
Mnemosyne: Lightweight Persistent Memory
A memory is what is left when something happens and does not completely unhappen.

– Edward de Bono

Haris Volos1, Andres Jaan Tack2 ∗, Michael M. Swift1

1 Computer Sciences Department, University of Wisconsin–Madison
2 Skype Limited

1 {hvolos, swift}@cs.wisc.edu, 2 andres.jaan.tack@skype.net

Abstract

New storage-class memory (SCM) technologies, such as phase-
change memory, STT-RAM, and memristors, promise user-level
access to non-volatile storage through regular memory instructions.
These memory devices enable fast user-mode access to persis-
tence, allowing regular in-memory data structures to survive system
crashes.

In this paper, we present Mnemosyne, a simple interface for
programming with persistent memory. Mnemosyne addresses two
challenges: how to create and manage such memory, and how to
ensure consistency in the presence of failures. Without additional
mechanisms, a system failure may leave data structures in SCM in
an invalid state, crashing the program the next time it starts.

In Mnemosyne, programmers declare global persistent data
with the keyword “pstatic” or allocate it dynamically. Mnemosyne
provides primitives for directly modifying persistent variables
and supports consistent updates through a lightweight transaction
mechanism. Compared to past work on disk-based persistent mem-
ory, Mnemosyne reduces latency to storage by writing data directly
to memory at the granularity of an update rather than writing mem-
ory pages back to disk through the file system. In tests emulating
the performance characteristics of forthcoming SCMs, we show
that Mnemosyne can persist data as fast as 3 microseconds. Further-
more, it provides a 35 percent performance increase when applied
in the OpenLDAP directory server. In microbenchmark studies we
find that Mnemosyne can be up to 1400% faster than alternative
persistence strategies, such as Berkeley DB or Boost serialization,
that are designed for disks.

Categories and Subject Descriptors D.4.2 [Operating Systems]:
Storage Management; D.4.5 [Operating Systems]: Reliability;
D.4.8 [Operating Systems]: Performance

General Terms Design, Languages, Performance, Reliability

Keywords Persistent memory, storage-class memory, persistence,
memory transactions, performance

∗ Work done while a student at the University of Wisconsin – Madison

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’11, March 5–11, 2011, Newport Beach, California, USA.
Copyright © 2011 ACM 978-1-4503-0266-1/11/03. . . $10.00

1. Introduction

Fast, cheap, and persistent memory has long been a dream for
computer designers. Until recently, non-volatile storage was ei-
ther slow (e.g., disks) or expensive (e.g., NVRAM). However, sev-
eral new technologies promise cheap and fast storage that survives
across system boot. For example, phase-change memory (PCM)
provides near-DRAM speeds and is currently available in sizes
up to 64 MB, and memristors may enable multiple terabytes of
non-volatile memory to be placed on-chip [61]. These devices are
termed storage-class memory (SCM) because they provide the in-
terface of memory (load and store instructions) but the persistence
of disks.

Existing operating systems are designed for a strict bifurcation
of devices into memory, volatile, fast devices, and random-access
devices erased on reboot, and storage, persistent, slow block-based
devices. Thus, research on SCM tends to follow the same path.
For example, recent work investigates use of phase-change memory
within file systems [17], or as a low-power volatile DRAM replace-
ment [39, 34]. Neither of these approaches exposes the full power
of SCM to programmers.

We propose that operating systems should expose SCM as a
persistent memory abstraction to provide direct access to the dura-
bility of SCM technologies. This abstraction enables programmers
to make in-memory data structures persistent without first convert-
ing them to a serialized format. Thus, trees, lists, and hashes can
survive program and system failures. Furthermore, direct access re-
duces latency to storage because it bypasses many software layers,
including system calls, file systems, and device drivers.

We see persistent memory not as a replacement for files, but
as a fast mechanism to store moderate amounts of data. For exam-
ple, Firefox 3 had a problem with calling fsync too frequently [19],
bringing the system to a crawl by frequent flushes to disk. Persistent
memory could address this problem by providing low-latency stor-
age of moderate amounts of data. Other possible uses are configu-
ration changes, snapshots of in-progress edits, and logs, such as in
distributed agreement protocols [12]. Applications should still use
files for interchanging data and for compatibility between program
versions when internal data-structure layouts change.

We have three goals for our system to expose persistent mem-
ory. First, it must be simple for a programmer to declare data
as persistent, and persistence must fit naturally into existing pro-
gramming models for volatile data structures. Second, and more
importantly, the system must support consistent modifications of
data structures. The system must enable programmers to move data
structures between consistent states, automatically recovering to
such a state after a failure. Finally, we seek a design that is com-
patible with existing commodity processors: this enables the adop-
tion of SCM without the processor support required by other pro-

posals [17, 16], and avoids the chicken-and-egg problem of which
comes first, SCM or processor support.

This paper presents Mnemosyne1 , a lightweight system for ex-
posing persistent memory to user-mode programs. It provides a
low-level programming interface, similar to C, for accessing persis-
tent memory. Mnemosyne provides three key services that simplify
programmer use of persistence. First, Mnemosyne provides persis-
tent memory regions, segments of virtual memory stored in SCM
rather than volatile memory. Regions can be created automatically
to hold variables labeled with the keyword pstatic or allocated dy-
namically. Mnemosyne virtualizes persistent regions by swapping
SCM pages to a backing file. Second, Mnemosyne provides persis-
tence primitives, low-level operations that support consistently up-
dating data. Finally, Mnemosyne provides a durable memory trans-
action mechanism that enables consistent in-place updates of arbi-
trary data structures.

Compared to past work on persistent memory and persistent ob-
ject stores such as ObjectStore, Thor, Texas, LRVM, and Quick-
Store [36, 40, 56, 58, 64], Mnemosyne provides a low-level inter-
face allowing both simple consistent updates (Section 3.2) as well
as high-level transactions (Section 3.3). Upon this base, higher-
level services such as garbage collection and safe references, to
ensure that persistent data does not point to volatile data, can be
provided by language frameworks. Furthermore, SCM enables the
implementation to be much simpler as data can be made persistent
without writing it out through the file system, and much lower la-
tency by persisting data directly to memory at the granularity of an
update rather than a page. The concurrently-developed NV-heaps
project [16] also provides user-level transactional updates to per-
sistent data. NV-heaps provide some features not currently found
in Mnemosyne, such as type-safe pointers and garbage collection
via reference counting. However, NV-heaps force the programmer
to use a specific object framework and requires modifications to the
processor.

We implement Mnemosyne as a pair of libraries and a small set
of modifications to the Linux kernel for allocating and virtualizing
SCM pages. We designed Mnemosyne to run on conventional pro-
cessors, requiring no special support beyond the necessary memory
controller for SCM, and implement it using regular x86 instructions
with a performance emulator for SCM accesses.

In the evaluation, we show that Mnemosyne provides a sim-
ple abstraction for programmers to make data structures persistent.
We compare Mnemosyne performance against Berkeley DB run-
ning on a RAM disk with the performance of phase-change mem-
ory. For small data sizes, Mnemosyne transactions perform 6–14
times better than Berkeley DB. We also convert two applications,
OpenLDAP and Tokyo Cabinet, to use persistent memory and find
the performance of moving existing in-memory data structures to
persistent memory is 35–117 percent faster than Berkeley DB’s op-
timized storage or flushing the whole structure to a file.

The contributions of our work are:
• A complete layered architecture for managing and exposing

storage-class memory to programs.
• An exploration of mechanisms for consistent updates to in-

memory data, and a library of primitives supporting consistent
updates to data storage-class memory.

• A software transactional memory system that provides durabil-
ity with SCM.

• A novel mechanism for atomic log writes without multiple
barriers.

The rest of this paper begins with a short overview of storage-
class memory technologies, followed by a high-level description

1 Mnemosyne is the personification of memory in Greek mythology, and is
pronounced nee–moss–see–nee.

Technology Read Write Endurance

P
re

se
n

t DRAM 60 ns 60 ns > 1016

NAND Flash 25 µs 200–500 µs 104 - 105

PCM 115ns 120 µs 106

F
u

tu
re PCM 50 – 85 ns 150 – 1000 ns 108–1012

STT-RAM 6 ns 13 ns 1015

Table 1. Access latency and endurance (in number of overwrites)

of current and future DRAM, PCM, STT-RAM, and Flash memo-

ries. Prospective characteristics are based on demonstrated prototypes.
Memristor figures are not available.

of our design in Section 3. Section 4 describes the implementa-
tion of Mnemosyne, and Section 5 describes how we implement
transactions in persistent memory. Section 6 demonstrates the per-
formance and programming benefits of Mnemosyne, and we finish
with related work and conclusions.

2. Storage-Class Memory

We use the term storage-class memory to refer to technologies
that allow persistent storage to be attached to the memory bus
and accessed through load and store instructions [25]. We do not
consider flash as storage-class memory because it is only accessible
as a block device through a driver.

Three recent technologies are promising implementations of
SCM: phase-change memory (PCM) [39], spin-torque-transfer
RAM (STT-RAM) [32], and memristors [61]. While the per-
formance and reliability details differ, they all provide byte-
granularity access and the ability to store data persistently across
reboots without battery backing.

We assume, like others [17], that SCM is placed directly on
the memory bus side-by-side with DRAM, allowing access through
normal load/store instructions. We believe this is a reasonable de-
sign choice given that computer architects have already studied
phase-change memory, a form of SCM, as a DRAM replacement
in general-purpose systems [39, 53, 67].

