Automated Verification of the Deutsch-Schorr-Waite
Tree-Traversal Algorithm

Alexey Loginov, Thomas Reps and Mooly Sagi¥

L Comp. Sci. Dept., University of Wisconsifialexey,reps@cs.wisc.edu
2 School of Comp. Sci., Tel-Aviv University; msagiv@ post.&c.il

Abstract. This paper reports on the automated verification oftttel correct-
ness(partial correctness and termination) of the Deutsch-8eaite (DSW)
algorithm. DSW is an algorithm for traversing a binary treihaut the use of
a stack by means of destructive pointer manipulation. Rafiproaches to the
verification of the algorithm involved applications of tlem provers or hand-
written proofs. TVLA's abstract-interpretation approanade possible the auto-
matic symbolic exploration of all memory configurationsttban arise. With the
introduction of a few simple core and instrumentation fefe, TVLA was able
to establish the partial correctness and termination of DSW

1 Introduction

The Deutsch-Schorr-Waite (DSW) algorithm provides a watrduerse a tree without
the use of a stack by temporarily—but systematically—stggbointer fields of the
tree’s nodes to serve in place of the stack that one ordynaeéds during, e.g., an
in-order traversat. The benefits of being able to perform a tree traversal withiogit
use of a stack are best seen in the context of garbage cotlestich an algorithm
can be employed during thmark phase of garbage collection, when the scarcity of
available memory can preclude the use of either an exptiiksfor traversing a tree,
or a recursive tree traversal (which would use an implieitktof activation records).

The subtlety of the algorithm (and the complexity of anatggit) is due to the
fact that, during the traversal, the algorithm visits eackdenof the tree three times,
and performs a kind of pointer rotation on each node visi}.[B§ the time the algo-
rithm finishes, it has restored the original values of eaatersdeft-child and right-child
pointers, thus restoring the original tree.

Richard Bornat singles out the algorithm as a key test fam&drmethods: “The
[Deutsch-]Schorr-Waite algorithm is the first mountainttaay formalism for pointer
analysis should climb.” [2] Past approaches have invohathwritten proofs of com-
plicated invariants to verify the partial correctness af gigorithm. Even with some
automation, these efforts were usually laborious: a presfggmed in 2002 with the
help of the Jape proof editor took 152 pages! [1] The key athggnof TVLA's abstract-
interpretation approach over proof-theoretic approaghtsat a relatively small num-
ber of concepts are involved in defining an abstraction ofthectures that can arise on

% The variant of the algorithm that we analyzed works coryewthen applied to a directed
acyclic graph (DAG). While our current analysis appliesyowhen the input is a binary tree,
§7 discusses how this limitation can be addressed.

any execution, and verification is then carried out autoradi by symbolic exploration
of all memory configurations that can arise. In particulag,defined the abstraction us-
ing a few simple instrumentation relations—eight key folast—each containing only
two atomic subformulas.

The contributions of this work can be summarized as follows:

— We defined an abstraction (in the canonical-abstractiondreork used by TVLA)
that captures sufficient invariants of DSW to demonstratéglaorrectness and
termination.

— We used the fact that each tree node passes through fous étadeiced by the
original state and the three visits to each node) to defstate-dependerabstrac-
tion, which requires fewer structures to represent the nmgroonfigurations that
can arise in DSW than would be necessary without state depesd

— We used the abstraction to establish the partial correstoieBSW via automatic
symbolic exploration of all memory configurations.

— We used thestate-dependerabstraction to establish a bound on the number of
iterations of the algorithm’s loop, thus establishing th&Ww terminates.

2 Program Analysis using 3-Valued Logic e

In this section we give a brief overview of the framework
of parametric shape analysis via three-valued logic. For
more details, the reader is referred to [17].

Program states are represented usirsg-order logi-
cal structures which consist of a collection dhdividu-
als, together with amnterpretationfor a finite vocabulary
of finite-arity relation symbolsR. An interpretation is a Fig-1. A possible concrete
truth-value assignment for each relation symbol for evetipre for a binary tree.
appropriate-arity tuple of individuals. To ensure termina
tion, the framework puts a bound on the number of distinciclalgstructures that can
arise during analysis by grouping individuals that arestidguishable according to a
special subset of unary relation4, The grouping of nodes is referred to@monical
abstractionand the setd is referred to as the set abstraction relations

The application of canonical abstraction typically tramsis a logical structuré
into a3-valued logical structures*, in which the third valuel /2, denotes the possi-
bility of having either0 (false) orl (true) inS. A program state is updated and queried
via logical formulas, which are interpreted over the thvak+ed structures* using a
straightforward extension of Kleene’s 2-valued semantics

Because of canonical abstraction, individuals in a 3-\dkteucture can represent
more than one individual in a given 2-valued structure; sadividuals are referred to
assummary individualdn general, a 3-valued logical structure can representfarite
set of 2-valued structures.

Program states are encoded in termsak relationsC C R. Core relations are
part of the underlying semantics of the language to be aadlythey record atomic
properties of stores. For instance, Tab. 1 gives the definitf a C binary-tree datatype,

Relation Intended Meaning
typedef struct node { . - s 5
struct node left: z(v) Does pointer variablg point to heap cell)?
' left(v1,v2) | Doesthd ef t field of v1 point tov,?

int data; .
struct node *right: (Is vz the left child ofv, ?)
} *Tree; | right(v1,v2) | Does the i ght field of v1 point tov,?

(Is v2 the right child ofv, ?)
(a) (b)

Table 1. (a) Declaration of a binary-tree datatype in C. (b) Coretiats used for representing

the stores manipulated by programs that use Typee.

and lists the core relations that would be used to reprebergtbres manipulated by
programs that use typé€r ee, such as the store in Fig. 1. Unary relations represent
pointer variables, and binary relatiotest andright represent thé ef t andri ght
fields of aTr ee node. Fig. 2(a) show8-valued structureS,, which represents the
store of Fig. 1 using the relations of Tab. 1.

P |Intended Meaning | Defining Formula

down(vi,v2)|Do thel ef t orri ght fields ofv, point tov?|left(vi, v2) V right(vi, v2)
(Is vz a child of v, ?)

tdown(v1,v2) |ISv2 reachable fromyy dowri (v1, v2)
alongl ef t andri ght fields?
r2(v) Is v reachable from pointer variable w1 2(v1) A tdown(v1, v)

alongl ef t andri ght fields?

