10c (1usec/250msec) show the ef-

fect of rate-limiting on activation process. From these figures, we can

clearly see that the impact on read performance falls significantly with

rate-limiting (worst case read latency decreases from 10x to 2x) but

the time to activate increases (from .3 sec to 3.5 sec). The variation in

latency could be further reduced by increasing the activation time.

The important thing to note here is the ability of ioSnap to dis-

tinguish between foreground and background tasks (namely, regular

operations and snapshot activation). If snapshots were implemented

on top of flash, say in a file system like btrfs, then activations are fast

since btrfs keeps a separate btree for the snapshot. Attempting to use

snapshotted data may trigger a large volume of reads that corresponds

to the snapshot metadata that was paged out. But the underlying

driver has no idea on how to differentiate between regular blocks and

snapshot metadata. Thus, designing ioSnap withing the FTL makes

sense.

52

No. of Overall Validity
Snapshots Time (sec) Merge (msec)
Vanilla (0) 10.42 113.07

0 10.48 127.9
1 10.14 140.65
2 10.8 205.15

Table 3.4: Overheads of segment cleaning. The table presents the
overheads incurred while reclaiming a segment. In our experiment, a fore-
ground thread issues 4K random writes filling up multiple segments (around
5 GB of data). Also, a background thread creates snapshots at arbitrary in-
tervals. We force the cleaner to pick up the segment that was just written
in order to measure the overheads. We present the overall time spent in
cleaning the segment and the time spent in merging validity bitmaps when
computing validity of data.

3.3.3 Segment Cleaning

The segment cleaner copy-forwards valid blocks from a candidate seg-

ment. The amount of valid data may increase in the presence of snap-

shots since blocks invalidated in a snapshot may still be valid in its

ancestors. The increase in data movement could impact both segment

cleaning time and foreground user requests. To measure the impact of

segment cleaning, we use a foreground random write benchmark with

4K block size that writes 5GB of data spreading across multiple seg-

ments while a background thread creates two snapshots (still within

the first segment). Once the first segment is full, we force the segment

cleaner to work on this segment while foreground writes continue to

progress.

Table 3.4 show the overheads of snapshot-aware segment cleaning

in ioSnap. In the presence of snapshots, the cleaner has to perform ad-

ditional data movement to capture snapshotted data (568, 628 and 631

MB respectively for vanilla/zero, one and two snapshots respectively).

We do not consider the additional data as an overhead. Interestingly,

53

the segment cleaning time neither increases with the number of snap-

shots nor with the amount of valid data moved. The vanilla VSL driver

has rate-limiting built into it where the segment cleaner aggressively

performs work when there is more data to move. Upon closer inspec-

tion of various stages of the segment cleaner, we observed that with

more snapshots present within a segment, the validity bitmap merging

operation tends to get more expensive. Even in the presence of zero

snapshots, we incur an overhead of 12% and this progressively grows.

2 snapshots
(vanilla rate policy)

Time (sec)
(b)

0 2 4 6 8
0

0.5

1

Vanilla

Time (sec)
(a)

0 2 4 6 8

W
rit

e
la

te
nc

y
(m

se
c)

0

0.5

1

2 snapshots
(snapshot aware rate policy)

Time (sec)
(c)

0 2 4 6 8
0

0.5

1

Figure 3.11: Impact of Segment Cleaner on user performance.
The figure illustrates the performance overhead imposed by segment cleaning
on foreground random writes and how snapshot-aware rate-limiting can help
mitigate performance impact. We perform random writes of 4KB blocks on
the drive with 5 GB of data spread across two snapshots. The impact on
random read performance due to vanilla segment cleaner is show in (a),
ioSnap with two snapshots in (b), and ioSnap with snapshot aware rate-
limiting in (c).

Data movement introduced by the segment cleaner imposes over-

heads on the application visible performance and Fig. 3.11 illustrates

this impact on the aforementioned user workload. From the Fig. 3.11a,

we can see that vanilla driver does impact the write latency, which is

an artifact of the version of the driver we are using. We observed sim-

ilar behavior in ioSnap with zero snapshots (not shown in the figure).

54

Fig. 3.11b shows that ioSnap increases write latency by a factor of 2.

We mitigate the increase in latency by introducing snapshot awareness

to the rate-limiting algorithm in the segment cleaner by providing a

better estimate of the number of valid blocks in the segment contain-

ing snapshotted data. As we can see in Fig. 3.11c, the overheads are

brought back to the original levels shown in Fig. 3.11a.

The ability to rate limit the segment cleaner in a smart manner is

one of the biggest gains of having ioSnap withing the FTL. ioSnap can

accurately measure the extra data present in snapshots and rate limit

the segment cleaner in a more controlled manner. Instead, if snapshots

were implemented on top of the FTL, it would automatically become

the job of the snapshotting file system to provide explicit information

when snapshotted data is not needed anymore. File systems manage

the logical addresses: freed logical blocks are reclaimed and reused,

but that does not translate to freeing the physical space on the device.

Without explicit TRIMs to free physical space, the segment cleaner

would have to move more blocks than necessary. Moreover, the file

system has no idea about the physical organization of data on flash.

This effectively makes it impossible to have snapshot-aware segment

cleaning policies. Thus, for these two reasons, putting ioSnap within

inside the driver makes more sense.

3.3.4 Crash Recovery

Crash recovery is needed when the flash device is not shutdown cleanly.

The driver needs to reconstruct its in-memory state consisting of the

FTL and validity maps (Sections 2.2.4 and 3.2.7). We evaluate the

cost of recreating the VSL state, specifically measure the overheads of

snapshot awareness.

55

Data per Snapshot
4K 4M 8M 80M 800M

La
te

nc
y

(m
se

c)

0

500

1000

1500

2000 Snapshot 1

Snapshot 2

Snapshot 3

Snapshot 4

Snapshot 5

Figure 3.12: Snapshots and crash recovery. This figure shows the
time spent recovering from a crash in the presence of snapshots. Each exper-
iment involved writing a fixed amount of data followed by a snapshot. For
example, the first cluster involved writing 4KB of data followed by creation
of a snapshot and the process is repeated (up to 5 times). The first column
within the cluster indicates the time to restart the system with one snapshot
and 4K of data and so on.

Each experiment involved writing a fixed amount of data (4KB to

800MB) followed by a snapshot. For example, the first cluster involved

writing 4KB of data followed by creation of a snapshot and the process

is repeated (up to 5 times). The first column within the cluster indicates

the time to restart the system when a snapshot was created after 4KB

was written, the second column represents the time to restart with

8KB (4KB + 4KB bytes) data interspersed by two snapshots and so

on. Fig. 3.12 shows the results of our experiment. Clearly, with more

data on the log, crash recovery gets longer. A large fraction of the time

is spent in scanning the log. The scan time is comparable to the base-

driver. Finally, with increasing number of snapshots, the reconstruction

phase also grows longer (proportionally) as every snapshot requires

its validity map to be constructed. Depending on the depth of the

snapshots, the reconstruction time may be almost as long as the scan-

time. Thus, this raises the need for more other techniques to alleviate

56

the slow restart times.

3.4 discussion and future work

The design choices we made have ensured VSL’s performance is not

compromised in the presence of snapshots. Snapshot creation is very

fast and largely invisible to foreground work. Unfortunately, deferring

snapshot operations comes at a price. Clearly, activation is an expen-

sive process in terms of space and time. In the worst case, activations

may spend tens of seconds reading the full device and in the process

consume memory to accommodate a second FTL tree (that shares no

memory with the active tree). Rate-limiting can help control impact

on foreground processes (both during activation and segment cleaning)

making these background tasks either fast or invisible, but not both.

ioSnap’s design choices represent just one of many approaches one

may adopt while designing snapshots for flash. Clearly, some issues

with our design like the activation and COW overheads need to be ad-

dressed. Most systems allow instantaneous activation by always main-

taining mappings to snapshots in the active metadata [6, 51, 103, 118],

but this approach might not be flash-friendly: any metadata that is not

absolutely necessary for the correctness of operation is an overhead and

increases cost per GB of flash. Activation overheads may be reduced

by precomputing some portions of the FTL and checkpointing on the

log. The segment cleaner may also assist in this process by using poli-

cies like hot/cold [107] to reduce epoch intermixing, thereby localizing

data read during activation. Finally, keeping snapshots on flash for

prolonged durations is not necessarily the best use of the SSD. Thus,

schemes to destage snapshots to archival disks are required. Check-

pointed (precomputed) metadata can hasten this process by allowing

the backup manager identify blocks belonging to a snapshot.

57

3.5 conclusions

ioSnap successfully brings together two copy-on-write based techniques,

log structuring and snapshotting, in a lightweight and flash-aware man-

ner. The two most important goals of ioSnap were performance and

compatibility. ioSnap imposes negligible overhead during regular op-

erations and fits right into the FTL driver. Moreover, any file system

running on top of the Fusion-io block device can create very low over-

head snapshots.

Given the log structured nature of the FTL, one could easily assume

adding snapshots must be trivial, which unfortunately is far from the

truth. Some of the lessons we learned in the process of designing and

implementing ioSnap are as follows.

• Host based FTLs can impose severe overheads on the system

memory. Thus, any approach that keeps this overhead mini-

mal is always better. This was particularly true with respect

to snapshots: keeping copy-on-write copies of all snapshot FTLs

in memory is not feasible.

• Activations in ioSnap for Fusion-io cards are expensive, requiring

a full rebuild of the FTL. Techniques to checkpoint or build the

FTL in the background are required to mitigate this problem.

• Any system built on flash must acknowledge the existence of

foreground and background tasks and understand its impact on

each other. Background tasks like segment cleaning and data

scrubbing can interfere with the foreground performance. Rate-

limiting background tasks is essential. Be it, host based or hard-

ware FTL, a flash based device always has foreground and back-

ground tasks that compete with each other for access to data and

metadata.

58

In ioSnap, we have explored a series of design choices that guar-

antee negligible impact to common case performance, while deferring

infrequent tasks. ioSnap represents an extreme design point that has

helped us understand the extent to which background tasks and snap-

shots interrelated. Unfortunately, in production systems, such large

activation times are not practical (be it during backup to a slower me-

dia or during restore). Thus, ioSnap reveals performance trade-offs one

must consider while designing snapshots for flash.

59

4 modern interfaces to flash

Hard-disks, tape drives and cdroms exposed a simple block interface

as they were either write-once or write-in-place media. Unfortunately,

flash is a significantly different medium. Flash requires a log and an

FTL to present a write-in-place interface. It is the presence of these

two new entities that enable the creation of new, flash-aware and flash-

enabled interfaces.

In this chapter, we present a case for rethinking the interface ex-

posed by flash. The naive block interface limits flash’s capabilities and

impacts application performance and can prove detrimental to perfor-

mance. Fortunately, the effort that went into presenting a traditional

block interface can be leveraged to provide native interfaces to flash.

We describe properties of the FTL and the log that form the starting

point for the new interfaces we build. The log represent a time-ordered

sequence of data written by the application, while the FTL helps vir-

tualize the address space. We leverage these two concepts to develop

new APIs to natively virtualize address space and time.

We present a small set of new APIs, namely, range clone, move

and merge that will help virtualize space and time. These APIs are

primarily used to manipulate the mappings in the FTL. Cloning a range

results in copying the logical address space to physical mappings to a

new destination address. Moving a range is equivalent to cloning the

range followed by trimming the source range. Finally, merging a set of

ranges can help merge a vector of logical ranges into one destination

range based on some policy.

With the help of these APIs, applications can express their inten-

tions or requirements better. To demonstrate the power of these APIs,

we modify existing file systems and applications, to use these APIs, to

help perform their tasks better on flash. For example, a file copy is

60

no longer a read of a file, followed by a set of writes. Instead, a file

copy corresponds to cloning the source address range to the destination

file’s address range. Similarly, MySQL can benefit from atomic writes

implemented using clones to avoid maintaining its own internal log.

The rest of the chapter is organized as follows. In Section 4.1, we

first make a case for the need for newer interface. Next, in Section 4.2,

we present the element of flash that act as the enablers for new inter-

faces. We go over the details of the high-level and low-level interfaces

in Section 4.3 and Section 4.4 respectively. We briefly describe the

implementation details in Section 4.5 and in Section 4.7, we present a

detailed case study of applications leveraging the new interfaces. We

finally conclude in Section 4.8.

4.1 the need for newer interfaces

Standard block devices have been providing the read/write interface

for a long time. Thus, any new device, irrespective of the medium,

attempts to first deliver a block interface to allow immediate adoption.

Flash is no exception to this norm having broken into the market first

as a solid state device (SSD). SSDs primarily behave as block devices,

with a similar form factor and requiring a standard SCSI or SATA port

to connect. Fusion-io cards and recently other providers have switched

to the PCIe bus to maximize the throughput the cards can deliver [40].

But predominantly, every NAND flash vendor still provides only the

standard block interface.

Though the block device approach was the right approach to smooth

the transition into the realm of non-volatile memory, it might not nec-

essarily be the best in the future for several reasons.

Limits expressiveness and increases complexity of software

A simple read-write interface provided by the block device limits

the extent to which the intent behind operations can be expressed. A

61

simple high level operation translates to a complex sequence of op-

erations. For example, a multi-block update becomes an update to

the journal followed by an in-place update. In addition, the simplistic

interface also imposes ordering requirements on operations involving

data and metadata which complicates application design and can re-

sult in bugs [75]. Finally, to ensure correctness of operations in the

event of crashes, applications (including file systems) are forced to em-

ploy complex recovery protocols and consistency checkers (fsck [17, 50],

Aries [84]) to avoid inconsistencies created primarily by the simplistic

nature of the block interface.

Limits performance

The presence of complex protocols above the block interface auto-

matically impacts performance. File system (in data journaling mode)

result in the data written to the journal as well as the final destination

after the journal commit. Thus, the requirement of two writes puts an

upper limit on performance. Another example related to the journal

is the MySQL double write buffer. MySQL uses a double write buffer

to write the committed data. Only upon completion, the committed

transaction is written to the respective tables.

Limits device lifetime

In some cases, like double write and (data) journaling scenarios, the

simple read-write interface can be attributed with reducing the flash

device’s lifetime. With all the performance advantages of flash comes

the limited write lifetime. A flash device is calibrated to handle only a

specific volume of writes in its lifetime (e.g., ioDrive2 can absorb x PB

of data). Thus, a filesystem or application working on top of flash must

be judicious with its data writes if it wants to extend the device’s life.

For example, by doubling the writes (due to a journal), the file system

halves the device lifetime [95].

