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Abstract. This paper reports on the automated verification of thetotal correct-
ness(partial correctness and termination) of the Deutsch-Schorr-Waite (DSW)
algorithm. DSW is an algorithm for traversing a binary tree without the use of
a stack by means of destructive pointer manipulation. Priorapproaches to the
verification of the algorithm involved applications of theorem provers or hand-
written proofs. TVLA’s abstract-interpretation approachmade possible the auto-
matic symbolic exploration of all memory configurations that can arise. With the
introduction of a few simple core and instrumentation relations, TVLA was able
to establish the partial correctness and termination of DSW.

1 Introduction

The Deutsch-Schorr-Waite (DSW) algorithm provides a way totraverse a tree without
the use of a stack by temporarily—but systematically—stealing pointer fields of the
tree’s nodes to serve in place of the stack that one ordinarily needs during, e.g., an
in-order traversal.3 The benefits of being able to perform a tree traversal withoutthe
use of a stack are best seen in the context of garbage collection: such an algorithm
can be employed during themark phase of garbage collection, when the scarcity of
available memory can preclude the use of either an explicit stack for traversing a tree,
or a recursive tree traversal (which would use an implicit stack of activation records).

The subtlety of the algorithm (and the complexity of analyzing it) is due to the
fact that, during the traversal, the algorithm visits each node of the tree three times,
and performs a kind of pointer rotation on each node visit [10]. By the time the algo-
rithm finishes, it has restored the original values of each node’s left-child and right-child
pointers, thus restoring the original tree.

Richard Bornat singles out the algorithm as a key test for formal methods: “The
[Deutsch-]Schorr-Waite algorithm is the first mountain that any formalism for pointer
analysis should climb.” [2] Past approaches have involved hand-written proofs of com-
plicated invariants to verify the partial correctness of the algorithm. Even with some
automation, these efforts were usually laborious: a proof performed in 2002 with the
help of the Jape proof editor took 152 pages! [1] The key advantage of TVLA’s abstract-
interpretation approach over proof-theoretic approachesis that a relatively small num-
ber of concepts are involved in defining an abstraction of thestructures that can arise on

3 The variant of the algorithm that we analyzed works correctly when applied to a directed
acyclic graph (DAG). While our current analysis applies only when the input is a binary tree,
§7 discusses how this limitation can be addressed.



any execution, and verification is then carried out automatically by symbolic exploration
of all memory configurations that can arise. In particular, we defined the abstraction us-
ing a few simple instrumentation relations—eight key formulas—each containing only
two atomic subformulas.

The contributions of this work can be summarized as follows:

– We defined an abstraction (in the canonical-abstraction framework used by TVLA)
that captures sufficient invariants of DSW to demonstrate partial correctness and
termination.

– We used the fact that each tree node passes through four states (induced by the
original state and the three visits to each node) to define astate-dependentabstrac-
tion, which requires fewer structures to represent the memory configurations that
can arise in DSW than would be necessary without state dependence.

– We used the abstraction to establish the partial correctness of DSW via automatic
symbolic exploration of all memory configurations.

– We used thestate-dependentabstraction to establish a bound on the number of
iterations of the algorithm’s loop, thus establishing thatDSW terminates.

2 Program Analysis using 3-Valued Logic
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Fig. 1. A possible concrete
store for a binary tree.

In this section we give a brief overview of the framework
of parametric shape analysis via three-valued logic. For
more details, the reader is referred to [17].

Program states are represented usingfirst-order logi-
cal structures, which consist of a collection ofindividu-
als, together with aninterpretationfor a finite vocabulary
of finite-arity relation symbols,R. An interpretation is a
truth-value assignment for each relation symbol for every
appropriate-arity tuple of individuals. To ensure termina-
tion, the framework puts a bound on the number of distinct logical structures that can
arise during analysis by grouping individuals that are indistinguishable according to a
special subset of unary relations,A. The grouping of nodes is referred to ascanonical
abstractionand the setA is referred to as the set ofabstraction relations.

The application of canonical abstraction typically transforms a logical structureS
into a3-valued logical structureS#, in which the third value,1/2, denotes the possi-
bility of having either0 (false) or1 (true) inS. A program state is updated and queried
via logical formulas, which are interpreted over the three-valued structureS# using a
straightforward extension of Kleene’s 2-valued semantics.

Because of canonical abstraction, individuals in a 3-valued structure can represent
more than one individual in a given 2-valued structure; suchindividuals are referred to
assummary individuals. In general, a 3-valued logical structure can represent an infinite
set of 2-valued structures.

Program states are encoded in terms ofcore relations, C ⊆ R. Core relations are
part of the underlying semantics of the language to be analyzed; they record atomic
properties of stores. For instance, Tab. 1 gives the definition of a C binary-tree datatype,



typedef struct node {
struct node *left;
int data;
struct node *right;

} *Tree;

Relation Intended Meaning
x(v) Does pointer variablex point to heap cellv?
left(v1, v2) Does theleft field of v1 point tov2?

(Is v2 the left child ofv1?)
right(v1, v2) Does theright field of v1 point tov2?

(Is v2 the right child ofv1?)
(a) (b)

Table 1. (a) Declaration of a binary-tree datatype in C. (b) Core relations used for representing
the stores manipulated by programs that use typeTree.

and lists the core relations that would be used to represent the stores manipulated by
programs that use typeTree, such as the store in Fig. 1. Unary relations represent
pointer variables, and binary relationsleft and right represent theleft andright
fields of aTree node. Fig. 2(a) shows2-valued structureS2, which represents the
store of Fig. 1 using the relations of Tab. 1.

p Intended Meaning Defining Formula

down(v1, v2) Do theleft or right fields ofv1 point tov2? left(v1, v2)∨ right(v1, v2)
(Is v2 a child ofv1?)

tdown(v1, v2) Is v2 reachable fromv1 down∗(v1, v2)
alongleft andright fields?

rx(v) Is v reachable from pointer variablex ∃ v1 : x(v1) ∧ tdown(v1, v)
alongleft andright fields?