Table 2. Defining formulas of instrumentation relations commonlyptoged in analyses of pro-
grams that use typér ee. There is a separate relatiop for every program variable.

root

(b)

Fig. 2. A logical structureS- that represents the store shown in Fig. 1 in graphical foenS§
with relations of Tab. 1. (by2 with relations of Tabs. 1 and 2 (relations of Tab. 1 appearéy)y
Unlabeled (curved) arcs between nodes represengdlgelation. Self-loops of thésewn relation
(corresponding to the reflexive tuples) have been omitteddace clutter.

The abstraction function on which an analysis is based, andénthe precision of
the analysis defined, can be tuned by (i) choosing to equiptsires with additionah-
strumentation relationto record derived properties, and (ii) varying which of tmary
core and unary instrumentation relations are used as tloé abstraction relations. The
set of instrumentation relations is denoted/byEach arityk relation symbol is defined
by aninstrumentation-relation defining formulaith & free variables. Instrumentation
relation symbols may appear in the defining formulas of otirumentation relations
as long as there are no circular dependences.

Tab. 2 lists some instrumentation relations that are ingmrfor the analysis of
programs that use typer ee. Instrumentation relations that involve reachabilitygro
erties, such as relation (v), often play a crucial role in the definitions of abstractions
These relations have the effect of keeping disjoint subtsenmmarized separately.
Fig. 2(b) shows2-valued structureS,, which represents the store of Fig. 1 using the
core relations of Tab. 1, as well as the instrumentatiorticela of Tab. 2.

If all unary relations are abstraction relations, the caredrab-

straction of2-valued logical structurés is S, shown in Fig. 3, lgown ~ Foot
with all tree nodes not pointed to oy ot represented by the sum- C
mary individual at the bottom. I§3, nodes in the left subtree of @

r oot 's target are indistinguishable from those in its right sebt
according toA (consisting of relations:(v) andr,(v) for each %{
program variable). S5 represents all trees with two or more ele="\
ments, with the root node pointed to by program varialdet .

The following graphical notation is used for depictiBigalued
logical structures:

-~/
— Individuals are represented by circles containing (fpwal- left, right,
ues for unary relations. Summary individuals are repregent down, ty,,,
by double circles. _
— A unary relationp corresponding to a pointer-valued prografd:3: A 3-valued
variable is represented by a solid arrow frpo the individual tsr:ructuresg_ that is
. e canonical ab-
uforwhlchp(u_) = 1,and by the absence opaarrow?o each g -tion of struc-
nodew’ for whichp(u’) = 0. (If p = 0 for all individuals, e s,. In addition
the relation name is not shown.) t0 S, Ss represents
— A binary relationgq is represented by a solid arrow labeledny tree of size or
g between each pair of individualg; and w; for which more that is pointed
q(ui,u;) = 1, and by the absence ofjaarrow between pairsto by program vari-
uj andu; for which g(uj, u}) = 0. abler oot .
— Relations with valud /2 are represented by dotted arrows.

For each kind of statement in the programming language,dherete semantics is de-
fined byrelation-update formulagor core relations. The structure transformers for the
abstract semantics are defined by the same relation-upntatelfs for core relations
andrelation-maintenance formuldsr instrumentation relations. The latter are gener-
ated automatically vidinite differencing15]. Abstract interpretation collects a set of
3-valued structures at each program point. It is implemeatedn iterative procedure
that finds the least fixed point of a certain set of equatioids M/hen the fixed point is

reached, the structures that have been collected at a pnqmpimt describe a superset
of all the execution states that can arise there.

Not all logical structures represent admissible storesex@ude structures that do
not, we impose integrity constraints. For instance, retati(v) of Tab. 1 captures
whether pointer variabl& points to memory celb; = would be given the attribute
“unique”, which imposes the integrity constraint thatan hold for at most one indi-
vidual in any structure¥ vy, ve: x(v1) Ax(ve) = v1 = ve. This formula evaluates
to 1 in any2-valued logical structure that corresponds to an admissitadre. Integrity
constraints contribute to the concretization functig for our abstraction [23]. In-
tegrity constraints are enforced lperce a clean-up operation that may “sharpen” a
3-valued logical structure by setting an indefinite valigZ) to a definite value or
1), or discard a structure entirely if an integrity consttaindefinitely violated by the
structure (e.qg., if it cannot represent any admissibles3tor

2.1 Analyzing Programs that Manipulate (Only) Trees

When analyzing a program in which each data structure ayg@aént is a tree (a prop-
erty that we will calltreenesy it is possible to take advantage of this fact to reduce the
(abstract) state space that is explored. This is achievdthbiyng the analysis perform
a semantic reduction after each step to filter out non-tiegsnay have crept into the
representation. When the analysis relies on the programatotain treeness, to guar-
antee that the results are sound, the analysis must chetckdbaess is preserved at
every step. We address the latter obligation first. The tiectes described below are
applicable whenever one wishes to analyze programs in wadldhput, output, and
intermediate data structures are trees. We call such asdfge-specific shape analy-
ses our DSW analysis is an example of a particular tree-spesfigpe analysis. (Other
work in which tree-specific shape analyses have been deaeloplude [4, 7, 8].)
Checking that Treeness is Maintained. The analyzer checks that treeness is main-
tained by asserting certain logical formulas that captaeeconditions under which the
execution of a program statement could result in a violatibtreeness. Before the
computation of a transfer function, the logical formulagofresponding assertions are
evaluated. If a formul@ossibly fails to holdi.e., does not evaluate tig then an error
report is issued and the analysis is terminated.

For purposes of this paper, a binary tree is a structure gongano cycles and
no nodes with multiple incomingeft orri ght pointers. (Our definition disallows
the sharing of subtrees, and thus is more restrictive thanr#tditional definition that
merely requires there to be at most one path between anyfoa@des. This is not an
inherent limitation of TVLA, if the sharing of subtrees islie permitted, the restriction
on sharing can be relaxed—see footnote 5.)

Given a data structure that satisfies the data-structuegiants for a binary tree,
only one type of statement has the potential to transforndtta structure into one
that violates some of those properties, namely, a stateafehé formx- >sel =y
(wheresel canbd eft orri ght), which creates a negel -connection in the data
structure. Two logical formulas capture the conditiong thearantee that the applica-
tion of the transformer for a statement of the foxm>sel = y maintains treeness.

