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ABSTRACT
Improving architectural energy efficiency is important to ad-
dress diminishing energy efficiency gains from technology
scaling. At the same time, limiting hardware complexity
is also important. This paper presents a new processor ar-
chitecture, the idempotent processor architecture, that ad-
vances both of these directions by presenting a new ex-
ecution paradigm that allows speculative execution with-
out the need for hardware checkpoints to recover from mis-
speculation, instead using only re-execution to recover. Idem-
potent processors execute programs as a sequence of compiler-
constructed idempotent (re-executable) regions. The nature
of these regions allows precise state to be reproduced by
re-execution, obviating the need for hardware recovery sup-
port. We build upon the insight that programs naturally de-
compose into a series of idempotent regions and that these
regions can be large. The paradigm of executing idempotent
regions, which we call idempotent processing, can be used to
support various types of speculation, including branch pre-
diction, dependence prediction, or execution in the presence
of hardware faults or exceptions.

In this paper, we demonstrate how idempotent process-
ing simplifies the design of in-order processors. Conven-
tional in-order processors suffer from significant complexi-
ties to achieve high performance while supporting the exe-
cution of variable latency instructions and enforcing precise
exceptions. Idempotent processing eliminates much of these
complexities and the resulting inefficiencies by allowing in-
structions to retire out of order with support for re-execution
when necessary to recover precise state. Across a diverse set
of benchmark suites, our quantitative results show that we
obtain a geometric mean performance increase of 4.4% (up
to 25% and beyond) while maintaining an overall reduction
in power and hardware complexity.
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1. INTRODUCTION
Emerging challenges in technology scaling present dimin-

ishing opportunity to improve processor energy efficiency at
the transistor level: while the doubling of transistors every
generation is expected to continue, the historically commen-
surate increase in their energy efficiency is not [3, 16]. As a
result, the task of improving processor energy efficiency is in-
creasingly falling to computer architects. At the same time,
mobile computers are proliferating at an explosive rate [41,
20]. For mobile processors, energy efficiency is important
due to both limited battery life and limited opportunity to
manage heat dissipation through fans or heatsinks.

While specialized and accelerator architectures tackle the
energy efficiency problem by augmenting conventional pro-
cessors [11, 18, 22, 24, 40], this paper investigates whether
fundamental inefficiencies in the processor core itself can be
eliminated. In particular, we consider the overheads aris-
ing from speculative execution, including branch prediction,
memory dependence prediction, and execution in the pres-
ence of hardware faults or exceptions. While most proces-
sors use some kind of hardware buffer or checkpoint to store
speculative state until it is safe to commit to architecture
state, these hardware resources and their interaction with
the processor pipeline introduces significant complexity and
energy overheads [4, 26, 37, 38].

In this paper, we observe that exploiting the mathematical
property of idempotence in programs allows the benefits of
both speculative execution and precise state to be achieved
with minimal power or complexity overhead in the hardware.
In particular, we show how programs can be constructed
in a special way, such that execution is always restartable
over some interval of instructions, regardless of the order in
which those instructions issue or retire. In the event that
precise state is needed for some specific instruction inside
an interval, the processor can jump back to the beginning
of the interval and re-execute precisely up to the point of
the specific instruction and no further. We call a processor
using this execution model an idempotent processor. While
an idempotent processor recovers similarly to a speculative
processor that uses hardware checkpoints [4, 13, 26, 34],
it is software co-designed to incur none of the associated
hardware power and complexity overheads.

We develop as a concrete example the case of exception
support in modern processors. We observe that in-order in-
struction retirement—a feature widely assumed necessary in



Figure 1: Idempotent processing overview.

general-purpose processors to ensure that processor state is
consistent with respect to a running program at all times—
introduces substantial complexity and inefficiency in the pro-
cessor design. In-order retirement simplifies program de-
bugging and enables seamless support of page faults and
other exceptions in software. However, without any hard-
ware support, it also hinders performance by preventing the
out-of-order completion and/or issue of independent instruc-
tions. Hence, modern processors typically employ one or
more special-purpose hardware structures, such as a reorder
buffer or speculative register file, to manage the bookkeeping
of in-order retirement state while attempting to maximize
performance [26, 37]. Unfortunately, the resulting hardware
complexity and power consumption can be high. In this pa-
per, we develop an idempotent processor that can issue and
retire instructions out of order to achieve better performance
than a modern in-order processor with no overall increase in
power or hardware complexity.

Overall, we make the following contributions:

• We develop idempotence as a means to recover from
speculative execution in general and out-of-order re-
tirement specifically (Section 2).

• We describe the process of identifying idempotent re-
gions that a compiler can use to create idempotent
binaries (Section 3).

• We present the design of an idempotent processor that
retires out of order and uses idempotent regions to im-
plement exception recovery, demonstrating power and
complexity savings over a typical in-order processor
(Section 5 with background in Section 4).

• Our results show that our idempotent processor com-
monly achieves 4.4% better performance over an energy-
efficient baseline with reduction in both power and
hardware complexity. Performance is also within 24.2%
of a full-fledged out-of-order processor (Section 6).

Section 7 discusses some of the broader implications and
subtleties of idempotence-based recovery. Section 8 presents
related work. Finally, Section 9 concludes.

2. IDEMPOTENT PROCESSING OVERVIEW
Figure 1 contrasts the execution approach of a conven-

tional processor with that of an idempotent processor. A
conventional processor checkpoints or buffers state at var-
ious points as instructions execute through the pipeline.

The idempotent processor, on the other hand, executes pro-
gram binaries that are demarcated into idempotent regions
as shown in Figure 1(a). The property of idempotence guar-
antees that any region can be freely re-executed, even after
partial execution, and still produce the same result.

