

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

ASPLOS '15, March 14 - 18, 2015, Istanbul, Turkey

Copyright 2015 ACM 978-1-4503-2835-7/15/03…$15.00

http://dx.doi.org/10.1145/2694344.2694350

Synchronization Using Remote-Scope Promotion

Marc S. Orr
†§

, Shuai Che
§
, Ayse Yilmazer

§
, Bradford M. Beckmann

§
,

Mark D. Hill
†§

, David A. Wood
†§

†
University of Wisconsin–Madison

Computer Sciences

{morr, markhill, david}@cs.wisc.edu

§
AMD Research

{Shuai.Che, Ayse.Yilmazer, Brad.Beckmann}@amd.com

Abstract

Heterogeneous system architecture (HSA) and OpenCL™

define scoped synchronization to facilitate low overhead

communication across a subset of threads. Scoped synchro-

nization works well for static sharing patterns, where con-

sumer threads are known a priori. It works poorly for dy-

namic sharing patterns (e.g., work stealing) where pro-

grammers cannot use a faster small scope due to the rare

possibility that the work is stolen by a thread in a distant

slower scope. This puts programmers in a conundrum:

optimize the common case by synchronizing at a faster

small scope or use work stealing at a slower large scope.

In this paper, we propose to extend scoped synchroniza-

tion with remote-scope promotion. This allows the most

frequent sharers to synchronize through a small scope.

Infrequent sharers synchronize by promoting that remote

small scope to a larger shared scope. Synchronization using

remote-scope promotion provides performance robustness

for dynamic workloads, where the benefits provided by

scoped synchronization and work stealing are hard to antic-

ipate. Compared to a naïve baseline, static scoped synchro-

nization alone achieves a 1.07x speedup on average and

dynamic work stealing alone achieves a 1.18x speedup on

average. In contrast, synchronization using remote-scope

promotion achieves a robust 1.25x speedup on average,

across a diverse set of graph benchmarks and inputs.

Categories and Subject Descriptors C.1.4 [Processor

Architectures]: Parallel Architectures; D.1.3 [Program-

ming Techniques]: Concurrent Programming

Keywords graphics processing unit (GPU); memory mod-

el; scope promotion; scoped synchronization; work stealing

1. Introduction

As processors evolve to support more threads, synchroniz-

ing among those threads becomes increasingly expensive.

This is particularly true for massively-threaded, through-

put-oriented architectures, such as graphics processing

units (GPUs), which do not support CPU-style “read-for-

ownership” coherence protocols. Instead, these systems

maintain coherence by “pushing” data to a common level

of the memory hierarchy, accessible by all threads, which

acts as the global coherence point. After synchronizing,

threads must then ensure that they “pull” data from this

common memory level (e.g., by invalidating their caches).

For discrete and integrated GPU architectures, the global

coherence point occurs at the last level cache (LLC) and

memory controller, respectively, incurring very high laten-

cy. Many applications cannot amortize these high synchro-

nization delays, which limits their performance on GPUs.

One approach to reducing synchronization latency is

scoped synchronization, which partitions threads into sub-

groups called scopes. Threads in the same scope can syn-

chronize with each other through a common, but non-

global (i.e., scoped) coherence point. General-purpose GPU

(GPGPU) languages like OpenCL 1.2 and CUDA have

historically provided limited forms of scoped synchroniza-

tion like work-group barriers [1][2]. Recently, heterogene-

ous system architecture (HSA) and OpenCL 2.0 (which

closely follows HSA) introduced more general scoped

synchronization primitives based on acquire/release seman-

tics [3]. For example, in HSA, synchronization operations

are tagged with one of the following scope modifiers:

work-item (wi, a GPU thread), wavefront (wv), work-group

(wg), component (cmp), or system (sys).

Scoped synchronization works well for static communi-

cation patterns, where producers and consumers have well-

defined, stable relationships. Figure 1 (a) depicts an exam-

ple of a static local sharing pattern, where two OpenCL

work-groups, wg0 and wg1, operate on separate data (data0

and data1, respectively). Work-items within wg0 use wg-

scoped synchronization to coordinate operations on data0;

wg-scoped operations are appropriate because only work-

items from wg0 operate on data0. Similarly, work-items in

wg1 use wg-scoped synchronization to operate on data1.

Static local sharing is supported in OpenCL 2.0.