While SCM is currently only available in small sizes, scaling
projections indicate that within a few years larger sizes (e.g., 1 GB)
will become available. Eventually, it may be economically feasible,
and perhaps cheaper, to outfit a system completely with SCM and
no DRAM [39, 53, 67].

Phase-Change Memory. We prototype Mnemosyne with the
characteristics of PCM because it is closest to commercial deploy-
ment: Samsung recently announced that it is shipping 512 Mbit
PCM chips for use in mobile devices [55]. Furthermore, its scaling
properties and low power make it viable as a DRAM replacement.
Table 1 shows the performance and reliability properties of PCM
and flash for comparison. Compared to DRAM, currently available
PCM [49] is approximately 2 times slower for read accesses and
2000 times slower for write accesses. However, access latencies for
PCM, as demonstrated by research prototypes [5, 63], are expected
to match those of DRAM for reads and be 2-17 times slower for
writes. Furthermore, current technologies suffer from wear-out af-
ter 108 writes, although many solutions for this problem have been
proposed [34, 39]. These solutions change the mapping of physical
address to locations in SCM to level writes across more locations.
We assume such wear leveling is present and do not address it in
Mnemosyne.

While memory systems for SCM are not yet available, we make
several assumptions about the features they provide. First, we as-
sume they can support an atomic write of at least 64 bits [17]. Sec-
ond, we assume that it is possible to stall execution until a write

has made it all the way to PCM, similar to the fsync call for file
systems.

Failure Models. While data stored in SCM is persistent, data
stored in a processor cache is not. Thus, after a failure, only data
actually resident in SCM survives. A system using SCM could re-
duce this restriction with low-level software that flushes data from
the processor cache on application or OS failure. However, without
battery backing, sudden loss of power or hardware faults could still
cause data loss. We therefore assume that on a system failure, in-
flight memory operations may fail, and that atomic updates either
complete or do not modify memory.

3. Design

The purpose of Mnemosyne is to reduce the cost of making data
persistent. Current program devote large bodies of code to format-
ting data for persistence, either in a file system or database, man-
aging consistency of persistent data. They also carefully decide
when to make data persistent, as writing data out to disk frequently
leads to poor performance. In contrast, with Mnemosyne, a pro-
gram should be able to make any data persistent, at any time, with
little extra effort.

Mnemosyne presents an abstraction of persistent memory to
programmers. We have three goals for the system:
1. User-mode access to persistence avoids the latency of enter-

ing the kernel and provides flexibility in how persistence is
achieved.

2. Consistent updates modify persistent data without jeopardizing
correctness in the presence of failures.

3. Conventional hardware lowers the barrier to adoption by allow-
ing existing processors to work with new memory technologies.

Mnemosyne is designed as a low-level interface to persistent mem-
ory, providing necessary methods for consistency. It leaves the sep-
aration of volatile and persistent data and prevention of memory
leaks to higher levels of software.

Mnemosyne achieves the first goal with persistent regions, a
segment of memory that is created and virtualized by the kernel
but may be accessed directly from user mode. Mnemosyne pro-
vides a two-layer solution to the second goal. The lower layer
of Mnemosyne provides persistence primitives, which are support
routines for programming with persistent memory. The upper layer
of Mnemosyne provides durable memory transactions supported
by a compiler to enable general-purpose code to create and modify
persistent data structures. To satisfy the third goal, our consistent
update mechanism relies on hardware primitives available in exist-
ing architectures. Figure 1 shows how the components are divided
between user and kernel modes. While we designed Mnemosyne
for a system with both DRAM and SCM, it applies equally well to
a system that uses SCM for volatile storage as well.

3.1 Persistent Regions

Mnemosyne exposes storage-class memory directly to application
programmers through the persistent region abstraction: a segment
of data that user-mode code can read or write, and that survives
application or system crashes. Persistent regions are mapped at
fixed virtual addresses to support pointer-based data structures.
This abstraction makes persistence explicit: only a portion of a
process address space persists across restarts. In addition, programs
must take explicit steps to guarantee persistence, such as writing
data with special instructions or within a transaction to ensure data
makes it all the way to SCM. However, data in a persistent region
can be read and cached with regular instructions.

Mnemosyne supports both static and dynamic creation of per-
sistent regions. A programmer can declare a C/C++ variable
pstatic, which tells the linker to place it in a persistent region.

Figure 1. Mnemosyne architecture. User-mode components
layer on top of a kernel region manager.

Similar to static variables, persistent static variables are initialized
once when the program first runs, and then retain their value across
invocations. A programmer can also explicitly create a persistent
region with the pmap function, which provides functionality simi-
lar to mmap. While dynamic persistent regions offer programmers
a generic way to store data of any size and structure, Mnemosyne
also provides a persistent heap (Section 3.2.2), which enables dy-
namically allocated persistent variables.

Mnemosyne virtualizes regions by (i) recording the virtual–
physical mapping of persistent regions in SCM, and (ii) swapping
SCM pages to backing files that it allocates when creating a region.
Thus, multiple applications can time-share or space-share access
to SCM. As we discuss in Section 3.4, virtualization prevents a
memory leak in one program from monopolizing a finite amount of
SCM.

Static persistent regions are most appropriate for programs that
allow only a single instance of the program to run per user, such as
most office productivity applications and some web browsers. For
programs that allow multiple simultaneous instances, Mnemosyne
provides an environment variable to indicate which backing file
contains the data for this instance.

Mnemosyne lets programmers annotate the target of a pointer
type as persistent with the persistent keyword, which functions
similar to the const keyword. The annotation has a shallow effect
on the target: annotating a target as persistent does not indicate that
its members persistent. The annotation also has no control over
whether the data is allocated in volatile or persistent memory. It
only serves as an indication to the compiler of the persistence type
of the target, which can be used to identify potentially dangerous
assignments of volatile address to a persistent pointer, and vice
versa. This ensures that persistent data, which survives restarts,
does not refer to volatile data that is lost. However, this cannot
detect when the only pointer to persistent data is stored in volatile
memory; in this case, the persistent data could be leaked if the
program crashes.

3.2 Consistent Updates

Persistence requires a mechanism for application programmers to
update persistent data in without risking corruption after a failure.
File systems use a variety of techniques to ensure consistency, such
as shadow updates [8, 54, 17], journaling [62], soft updates [42],

and post-reboot checking [43]. We seek to give programmers simi-
lar flexibility in implementing consistency.

A consistent update is a transformation that takes data from one
consistent state to another consistent state; an update may contain
any number of store and load instructions. For example, in a hash
table, a consistent update may be the addition of a new value.

3.2.1 Ensuring consistency

The primary mechanism for ensuring consistency is ordering
writes, for example to ensure that new data exists before changing a
pointer to reference the new data. We identify four common mech-
anisms for consistently updating data in Table 2 in increasing order
of flexibility. The more specific mechanisms can provide higher
performance for certain data structures, while the more general
mechanisms support a wider range of usage patterns. Mnemosyne
supports all four methods.

Single variable update. The simplest update is atomically writing
to a single variable. This is useful for recording when a program
has been initialized or for storing statistics such as counters. These
updates are totally ordered with respect to each other.

Append updates. An append update is used by logs and writes new
data to empty space after the previous update, thus never modifying
existing data. The individual stores comprising an append update
are unordered, but separate appends must complete in order. After
a failure, an incomplete append (there can be only one) is discarded.

Shadow updates. Similar to append updates, a shadow update
writes all data to a new location. Once new data is persistent, the
program atomically modifies the reference to the old data to refer to
the new data. While there are no ordering constraints between the
stores writing the new data, the reference can only be modified after
the new data has completed writing. Shadow updates work best for
tree-like structures where data is reachable through a single pointer,
and must allocate new memory for every update. After a failure, a
program must find and release unreferenced new data.

In-place updates. An in-place update can modify any data struc-
ture, such as a doubly linked list or a B-tree. It ensures consistency
with transactions that undo or complete changes after a failure. As
a result, the program must make a copy of either the old data for
rolling back, or the new data for rolling forward. Stores updating a
data structure must be ordered after stores that create the copy. Un-
like the preceding consistency mechanisms, in-place updates can
be used to modify any data structure and therefore enable existing
volatile structures to be persistent. However, they perform worse
than other consistency methods because they copy data for recov-
ery.

3.2.2 Persistence Primitives

Mnemosyne provides a set of persistence primitives, which are
low-level operations that enable programmers to implement these
consistency mechanisms. At the lowest level, Mnemosyne pro-
vides hardware primitives for writing data persistently and order-
ing writes (described next), which is useful for single variable up-
dates. The system also provides a persistent heap for allocating
small blocks of memory. Allocated memory and the size of allo-
cations persist across program invocations, so memory can be al-
located during one invocation and freed during the next. The per-
sistent heap supports shadow updates by providing space for new
data. Mnemosyne also provides a log facility to support append-
only updates. The log provides a simple double-ended buffer, al-
lowing consistent appends to the tail of the log and truncation at
the head of the log.