The first formula captures the precondition élmwnto remain acyclic:
Vur,ve: 2(v1) Ay(ve) = —tgown(ve, v1) Q)

The second formula captures the precondition for the se¢éno avoid introducing
sharing?
Vi, ve: y(vg) = —down(vy, vg)® (2)

Semantic Reduction for Trees. After each application of an abstract transformer, we
perform a semantic reduction to filter out non-trees that heae crept into the abstract
structures computed by the transformer. The reductionfgamented as an application
of coerce to enforce integrity constraints that express data-siredgtivariants.

For instance, relatiodownis given the attributes “acyclic” and “invfunction”. The
“acyclic” attribute ofdownresults in the automatic generation of the following intggr
constraint:

YV u1, 02 tdown(V1, V2) A tdown(V2, V1) = V1 = V2 (3)

The “invfunction” attribute odownresults in the automatic generation of the following
integrity constraint:

Yo1,v9: (Fv: downvy,v) Adown(ve, v)) = v1 = v9 4)

Operationcoerce is applied at certain steps of the algorithm, e.g., afterah@ication
of an abstract transformer, to enforce Constraints (3) dydajong with a few oth-
ers, to help prevent the analysis from admitting non-treed,thereby possibly losing
precision.

3 Deutsch-Schorr-Waite Tree-Traversal Algorithm

The original Deutsch-Schorr-Waite algorithm reverseglihection ofl ef t andr i ght
pointers, as it traverses the tree [18]. It attaches two iits k andt ag, to each node.
Themar k bit serves to prevent multiple visits to nodes on a cycle oshiared sub-
trees. Thet ag bit records whether, during the traversal of reversed pointa node
was reached from its left or right child.

In [10], Lindstrom gave a variant that eliminated the needbfoth bits, provided
the input data structure contains no cycles. His insighttivasone could treat the visit
step at an internal node as a kind of pointer-rotation oeraand that completion of
the tree-traversal could be established having the algonitatch for a distinguished

4 As explained in§3, we ensure thak- >sel is NULL prior an assignment of the form
x->sel =y, sothe assignment indeed creates a seW-connection.

5 If we relaxed the restriction on the sharing of subtreesn,tlie place of Formula (2), we
would employ a slightly more complex formula that precluttes possibility of creating two
paths between a pair of tree nodesand v, (one path that existed prior to the statement,
and the other that was created due to the introduction of #resel edge fromx toy):

YV v1, 2,03, V4 tdown(V1,V4) A tdown(v1, v2) A Z(v2) A y(vs) = —tdown(v3, Va)

[1] void traverse(Tree *root) void traverse(Tree *root) [1]

[2] { Tree *xprev, =*cur, *next; { Tree xprev, =xcur, [2]

*next, xtnp; [3]

[3] if (root == NULL) if (root == NULL) [4]

[4] return; return; [5]

[5] prev = -1; prev = SENTI NEL; [6]

[6] cur = root; cur = root; [7]

[7] while (1) { while (1) { [8]

/1 Save |eft subtree /1 Save the |left subtree

[8] next = cur->left; next = cur->left; [9]
/1 Rotate pointers

tmp = cur->right; [10]

/1l Maintain treeness

cur->right = NULL; [11]
/!l Rotate pointers cur->right = prev; [12]
[9] cur->left = cur->right; cur->left = NULL; [13]
10] cur->right = prev; cur->left = tnp; [14]
/1 Move forward /1 Move forward
[11] prev = cur; prev = cur; [15]
[12] cur = next; cur = next; [16]
[13] if (cur == -1) i f (cur == SENTI NEL) [17]
/'l Traversal conpleted /'l Traversal conpleted
[14] br eak; br eak; [18]
[15] if (cur == NULL) { if (cur == NULL) { [19]
/1l Swap prev and cur /1 Swap prev and cur
[16] cur = prev; cur = prev; [20]
[17] prev = NULL; prev = NULL; [21]
[18] } } [22]
[19] } } [23]
[20] } } [24]

(@) (b)
Fig. 4. (a) Original version of the Deutsch-Schorr-Waite algarittadapted from [10]). (b) Mod-

ified version of the Deutsch-Schorr-Waite algorithm thaswaalyzed using TVLA. (The differ-
ences appear in bold.)

value that serves as a kind of sentinel. In this paper, wealgttonsider the Lindstrom
variant, but continue to refer to it as Deutsch-Schorr-@itSW). Another connection
between our analysis (of the Lindstrom variant) and theiogigversion of DSW is
discussed briefly i§7.

Fig. 4 shows two versions of the Deutsch-Schorr-Waite @gor. The left-hand
column shows a version adapted from [10], also known as ltiogdsscanning. The
right-hand column shows a slightly modified version of thgoaithm that we used in
our work. There are two differences between the two versions

First, the constantl on lines [5] and [13] has been replaced wBENTI NEL,
whereSENTI NEL is assumed to be a reference to a distinguished node thatt jigrto
of the input tree. In TVLA, pointer values can either egNlLL (corresponding to the
situation in which the pointer does not point to any heapdlja point to a heap object

that was allocated byral | oc. In this sense, TVLA follows the semantics of Java,
in which new nonNULL pointer values can be generated only via memory-allocation
operations.
Second, a purely local transformation (involving the idotion of one temporary
variablet np) has been applied to lines [9]-[10]:
[10] tnp = cur->right;
/1 Maintain treeness
[9] cur->left = cur->right; — [11] cur->right NULL;
[10] cur->right = prev; [12] cur->right prev;
[13] cur->left = NULL;
[14] cur->left = tnp;

This really involved three transformations:

1. Assignment statements of the foxm>sel 1 = y- >sel 2 have been normalized
to statement sequencesp = y->sel 2; x->sell = tnp (see lines [10]
and [14] of Fig. 4(b)).

2. Assignment statements of the fokn>sel = y have been normalized to state-
mentsequences >sel = NULL; x->sel = y(seelines[11]-[12]and[13]-
[14] of Fig. 4(b)). This ensures that statements of the fermsel = y cannever

destroy existingel -paths in the data structure, thus simplifying the task ofma
taining information about the reachability of tree nodesrfiprogram variables.

3. Assignmentscur - >ri ght = NULL andcur->ri ght = prev have been
moved to lines [11] and [12] (before assignmentsto - >| ef t). This change
prevents the right child o€ur s target from temporarily having two incoming
edges after the assignmentdar - >| ef t on line [14]% The resulting algorithm
maintains the invariant that the nodes of the input tree ydwaake up one or
two data structures that satisfy the binary-tree properéifier the assignment on
line [14] of Fig. 4(b), the nodes of the input tree make up tvees$, one rooted at
next ’'s target, and the other rootedair 's target; the original root is a descendant
of cur ’s target.