62

4.1.1 How SSDs limits Flash’s capabilities

We now explore specific example of how the block device interface can

limit traditional NAND flash’s inherent capabilities.

Log is hidden

As described in Chapter 2, NAND flash implements a log to ab-

sorb writes to avoid performance and device endurance woes. Unfortu-

nately, the block interface hides the log underneath. A log, by design,

represents the sequence of writes that occurred on the device and thus,

inherently represents the time order of updates. By leveraging the log,

one can easily do away with the double writes to the journal and the

data by marking a set of writes as a transaction (i.e., if even one of the

writes in the transaction is missing, the transaction is discarded). In

Chapter 3, we demonstrated the usefulness of the log in creating snap-

shots. Thus, the log is a powerful abstraction that can be leveraged to

create many interesting applications.

Address space virtualization is hidden

NAND flash typically employs an FTL to virtualize the address

space in order to help hide the log underneath. The presence of the

virtualization layer is hidden by the block interface that only exposes a

large array of sequential addresses. Applications can take advantage of

the existence of a virtualization layer to implement a lot of interesting

features as we will present in the later sections.

Application interference

Applications or file systems may inadvertently interfere with the

flash device operations. For example, a file system may attempt to cre-

ate snapshots in a flash unaware manner and may generate unnecessary

writes to the log to update reference counts or copy snapshotted data.

Modern file systems like btrfs [6], WAFL [51] are based on copy-on-

write and thus, they build a log. Unfortunately a log on top of a log

is not always the smartest thing to do. The garbage collection opera-

63

tion occurs at two levels and when left uncoordinated, it can result in

suboptimal performance.

4.1.1.1 Impact on Application Performance

Applications (or file system), running oblivious of flash underneath the

block device, can suffer from suboptimal performance. We describe

some scenarios in this section.

File system block allocation policies

Most file system block allocation policies have been designed with

a disk in mind. They attempt to group blocks of a file together, files

in a directory to the same cylinder group etc [79]. Unfortunately, with

flash, all these optimizations are unnecessary on top of a log which only

appends data. Btrfs [6] attempts to be flash-aware by always allocating

blocks from the head of its log.

Logging for consistency

File systems, unaware of being run on top of flash and its capa-

bilities, write to a journal. As we observed before (in data journaling

mode), a journal creates a log on top of log and is both detrimental to

the performance and the life of the device. Similarly, MySQL suffers

from poor performance when using the double write buffer.

Key-Value stores on flash

Typical key-value stores implemented on top of SSDs, require com-

plex garbage collection policies to help cleanup their data [73]. This

is another good case of a log on top of a log, with the two levels of

garbage collection interfering with each other and may result in subop-

timal performance.

Thus, a simple block interface not only limits the capabilities of

flash, it also can be detrimental to application performance and device

life. In order to fully realize the flash’s potential, we need to explore

newer, native interfaces. The rest of the chapter is organized as follows.

64

First, we describe various axes of control enabled by flash, namely

address space, time, persistence and mutability. Next, we present a set

of high level APIs which are exposed by our system using the axes we

described. This is followed by a more detailed description of the low

level interface our system implement and an evaluation of the costs of

our system. Next, we present some interesting cases which demonstrate

the usefulness of our interfaces before concluding.

4.2 axes of control

As we observed in the previous section, building applications in a flash-

unaware manner is detrimental to the application or file system. Even

ignoring performance impact of a naive application, the effect on the

device wear is significant is some cases (for example, MySQL double

writes reduce device lifetime by half). Thus it becomes critical to ex-

plore newer interfaces that enable applications to interact natively with

flash. In this section, we explore some of the axes of control enabled by

flash around which newer interfaces can be designed. We also introduce

the high level interfaces we propose to expose to consumers of flash and

then describe the requirements of such an interface.

4.2.1 (Address) Space

The address space exposed by the block device is the range of address-

able blocks available on that device. Typical disk based devices have a

one-on-one mapping between the address space exposed to the OS and

the actually physical addresses used internally to access data. This

is enabled due to the fact that disks allow in-place overwrites and a

one-to-one mapping is always feasible. Unfortunately, as we observed

in Chapter 4.1, NAND flash has some interesting characteristics that

make in-place overwrites both slow and bad for device lifetime. Thus,

65

an FTL was introduced to handle the mapping between the logical or

user-visible address and physical or internal address.

The presence of the indirection layer (or FTL) opens up a whole

range of interesting opportunities. The simplest of these are a sparse,

seemingly infinite logical address space mapping to a much smaller

physical address space. Flash devices, when used as a block cache, can

expose the address space of the backing device, while having only a

fraction of the real device capacity [39, 110]. Other applications like a

key-value store [42] can also leverage a sparse address space to create

a low overhead store that randomizes keys over a large (and sparse)

address space. Similarly, DirectFS [38] also leverages the sparse address

space to keep block allocation simple. Thus the presence of the FTL

has enabled applications to perform their tasks more efficiently.

The presence of an FTL also enables some address space sharing

capabilities. The FTL maps a logical address to a physical address.

Thus, it also naturally allows more than one logical address to point to

the same physical address. Sharing data among entities thus becomes

simple. Moving data from one address range to another also becomes

simple: remap from the source range to the destination range. Thus,

the crux of the address sharing capability is the ability to modify the

logical address space without making any modifications in the physical

address space.

4.2.2 Time

Data stored in most storages devices is modified over time (intentionally

or unintentionally). With in-place overwrite devices like hard-disks, the

trail of changes is immediately lost and so is the file history. Systems

like ext3cow [96], Btrfs [6], Apple Time Machine [13] have been designed

to provide the notion of time on top of write-in-place file systems by

playing a lot of tricks within the file system metadata to make it safely

66

store versions of the file.

Flash on the other hand leverages a log and as we observed logs by

definition represents the set of all changes that resulted in the current

state of the system. Thus, by reading a log up to a certain point, we

can retrieve the state of the system at that point. The log of course has

to cleanup old data to recover space, but as we described in Chapter 3,

we can easily modify the driver to provide point-in-time snapshots of

the device.

Thus, the existence of the log creates a time sequence of operations

and enables creation of applications that can natively request the state

of the system at any point in time (in the past!).

4.2.3 Persistence and Immutability

As we described earlier, the state of the log is sum of the changes

represented on the log. Data found on the log, can thus be given other

attributes like crash persistence and mutability.

4.2.3.1 Persistence

Crash persistence determines whether a piece of data will be considered

valid after a crash. For example, a database transaction engine may be

writing out new data as part of a transaction update and may crash

before committing. The typical database recovery engine [84] would

replay the redo or undo logs and figure out the updates that must be

retained and the ones that need to be thrown out.

To make crash recovery simpler, the transaction engine can mark

uncommitted data as non-persistent. Thus, the underlying storage en-

gine can discard non-persistent data after a crash whereby simplifying

the recovery process of the database.

67

4.2.3.2 Immutability

Typical data management system (like file systems) provide the ability

to mark entities as immutable through access control lists. Immutabil-

ity is a useful attribute for systems that take periodic backups or share

vast amount of data or programs among different users of the system.

Unfortunately, these ACLs are only useful when they are enforced.

When an application bypasses the ACLs, the standard disk driver has

no knowledge of what data can and cannot be modified.

The presence of the indirection layer in the case of flash provides

an elegant solution. No application can bypass the FTL and thus eval-

uating immutability criterion becomes simple.

4.3 high level interfaces

Given the various axes of control enabled by NAND flash-based de-

vices, we now present some interfaces that help expose new function-

ality around these axes. We first illustrate an example, a sequence of

operations bringing in all the axes of control we listed earlier. With the

example as the backdrop, we describe a set of interfaces that will help

provide a comprehensive API to control these axes.

A Virtual Address Space (VAS) represents one or more contiguous

address ranges belonging to the overall address space exposed by the

device. Figure 4.1. illustrates an example showing the operations one

can perform with a VAS. We start out with a virtual address space, lets

call it VAS1. It is possible to talk about this address space as existing

in different points in time (frozen in time). For example. VAS1(at t1)

(VAS1 as it was at time t1) was frozen and hence available at any time

in the future, whereas VAS1(at t2) was not frozen and thus not available

at the current time. These versions are by definition immutable since

they are frozen in time 4.1(a).

68

Root

Data(t1)

Virtual
Space

Root

VAS1

Data(t2)

Root

VAS(current)

Data(current)Data

t1 t2 current

VAS1

Root

Data(1)

Before After

VAS(1)

Root

Data(1)

VAS(1) VAS(2)

Root

Data(1)

Before After

VAS(1)

Root

Data(1)

VAS(2)VAS(1)

(a) Frozen VAS

(b) Copying VAS (c) Moving VAS

Legend

Frozen

Trimmed

VAS1(t1)

Data(t1)

VAS1(t1)

Data(t1)

Figure 4.1: Virtual Address Space (VAS) Operations. The
figure above illustrates the various address space operations we support. We
represent the state of the device as a tree that stores the various mappings
between the virtual addresses and the physical addresses. Virtual Address
Space (VAS) are contiguous regions of the address space. VAS(t1) in (a)
represents the state of the VAS at time t1 and VAS(t1) is frozen. A frozen
VAS is available at any point in the future until it is explicitly deleted. (b)
and (c) depict two scenarios where data present in VAS1 can be copied or
reassigned to another VAS2.

69

Multiple virtual address spaces may also point to the same physical

address. For example, VAS1 and VAS2 share the same data after VAS1

was copied to VAS2 4.1(b).

Finally, it is also possible to reassign data to a different virtual

address. For example, VAS1 could move to VAS2 4.1(c).

Given this model, VAS(t1) can never be changed (since it is VAS1

at time t1, which will never come again). However, one could have

VAS1(t1) share physical blocks (copy) with a new VAS, VAS2 and

VAS2 is now mutable.

We now describe the interfaces that help provide the ability to con-

trol address space, time and mutability.

4.3.1 Virtualizing Time

The following interfaces help virtualize time:

4.3.1.1 Freeze VAS in Time

Freezing a VAS is equivalent to taking a point-in-time snapshot of the

content of the VAS. The frozen VAS is persistently available henceforth.

4.3.1.2 Activate Frozen VAS

Once a VAS has been frozen, it may be activated at any time in the

future. After a VAS is frozen, the source of the frozen VAS may be

modified and thus activation of a VAS frozen in time requires recon-

structing the state of the VAS at that point time.

4.3.2 Virtualizing Space

The following interfaces help virtualize space:

70

4.3.2.1 Mark VAS read-only / writable

A VAS can be made read-only or writable by invoking this API. With

the help of this API, we can mark regions of the logical address space

immutable (for example, a snapshot of a volume). A read-only VAS is

different from a frozen VAS: frozen VAS’ are available across time and

cannot be modified directly. A read-only VAS ensures the mapping and

the data both cannot be modified, unless explicitly made writable.

4.3.2.2 Copy Source VAS to Destination VAS

A contents (i.e. mappings) of a VAS can be copied to another VAS,

which results in both VAS sharing the physical blocks. Figure 4.1(b)

illustrates an example where VAS1 was copied to VAS2 and both ended

up pointing to the physical address PAS1. It is important to note that

the source VAS may be a VAS that was frozen in time, which makes it

similar to the Activate Frozen VAS API.

4.3.2.3 Move Source VAS to Destination VAS

Move remaps the physical address blocks pointed to by the source to

the destination VAS. Figure 4.1(c) illustrates an example.

4.3.2.4 Delete a VAS

Deleting a VAS provides the ability to discard the contents found in a

VAS. The VAS may also be one that was frozen in the time.

4.4 lower level interfaces

In this section, we describe the low level interfaces we design to expose

the interfaces we defined in Section 4.2.

71

4.4.1 Lower Level Interfaces

We expose three basic primitives that can be leveraged by a higher level

system to achieve complex address space and time virtualization.

The lower level interfaces are

4.4.1.1 Range Clone

A typical range clone operation would look like the following:

range_clone(source vector, destination vector)

The source vector is a set of address ranges that must be copied

to a destination range. Upon successful completion of the clone opera-

tion, the source and destination ranges both point to the same physical

addresses.

4.4.1.2 Range Move

The range move operation is used to move data in a one or more ad-

dress ranges to a destination address range. The mappings from the

source vector are moved to the destination vector. A typical range

move operation would look like the following:

range_move(source vector, destination vector)

4.4.1.3 Range Merge

Range merge is a primitive that can be used to merge the data found

in a vector of address ranges (based on some merge policy) and store

the result in the destination range. The primary use case for the range

merge operation is during version control. A frozen address range 4.1(a)

corresponding to say a file, may be cloned to two different locations and

operated upon by two different processes. Upon completion, the two

destination ranges may be merged into one destination range to reflect

72

the operations by both processes, based on some policy that can detect

and resolve conflicts.

A typical range merge operation looks like the following.

range_merge(source vector 1, source vector 2 ..., source

vector n, destination vector, merge policy)

The merge policy is also tasked with the job of figuring out if there

exists a conflict in the source vectors. A simple merge policy may look

for conflicts and fail when one is detected. Another merge policy may

blindly pick the first vector when a conflict is found.

4.4.1.4 Range Attribute

The last interface, range_attribute is used to specify the attributes of

ranges like persistence and immutability. The API for setting the range

attribute takes a address range vector and the attribute to set.

range_attribute(range vector, PERSISTENT |

NON PERSISTENT | IMMUTABLE | MUTABLE)

4.4.2 Implementing High-level Interfaces

The high level interfaces are meant to be a library on top of the low-

level interfaces and in this section, we illustrate the implementation of

the high-level interfaces using the low-level interfaces.

4.4.2.1 Time

We leverage the lower level interfaces to virtualize time as follows:

Freeze VAS in Time

Freezing a VAS requires cloning the given source address vector into

a reserved address range that is immutable by default. The immutable

address range is never reallocated unless explicitly released through a

73

Root

PHY(t1)

Root

VAS1

PHY(current)
Physical
Space

Virtual
Space

t1 current

Root

PHY(1)

Before After

VAS(1)

Root

PHY(1)

VAS(1) VAS(2)

Root

PHY(1)

Before After

VAS(1)

Root

PHY(1)

VAS(2)VAS(1)

(a) Frozen VAS

(b) Copying VAS (c) Moving VAS

Legend

Frozen Trimmed

ResVAS (VAS-t1)VAS1

Physical
Space

Virtual
Space

Root

PHY(t1)

VAS1 ResVAS (VAS-t1)

PHY(t1)

Figure 4.2: Implementation of VAS operations. The figure
above illustrates how the VAS operations describted in Section 4.2 can be
implemented using the lower level range operations. Fig a illustrates freezing
a VAS. Freezing a VAS involves cloning the range to a reserved range. In
our example, we clone the range VAS1(at t1) to ResVAS. Thus the reserved
range is available in the future storing the contents of VAS1 at time t1. Fig
b and Fig c illustrate the use of range clone and move to share and reassign
data across VAS.