Figure 1(b) illustrates recovery from mis-speculation in
a conventional processor, where a mis-speculation could be
a branch misprediction, a hardware transient fault, or an
exception. As region R6 executes, a mis-speculation is de-
tected after some time. To correct the mis-speculation, a
checkpoint is restored; execution then resumes and com-
pletes. Figure 1(c) contrasts this recovery behavior with
that of an idempotent processor. Again, region R6 executes
with a mis-speculation occurring after some time. However,
the idempotent processor recovers by simply jumping back
to the beginning of the region. To guarantee successful re-
covery, the idempotent processor must ensure that the side-
effects of a mis-speculation are appropriately contained, and
also that execution does not proceed beyond the end of re-
gion until that region is verified to be free of mis-speculation.

In this paper, we demonstrate how idempotent processors
are able to retire out of order while maintaining the ability
to reproduce precise state in the event of an exception by
re-executing, leading to better overall efficiency. Although
we focus on exception recovery, idempotence can be used
to recover from other forms of mis-speculation as well, such
as branch mispredictions or hardware faults, as previously
mentioned. These topics are not developed further in this
paper, but are promising extensions for future work.

2.1 Idempotence and out-of-order retirement
Figure 2 illustrates how idempotence enables precise state

to be achieved despite out-of-order retirement for a simple
sequence of three instructions. It assumes a simple single-
issue processor that issues instructions in program order but
retires them potentially out of order. Figure 2(a) shows
the instruction sequence along with the issue cycle, execute
latency, and writeback cycle of each instruction. Figure 2(b)
shows the cycle-by-cycle state of the processor pipeline.

In the example, a page fault occurs during the execution
of instruction B in cycle 5. Because instruction C retires
in that same cycle, normally speaking a processor is unable
to cleanly resume execution after handling the page fault
because the program state at the end of cycle 5 is not con-
sistent with respect to the start of either instruction B or C.
However, observe that the program state is consistent with
respect to the start of instruction A; after servicing the page
fault, it is possible to resume execution from instruction A.



Instruction Issue Cycle Execute Latency WB Cycle

A. R2 ← add R0, R1 1 1 3
B. R3 ← ld [R2 + 4] 2 3 6
C. R2 ← add R2, R4 3 1 5

(a)

(b)

Figure 2: Out-of-order retirement over a simple instruction sequence.

Alternatively, the processor can first issue and execute from
instruction A precisely to instruction B, service the page
fault, and then resume execution from instruction C.

An intelligent compiler can construct programs in this
way, producing regions of code over which instruction retire-
ment does not affect the state of the program with respect
to the start of the region; from any point within the region,
execution of the region can be abandoned and retried at any
time. We call these regions idempotent regions because they
exhibit the property of idempotence—they can be executed
multiple times, and the effect is as if they are executed only
a single time. In effect, the beginning of a region marks an
implicit checkpoint in the program’s execution that can be
used for program recovery. In Section 3 of this paper, we
show how idempotent regions can be constructed, and that
they can be large—sufficiently large that there is potential
to exploit this property in architecture design.

2.2 An example idempotent processor design
Within an idempotent region, an idempotent processor

may execute and retire instructions out of order. This en-
ables three key simplification opportunities in the processor
design. First, it allows the results of low latency operations
to be used immediately after they are produced, without the
need for complex staging and bypassing as in conventional
processors. Second, it simplifies the implementation of pre-
cise exception support, particularly for long latency opera-
tions such as floating point operations. Finally, it enables
instructions to retire out of order with respect to instruc-
tions with unpredictable latencies, such as loads. Figure 3
compares the resulting execution behavior of an idempotent
processor to that of an in-order and out-of-order processor.
While the in-order and out-of-order processor both stage
and bypass instruction results until they are able to retire
in order, the idempotent processor does not.

Table 1 summarizes our comparison by considering the
three basic steps of instruction execution. It contrasts the
responsibilities of the hardware and the compiler in conven-
tional processors and an idempotent processor. The last
column highlights the fundamental challenge each proces-
sor type faces in scalability to higher performance: in-order
processors are limited by their ability to extract ILP dy-
namically, out-of-order processors are limited by the super-
linear power and complexity growth as instruction window

Figure 3: A comparison between idempotent and
traditional processor designs.

size grows, and an idempotent processor, whose target per-
formance is likely to exist somewhere between these two clas-
sifications, is limited by the size of the idempotent regions
that can be efficiently extracted from applications.

In this paper, we explore idempotent processing consid-
ering the design space of dual-issue in-order processors in
detail. In Section 4, we first investigate the complexities
arising from in-order retirement in modern dual-issue in-
order processors, giving supporting references to commer-
cially available processor designs. We then show in Section 5
how out-of-order retirement enables power and complexity
savings, and how these savings can be traded off for better
performance by introducing modest out-of-order execution.
Section 6 presents a quantitative evaluation.

Although our technique can also be applied to the design
of out-of-order processors, their energy budget relative to
in-order processors is typically higher to implement out-of-
order issue, reducing the relative benefit. Additionally, these
processors may re-use some of the retirement ordering logic
to also resolve data hazards and recover from branch mis-
predictions. Hybrid designs that exploit traditional out-of-
order checkpointing with idempotence are likely to improve
the performance of these processors; however, those designs
and their characteristics are not explored in this work.

3. IDEMPOTENT REGIONS
This section describes idempotent regions, the software-

level building blocks of an idempotent processor. First, we
describe how idempotent regions are identified. Second, we
use an example to demonstrate how idempotence can be har-



Issue Execute In-order retirement Challenges to scalability
In-order Compiler Hardware Hardware Dynamic effects limit ILP

OoO Hardware Hardware Hardware Complexity and energy
Idempotent Either Hardware Compiler Application limits region sizes

Table 1: Contrasting the responsibilities of the hardware and the compiler.