Transformations 1 and 2 above are simple normalizatiorisotiecould expect to find
in a translation of programs written in a high-level langaiago a lower-level interme-
diate representation. Transformation 3 prevents the teanpsharing ofcur s right
subtree (it would otherwise briefly becomer 's left andcur’s right subtree). We
could relax our restriction on sharing and analyze the warsf the algorithm that does
not include transformation 37 discusses how we would approach this task), but we
chose to verify total correctness and preservation of g#seffior the slightly modified
version of the DSW algorithm shown in Fig. 4(b). Because ahsformation 3, the
techniques 0§2.1 apply in the analysis of this version; we now describg ¥ersion in
detail.

For each tree node the body of thewhi | e loop is executed three times withur
pointing ton. Each time than is considered, it ef t andri ght pointers are rotated
in a counter-clockwise fashion on lines [10]—[14] of Figb¥(cf. lines [9] and [10] of

5 Only the assignmentur - >ri ght = NULL needs to be moved to achieve the desired effect.
We moved both assignments for clarity.

Fig. 4(a)). After the third such execution, the originalued for thd ef t andri ght

pointers are re-established, as we explain below.
/

Before the first execution of lines [10]-
[14] of Fig. 4(b) withcur pointing ton, no
nodes in the subtrees rooted ai r (n’s left
and right subtrees in the original tree) have "

cur.

been visited, and nbef t orri ght point- (o)n P tmp
ers of nodes in the subtrees rooted ar r next tmp prev next
have been modified. In this situation, we say / \ »{
thatn is in state 0 Fig. 5(a) illustrates this %)\ A %’\ /)\
situation.

A pointer to nodel, the left child ofn (@) (b)
prior to the rotation ofi's | ef t andri ght
pointers, is saved inext on line [9]. After
the rotation, the traversal continues by mov-
ing into the (sub)tree rooted atext , i.e., \ eur
| (see lines [15] and [16]). Wheaur be- p next n next
comes null, the values @fur andpr ev are P PIov- tmp prev
swapped on lines [20] and [21]. This causes\ /

/ r | r
the traversal to backtrack to the most recently /\ /3\ /3\ /3\

visited node that had a right subtree in the 2
original tree. (©) (d)

When the traversal backtracks to, Fig. 5. States of the subtree of with cur
the algorithm reaches lines [10]-[14] 0poin’[ing ton: (a).after the fir§t execu;ion
Fig. 4(b) for the second time withur point- ©F Statement on line [10] of Fig. 4(b) is
ing ton. At this point, all nodes iis subtree " Staté 0 (b) after the second execution of

L . ..~ statement on line [10] of Fig. 4(bj is in
and no nodes in's subtree have been V'S'tedstate 1, (c) after the third execution of state-

Thel eft andri ght pointers of nOQes N ment on line [10] of Fig. 4(b)n is in state
I's subtree have been rotated three times apd(q) after the third execution of statement

restored to their original values. N&f t or on line [14] of Fig. 4(b), n is in state 3.

ri ght pointers of nodes in's subtree have Grey edges represent the original values of
been modified. In this situation we say thahel ef t andri ght fields.

nis in state 1 Fig. 5(b) illustrates this situa-

tion.

A pointer to node, the left child ofn prior to the second rotation ofs pointers, is
saved imnext . After the rotation, the traversal continues by moving itite (sub)tree
rooted atr (see lines [15] and [16]). Once again, the algorithm backsavhencur
is null. When the traversal backtracksnpthe algorithm reaches lines [10]-[14] of
Fig. 4(b) for the third (and final) time witbur pointing ton. At this point, all nodes
in I's andr’s subtrees have been visited. Thef t andri ght pointers of nodes in
both subtrees have been rotated three times and restotegitottiginal values. In this
situation we say thatis in state 2 Fig. 5(c) illustrates this situation.

After the subsequent execution of lines [10]—-[14] of Fihith cur pointing to
n,n's| eft andri ght pointers are restored to their original values. At this paafi
nodes in the subtree rootedrahave been visited, and dllef t andri ght pointers

in the subtree have been rotated three times and restoreélitmtiginal values. In this
situation we say that is in state 3 Fig. 5(d) illustrates this situation.

The algorithm traverses the traeorder, visiting each node three times: (1) while
following the original ef t pointers frorm's parentthroughintol’s subtree, (2) while
backtracking from'’s subtree tan and then traversings subtree, and (3) while back-
tracking fromr’s subtree through to n's parent in the original tree.

Fig. 6 depicts the states of the tree nodes that are not
in the subtree pointed to byur . All ancestors (in the
original tree) ofcur ’s target are in state 1 or 2, indicat-
ing that the left (1) or right (2), subtree is currently being
traversed. It ur 'starget lies in the left subtree of an an- A
cestor, then that ancestor must be in state 1, otherwise |
must be in state 2. The triangular shapes at left repres
all nodes that occur earlier tharur 's target in an in-
order traversal of the tree. For each of these nodes there
exists an ancestor @fur 's target, such that the node is
in the left subtree of the ancestor, andlr 's target is in (2)
the right subtree of the ancestor. All nodes in that cat- (?) A
egory are in state 3; they have been visited three times
and theirl ef t andri ght pointers have been reset to
their original values. The triangular shapes at right rep- A
resent all nodes that occur later thaur s target in an
in-order traversal of the tree. For each of these nodeg. 6. States of tree nodes
there exists an ancestor ofir ’s target, such that thethat are outside of the subtree
node is in the right subtree of the ancestor, and’s Pointed to bycur . (Grey edges
target is in the left subtree of the ancestor. All nodégpresent the original values of
in that category are in state 0; they have not been \i¢! €ft andright fields.)
ited, and theit ef t andri ght pointers still have their
original values.

cur

4 A Shape Abstraction for Verifying DSW

Consider the problem of establishing that the Deutsch-@déMaite algorithm shown
in Fig. 4(b) is partially correct. This is an assertion thatnpares the state of a store at
the end of the procedure with its state at the start.