74

Delete VAS call. The API returns a time that acts as the handle to

retrieve a frozen VAS. Figure 4.2(a) illustrates an example.

Algorithm 1: freeze_vas(source address)
Input: source address: address to freeze
Output: time: current logical time
range_clone (source address, reserved address);
store_map (source address, time, reserved address);
return time;

Algorithm 2: store_map(data)
Input: key(addr1, time) : key to store in hash

Input: value(addr2) : value corresponding to key
write_log (data);
hash ((addr1, time)) = addr2;
return;

Algorithm 3: retrieve_map(key)
Input: key(addr1, time) : key to search hash

Output: value(addr2) : value corresponding to key

return hash ((addr1, time));

Activate Frozen VAS

Activating a frozen VAS requires cloning the reserved address range

corresponding to the frozen VAS into a new address range specified by

the user.

Algorithm 4: activate_frozen_vas(source address, time, destina-
tion address)

Input: source address: address to freeze
Input: time: current logical time
Input: destination address: address to load frozen VAS
reserved address = retrieve_map (source address, time);
range_clone (reserved address, destination address);

75

4.4.2.2 Space

We leverage the lower level interfaces to perform address space virtu-

alization as follows:

Mark VAS read-only / writable

Modifying the mutability of a VAS is a simple operation. We have

to directly invoke the API to modify the range attribute as follows.

range_attribute(address range, IMMUTABLE | MUTA-

BLE)

Copy Source VAS to Destination VAS

Copying one VAS to another is implemented in one of two ways

depending on the nature of the source range.

Example 1. Live ranges

Live ranges are address ranges from a active volume. Copying such

ranges are simple, involving a call to the range clone API. An example

is illustrated in Figure 4.2(b).

range_clone(source address, destination address)

The contents of a frozen range can be modified by copying the range

to a new destination range using the following method:

activate_frozen_vas(source address, time, destination ad-

dress)

Move Source VAS to Destination VAS

A VAS can be physically moved to a new VAS by invoking the range

move API. An example is illustrated in Figure 4.2(c).

range_move(source address, destination address)

Delete a VAS

Deleting a VAS involves issuing a block trim on the address range [61].

76

4.5 implementation details

In this section, we present the implementation of the Clones subsys-

tem on top of the existing Fusion-io VSL driver. First, we describe

the need for an additional layer of indirection and how this simplifies

garbage collection and address space sharing. Next, we describe the

approach adopted to persist the addressing layer. As observed with

the FTL in Section 2.2.4, the second layer of indirection also needs a

crash recovery mechanism and we discuss some of the details. Finally,

we put together the Clones subsystem with the VSL driver to achieve

the Range operations listed in Section 4.4.1.

4.5.1 Need for Two-Level Indirection

In the presence of an FTL, it would seem obvious how range operations

could be implemented. The FTL is a b-tree and a range clone or a move

only requires copying or moving the logical to physical address mapping

to the new logical range.

Unfortunately, the garbage collector complicates matters. The garbage

collector can, asynchronously, move physical blocks around and as part

of the move completion, it updates the FTL to indicate the new lo-

cation. In the presence of clones, more than one logical address may

be pointing to the block that got moved. Thus, the garbage collec-

tor has to ensure it has updated all the forward pointers that may be

pointing to a physical block that was moved. The garbage collector,

which originally had predictable performance, now has to contend with

a lot of variability. Figure 4.3 illustrates an example. As the example

illustrates, in the presence of clones, the garbage collector may have to

manipulate multiple mappings resulting in performance variability.

A simple solution to avoid such variability is by introducing a second

layer of indirection. There are two approaches to use a second level of

77

Root

20000

10,2

Logical
Space

(a)

Physical
Space

Root

20000

10,2 400,2

20000

(b)

Root

40000

10,2 400,2

40000

(c)

Figure 4.3: Garbage collection with Clones. With the range
clone operation, we consistently land in a situation where two or more logical
addresses point to a physical address. An address range, reresented by the
tuple (x,y), corresponds to a set of addresses starting at address x, spanning
up to address x+y. In the figure above, logical address range (10,2) was
originally pointing to physical address 20000 (a). Upon cloning the range
(10,2) to (400,2), both ranges now point to the same physical address (b).
When the garbage collector attempts to move physical block 20000 to new
physical address 40000, it has to update two entries in the FTL (10,2) and
(400,2). This process introduces a lot of unpredictability to garbage collector
performance.

indirection and both solves our garbage collector problem.

The first approach uses a parallel layer of indirection. The primary

FTL stores all the indirections and the second layer is only introduced

in the presence of range operations. Figure 4.4 illustrates the example.

In the example, we clone a range starting at logical address 10 and

length 2 (represented as 10,2) at physical address 20000 to destination

address 400. Instead of inserting a new entry in the primary FTL map-

ping logical (400,2) to physical 20000, we introduce the second level.

We allocate a region of length 2 from the second level (say 100000,2).

78

Root

20000

10,2

Logical
Space

Virtual
Space

Physical
Space

Root

10,2 400,2

100000,2

20000

(a) (b)

Root

10,2 400,2

100000,2

20000

(c)

Root

10,2 400,2

100000,2

40000

(d)

Figure 4.4: Parallel Two Level Addressing. The figure above
illustrates the use of two level addressing to address the garbage collection
issues. We use two level addressing with the second level only used in the
presence of clones. An address range, reresented by the tuple (x,y), corre-
sponds to a set of addresses starting at address x, spanning up to address
x+y. As Fig(a) shows, in the absence of clones, the primary FTL stores the
mappings between Logical and Physical space. The moment we clones range
(10,2) to (400,2) we introduce the second level (b). The first step involves
allocating a new virtual range (100000,2) and install a new mapping between
(100000,2) and physical address 20000. The next step (c) involves updating
the logical address ranges (10,2) and (400,2) to point to virtual address range
(100000,2). With the virtual address indirection in place, moving physical
block 20000 to 40000 only involves updating the virtual or secondary map-
ping(Fig d).

79

Next, we insert the original mapping into the second level (i.e., logical

100000,2 to physical 20000). The final step involves updating the pri-

mary FTL to point to the secondary FTL (i.e., logical 10,2 and 400,2

maps to secondary 100000). The advantage of this approach during

garbage collection is that only one location would have to be updated

when physical block 20001 is moved. The primary level stays oblivious

of this specific block move. It is important to note that the second level

of addresses are virtual addresses that are internally managed by the

Clones subsystem to simplify garbage collection and never exposed to

the application.

The second approach of leveraging indirection layers the second level

below the primary FTL. This approach is conceptually similar to the

first approach, but with a significant difference. The two levels of in-

direction are used during every translation instead of just during clone

accesses. Figure 4.5 illustrates an example. The primary level (ie the

level on top) stores mappings between the logical address seen by the

application and an intermediate virtual address presented to the sec-

ondary FTL (ie the level on the bottom). The secondary level (or FTL)

stores the mappings between intermediate virtual addresses and phys-

ical addresses. The secondary level (or intermediate virtual address) is

an address space that is internally managed by the clone layer and never

exposed to the application. The same example as above would work the

following way. For example, lets say the range (10,2) maps to virtual

range (100000,2), which in turn maps to physical address 20000. When

the range (10,2) is cloned to (400,2), we only insert a new mapping in

the primary layer: (400,2) maps to (100000,2). Clearly, when physical

block are moved, only the secondary level (at the bottom) needs to

be updated. For example, when physical block 20001 is moved, only

intermediate virtual address mapping 100001 needs to be updated and

the primary level stays oblivious.

We chose the second approach for the Clones prototype for the fol-

80

Root

100000,2

10,2

Logical
Space

(a)

Virtual
Space

Root

10,2 400,2

(b) (c)

100000,2

Root

10,2 400,2

100000,2

Root

100000,2

20000

Virtual
Space

Physical
Space

Root

100000,2

20000

Root

100000,2

40000

Figure 4.5: Layered Two Level Addresses. The figure above
illustrates the use of two level addressing to address the garbage collection
issues. In particular, we use the two levels in a layered mode with both
layers involved in all lookups. An address range, reresented by the tuple
(x,y), corresponds to a set of addresses starting at address x, spanning up to
address x+y. As Fig(a) shows, even in the absence of clones, the primary
FTL stores the mappings between Logical and Virtual space (e.g. range 10,2
is mapped to virtual range 100000,2). The tree above shows the logical to
virtual mappings while the tree below shows the virtual to physical mappings.
Cloning a range only involves copying the virtual address mappings. Fig b
shows cloning of range (10,2) to (400,2). As before, moving physical block
20000 to 40000 only involves updating the virtual to physical mapping, thus
constraining the number of mappings to be updated.

81

lowing reasons. The second approach simplified the overall implemen-

tation by allowing us to stay outside the FTL for all practical purposes.

Our initial experience with implementing a second, parallel layer was

not very positive. We were constantly forced to deal with the internals

of a very complex FTL while trying to understand the new features

were were adding. Thus, we decided to chose layering and understand

the usefulness of the interfaces we were adding rather than retrofit new

features into an already complex FTL. The obvious tradeoff in this ap-

proach is the loss in performance. When an additional translation is

used in every lookup, the read and write performance is bound to drop

and we quantify the overheads in our evaluation.

4.5.2 Operations on a Two-Level System

In the presence of a second level of indirection, the operations performed

on the device take a modified path. We describe the IO path and the

implementation of the range operations in this section.

Regular IO

The regular IO (read and write) path has to deal with the presence

of the second level of indirection. The read and write request for logical

addresses are first translated to virtual addresses. A write may require

allocation of new virtual addresses. The request, now containing vir-

tual addresses are sent to the lower level FTL that handles the physical

operations. We employ two types of allocators to handle issuing and

freeing of virtual addresses: a simple free list and a extent-based buddy

allocator. The virtual address is now a resource that must be managed

by the clone system and needs a garbage collector (we have not imple-

mented garbage collection, but we describe the high level overview in

Section 6.1.1).

Range Operations on Two-Level System

Range operations exclusively work with the top-level (or primary)

82

FTL. A range clone operation copies the top level mappings (logical

to virtual) to the destination. Similarly, range moves require a remap

of logical to virtual mappings. To persist a range operation, we write

a note to the underlying medium stating the logical addresses and the

virtual addresses involved.

4.5.3 Persisting Second Level

The use of a three level addressing scheme (application visible logical

address, intermediate clone-only virtual address and physical NAND

address) simplifies the garbage collection problem, but introduces an-

other problem. The physical media only records the logical addresses

issued by the lower level i.e., in our case the (invisible) virtual ad-

dresses from the intermediate layer. Thus, without explicitly persisting

the mapping between the application level logical address and the in-

termediate virtual address, a crash-proof solution would be impossible.

The simplest solution to this problem is to persist all the layers of

address on the media in out-of-band (OOB) area. Unfortunately, the

block header is of limited size and it cannot accommodate more infor-

mation. So the next obvious thing to do is to persist the mappings by

writing a note with the block indicating the logical to virtual mappings

(the block already has the virtual address). Unfortunately, persisting

two blocks for each single block write is a performance hog (both space

and time). Instead, we chose to group commit these address translation

notes. A write operation is not complete without its translation note

persisted. Thus, writes are suspended until their corresponding note

is persisted. We evaluate the impact of group commits on the latency

observed by the application and the overall impact on performance. In

the absence of a note, all the virtual addresses tracked by the missing

note are considered invalid and discarded.

83

4.6 evaluation of clones

The goal of our evaluation is to demonstrate the practical feasibility of

our system by measuring the overheads imposed by the clone layer on

regular operations as well as the cost of performing clone operations.

The clones subsystem spans over 2400 lines of new code and close to

10000 lines of unmodified FTL code, which we share with the native

FTL driver. All the tests were performed on a 16 core Intel Xeon 2.4

GHz processor with 48 GB of RAM, running Linux 3.4.12 with a 2.4

TB Fusion-io IODrive card.

4.6.1 Regular Operations

In the presence of the clones subsystem, every block request incurs over-

heads imposed by the remapping we have introduced. In this section,

we evaluate the pure cost of the clones layer i.e., overheads incurred on

regular block requests in the absence of clones.

Range Operations / sec
Without notes 388 K
With notes & 207 K
group commit

Table 4.1: Performance of Range Operations. The table above
illustrates the performance of range clones with group commits. Group com-
mits of range operations accumulate notes and persist the note only when
they exceed a single sector (4KB). Thus, each range note can now accom-
modate upto 170 range move operations (size of one entry is 24 bytes). We
perform 1 million 1 sector (4k) range moves. In the absense of notes (i.e.,
non-persistent range operations), we hit our peak performance of 388K range
ops/sec, while with group coummits we hit a peak performance of 207K range
ops/sec.

We performed a large number of sequential and random 4KB reads

and writes and compared the clone device performance with the native

84

Seq. Write Seq. Read Rand. Write Rand. Read
(usec) (usec) (usec) (usecs)

Raw 44.3 112.34 44.4 114.78
Device

Clone Device 45.5 115.55 45.65 117.09
(no active clones)

Table 4.2: Performance of Regular Operations. The table above
present the results of a series of micro-benchmarks to understand the impact
of the clones shim-driver on regular read and write operations. We performed
1 millions sequential (or random) read (or write) operations of 4KB each on
the clone block devic (using direct io). No clones or moves were issued during
this test. As we can observe, the overheads imposed by the clone block device
at most 2-3%. Being a prototype implementation, we have kept the clones
layer independent of the underlying device driver: when we merge these two
layers, this overhead could be reduced further.

Seq. Write Rand. Write
(usec) (usec)

Clone Device 45.5 45.65
(no active clones)

Clone Device 49.25 50.36
(with clones)

Table 4.3: Performance of Regular Operations with Clones.
The table above illustrates the cost of breaking clones. We performed 1 mil-
lions sequential writes of 4KB each on the clone block device (using direct
io). Next we performed a range clone over the 1 million sectors and then
started writing to the destination. The overheads seen by the write opera-
tions are of the order of atmost 10%. Though a 10% overhead is seemingly
large, it is a one time cost incurred the first time a clone is broken.

block device. In all these test, we have formatted the drives to work

with 4KB block sizes and we performed a large number of reads and

writes. Table 4.2 shows the performance numbers we observed in these

tests. As we can observe, the performance impact of the clone layer

is ≈ 2-3%, which is understandable since we implemented the clone

system as a separate layer in our prototype.