A larger scope (i.e., cmp scope) is required when data

are shared by work-items in different work-groups. An

example of this communication pattern, which we call

dynamic global sharing, is shown in Figure 1 (b). In this

scenario, work-items in wg0 and wg1 read and write a glob-

al data store. Component scoped synchronization guaran-

tees that reads and writes to the global data store occur at a

scope that is visible to all of the work-items. Dynamic

global sharing can be expressed in both OpenCL and

CUDA [4].

A third important sharing pattern is dynamic local,

which occurs when a subset of work-items frequently ac-

cess data within a smaller scope, but non-local work-items

occasionally desire ad-hoc access. A common example of

dynamic local sharing is work stealing, a scheduling policy

that provides dynamic load balancing and is employed by

several prominent CPU task runtimes including: Cilk,

OpenMP, Intel’s Threading Building Blocks (TBB), and

Microsoft’s Task Parallel Library (TPL) [5][6][7][8]. Fig-

ure 1 (c) illustrates work-groups wg0 and wg1 mostly ac-

cessing their local task queues: task_q0 and task_q1,

respectively. When a work-item finds its local task queue

empty, it steals work from another task queue. Stealing

mitigates load imbalance.

Ideally, accesses to the local task queue could be opti-

mized with local synchronization. Unfortunately, scoped

synchronization, as currently defined in HSA 1.0 and

OpenCL 2.0, cannot efficiently support dynamic local shar-

ing. To understand why, consider the work-stealing scenar-

io depicted in Figure 1 (c). There are two scenarios to con-

sider. First, when a work-item accesses its local task queue,

it would like to use a smaller scope (e.g., wg scope) to re-

duce synchronization overheads. However, in the second

scenario where a work-item steals work from another task

queue, it must use a larger common scope (e.g., cmp scope).

Scoped synchronization requires producers to synchronize

at a scope that encompasses all of their consumers. Thus,

because a stealer can be any work-item in the GPU, a work-

stealing runtime requires all task queue synchronization to

occur at the larger scope (i.e., cmp scope in this example).

This means that smaller scopes cannot be used to optimize

dynamic local sharing patterns like work stealing.

In this paper, we extend scoped synchronization to sup-

port dynamic local sharing using remote-scope promotion.

Referring back to Figure 1 (c), work-items in wg1 read

from task_q0 by promoting the scope (e.g., wg scope) of

the most recent synchronization event on task_q0 to a

larger common scope (e.g., cmp scope) that encompasses

work-items in wg0 and wg1. Similarly, work-items in wg1

modify task_q0 by promoting the scope of the next future

synchronization operation on task_q0 to a common scope.

Remote-scope promotion naturally builds on hardware

mechanisms prevalent in GPUs today and only requires a

few minor modifications. Detailed simulation results show

that remote-scope promotion leads to robust performance

improvements across a diverse set of graph benchmarks

and inputs.

To summarize, our contributions are:

 We identify that scoped synchronization, as defined in

HSA 1.0 and OpenCL 2.0, limits dynamic local sharing.

 We propose a new synchronization semantic—remote-

scope promotion— that allows a work-item to com-

municate outside of its scope hierarchy.

 We propose a hardware implementation for synchroni-

zation using remote-scope promotion that requires few

changes to a state-of-the-art GPU.

 We evaluate our work for several emerging graph work-

loads and show that remote synchronization is 17%

faster than scoped synchronization alone and 6% faster

than work stealing alone.

2. GPU Architecture & Programming

This section reviews the GPU’s hierarchical design and

relates it to the GPU’s relaxed memory model. Specifically,

Section 2.1 describes how the HSA hierarchy maps to GPU

hardware. Next, Section 2.2 explains how HSA extends

acquire/release synchronization with scopes, corresponding

to the HSA hierarchy, to minimize the cost of synchroniza-

tion on GPUs. Finally, Section 2.3 illustrates how GPU

synchronization is implemented through an example.

Figure 1. (a) Static local sharing. (b) Dynamic global sharing. (c) Dynamic local sharing.

cmp-scope0

wg_scope0data0 wg_scope1 wg-scope0

global data store

wg-scope1 wg_scope0task_q0 wg_scope1

(a) (b) (c)

data1 task_q1

task_q0

promotion

frequent access

infrequent access

Legend

2.1 The GPU Hierarchical Memory Model

GPUs attain high throughput by targeting massively paral-

lel code that can be executed by thousands of threads. The

GPU programming model incorporates hierarchy to help

programmers organize threads, called work-items in HSA

and OpenCL, in a GPU-efficient way. Figure 2 shows the

HSA hierarchy of work-items [3]. An HSA system is com-

posed of one or more HSA components, defined as a GPU

for this paper. GPUs execute grids, which are sets of work-

items that execute the same function at the same time. This

organization, called single instruction multiple thread

(SIMT), helps GPUs operate efficiently. The work-items

within a grid are sub-divided into work-groups. Work-items

within a work-group are scheduled together and can com-

municate with each other much faster than with work-items

in other work-groups. Finally, an HSA component dynami-

cally partitions work-groups into even smaller sets, called

wavefronts, to match the GPU’s execution width.