3.2.3 Mapping consistency onto hardware

A key challenge in implementing consistent updates is ensuring
that data reaches SCM in the right order. Unlike disks, which are
only accessed through software, SCM is attached to the memory
bus and is subject to caching by the processor. While the cache can
greatly improve read and write performance, it can also reorder up-
dates to SCM: the cache may evict cached data at any time and
in any order. Thus, if a program accesses SCM like normal mem-
ory, updates may not be consistent. Prior work on SCM addresses
this problem with hardware support for programs to express order-
ing constraints [17]. However, the proposed hardware requires ex-
tensive modifications to processor caches, including an additional
epoch tag per cache line and the ability to globally flush all caches
lines in an epoch.

Mnemosyne’s consistent updates mechanism exposes explicit
commands to write data persistently and consistently. It relies on
three hardware primitives found in most processors [33]: (i) write-
through stores, which write data directly to memory rather than
to the cache, (ii) fences, which prevent subsequent writes from
completing before preceding writes, and (iii) flushes, which writes
a cache line out to memory. Durable updates to persistent memory
are implemented as write-through stores, ensuring that they will not
be delayed by caching. If a program wishes to separate durability
from writing data, so it may re-read data before it becomes durable,
it can use a regular store and then flush the data later. Mnemosyne
guarantees ordering constraints by issuing a fence between ordered
updates, ensuring that a later update will not become persistent
before an earlier update. In addition, a program wishing to stall
until data is persistent can also use a fence.

3.3 Durable Memory Transactions

Mnemosyne provides durable memory transactions to support in-
place updates. Leveraging recent advances in transactional mem-
ory, Mnemosyne provides a compiler to convert regular C/C++
code into transactions. A programmer places the atomic keyword
before a block of code that updates a persistent data structure, and
the compiler produces code that passes all memory references to a
transaction system.

The transaction system ensures that all modifications are atomic
and durable, so updates from committed transactions will survive
restarts and uncommitted transactions roll back, and isolated, so
no transaction can see intermediate states of other transactions.
Unlike the checkpoint mechanism used by some previous persistent
memory systems [17, 58], transactions thus allow multiple threads
to concurrently update different data structures.

3.4 Persistent Memory Leaks

Memory leaks of volatile data may cause a program to crash, but
can often be repaired by restarting the program. In contrast, leaks
of persistent memory may use all the SCM in a system and be fatal
to a program. Mnemosyne provides two mechanisms to help pre-
vent leaks. During allocation, Mnemosyne requires that programs
provide a persistent pointer to receive the memory, thereby ensur-
ing that memory is not lost if a crash happens. Second, Mnemosyne
virtualizes persistent memory by swapping it to files. This ensures
that a leak in one program only affects that program and does not re-
duce the availability of persistent memory to other programs. When
leaks do occur, a program can recover by allocating a new persis-
tent region and then copying live data from the existing regions into
the new region.

In addition, there are a variety of language-level techniques for
preventing leaks, including conservative garbage collection [7], and
smart pointers that perform reference counting as demonstrated by
other persistent stores [40, 58, 64, 16].

Method Ordering constraints within update Data structures
Count Description

Single variable update 0 None flag, pointer
Append update 0 None log, extent
Shadow update 1 Store modifying reference ordered after stores writing data tree, bitmap
In-place update N-1 Stores modifying original data ordered after stores making copy any

Table 2. Methods for consistently updating persistent memory and the number of ordering requirements within an update.

4. Implementation

This section describes the implementation of Mnemosyne for
Linux. The system consists of (i) kernel modifications to expose
and virtualize storage-class memory, (ii) libraries to implement
persistent regions, persistence primitives and the transaction sys-
tem, and (iii) a compiler/linker that supports persistent variables
and transactions. We implement our system for x86-64 Linux ver-
sion 2.6.33.

The total implementation is comprised of about 450 new lines
of kernel code and 10,050 lines of user-mode library code, not
including comments. The user-mode code is further broken down
into 3,500 lines for implementing persistent regions and persistence
primitives, 3,100 lines for implementing the persistent heap, and
3,450 lines for implementing the transaction system.

4.1 Hardware Platform

Mnemosyne provides four memory primitives for consistently up-
dating persistent data. As described in Section 3.2, we rely on two
fundamental operations, write through and fence, to order updates
and to guarantee that updates have reached memory. In addition,
Mnemosyne provides a store operation, to update persistent mem-
ory in the cache, and flush to force cached data out to SCM. These
allow data written to the cache immediately so it can be returned
by later loads, and asynchronously flushed to SCM.

Given the long latency of PCM operations, a goal for the prim-
itives is high throughput by batching multiple operations. We rely
on the x86 write-combining buffers, which are provided for high-
speed data streaming [2]. Write combining allows data to be stored
temporarily in a buffer and merged with other data writes to the
cache block before the processor writes them to memory. These
buffers allow the processor to write multiple words in a single bus
transaction to effectively utilize memory bandwidth. The block size
is usually that of the cache line, and is 64 bytes on our platform.
Without using these buffers, writes to the same cache line would
require separate bus transactions and sacrifice performance.

The write-through operation issues streaming writes to the
write-combining buffers with the movntq instruction. Fences use the
mfence instruction, which delays execution until write-combining
buffers have been flushed. Thus, any memory access after the fence
waits until the data has been written stably to SCM. For regular
writes, store() just invokes mov, and flush() issues a clflush

(flush cache line). These operations are all implemented as macros
for performance.

4.2 Persistent Regions

The Mnemosyne persistent region abstraction is provided by a
combination of kernel support, library support, and compiler
support for declaring persistent variables. As shown in Table 3,
Mnemosyne provides both static and dynamic persistent regions.
Static regions contain persistent global variables that are declared
and initialized by a programmer at compilation time. A program-
mer declares a global variable as persistent by annotating it us-
ing the pstatic keyword. This keyword inserts a compile-time
annotation with the attribute ((section("persistent"))).
The static linker coalesces all persistent variables into a single
.persistent ELF section in the executable.

Programmers create dynamic persistent regions at runtime by
calling the pmap function, similar to memory mapping files with
mmap. Mnemosyne automatically maps dynamic regions created by
the program on previous invocations into the address space when it
initializes. To prevent newly created sections from being lost if the
application crashes, the pmap function takes as an in/out parameter
a persistent variable to receive the region’s address. A programmer
deletes a persistent region by calling the punmap function, which
takes the starting address and the length of the region.

Mnemosyne lets programmers annotate pointer targets with the
persistent keyword. This keyword inserts a compile-time anno-
tation with the attribute ((address space(1))). This anno-
tation is interpreted by the Sparse semantic parser [1], which des-
ignates such annotated pointer targets in address space 1 and all
other pointer targets in address space 0. Sparse essentially treats
pointers with identical target types but different address spaces as
distinct types, and warns about code that mixes pointers to different
address spaces. This allows Mnemosyne to identify code that acci-
dentally assigns a pointer to persistent data to volatile data instead
(and vice versa).

Persistent regions present two challenges: how to ensure that
mappings are persistent, and how to virtualize a finite amount of
SCM to support use by many applications. For regular volatile
memory, pages are swapped to a shared page file or swap partition
and mappings are deleted when a program terminates. However,
for persistent regions the mappings of virtual addresses to physical
SCM pages must survive system restarts. In addition, data swapped
out of SCM must also survive system restarts.

Our implementation follows a two-layered approach. A kernel-
mode layer, the region manager, exposes SCM to user-mode code
as a memory-mapped file. A user-mode layer, libmnemosyne, as-
sociates each persistent region with a specific file and records the
address of each region.

Region manager. The region manager is an extension of the ex-
isting Linux virtual memory system. The region manager creates
a new zone of memory for SCM, and all allocations for persistent
regions come from this zone using the existing Linux page alloca-
tor. We add a new flag, MAP PERSIST, to the mmap system call im-
plementation to indicate that a file should be mapped to SCM and
not DRAM. The region manager records the list of virtual pages
currently stored in SCM in the persistent mapping table. This ta-
ble, stored at the base of physical SCM, stores triples of the form
〈

scm f n, i, po f f

〉

, which associate an SCM frame’s number scm f n

with a page offset po f f in the file identified by inode i2.
The region manager reconstructs persistent regions when the

OS boots. It scans the persistent mapping table and (i) updates the
Linux page descriptor for each mapped SCM page, and (ii) creates
a VFS inode for the backing file of every mapping. The manager
places SCM frames not in the table on a free list. After boot, the
page descriptors and inodes enable the kernel to evict SCM pages to
their proper files. When starting a process with persistent regions,
all accesses to SCM pages already in memory are treated as soft
page faults that update the page table without copying data from

2 Uniquely identifying a file requires two extra pieces of information: device
and inode generation numbers, which we omit for clarity of discussion.