85

4.6.2 Range Operations

Range operations involve updating the upper-level translation layer and

also writing a note to the log to persist the change. In this section, we

evaluate the cost of performing these operations.

The first workload we run simply issues a range clone operation of a

single randomly picked sector and forces a note to be flushed to the log

to persist the operation. The size of each note is 4KB irrespective of the

number of sectors moved. The time spent performing each operation

is around 53 µsecs on an average. We can attribute 50µsecs to the

cost of writing a note and around 3 µsecs are spent performing the

manipulation on the mapping layer. So, the worst case performance

comes to about 19K range operations per second. Another thing to

note here is the cost of performing a range clone is equivalent to the

cost of a range move as both require the same number of passes through

the mapping layer.

The next workload attempts to understand the best case perfor-

mance. The reason behind the poor performance was clearly the need

to write a note for each range operation. Instead we adopt a group com-

mit policy: accumulate range operations and write a note only when

we run out space in a note(4KB). Thus, each range note can now ac-

commodate up to 170 range operations (size of one entry is 24 bytes).

Table 4.1 presents the results of our experiments. We perform 1 million

1 sector (4k) range moves. In the absence of notes (i.e., non-persistent

range operations), we hit a peak performance of 388K range ops/sec,

while with group commits we hit a peak performance of 207K range

ops/sec. Group commits can help improve performance of the range

operations by at least 10x.

86

4.6.3 Cost of Breaking Clones

Range clones are implemented with the help of mappings that translate

two different logical addresses to the same virtual addresses. Thus,

when a write is issued to one of these ranges, then we are required to

allocate a new virtual address to remap the write. Table 4.3 illustrates

the overheads involved during clone breakage. We performed 1 million

sequential write operations of 4KB each on the clone block device (using

direct io). Next we performed a range clone over the 1 million sectors

and then started writing to the destination. The overheads seen by the

writes are of the order of at most 10%. We can attribute the overhead

primarily to the additional time spent inserting new entries into the

top-level mapping layer. Though a 10% overhead is seemingly large, it

is a one time cost incurred the first time a clone is broken.

4.6.4 Summary of Results

The new interfaces exposed by the clones subsystem imposes minimal

overhead on regular operations and the one-time overhead when the

clone is broken can be tolerated. The range operations provide suffi-

ciently high throughput to make these realistic. Thus, the current state

of the clones infrastructure makes it practical to explore realistic use

cases.

4.7 case studies with clones

Clones are a powerful primitive that allows a large variety of applica-

tions to accomplish their tasks in a simpler and often more efficient

manner. In this section, we go into some of the interesting use cases of

clones and illustrate how applications can benefit from using clones.

87

4.7.1 Direct File System (DirectFS)

To show the power of clones, we take DirectFS and implement several

features with minimal code changes and implementation effort [38, 62].

DirectFS is a lightweight file system designed in a flash-aware man-

ner to leverage the features of the Fusion-io FTL to achieve very high

performance.

DirectFS leverages the Fusion-io FTL in a couple of interesting ways

to deliver its performance. The FTL has the capability to expose a

sparse address space that is significantly (several order of magnitude)

larger than the space available in the underlying device. By exposing

a very large address space, file allocations don’t have to follow the

complex mechanisms designed for the hard disk (like direct, indirect

blocks). Instead, DirectFS adopts an extent-based scheme, allocating

blocks from a series of allocation groups (increase in size) as and when

needed by the file. Since all logical addresses go through one level of

translation, it nullifies the need for block allocation to understand the

underlying device geometry. The use of simple extent based allocation

makes DirectFS very lean and fast.

Secondly, DirectFS also leverages the Atomic Writes [92] feature

present in the Fusion-io FTL. With the help of Atomic Writes, the

Fusion-io FTL can guarantee the persistence of a vector of writes. This

simplifies DirectFS by doing away with journaling (for consistency).

Every transaction persisted by DirectFS gets written as an Atomic

Write, thereby either persisting the full transaction or none of the in-

dividual components.

4.7.1.1 File-level Snapshots

File-level snapshots are a useful feature in modern file systems and only

a handful of file systems support it [6, 119]. File-level snapshots enables

88

applications to checkpoint individual file state (i.e., contents) that they

care about over different periods of time. Unfortunately, not all file

system support such a feature. For example, ext4 [78] and XFS [123]

do not support file-level snapshots. The reason being there is a signifi-

cant amount of data structure restructuring and implementation effort

required to support per-file snapshots within the file system.

Clones enable file systems to support file-level snapshots with no

changes to their internal data structures and also requires minimal

implementation effort. Snashotting individual files becomes trivial with

clones, as one has to only clone the block mappings of the source file and

save it as part of another (hidden) file [51]. We modified DirectFS to

support file-level snapshots. We added a simple file snapshot ioctl. The

snapshot ioctl on invocation performs the following operations. First,

it flushes the dirty pages of the source file that needs to be snapshotted.

Second, it creates a new (snapshot) file within the same directory as the

source file. Finally, it clones the address space mappings of the source

file to newly created snapshot file using the range clone API described

above.

We implemented file-level snapshots in DirectFS by implementing a

simple ioctl within the file system. The overall implementation requires

20 lines of code that essentially invokes the underlying range clone

operation. A file snapshot corresponds to a single 4KB range clone

note on the underlying media irrespective of the size of the original file.

4.7.1.2 Copying Files Via Clones

The copy operation in glibc is inefficient especially when on top of

a copy-on-write type of medium like flash. The cp coreutil manually

copies all the blocks present in the source file to the destination file.

We modified the cp program to utilize the clones features available in

DirectFS. Copying a file is similar to creating a snapshot (i.e., a copy-

89

on-write clone of the original file). We modified the cp program to

invoke the DirectFS file snapshot ioctl. The destination file is created

if not found and the subsequent call to the range clone API copies the

address mappings from the source file to the destination file.

4.7.1.3 DirectFS Address Space Fragmentation

File1

(10, 4)

Extent1

10 11 12 13

P1 P2 P3 P4

File1

(10, 4)

Extent1

10 11 12 13

P1 P2 P3 P4

(1000, 32)

Extent2

1000 ... 1031

P5

(a) (b) (c)

File1

(1000, 32)

Extent2

P1 P2 P3 P4

1000 ... 1031...1004

P5

Figure 4.6: Address Space Fragmentation in DirectFS. The
figure above illustrates address space fragmentation in DirectFS when a file
grows larger. Initially, File1 is allocated 4 blocks (address 10 to 13)(Fig
a). When File1 grows larger, a new extent of a larger size (32 blocks) from
address 1000 to 1031. Now, DirectFS has to store two extents to store the
mappings from address 10 to 13 and 1000 to 1031 (b). With the help of a
range move, we can move the original range 10-13 to 1000-1003 and store
the new data in address 1004 (c).

DirectFS relies on keeping file system metadata minimal to ensure

high performance. Unfortunately, as file size grows, DirectFS also runs

into an address space fragmentation issue as seen by other file systems.

When a file exceeds its allocated size, a new address range from a larger

extent group is appended to the file and new content are written to this

90

extent. Thus, DirectFS has to keep a list of all extents that has been

allocated to each file.

To avoid maintaining an extent list and always keep the file corre-

spond to a single extent, we leverage range moves. The moment a file

is allocated a larger range, we can issue a range move from the smaller

range to the larger range. Figure 4.6 illustrates an example. We can

observe that when file File1 grows beyond its allocated size (4 blocks),

we allocate a larger extent range (32 blocks) and next issue a range

move from the original range (10 to 13) to the new destination range

(1000 to 1031).

4.7.1.4 Deduplication

Deduplication is the methodology of getting rid of duplicate data present

in the data and making the files or volumes point to a single copy of that

specific unit of data. We illustrated how file copies and snapshots can

be accomplished with through clones in the previous sections. Dedu-

plication is logically the reverse of those two approaches: instead of the

user explicitly stating the need to copy or snapshot a file, we have to

detect the existence of copies and internally mark them as clones of

each other.

In order to illustrate the possibility of deduplication through clones,

we built a simple user-level prototype that detects the existence of file-

level clones i.e., are two files copies of each other. We periodically scan

the DirectFS file system and create a dictionary of "md5" hashes we

have observed during the course of a scan and the file’s last modifica-

tion time. When we detect a copy i.e., hashes match, then we issue

a DEDUP file ioctl to the DirectFS file system. Before marking the

files as clones of each other, the file system has to ensure neither the

source or destination is in the process of being modified by other pro-

cesses. We do this by checking for existence of a dirty inode and check

91

if the modification time observed at the user-level has been modified

now. If both inodes clear these requirements, we lock them and issue

a clone ioctl to the lower layers for the ranges corresponding to these

two inodes.

4.7.1.5 Checkpointed mmap

"mmap" is a commonly used construct that allows contents of files to

be accessed as pages of memory through standard load and store oper-

ations instead of the read/write interface provided by the file system.

To go with the mmap operation, file systems also provide the msync

system call. msync allows the file system to flush all the dirty pages to

the persistent store. A combination of mmap and msync can be used

to achieve an effect similar to a set of read/write operations.

One of the primary concerns while using mmap is the inability to

checkpoint the state of the file at any given time. Operations are per-

formed in memory and an msync is issued when the state has to be

saved. But, the state of file after an msync represents the current in-

memory state and the last saved state is lost. Moreover, if the file

system were to crash during the course of an msync, the file is left in

an inconsistent state.

To avoid these issues, we propose a simple solution within DirectFS.

We add the ability to checkpoint the state of an mmap-ed file during

every call to msync. Checkpointing a file is equivalent to creating a

snapshot of the file (as described above). The moment a file is mmap-

ed, the file is checkpointed (or cloned). This clone saves the state of the

file before any changes are done to it. Next, when an msync is issued,

we create another clone after the dirty pages associated with the file

are flushed to the persistent store. Figure 4.7 illustrates an example of

the sequence of operations during an mmap and msync.

The prototype is implemented as a standalone library that runs on

92

File1

(10, 4)

Extent1

10 11 12 13

P1 P2 P3 P4

(

File1

(10, 4)

Extent1

10 11 12 13

P1 P2 P3 P4

(b) mmap

File1.1

(40, 4)

Extent1

40 41 42 43

File1

(10, 4)

Extent1

10 11 12 13

(c) msync

P1 P2 P5 P

File1.2

(

Extent1

P1 P2 P3 P4

P1 P2 P5 P

File1.1

(40, 4)

Extent1

40 41 42 43

P1 P2 P3 P4

Figure 4.7: Checkpointed mmap in DirectFS. The figure above
illustrates the use of checkpointed mmap. The moment we mmap File1, the
first clone of the file File1.1 is created by invoking the range clone method.
The cloned file File1.1 is identical to the file before it was mmap-ed (Fig b).
After the file is modified, we issue an msync that results in the creation of a
cloned file File1.2 (Fig c).

93

top of DirectFS. The library is around X lines of code and modifications

to DirectFS is around 5 lines of code. We modified msync to clone file

ranges.

4.7.2 Atomic Writes through Clones in MySQL

Atomic writes is a special primitive exposed by the standard Fusion-io

FTL. With the help of atomic writes, the application can write to a

set of disjoint addresses and still ensure an all or nothing semantic i.e.,

either all the writes were successful or none of them were. Fusion-io

FTL achieves atomic writes with the help of a log structured device

underneath [37, 92]. Unfortunately, every other persistent store can

not provide the same type of interface as the log can. Clones can help

alleviate this condition.

With the help of range moves, we can redirect the vector of writes

to a separate scratch location and once all the writes are successfully

completed, we can issue an atomic vectored range-move operation to

clone all the ranges from the scratch space to their respective locations.

Figure 4.8 shows an example of such an atomic write through range

moves.

MySQL uses a double write buffer to ensure atomicity of transac-

tions. Upon a transaction commit, MySQL writes all the dirty pages

associated with the transaction to a double write buffer. A double write

buffer is a circular buffer used to take in writes from committed trans-

actions. Once all the writes to the double write buffer are complete,

MySQL starts to re-issue the writes to the actual physical locations

i.e., the double write buffer acts as a journal to ensure consistency and

atomicity of transactions. The presence of the double write buffer re-

duces the throughput available by requiring two writes instead of one.

In the case of a flash based backing medium, it also reduces the device

lifetime by half since it is doubling the writes to the device. With the

94

10 11 12 13

%1 %2 %3 %4

(a) At Start

Root

10 11 12 13

P1 P2 P3 P4

(b) write(10)

Root

1010

P5

10 11 12 13

P1 P2 P3 P4

(b) write(12)

Root

1010

P5

1011

P6

10 11 12 13

P1 P2 P3 P4

(d) commit

changes

Root

P5 P6

10 11 12 13

P1 P2 P3 P4

(e) rollback changes

Root

1010

P5

1011

P6

1010 1011

Legend

Trimmed

Figure 4.8: Atomic Writes through Range Moves. The figure
illustrates the use of range clones and moves to accomplish atomic writes.
Fig a shows the state of four blocks(logical addresses 10-13) at the start of
an atomic write. Block 10 is overwritten, but we redirect that write to a new
location 1010 as shows in Fig b. Similarly, block 12 is overwritten to new
location 1011 (Fig c). In the event of a commit (Fig d), we can issue a range
move from location 1010 and 1011 to locations 10 and 12 respectively and
persist the new data. In case of a rollback, all we need to do is discard data
found at locations 1010 and 1011 (Fig e)

95

help of atomic writes through clones, we can get rid of the double write

buffer in MySQL and still work on top of non-log structured medium.

The implementation effort involved around 200 lines of new code

and around 10 lines of modifications in the MySQL 5.5.29 source code.

4.7.3 Snapshots through Clones

Creation of a snapshot is relatively simple and similar to the creation

of a file-level snapshot in DFS. We identify the range of blocks that

represent a volume or partition and clone the range into a new virtual

range (this feature has not yet been fully implemented). We provide

a description of the technique to help compare it with the approach

adopted by ioSnap.

Creating a snapshot of a volume through clones is significantly dif-

ferent from ioSnap described in Chapter 3. The two major differences

are during accessing snapshots and during writes to snapshotted data.

Explicit activation is not required since the logical to virtual mappings

are always available in the top level translation layer. But, this comes

at a price: creating a snapshot in ioSnap was trivial (increment the

epoch and write a note). With clones, we have to copy the full range of

mappings from the source volume to the destination volume and this

operation has to occur atomically. Such a large copy of mappings can

be very slow and impede on-going operations. We can optimize this

by bringing in a lazy copy scheme and we have discussed some of the

details in Section 6.2.2.