The example HSA-compatible GPU architecture illus-

trated in Figure 3 corresponds to the software hierarchy of

work-items. A wavefront executes on single instruction

multiple data (SIMD) units, which are sets of functional

units that execute in lockstep. A work-group executes on a

single compute unit (CU), which is composed of multiple

SIMD units (four shown). Typically each CU also includes

a private L1 data cache. CUs within a GPU share a com-

mon L2 cache that is used to communicate across a grid.

2.2 Scoped Synchronization Overview

HSA adopts acquire/release semantics from the C++ stand-

ard [9]. First, we describe how acquire/release synchroniza-

tion works in C++. Next, we describe how HSA extends

these semantics with scopes [10][11]. It is common to cou-

ple a synchronization operation with a memory instruction

(e.g., load acquire, store release, etc.). Hardware imple-

mentations for acquire and release must do two things.

First, they must correctly order memory operations around

synchronization (i.e., acquire and release). This means that

memory operations that occur after an acquire in program

order cannot execute before that acquire (i.e., an acquire

acts as a downward memory fence). Similarly, memory

operations that occur before a release in program order

cannot execute after that release (i.e., a release acts as an

upward memory fence). In this work, GPU work-items

execute in-order and block on loads; these two properties

guarantee that a load will never be reordered around a syn-

chronization operation. Stores are ordered by tracking their

addresses in a hardware first-in/first-out (FIFO) buffer; this

mechanism is described in detail in Section 2.3.

The second responsibility of hardware is to ensure that

consumers see updates to memory made earlier by produc-

ers. Consumer work-items that execute an acquire “pull”

the current global view of memory. The GPU implements a

pull by invalidating the consumer’s private caches, which

prevents reading stale data. Producer work-items execute a

release to globally “push” their updates to consumers. The

GPU implements a push by flushing the producer’s dirty

cached data, to propagate it to consumers.

To limit synchronization penalties, HSA extends ac-

quire/release semantics with scopes. Specifically, HSA

defines the following scopes: work-item (wi), wavefront

(wv), work-group (wg), component (cmp), and system (sys).

Each scope corresponds to a different granularity of execu-

tion shown in Figure 2. Scopes can be applied to synchro-

nization operations to limit the depth of the hierarchy that

they synchronize to. For example, wg-scoped synchroniza-

tion only needs to access the respective work-group’s L1

cache since the entire work-group is scheduled on the same

CU. Figure 3 shows how scopes are mapped to hardware.

Sequentially consistent for heterogeneous race free (SC

for HRF) memory models were proposed to help program-

mers reason about scoped synchronization [10]. They ex-

tend sequentially consistent for data race free (SC for DRF)

memory models with scoping rules. Two models were

proposed. HRF-direct requires work-items to communicate

through the same scope. HRF-indirect extends HRF-direct

to allow transitive chains of communication through differ-

ent scopes. HRF-Relaxed adds scope inclusion to both

models [11]. We build on HRF-indirect-relaxed.

2.3 Scoped Synchronization Implementation

GPUs use simple write-through mechanisms to implement

a relaxed memory consistency model. For example, many

Figure 2. HSA’s hierarchy of work-items.

HSA System
(CPUs and GPUs)

work-
group

grid
HSA Component
(e.g., GPU)

wv wg

cmp

sys

wave-
front

Figure 3. An example HSA cache hierarchy.

Compute Unit

GPU

SIMDSIMD

SIMDSIMD
Compute

Unit
GPU

GPU

GPU

GPU

wv wg

cmp

sys

L1 Cache L1 Cache

L2 Cache

GPU architectures allows stores to complete without wait-

ing for coherence operations, avoiding throughput bottle-

necks caused by invalidation traffic [12]. In contrast, CPUs

maintain the single-writer/multiple-reader invariant by

stalling writes until all of their invalidations are acknowl-

edged [13][14]. The GPU approach avoids invalidation

traffic, but synchronization operations are expensive. In

particular, release operations must wait until all prior writes

reach the correct scope. Naïvely this can be achieved by

tracking each outstanding write and waiting until all out-

standing writes complete.