Class API Description Section

H/W primitives flush(addr) Writes back and invalidates the cache line that contains the linear address addr. 4.1
store(addr, val) Writes value val. 4.1
wtstore(addr, val) Writes value val to SCM. 4.1
fence() Prevents subsequent writes from completing before preceding writes. 4.1

Persistent regions pstatic var Allocates the variable var in the static region. 4.2
pmap(addr, len, prot, flags) Creates a dynamic region. 4.2
punmap(addr, len) Deletes part or all of a dynamic region. 4.2
type persistent * ptr Declares the target of the pointer ptr as persistent. 4.2

Persistent heap pmalloc(sz, ptr) Sets ptr to point to a newly allocated persistent memory chunk of size sz. 4.3
pfree(ptr) Deallocates the persistent memory chunk pointed by ptr and then nullifies ptr. 4.3

Log log create(flags, cbf) Creates a log. 4.4
log append(rec) Writes record rec by appending it at the end of the log. 4.4
log flush() Blocks until all prior writes to the log reach SCM. 4.4
log truncate() Drops any records written to the log. 4.4

Durable transactions atomic {. . .} Atomically updates persistent state. 5

Table 3. Summary of Mnemosyne’s programming interface, including low-level operations implemented with processor instructions and high-level

APIs for managing persistent regions.

the backing file. During process execution, the region manager may
swap persistent memory pages back to the file system if there is
memory pressure.

libmnemosyne. The libmnemosyne library creates and records
the persistent regions for a process. Mnemosyne allocates all re-
gions in a one terabyte reserved range of virtual address space
(easily changed to any power-of-two sized region). This allows a
quick determination of whether an address refers to persistent data
and prevents persistent regions from conflicting with dynamically
allocated address space. The library reserves 16KB in the static per-
sistent region to store a region table containing the process’s per-
sistent regions. If the region table exceeds 16KB, it can overflow to
a dynamically allocated page.

To create a dynamic region, the pmap function in libmnemosyne
creates an empty backing file and invokes mmap to map the file
into SCM. In the region table, libmnemosyne records the tuple
〈

raddr,len,b,m
〉

that associates the region’s starting address addr
and length len, with the backing file b, and metadata m, which in-
cludes protection flags. The region table also serves as an intention
log: libmnemosyne writes a flag indicating the successful comple-
tion of a pmap operation. When an application starts, libmnemosyne
recreates previously allocated persistent regions and destroys par-
tially created ones.

For the static regions containing variables labeled pstatic,
libmnemosyne creates a new backing file the first time the pro-
gram executes. It populates the new region with the initial values
found in the executable. If a program wishes to discard existing
contents of a static persistent region and revert to the data in the
executable, a program can delete the backing file and restart. Static
persistent variables serve as pointers into dynamically allocated
persistent regions.

All the region backing files, including the region table’s file, are
stored by default in the program’s current working directory. This
location can be changed via the environment configuration vari-
able MNEMOSYNE REGION PATH, thus allowing multiple concurrent in-
stances of the same program to use separate backing files.

4.3 Memory allocation

Mnemosyne provides a persistent heap [3] in libmnemosyne. Ta-
ble 3 lists the programming interface to this heap. Similar to pmap,
the pmalloc call takes a persistent pointer as an argument to ensure
that memory is not leaked if the system fails just after an alloca-
tion. The pfree call takes a pointer to a persistent pointer as an
argument to ensure that the persistent pointer does not continue to
point to the deallocated chunk of memory if the system fails just
after a deallocation.

We base our implementation on two popular volatile memory
allocators, Hoard [6] and dlmalloc [38], which we modify to allo-
cate from a persistent region. While Hoard was originally designed
for use in multiprocessor environments, we leverage its superblock-
based structure to minimize the persistent state required to track al-
locations. Hoard splits the heap into superblocks, which are fixed-
size regions containing an array of fixed-size blocks (different su-
perblocks may have different block sizes). We modify Hoard to
store a persistent bitmap vector per superblock to track allocated
blocks; allocating memory requires only one write to SCM to set a
bit in the superblock’s vector. We separate bitmap vectors from al-
located data to reduce the risk of corruption [41]. Hoard’s indexes,
which speed allocation, are in volatile memory and must be regen-
erated when a program starts. The allocator guarantees atomicity
of its operations by logging the write to the bitmap vector and the
destination/source pointer.

Mnemosyne uses the modified Hoard allocator for requests
smaller than a superblock (8 KB). If the requested block is larger,
Mnemosyne falls back to dlmalloc, which we chose for its scalabil-
ity to large block sizes. Since we expect dlmalloc to be infrequently
used, we have not modified it except to add logging to ensure allo-
cations are atomic.

4.4 Logging

Mnemosyne relies on a log to make memory allocations and trans-
actions atomic. This log is exposed to programmers by libm-
nemosyne for implementing append-only data structures. Table 3
lists the log programming interface. A program writes to the log
with log append, which writes data but does not guarantee persis-
tence. The log flush call ensures all prior log writes are persistent.
Finally, logs are truncated with log truncate. A program can syn-
chronously truncate the log by interspersing truncates with appends
in a single thread. Alternatively, the application can asynchronously
truncate the log from another thread, which moves the latency of
truncating off the critical path. In addition, a program may trun-
cate logs at startup. Mnemosyne’s durable transaction mechanism
supports all three uses.

We implemented a high-performance raw word log (RAWL)
and associated manager that logs uninterpreted word-size values.
Such a semantic-free log can be the basis for other semantic-rich
logs, such as journals. The log is implemented as a fixed size single-
consumer/single-producer Lamport circular buffer, which allows
simultaneous appends and truncations without locking [37]. The
log manager implements functions to access the log and recover
log contents after a failure.

The main challenge in implementing a log is maximizing per-
formance while ensuring that appends are atomic. As logs are

Figure 2. Example of missing write detection in the RAWL. Entries
written on the current pass through the log have a torn bit of ‘1’, while

entries written the previous pass have a ’0’. A missing write is detected

by an incorrect torn bit.

always written sequentially, Mnemosyne uses the x86 streaming
write instruction movntq to write log data. To achieve high perfor-
mance, these instructions do not guarantee that writes are executed
in program order. If the system crashes, later writes may have com-
pleted while earlier ones did not. When restarting, the log manager
must identify whether all the writes that comprise an append op-
eration completed. This problem is similar to the torn-write prob-
lem in databases and file systems, where only part of a multi-sector
write completes. The common solution in file systems is to use two
fences: write the data, wait for the data writes to complete with a
fence, then write a commit record, and wait for the commit record
to complete with a fence. A second option is to append a checksum
of the data [51]. However, both these techniques have high over-
head. Commit records require two long-latency fences, and check-
summing adds substantial overhead to every write.

Mnemosyne instead implements a novel tornbit RAWL that re-
quires only one fence. The tornbit RAWL reserves a single torn
bit in every 64-bit word. This bit has the same value for all writes
in one pass over the log buffer, and reverses sense when the log
is overwritten. Thus, completely written log entries will have the
same torn bit, while incomplete entries will mix values. Figure 2
demonstrates the use of torn bits. When Mnemosyne creates a log,
it initializes the memory to zeroes. The log manager treats the in-
coming 64-bit words to be written to the log as a stream of bits. It
forms and writes out to the log 64-bit words that are composed of
63 bits taken from the head of the stream and the proper torn bit.
On a log flush the log manager writes out to the log any bits left
in the stream. Upon recovery, Mnemosyne locates the head of the
log and scans forward until it reaches the end of the log, where the
torn bit reverses, or until it finds a log word with an out-of-sequence
torn-bit, indicating a partial write.

4.5 Limitations

Shared Memory. The recovery mechanisms used for logging and
memory allocation execute when a process starts. Furthermore, the
allocator caches index information in volatile memory for perfor-
mance. Therefore, these mechanisms may be unsafe if a persistent
region is shared between processes. However, sharing is safe if the
processes cooperate to ensure that (i) within each region, only one
process writes to a log or allocates from a heap, and (ii) both pro-
cesses have started and completed recovery before accessing shared
data. Thus, producer-consumer style communication, where a sin-
gle process is responsible for creating and later deleting work items,
can be implemented safely.

Wearout. Our prototype implementation does not address wearout
of storage-class memory. However, virtualization enables remap-
ping heavily used virtual pages to spread writes to different phys-

Figure 3. Example of a durable memory transaction.

ical PCM frames. Additionally, our system’s structures, such as
mapping tables and RAWL, may be relocated to spread writes
around. For example, RAWL’s tornbits may periodically be shifted
to avoid writing 0’s and 1’s continuously to the same bits. Fi-
nally, our system could benefit from work on wear-leveling mech-
anisms that reduce wearout of PCM when that technology is used
as DRAM replacement in main-memory systems [34, 52].

5. Durable Memory Transactions

Mnemosyne supports in-place updates with durable memory trans-
actions. Updates within a transaction execute to completion, at
which point the changes persist across failures, or the changes are
rolled back upon restart. Figure 3 shows an example use of the
atomic block language construct to form a transaction (Table 3).

Memory transactions are implemented by three components:
a compiler to create transactions from ordinary C or C++ code,
a transaction system to store data necessary for recovery, and a
transaction log. The libmtm library provides the transaction system
on top of the persistence primitives in libmnemosyne.

Compiler. We use Intel’s STM Compiler [48] to automatically gen-
erate object code with calls into a transaction system. The com-
piler emits compiled code that invokes the transaction system when
a transaction begins, commits, and on every memory reference
within the transaction.

Transaction system. Mnemosyne transactions are based on Tiny-
STM [24] a lightweight software transactional memory (STM)
implementation. The Mnemosyne transaction system implements
lazy version management [46] with write-ahead redo logging, and
eager conflict detection [46] with encounter-time locking.

With write-ahead redo logging, new values written during the
transaction and their addresses are added to a log and also buffered
in volatile memory. The transaction system performs a quick range
check against the reserved persistent address range and logs only
writes to persistent memory. At commit, the log is flushed to SCM,
and the new values can optionally be written back. During a trans-
action, memory at a variable’s address still contains unmodified
values. When called to read data, the transaction system checks
whether the data was modified. If so, it returns the new data from
the buffer and if not returns the value from memory.