The second difference arises during regular write operations. When

two logical ranges point to the same virtual range (after a clone trig-

gered by a snapshot), a write operation on one triggers splitting of the

clone. Splitting a clone involves allocating a new virtual address and

updating the logical to virtual mapping. Though activation are instan-

taneous, write performance is affected by the presence of clones. On

96

the other hand, ioSnap had trouble with activation stemming from the

fact that we never persisted snapshot metadata. Finally, the clones

approach also does not interfere with the underlying segment cleaner

unlike ioSnap.

Thus, snapshotting through clones offers a different design point

when compared to ioSnap with its own advantages and disadvantages.

The choice of the system to employ would depend on the workload and

how often one expects to use the backup.

4.8 conclusions

Through clones, we have put forth the need for newer interfaces when

accessing flash devices. Flash is not just another block device. It is

different and potentially more powerful. Of course, flash devices can

deliver higher throughput, lower latencies with the traditional block

interface. But the real power of flash lies with the two key concepts

that make flash storage feasible: the flash translation layer (FTL) and

the log structured storage device.

Any new interface for flash must be able to leverage the characteris-

tic of flash: the FTL, which translates logical addresses to physical ad-

dresses, virtualizes address space, and the log, by definition, virtualizes

time. The new interface proposed (in the form of the clones subsystem)

exposes flash’ ability to virtualize as a fundamental and native opera-

tion. We presented three low level interfaces namely, range clone, move

and merge. We also demonstrated the usefulness of these interfaces in

a large variety of usecases ranging from file snapshotting, file copies,

deduplication and atomic writes. Table 4.4 presents a summary of the

use-cases.

The new interfaces are not restricted to Fusion-io’s devices, but are

applicable to any FTL implementing a log-structured storage system.

These interfaces represent a small step towards an eventual restructure

97

Use Case API Leveraged Type of Operation

DirectFS

File Snapshots
Range Clone

Clone source file
and Copy to destination file

Address Space
Range Move

Move fragments to
fragmentation contiguous range

File Dedup Range Clone
Clone files
and trim

MySQL Atomic Writes Range Move
Write trasaction to
and move to dest.

Volume
Snapshots Range Clone

Clone the volume
Backup(*) to a dest. volume

Table 4.4: Summary of Clones use-cases. The table above presents
a summmary of the various use cases for the new interfaces. The table
describes the application, the specific use case, the API used and brief de-
scription of the operation involved. (*) Snapshots needs further development for

better performance.

of interactions with non-volatile memory. More importanty, they allow

applications to step beyond the limitations of the block interface and

express their intentions in a flash-aware manner.

98

5 related work

In this thesis, we have covered two major topics in data management

over NAND flash. Snapshots are necessary for enterprises who want

to retain data for both business and legal reasons, and flash awareness

is vital. Secondly, with falling costs, flash is becoming more prevalent

in enterprises and application writers are bottlenecked by the lack of

flexibility in the standard read/write interface. Flash enables newer

ways of interacting with data and we have explored interfaces that

would allow these interactions.

We now look at other approaches people have adopted to solve

these problems. The rest of the chapter is organized as follow. First,

we describe other approaches to creating snapshots in storage sys-

tems(Section 5.1). Next, we explore other systems that virtualize ad-

dress space and time(Section 5.2).

5.1 snapshots

Snapshots are point-in-time representations of the state of a storage

device. Typical storage systems employ snapshots to enable efficient

backups and more recently to create audit trails for regulatory com-

pliance [96]. Many snapshot systems have been designed in the past

with varied design requirements: some systems implement snapshots

in the file system while others implement at the block device layer.

Some systems have focused on the efficiency and security aspects of

snapshots, while others have focused on data retention and snapshot

access capabilities. In this section we briefly overview existing snap-

shot systems and their design choices. Table 5.1 is a more extensive

(though not exhaustive) list of snapshotting systems and their major

design choices.

99

System Type Metadata Consi−

Efficiency tency

WAFL[51] COW FS - Yes
btrfs[6] COW FS - Yes
ext3cow[96] COW FS - Yes
PersiFS[99] COW FS - Yes
Elephant[109] COW FS Journaled Yes
Fossil[103] COW FS - Yes
Spiralog[132] Log FS Log Yes
NILFS[67] Log FS Log Yes
VDisk[136] BC on VM - No
Peabody[87] BC on VD - Yes
Virtual Disks [98] BC on VD - Yes
BVSSD[53] BC - No
LTFTL[118] BC - No
SSS[116] Object COW Journaled[113] Yes
ZeroSnap[102] Flash Array - Yes
TRAP Array[140] RAID COW XOR No

Table 5.1: Versioning Storage Systems. The table presents a sum-
mary of several versioning systems comparing some of the relevant charac-
teristics including the type (copy-on-write, log structured, file system based
or block layer), metadata versioning efficiency and snapshot consistency.
(BC:Block COW, VD:Virtual Disk TSD:Typesafe disk)

5.1.1 Block Level or File System?

From the implementation perspective, snapshots may be implemented

at the file system or at the block layer. Both systems have their ad-

vantages. Block layer implementations let the snapshot capability stay

independent of the file system above, thus making deployment simpler,

generic, and hassle free [136]. The major drawbacks of block layer snap-

shotting include no guarantees on the consistency of the snapshot, lack

of metadata storage efficiency, and the need for other tools outside the

file system to access the snapshots [87]. ioSnap is also a block level

snapshotting solution and it can also potentially suffer from applica-

tion data consistency issues. The storage efficiency problem is implic-

100

itly solved: the log is always append-only and accessing the snapshot

is made simple by exposing it as a block device.

File system support for snapshots can overcome most of the is-

sues with block level systems including consistent snapshots and effi-

cient metadata storage. Systems like PureStorage [102] , Self Securing

Storage [116] and NetApp filers [51] are stand-alone storage boxes and

may implement a proprietary file system to provide snapshots. File

system level snapshotting can give rise to questions on the correct-

ness, maintenance, and fault tolerance of these systems. For example,

when namespace tunnels [51] are required for accessing older data, an

unstable active file system could make snapshots inaccessible. Some

block level systems also face issues with system upgrades (for exam-

ple, Peabody [87]) but others have used user level tools to interpret

snapshotted data, thus avoiding the dependency on the file system (for

example, VDisk [136]).

5.1.2 Metadata: Efficiency and Consistency

Any snapshotting system has to not only keep versions of data, it must

also version the metadata, without which accessing and making sense of

versioned data would be impossible. Metadata can be easily interpreted

and thus changes can be easily compressed and stored efficiently. For

example, while versioning a file, the inode also changes: modification

or access times are updated, size adjusted, etc. Versioning the inode

does not require a copy of the old inode, but only requires the name

and value of the field that changed [113]. With the knowledge of the

change, the inode modifications do not necessarily require a copy of the

old inode, but only require the value of the field that changed [113].

Other systems like BVSSD [53] and LTFTL [118] focus on smaller SSDs

(up to 100s of GB), and hence are not really concerned with metadata

efficiency and end up persisting FTLs for snapshots. Log structured file

101

systems that support snapshotting like NILFS [67] also end up main-

taining a lot of metadata to allow snapshot access. ioSnap minimizes

its metadata overheads by only keeping a copy of the modified validity

bitmaps at the granularity or 4KB memory pages. The only time when

ioSnap suffers excessive memory overheads are during activation: the

secondary tree constructed does not share any nodes with the primary

(or active) tree, even though portion of the tree may represent the same

data on the log.

Maintaining metadata consistency across snapshots is important to

keep older data accessible at all times. The layer where snapshot-

ting is performed, namely file system or block layer, determines how

consistency is handled. File system snapshots can implicitly maintain

consistency by creating new snapshots upon completion of all related

operations, while block layer snapshots cannot understand relationships

between blocks and thus consistency is not guaranteed. For example,

while snapshotting, a file, the inode, the bitmaps, and the indirect

blocks may be required for a consistent image. With writes to these

blocks not always in order, a block level solution may have snapshotted

some of the structures before a crash. Without any idea about the

relationships between these structures, a clean recovery is impossible.

Systems like Peabody [87] depend on the file system’s crash recovery

mechanisms to ensure consistency. ioSnap relies on the system trigger-

ing the snapshot to help ensure consistency. ioSnap does not try to

provide any guarantees of consistency of application data, it is the job

of the application to determine when data is consistent for a snapshot

to be taken. Some file systems may provide utilities that assists snap-

shot creation like the xfs_freeze [139] by blocking all new operations

to the file system.

102

5.1.3 Snapshot Access and Cleanup

In addition to creating and maintaining snapshots, the snapshots must

be made available to users or administrators for recovery or backup.

Moreover, users may want to delete older snapshots, perhaps to save

space. Interfaces include namespace tunnels (for example, an invisible

subdirectory to store snapshots, appending tags or timestamps to file

names as used in WAFL [51], Fossil [103] or Ext3cow [96]), user level

programs to access snapshots(for example, VDisk [136]). ioSnap also

indirectly provides a namespace tunnel by exposing a new block device

when a snapshot is activated. The file system on this block device

can be mounted and used like any other block device. We believe

this approach is cleaner and safer: keeping the snapshot and active

data on two different block devices can prevent accidental overwrites

or inconsistencies.

Older snapshots (including ones outside the detection window and

ones that have been backed up) may be deleted to recover space. The

deletion of older snapshots introduces a substantial security vulnerabil-

ity, where a malicious user may intentionally delete snapshots to cover

her tracks [116]. Thanks to the build-in segment cleaner, ioSnap’s dele-

tion routines are very simple. The security aspects of snapshot deletion

are outside the scope of this work, though we feel that some application

involvement is necessary to solve this problem.

5.2 clones

Clones are a new way of looking at things that can be done at the

block layer. Other research papers and commercial software have also

looked at techniques to virtualize both time and space. In this section,

we present a summary of the approaches others have adopted to tackle

similar problems.

103

5.2.1 Virtualizing Space and Time

Systems have approached virtualizing the user visible address space and

logical time in a multitude of ways. Snapshots represent a natural way

to virtualize the address space over time. Since the previous section

dealt with snapshots, we will focus on other approaches.

5.2.1.1 Operating Systems

Operating systems (in particular file systems) have been leveraging

the ability to share resources [22] through virtualization [57, 112, 129].

In this section, we briefly go over some of the techniques observed in

operating systems that allow resource virtualization.

Virtualization software (e.g., VMWare ESX [131], VirtualBox [91],

Disco [24]) have been built for the primary reason of resource sharing.

These systems eliminate duplicates (through indirection and copy-on-

write) to reduce memory and employ copy-on-write snapshots to check-

point system state [8].

Simple file system techniques like soft-links and hard-links have been

around for a very long time and help virtualize the file contents by

giving them two different names [7]. The links represent the same

piece of data and modifying one file would automatically modify the

other.

More advanced address space sharing techniques are employed in

copy-on-write [36, 97] file systems like ZFS [21] and Btrfs [6, 135]. The

copy-on-write nature of these file systems allow easy sharing of blocks

between various entities (files, volumes etc). ZFS clones [5] are volume

level copy-on-write, writable snapshots. Semantics of ZFS clone cre-

ation requires creation of a volume snapshot, which is then cloned to

produce a new writable volume with the same contents as the snap-

shot. Btrfs provides ioctls to clone a range of addresses. Btrfs, like

104

other copy-on-write file systems, employs reference counting [105] to

keep track of the number of pointers to each block. When a write is

issued to a block that is shared between clones, a copy is created, refer-

ence counts are adjusted and writes are redirected to the copy. These

file system level clones come closest to the clones we build.

File systems like MapFS [137] have considered exposing the address

space mappings in a more explicit manner. MapFS provides three new

interfaces that exposes the file to blocks mapping, allows remapping

blocks to other files and deleting mappings from a file. A combination

of these interfaces can help optimize many operations include cp, dedu-

plication [59, 143], in-place deletion of file ranges etc. MapFS provides

a subset of functionality the clones system provides and is file system

specific by design. The clones system is file system independent and

can provide the same functionality across file systems (provided they

are all mounted on a partition of the clone device).

5.2.1.1.1 Address space fragmentation in COW systems Any

system that relies on indirection to provide functionality and perfor-

mance must eventually deal with fragmentation of data on the physi-

cal media. A copy-on-write file system like Btrfs [6], WAFL [51] and

ZFS [21] rely heavily on the indirection introduced by the copy-on-write

mappings between file system namespace and the physical blocks to

implement consistency, snapshots and clones. A side effect of copy-on-

write is the fragmentation of the address space when blocks are copied

to new locations. To ensure the same level of performance (sequen-

tiality of reads) and reduce overheads(contiguous data requires smaller

metadata), these file systems require defragmentation [106]. For the

same reasons, the indirection layer we built within the clone system

also requires defragmentation and some thoughts on it are discussed in

Chapter 6.

105

5.2.1.2 Transactional Systems

Databases have traditionally provided ACID guarantees [104] with the

help of techniques like locking [35, 44](I solation), write ahead log-

ging [84](Atomicity and Durability) and rollback [84](Consistency).

Modern systems have adopted shadow paging [18, 74, 141] as a re-

placement for WAL to avoid complex recovery protocols. Multi-version

concurrency control is one such approach that is gaining traction in

the database community [16, 25, 65, 69], both traditional and main-

memory. Traditional single version locking only works for short trans-

actions with no hot-spots. Multi-version concurrency control requires

competing threads of execution to work on their own copy of data (usu-

ally versioned with the help of a sequence number [1]. The commit of

a transaction requires determining the final state of the data based

on the various transactions that have also been working on the shared

data. The details of schemes can be found at [69]. The transaction

begin and commit operations, which copy and finally merge versions,

are equivalent to the clone and merge primitives we introduced. In the

future, with the help of such primitives in memory and on persistent

storage, we should be able to simplify concurrency control in databases.

Systems like Stasis [111] have created a transactional storage engine

that attempts to provide a generic library to allow applications to lever-

age primitives like atomic multi-page writes, transactions etc. It bor-

rows ideas like write-ahead logging and zero-copy [114] to provide high

performance primitives that upstream applications like databases can

leverage and achieve significant performance boosts(3x improvement in

object persistence while cutting memory requirements by half). The

clones interface is a superset of the Stasis interface, allowing the same

set of interfaces to be built on top of the block device directly instead

of pushing all the intelligence into a library.

106

5.2.2 Use cases

The use cases we described in Section 4.7 have been implemented in

the past with different approaches and with varying levels of success.