Table 2.Defining formulas of instrumentation relations commonly employed in analyses of pro-
grams that use typeTree. There is a separate relationrx for every program variablex.
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Fig. 2. A logical structureS2 that represents the store shown in Fig. 1 in graphical form: (a) S2

with relations of Tab. 1. (b)S2 with relations of Tabs. 1 and 2 (relations of Tab. 1 appear in grey).
Unlabeled (curved) arcs between nodes represent thetdown relation. Self-loops of thetdown relation
(corresponding to the reflexive tuples) have been omitted toreduce clutter.



The abstraction function on which an analysis is based, and hence the precision of
the analysis defined, can be tuned by (i) choosing to equip structures with additionalin-
strumentation relationsto record derived properties, and (ii) varying which of the unary
core and unary instrumentation relations are used as the setof abstraction relations. The
set of instrumentation relations is denoted byI. Each arity-k relation symbol is defined
by aninstrumentation-relation defining formulawith k free variables. Instrumentation
relation symbols may appear in the defining formulas of otherinstrumentation relations
as long as there are no circular dependences.

Tab. 2 lists some instrumentation relations that are important for the analysis of
programs that use typeTree. Instrumentation relations that involve reachability prop-
erties, such as relationrx(v), often play a crucial role in the definitions of abstractions.
These relations have the effect of keeping disjoint subtrees summarized separately.
Fig. 2(b) shows2-valued structureS2, which represents the store of Fig. 1 using the
core relations of Tab. 1, as well as the instrumentation relations of Tab. 2.
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Fig. 3. A 3-valued
structureS3 that is
the canonical ab-
straction of struc-
ture S2. In addition
to S2, S3 represents
any tree of size2 or
more that is pointed
to by program vari-
ableroot.

If all unary relations are abstraction relations, the canonical ab-
straction of2-valued logical structureS2 is S3, shown in Fig. 3,
with all tree nodes not pointed to byroot represented by the sum-
mary individual at the bottom. InS2, nodes in the left subtree of
root’s target are indistinguishable from those in its right subtree
according toA (consisting of relationsx(v) and rx(v) for each
program variablex). S3 represents all trees with two or more ele-
ments, with the root node pointed to by program variableroot.

The following graphical notation is used for depicting3-valued
logical structures:

– Individuals are represented by circles containing (non-0) val-
ues for unary relations. Summary individuals are represented
by double circles.

– A unary relationp corresponding to a pointer-valued program
variable is represented by a solid arrow fromp to the individual
u for whichp(u) = 1, and by the absence of ap-arrow to each
nodeu′ for which p(u′) = 0. (If p = 0 for all individuals,
the relation namep is not shown.)

– A binary relationq is represented by a solid arrow labeled
q between each pair of individualsui and uj for which
q(ui, uj) = 1, and by the absence of aq-arrow between pairs
u′

i andu′

j for whichq(u′

i, u
′

j) = 0.
– Relations with value1/2 are represented by dotted arrows.

For each kind of statement in the programming language, the concrete semantics is de-
fined byrelation-update formulasfor core relations. The structure transformers for the
abstract semantics are defined by the same relation-update formulas for core relations
andrelation-maintenance formulasfor instrumentation relations. The latter are gener-
ated automatically viafinite differencing[15]. Abstract interpretation collects a set of
3-valued structures at each program point. It is implementedas an iterative procedure
that finds the least fixed point of a certain set of equations [17]. When the fixed point is



reached, the structures that have been collected at a program point describe a superset
of all the execution states that can arise there.

Not all logical structures represent admissible stores. Toexclude structures that do
not, we impose integrity constraints. For instance, relation x(v) of Tab. 1 captures
whether pointer variablex points to memory cellv; x would be given the attribute
“unique”, which imposes the integrity constraint thatx can hold for at most one indi-
vidual in any structure:∀ v1, v2 : x(v1)∧x(v2) ⇒ v1 = v2. This formula evaluates
to 1 in any2-valued logical structure that corresponds to an admissible store. Integrity
constraints contribute to the concretization function (γ) for our abstraction [23]. In-
tegrity constraints are enforced bycoerce, a clean-up operation that may “sharpen” a
3-valued logical structure by setting an indefinite value (1/2) to a definite value (0 or
1), or discard a structure entirely if an integrity constraint is definitely violated by the
structure (e.g., if it cannot represent any admissible store).

2.1 Analyzing Programs that Manipulate (Only) Trees

When analyzing a program in which each data structure at every point is a tree (a prop-
erty that we will calltreeness), it is possible to take advantage of this fact to reduce the
(abstract) state space that is explored. This is achieved byhaving the analysis perform
a semantic reduction after each step to filter out non-trees that may have crept into the
representation. When the analysis relies on the program to maintain treeness, to guar-
antee that the results are sound, the analysis must check that treeness is preserved at
every step. We address the latter obligation first. The techniques described below are
applicable whenever one wishes to analyze programs in whichall input, output, and
intermediate data structures are trees. We call such analysestree-specific shape analy-
ses; our DSW analysis is an example of a particular tree-specificshape analysis. (Other
work in which tree-specific shape analyses have been developed include [4, 7, 8].)
Checking that Treeness is Maintained. The analyzer checks that treeness is main-
tained by asserting certain logical formulas that capture the conditions under which the
execution of a program statement could result in a violationof treeness. Before the
computation of a transfer function, the logical formulas ofcorresponding assertions are
evaluated. If a formulapossibly fails to hold, i.e., does not evaluate to1, then an error
report is issued and the analysis is terminated.