Operation Sequence Data Dependence Chain Idempotent?
Write x → Read x RAW Yes
Write x → Read x → Write x WAR after RAW Yes
Read x → Write x WAR after no RAW No!

Table 2: Idempotence in terms of data dependences.

nessed in applications and show that applications naturally
decompose into a series of idempotent regions. Third, we
briefly describe how a compiler can construct large idempo-
tent regions. Finally, we present quantitative data demon-
strating that idempotent regions can be very large.

3.1 Idempotent region identification
A region of code (a sequence of instructions) is idempo-

tent if the effect of executing the region multiple times is
identical to executing it only a single time1. Intuitively, this
behavior is achieved if the region does not overwrite its in-
puts. With the same inputs, the region will produce the
same outputs. An input is defined as a variable that is live
at the entry point of a region (“live-in” to the region). Thus,
a region is idempotent if it does not overwrite its live-in vari-
ables. A more precise definition based on data dependence
information follows.

By definition, a live-in variable has a definition (a write)
that reaches the region’s entry point, and has a correspond-
ing use (a read) of that definition after the region’s entry
point. Because the write must come before entry to the re-
gion, the write is not inside the region, and hence there is no
write that precedes the first read of that variable inside the
region. Hence, a live-in has no RAW (read-after-write) data
dependence before the first read of that variable. Since a live-
in has no RAW data dependence, overwriting a live-in must
occur after the point of the read. Thus, an overwritten live-
in variable has a WAR (write-after-read) dependence after
the absence of a RAW dependence. Finally, it follows that
a region of code is idempotent if there are no WAR depen-
dences that are not preceded by a RAW dependence. Table 2
guides the reader’s intuition.

3.2 Idempotent region construction
As derived in the previous section, a region is idempotent

if there is no WAR dependence (an antidependence) that is
not preceded by a RAW dependence (a flow dependence).
This type of dependence—an antidependence not preceded
by a flow dependence—we give a special name: a clobber
antidependence. Some clobber antidependences are strictly
necessary according to program semantics. These clobber
antidependences we label semantic. The other clobber an-
tidependences we label artificial. The following example
illustrates semantic and artificial clobber antidependences
and how idempotent regions form around them.

An example. Consider the C function list_push shown in

1Although this includes partial executions in general, the
final execution must be to completion.

Figure 4(a). The function checks a list for overflow and then
pushes an integer onto the end of the list. The function is
not idempotent: with or without overflow, re-executing the
function will put the integer onto the end of the already-
modified list, after the copy of the integer that was pushed
onto the list during the original execution.

The source of the non-idempotence is the increment of
the input variable list->size on line 22. Without the
increment, the function would be idempotent because re-
execution would simply cause the value that was written
during the initial execution to be overwritten with the same
value. However, we cannot do this—the antidependence is
required by the semantics of the function. It is a semantic
antidependence, and it is a semantic clobber antidependence
because it overwrites a live-in to the function.

Since semantic clobber antidependences are unavoidable
and an idempotent region may not contain any clobber an-
tidependences, the function’s idempotent regions necessarily
form around the antidependence. Hence, the read and the
write of list->size must occur in separate idempotent sub-
regions. Figure 4(b) shows this using the control flow graph
of the function, with psuedoassembly shown for the contents
of the basic blocks. In the figure, the read portion of the an-
tidependence (the load) is in B4, the write (the store) is in
B5, and each is in a separate idempotent region.

Not all antidependences are semantic antidependences.
Many times a region’s inputs are overwritten in a way that
is merely convenient. With only a limited number of stor-
age resources, a compiler must naturally re-use the available
registers and stack memory that are available to it. Re-using
these resources may involve overwriting inputs that have al-
ready been accessed and are no longer needed—a harmless
action under normal circumstances. In fact, most compilers
would not have assigned to the extra register R4 as in blocks
B2 and B3 of Figure 4(b). Most compilers would instead re-
use register R0 as shown in Figure 4(c). This eliminates the
need to move R0 to R4 in block B3, and thus eliminates the
need for block B3 altogether.

However, in doing so the compiler overwrites the input
argument list initially contained in R0. This value is now
lost. As a result, the idempotence property of the containing
region is lost as well. The region must further sub-divide
into two idempotent regions separated between the point
where R0 is first read in B1 and where it is overwritten in
B2. Note in Figure 4(c) that we now have two overlapping
regions that both contain B4: one (dark) has entry block B2

and the other (light) has entry block B1.
The kind of re-use exemplified by the write to R0 is gen-



Figure 4: An example illustrating the idempotence inherent in applications.

erally good for performance since it minimizes data move-
ment and maximizes locality. However, it reduces the sizes
of idempotent regions in the function by introducing clobber
antidependences. The clobber antidependences are artificial
because they are not necessary.

Region definition. We earlier defined a region as a se-
quence of instructions. However, the “region” containing B1

and B4 in Figure 4(c) contains control flow. For this pa-
per, we maintain the definition of a region as a sequence
of instructions, and hence consider the two paths through
that “region” as distinct and overlapping regions: B1, and
B1 → B4. As a result, there are four idempotent regions in
total: B1, B1 → B4, B2, and B5.