We implement write-ahead redo logging because it reduces the
ordering constraints on writes to SCM: the only requirement is that
the log is written completely before any data values are updated.
In contrast, undo logging, where old values are written to a log
and new values are written to memory, would require ordering a
log write before every memory update. However, buffering writes
has a performance cost: transaction commits are slower because
the new values have to be written out to memory, and reads within
transactions have to check if new values exist.

For encounter-time locking, we use a global array of volatile
locks, with each lock covering a portion of the address space.
When accessing a memory location, the transaction first identifies
the lock that covers the memory address, and if it does not own

the lock it tries to acquire it. If successful, the transaction brings
the lock in its lock-set and continues with the access. Otherwise,
the transaction aborts by releasing all locks acquired, discarding
any buffered updates, and writing to the log a mark to indicate the
transaction as aborted. When a program starts, Mnemosyne replays
all completed transactions by writing the data at the logged address.

Transaction log. We implement the redo log in persistent mem-
ory using a RAWL. The transaction log can be truncated after data
values are forced to SCM. We implement both synchronous and
asynchronous truncation. Synchronous truncation forces new val-
ues to memory during transaction commit. After flushing the log,
the transaction system walks the buffer of modified data and calls
flush on every address written. It then truncates the entire log.
Under heavy load, this prevents the transaction log from growing
too large. Asynchronous truncation retains the log after transac-
tion commit, so the latency of committing is shorter. A separate log
manager thread consumes the log and forces values out to mem-
ory before truncating the log. However, if the log manager thread is
unable to execute, program threads may stall until there is free log
space.

For better multiprocessor scalability, Mnemosyne keeps a per-
thread log. This slightly complicates recovery as Mnemosyne must
ensure that transactions are redone in the order executed by the
program. Mnemosyne relies on TinySTM’s existing global times-
tamp counter, which is incremented at every transaction comple-
tion. Mnemosyne captures a total order over transactions by storing
this global counter along with each transaction in the log. During
recovery, transactions from different threads are replayed in counter
order.

Discussion. The cost of durable transactions is two writes to SCM
for every update: once to store recovery information in the log, and
once to write the data itself. Other consistent-update mechanisms
may perform better. But, they come at the cost of increased com-
plexity, such as recovery code to replay logs for append-only up-
dates, garbage collection for memory lost during shadow updates,
and explicit fences to order updates.

6. Evaluation

The goal of Mnemosyne is to abstract storage-class memory at
low latency for program use. We evaluate three questions about the
system:
1. Does it work? Can existing programs benefit from persis-

tent memory, and does Mnemosyne provide persistence across
crashes?

2. How fast is it? How does Mnemosyne perform, both in latency
and throughput, across a range of workloads, and how benefi-
cial are Mnemosyne’s mechanisms?

3. With which technologies can it work? How does Mnemosyne’s
performance depend on the latency of the underlying SCM
technology?

While programmers may program directly with persistence prim-
itives, they require a sophisticated understanding of recovery pro-
tocols similar to databases or file systems [8, 45]. Durable trans-
actions provide a much simpler interface to persistent memory and
require few application changes, so we concentrate our evaluation
on transaction performance.

6.1 Methodology

Because real memory systems based on PCM are not available, we
developed a simple performance emulator based on DRAM to eval-
uate performance of our system. There are a wide variety of projec-
tions for PCM’s performance, and the specific design of the mem-
ory system can have a great impact on performance [39]. So, we

limit our emulation to the most important aspect of performance:
slow writes.

To account for PCM’s slower writes relative to DRAM, we
introduce a delay after each write into the hardware access macros.
The emulator adds delays on operations that already go to DRAM
(not the cache), so the delay is only for the additional latency of
PCM. For cacheable writes (store operations) we insert the delay
on the subsequent flush, while for non-cacheable ones we insert
the delay in-place. We also insert the delay after each memory fence
to account waiting for outstanding writes to PCM. For sequential
write-through (wtstore) we model write bandwidth by inserting
a proper delay after the write sequence completes to limit the
effective bandwidth.

In all cases we implement the delay with a loop that reads the
processor’s timestamp counter (TSC) in each iteration. The loop
continues until the requested delay has elapsed. In calibration tests,
we found that inserted delays are at least equal to the target delay,
and that our bandwidth model is accurate to within 4%.

Our emulator does not account for additional latency on loads.
However, the primary benefit of SCM is fast, durable updates,
and our workloads focus on write rather than read performance.
Furthermore, many loads will hit the cache, so only misses will
incur a penalty from PCM. Also, our model does not account for the
effect of cache evictions or read-after-write bank conflicts, where
reads may be queued behind long writes to the same bank, thus
increasing read latency.

To compare Mnemosyne against other uses of PCM, we con-
structed an emulator, PCM-disk, for a PCM-based block device.
Base on Linux’s RAM disk (brd device driver), PCM disk intro-
duces delays when writing a block. We model block writes using
sequential write-through operations as described above, and mount
an ext2 file system.

We performed our experiments on an Intel Core 2 quad-core
based machine equipped with 4GB of physical DRAM (accessible
via the DDR2-800 interface) running our modified x86-64 Linux
version 2.6.33 kernel at 2.5GHz. All tests add 150 ns of extra la-
tency and are limited to 4GB/s of write bandwidth unless other-
wise noted. We estimated write bandwidth based on projections
provided by Numonyx [21]. For all our experiments we report av-
erages of at least five runs.

6.2 Applications use of Persistent Memory

Applications that can immediately benefit from persistent memory
are difficult to find: the long latency of writing to disk has taught
programmers to avoid frequently committing data. We expect that
a common use will be for applications to create a useful in-memory
data structure, such as a tree or hash table, and then make it persis-
tent by allocating it from a persistent heap and wrapping updates in
transactions. For reliability and to support conversion between pro-
gram versions, the program should periodically export serialized
version of the structure.

We model this use of persistent memory by adapting programs
that already maintain a fast in-memory data structure for frequent
access and a separate version for consistent, durable updates. We
converted two programs that take different approaches to persis-
tence for use with Mnemosyne: OpenLDAP and Tokyo Cabinet.
One program frequently commits data to disk using a storage man-
ager, and the other periodically snapshots a whole data structure to
disk.

OpenLDAP. OpenLDAP is an implementation of the Lightweight
Directory Access Protocol (LDAP). OpenLDAP supports a number
of storage backends; the default is back-bdb, which provides trans-
actional storage using Berkeley DB. An alternative, back-ldbm,
also uses Berkeley DB but without transactions; instead, it pe-
riodically asks Berkeley DB to flush dirty data to disk to mini-

Application Backend Workload Updates/s

OpenLDAP
back-bdb on PCM-disk

SLAMD
5428

back-ldbm on PCM-disk 6024
back-mnemosyne 7350

Tokyo Cabinet
msync on PCM-disk

64B 19,382
1024B 2,044

Mnemosyne
64B 42,057
1024B 30,361

Table 4. Update throughput for OpenLDAP and Tokyo Cabinet.

mize the window of vulnerability. To improve query performance,
each backend maintains its own cache of data outside Berkeley
DB [14]. We believe that such read-mostly caches can benefit from
lightweight persistent memory: the backing store can be removed,
leaving only a persistent cache.

To test this hypothesis, we modified the back-ldbm backend to
remove Berkeley DB and to make the cache persistent with durable
transactions. The cache is organized using an AVL tree, which
we make persistent by allocating nodes with pmalloc and placing
atomic blocks around updates in four places.

While we do not generally encourage keeping pointers to
volatile memory in a persistent region, we found this useful in
OpenLDAP. The cache entries of the original back-ldbm and our
back-mnemosyne store pointers to a description of each attribute,
which is kept by the front end in volatile memory. Instead of modi-
fying the frontend to keep those descriptions in persistent memory,
we found it more convenient to keep the descriptions in volatile
memory and have the persistent cache entry keep pointers to those
volatile descriptions. Because the volatile descriptions become
stale after a restart, we augmented each cache entry with a version
number that is used to determine whether the persistent pointer is
up-to-date.

We use the SLAMD distributed load generation engine to ex-
ercise three versions of the server: (1) back-bdb, the default un-
modified transactional backend with the cache and Berkeley DB,
(2) back-ldbm, the unmodified back-ldbm backend with the cache
and Berkeley DB, and (3) back-mnemosyne, our modified backend
based on back-ldbm. We set the cache sizes large enough to avoid
evictions due to capacity. We used a LDIF template to generate a
workload of 100,000 directory entries.

TokyoCabinet. Tokyo Cabinet is a high-performance key-value
store [31]. It stores data in a B+ tree and periodically calls msync

on a memory-mapped file to flush modified pages to disk. These
syncs can reduce performance by 96 percent [47], so they are rarely
invoked. As a result, the application loses unsaved data after a
crash.

We modified Tokyo Cabinet to allocate its B+ tree in a persis-
tent region and perform updates in durable transactions. While we
re-used the existing update code, in several cases we had to du-
plicate functions to create separate persistent and volatile versions
with different allocators. We completely removed the persistence
code that calls msync. We also removed the locks used for synchro-
nizing concurrent accesses to the tree and relied on transactions for
concurrency control.