A better approach, proposed by Hechtman et al. [15],

uses a FIFO at each cache level to track dirty addresses.

This technique is demonstrated in Figure 4. Every write

inserts its address at the FIFO’s tail (time ❶), and when an

address reaches the FIFO’s head, its associated cache block

is written to the next level of the hierarchy (if necessary).

Release operations are handled by simply inserting flush

markers into the FIFO (time ❷); the release completes

when all prior addresses in the FIFO are written through to

the appropriate scope (time ❸) and the flush marker

reaches the FIFO’s head. This FIFO approach for releases

is assumed for this paper.

Hechtman et al. also proposed to use cache-block inval-

idations, but that adds considerable hardware complexity.

Instead, we assume acquire operations simply invalidate all

caches encompassed by the acquire’s scope. Cache invali-

dates effectively “pull” the latest version of data from the

distant levels of the memory hierarchy by removing closer

cached data that have become stale. The invalidations

themselves are cheap (i.e., a single-cycle flash-invalidate),

but they decrease the effectiveness of caching and cause

unnecessary inter-wavefront interference. Referring back to

Figure 4, CU1 performs an acquire by invalidating its L1

cache (time ❹). The atomic compare-and-swap (CAS)

operation is performed at the operation’s respective scope.

Specifically, the L2 cache controller performs the atomic

read-modify-write (RMW) operation at time ❺ on address

L. Finally, the value of A is returned at time ❻.

3. Extending Scoped Synchronization

Scoped synchronization is an exciting development in GPU

programming models. Unfortunately, it currently suffers

some severe programming limitations. Section 3.1 de-

scribes these limitations and Section 3.2 proposes our solu-

tion: synchronization using remote-scope promotion.

3.1 Limitations of Scoped Synchronization in HSA 1.0

When using scoped synchronization, programmers must

manage both the level of visibility and the order of memory

operations [10]. This is different than non-scoped synchro-

nization, which only requires programmers to reason about

order. To accommodate scopes, memory models apply

scope modifiers to memory operations. In HSA, memory

operations are tagged with one of the following scope mod-

ifiers: work-item (wi), wavefront (wv), work-group (wg),

component (cmp), and system (sys).

A scope instance is a particular instantiation of a scope.

For example, in Figure 5 wg0’s work-group scope instance

is wg-scope0 and wg1’s work-group scope instance is wg-

scope1. HSA scope modifiers do not allow different scope

instances to be distinguished. A work-item is associated

with exactly one scope instance at each level of the scope

hierarchy. This means that for a particular memory address

to be visible to a work-item, that address must have been

“pushed” (i.e., released) to a scope instance that is associat-

ed with (i.e., visible to) that work-item. This is because a

work-item cannot “pull” (i.e., acquire) from a scope in-

stance with which it is not associated. In other words, HSA

defines push-pull semantics that require producers to push

data to a scope that they share with their consumers.

These semantics make it difficult to optimize dynamic

local sharing because consumers asynchronously read from

producers. For example, in a work-stealing runtime, pro-

ducers do not know when a subset of their consumers (i.e.,

the stealers) will read their data. Thus, work-items must

conservatively push data to a scope that is visible to all

consumers. Otherwise, a stealer may read stale data.

This conundrum is demonstrated in Figure 5 (a). Initial-

ly, at time ❶, a queue (task_q0) is instantiated for work-

group 0 (wg0) in the component scope. In the common

case, wg0 is the only work-group that reads and writes

task_q0. Thus the programmer would like to use work-

group scoped synchronization to coordinate operations on

task_q0 (time ❷). Unfortunately, doing so would pre-

clude work-items in a different work-group from stealing

data from task_q0. For example, if a work-item in work-

group 1 (wg1) were to read from task_q0 (time ❸), it

might find stale data in the component scope. Note that wg1

cannot correctly use work-group scoped synchronization to

operate on wg0’s scope instance.

It is important to note that the sequence of events in

Figure 5 (a) would be correct in the absence of scopes. For

Figure 4. GPU release and acquire operation.

CU0

L1$
A: 2

L2$
A: ?
L: ?

FIFO

A

flush

CU1

L1$
FIFO

❶❷

L2$
A: 2

L: 0  1❺

❹

CU0
❶ A = 2

❷❸ atomic_ST_rel cmp L (0)

CU1

❹❺ atomic_CAS_acq cmp L (0→1)

❻ B = A + 1;

...