We briefly go over some of the approaches that stand out and compare

the clones approach to those.

5.2.2.1 Zero-Copy "cp"

Btrfs [4] implement a zero-copy "cp" by leveraging the clone ioctl. The

clone ioctl allows copying of the logical (name space) to physical (block)

mappings to create a new mapping. With the help of the clone ioctl,

copying a file become a trivial operation requiring no physical copy

of blocks. Once the logical to physical mappings are copied to the

new file, the underlying blocks are implicitly shared between both files.

The copy-on-write mechanism kicks in during writes to split the clones

(assign individual blocks to the files on demand). The clones file copy

and the file-level snapshot use cases are identical to the clone ioctl of

Btrfs.

5.2.2.2 MapFS: Exposing address space mappings

MapFS [137] is a strict superset of the capabilities of the native Btrfs.

MapFS leverages the Btrfs clone ioctl [4] to implement most of its inter-

faces (read a file’s address space mapping, remap file blocks and delete

mappings). The file copy and file level snapshot features can be imple-

mented easily using the MapFS interfaces. We believe our interfaces

are more generic and not tied to one specific file system making them

more widely applicable.

107

5.2.2.3 Atomic mmap

Failure-Atomic msync (FAMsync) [93] deals with the same problem

as our implementation of the checkpointed msync use case discussed

in Section 4.7.1.5. FAMsync is implemented by passing a new flag to

indicate the requirement of atomicity during mmap. Pages belonging to

such mmap-ed files are now marked with a new page flag that prevents

asynchronous write-back of dirty pages. Finally, to ensure atomicity

of write-backs during an msync call, FAMsync leverages the Linux jbd

layer [28, 64] in data journaling mode. Data is first written to the

journal and only on successful completion is it written in-place. The

clone approach is non-invasive, requiring no changes to the operating

system.

5.2.2.4 Deduplication

Deduplication (online and offline) has been a hot topic of research and

commercial importance [11, 34] over the last decade [59, 143]. Research

has spread topics ranging from data fingerprinting [63, 72], block size

optimizations [31], backup efficiency [143], optimizations for SSDs [80]

to deduplication of virtual machine images [60]. The clones work is

meant to illustrate the usefulness of clones for online deduplication and

not as a replacement for other deduplication algorithms or systems.

108

6 future work

The work described in Chapter 3 and 4 presents the key ideas behind

creating snapshots on flash and exposing new interfaces to access and

manipulate data on flash. In this section, we explore some of the future

directions we plan to pursue. We present high level descriptions of some

of the clones infrastructure pieces that are needed for completeness. We

also discuss some of the techniques we believe will help produce better

snapshots and introduce the notion of snapshot ting through clones.

6.1 clones infrastructure

The clones infrastructure requires two important pieces to guarantee

completeness: the garbage collector and crash recovery.

6.1.1 Garbage Collection

Garbage collection in the presence of two levels of indirection is more

complex than before (Section 2.2.3). We need to garbage collect phys-

ical blocks that are not used anymore as well as virtual addresses that

are no longer pointed to by logical addresses. Fortunately, with the

separation between the two levels, the garbage collector for the physi-

cal media remains unmodified. The job of the upper layer is to clearly

identify virtual addresses that are not used anymore and issue trims to

the lower level. The trims will allow the lower level to correctly garbage

collect physical blocks.

6.1.2 Crash Recovery

A clean shutdown of the system would result in the secondary map (or

indirection layer) being persisted to the underlying media, which could

109

be read back and the system initialized. On an unclean shutdown,

none of the mappings are persisted. Fortunately for us, the lower level

of indirection is automatically reconstructed using the procedure de-

scribed in Section 2.2.4. Our job now is to reconstruct the upper level

of indirection.

We have persisted notes that correspond to the logical to virtual

map and the range operations performed over time. Reconstructing

the primary level of indirection involves reading and sorting the address

notes and applying the range operations on those (in logical time order).

The overall process would resemble the sort and rebuild approach taken

by the VSL driver.

6.2 better snapshots

Snapshots for flash based devices are important and ability to cre-

ate them in a flash-aware manner is paramount. The approach we

adopted in Chapter 3 has several advantages (simplicity, performance,

light-weight), but also imposes overheads on background tasks (seg-

ment cleaning, activation). We present some of the high level thoughts

we have on how to handle these drawbacks. Next, we describe an al-

ternate approach to snapshotting a volume (or device) with the help of

clones.

6.2.1 Mitigating ioSnap’s Inefficiencies

The choices we made in Section 3.2 while designing ioSnap have en-

sured the driver’s performance is not compromised in the presence of

snapshots. Snapshot creation is very fast and largely invisible to fore-

ground work. Unfortunately, deferring snapshot operations comes at a

price. Clearly, activation is an expensive process in terms of space and

time. In the worst case, activations may spend tens of seconds reading

110

the full device and in the process consume memory to accommodate a

second FTL tree, which shares no memory with the active tree. Rate-

limiting can help control impact on foreground processes (both during

activation and segment cleaning) making these background tasks either

fast or invisible, but not both.

ioSnap’s design choices represent just one of many approaches one

may adopt while designing snapshots for flash. Clearly, some issues

with our design like the activation and COW overheads need to be ad-

dressed. Most systems allow instantaneous activation by always main-

taining mappings to snapshots in the active metadata [6, 51, 103, 118],

but this approach does not scale. Activation overheads may be reduced

by precomputing some portions of the FTL and checkpointing on the

log. The segment cleaner may also assist in this process by using poli-

cies like hot/cold [107] to reduce epoch intermixing, thereby localizing

data read during activation.

Finally, keeping snapshots on flash for prolonged durations isn’t nec-

essarily the best use of the device. Thus, schemes to destage snapshots

to archival disks are required. Checkpointed (precomputed) metadata

can hasten this process by allowing the backup manager identify blocks

belonging to a snapshot.

6.2.2 Snapshots through Clones with Lazy Loading

Creation of a snapshot is relatively simple and similar to the creation

of a file-level snapshot in DirectFS. We identify the range of blocks

that represent a volume or partition and clone the range into a new

virtual range. The only major difference between the file-level clone

and a snapshots is that we do not need to activate the snapshot the

moment we create it. We only activate when the backup needs to be

accessed. A file-level snapshot in DirectFS invokes a range clone oper-

ation, which implicitly copies the source mappings to the destination

111

Volume

0 1000...

5000 6000...

(a)

5000 6000...

Volume

0 1000...

Snapshot 1

(b)

Volume

0 100050

Snapshot 1

5000 ... 6000...6001 5050

50

(c)

Figure 6.1: Lazy Activation of Snapshotted Data. The figure
above illustrates how snapshots of large volumes can benefit from lazy activa-
tion. The typical range clone interface results in the source mappings getting
copied into the destination address space. But when creating snapshots of
volumes, such copies tend to be slow. Instead, we lazily copy mappings only
when the source is going to be modified. Fig a represents the volume and
Fig b shows the creation of a snapshot that shares the address space with
the volume. When block 50 is written, the to retain the original mappings,
the snapshot now stores the mapping between address 50 and the old block
(5050) and the data is written to the new location 6001.

112

mappings. Such a copy, spanning the entire device, would make the

overall process of snapshot creation very slow. Moreover, the mappings

are only required during snapshot activation or when the clone needs

to be broken: either source or destination range is modified.

So, the range clone primitive will provide a delayed or on-demand

activate option. When on-demand activate is specified, the clone layer

lazily loads mappings whenever needed. Figure 6.1 illustrates an ex-

ample of the use of lazy activation for snapshotted data.

Deletion of a snapshot is simple: we only need to trim the virtual

ranges corresponding to the snapshotted data. The garbage collector

takes care of releasing all the unused address ranges and the unused

data from the drive underneath.

6.3 better writes

One of the biggest challenges faced by file systems and applications

is small random writes. Disks have been suffering this problem for a

very long time due to the seeks involved during the random writes.

Log structures file system [107] introduced the notion of logging to

alleviate the performance penalty of small random writes. RAIDs also

suffers from the small write problem and addition of by spreading the

log over a RAID [49]. Flash based storage devices also build a log and

thus can address this problem in theory. But, in reality, random write

performance in flash is orders of magnitude lesser than the sequential

counterpart [43]. The reason for this behavior is the fact that small

random writes do not parallelize well over the multiple NAND banks

present in typical flash array [40]. Researchers have tried to address

this problem by over-provisioning physical space and managing data

placement to minimize the impact small random writes [27].

Clones can again help mitigate part of this problem. The incoming

sequence of random writes can be remapped to a sequential address

113

stream borrowed from the virtual space. The underlying flash layer

thus only sees a sequential stream of data and it can write this out in a

highly performant manner. At periodic intervals, we can issue a range

move from the virtual range to the original range, thus keeping the data

available in the user specified address range. To ensure correctness, we

also have to persist the mappings between the incoming writes and the

virtual address to which it was written.

6.4 summary

The advent of flash has uncovered several opportunities that require us

to rethink how we build applications on top of flash. In addition to the

ideas demonstrated in Chapter ?? and 4, we have presented infras-

tructure pieces necessary for completeness and more ways to leverage

the new interfaces. Better interfaces lead to better applications and we

believe the clones system is just the tip of the iceberg.

114

7 conclusions

Modern storage systems have been well served by the block interface.

The simplicity of the interface allowed wide-spread adoption and pro-

vided an abstraction that allowed software layers above it to thrive.

Unfortunately, all good thing come to an end. Flash is a different

medium and trying to make it behave only like a block device is un-

productive.

Several years of work has gone into developing software and ab-

stractions on top of block devices. When run on top of flash, some

abstractions are elegant and efficient (for example, name-space through

file systems, buffering through the page cache), while others are simply

unwieldy and ineffective (for example, data journaling, physical copy

of files). Thus, it is important that we revisit some of the old software

design choices as well as explore newer ways of interacting with flash,

which will enable applications (old and new).

7.1 traditional features: snapshots through iosnap

Traditionally, snapshots are performed by the file system or the volume

manager. Through ioSnap, we have incorporated the ability to snap-

shot data on flash, in a performant and non-invasive manner, leverag-

ing the properties of the FTL. ioSnap takes a different approach and

focusses its design on keeping common operations fast, even in the pres-

ence of snapshots and the segment cleaner. This comes at the expense

of accessing snapshots.

With the help of simple rate-limiting, we able to control the extent

to which background tasks affected foreground operations. To perform

meaningful rate-limiting, we needed information that was only available

within the FTL, thus supporting our decision to implement snapshots

in the FTL.

115

7.2 rethinking interfaces: clones

Though flash exposed as a block device, can deliver significant perfor-

mance gains, it is stifled by the block interface. The new interfaces

understand flash and leverage things that flash can uniquely offer. We

focus on the ability of flash to virtualize address spaces (through the

FTL) and virtualize time (through the log). We demonstrate the use-

fulness of these interfaces in the realm of file-systems and applications

(MySQL). These interfaces can be leveraged to simplify application’s

tasks and in turn help improve the lifetime of the device. For example,

a file copy or a snapshot translates to a simple clone of the address

space instead of the traditional block by block copy. Also, MySQL

can achieve its consistency goals by leveraging atomic writes instead of

issuing two writes.

The new interfaces represent an important step towards tailoring

applications to work well on top of flash. Applications need to un-

derstand the difference between running on flash and hard-disk. The

device characteristics are different and trying to duplicate (or interfere

with) work done by the device can prove detrimental to performance

and lifetime. Thus, these interfaces demonstrate the need for a rethink

of the protocols for persisting data on top of solid-state devices.

7.3 lessons learned

Through the course of understanding the systems we built, we have,

time and again, realized that our designs are driven by a small set of

principles that have shaped our thought process. We list some of these

lessons and why we feel they are important.

• The log is your friend

The log is a powerful construct. File systems and databases have

116

used logging to ensure consistency for a very long time and they

have demonstrated the usefulness of the log. Flash devices are

forced to implement a log and this represents a very powerful

opportunity. Leveraging the log can simplify design, but ignoring

is could lead to poor performance.

• Be aware of the medium

The differences between flash and hard-disk and its consequences

are well known and well documented. Unfortunately, adding new

features to the FTL also has consequences. For example, the

garbage collector must always be treated carefully: data can be

reordered anytime. The FTL also requires metadata, which must

be recreated after a crash (in addition to the metadata of filesys-

tems that may be running on top). Any new feature must always

take into consideration the impact on these two components.

• Leverage the indirection

Indirection has always played a significant role in various por-

tions of the operating systems. Now, flash is also forced to turn

to indirection, in the form of the FTL, to provide a practical stor-

age medium. Typically, indirection layers are always associated

with overheads. But as it turns out, the presence of the FTL is a

powerful abstraction that applications can leverage. We need to

explore more ways of exposing and manipulating the FTL map-

pings.

• Think outside the "block"

For several years, the block interface has served the storage in-

dustry well. The simple interface allowed features to be added

in software and given the slow nature of the backing media, inef-

ficient software implementations were never the bottleneck. But

117

flash is a different beast and we should never restrict our thought

process to the block device. Newer interfaces are needed for de-

vices with an intermediate translation layers.

• Know your workloads

Though knowledge of the workload is a generic principle behind

almost all systems, it is more important with respect to flash.

Flash is primarily used for its high performance (without which

the total cost of operations would not compare). Addition of

new features that affect performance is frowned upon, unless the

benefits can really outweigh the loss. Thus, knowledge of the

workloads must drive design of new features with minimal impact

on performance.

Flash is here to stay or at least until the next big thing replaces it.

But, with the next major paradigm shift at least a decade away, sticking

to old interfaces designed for hard-disks is no longer acceptable. In this

thesis, we have demonstrated the need for a rethink of the layer at which

storage system features are implemented and also explored a possible

enhancement to the flash interfaces. Flash is becoming an important

part of storage systems and hence, native interfaces and redesigned

software represent the way forward.

118

references

[1] MVCC: Transaction IDs, Log Sequence numbers and Snapshots.

http://www.mysqlperformanceblog.com/2007/12/19/mvcc-

transaction-ids-log-sequence-numbers-and-snapshots/.

[2] http://download.micron.com/pdf/datasheets/

flash/nand/1gb_nand_m48a.pdf.

[3] http://maltiel-consulting.com/NAND_vs_NOR_Flash_ Mem-

ory_Technology_Overview_Read_Write_Erase_speed_

for_SLC_MLC_semiconductor_consulting_expert.pdf.

[4] Save disk space on Linux by cloning files on Btrfs

and OCFS2. https://blogs.oracle.com/OTNGarage/entry/

save_disk_space_on_linux, 2010.