Performance. Table 4 lists throughput of the OpenLDAP server
for a workload that adds new records. OpenLDAP is configured to
run with 16 threads (4 threads per core) as advised by its tuning
manual. While the three backends perform similarly, back-ldbm
offers a lower level of reliability than the other two backends.
This close performance arises because PCM is fast enough that
the time to write updates is a small fraction of the total time to
service a request. These results demonstrate that with Mnemosyne
it may not be necessary to create specialized structures optimized

for persistence, such as Berkeley DB’s tables. Instead, standard in-
memory data structures (in this case an AVL tree) provide simpler
programming, in addition to durability and consistency, all with
similar or better performance than a highly tuned storage engine.

Table 4 also shows the throughput of 64-byte and 1024-byte
insert/delete queries with Tokyo Cabinet for single-thread config-
urations. As a comparison, we ran the standard implementation
of Tokyo Cabinet on our PCM-disk emulator and configured it to
save data with msync after every update. Mnemosyne was about
2 – 15 times faster in these tests, while at the same time provid-
ing stronger consistency guarantees than the msync version, which
can suffer from torn writes if the system fails while flushing pages.
For multiple-thread runs, we found that the throughput of Tokyo
Cabinet Mnemosyne degrades by 9% because of increased con-
tention on the tree, causing transactions to abort. The throughput
of Tokyo Cabinet on PCM-disk increases by 10%, but is still far
below Mnemosyne.

Reliability. We validate that Mnemosyne works correctly by in-
jecting synthetic failures. We intentionally crashed OpenLDAP in
the middle of a transaction, and verified that after every restart, the
data affected by the transaction were still available. In addition, we
wrote a crash stress program, which uses transactions to perform
random updates to memory using a known seed. We verified that
after a crash, memory contains the correct random values. Finally,
we tested the torn-bit feature of the RAWL by injecting bit flips into
the log before a crash. In all cases, Mnemosyne correctly recovered
after the crash.

6.3 Microbenchmark Performance

Programmers wishing to persist in-memory data structures today
have a wide variety of choices. We evaluate two common ap-
proaches: (i) use a storage manager for data storage and caching,
and (ii) serialize the data structure to a file. With a storage manager
such as Berkeley DB [59], a program can commit small changes to
a data structure, such as adding a record to a hash table. We com-
pare the performance of a simple hash table [15]. using Mnemosyne
transactions for persistence against using Berkeley DB’s hash ta-
ble. We store the database files on our PCM-disk emulator. In both
cases, data is committed to storage on every update.

Figures 4 and 5 compare write latency and update throughput
of Mnemosyne to Berkeley DB for different number of threads and
record sizes. Deletes are introduced at the same rate as writes to
ensure steady progress. Update throughput is aggregate throughput
of writes and deletes. For single threaded runs and transactions that
update records smaller than 2048B, Mnemosyne’s direct access of
memory achieves a write latency that is almost six times better than
Berkeley DB. Mnemosyne’s performance for small transactions is
limited by the cost of (i) transaction instrumentation in the code,
which adds a function call to every load and store, (ii) fences to
force the log to memory and (iii) flushes to force data to memory.
With a microbenchmark, we measured the cost of instrumenting
and logging each word written as 190 ns when the transaction’s
write set size is smaller than 128 cache lines. For larger write sets,
this cost increases linearly with the number of distinct cache lines
written. The cost of committing a transaction, which consists of a
fence and flushing data out to SCM, adds up to 250 ns per distinct
cache line flushed. These costs represent the overhead of supporting
in-place updates. A hash table insert of 64 bytes requires on average
15 updates to 5 distinct cache lines, for a total cost of 4.3 µs.
With larger data sizes, Berkeley DB’s optimizations for disk-like
performance, such as large sequential writes and infrequent fences
(once per block in PCM-disk), give it better write latency.

With multiple threads, Mnemosyne achieves 10-14x improve-
ment in update throughput compared to Berkeley DB. Mnemosyne
improves throughput almost linearly with the number of threads,

8 64 256 1024 2048 4096

value size (bytes)

0

50

100

150

200

250
la

te
nc

y
(u

s)

BDB-1T

BDB-2T

BDB-4T

MTM-1T

MTM-2T

MTM-4T

Figure 4. Write latency for a hashtable with durable transactions

compared to Berkeley DB.

8 64 256 1024 2048 4096

value size (bytes)

0

5

10

15

20

25

S
pe

ed
up

 v
s

B
D

B
-1

T

55
20

5

53
04

5

47
35

7

34
99

4

28
77

3

11
36

0

BDB-1T

BDB-2T

BDB-4T

MTM-1T

MTM-2T

MTM-4T

Figure 5. Update throughput for a hashtable with durable transac-

tions compared to Berkeley DB. Numbers above the bars are the abso-

lute updates per second for the Berkeley DB single-threaded version.

without hurting write latency. The slight increase in write latency
is due to contention on the global timestamp counter in the trans-
action system, which is relatively more expensive for short trans-
actions. In contrast, Berkeley DB does not scale beyond 2 threads.
We found this is due to contention on the centralized log buffer,
which becomes the serialization bottleneck as I/O latency be-
comes shorter. Also, Berkeley DB’s throughput improvement with
2 threads comes at the cost of increasing write latency, possibly
due to group commit, which is not necessary with Mnemosyne’s
fine-grain memory transactions. Finally, while Berkeley DB’s write
latency is lower than Mnemosyne’s for for values larger than 2048
bytes, the Mnemosyne’s throughput is higher because it is the ag-
gregate of writes and deletes, and delete latency remains almost
constant for Mnemosyne as value size increases.

An alternative approach, often used for less structured data, is
to serialize the data into a buffer and write it to a file. For exam-
ple, productivity applications including word processors use this
approach for periodic fast saves. We compare the cost of main-
taining a red-black tree with 128 byte nodes in persistent memory
against the cost of keeping it in DRAM and periodically serializ-
ing it and storing it in a file. Using small data sizes maximizes the
overhead of transactions, because there is not much data to write
out between fences.

Tree Insert Serialize Inserts per
Size Latency Latency Serialization

1 K 4.7 µs 517 µs 189
8 K 5.1 µs 3,413 µs 1,345
64 K 5.5 µs 33,859 µs 9,202
256 K 5.8 µs 143,776 µs 24,788

Table 5. Performance of Mnemosyne updates and Boost serializa-

tion of red-black trees. The right-most column shows the number of

Mnemosyne updates that can be performed in the time for a single
Boost serialization of the tree.

Record Size (B) 8 64 256 1024 2048 4096

Base (MB/s) 17 128 416 881 1088 1244
Tornbit (MB/s) 34 227 591 929 1045 1093

Table 6. Throughput of base and tornbit RAWLs..

8 64 256 1024 2048 4096

value size (bytes)

−50

−40

−30

−20

−10

0

10

20

30

40

%
 d

ec
re

as
e

in
 la

te
nc

y

90% idle

50% idle

10% idle

Figure 6. Decrease in write latency of hashtable with asynchronous

over synchronous truncation.

Table 5 compares the cost of updating the tree with Mnemosyne
transactions against the cost of periodically serializing it using
Boost [9] and storing it on PCM-disk. Tree updates cost 5-6 µs with
Mnemosyne, and on average 10 percent of the tree can be updated
for the cost of serializing and storing the tree just once. Thus, even
data structures with high rates of change can more efficiently be
made persistent with transactions than by serializing and storing.

6.3.1 Optimizations

Mnemosyne implements two optimizations to reduce the cost of
transactions: the torn bit in the RAWL, and asynchronous log trun-
cation. Table 6 compares performance of torn bit against an imple-
mentation of the RAWL that writes a commit record, with a sep-
arate fence. For log records smaller than 2048 bytes, the torn-bit
log performs up to 100 percent better. Above 2048 bytes, the torn
bit log performs worse than a separate commit record. The cost of
the fence is fixed, while the cost of bit manipulation to implement
torn bits scales with the amount of data. Thus, for large records,
the cost of manipulating bits to make space for the torn bit is larger
than the cost of a single extra fence. As Mnemosyne targets smaller
transactions, the torn bit log is a valuable optimization but should
be omitted if large transactions are expected.

Asynchronous log truncation may reduce latency and improve
performance under low load because it moves flushing modified
data off the critical path. Instead, a separate thread processes the
log to flush all modified data to PCM, after which it truncates the
log. Figure 6 compares performance when the hash table thread is
idle 90, 50, and 10 percent of the time. We find that for 50 and
90 percent idle time, the truncation thread can keep up with the
active thread and achieves a reduction of 7-31% in write latency.

8 64 256 1024 2048 4096

value size (bytes)

0

50

100

150

200

250
la

te
nc

y
(u

s)

BDB-150

BDB-1000

BDB-2000

MTM-150

MTM-1000

MTM-2000

Figure 7. Mnemosyne’s performance relative to Berkeley DB for dif-

ferent memory access latencies.

However, with only 10 percent idle time, the active thread stalls for
extended periods while the truncation thread flushes data, which
can increase latency by up to 42% for 4KB writes. Thus, this
optimization is most helpful for transactions with a moderate duty
cycle.