For purposes of this paper, a binary tree is a structure containing no cycles and
no nodes with multiple incomingleft or right pointers. (Our definition disallows
the sharing of subtrees, and thus is more restrictive than the traditional definition that
merely requires there to be at most one path between any pair of nodes. This is not an
inherent limitation of TVLA; if the sharing of subtrees is tobe permitted, the restriction
on sharing can be relaxed—see footnote 5.)

Given a data structure that satisfies the data-structure invariants for a binary tree,
only one type of statement has the potential to transform thedata structure into one
that violates some of those properties, namely, a statementof the formx->sel = y
(wheresel can beleft or right), which creates a newsel-connection in the data
structure. Two logical formulas capture the conditions that guarantee that the applica-
tion of the transformer for a statement of the formx->sel = y maintains treeness.



The first formula captures the precondition fordownto remain acyclic:

∀ v1, v2 : x(v1)∧ y(v2)⇒ ¬tdown(v2, v1) (1)

The second formula captures the precondition for the statement to avoid introducing
sharing:4

∀ v1, v2 : y(v2)⇒ ¬down(v1, v2)
5 (2)

Semantic Reduction for Trees.After each application of an abstract transformer, we
perform a semantic reduction to filter out non-trees that mayhave crept into the abstract
structures computed by the transformer. The reduction is implemented as an application
of coerce to enforce integrity constraints that express data-structure invariants.

For instance, relationdownis given the attributes “acyclic” and “invfunction”. The
“acyclic” attribute ofdownresults in the automatic generation of the following integrity
constraint:

∀ v1, v2 : tdown(v1, v2)∧ tdown(v2, v1)⇒ v1 = v2 (3)

The “invfunction” attribute ofdownresults in the automatic generation of the following
integrity constraint:

∀ v1, v2 : (∃ v : down(v1, v)∧ down(v2, v))⇒ v1 = v2 (4)

Operationcoerce is applied at certain steps of the algorithm, e.g., after theapplication
of an abstract transformer, to enforce Constraints (3) and (4), along with a few oth-
ers, to help prevent the analysis from admitting non-trees,and thereby possibly losing
precision.

3 Deutsch-Schorr-Waite Tree-Traversal Algorithm

The original Deutsch-Schorr-Waite algorithm reverses thedirection ofleft andright
pointers, as it traverses the tree [18]. It attaches two bits, mark andtag, to each node.
Themark bit serves to prevent multiple visits to nodes on a cycle or inshared sub-
trees. Thetag bit records whether, during the traversal of reversed pointers, a node
was reached from its left or right child.

In [10], Lindstrom gave a variant that eliminated the need for both bits, provided
the input data structure contains no cycles. His insight wasthat one could treat the visit
step at an internal node as a kind of pointer-rotation operation, and that completion of
the tree-traversal could be established having the algorithm watch for a distinguished

4 As explained in§3, we ensure thatx->sel is NULL prior an assignment of the form
x->sel = y, so the assignment indeed creates a newsel-connection.

5 If we relaxed the restriction on the sharing of subtrees, then, in place of Formula (2), we
would employ a slightly more complex formula that precludesthe possibility of creating two
paths between a pair of tree nodesv1 andv4 (one path that existed prior to the statement,
and the other that was created due to the introduction of the new sel edge fromx to y):

∀ v1, v2, v3, v4 : tdown(v1, v4) ∧ tdown(v1, v2) ∧ x(v2)∧ y(v3) ⇒ ¬tdown(v3, v4)



[1] void traverse(Tree *root)
[2] { Tree *prev, *cur, *next;

[3] if (root == NULL)
[4] return;
[5] prev = -1;
[6] cur = root;
[7] while (1) {

// Save left subtree
[8] next = cur->left;

// Rotate pointers
[9] cur->left = cur->right;
[10] cur->right = prev;

// Move forward
[11] prev = cur;
[12] cur = next;
[13] if (cur == -1)

// Traversal completed
[14] break;
[15] if (cur == NULL) {

// Swap prev and cur
[16] cur = prev;
[17] prev = NULL;
[18] }
[19] }
[20]}

void traverse(Tree *root) [1]
{ Tree *prev, *cur, [2]

*next, *tmp; [3]
if (root == NULL) [4]

return; [5]
prev = SENTINEL; [6]
cur = root; [7]
while (1) { [8]

// Save the left subtree
next = cur->left; [9]
// Rotate pointers
tmp = cur->right; [10]
// Maintain treeness
cur->right = NULL; [11]
cur->right = prev; [12]
cur->left = NULL; [13]
cur->left = tmp; [14]
// Move forward
prev = cur; [15]
cur = next; [16]
if (cur == SENTINEL) [17]
// Traversal completed
break; [18]

if (cur == NULL) { [19]
// Swap prev and cur
cur = prev; [20]
prev = NULL; [21]

} [22]
} [23]

} [24]

(a) (b)

Fig. 4. (a) Original version of the Deutsch-Schorr-Waite algorithm (adapted from [10]). (b) Mod-
ified version of the Deutsch-Schorr-Waite algorithm that was analyzed using TVLA. (The differ-
ences appear in bold.)

value that serves as a kind of sentinel. In this paper, we actually consider the Lindstrom
variant, but continue to refer to it as Deutsch-Schorr-Waite (DSW). Another connection
between our analysis (of the Lindstrom variant) and the original version of DSW is
discussed briefly in§7.

Fig. 4 shows two versions of the Deutsch-Schorr-Waite algorithm. The left-hand
column shows a version adapted from [10], also known as Lindstrom scanning. The
right-hand column shows a slightly modified version of the algorithm that we used in
our work. There are two differences between the two versions.