[5] Overview of ZFS Clones. http://docs.oracle.com/cd/E19253-

01/819-5461/gbcxz/index.html, 2010.

[6] Btrfs Design. http://oss.oracle.com/projects/btrfs/dist/

documentation/btrfs-design.html, 2011.

[7] GNU Core Utils. http://www.gnu.org/software/coreutils/, 2013.

[8] Understanding virtual machine snapshots in VMware

ESXi and ESX. http://kb.vmware.com/selfservice/

microsites/search.do?language=en_US&

cmd=displayKC&externalId=1015180, 2013.

[9] Nitin Agarwal, Vijayan Prabhakaran, Ted Wobber, John D.

Davis, Mark Manasse, and Rina Panigrahy. Design Tradeoffs for

SSD Performance. In Proceedings of the USENIX Annual Tech-

nical Conference (USENIX ’08), Boston, Massachusetts, June

2008.

119

[10] S. Agarwal, D. Borthakur, and I. Stoica. Snapshots in hadoop dis-

tributed file system. UC Berkeley Technical Report UCB/EECS,

2011.

[11] Carlos Alvarez. Netapp deduplication for fas and v-series de-

ployment and implementation guide. Technical report, Technical

Report TR-3505, NetApp, 2011.

[12] Andrew Ku. Endurance Testing: Write Amplification And Es-

timated Lifespan. http://www.tomshardware.com/reviews/ssd-

520-sandforce-review-benchmark,3124-11.html, 2012.

[13] Apple. OSX Time Machine.

http://www.apple.com/findouthow/mac/#timemachinebasics,

2007.

[14] Joel Bartlett, Wendy Bartlett, Richard Carr, Dave Garcia, Jim

Gray, Robert Horst, Robert Jardine, Doug Jewett, Dan Lenoski,

and Dix McGuire. The Tandem Case: Fault Tolerance in Tan-

dem Computer Systems. In Daniel P. Siewiorek, and Robert S.

Swarz, editors, Reliable Computer Systems - Design and Evalua-

tion, chapter 8, pages 586–648. AK Peters, Ltd., October 1998.

[15] Ben Treynor. Gmail Outage.

http://gmailblog.blogspot.com/2011/02/ gmail-back-soon-

for-everyone.html, 2011.

[16] Philip A Bernstein, and Nathan Goodman. Multiversion concur-

rency controlâŁ”theory and algorithms. ACM Transactions on

Database Systems (TODS), 8(4):465–483, 1983.

[17] Eric J. Bina, and Perry A. Emrath. A Faster fsck for BSD

Unix. In Proceedings of the USENIX Winter Technical Confer-

ence (USENIX Winter ’89), San Diego, California, January 1989.

http://www.apple.com/findouthow/mac/#timemachinebasics

120

[18] Dina Bitton, and Jim Gray. Disk shadowing. In Proceedings of the

14th International Conference on Very Large Data Bases (VLDB

14), pages 331–338, Los Angeles, California, August 1988.

[19] Matias Bjorling, Philippe Bonnet, Luc Bouganim, Niv Dayan,

et al. The necessary death of the block device interface. In

6th Biennial Conference on Innovative Data Systems Research

(CIDR), 2013.

[20] Jeff Bonwick. RAID-Z. http://blogs.sun.com/bonwick/entry/raid_z,

2005.

[21] Jeff Bonwick, and Bill Moore. ZFS:

The Last Word in File Systems.

http://opensolaris.org/os/community/zfs/docs/zfs_last.pdf,

2007.

[22] Daniel P. Bovet, and Marco Cesati. Understanding the Linux

Kernel. O’Reilly, 2006.

[23] Aaron B. Brown, and David A. Patterson. Towards Availability

Benchmarks: A Case Study of Software RAID Systems. In Pro-

ceedings of the USENIX Annual Technical Conference (USENIX

’00), pages 263–276, San Diego, California, June 2000.

[24] Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco:

Running commodity operating systems on scalable multiproces-

sors. In Proceedings of the 16th ACM Symposium on Operat-

ing Systems Principles (SOSP ’97), pages 143–156, Saint-Malo,

France, October 1997.

[25] Michael J Carey, and Waleed A Muhanna. The performance of

multiversion concurrency control algorithms. ACM Transactions

on Computer Systems (TOCS), 4(4):338–378, 1986.

121

[26] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo. Real-time garbage

collection for flash-memory storage systems of real-time embed-

ded systems. ACM Transactions on Embedded Computing Sys-

tems (TECS), 3(4):837–863, 2004.

[27] Brice Chardin, Olivier Pasteur, and Jean-Marc Petit. An

ftl-agnostic layer to improve random write on flash memory.

Database Systems for Adanced Applications, pages 214–225, 2011.

[28] Ying CHEN, and Hong-sheng XI. Performance optimization of

journaling file system based on jbd. Computer Engineering, 8:

020, 2010.

[29] Ann Chervenak, Vivekenand Vellanki, and Zachary Kurmas. Pro-

tecting file systems: A survey of backup techniques. In Proceed-

ings Joint NASA and IEEE Mass Storage Conference, volume 3,

1998.

[30] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin

Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. Better

i/o through byte-addressable, persistent memory. In Proceedings

of the ACM SIGOPS 22nd symposium on Operating systems prin-

ciples, pages 133–146. ACM, 2009.

[31] Cornel Constantinescu, Jan Pieper, and Tiancheng Li. Block

size optimization in deduplication systems. In Data Compression

Conference, 2009. DCC’09., pages 442–442. IEEE, 2009.

[32] Timothy E. Denehy, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. Journal-guided Resynchronization for Software

RAID. In Proceedings of the 4th USENIX Symposium on File and

Storage Technologies (FAST ’05), pages 87–100, San Francisco,

California, December 2005.

122

[33] Ming Du, Yan Zhao, and Jiajin Le. Using flash memory as storage

for read-intensive database. In Proceedings of the 2009 First In-

ternational Workshop on Database Technology and Applications,

DBTA ’09, 2009.

[34] EMC Datadomain. EMC Datadomain.

http://www.emc.com/domains/datadomain/index.htm, 2013.

[35] Kapali P. Eswaran, Jim N Gray, Raymond A. Lorie, and Irv-

ing L. Traiger. The notions of consistency and predicate locks

in a database system. Communications of the ACM, 19(11):624–

633, 1976.

[36] Francisco Javier Thayer Fábrega, Francisco Javier, and Joshua D

Guttman. Copy on write. 1995.

[37] Fusion-io. Atomic Writes Accelerate MySQL Performance.

http://www.fusionio.com/blog/atomic-writes-accelerate-mysql-

performance, 2011.

[38] Fusion-io. DirectFS. http://www.fusionio.com/webinar/

iomemory-sdk-directfs-native-filesystem-services, 2012.

[39] Fusion-io. FusionIO Direct Cache.

http://www.fusionio.com/products/directcache, 2012.

[40] Fusion-io. FusionIO IoDrive2.

http://www.fusionio.com/products/iodrive2-duo/, 2012.

[41] Fusion-io. FusionIO IoN Data Accelerator.

http://www.fusionio.com/products/ion-data-accelerator/,

2012.

[42] Fusion-io. FusionIO IOMemory SDK.

http://www.fusionio.com/products/iomemorysdk, 2012.

http://www.fusionio.com/products/directcache
http://www.fusionio.com/products/iodrive2-duo/
http://www.fusionio.com/products/ion-data-accelerator/
http://www.fusionio.com/products/iomemorysdk

123

[43] Jim Gray, and Bob Fitzgerald. Flash disk opportunity for server

applications. Queue, 6(4):18–23, 2008.

[44] Jim Gray, and Andreas Reuter. Transaction Processing: Con-

cepts and Techniques. Morgan Kaufmann, 1993.

[45] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,

P. H. Siegel, and J. K. Wolf. Characterizing Flash Memory:

Anomalies, Observations, and Applications. In Proceedings of

MICRO-42, New York, New York, December 2009.

[46] Laura M. Grupp, John D. Davis, and Steven Swanson. The bleak

future of nand flash memory. FAST’12, 2012.

[47] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: a

flash translation layer employing demand-based selective caching

of page-level address mappings. In Proceedings of the 43th Inter-

national Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS XIV), pages 229–

240, Washington, DC, March 2009.

[48] Robert Hagmann. Reimplementing the Cedar File System Using

Logging and Group Commit. In Proceedings of the 11th ACM

Symposium on Operating Systems Principles (SOSP ’87), Austin,

Texas, November 1987.

[49] J.H. Hartman, and J.K. Ousterhout. The Zebra Striped Network

File System. In Proceedings of the 14th ACM Symposium on Op-

erating Systems Principles (SOSP ’93), pages 29–43, Asheville,

North Carolina, December 1993.

[50] Val Henson. The Many Faces of fsck.

http://lwn.net/Articles/248180/, September 2007.

124

[51] Dave Hitz, James Lau, and Michael Malcolm. File System Design

for an NFS File Server Appliance. In Proceedings of the USENIX

Winter Technical Conference (USENIX Winter ’94), San Fran-

cisco, California, January 1994.

[52] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias Iliadis,

and Roman Pletka. Write amplification analysis in flash-based

solid state drives. In Proceedings of SYSTOR 2009: The Israeli

Experimental Systems Conference, page 10. ACM, 2009.

[53] Ping Huang, Ke Zhou, Hua Wang, and Chun Hua Li. Bvssd:

build built-in versioning flash-based solid state drives. SYSTOR

’12, 2012.

[54] Gordon F. Hughes, and Joseph F. Murray. Reliability and Se-

curity of RAID Storage Systems and D2D Archives Using SATA

Disk Drives. 1(1):95–107, February 2005.

[55] Intel. Intel SSD 910 Series.

http://ark.intel.com/products/67009/ Intel-SSD-910-Series-

800GB-12-Height-PCIe-2_0-25nm-MLC, 2013.

[56] Intel. Intel Solid State Drives.

http://www.intel.com/content/www/us/en/solid-state-

drives/solid-state-drives-ssd.html, 2013.

[57] Bruce L Jacob, and Trevor N Mudge. A look at several memory

management units, tlb-refill mechanisms, and page table organi-

zations. ACM SIGPLAN Notices, 33(11):295–306, 1998.

[58] James Hamilton. When SSDs Make Sense in Server Applica-

tions. http://perspectives.mvdirona.com/2008/10/15/ WhenSS-

DsMakeSenseInServerApplications.aspx, 2008.

125

[59] Keren Jin, and Ethan L. Miller. The effectiveness of deduplication

on virtual machine disk images. In Proceedings of SYSTOR 2009:

The Israeli Experimental Systems Conference, SYSTOR ’09, New

York, NY, USA, 2009.

[60] Keren Jin, and Ethan L Miller. The effectiveness of dedupli-

cation on virtual machine disk images. In Proceedings of SYS-

TOR 2009: The Israeli Experimental Systems Conference, page 7.

ACM, 2009.

[61] Jonathan Corbet. Block layer discard requests.

http://lwn.net/Articles/293658/, 2008.

[62] William K. Josephson, Lars A. Bongo, Kai Li, and David Flynn.

Dfs: A file system for virtualized flash storage. In Proceedings

of the 8th USENIX Symposium on File and Storage Technologies

(FAST ’10), San Jose, California, February 2010.

[63] Jürgen Kaiser, Dirk Meister, Andre Brinkmann, and Sascha Ef-

fert. Design of an exact data deduplication cluster. In Mass Stor-

age Systems and Technologies (MSST), 2012 IEEE 28th Sympo-

sium on, pages 1–12. IEEE, 2012.

[64] Kedar Sovani. Linux: The Journaling Block Device.

http://kerneltrap.org/node/6741, 2006.

[65] Thomas F. Keefe, and Wei-Tek Tsai. Multiversion concurrency

control for multilevel secure database systems. In Research in

Security and Privacy, 1990. Proceedings., 1990 IEEE Computer

Society Symposium on, pages 369–383. IEEE, 1990.

[66] Kimberley Keeton, Cipriano Santos, Dirk Beyer, Jeffrey Chase,

and John Wilkes. Designing for disasters. In Proceedings of the

http://lwn.net/Articles/293658/

126

3rd USENIX Conference on File and Storage Technologies, pages

59–62, 2004.

[67] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi Hifumi, Seiji

Kihara, and Satoshi Moriai. The linux implementation of a log-

structured file system. SIGOPS OSR.

[68] Charles M. Kozierok. Overview and History of the SCSI Interface.

http://www.pcguide.com/ref/hdd/if/scsi/over-c.html, 2001.

[69] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freed-

man, Jignesh M Patel, and Mike Zwilling. High-performance con-

currency control mechanisms for main-memory databases. Pro-

ceedings of the VLDB Endowment, 5(4):298–309, 2011.

[70] Sang-Won Lee, Bongki Moon, Chanik Park, Jae-Myung Kim,

and Sang-Woo Kim. A case for flash memory ssd in enterprise

database applications. In Proceedings of the 2008 ACM SIGMOD

international conference on Management of data, SIGMOD ’08,

2008.

[71] M Lenzlinger, and EH Snow. Fowler-nordheim tunneling into

thermally grown sio 2. Journal of Applied Physics, 40(1):278–

283, 1969.

[72] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deo-

lalikar, Greg Trezise, and Peter Camble. Sparse indexing: large

scale, inline deduplication using sampling and locality. In Proc-

cedings of the 7th conference on File and storage technologies,

pages 111–123, 2009.

[73] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael

Kaminsky. Silt: a memory-efficient, high-performance key-value

store. In Proceedings of the Twenty-Third ACM Symposium on

127

Operating Systems Principles, New York, NY, USA, 2011. ACM.

ISBN 978-1-4503-0977-6.

[74] R. Lorie. Physical Integrity in a Large Segmented Database. ACM

Transactions on Databases, 2(1):91–104, 1977.

[75] Lanyue Lu, Andrea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau,

and Shan Lu. A study of linux file system evolution.

[76] M-Systems. Two Flash Technologies Compared: NOR vs NAND.

http://focus.ti.com/pdfs/omap/diskonchipvsnor.pdf, 2002.

[77] M. Mano. Digital logic and computer design.

Prentice-Hall, 1979. ISBN 9780132145107. URL

http://books.google.com/books?id=QWZTAAAAMAAJ.

[78] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, An-

dreas Dilger, Alex Tomas, Laurent Vivier, and Bull S.A.S. The

New Ext4 Filesystem: Current Status and Future Plans. In Ot-

tawa Linux Symposium (OLS ’07), Ottawa, Canada, July 2007.