6.3.2 Reincarnation Cost

There are two reincarnation costs associated with Mnemosyne: (i)
the cost to reconstruct persistent regions when the OS boots, and
(ii) the cost to remap persistent regions to a process’ address space,
scavenge the persistent heap, and replay all completed but not
flushed transactions when a program starts. For (i), we measured
the worst case scenario cost, which is to reconstruct a persistent
region for each SCM frame. This takes approximately 734 ms for
1GB of SCM, indicating that reincarnation contributes less than 1s
overhead to the OS boot process. For (ii), we found the overall cost
in our workloads to be less than 100 ms. Specifically, we measured
the cost to remap the persistent regions to be about 1.1 ms, while
the cost to scavenge the persistent heap region and reconstruct the
heap’s volatile indexes was about 89 ms. This high cost is due to the
incremental allocation of memory needed by the volatile indexes,
which results to a large number of brk system calls. We believe this
cost could be reduced via bulk allocation or lazy construction of
the indexes but have not implemented any of these optimizations.
Finally, we found the cost to replay a completed but not flushed
transaction ranges between 3 to 76 µs. In the case of synchronous
truncation, the number of completed but not flushed transactions is
bounded by the number of threads, which for 4 threads results in a
worst case cost of about 300 µs.

6.4 Sensitivity to Memory Performance

Mnemosyne exposes persistent memory directly to programs as
memory. If however, SCM latencies are long, then applications may
perform better treating SCM like disk, with associated optimiza-
tions to overlap I/O and computation and to optimize for sequential
access. We evaluate the impact of different memory latencies by
comparing the performance of Mnemosyne transactions on a hash
table to Berkeley DB, which optimizes for disk-like performance.

Figure 7 shows the relative performance of Mnemosyne over
Berkeley DB as a function of data element size for three different
latencies: 150 ns, 1000 ns, and 2000 ns. For small data sizes,
Mnemosyne is always faster because it needs to write much less
data. However, for longer latencies the benefit is much lower: 200
percent better performance for 1000 ns latencies and 100 percent
for 2000 ns latencies. Furthermore, the benefit drops off faster with

larger data sizes: at 2000 ns, Berkeley DB and Mnemosyne perform
the same for 1024 byte inserts.

Thus, Mnemosyne is most useful when SCM latencies are close
to those of DRAM, because the benefit of modifying small amounts
of data outweighs the latency of access. For larger latencies, SCM
may best be treated as a disk and accessed through the file sys-
tem. Should someone prefer using Mnemosyne though, then our
optimizations that remove latency off the critical path become even
more evident. For example, under low load (10 percent idle) and
2000 ns latency to SCM, asynchronous truncation would be able
to reduce write latency for 1024 and 2048 bytes by 70% and 60%
respectively, enabling Mnemosyne to still perform better than the
disk-based interface.

7. Related Work

NV-heaps [16] is a concurrently developed, project that also seeks
to provide transaction updates to data in storage-class memory.
However, the focus of the two projects is different: NV-heaps fo-
cus on on persisting user-defined objects, so they support transac-
tions via an object-based transactional memory system. In contrast,
Mnemosyne supports transactions via a word-based transactional
memory system, which can be used to transactionally update any
data kept in persistent memory. Nevertheless, NV-heaps provide
some features not currently found in Mnemosyne, such as type-
safe pointers and garbage collection via reference counting. Fi-
nally, NV-heaps require processor support, while Mnemosyne can
be used with existing commodity processors.

We next discuss past projects on persistent objects/languages,
recoverable memory, transactional memory, and transaction pro-
cessing.

Persistent memory. Several projects have investigated the use of a
large battery-backed memory for persistent storage [10, 18, 23].
Unlike Mnemosyne, the memory in these systems is accessible
only through a driver to prevent corruption, and hence only avail-
able through a DBMS or file system. The eNVy system [65] fo-
cuses on the architecture of attaching flash to the memory bus as
persistent memory, and uses a battery-backed SRAM buffer to hide
the block-addressable nature of flash. Mnemosyne instead focuses
on the programming model and can be used with eNVy’s architec-
ture.

Persistent objects/languages. Previous research on persistent
object systems attempted to provide language level persistence
through the integration of database systems and programming
languages [3, 4, 11, 36]. Virtual memory-based persistent object
systems, such as Texas [58], QuickStore [64] are most similar.
However, these systems rely on a C++ object-oriented program-
ming model, which limits the applicability of the system to pro-
grams non-OO programs. Furthermore, Texas provides a check-
point mechanism for consistency, which is insufficient in the pres-
ence of multiple threads. Finally, these systems operate on virtual
memory pages, which makes the system heavier weight, as they
must read or write more data at a time and rely on optimizations
such as page-diffing to reduce the amount of data written. How-
ever, the higher-level interface to these systems and others, such
as Thor [40], allows them to provide better safety properties, such
as only allowing pointers in persistent data structures to reference
other persistent data (or, in the case of Thor, to make persistent any
volatile structures referenced). Their knowledge of all pointers in
a data structure also enable garbage collection to prevent memory
leaks. These mechanisms could be layered on top of Mnemosyne’s
primitives to provide the same guarantees.

Durable memory transactions. Mnemosyne is similar to light-
weight recoverable virtual memory (RVM) [56] and Rio Vista
transactions [41]. Mnemosyne borrows the notion of persistent re-

gions from RVM, but commits data at word granularity rather than
at page granularity. Unlike Rio Vista, Mnemosyne transactions op-
erate completely at user level and do not require a battery back-up
system. Several IBM systems have provided transactions in mem-
ory by marking pages accessed by a transaction in a TLB-like struc-
ture [13, 60]. Similar to RVM, this provides coarse-grained trans-
actions at the page granularity, and relies on a disk for durability.

Stasis is a user-mode library that generalizes write-ahead-
logging (WAL) to provide transactional storage to applications [57].
Unlike Mnemosyne, Stasis does not provide compiler support for
transactions [57], so programmers must explicitly code transac-
tional writes and reads.

Transactional memory. Recent work on transactional memory fo-
cuses on the concurrency of transactions, through automatic detec-
tion of conflicts, rather than on durability [30, 29]. Mnemosyne re-
lies on software transactional memory techniques to automatically
annotate program code in a compiler, and to implement efficient
commit processing. As a result, our system benefits from recent re-
search in the area [66]. Recent work by FusionIO on atomic updates
to flash storage uses a technique similar to the torn-bit RAWL [50],
but does not need to use sense reversing.

Transactional processing. The use of transactions as the basic unit
of atomicity and durability has been the focus of the database and
systems research community for almost three decades [27, 28, 45].
Similar to many database systems, Mnemosyne relies on write-
ahead logging for recovery. Mnemosyne differs from disk-based
transactions in that it cannot control when data is evicted from the
cache, and as a result must force log writes early. In addition, the
low cost of SCM access raises the cost of sophisticated logging and
recovery mechanisms [45]. Similar to Mnemosyne, databases must
deal with partial writes, but often solve it with checksums [44].
Main-memory databases [26, 20] store all data in memory rather
than caching data, but still rely on a disk for persistently storing a
log of committed updates.

Storage-class memory for files. Other work focuses on SCM as a
replacement/acceleration for flash or magnetic storage media. One
approach is to store just metadata or frequently accessed data in
SCM [22, 35], treating it as a block device. BPFS instead lever-
ages SCM’s byte addressability to reduce the amount of metadata
written during an update and achieves consistency through shadow
updates [17]. These approaches all improve performance for file
access, but do not provide fine-grained persistence to programs.

8. Conclusions

Programmers trained in the era of disks have learned that frequently
updating persistent state should either be avoided or be handled by
a database engine. Storage class memory presents new opportuni-
ties for fast data persistence that obsolete these rules. Mnemosyne
provides lightweight persistent memory, and common in-memory
data structures can be made persistent using durable transactions.
Thus, programmers can create a single data structure, optimized
for memory, rather than designing separate in-memory and update-
optimized persistent representations. Compared to past work on
persistent object systems, Mnemosyne provides greater flexibility,
by not requiring C++ objects, and lower latency by persisting data
directly to memory at the granularity of a a single update rather
than a whole page.

Acknowledgments

This work is supported in part by the National Science Founda-
tion (NSF) grants CNS-083447 and CNS-0720565. We would like
to thank Mark Hill and Arkaprava Basu for valuable discussions
during the initial stages of the project. We would also like to thank

our shepherd, Emery Berger, and the anonymous reviewers for their
invaluable feedback. Swift has a significant financial interest in Mi-
crosoft.

References

[1] Sparse - a semantic parser for C. sparse.wiki.kernel.org.

[2] AMD, Inc. Software optimization guide for AMD64 processors.
http://support.amd.com/us/Embedded\ TechDocs/25112.
PDF, 2005.

[3] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, and
R. Morrison. An approach to persistent programming. Computer

Journal, 26(4):360–365, Nov 1983.

[4] M. P. Atkinson, L. Daynès, M. J. Jordan, T. Printezis, and S. Spence.
An orthogonally persistent java. SIGMOD Rec., 25(4):68–75, 1996.

[5] F. Bedeschi, C. Resta, O. Khouri, E. Buda, L. Costa, M. Ferraro,
F. Pellizzer, F. Ottogalli, A. Pirovano, M. Tosi, R. Bez, R. Gastaldi,
and G. Casagrande. An 8Mb demonstrator for high-density 1.8V
phase-change memories. In VLSI Circuits, pages 442 – 445, June
2004.

[6] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson.
Hoard: a scalable memory allocator for multithreaded applications.
In ASPLOS 9, Nov. 2000.

[7] H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment. Softw., Pract. Exper., 18(9):807–820, 1988.

[8] J. Bonwick, M. Ahrens, V. Henson, M. Maybee, and M. Shellenbaum.
The zettabyte file system. Technical report, Sun Microsystems.