First, the constant-1 on lines [5] and [13] has been replaced withSENTINEL,
whereSENTINEL is assumed to be a reference to a distinguished node that is not part
of the input tree. In TVLA, pointer values can either equalNULL (corresponding to the
situation in which the pointer does not point to any heap object) or point to a heap object



that was allocated bymalloc. In this sense, TVLA follows the semantics of Java,
in which new non-NULL pointer values can be generated only via memory-allocation
operations.

Second, a purely local transformation (involving the introduction of one temporary
variabletmp) has been applied to lines [9]–[10]:

[9] cur->left = cur->right;
[10] cur->right = prev;

=⇒

[10] tmp = cur->right;
// Maintain treeness
[11] cur->right = NULL;
[12] cur->right = prev;
[13] cur->left = NULL;
[14] cur->left = tmp;

This really involved three transformations:

1. Assignment statements of the formx->sel1 = y->sel2 have been normalized
to statement sequencestmp = y->sel2; x->sel1 = tmp (see lines [10]
and [14] of Fig. 4(b)).

2. Assignment statements of the formx->sel = y have been normalized to state-
ment sequencesx->sel = NULL; x->sel = y (see lines [11]–[12] and [13]–
[14] of Fig. 4(b)). This ensures that statements of the formx->sel = y can never
destroy existingsel-paths in the data structure, thus simplifying the task of main-
taining information about the reachability of tree nodes from program variables.

3. Assignmentscur->right = NULL and cur->right = prev have been
moved to lines [11] and [12] (before assignments tocur->left). This change
prevents the right child ofcur’s target from temporarily having two incoming
edges after the assignment tocur->left on line [14].6 The resulting algorithm
maintains the invariant that the nodes of the input tree always make up one or
two data structures that satisfy the binary-tree properties: after the assignment on
line [14] of Fig. 4(b), the nodes of the input tree make up two trees, one rooted at
next’s target, and the other rooted atcur’s target; the original root is a descendant
of cur’s target.

Transformations 1 and 2 above are simple normalizations that one could expect to find
in a translation of programs written in a high-level language into a lower-level interme-
diate representation. Transformation 3 prevents the temporary sharing ofcur’s right
subtree (it would otherwise briefly becomecur’s left andcur’s right subtree). We
could relax our restriction on sharing and analyze the version of the algorithm that does
not include transformation 3 (§7 discusses how we would approach this task), but we
chose to verify total correctness and preservation of treeness for the slightly modified
version of the DSW algorithm shown in Fig. 4(b). Because of transformation 3, the
techniques of§2.1 apply in the analysis of this version; we now describe this version in
detail.

For each tree noden, the body of thewhile loop is executed three times withcur
pointing ton. Each time thatn is considered, itsleft andright pointers are rotated
in a counter-clockwise fashion on lines [10]–[14] of Fig. 4(b) (cf. lines [9] and [10] of

6 Only the assignmentcur->right = NULL needs to be moved to achieve the desired effect.
We moved both assignments for clarity.



Fig. 4(a)). After the third such execution, the original values for theleft andright
pointers are re-established, as we explain below.
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Fig. 5. States of the subtree ofn with cur
pointing to n: (a) after the first execution
of statement on line [10] of Fig. 4(b),n is
in state 0; (b) after the second execution of
statement on line [10] of Fig. 4(b),n is in
state 1; (c) after the third execution of state-
ment on line [10] of Fig. 4(b),n is in state
2; (d) after the third execution of statement
on line [14] of Fig. 4(b), n is in state 3.
Grey edges represent the original values of
theleft andright fields.

Before the first execution of lines [10]–
[14] of Fig. 4(b) withcur pointing ton, no
nodes in the subtrees rooted atl or r (n’s left
and right subtrees in the original tree) have
been visited, and noleft or right point-
ers of nodes in the subtrees rooted atl or r
have been modified. In this situation, we say
that n is in state 0. Fig. 5(a) illustrates this
situation.

A pointer to nodel, the left child ofn
prior to the rotation ofn’s left andright
pointers, is saved innext on line [9]. After
the rotation, the traversal continues by mov-
ing into the (sub)tree rooted atnext, i.e.,
l (see lines [15] and [16]). Whencur be-
comes null, the values ofcur andprev are
swapped on lines [20] and [21]. This causes
the traversal to backtrack to the most recently
visited node that had a right subtree in the
original tree.

When the traversal backtracks ton,
the algorithm reaches lines [10]–[14] of
Fig. 4(b) for the second time withcur point-
ing ton. At this point, all nodes inl’s subtree
and no nodes inr ’s subtree have been visited.
Theleft andright pointers of nodes in
l’s subtree have been rotated three times and
restored to their original values. Noleft or
right pointers of nodes inr ’s subtree have
been modified. In this situation we say that
n is in state 1. Fig. 5(b) illustrates this situa-
tion.

A pointer to noder, the left child ofn prior to the second rotation ofn’s pointers, is
saved innext. After the rotation, the traversal continues by moving intothe (sub)tree
rooted atr (see lines [15] and [16]). Once again, the algorithm backtracks whencur
is null. When the traversal backtracks ton, the algorithm reaches lines [10]–[14] of
Fig. 4(b) for the third (and final) time withcur pointing ton. At this point, all nodes
in l’s andr ’s subtrees have been visited. Theleft andright pointers of nodes in
both subtrees have been rotated three times and restored to their original values. In this
situation we say thatn is in state 2. Fig. 5(c) illustrates this situation.

After the subsequent execution of lines [10]–[14] of Fig. 4(b) with cur pointing to
n, n’s left andright pointers are restored to their original values. At this point, all
nodes in the subtree rooted atn have been visited, and allleft andright pointers



in the subtree have been rotated three times and restored to their original values. In this
situation we say thatn is in state 3. Fig. 5(d) illustrates this situation.