3.3 Region construction algorithm
Idempotent regions can be constructed statically or dy-

namically by a compiler. For this paper, we use a compiler
we have built using LLVM [31] that sacrifices some perfor-
mance to statically compile applications so that their idem-
potent regions are relatively large. In essence, the compiler
works by removing all artificial clobber antidependences on
inputs to potentially idempotent regions. These regions then
become idempotent. In the case of registers, the registers
are assigned such that the artificial antidependences do not
emerge. The same technique is applied to registers that
are spilled to stack memory—the stack slots are assigned
such that artificial antidependences do not emerge. Seman-
tic clobber antidependences are determined using LLVM’s
built-in alias analysis infrastructure. In particular, may-
alias and must-alias clobber antidependences on heap and
global memory form the semantic clobber antidependences
in the program that divide idempotent regions. Exactly how
potentially idempotent regions are identified and where and
how these assignments are performed is complex and in-
volves detailed program analysis; in the interest of space,

these topics are not covered in this paper and are deferred
to a companion technical report [14].

3.4 Idempotent region sizes
To give a sense for how large idempotent regions can be in

practice, Figure 5 compares the sizes of the idempotent re-
gions produced by a conventional compiler to those produced
by our idempotent compiler. The idempotent compiler con-
structs idempotent regions using an intra-procedural analy-
sis, forcing splits at function call boundaries. The compiler
is robust: it can successfully compile arbitrary C/C++ code
and targets both the ARM and x86 instruction sets.

We simulate benchmarks using gem5 [9]. For each bench-
mark, we measure the average region size occurring over a
100 million instruction period starting after the setup phase
of the application. In the case of the idempotent compiler,
region size is measured as the distance from region entry to
exit. In the case of the conventional compiler, it is mea-
sured more optimistically as the distance between dynamic
occurrences of clobber antidependences. This more opti-
mistic measurement is used in the absence of explicit region
markings in the binary of the conventional compiler.

Figure 5 reports results across the SPEC 2006 [39], PAR-
SEC [8], and Parboil [1] benchmark suites. Across all bench-
marks, our idempotent compiler (Idempotent) enables idem-
potent regions that are, geometrically averaged, 42.9 micro-
ops in size, compared to 18.9 micro-ops for the conventional
compiler (Conventional). We show results in terms of the
number of ARM (specifically ARMv7) micro-ops, and ob-
serve that the results for x86 are similar, although region
sizes tend to be quite a bit smaller for the x86 conventional
compiler due to higher levels of register re-use.

The Parboil benchmarks show the largest region sizes due
to their highly regular, streaming memory interactions. Three
benchmarks—456.hmmer, 470.lbm, and sad—have larger idem-
potent regions in the conventional binary than the idempo-
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Figure 5: Average region sizes (the y-axis is log scale).

tent binary. This is due to limited aliasing information in the
idempotent compiler’s region construction algorithm; with
small modifications to the source code that improve aliasing
knowledge, larger region sizes can be achieved2. However,
the region sizes across all suites are already quite large—
large enough, we argue, to be of practical value to architec-
ture design.

4. ON THE COMPLEXITIES OF IN-ORDER
RETIREMENT

Idempotence enables safe out-of-order retirement within
a region. This enables valuable pipeline simplifications for
processors that employ special-purpose hardware to man-
age in-order retirement. In this section, we show the ways
in which in-order retirement complicates a conventional pro-
cessor design. In the next section we exploit idempotence
to build a significantly simpler design with similar perfor-
mance.

4.1 A representative processor
As a representative processor, we model an aggressively-

designed two-issue in-order processor. We loosely base it
on the energy-efficient ARM Cortex-A8 processor core [6].
However, we also make reference to two other widely-used
two-issue in-order processor implementations—the Cell SPE
[29], and the Intel x86 Atom [21]—when their design choices
differ significantly from the Cortex-A8.

Figure 6(a) shows an initial configuration for our processor
with features similar to those of the Cortex-A8, but without
any high-performance optimizations to overcome the ineffi-
ciencies introduced by in-order retirement. In the following
sections, we incrementally add in these optimizations. The
processor is aggressively pipelined with 3 cycles for fetch, 5
for decode and issue, and the following execution unit la-
tencies: 1 cycle for integer ALU operations and branches;
4 cycles for integer multiply, load, store, and floating point
ALU operations; and 8 cycles for floating point multiply and
divide. Since the processor is dual-issue, the processor has

2Note that the conventional compiler measurement does not
suffer from this problem because its region sizes are deter-
mined based on run-time aliasing that results in actual clob-
ber antidependences.

two integer ALU units. The pipeline employs branch predic-
tion in the fetch stream and we add the capability to flush
mispredicted instructions that have issued by suppressing
writes to the register file and memory. The pipeline also
supports bypassing results over the result bus immediately
before writeback.

4.2 In-order retirement complexities
Below, we demonstrate the ways in which in-order retire-

ment complicates the design of (1) the integer processing
pipeline, (2) the floating point processing pipeline, and (3)
support for cache miss handling.

The integer pipeline: staging and bypassing. In Fig-
ure 6(a), integer ALU operations complete before integer
multiply and memory operations. Hence, the processor can-
not immediately issue ALU instructions behind these other
instruction types because it will lead to out-of-order retire-
ment. To improve performance, the pipeline can be modified
to retire the ALU instructions in order using a technique
called staging. Using staging, retirement of ALU instruc-
tions is delayed so that they write back to the register file
in the same cycle as the multiply and memory operations.
This technique is used to achieve in-order retirement of in-
teger operations on each of the Cortex-A8, Cell SPE, and
Atom processors. The Cortex-A8 has up to 3 cycles [6],
Atom has up to 5 cycles [21], and the Cell SPE has up to 6
cycles of staging [29].