[9] Boost C++ Libraries. Serialization overview. http://www.boost.
org/doc/libs/1\ 42\ 0/libs/serialization/doc/index.
html, Nov. 2004.

[10] T. C. Bressoud, T. Clark, and T. Kan. The design and use of peristent
memory on the DNCP hardware fault-tolerant platform. In DSN,
2001.

[11] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L. McAuliffe,
J. F. Naughton, D. T. Schuh, M. H. Solomon, C. K. Tan, O. G.
Tsatalos, S. J. White, and M. J. Zwilling. Shoring up persistent
applications. SIGMOD Rec., 23(2):383–394, 1994.

[12] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: an
engineering perspective. In PODC 26, Aug. 2007.

[13] A. Chang and M. F. Mergen. 801 storage: Architecture and
programming. ACM Transactions on Computer Systems, 6(1), Feb.
1988.

[14] J. H. Choi, H. Franke, and K. Zeilenga. Enhancing the performance
of OpenLDAP directory server with multiple caching. In Interna-

tional Symposium on Performance Evaluation of Computers and

Telecommunications Systems (SPECTS), July 2003.

[15] Christopher Clark. C hash table. http://www.cl.cam.ac.uk/
∼cwc22/hashtable/hashtable.c.

[16] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson. NV-Heaps: Making persistent objects fast
and safe with next-generation, non-volatile memories. In ASPLOS

16, Mar. 2011.

[17] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee. Better I/O through byte-addressable, persistent memory.
In SOSP 22, pages 133–146, Oct. 2009.

[18] G. Copeland, T. Keller, R. Krishnamurthy, and M. Smith. The case
for safe RAM. In VLDB 15, Aug. 1989.

[19] J. Corbet. Fsyncers and curveballs (the firefox 3 fsync() problem).
http://lwn.net/Articles/283745/, May 2008.

[20] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker,
and D. Wood. Implementation techniques for main memory database
systems. SIGMOD Rec., 14(2):1–8, 1984.

[21] E. Doller. Phase change memory and its impacts on memory
hierarchy. http://www.pdl.cmu.edu/SDI/2009/slides/
Numonyx.pdf, 2009.

[22] N. Edel, D. Tuteja, E. L. Miller, and S. A. Brandt. MRAMFS: A
compressing file system for non-volatile RAM. In Proceedings of

thje IEEE/ACM International Symposium on Modeling, Analysis,

and Simulation of Computer and Telecommunication Systems

(MASCOTS), pages 596–603, Oct. 2004.

[23] F. Eskesen, M. Hack, A. Iyengar, R. P. King, and N. Halim. Software
exploitation of a fault-tolerant computer with a large memory. In
FTCS, 1998.

[24] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of
word-based software transactional memory. In PPoPP 13, Feb. 2008.

[25] R. F. Freitas and W. W. Wilcke. Storage-class memory: the next
storage system technology. IBM J. Res. Dev., 52(4):439–447, 2008.

[26] H. Garcia-Molina and K. Salem. Main memory database systems:
An overview. IEEE Trans. on Knowl. and Data Eng., 4(6):509–516,
1992.

[27] J. Gray. The transaction concept: Virtues and limitations. In VLDB 7,
Sept. 1981.

[28] J. Gray, P. Mcjones, M. Blasgen, B. Lindsay, R. Lorie, and T. Price.
The recovery manager of the System R database manager. ACM

Computing Surveys, 13:223–242, 1981.

[29] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable
memory transactions. In PPoPP 10, June 2005.

[30] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In ISCA 20, May 1993.

[31] M. Hirabayashi. Tokyo cabinet: a modern implementation of DBM.
http://1978th.net/tokyocabinet/, 2010.

[32] Y. Huai. Spin-transfer torque MRAM (STT-MRAM): Challenges and
prospects. AAPPS Bulletin, 18(6):33–40, Dec. 2008.

[33] Intel Corp. Intel 64 and ia-32 architectures software developers
manual volume 1: Basic architecture. http://www.intel.com/
assets/pdf/manual/253665.pdf, Mar. 2010.

[34] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and T. Moscibroda.
Dynamically replicated memory: building reliable systems from
nanoscale resistive memories. In ASPLOS 15, Mar. 2010.

[35] J. Jung, Y. Won, E. ki Kim, H. Shin, and B. Jeon. Frash: Exploiting
storage class memory in hybrid file system for hierarchical storage.
ACM Transactions on Storage, 6(1), 2010.

[36] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore
database system. Commun. ACM, 34(10):50–63, 1991.

[37] L. Lamport. Proving the correctness of multiprocess programs. IEEE

Transactions on Software Engineering, 3(2), Mar. 1977.

[38] D. Lea. A memory allocator. http://gee.cs.oswego.edu/dl/
html/malloc.html.

[39] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase
change memory as a scalable DRAM alternative. In ISCA 36, June
2007.

[40] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber,
U. Maheshwari, A. C. Myers, and L. Shrira. Safe and efficient
sharing of persistent objects in Thor. In SIGMOD Conference, pages
318–329, 1996.

[41] D. E. Lowell and P. M. Chen. Free transactions with Rio Vista. In
SOSP 16, Oct. 1997.

[42] M. K. McKusick and G. R. Ganger. Soft updates: A technique
for eliminating most synchronous writes in the fast filesystem. In
Proceedings of FREENIX, June 1999.

[43] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. Fsck - the
unix file system check program. Unix System Manager’s Manual -
4.3 BSD Virtual VAX-11 Version, Apr. 1986.

[44] Microsoft Corp. SQL server 2008 books online: Memory manage-
ment architecture: Buffer management. http://msdn.microsoft.
com/en-us/library/aa337525.aspx.

[45] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz.
ARIES: a transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging. ACM Trans.

Database Syst., 17(1):94–162, 1992.

[46] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
Logtm: Log-based transactional memory. In HPCA 12, pages 258–
269, Feb. 2006.

[47] MySQL Performance Blog. Tokyo tyrant the extras part i : Is it
durable? http://www.mysqlperformanceblog.com/2009/11/
10/tokyo-tyrant-the-extras-part-i-is-it-durable/,
Nov. 2009.

[48] Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkowits,
J. Cownie, R. Geva, S. Kozhukow, R. Narayanaswamy, J. Olivier,
S. Preis, B. Saha, A. Tal, and X. Tian. Design and implementation of
transactional constructs for C/C++. In OOPSLA 23, Oct. 2008.

[49] Numonyx. Omneo P8P PCM 128-Mbit Parallel PCM. www.
numonyx.com/Documents/Datasheets/316144 P8P DS.pdf,
Aug. 2010.

[50] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K. Panda. Beyond
block I/O: Rethinking traditional storage primitives. In HPCA 17,
Feb. 2011.

[51] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal, H. S. Gunawi,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. IRON File
Systems. In SOSP 20, pages 206–220, Brighton, United Kingdom,
Oct. 2005.

[52] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali. Enhancing lifetime and security of PCM-based main
memory with start-gap wear leveling. In MICRO 42, Dec. 2009.

[53] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high
performance main memory system using phase-change memory
technology. In ISCA 36, June 2007.

[54] M. Rosenblum and J. K. Ousterhout. The design and implementation
of a log-structured file system. ACM Trans. Comput. Syst., 10(1):26–
52, Feb. 1992.

[55] Samsung. Samsung ships industry’s first multi-chip package
with a pram chip for handsets. http://www.samsung.com/us/
business/semiconductor/newsView.do?news\ id=1149, Apr.
2010.

[56] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere, and J. J.
Kistler. Lightweight recoverable virtual memory. In SOSP 14, Dec.
1993.

[57] R. Sears and E. Brewer. Stasis: flexible transactional storage. In
OSDI 8, Dec. 2008.

[58] V. Singhal, S. V. Kakkad, and P. R. Wilson. Texas: good, fast, cheap
persistence for c++. SIGPLAN OOPS Mess., 4(2):145–147, 1993.

[59] Sleepycat Software. Sleepycat software: Berkeley DB database.
http://www.sleepycat.com.

[60] F. G. Soltis. Inside the AS/400. Duke Press, second edition, 1997.

[61] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams. The
missing memristor found. Nature, 453:80–83, 2008.

[62] S. C. Tweedie. Journaling the Linux ext2fs File System. In The

Fourth Annual Linux Expo, Durham, North Carolina, May 1998.

[63] C. Villa, D. Mills, G. Barkley, H. Giduturi, S. Schippers, and
D. Vimercati. A 45nm 1Gb 1.8V phase-change memory. In ISSCC

2010, pages 270 –271, Feb. 2010.

[64] S. J. White and D. J. DeWitt. Quickstore: A high performance mapped
object store. VLDB Journal, 4(4):629–673, 1995.

[65] M. Wu and W. Zwaenepoel. eNVy: a non-volatile, main memory
storage system. In ASPLOS 6, Oct. 1994.

[66] P. Wu, M. M. Michael, C. von Praun, T. Nakaike, R. Bordawekar,
H. W. Cain, C. Cascaval, S. Chatterjee, S. Chiras, R. Hou, M. F.
Mergen, X. Shen, M. F. Spear, H. Wang, and K. Wang. Compiler and
runtime techniques for software transactional memory optimization.
Concurrency and Computation: Practice and Experience, 21(1):7–
23, 2009.

[67] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy
efficient main memory using phase change memory technology. In
ISCA 36, June 2007.