FIFOFIFO

CU0

L1$
A: 2
L: 0

FIFO

flush

CU1

L1$
FIFO

❸

❻

example, in a traditional CPU, a release operation would

make data visible to all threads in the system (i.e., all syn-

chronization would occur at an implicit global scope).

3.2 Motivating Scope Promotion

Today, HSA requires work-items to synchronize through a

scope that encompasses all sharers. This is because work-

items are only able to synchronize with other work-items

that are in the same scope hierarchy. To improve perfor-

mance for dynamic-local sharing, it would be better if

work-items could synchronize through a scope that encom-

passes the most frequent sharers instead of all possible

sharers. Scoped synchronization, as defined in HSA and

OpenCL, implicitly targets scope instances within the call-

er’s scope hierarchy. A key insight is that extending this

semantic to allow synchronization beyond the caller’s

scope hierarchy enables better use of scopes.

Towards this end, we propose synchronization using

remote-scope promotion: a new semantic that allows a

work-item to order memory accesses with a scope instance

outside of its scope hierarchy. To access data in a remote

scope, a work-item first promotes the remote scope to a

larger common scope. After the promotion completes, the

work-item synchronizes through the larger common scope.

This sequence is shown in Figure 5 (b). At time ❶, wg1

sends a message to promote wg-scope0 to the shared com-

ponent scope. Promotion is carried out by flushing dirty

data in wg-scope0 to cmp-scope0 (time ❷). wg1 can then

pull the data with a cmp-scoped acquire (time ❸).

A similar procedure is used to modify data in a remote

scope (e.g., task_q0’s head pointer). First, the data is writ-

ten to a larger shared scope. Then the remote scope is pro-

moted to that larger common scope. Figure 5 (c) illustrates

how this works. At time ❶, wg1 writes data through to the

shared component scope; this is achieved by performing a

cmp-scoped release. Next, wg1 sends a message to promote

wg-scope0 to the component scope (time ❷). In this case,

promotion is carried out by invalidating dirty data in wg-

scope0 (time ❸). This sequence guarantees that wg0 will

read updates written to the component scope by wg1.

Using scope promotion is surprisingly easy. Consider

the tricky lock-free code in Figure 6 for stealing from a

queue. This function is a part of an intricate work-stealing

algorithm originally proposed by Arora et al. [16] and

presented in the context of GPUs by Cederman and Tsigas

[17]. We have augmented the code with remote synchroni-

zation highlighted in bold italics. The primary difference is

that the synchronization memory operations are trivially

labeled with a remote memory ordering. Also, these opera-

tions must synchronize through the correct scope. The next

section defines remote-scope promotion more precisely and

proposes an implementation.

4. Remote-Scope Promotion

Synchronization using remote-scope promotion allows a

work-item to pull and push data from a scope outside of its

scope hierarchy without requiring a specific scope instance

to be explicitly identified. Instead, programmers identify

the common scope that a work-item shares with the target

scope instance that the data resides in (e.g., the component

scope encompasses wg0 and wg1 in the prior example).

In this section, we extend a current GPU instruction set

to support remote synchronization and then we describe

how these instructions can be implemented with only mod-

est changes to current GPUs.

Figure 5. (a) Shortcomings of scoped synchronization. (b) Remote acquire. (c) Remote release.

cmp-scope0

...
remote_
rel_cmp

remote_
acq_cmp
...

wg_scope0
wg-
scope1

wg-scope0

acq_cmp
...
rel_cmp

acq_wg
...
rel_wg

❸

❶

cmp-scope0
task_q0

acq_wg
...
rel_wg

task_q0

❶

(a) (b)

❷

❸

cmp-scope0
task_q0

acq_wg
...
rel_wg

❷

(c)

❸

wg-
scope1task_q0

wg-scope0
wg-scope1

wg-scope0
task_q0

❷

❶

p
u

sh

(stale)
task_q0

RACE!

Task steal(Queue *q, Queue_Elem *val) {
 int tail = remoteRead(q->tail,
 acq, wg cmp);
 int oldHead = q->head;
 if (tail <= oldHead)
 return NULL;
 Task task = q->contents[oldHead];
 int newHead = oldHead + 1;

 if (remoteCAS(&q->head, oldHead, newHead,
 ar, wg cmp))
 return task;

 return abort;
}

Figure 6. Steal with remote synchronization.

4.1 Defining Remote-Scope Promotion

We introduce three remote synchronization operations to

carry out the promotion semantic described in Section 3.2:

Remote Acquire (rm_acq) ordering allows consumer

work-items to acquire data produced at any scope instance.