A basic implementation of staging involves the insertion
of staging latches to hold in-flight results as they progress
down the pipeline. Results are then bypassed to executing
instructions by adding a unique data bus for each staging
cycle and destination pair. Unfortunately, this implemen-
tation results in combinatorial growth in the complexity of
the bypass network. For this reason, a sometimes preferred
solution is instead to implement a special register-file struc-
ture to hold results until they are allowed to retire. Results
are then bypassed out of this structure in a manner similar
to how results are read from the ROB in an out-of-order
processor. González et al. describe this structure in more
detail, calling it the staging register file (SRF) [17].

Figure 6(b) shows the addition of an SRF to our proces-
sor to temporarily hold completed results. To determine



(a) Initial configuration. (b) Supporting in-order retirement.

Figure 6: The complexities introduced by in-order retirement.

whether values should be read from the register file (RF) or
SRF after issue, it also includes an extra rename stage in
the pipeline to map registers to their location in either the
RF or SRF (the Cortex-A8 includes such a rename stage
after issue [6]). Finally, the pipeline flush logic is extended
for branch mispredicts to also flush the pipeline in the event
of an exception in the integer pipeline. It is worth not-
ing that support for result bypassing is more complicated
than depicted in Figure 6(b) for processors with execution
unit pipelines that consume and produce values at multiple
stages, such as the actual Cortex-A8 and the Atom, and for
processors with very deep pipelines, such as the Cell SPE.

The floating point pipeline: exception support. In
Figure 6(b), integer operations retire after all possible ex-
ception points in the integer pipeline, but the floating point
pipeline may experience exceptions as well. Although float-
ing point exceptions are typically rare, the IEEE floating
point standard requires that five specific floating point ex-
ception conditions be minimally detected and signaled [2].
The IEEE standard also recommends precise floating point
exception support for trapping to software.

Regarding the latter, supporting precise floating point ex-
ceptions in hardware is difficult. Hence, many processors,
including the Cortex-A8 and Cell SPE, do not support it [5,
27]. Atom does support it [28]. Unfortunately, the spe-
cific details on Atom’s implementation are not publicly avail-
able. The remaining aspects of the IEEE standard are im-
plemented in the Cortex-A8 using a second, much slower,
non-pipelined floating point unit that handles IEEE compli-
ant floating point operations, with exceptions handled en-
tirely in hardware. Figure 6(b) shows this support added to
our representative processor.

Cache miss handling. Occasionally, a load or store will
miss in the L1 cache. In this case, an in-order processor
must typically wait until the cache is populated with the
missing data before it can resume execution. In the case of
a simple in-order pipeline, the pipeline often simply asserts a
global stall signal that prevents instructions from advancing
down the pipeline. However, for deeper pipelines with many
stages this stall signal must propagate over long distances to

many latches or flip flops and thus often forms one or more
critical paths [10, 15].

The Cortex-A8 has such a deep pipeline. Hence, it uses
a different approach, which is to issue a replay trap—re-use
the exception logic to flush the pipeline and re-execute—in
the event of a cache miss [6]. The pipeline is then restarted
to coincide precisely with the point where the cache line is
filled. To enable this coordination of events, the Cortex-A8
employs a replay queue to hold in-flight instructions for re-
issue. Figure 6(b) shows the addition of the replay queue
to our representative processor. Compared to the Cortex-
A8, the Cell SPE does not implement special support for
cache misses since the SPE cache is software managed, while
specific details on Atom’s implementation are unavailable.

Summary. While conceptually simple, modern in-order
processors are quite complex and exhibit multiple sources
of overhead relating to in-order retirement as demonstrated
by the differences between Figures 6(a) and 6(b). This in-
cludes the extra register state to hold bypass values in the
SRF, the additional rename pipeline stage to map operand
values into the SRF, additional circuitry to flush the pipeline
for exceptions and cache misses, additional floating point re-
sources, a special replay queue to hold in-flight instructions,
and associated circuitry to issue from the replay queue and
force replay traps. As we show in the next section, all of
this additional complexity can be eliminated in an idempo-
tent processor.

5. IDEMPOTENT PROCESSOR DESIGN
For an idempotent processor, out-of-order retirement of

integer and floating point operations are not problematic
within the confines of a region, floating point exceptions
are easily supported precisely, and an idempotent proces-
sor pipeline must neither stall nor flush in the presence of
a cache miss. It uses only slightly modified scoreboarding
logic, and the only additional hardware requirement is the
ability to track the currently active idempotent region and
only issue instructions from that region. In particular, if a
potentially excepting instruction from the currently active
region is still executing in the processor pipeline, an instruc-
tion from a subsequent region may not issue if it might retire



Figure 7: An idempotent processor with a slice data buffer (SDB).

ahead of the exception signal. Constraining issue in this way
ensures that the contents of regions retire in order with re-
spect to the contents of other regions. In our design, we
use a special counter to track the number of potentially ex-
cepting instructions executing in the pipeline (up to 4). The
processor only advances the active region and begins issu-
ing instructions from the next region when the counter is at
zero.

Enhancing performance. Power and complexity savings
are enabled by the opportunity to eliminate staging, by-
passing, and support for replay traps in an idempotent pro-
cessor. To demonstrate how idempotent processing enables
out-of-order issue at low complexity cost, we propose con-
verting some of these savings into improved performance by
adding a small, 4-entry slice data buffer (SDB), as proposed
in previous work [25, 35], to hold miss-dependent instruc-
tions and their operands. Instructions that are dependent
on a load miss are issued to the SDB for re-issue at a later
stage, unblocking the pipeline. Subsequent instructions may
then issue out of order with respect to instructions in the
SDB. In an idempotent processor, these instructions may
also retire out of order; hence, the functionality of the SDB
is synergistic with the relaxation of in-order retirement in
an idempotent processor. To further exploit the SDB, we
add a non-blocking cache with 2 MSHRs. We also allow
the processor to use the SDB when no misses are outstand-
ing, in which case instructions blocked on a single operand
may issue to the SDB, unblocking the pipeline. This allows
the processor to execute ahead of long latency multiplies
and floating point operations. Note that, to allow recovery
from branch mispredictions as before (i.e. by flushing the
pipeline), dependent branch instructions do not issue to the
SDB. Details of our particular SDB design follow.