Partial correctness of DSW means (i) the tree produced abmigt be identical to
the input tree, and (ii) every node must be visited. We wilheoback to property (ii)
when we discuss the total correctness of DSW5SnProperty (i) can be specified as
follows:

Yo, ve: left(vy, ve) < |ef[0(’l}1,1)2) (5)
Yoy, vg: right(vy, vy) <> right® (v1, vy), (6)
whereleft’ andright’ denote the initial values of relatiomeft andright, respectively.

Additionally, a correct traversal routine must neitherdo®des of the input tree, nor
gain new ones. However, this property is implied by propesr(b) and (6).

The challenge is that the abstraction has to track the “anggd” use of pointers
for stack simulation with sufficient precision to verify theat the end of the algorithm
their correct usage has been reestablished. Canonicedetiist with just the properties
listed in Tabs. 1 and 2 is an insufficiently precise abstoacto demonstrate that the
tree’s edges are restored.

The key relations for establishing properties (5) and (8hatend of the program
are those that capture the relationships of pointers tled Aetween tree nodes during
the traversal. The following set of unary relations cappn@perties of nodes in state
0 (before any changes to the nodegft andri ght pointers) or state 3 (after the
nodes’l ef t andri ght pointer values have been restored):

eq o (v1) 2f g - left(vy, vo) <> left’ (v1, vs) @)
eq. .o(v1) LT right(vy, v2) <> right® (vy, vz (8)

Unary relationseq ;0 (v1) andeq,,o(v1) distinguish individuals that represent tree
nodes whoskef t , respectively i ght , pointers have their initial values. We can now
useVv: eq p(v) in place of Formula (5) antfv: eq. ,.(v) in place of Formula (6)
when asserting the partial correctness of DSW.

The following set of unary relations capture propertiesades in state 1, after one
visit to those nodes, i.e., one rotation of thef t andr i ght pointers:

€0 (v1) & Voo : left(vy, vs) < right’(vy, vo) 9)
e, 0 (v1) % Yoy right(vy, v2) <> 16f (v, v1) (10)
e, o (v1) < Yoy : right(vy, va) <> right® (vy, vy) (11)

Unary relatioreq ,.. (v1) distinguishes individuals that represent tree nodes wheté
field points to their right (in the input tree) subtree. Unaeyationsre,. ;o (v1) and
re,..o(v1) (re is a mnemonic foreversg distinguish individuals that represent tree
nodesn whoser i ght fields point to their parents in the input tree (assuming that
n is the left child in the case @, ;0 (v1) and right child, otherwise).

The following set of unary relations capture propertiesades in state 2, after two
visits to those nodes, i.e., two rotations of thef t andr i ght pointers:

e o0(v1) = Vo right(vr, va) < lef (v1, vo) (12)
rey o (vl) def Yug: |6ft(v1, ’Ug) <~ left (’Ug, vl) (13)
re; o (’Ul) d:ef Yug: |Eft(’U1, 1}2) =2 righto (’UQ, 1}1) (14)

Unary relationeq,. ,o(v1) distinguishes individuals that represent tree nodes whose
ri ght field points to their left (in the input tree) subtree. Unaejationsre; ;o (v1)
andre; o (v1) distinguish individuals that represent tree nodewhosel ef t fields
point to their parents in the input tree (assuming thad the left child in the case of
re; ;0 (v1) and right child, otherwise).

Let us give the intuition behind the use of the relations aefiby Formulas (7)—
(14) for the partial-correctness verification of DSW, whiictolves establishing that all
| eft andri ght pointers have their initial values at the end of DSW.

These relations maintain the relationship between theotiand the original values
of | eft andri ght pointers. Prior to the first rotation of pointers for nagen has
entriesl for the state-0 relations (Formulas (7) and (8)), which ey there has been
no change fronm’s starting pointer values. These entries allow the ansilgstonclude
that after the current iteration’s rotationm$ pointersn should have entry for state-1
relations, Formula (9) and Formulas (10) or (11). Similaithg 1 entries for the state-1
relations for noden help establish tha entries for its state-2 relations (Formula (12)
and Formulas (13) or (14)) after the second rotatiom®pointers. Finally, thd entries
for the state-2 relations for nodehelp establish tha entries for its state-3 relations
Formulas (7) and (8) after the third rotationrds pointers.

In our initial attempt to establish the partial correctnes®SW, we added all re-
lations of Formulas (7)—(14) to the set of abstraction et .A. This attempt failed
(we terminated the analysis after several days of communiptiecause of the vast ab-
stract state space that needed to be explored. To pare dewabttract state space,
we observed that not all node distinctions introduced byrditegtions of Formulas (7)—
(14) were necessary. For instance, note that any leaf nodtaia O or state 3 sat-
isfies (among other relations) Formula (9), which defiags.—nominally a state-1
relation—because it has no outgoihgf t orri ght pointers, while an internal tree
node in state O or state 3 does not satisfy it. As a resglt,c prevents canonical ab-
straction from summarizing a leaf node in state 0 or 3 withraarnal node in one of
those states. The resulting abstraction has a largerstbaessary state space because
we only need to ensure that tree nodes in state 1 havel teeir field pointing to their
original right subtree, i.e., have the property defined lgyrtationeq; 0.

To remove such unnecessary distinctions, we introduce oneept of astate-
dependenabstraction. The first component of such an abstraction isllaction of
unary corestate relationsstate (v), statg (v), state (v), andstate (v).” Every time the
rotation ofl ef t andri ght pointers of the tree node pointed to byr is completed
(after line [14] of Fig. 4(b)), the node’s state is changedh® next state. (The state
relations carry no semantics with respect to the pointaresbf nodes; they simply
record the “visit counts” for each node.) As the second camept of the abstraction,
we introduce state-relation-guarded versions of theioglatof Formulas (7)—(14):

50-€G 0 (v1) = state(vi) Aeq jo(vi) (15)
50-€0, .0 (v1) ef state(v1) A eq. .o(v1) (16)
51-€0 .0 (v1) 4 statg (v1) Aeq o(v1) a7)
511, o (v1) 4 statg (v1) Areppo(vr) (18)
s1re, o (vy) 4 statg (vi) Areppo(v1) (29)
s2-€q,. o (v1) 1 state (v1) Aeq. o(v1) (20)
So1€; 10 (v1) 4 state (vi) Areppo(vr) (21)
5.1€y yo(v1) 4 state (v1) Areypo(vr) (22)

" The state relations aretadded to the set of abstraction relatiods,

53-€0 10 (v1) def statey (v1) A eq jo(v1) (23)
53-€0, .0 (v1) 1 state, (v1) Aeq. o(v1) (24)

We replace the relations of Formulas (7)—(14) in the set sfrabtion relations4, with
Formulas (15)—(24). The resulting abstraction allows treuging of nodes that have
different values for the relatioag; ,.o, for example, as long as these nodes are not in
state 1.