A remote acquire operation on address L comprises two

steps: (1) promote the scope of the last release on address L

to match the target scope of this remote acquire, (2) per-

form an acquire on address L at the target scope.

Remote Release (rm_rel) ordering allows work-items

to propagate their updates to external scope instances. A

remote release operation on address L comprises two steps:

(1) perform a release on address L at the target scope, (2)

promote the scope of the next acquire on address L to

match to the target scope of this remote release.

Remote Acquire+Release (rm_ar) ordering combines

the two remote operations above. To keep the presentation

both minimal and complete, we label remote RMW opera-

tions with acquire+release ordering.

4.2 Implementing Remote-Scope Promotion

Implementing each remote order in a GPU can be thought

of in terms of sub-operations. This sequence of sub-

operations ensures that proper synchronization is main-

tained without directly involving the work-items in the

remote scope instance.

Remote Acquire ordering ensures that writes performed

at a remote scope instance will be seen by the requestor.

Three sub-operations are required. (rm_acq.1) The first

step is to promote the scope of the last release to match the

target scope of this acquire. This is achieved by flushing all

remote scope instances that are inclusive with the target

scope. For example, if the target scope is cmp, then all wg,

wv, and wi scope instances encompassed by the requestor’s

cmp-scope instance will flush their dirty data out to the

requestor’s cmp-scope instance. These flushes propagate

local updates to the target scope. (rm_acq.2) Once these

flushes complete, an acquire is carried out by invalidating

the requestor’s scope instances up to the target scope; this

guarantees that the requestor will see the latest data.

(rm_acq.3) Finally, the requestor performs the actual

memory operation, such as a load, at the target scope.

Remote Release ordering ensures that the writes per-

formed by the requestor are guaranteed to be seen by the

remote scope instances. Three sub-operations are required.

(rm_rel.1) First, the requestor performs a release by flush-

ing to the target scope. (rm_rel.2) After the flush com-

pletes, the associated memory operation, such as a store,

proceeds at the target scope1. (rm_rel.3) Finally, once the

1
 Potential races between the executing the memory operation (step 2) and

remote invalidations (step 3) are avoided by stalling accesses to the cache

line at the target scope until the remote operation completes.

memory operation completes, such as the store becomes

visible at the target scope, all remote scope instances en-

compassed by the target scope instance are promoted to the

target scope. This is achieved by invalidating them up to

the target scope. For example, if the target scope is cmp,

then all wg, wv, and wi scope instances encompassed by the

requestor’s cmp-scope instance are invalidated, which guar-

antees that remote work-items will see the latest data.

Remote Acquire+Release ordering combines the se-

quencing of the other two remote orderings to ensure se-

quentially consistent execution. Logically, this operation

promotes the remote data to the target scope, performs the

atomic RMW, and then performs remote invalidations to

promote the scope of next acquire to the target scope. Four

sub-operations are required. (rm_ar.1) The first step is to

flush all of the remote scope instances encompassed by the

target scope. The requestor also flushes its local data to the

target scope to ensure correct operation when the remote

scope instance is the same as the requestor’s scope in-

stance. (rm_ar.2) The requestor also invalidates its local

data so that it will execute the RMW at the target scope

(this can occur in parallel with the first sub-operation).

(rm_ar.3) Next, the actual RMW operation is performed at

the target scope. (rm_ar.4) Finally the instruction com-

pletes by invalidating all of the remote scope instances that

are encompassed by the target scope, which guarantees that

remote work-items will see the update performed by the

RMW operation. This implementation ensures that all

RMWs to a particular location are globally ordered. Section

4.4.1 discusses this requirement in further detail.

Formalizing Scope Promotion helps to disambiguate

corner cases and is discussed in the Appendix. Because we

leverage hierarchical memory that provides transitivity, a

simple extension of HRF-indirect suffices [10]. Specifical-

ly, we build on an extended version of HRF-indirect called

HRF-indirect-relaxed [11]. HRF-indirect-relaxed requires

each synchronizing release-acquire pair in a transitive se-

quence to occur at a compatible scope. Our work leverages

scope promotion, which allows a work-item to promote the

scope of another work-item’s acquire/release operations.

Thus, the formal model extends HRF-indirect-relaxed to

require each synchronizing pair in a transitive sequence to

either: (1) have both operations occur at a compatible scope

(as in HRF-indirect-relaxed), or (2) one operation must be

remote-scoped to promote the pair to a common scope.