Figure 7 shows the SDB integrated into our idempotent
processor. It is implemented as a circular buffer and hence
drains in order. Two instructions may issue to and from
the SDB per cycle. Similarly to the replay queue described
in Section 4, the SDB issues miss-dependent instructions to
coincide with the time that the cache miss is serviced. De-
pendence information is tracked using a special write vector
(one bit per register), which tracks which registers are writ-
ten by instructions in the SDB. The write vector is updated
when an instruction issues to the SDB, and it is cleared only
once the SDB is empty. Between idempotent regions, if the
SDB is non-empty, issue blocks and the SDB drains to en-

sure that the contents of regions retire in order with respect
to other regions.

Because the SDB effectively results in out-of-order issue,
mechanisms to handle WAR and WAW hazards are needed
(the SDB mechanism itself handles RAW hazards). For reg-
ister WAR hazards, each SDB entry has space for one slice-
independent operand value read from the register file at the
time of issue, which allows that value’s register to be subse-
quently overwritten. For register WAW hazards, the write
vector is checked to prevent instructions from issuing if they
write to a register written to by the SDB. Finally, for mem-
ory data hazards we assume all loads and stores alias all
stores. Hence, all memory instructions are dependent on
earlier stores. We allocate an extra bit in the SDB write
vector for this purpose. It is set when a store issues to the
SDB, which prevents issue of later loads and stores.

Power and complexity. We argue that our idempotent
processor with a 4-entry SDB and a non-blocking cache
has better power and complexity characteristics than the
representative processor developed in Section 4. While we
add a 4-entry dual-ported circular buffer, a bit vector, non-
blocking cache functionality, and some associated control
logic, we eliminate all of the following: a 6-entry SRF and
a 8-entry replay queue (both dual-ported circular buffers),
the entire rename pipeline stage including the rename table,
the pipeline flush and issue logic for exceptions and replay
traps (likely to form one or more critical paths), an entire
IEEE-compliant floating point execution unit, and all of the
control logic associated with each of these various pieces.

Idempotent region recovery. In the event of mis-
speculated out-of-order retirement (i.e. an exception), the
processor takes the following corrective action: (1) it stores
the PC value of the excepting instruction to a register (e.g.
the exception register); (2) it sets the PC to the PC of the
most recent idempotent region boundary point; and (3) it
resumes the processor pipeline, issuing instructions only up
to the PC of the excepting instruction. When the except-
ing instruction executes and causes the exception a second
time, the processor traps to software precisely with respect
to that point in the program. After the exception is handled,
execution is resumed from the PC of the excepting instruc-
tion. For time-sensitive interrupts, we also allow immediate
servicing of the interrupt first, followed by re-execution af-
terwards.



Processor Configuration Characteristics

In-Order Processor Staging, full bypass, replay logic (Figure 6(b))
Idempotent Processor Lean Out-of-order retirement (Figure 6(a))
Idempotent Processor Fast Out-of-order retirement, 4-entry SDB, non-blocking cache (Figure 7)
Out-of-Order Processor 24-entry ROB, 16-entry IQ, 16-entry LSQ, 24 INT & 24 FP extra regs

Table 3: Processor configurations.

Hardware Configuration

Pipeline fetch/decode/issue/commit: 2-wide, rename/ROB (OoO only): 2-wide
Branch prediction 8kB tournament predictor, 512-entry BTB, 16-entry RAS
L1 caches 32kB ICache & 32kB DCache, 2-way set-associative, 64-byte line size
L2 cache 1MB 8-way set-associative, 64-byte line size, 10-cycle hit latency
Memory 200-cycle access latency

Table 4: Common hardware functionality across all processor configurations.

6. EXPERIMENTAL EVALUATION
Our experimental evaluation compares the performance of

an idempotent processor to a conventional processor. Sec-
tion 6.1 describes our experimental methodology and Sec-
tion 6.2 presents our results.

6.1 Methodology
We choose to evaluate a diverse set of three benchmark

suites: SPEC2006 [39], a suite of conventional single-threaded
workloads; PARSEC [8], a suite of emerging workloads; and
Parboil [1], a suite of compute-intensive data-parallel work-
loads. Each benchmark we compile to two different binary
versions: an idempotent binary, which is the version com-
piled using the modified LLVM compiler producing the av-
erage dynamic region sizes presented in Section 3.4; and an
original binary, which follows the regular LLVM compiler
flow to generate typical program binaries. Both versions are
compiled with the maximum level of optimization.

We simulate our benchmarks using a modified version of
the gem5 simulator [9]. To account for the differences in
instruction count between the idempotent and original bi-
nary versions, simulation length is measured in terms of the
number of functions executed, which is constant between
the two versions. The SPEC and PARSEC benchmarks are
fast-forwarded by the number of function calls needed to ex-
ecute at least 5 billion instructions on the original binary,
and execution is then simulated for the number of function
calls needed to execute 100 million additional instructions.
The Parboil benchmarks are also simulated for the function-
level equivalent of 100 million instructions, although, since
some benchmarks run for less than 5 billion instructions, the
fast-forwarding distance varies by benchmark.