5 Establishing that DSW Terminates

We can establish that DSW terminates using the unary statores of§4 via a simple
progress monitor, which we describe below.

For each state relatiaf) we create a copy of, which is used to save the values of
relations at the start of the currently-processed loop iteratioretdifte [8] of Fig. 4(b)).
We give the new relations the supersciliptto indicate that they hold thiwop-head
values. The first abstract operation of each iteration ofdbp takes a snapshot of the
current states of nodestatd" (v) «— statg(v), for eachi € [0..3] and each binding af
to individuals in the abstract structure being processelditfonally, it asserts thatur
does not point to a tree node in state 3 at the head of the loop.

The last operation of every loop iteration performs a pregtest by asserting the
following formula:

Jv: (statd)(v) A stata (v) V statd' (v) A state (v) V statd'(v) A statg(v))
A\ Vv #v: (statd)(vy) < state (v1)) A(statd! (v;) < statg (v1)) A
(statd] (v1) <> state (v1)) A(statd) (v;) < statey(vy))

The assertion ensures that one node’s state makes forwagdeps (the first line of
the assertion) and that no other node changes state (thedsand third lines of the
assertion).

Together with the assertion thatir does not point to a tree node in state 3 at the
start of the loop, the above progress monitor establistetsetiich tree node is visited
exactly three times, thus establishing that the algorittrminates, as well as the fact
that every node is, in fact, visited by the algorithm (praypéii) of partial correctness).

6 Experimental Evaluation

We applied TVLA to the DSW algorithm shown in Fig. 4(b) and lgmed it using the
abstraction defined ig4. As input for the algorithm, we supplied the 3-valued dnoe

S7 shown in Fig. 7, which is essentially the struct$kefrom Fig. 3 refined with values
for relations introduced i§4. Additionally, S7 contains a speciaentinelnode that is

not part of the input tree; it is referenced by program vdei&ENTI NEL. In Fig. 7,

as well as Fig. 8, relationieft” andright’ are omitted to reduce clutter. Their values
are identical tdeft andright, respectively. We have also omitted the values for state-1
and state-2 relationsy; .0, re, 0, 7€, v0, €¢; 0, 7€) 0, andre; 0. They have valua /2

for the non-sentinel nodes of both figures and valder the sentinel nodes. Because
we are performing tree-specific shape analysis, both figonés represent concrete
structures that satisfy the treeness integrity conssdgees2.1).

Fig. 8 shows the unique structuf collected by the
analysis at the exit node. The definitevalues for rela-
tionsegq; ;o andeg,. o (defined by Formulas (7) and (8)) for
each individual ofSg establish that the outgoingef t and
ri ght pointers of every tree node are restored, thus es-
tablishing partial correctness property (i), i.e., tha tree
produced at exitis identical to the input tree. The absehce o
violations of the progress monitor definedsip establishes

faoun root

visited (partial correctness property (ii)). £/
The analysis took just under nine hours on a 3GHz\.
Linux PC and used 150MB of memory. While the au-
thors have a number of ideas for performance optimizations
for the research system, the main goal was to demonstrat¢
the feasibility of automatic symbolic exploration of heap-
manipulating programs with vast (abstract) state spaces.
The cost of verifying that DSW terminates is negligi-
ble (when compared to the cost that DSW is partially cor-

N~N_ 7

rect) because the progress monitor does not increase theef, right,

size of the reachable state space. The number of distinciown, t,,,,,

abstract structures that were collected at all programtpoin

exceeded 80,000. The number of structures at some pi§-7-A 3-valued structure

gram points exceeded 11,000. This number is not surprig-that represents all trees

ing, if we consider that some of these structures contairfid'2€ 2 ©" more.
15individuals. (At intermediate steps, the analysis erqalo
abstracts structures with up to 21 individuals!) However080 is well below the limit
imposed by the number of distinct 3-valued structu&s,, which represents the num-
ber of subsets of individuals with every possible vector @y abstraction-relation
values. (There ar20 unary abstraction relations: pointer relatiar($) and reachabil-
ity relationsr, (v) for each of the five pointer-valued program variables, a$ asten
relations of Formulas (15)—(24).) Fig. 9 shows a sampleratisstructuresy that arises
before line [11] of Fig. 4(b). ISy, as in all other structures that arise at that point, the
state relations and state-relation-guarded relationaegfiy Formulas (15)—(24), have
precise values for all individuals.

In summary, our experiment showed that, using the abstrackefined ing4, an
automatic analysis can maintain enough precision to iflestifficient invariants to
demonstrate both partial correctness and termination /DS

7 Discussion and Future Work

The analysis carried out by TVLA performs fully-automattate-space exploration.
However, one has to bring to bear some expertise in spegiff\ViLA analyses. The

concept of tree-specific shape analysis (&&4&) is of general utility. It can be reused
for any analysis in which all input, output, and intermedidata structures are trees.
The instrumentation relations defined by Formulas (9)-(&#ich capture pointer rela-
tionships of tree nodes, and core state relatgtat® (v), . . ., statg(v), which are used
to control the precision of the abstraction, are specifiheogroblem of verifying the
total correctness of DSW.

A key difference between our approach and theorem-
prover-based approaches is that we do not need to specify
loop invariants. Instead, we need to specify a collection of
node distinctions (or node relationships), such as the rela
tionseq .o (v1) andre, o (v1) of Formulas (9)—(14); these
allow the node distinctions specified to be observable by the
analysis. Given the appropriate node distinctions, abistra
interpretation automatically infers the invariants Jad by
the program. /<

Recently, a machine-learning technique has been usetdfo.
identify key instrumentation relations automatically J1lh N\
the future, we would like to see if it can be used to identify
the key relations for verifying DSW, namely the relations of
Formulas (9)—(14).