The algorithm traverses the treein order, visiting each noden three times: (1) while
following the originalleft pointers fromn’s parent throughn into l’s subtree, (2) while
backtracking froml’s subtree ton and then traversingr ’s subtree, and (3) while back-
tracking fromr ’s subtree throughn to n’s parent in the original tree.

1

2

1

1

2

?

cur

3

0

3

0

0

?

Fig. 6. States of tree nodes
that are outside of the subtree
pointed to bycur. (Grey edges
represent the original values of
theleft andright fields.)

Fig. 6 depicts the states of the tree nodes that are not
in the subtree pointed to bycur. All ancestors (in the
original tree) ofcur’s target are in state 1 or 2, indicat-
ing that the left (1) or right (2), subtree is currently being
traversed. Ifcur’s target lies in the left subtree of an an-
cestor, then that ancestor must be in state 1, otherwise it
must be in state 2. The triangular shapes at left represent
all nodes that occur earlier thancur’s target in an in-
order traversal of the tree. For each of these nodes there
exists an ancestor ofcur’s target, such that the node is
in the left subtree of the ancestor, andcur’s target is in
the right subtree of the ancestor. All nodes in that cat-
egory are in state 3; they have been visited three times,
and theirleft andright pointers have been reset to
their original values. The triangular shapes at right rep-
resent all nodes that occur later thancur’s target in an
in-order traversal of the tree. For each of these nodes
there exists an ancestor ofcur’s target, such that the
node is in the right subtree of the ancestor, andcur’s
target is in the left subtree of the ancestor. All nodes
in that category are in state 0; they have not been vis-
ited, and theirleft andright pointers still have their
original values.

4 A Shape Abstraction for Verifying DSW

Consider the problem of establishing that the Deutsch-Schorr-Waite algorithm shown
in Fig. 4(b) is partially correct. This is an assertion that compares the state of a store at
the end of the procedure with its state at the start.

Partial correctness of DSW means (i) the tree produced at exit must be identical to
the input tree, and (ii) every node must be visited. We will come back to property (ii)
when we discuss the total correctness of DSW in§5. Property (i) can be specified as
follows:

∀v1, v2 : left(v1, v2)⇔ left0(v1, v2) (5)

∀v1, v2 : right(v1, v2)⇔ right0(v1, v2), (6)

whereleft0 andright0 denote the initial values of relationsleft andright, respectively.
Additionally, a correct traversal routine must neither lose nodes of the input tree, nor
gain new ones. However, this property is implied by properties (5) and (6).



The challenge is that the abstraction has to track the “unintended” use of pointers
for stack simulation with sufficient precision to verify that at the end of the algorithm
their correct usage has been reestablished. Canonical abstraction with just the properties
listed in Tabs. 1 and 2 is an insufficiently precise abstraction to demonstrate that the
tree’s edges are restored.

The key relations for establishing properties (5) and (6) atthe end of the program
are those that capture the relationships of pointers that arise between tree nodes during
the traversal. The following set of unary relations captureproperties of nodes in state
0 (before any changes to the nodes’left andright pointers) or state 3 (after the
nodes’left andright pointer values have been restored):

eql,l0(v1)
def
= ∀v2 : left(v1, v2)⇔ left0(v1, v2) (7)

eqr,r0(v1)
def
= ∀v2 : right(v1, v2)⇔ right0(v1, v2) (8)

Unary relationseql,l0(v1) and eqr,r0(v1) distinguish individuals that represent tree
nodes whoseleft, respectivelyright, pointers have their initial values. We can now
use∀v : eql,l0(v) in place of Formula (5) and∀v : eqr,r0(v) in place of Formula (6)
when asserting the partial correctness of DSW.

The following set of unary relations capture properties of nodes in state 1, after one
visit to those nodes, i.e., one rotation of theleft andright pointers:

eql,r0(v1)
def
= ∀v2 : left(v1, v2)⇔ right0(v1, v2) (9)

rer,l0(v1)
def
= ∀v2 : right(v1, v2)⇔ left0(v2, v1) (10)

rer,r0(v1)
def
= ∀v2 : right(v1, v2)⇔ right0(v2, v1) (11)

Unary relationeql,r0(v1) distinguishes individuals that represent tree nodes whoseleft
field points to their right (in the input tree) subtree. Unaryrelationsrer,l0(v1) and
rer,r0(v1) (re is a mnemonic forreverse) distinguish individuals that represent tree
nodesn whoseright fields point to their parents in the input tree (assuming that
n is the left child in the case ofrer,l0(v1) and right child, otherwise).

The following set of unary relations capture properties of nodes in state 2, after two
visits to those nodes, i.e., two rotations of theleft andright pointers:

eqr,l0(v1)
def
= ∀v2 : right(v1, v2)⇔ left0(v1, v2) (12)

rel,l0(v1)
def
= ∀v2 : left(v1, v2)⇔ left0(v2, v1) (13)

rel,r0(v1)
def
= ∀v2 : left(v1, v2)⇔ right0(v2, v1) (14)

Unary relationeqr,l0(v1) distinguishes individuals that represent tree nodes whose
right field points to their left (in the input tree) subtree. Unary relationsrel,l0(v1)
and rel,r0(v1) distinguish individuals that represent tree nodesn whoseleft fields
point to their parents in the input tree (assuming thatn is the left child in the case of
rel,l0(v1) and right child, otherwise).

Let us give the intuition behind the use of the relations defined by Formulas (7)–
(14) for the partial-correctness verification of DSW, whichinvolves establishing that all
left andright pointers have their initial values at the end of DSW.