Processor configurations and experiments. Table 3
shows the processor configurations we explore in our evalua-
tion. The In-Order Processor configuration models the rep-
resentative dual-issue in-order processor developed in Sec-
tion 5. This processor stages and bypasses ALU execution
for in-order retirement, does not support precise floating
point exceptions, and has a replay queue and associated logic
to handle replay traps. Idempotent Processor Lean is our
idempotent processor configuration that does not include an
SDB or non-blocking cache while Idempotent Processor Fast
includes a 4-entry SDB and a non-blocking cache. Finally,
to place our results in context, we also simulate a dual-issue
out-of-order processor configuration: Out-of-Order Proces-

Label Processor Configuration Binary

Baseline In-Order Processor Original
Switch In-Order Processor Idempotent
Lean Idempotent Processor Lean Idempotent
Fast Idempotent Processor Fast Idempotent
OoO Out-of-Order Processor Original

Table 5: Simulation configurations.

sor. All processors assume the same execution unit compo-
sition and latencies, and are otherwise configured identically
with details given in Table 4.

Our experiments are designed to isolate the performance
impact of the idempotent processor’s various components,
namely: (1) the idempotent region construction by the com-
piler, (2) the additional result bus contention introduced by
variable-length instruction completion, (3) the inter-region
issue constraint of the idempotent processor, and (4) the
addition of the SDB and non-blocking functionality to the
idempotent processor. Table 5 shows the simulation con-
figurations used to measure these components with results
normalized to Baseline, the performance of the In-Order Pro-
cessor configuration running the benchmark’s original binary
version. Switch measures component (1), Lean the addition
of components (2) and (3), and Fast the addition of com-
ponent (4). Finally, OoO measures the performance a tra-
ditional out-of-order processor as a reference point. Due to
limited x86 support in gem5 at the time of writing this pa-
per, we evaluate these configurations for ARMv7 only.

6.2 Results
Figure 8 shows our experimental results. The leftmost bar

(Switch) shows the performance of the in-order processor af-
ter switching to the idempotent binary. In all cases, there is
some performance degradation as our idempotent compiler
forfeits some register locality to create large idempotent re-
gions. For the control- and memory-intensive SPEC INT
benchmarks, the performance drop is substantial: the geo-
metric mean is a 8.5% loss. For SPEC FP, PARSEC, and
Parboil, the losses are more modest at 4.5%, 3.6%, and 1.0%,
respectively. Across all benchmarks, the geometric mean is
a 5.2% performance drop.

The second bar (Lean) presents the performance of Idem-
potent Processor Lean executing the idempotent binary. Com-
pared to Switch, Lean consumes less power and is less com-
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Figure 8: Performance results.

plex overall, but suffers from two additional sources of over-
head necessary for correct execution: (1) result bus con-
tention due to out-of-order completion and (2) constrained
issue between regions. However, for all benchmarks we see
that the additional performance loss over Switch is small: for
SPEC INT, SPEC FP, PARSEC, and Parboil, the geomet-
ric mean performance loss is 10.0%, 5.2%, 4.4%, and 1.5%
over the baseline. The two sources of overhead contribute
roughly an equal amount to the performance degradation.

The third bar (Fast) shows results for Idempotent Pro-
cessor Fast, which adds a 4-entry SDB and non-blocking
cache to improve performance at low power and complexity
cost. Almost all benchmarks benefit from this functionality,
with 470.lbm benefiting most due to its very high store miss
rate, which leads to its 98% performance gain. However,
the level of ILP exposed by the SDB is sometimes limited,
and one application, mri-q, does not benefit at all despite
heavy use of long latency floating point operations. Across
the benchmark suites the geometric mean performance gains
are -1.5%, 18.0%, 4.7%, and 4.3% over the baseline. Across
all benchmarks the gain is 4.4% over the baseline and 10.6%
over Lean.

The fourth and final bar (OoO) shows the performance
of a modern out-of-order processor running the original bi-
nary. Although the out-of-order processor performs the best
overall, our goal was never to exceed the performance of an
out-of-order processor, which achieves its 28.6% better per-
formance over the in-order baseline at substantial power and
energy costs. By comparison, Idempotent Processor Fast
achieves its better performance over the baseline at effec-
tively no hardware cost.

Summary. Our results show that our fast idempotent pro-
cessor configuration achieves substantial performance gains
over an energy-efficient in-order processor baseline. Despite
the absence of quantitative power measurements, which are
challenging to obtain for the level of detail we explore in
this paper, we nevertheless also claim an overall reduction
in both power and processor complexity based on the quali-
tative analysis presented in Section 5. Hence, our geometric
mean 4.4% performance improvements come at, at worst,

no additional power or complexity cost. Additionally, we
find that our performance is only 24.2% lower than a power-
hungry out-of-order processor.

7. DISCUSSION
In this paper, we have described idempotent processing

and demonstrated its potential. In this section, we discuss
some of the more subtle aspects of idempotent processing.

Forward progress. In our presentation of recovery using
idempotent regions, we have assumed that re-execution up
to the point of an exception is free of exceptions itself. This
may not be true in the case of, for instance, multiple page
faults occurring inside the same region. In particular, it is
possible for a later page fault to evict from the TLB a page
loaded by an earlier page fault. Then, when the region is re-
executed, the earlier page fault will occur again, leading to
live-lock. To prevent this situation, we propose a transition
to in-order retirement: if, during re-execution, the idem-
potent processor experiences an exception whose PC does
not match that of the expected instruction, the processor
re-executes the region issuing and retiring instructions in-
order and handling exceptions precisely as normal. While
this results in a much slower execution of that region, the
occurrence of this behavior is intuitively very rare.