Although the instrumentation relations introduced
are tailored for establishing the correctness of DSW, time co
cept of state-dependent abstractions is likely to be of gg¢ne
utility. In fact, simpler versions of state-dependent edust
tions have arisen in past work. For example, the unary rela-
tion inOrder was used to establish the partial correctness of
sorting [9]. The state-dependent abstractions definedsn thig. 8. A 3-valued struc-
paper are prepared to deal with more than just two staters Ss collected at exit of
(initial and final, as is the case for the relatio®rder), and DSW.
use the value of the state as a guard to reduce the number of
distinct properties recorded for individuals, therebyugdg the size of the (abstract)
state space that is explored.

There is an interesting analogy between the explicit staieking that the original
DSW algorithm performs via thear k andt ag bits, and the state relations of our
abstraction. (In some sense, the state relations intrabfiecgurposes of analysis im-
pose a DSW-like view of the world to track the actions of thedstrom variant of the
algorithm.)

While we chose to apply a transformation that ensures tteaatgorithm main-
tains treeness (transformation 358, it is possible to verify the unmodified algorithm
(Fig. 4(a)) by introducing the following instrumentaticgiation:

tiown root,prev

Moot
prev
state,

0
SS—qu.IO
S;_€q,,

TANILNIS N

rsentinel

state,

isLocallySharetw) % J v, : left(vy, v) Aright(vy, v)

RelationisLocallySharedwhich has value 0 for all nodes in the input 3-valued struc-
ture, indicating that the input is a valid binary tree) alfous to relax the restriction
on sharing by tracking where sharing occurs rather thaninieguts absence. To be

prev

s0_eq_lI0
s0_eq_rr0
state0
r_cur

eq_llo
eq_rr0

eq_rlo
s2_eq_rl0
s2_re_lI0
re_ll0
re_rr0

t_down tmp

state2
r_prev

eq_Ir0
eq_rlo
s0_eq_ll0
s0_eq_rr0

state0
r_cur

eq_rl0

s2_eq_rl0
s2_re_ll0 re_Ir0 r_tmp
re_llo re_rr0 t_down t_down eq_llo t_down
re_rr0 state0 eq_rr0
state2 r_cur eq_Ir0=1/2
r_prev r_next eq_rl0=1/2
eq_llo re_ll0=1/2

eq_rr0 - /A\re_rlo=1/;

“left " right

t_down - '.r\ght '.tidown "left - down A < . - tdown

state0
r_cur

eq_Ir0 N\’ - T
sl_eq_Ir0 r_tmp .
sl_re_rr0 eq_llo . . :
t_down re_llo eq_r0 * down. t_down’ left ’ right
re_r0 eq_lr0=1/2 : . .
statel eq_rlo=1/2 .
re_ll0=1/2

r_prev
re_Ir0=1/2

eq_Ir0
sl_eq_Ir0
re_ll0

re_lr0
statel
r_prev
r_root

SENTINEL

eq_lr0
eq_rl0
s0_eq_ll0
s0_eq_rr0
re_ll0
re_Ir0
re_rl0
re_rr0
state0
r_prev
r_root
r_SENTINEL
eq_llo
eq_rr0

t_down

Fig.9. A 3-valued structureSy that arises prior to the first rotation of pointers of the node
pointed to bycur (before line [11] of Fig. 4(b)). Relatiorieft® andright® are omitted from the

figure. Initially, noden was the right child of the node pointed to pyev. The latter node is now
the root of a tree with lea®ENTI NEL (the original root is the parent &ENTI NEL). No nodes

in n’s subtree have been visited; that subtree has not been ewéidim its initial state.

applicable to the version of the algorithm that does notudeltransformation 3, the
tree-specific shape analysis §#.1 can be generalized to handle the limited class of
DAGs that arise in lines [9]-[10] of Fig. 4(a) as follows:

1. The precondition for the absence of sharing (Formulaw®))ld be removed.

2. The integrity constraints that forbid structures thaitan sharing would be mod-
ified to include anisLocallySharedyuard to permit the kind of local sharing that
arises in Fig. 4(a). E.g., Constraint (4) becomes:

Vv1,ve: (v: —isLocallySharetw) A down(vy, v) A down(vy, v)) = v1 = vs.

The DSW algorithm shown in Fig. 4(b) (as well as the algorigimawn in Fig. 4(a))
does not work correctly when applied to a data structurecthiatiains a cycle: the traver-
sal terminates prematurely and not all of the edges are gyomstored. However, the
algorithm works correctly when applied to a DAG: a nodeith & paths from the root
to nis visited 3k times, rather than 3 times. (Note, however, thafin be exponential
in the size of the graph.) Given a boundorwe may be able to verify the correctness
of DSW for DAGs, if we relax the restriction on sharing andraatuce3k state rela-
tions and the corresponding state-relation-guardedoagtHowever, unlesk is very
small it is not likely that the reachable state space can pweed with our computing
resources. In the general case, in which the input is a DAG wit bound ork, the
partial-correctness result can be obtained by having #ite selations of nodes wrap
around: a visit to a node in state 3 results in changing thesatate to 1. While this
change would be sufficient to establish that the outgbiafit andri ght pointers
of every DAG node are restored and that every node is visitedanalysis would no
longer be able to establish termination using the simplgm@s monitor 05.

In practice, one would rarely be interested in using suchlgorighm to traverse a
DAG because of the potentially exponential cost. In mostiegiions, one is likely to
want to process each node once (e.g., in depth-first ordémjiait each node a constant
number of times. This can be achieved by equipping the nodtbswo bits to record
the visit count (a number from 0 to 3). All nodes reachablenffepnode with visit count
3 must have been visited three timescifr is set to point to a node with visit count 3,
the direction of the traversal can be reversed by swappmgdhues ot ur andpr ev,
thus terminating the exploration of the node’s subgraphrdbgxing the restriction on
sharing, it should be possible to verify the total correstngf the modified algorithm.

8 Related Work®

The general form of the Deutsch-Schorr-Waite algorithmksarorrectly for arbitrary
graphs [18]. (Unlike the algorithm we used in our work, whighs taken from [10],
the general form is not constant-space because it uses matk@bits.) We divide the
discussion of related work according to the kind of datacstnes to which the analyzed
algorithm can be applied.

DSW on Arbitrary Graphs. The first formal proofs of the partial correctness of DSW
were performed manually by Morris [14] and Topor [20]. In [18uzuki automated
some steps of the partial-correctness verification of tgeradchm by introducing deci-
sion procedures that could handle heap-manipulating progrMore recently, Bornat

8 The discussion of [14, 20, 19] relies on what is reported &) §3].

used the Jape proof editor [3] to construct a partial-comess proof of DSW [2]. The
resulting proof used 152 pages [1].