These relations maintain the relationship between the current and the original values
of left andright pointers. Prior to the first rotation of pointers for noden, n has
entries1 for the state-0 relations (Formulas (7) and (8)), which say that there has been
no change fromn’s starting pointer values. These entries allow the analysis to conclude
that after the current iteration’s rotation ofn’s pointers,n should have entry1 for state-1
relations, Formula (9) and Formulas (10) or (11). Similarly, the1 entries for the state-1
relations for noden help establish the1 entries for its state-2 relations (Formula (12)
and Formulas (13) or (14)) after the second rotation ofn’s pointers. Finally, the1 entries
for the state-2 relations for noden help establish the1 entries for its state-3 relations
Formulas (7) and (8) after the third rotation ofn’s pointers.

In our initial attempt to establish the partial correctnessof DSW, we added all re-
lations of Formulas (7)–(14) to the set of abstraction relations,A. This attempt failed
(we terminated the analysis after several days of computation) because of the vast ab-
stract state space that needed to be explored. To pare down the abstract state space,
we observed that not all node distinctions introduced by therelations of Formulas (7)–
(14) were necessary. For instance, note that any leaf node instate 0 or state 3 sat-
isfies (among other relations) Formula (9), which defineseql,r0—nominally a state-1
relation—because it has no outgoingleft or right pointers, while an internal tree
node in state 0 or state 3 does not satisfy it. As a result,eql,r0 prevents canonical ab-
straction from summarizing a leaf node in state 0 or 3 with an internal node in one of
those states. The resulting abstraction has a larger-than-necessary state space because
we only need to ensure that tree nodes in state 1 have theirleft field pointing to their
original right subtree, i.e., have the property defined by the relationeql,r0 .

To remove such unnecessary distinctions, we introduce the concept of astate-
dependentabstraction. The first component of such an abstraction is a collection of
unary corestate relations, state0(v), state1(v), state2(v), andstate3(v).7 Every time the
rotation ofleft andright pointers of the tree node pointed to bycur is completed
(after line [14] of Fig. 4(b)), the node’s state is changed tothe next state. (The state
relations carry no semantics with respect to the pointer values of nodes; they simply
record the “visit counts” for each node.) As the second component of the abstraction,
we introduce state-relation-guarded versions of the relations of Formulas (7)–(14):

s0 eql,l0(v1)
def
= state0(v1)∧ eql,l0(v1) (15)

s0 eqr,r0(v1)
def
= state0(v1)∧ eqr,r0(v1) (16)

s1 eql,r0(v1)
def
= state1(v1)∧ eql,r0(v1) (17)

s1 rer,l0(v1)
def
= state1(v1)∧ rer,l0(v1) (18)

s1 rer,r0(v1)
def
= state1(v1)∧ rer,r0(v1) (19)

s2 eqr,l0(v1)
def
= state2(v1)∧ eqr,l0(v1) (20)

s2 rel,l0(v1)
def
= state2(v1)∧ rel,l0(v1) (21)

s2 rel,r0(v1)
def
= state2(v1)∧ rel,r0(v1) (22)

7 The state relations arenot added to the set of abstraction relations,A.



s3 eql,l0(v1)
def
= state3(v1)∧ eql,l0(v1) (23)

s3 eqr,r0(v1)
def
= state3(v1)∧ eqr,r0(v1) (24)

We replace the relations of Formulas (7)–(14) in the set of abstraction relations,A, with
Formulas (15)–(24). The resulting abstraction allows the grouping of nodes that have
different values for the relationeql,r0 , for example, as long as these nodes are not in
state 1.

5 Establishing that DSW Terminates

We can establish that DSW terminates using the unary state relations of§4 via a simple
progress monitor, which we describe below.

For each state relations, we create a copy ofs, which is used to save the values of
relations at the start of the currently-processed loop iteration (after line [8] of Fig. 4(b)).
We give the new relations the superscriptlh to indicate that they hold theloop-head
values. The first abstract operation of each iteration of theloop takes a snapshot of the
current states of nodes:statelhi (v)← statei(v), for eachi ∈ [0..3] and each binding ofv
to individuals in the abstract structure being processed. Additionally, it asserts thatcur
does not point to a tree node in state 3 at the head of the loop.

The last operation of every loop iteration performs a progress test by asserting the
following formula:

∃ v :
(

statelh0 (v)∧ state1(v)∨ statelh1 (v)∧ state2(v)∨ statelh2 (v)∧ state3(v)
)

∧

∀ v1 6= v : (statelh0 (v1)⇔ state0(v1))∧(statelh1 (v1)⇔ state1(v1))∧

(statelh2 (v1)⇔ state2(v1))∧(statelh3 (v1)⇔ state3(v1))

The assertion ensures that one node’s state makes forward progress (the first line of
the assertion) and that no other node changes state (the second and third lines of the
assertion).

Together with the assertion thatcur does not point to a tree node in state 3 at the
start of the loop, the above progress monitor establishes that each tree node is visited
exactly three times, thus establishing that the algorithm terminates, as well as the fact
that every node is, in fact, visited by the algorithm (property (ii) of partial correctness).

6 Experimental Evaluation

We applied TVLA to the DSW algorithm shown in Fig. 4(b) and analyzed it using the
abstraction defined in§4. As input for the algorithm, we supplied the 3-valued structure
S7 shown in Fig. 7, which is essentially the structureS3 from Fig. 3 refined with values
for relations introduced in§4. Additionally,S7 contains a specialsentinelnode that is
not part of the input tree; it is referenced by program variable SENTINEL. In Fig. 7,
as well as Fig. 8, relationsleft0 andright0 are omitted to reduce clutter. Their values
are identical toleft andright, respectively. We have also omitted the values for state-1
and state-2 relationseql,r0 , rer,l0 , rer,r0 , eqr,l0 , rel,l0 , andrel,r0 . They have value1/2



for the non-sentinel nodes of both figures and value1 for the sentinel nodes. Because
we are performing tree-specific shape analysis, both figuresonly represent concrete
structures that satisfy the treeness integrity constraints (see§2.1).
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Fig. 7. A 3-valued structure
S7 that represents all trees
of size 2 or more.