4.3 An Example of Remote-Scope Promotion

Figure 7 provides an example of synchronization using

remote-scope promotion in a GPU composed of two com-

pute units (CUs). We assume the GPU memory system

presented in Section 2, which includes FIFOs at each level

of the cache hierarchy to track dirty addresses. The exam-

ple illustrates how a critical section protected by a lock,

which is frequently accessed by a single work-group, can

be occasionally accessed in an ad-hoc manner by work-

items outside of that work-group. The example assumes

that the single work-group frequently accessing the critical

section is executing on CU0 and the programmer has speci-

fied work-group scope for those synchronizing instructions.

The work-items outside of that work-group execute on CU1

and use remote synchronization operations to properly

synchronize with the work-group accesses. The example

highlights that the work-items performing the remote syn-

chronization operations encounter the primary performance

overhead. Meanwhile, the work-group executing on CU0

encounters minimal overhead using work-group scoped

instructions in the common case. The text that follows is

labeled to clarify the corresponding event.

atomic_ST_rel (store-release on CU0 at wg-scope): The

example in Figure 7 begins with a work-item executing on

CU0 reaching the end of a critical section. The work-item

issues a wg-scoped store release to notify other work-items

that the critical section is open. Since the store release is at

the work-group scope, no flush marker is inserted into the

local FIFO. Instead, the store operation is immediately

performed at the local L1 cache and the store’s address L is

inserted into the local FIFO (time ❶).

atomic_CAS_rm_ar (remote-acquire+release on CU1 at

cmp-scope): Next, the work-group on CU1 wants to enter

the critical section. It attempts to do so by using a remote

synchronization operation to pull the valid data from the

work-group executing on CU0. Specifically, at time ❷, a

work-item on CU1 executes a CAS at cmp-scope with re-

mote acquire+release ordering. The sub-operations are

carried out as follows. (rm_ar.1) First, CU0’s wg-scope

instance must be promoted (i.e., flushed) to the component

scope. This is achieved by broadcasting (via the on-chip

network) a cmp-scope flush marker into all FIFOs in the

component (including the FIFO of the requestor2). At time

❸, the remote flush marker reaches the head of its FIFO

indicating that all prior updates by CU0 have propagated to

the component scope and CU1 is notified at time ❹.

(rm_ar.2) At time ❺, CU1 invalidates its local cache3; this

is required for the RMW to execute at component scope.

The promotion is complete.

An important correctness issue is that all RMW opera-

tions must be properly ordered. The remote acquire+release

operation has temporarily promoted the wg-scope ordering

point to the component scope. Thus, to maintain a single

ordering point, all L1 cache controllers connected to the

encompassing scope (i.e., component in this example) stall

acquires, releases, and RMWs when they begin processing

the flush marker sent from CU1.

(rm_ar.3) At time ❻, CU1 proceeds with the RMW

(i.e., CAS reads 0 → writes 1) at the L2 cache and the work-

item on CU1 gains access to the critical section. Synchroni-

zation is re-enabled at CU1’s L1 cache. (rm_ar.4) Finally,

the operation completes by promoting the scope of the next

acquire to component scope. An invalidation message is

sent to all remote L1 caches. CU0 receives the message and

invalidates its L1 caches at time ❼. This ensures that CU0

will see the latest data at the component scope. The invali-

dation message also re-enables synchronization at the re-

spective wg-scope. It is important to note that this final

remote invalidation does not stall the remote ac-

quire+release instruction. Rather, it just needs to be per-

formed before the next acquire operation executed by each

remote CU.

2
 In this example, both work-items reside on different CUs. Flushing the

dirty data in the requestor’s L1 cache is required when they reside on the

same CU because the RMW operates directly at the L2 cache.
3
 The invalidation can execute in parallel with the flushes.

Figure 7. An example of synchronization using remote-scope promotion in a GPU.

L1$L1$

❷❸❹❺❻❼ atomic_CAS_rm_ar cmp L (0→1)

❽❾❿⓫ atomic_ST_rm_rel cmp L (0)

❶ atomic_ST_rel wg L (0)

CU0 CU1

CU0

L1$
L: 0

L2$

L: ?