Multi-threading and memory consistency. We cur-
rently assume that during recovery the values read from
memory during re-execution are the same values read dur-
ing the initial execution. This may not be true in, for in-
stance, a multi-threaded environment where threads modify
shared memory in an unsynchronized fashion (i.e. there are
data races). Idempotent processing also assumes a relaxed
consistency memory model where speculative retirement of
memory operations is safe. In cases where these assumptions
are too restrictive, idempotent regions could be treated as
having atomic memory semantics, such that all stores are
buffered until the containing region completes.

I/O and Synchronization. Some instructions are inher-
ently non-idempotent. Certain memory-mapped I/O oper-
ations and some types of synchronization instructions (e.g.



atomic increment) are two examples. In this work, we con-
sider such non-idempotent instructions as single-instruction
idempotent regions. As single-instruction regions, these in-
structions execute and retire in-order with respect to all
other instructions in the program and it is therefore never
necessary to re-execute them for recovery.

8. RELATED WORK
There is a long history of prior work on the complexities

of out-of-order execution and support for precise program
state in hardware [26, 37, 38]. With respect to out-of-order
retirement in particular, the Alpha architecture supported
imprecise floating point exceptions with hardware replay to
achieve precise state [12]. Additionally, recent work has
focused on speculative out-of-order retirement using check-
points [4, 13, 34]. Our work is similar, but distinct in that
it does not use hardware checkpoints for recovery. Rather,
we identify and construct implicit, low-overhead checkpoint
locations in the application itself using a compiler. The
power and complexity overheads of supporting re-execution
from these locations in the hardware is minimal, and we
demonstrate that the software performance overheads are
low enough that the technique is practical and can improve
energy efficiency.

Related work on the compiler side includes Gschwind and
Altman’s exploration of support for precise exceptions in a
dynamic optimization environment using repair functions in-
voked prior to exception handling [19]. In contrast to their
technique, our technique can be applied in either a static
or dynamic compilation environment. Additionally, Li et
al. develop compiler-based recovery over a sliding window
of instructions [32]. We find that our use of static program
regions allows for the construction of large recoverable re-
gions with lower performance overheads. Finally, Mahlke et
al. explore the idea of exception recovery using restartable
(idempotent) instruction sequences in their work on sentinel
scheduling [33]. However, their treatment is brief and they
apply it only over specific program regions.

The concept of idempotence has been leveraged by Kim et
al. in the context of thread-level speculation to allow idem-
potent references to see speculative state [30]. Additionally,
Shivers et al. use idempotence to achieve atomicity guaran-
tees for garbage collectors [36]. Restart markers, developed
by Hampton, also present a similar concept to idempotent
regions [23]. They have been proposed as a mechanism for
exception recovery for parallel architectures.

Finally, in terms of analysis, Bell and Lipasti explore the
conditions under which out-of-order retirement is safe [7]. In
the context of a wide-issue out-of-order processor, they find
that many operations could commit early given the opportu-
nity to do so. However, the hardware complexity to enable it
is considerable. Our work suggests that idempotent process-
ing could bypass this complexity and also simplify certain
out-of-order issue structures such as the ROB and LSQ.

9. CONCLUDING REMARKS
Due to slowing energy-efficiency gains from process tech-

nology scaling and the continued growth of the mobile com-
puting space, energy efficient microarchitecture design has
never been more important. This paper tackles fundamen-
tal inefficiencies in the processor by revisiting one of the
basic design principles in a microprocessor. It develops the
concept of idempotent processing, which leverages the prin-

ciple of idempotence to break programs into regions of code
than can be recovered through simple re-execution. Thus
idempotent processors allow speculative execution without
the need for hardware buffering or checkpoints, relaxing
decades-old assumptions on speculative execution that were
thought difficult or impossible to overcome. Specifically, we
use this approach to simplify the design of in-order proces-
sors by allowing out-of-order retirement with the option of
instruction-precise in-order recovery when necessary.

We showed that large idempotent regions can be extracted
from modern applications by a compiler that can produce bi-
naries with idempotent regions demarcated in them. We de-
veloped a simple idempotent processor that eliminates much
of the complexity in a conventional processor and shows a
performance gain of 4.4% (up to 25%) over a sophisticated
conventional in-order processor. Conceptually, the complex-
ity, area, and energy savings are clear. In future work, we
will implement our idempotent processor design in RTL or
FPGA to quantify these benefits more carefully. Addition-
ally, multi-threading, handling I/O, and operating system
issues may require further consideration before a full system
can be implemented around this idea.

Re-thinking some of the fundamental principles of ma-
chine organization from an energy and power constrained
perspective can significantly improve the efficiency of pro-
cessors. Future architectures are likely to require techniques
like the one explored in this paper to improve the efficiency
of the processor core itself in addition to techniques like spe-
cialization that can opportunistically side-step the core. The
general principle of idempotent processing decouples specu-
lation from recovery and could thus enable devices, circuits,
and microarchitecture to all be speculative with simple and
efficient recovery through re-execution.

Overall, the idempotent processor architecture is a good
fit for the energy- and power-efficient processor design space.
This includes the mobile computing space, power-constrained
many-core architecture space, and vector architectures like
GPUs which have traditionally avoided speculation because
of recovery overheads. Additionally, application transfor-
mations or idempotence-based optimizations could increase
the size of idempotent regions thus enabling further uses.
In this paper, we have shown that across a wide range of
applications idempotent processors form a new class of pro-
cessor that straddles in-order and out-of-order processors in
terms of achievable performance for a given energy budget.
Idempotent processors thus provide a valuable platform for
the exploration of future architecture designs.
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