Fig. 8 shows the unique structureS8 collected by the
analysis at the exit node. The definite1 values for rela-
tionseql,l0 andeqr,r0 (defined by Formulas (7) and (8)) for
each individual ofS8 establish that the outgoingleft and
right pointers of every tree node are restored, thus es-
tablishing partial correctness property (i), i.e., that the tree
produced at exit is identical to the input tree. The absence of
violations of the progress monitor defined in§5 establishes
that DSW terminates, as well as the fact that every node is
visited (partial correctness property (ii)).

The analysis took just under nine hours on a 3GHz
Linux PC and used 150MB of memory. While the au-
thors have a number of ideas for performance optimizations
for the research system, the main goal was to demonstrate
the feasibility of automatic symbolic exploration of heap-
manipulating programs with vast (abstract) state spaces.

The cost of verifying that DSW terminates is negligi-
ble (when compared to the cost that DSW is partially cor-
rect) because the progress monitor does not increase the
size of the reachable state space. The number of distinct
abstract structures that were collected at all program points
exceeded 80,000. The number of structures at some pro-
gram points exceeded 11,000. This number is not surpris-
ing, if we consider that some of these structures contained
15 individuals. (At intermediate steps, the analysis explored
abstracts structures with up to 21 individuals!) However, 80,000 is well below the limit
imposed by the number of distinct 3-valued structures,2220

, which represents the num-
ber of subsets of individuals with every possible vector of unary abstraction-relation
values. (There are20 unary abstraction relations: pointer relationsx(v) and reachabil-
ity relationsrx(v) for each of the five pointer-valued program variables, as well as ten
relations of Formulas (15)–(24).) Fig. 9 shows a sample abstract structureS9 that arises
before line [11] of Fig. 4(b). InS9, as in all other structures that arise at that point, the
state relations and state-relation-guarded relations defined by Formulas (15)–(24), have
precise values for all individuals.

In summary, our experiment showed that, using the abstraction defined in§4, an
automatic analysis can maintain enough precision to identify sufficient invariants to
demonstrate both partial correctness and termination of DSW.

7 Discussion and Future Work

The analysis carried out by TVLA performs fully-automatic state-space exploration.
However, one has to bring to bear some expertise in specifying TVLA analyses. The



concept of tree-specific shape analysis (see§2.1) is of general utility. It can be reused
for any analysis in which all input, output, and intermediate data structures are trees.
The instrumentation relations defined by Formulas (9)–(14), which capture pointer rela-
tionships of tree nodes, and core state relationsstate0(v), . . . , state3(v), which are used
to control the precision of the abstraction, are specific to the problem of verifying the
total correctness of DSW.
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Fig. 8. A 3-valued struc-
tureS8 collected at exit of
DSW.

A key difference between our approach and theorem-
prover-based approaches is that we do not need to specify
loop invariants. Instead, we need to specify a collection of
node distinctions (or node relationships), such as the rela-
tions eql,r0(v1) and rer,l0(v1) of Formulas (9)–(14); these
allow the node distinctions specified to be observable by the
analysis. Given the appropriate node distinctions, abstract
interpretation automatically infers the invariants satisfied by
the program.

Recently, a machine-learning technique has been used to
identify key instrumentation relations automatically [11]. In
the future, we would like to see if it can be used to identify
the key relations for verifying DSW, namely the relations of
Formulas (9)–(14).

Although the instrumentation relations introduced in§4
are tailored for establishing the correctness of DSW, the con-
cept of state-dependent abstractions is likely to be of general
utility. In fact, simpler versions of state-dependent abstrac-
tions have arisen in past work. For example, the unary rela-
tion inOrder was used to establish the partial correctness of
sorting [9]. The state-dependent abstractions defined in this
paper are prepared to deal with more than just two states
(initial and final, as is the case for the relationinOrder), and
use the value of the state as a guard to reduce the number of
distinct properties recorded for individuals, thereby reducing the size of the (abstract)
state space that is explored.

There is an interesting analogy between the explicit state-tracking that the original
DSW algorithm performs via themark andtag bits, and the state relations of our
abstraction. (In some sense, the state relations introduced for purposes of analysis im-
pose a DSW-like view of the world to track the actions of the Lindstrom variant of the
algorithm.)

While we chose to apply a transformation that ensures that the algorithm main-
tains treeness (transformation 3 of§3), it is possible to verify the unmodified algorithm
(Fig. 4(a)) by introducing the following instrumentation relation:

isLocallyShared(v)
def
= ∃ v1 : left(v1, v)∧ right(v1, v)

RelationisLocallyShared(which has value 0 for all nodes in the input 3-valued struc-
ture, indicating that the input is a valid binary tree) allows us to relax the restriction
on sharing by tracking where sharing occurs rather than requiring its absence. To be
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Fig. 9. A 3-valued structureS9 that arises prior to the first rotation of pointers of the noden
pointed to bycur (before line [11] of Fig. 4(b)). Relationsleft0 andright0 are omitted from the
figure. Initially, noden was the right child of the node pointed to byprev. The latter node is now
the root of a tree with leafSENTINEL (the original root is the parent ofSENTINEL). No nodes
in n’s subtree have been visited; that subtree has not been modified from its initial state.

applicable to the version of the algorithm that does not include transformation 3, the
tree-specific shape analysis of§2.1 can be generalized to handle the limited class of
DAGs that arise in lines [9]–[10] of Fig. 4(a) as follows:



1. The precondition for the absence of sharing (Formula (2))would be removed.
2. The integrity constraints that forbid structures that contain sharing would be mod-

ified to include anisLocallySharedguard to permit the kind of local sharing that
arises in Fig. 4(a). E.g., Constraint (4) becomes:

∀ v1, v2 : (∃ v : ¬isLocallyShared(v)∧ down(v1, v)∧ down(v2, v))⇒ v1 = v2.