Our automated approach provides the obvious benefit of giisgavith the need
to provide manual proofs, which require significant investits of time and expertise.
However, even in the presence of a powerful theorem proveaffbased approaches
rely on the user to provide loop invariants that are sufficierestablish the property
being verified. For instance, the properties of nodes aridghbtrees that are described
in §3 (see Figs. 5 and 6 and the corresponding text) would have spécified as loop
invariants. As discussed §Y, our obligation is simpler: we have to specify instrumen-
tation relations that act dagredientsfor a loop invariant; the analysis automatically
synthesizes a loop invariant—in the form of a collection efaBued structures that
overapproximate the set of concrete structures that dgtadse—by means of state-
space exploration.

Yang [21] and Mehta and Nipkow [13] gave manually-consed¢cbut machine-
checkable, proofs of the partial correctness of DSW. Theapmroaches share the goal
of making formal reasoning about heap-manipulating pnogrenore natural. The for-
mer approach uses the logic of Bunched Implications [5] @cyrsor formalism to
Separation Logic [16]), which permits the user to reasoh Wibare triples in the pres-
ence of complicated aliasing relationships. The latteragagh uses Isabelle/HOL to
construct formal proofs that are human-readable. Thes®apbpes improve the usabil-
ity of proof-based techniques. However, they still lack @litomation of our approach.

DSW on Trees and DAGs.Yelowitz and Duncan were the first to present a termination
argument for the Deutsch-Schorr-Waite algorithm [22]. yraealyzed Knuth's version
of the algorithm [6], which uses tag bits but does not workrectly for graphs that
contain a cycle. It does, however, work for DAGSs, as does #rsign we used, taken
from [10]. The termination argument involved the use of penyg invariants to prove
bounds on the number of executions of statements in the ladh, we showed how
to use thestate relationglefined ing4 in a simple progress monitor for the algorithm’s
loop to establish that DSW terminates (on trees). As wasabe for partial correctness,
our task is reduced to establishing appropriate distinstioetween nodes. Given the
state relations, the complete state-space explorationssho violation of the progress
monitor and establishes a bound (namely, three) on the nuaibasits to each tree
node; consequently, the algorithm must terminate.

Several previous papers reported on automatic verificatiaveaker properties of
the Deutsch-Schorr-Waite algorithm, namely that the dtigor has no unsafe pointer
operations or memory leaks, and that the data structuraipeatit the end is, in fact, a
binary tree [15, 12, 7]. The authors first established thespegsties in [15]. ([12] con-
tains a typo stating that that work establishes partialemness; however, [12] reused
the TVLA specification from [15], and establishes the sameperties as [15].) Fi-
nally, [7] extended the framework of [17] with grammars, elhiprovide convenient
syntactic sugar for expressing shape properties of datatstes. That work relied on
the use of grammars, instead of instrumentation relattorexpress tree properties and
the absence of memory leaks.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

R. Bornat. Proofs of pointer programs in Jape. “Availablat
http://www.dcs.gmul.ac.ukfrichard/pointers/”.

R. Bornat. Proving pointer programs in Hoare logicMathematics of Program Construc-
tion, pages 102-126, July 2000.

. R. Bornat and B. Sufrin. Animating formal proofs at theface: The Jape proof calculator.

The Computer Journa#3:177-192, 1999.

. L. Hendren. Parallelizing Programs with Recursive Data Structurd2hD thesis, Dept. of

Computer Science, Cornell University, January 1990.

. S. Ishtiaq and P. O’Hearn. Bi as an assertion language titabte data structures. Bymp.

on Principles of Programming Languagesages 14-26, January 2001.

. D. Knuth. The Art of Computer Programming — Vol. 1, Fundamental Aldyons Addison-

Wesley, 1973.

. O. Lee, H. Yang, and K. Yi. Automatic verification of poinfgrograms using grammar-based

shape analysis. IEuropean Symp. On Programmingages 124-140, April 2005.

. T. Lev-Ami, N. Immerman, and M. Sagiv. Fast and precisdrabgon for shape analysis.

To appear irProc. Computer-Aided Verificatiop@ugust 2006.

. T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting &tatnalysis to work for verifi-

cation: A case study. Imt. Symp. on Software Testing and Analypsges 26—38, August
2000.

G. Lindstrom. Scanning list structures without stacksag bits. Information Processing
Letters 2(2):47-51, June 1973.

A. Loginov, T. Reps, and M. Sagiv. Abstraction refinemeatinductive learning. IrfProc.
Computer-Aided Verificatigrpages 519-533, July 2005.

R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Blytdisjunctive heap abstraction.
In Static Analysis Symppages 265279, August 2004.

F. Mehta and T. Nipkow. Proving pointer programs in hrghieler logic. InAutomated
Deduction — CADE-19ages 121-135, July 2003.

J. Morris. Verification-oriented language design. TeRbport TR-7, Computer Science
Div., University of California—Berkeley, December 1972.

T. Reps, M. Sagiv, and A. Loginov. Finite differencingadical formulas with applications
to program analysis. IBEuropean Symp. On Programmingages 380-398, April 2003.

J. Reynolds. Separation Logic: A logic for shared matalalta structures. lBymp. on Logic
in Computer Scien¢gages 55—74, July 2002.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape arsalja 3-valued logic. ACM
Trans. on Programming Languages and Systems (TOR24&):217-298, 2002.

H. Schorr and W. Waite. An efficient machine independemtgdure for garbage collection
in various list structuresCommunications of the ACMO0(8):501-506, August 1967.

N. Suzuki.Automatic Verification of Programs with Complex Data Stawes PhD thesis,
Dept. of Computer Science, Stanford University, Febru&el

R. Topor. The correctness of the Schorr-Waite list rmgylalgorithm. Tech. Report MIP-R-
104, School of Artificial Intelligence, University of Edinlgh, July 1974.

H. Yang. Local Reasoning for Stateful ProgramBhD thesis, Dept. of Computer Science,
University of lllinois, Urbana-Champaign, June 2001.

L. Yelowitz and A. Duncan. Abstractions, instantiaipand proofs of marking algorithms.
In Symp. on Artificial Intelligence and Programming Languagesyes 13-21, August 1977.
G. Yorsh, T. Reps, M. Sagiv, and R. Wilhelm. Logical cletegizations of heap abstractions.
To appear irACM Transactions on Computational Logic (TOCL)