[79] Marshall K. McKusick, William N. Joy, Sam J. Leffler, and

Robert S. Fabry. A Fast File System for UNIX. ACM Trans-

actions on Computer Systems, 2(3):181–197, August 1984.

[80] Dirk Meister, and Andre Brinkmann. dedupv1: Improving dedu-

plication throughput using solid state drives (ssd). In Mass Stor-

age Systems and Technologies (MSST), 2010 IEEE 26th Sympo-

sium on, pages 1–6. IEEE, 2010.

[81] ST Microelectronics. Wear leveling in single level cell nand flash

memories. Application note AN-1822 Geneva, Switzerland, 2007.

[82] Micron. Micron Enterprise PCIe SSD.

http://www.micron.com/products/solid-state-

storage/enterprise-pcie-ssd, 2013.

http://books.google.com/books?id=QWZTAAAAMAAJ

128

[83] Micron Technologies. TLC, MLC and SLC Devicesage Anal-

ysis. http://www.micron.com/products/nand-flash/tlc-mlc-and-

slc-devices, 2013.

[84] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz.

ARIES: A Transaction Recovery Method Supporting Fine-

Granularity Locking and Partial Rollbacks Using Write-Ahead

Logging. ACM Transactions on Database Systems, 17(1):94–162,

March 1992.

[85] Vidyabhushan Mohan. Modeling the Physical Characteristics of

NAND Flash Memory. PhD thesis, University of Virginia, 2010.

[86] Vidyabhushan Mohan, Taniya Siddiqua, Sudhanva Gurumurthi,

and Mircea R Stan. How i learned to stop worrying and love

flash endurance. In Proceedings of the 2nd USENIX conference

on Hot topics in storage and file systems, pages 3–3. USENIX

Association, 2010.

[87] Charles B. Morrey III, and Dirk Grunwald. Peabody: The time

travelling disk. In Proceedings of the 20 th IEEE/11 th NASA

Goddard Conference on Mass Storage Systems and Technologies

(MSS’03), 2003.

[88] Nick Allen. Flash-based SSDs are Driv-

ing New Standards and Charging Models.

http://wikibon.org/wiki/v/ Flash-based_SSDs_are_Driving

_New_Standards_and_Charging_Models, 2012.

[89] OCZ. OCZ Solid State Drives. http://ocz.com/consumer/ssd,

2013.

[90] OCZ. SSD Comparison. http://ocz.com/consumer/ssd-

guide/ssd-comparison, 2013.

129

[91] Oracle. VirtualBox. https://www.virtualbox.org, 2013.

[92] Xiangyong Ouyang, David W. Nellans, Robert Wipfel, David

Flynn, and Dhabaleswar K. Panda. Beyond block i/o: Rethinking

traditional storage primitives. In HPCA, pages 301–311. IEEE

Computer Society, 2011.

[93] Stan Park, Terence Kelly, and Kai Shen. Failure-atomic msync

(): A simple and efficient mechanism for preserving the integrity

of durable data. 2013.

[94] David Patterson, Garth Gibson, and Randy Katz. A Case for

Redundant Arrays of Inexpensive Disks (RAID). In Proceedings

of the 1988 ACM SIGMOD Conference on the Management of

Data (SIGMOD ’88), pages 109–116, Chicago, Illinois, June 1988.

[95] Percona. Tuning For Speed: Percona Server and Fusion-

io. http://www.percona.com/files/presentations/percona-

live/london-2011/PLUK2011-tuning-for-speed-percona-server-

and-fusion-io.pdf, 2012.

[96] Zachary Peterson, and Randal Burns. Ext3cow: a time-shifting

file system for regulatory compliance. Trans. Storage, 1(2):190–

212, 2005. ISSN 1553-3077.

[97] Zachary Nathaniel Joseph Peterson. Data placement for copy-

on-write using virtual contiguity. PhD thesis, UNIVERSITY OF

CALIFORNIA, 2002.

[98] Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. Virtualiza-

tion aware file systems: getting beyond the limitations of virtual

disks. In Proceedings of the 3rd conference on Networked Systems

Design & Implementation - Volume 3, NSDI’06.

130

[99] Dan R. K. Ports, Austin T. Clements, and Erik D. Demaine.

Persifs: a versioned file system with an efficient representation.

In Proceedings of the twentieth ACM symposium on Operating

systems principles, SOSP ’05, 2005.

[100] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin

Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. IRON File Systems. In Proceedings

of the 20th ACM Symposium on Operating Systems Principles

(SOSP ’05), pages 206–220, Brighton, United Kingdom, October

2005.

[101] PureStorage. PureStorage FlashArray.

http://www.purestorage.com, 2013.

[102] PureStorage. ZeroSnapâ„¢ snapshots.

http://www.purestorage.com/flash-array/resilience.html, 2013.

[103] S. Quinlan, and J.M.K.R. Cox. Fossil, an archival file server.

[104] Raghu Ramakrishnan, Johannes Gehrke, and Johannes Gehrke.

Database management systems, volume 3. McGraw-Hill, 2003.

[105] Ohad Rodeh. Deferred reference counters for copy-on-write b-

trees. Technical report, Technical Report rj10464, IBM, 2010.

[106] Ohad Rodeh. Defragmentation mechanisms for copy-on-write file-

systems. 2010.

[107] Mendel Rosenblum, and John Ousterhout. The Design and Im-

plementation of a Log-Structured File System. ACM Transac-

tions on Computer Systems, 10(1):26–52, February 1992.

[108] Samsung Semiconductors. NAND: Beyond Memory to

Storage. http://originus.samsung.com/us/business/oem-

solutions/pdfs/2011-03-Mobile-ization-NAND.pdf, 2011.

131

[109] Douglas S. Santry, Michael J. Feeley, Norman C. Hutchinson, Al-

istair C. Veitch, Ross W. Carton, and Jacob Ofir. Deciding When

To Forget In The Elephant File System. In Proceedings of the 17th

ACM Symposium on Operating Systems Principles (SOSP ’99),

pages 110–123, Kiawah Island Resort, South Carolina, December

1999.

[110] Mohit Saxena, Michael M Swift, and Yiying Zhang. Flashtier: A

lightweight, consistent and durable storage cache. In Proceedings

of the 7th ACM european conference on Computer Systems, pages

267–280. ACM, 2012.

[111] Russell Sears, and Eric Brewer. Stasis: flexible transactional stor-

age. In Proceedings of the 7th symposium on Operating systems

design and implementation, pages 29–44. USENIX Association,

2006.

[112] Abraham Silberschatz, and Peter Galvin. Operating Systems

Concepts. Addison-Wesley, 1998.

[113] Craig A. N. Soules, Garth R. Goodson, John D. Strunk, and Gre-

gory R. Ganger. Metadata efficiency in versioning file systems. In

Proceedings of the 2nd USENIX Conference on File and Storage

Technologies, Berkeley, CA, USA, 2003. USENIX Association.

[114] Dragan Stancevic. Zero copy i: user-mode perspective. Linux

Journal, 2003(105):3, 2003.

[115] Storage Search. Flash Memory vs. HDDs - Which Will Win?

http://www.storagesearch.com/semico-art1.html, 2005.

[116] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz,

Craig A. N. Soules, and Gregory R. Ganger. Self-securing stor-

age: protecting data in compromised system. In Proceedings of

132

the 4th conference on Symposium on Operating System Design &

Implementation - Volume 4, OSDI’00, 2000.

[117] Kang-Deog Suh, Byung-Hoon Suh, Young-Ho Lim, Jin-Ki Kim,

Young-Joon Choi, Yong-Nam Koh, Sung-Soo Lee, Suk-Chon

Kwon, Byung-Soon Choi, Jin-Sun Yum, et al. A 3.3 v 32 mb nand

flash memory with incremental step pulse programming scheme.

Solid-State Circuits, IEEE Journal of, 30(11):1149–1156, 1995.

[118] Kyoungmoon Sun, Seungjae Baek, Jongmoo Choi, Donghee Lee,

Sam H. Noh, and Sang Lyul Min. Ltftl: lightweight time-shift

flash translation layer for flash memory based embedded storage.

EMSOFT ’08.

[119] Sun Microsystems. ZFS: The last word in file systems.

www.sun.com/2004-0914/feature/, 2006.

[120] Sun Microsystems. ZFS Under The Hood.

http://www.filibeto.org/∼aduritz/truetrue/solaris10/zfs-

uth_3_v1.1_losug.pdf, 2006.

[121] Sun Microsystems. MySQL White Papers, 2008.

[122] V. Sundaram, T. Wood, and P. Shenoy. Efficient Data Migration

for Load Balancing in Self-managing Storage Systems. In The 3rd

IEEE International Conference on Autonomic Computing (ICAC

’06), Dublin, Ireland, June 2006.

[123] Adan Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike

Nishimoto, and Geoff Peck. Scalability in the XFS File Sys-

tem. In Proceedings of the USENIX Annual Technical Conference

(USENIX ’96), San Diego, California, January 1996.

133

[124] The AWS Team. Summary of the Amazon EC2 and

Amazon RDS Service Disruption in the US East Region.

http://aws.amazon.com/message/65648/, April 2011.

[125] Tom’s Hardware. Intel SSD 335 240 GB Re-

view: Driving Down Prices With 20 nm NAND.

http://www.tomshardware.com/reviews/ssd-335-240-gb-

benchmark,3332.html, 2012.

[126] Toshiba. NAND vs NOR Flash Memory.

http://www.toshiba.com/taec/Catalog/components/ Descrip-

tion/pop_mem_compare.html, 2011.

[127] Stephen C. Tweedie. Journaling the Linux ext2fs File System. In

The Fourth Annual Linux Expo, Durham, North Carolina, May

1998.

[128] Stephen C. Tweedie. EXT3, Journaling File System.

olstrans.sourceforge.net/ release/OLS2000-ext3/OLS2000-

ext3.html, July 2000.

[129] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni, Fer-

nando CM Martins, Andrew V Anderson, Steven M Bennett,

Alain Kagi, Felix H Leung, and Larry Smith. Intel virtualization

technology. Computer, 38(5):48–56, 2005.

[130] Violin Memory. Violin Memory PCIe Cards. http://www.violin-

memory.com/products/velocity-pcie-cards/, 2013.

[131] Carl A. Waldspurger. Memory Resource Management in VMware

ESX Server. In Proceedings of the 5th Symposium on Operating

Systems Design and Implementation (OSDI ’02), Boston, Mas-

sachusetts, December 2002.

134

[132] Christopher Whitaker, J. Stuart Bailey, and Rod D. W. Wid-

dowson. Design of the server for the Spiralog file system. Digital

Technical Journal, 8(2), 1996.

[133] Wikipedia. HIPAA. http://en.wikipedia.org/wiki/HIPAA,

1996.

[134] Wikipedia. Sarbanes-Oxley. http://en.wikipedia.org/wiki/ Sar-

banes%E2%80%93Oxley_Act, 2002.

[135] Wikipedia. Btrfs. en.wikipedia.org/wiki/Btrfs, 2009.

[136] Jake Wires, and Michael J. Feeley. Secure file system versioning at

the block level. In Proceedings of the 2nd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2007, EuroSys ’07,

2007.

[137] Jake Wires, Mark Spear, and Andrew Warfield. Exposing file

system mappings with mapfs. In Proc. of the 3rd USENIX con-

ference on Hot topics in storage and file systems, 2011.

[138] David Woodhouse. Jffs: The journalling flash file system. In

Ottawa Linux Symposium, volume 2001, 2001.

[139] XFS. XFS Freeze. http://linux.die.net/man/8/xfs_freeze.

[140] Qing Yang, Weijun Xiao, and Jin Ren. Trap-array: A disk ar-

ray architecture providing timely recovery to any point-in-time.

SIGARCH Comput. Archit. News, May 2006.

[141] Tatu Ylonen. Concurrent shadow paging: A new direction for

database research. Laboratory of Information Processing Sci-

ence, Helsinki University of Technology, SF-02150, Espoo, Fin-

land, 1992.

http://en.wikipedia.org/wiki/HIPAA

135

[142] Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. De-indirection for flash-based ssds

with nameless writes. In Proceedings of the 10th USENIX con-

ference on File and Storage Technologies, FAST’12, 2012.

[143] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the Disk

Bottleneck in the Data Domain Deduplication File System. In

Proceedings of the 6th USENIX Symposium on File and Storage

Technologies (FAST ’08), San Jose, California, February 2008.

	List of Tables
	List of Figures
	Abstract
	Introduction
	Snapshots on Flash
	Modern Interfaces to Flash
	Contributions
	Outline

	Background
	Flash Background
	Operations
	Classification
	NAND flash : Characteristics and Limitations
	Host-based FTLs

	Fusion-io Virtual Storage Layer
	Log-structured Device
	Basic data structures and operations
	Segment Cleaning
	Crash Recovery

	Snapshots in Flash
	Extended Motivation
	Flash Awareness and File Systems
	ioSnap: Block or File system level

	Design and Implementation
	Design Goals
	Snapshot API
	Log Structuring
	Epochs
	Snapshot Tree
	Segment Cleaner
	Crash Recovery
	Snapshot Activation
	Rate Limiting
	Implementing Snapshot Operations

	Evaluation
	Regular Operations
	Snapshot Operations
	Segment Cleaning
	Crash Recovery

	Discussion and Future Work
	Conclusions

	Modern Interfaces to Flash
	The need for newer interfaces
	How SSDs limits Flash's capabilities

	Axes of control
	(Address) Space
	Time
	Persistence and Immutability

	High Level Interfaces
	Virtualizing Time
	Virtualizing Space

	Lower Level Interfaces
	Lower Level Interfaces
	Implementing High-level Interfaces

	Implementation Details
	Need for Two-Level Indirection
	Operations on a Two-Level System
	Persisting Second Level

	Evaluation of Clones
	Regular Operations
	Range Operations
	Cost of Breaking Clones
	Summary of Results

	Case studies with clones
	Direct File System (DirectFS)
	Atomic Writes through Clones in MySQL
	Snapshots through Clones

	Conclusions

	Related Work
	Snapshots
	Block Level or File System?
	Metadata: Efficiency and Consistency
	Snapshot Access and Cleanup

	Clones
	Virtualizing Space and Time
	Use cases

	Future Work
	Clones Infrastructure
	Garbage Collection
	Crash Recovery

	Better Snapshots
	Mitigating ioSnap's Inefficiencies
	Snapshots through Clones with Lazy Loading

	Better Writes
	Summary

	Conclusions
	Traditional features: Snapshots through ioSnap
	Rethinking interfaces: Clones
	Lessons Learned

	References