The DSW algorithm shown in Fig. 4(b) (as well as the algorithmshown in Fig. 4(a))
does not work correctly when applied to a data structure thatcontains a cycle: the traver-
sal terminates prematurely and not all of the edges are properly restored. However, the
algorithm works correctly when applied to a DAG: a noden with k paths from the root
to n is visited3k times, rather than 3 times. (Note, however, thatk can be exponential
in the size of the graph.) Given a bound onk, we may be able to verify the correctness
of DSW for DAGs, if we relax the restriction on sharing and introduce3k state rela-
tions and the corresponding state-relation-guarded relations. However, unlessk is very
small it is not likely that the reachable state space can be explored with our computing
resources. In the general case, in which the input is a DAG with no bound onk, the
partial-correctness result can be obtained by having the state relations of nodes wrap
around: a visit to a node in state 3 results in changing the node’s state to 1. While this
change would be sufficient to establish that the outgoingleft andright pointers
of every DAG node are restored and that every node is visited,the analysis would no
longer be able to establish termination using the simple progress monitor of§5.

In practice, one would rarely be interested in using such an algorithm to traverse a
DAG because of the potentially exponential cost. In most applications, one is likely to
want to process each node once (e.g., in depth-first order) and visit each node a constant
number of times. This can be achieved by equipping the nodes with two bits to record
the visit count (a number from 0 to 3). All nodes reachable from a node with visit count
3 must have been visited three times. Ifcur is set to point to a node with visit count 3,
the direction of the traversal can be reversed by swapping the values ofcur andprev,
thus terminating the exploration of the node’s subgraph. Byrelaxing the restriction on
sharing, it should be possible to verify the total correctness of the modified algorithm.

8 Related Work8

The general form of the Deutsch-Schorr-Waite algorithm works correctly for arbitrary
graphs [18]. (Unlike the algorithm we used in our work, whichwas taken from [10],
the general form is not constant-space because it uses mark and tag bits.) We divide the
discussion of related work according to the kind of data structures to which the analyzed
algorithm can be applied.
DSW on Arbitrary Graphs. The first formal proofs of the partial correctness of DSW
were performed manually by Morris [14] and Topor [20]. In [19], Suzuki automated
some steps of the partial-correctness verification of the algorithm by introducing deci-
sion procedures that could handle heap-manipulating programs. More recently, Bornat

8 The discussion of [14, 20, 19] relies on what is reported in [22, 13].



used the Jape proof editor [3] to construct a partial-correctness proof of DSW [2]. The
resulting proof used 152 pages [1].

Our automated approach provides the obvious benefit of disposing with the need
to provide manual proofs, which require significant investments of time and expertise.
However, even in the presence of a powerful theorem prover, proof-based approaches
rely on the user to provide loop invariants that are sufficient to establish the property
being verified. For instance, the properties of nodes and their subtrees that are described
in §3 (see Figs. 5 and 6 and the corresponding text) would have to be specified as loop
invariants. As discussed in§7, our obligation is simpler: we have to specify instrumen-
tation relations that act asingredientsfor a loop invariant; the analysis automatically
synthesizes a loop invariant—in the form of a collection of 3-valued structures that
overapproximate the set of concrete structures that actually arise—by means of state-
space exploration.

Yang [21] and Mehta and Nipkow [13] gave manually-constructed, but machine-
checkable, proofs of the partial correctness of DSW. The twoapproaches share the goal
of making formal reasoning about heap-manipulating programs more natural. The for-
mer approach uses the logic of Bunched Implications [5] (a precursor formalism to
Separation Logic [16]), which permits the user to reason with Hoare triples in the pres-
ence of complicated aliasing relationships. The latter approach uses Isabelle/HOL to
construct formal proofs that are human-readable. These approaches improve the usabil-
ity of proof-based techniques. However, they still lack theautomation of our approach.

DSW on Trees and DAGs.Yelowitz and Duncan were the first to present a termination
argument for the Deutsch-Schorr-Waite algorithm [22]. They analyzed Knuth’s version
of the algorithm [6], which uses tag bits but does not work correctly for graphs that
contain a cycle. It does, however, work for DAGs, as does the version we used, taken
from [10]. The termination argument involved the use of program invariants to prove
bounds on the number of executions of statements in the loop.In §5, we showed how
to use thestate relationsdefined in§4 in a simple progress monitor for the algorithm’s
loop to establish that DSW terminates (on trees). As was the case for partial correctness,
our task is reduced to establishing appropriate distinctions between nodes. Given the
state relations, the complete state-space exploration shows no violation of the progress
monitor and establishes a bound (namely, three) on the number of visits to each tree
node; consequently, the algorithm must terminate.

Several previous papers reported on automatic verificationof weaker properties of
the Deutsch-Schorr-Waite algorithm, namely that the algorithm has no unsafe pointer
operations or memory leaks, and that the data structure produced at the end is, in fact, a
binary tree [15, 12, 7]. The authors first established these properties in [15]. ([12] con-
tains a typo stating that that work establishes partial correctness; however, [12] reused
the TVLA specification from [15], and establishes the same properties as [15].) Fi-
nally, [7] extended the framework of [17] with grammars, which provide convenient
syntactic sugar for expressing shape properties of data structures. That work relied on
the use of grammars, instead of instrumentation relations,to express tree properties and
the absence of memory leaks.
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