FIFO

L

flush

CU1

L1$
FIFO

flush

<critical section>

CU0

L1$

L2$

L: 0→1

FIFO

flush

CU1

FIFO

flush

CU0

L1$

L2$

L: 1

FIFO

CU1

L1$
FIFO

flush

❾

Legend

Current Memory Ops

New Remote
Sync. Ops

❶

❷

C
o

d
e

 S
am

p
le

<critical section>

CU0

L1$

L2$

L: 0

FIFO

CU1

FIFO

❿

⓫

❺

❻

❼

❽

❷

❹

❸

atomic_ST_rm_rel (remote-release on CU1 at cmp-

scope): After exiting the critical section, CU1 issues a store

with remote release ordering to release the lock. The sub-

operations are carried out as follows. (rm_rel.1) At time

❽, a flush marker is inserted into CU1’s FIFO to release

updates, local to CU1, to the component scope. At time ❾,
the flush marker reaches the head of the queue, indicating

that all prior writes by CU1 are visible at the component

scope. (rm_rel.2) Now assured that all prior writes are

visible, at time ❿, CU1 performs the store operation, writ-

ing value ‘0’ to address L. (rm_rel.3) Finally, at time ⓫,

CU1 completes the remote release by invalidating all re-

mote L1 caches encompassed by the component scope,

which promotes the next acquire to the component scope.

This example illustrates that synchronization using re-

mote-scope promotion defers overheads to the infrequent

case (e.g., stealing) rather than the frequent case (e.g., ac-

cessing the local task queue). In addition, the example

highlights that remote synchronization seamlessly builds on

top of current state-of-the-art GPU memory systems (Sec-

tion 2) with only a few additional mechanisms.

4.4 Hardware Support for Remote Synchronization

Assuming that GPUs already use per-CU FIFOs to track

the partial order of writes and releases, remote-scope pro-

motion requires three additional mechanisms.

The first allows work-items to send commands (e.g.,

flush and invalidate) and acknowledgments (acks) to other

(non-local) CUs. These messages are distinguished in Fig-

ure 7 by dashed lines. For example, at time ❷, CU1 inserts

a flush marker into CU0’s FIFO, and at time ❹, CU1 re-

ceives an ack that the remote flush is complete. Similarly,

at time ⓫, CU1 invalidates CU0’s L1 cache.

The second hardware mechanism is the ability to lock

cache lines at the targeted scope for remote-release, as

described in Section 4.2. Finally, the third hardware mech-

anism is enabling remote-acquire+release to block issuing

new synchronization operations within the target scope. In

particular, Section 4.4.1 describes how remote RMW oper-

ations establish a valid coherence order using this third

mechanism. Alternative solutions may be more efficient,

but will require more hardware complexity to handle the

longer duration of remote RMWs and merging multiple

versions of the cache line within the target scope.

4.4.1 Digging Deep: Ordering Remote RMWs

Correctly ordering remote RMWs is particularly dubious

and requires careful consideration. For instance, Hower et

al. [10] previously identified that race-free code using

scoped synchronization must observe a total order of

RMWs (referred to as atomics in that work). More recently,

Gaster et al. [11] and the HSA memory model [3] formally

defined this requirement by stating that a GPU implementa-

tion must provide a “coherent order” for all accesses to a

single memory location. In addition, they state that “the

read and write components of an atomic RMW must be

adjacent in coherent order.” Thus it is necessary for our

proposed hardware to ensure that all race-free RMW (both

relaxed and non-relaxed) operations are totally ordered.

Our implementation adheres to the principles of the

HRF memory models, including the total order of all

RMWs. The challenge in ordering RMWs is ensuring that

they can immediately observe their place in a location’s

coherent order (for example, atomic increment instructions

that read the previous value). Therefore, remote RMWs

must immediately be ordered across all scope instances.

Our solution is to utilize the previously described remote

acquire+release ordering rules for all remote RMWs re-

gardless of what ordering the instruction specifies. When a

remote RMW is being performed, we stall all RMW opera-

tions at L1 caches within the target scope to avoid possible

conflicts (i.e., remote scope instance modification vs. modi-

fications at the promoted scope). While heavyweight, this

approach ensures correctness and should not impact per-

formance as long as remote RMWs are used sparingly.

5. Methodology

We used gem5 [18] coupled with a proprietary GPU model

to evaluate synchronization using remote-scope promotion.

The evaluated GPU is based on the design previously

shown in Figure 3. It has eight CUs and each CU has four

SIMD units. 40 hardware wavefront contexts are time-

multiplexed across the four SIMD units using an oldest-

job-first scheduling policy. Each CU has a private L1 data

cache. There are two instruction caches and each instruc-

tion cache is shared by four CUs. All L1 data caches and

instruction caches are connected to a unified L2 cache that

is then connected to system memory. Details about the

baseline GPU configuration can be found in Table 1.

The L1 data caches and L2 cache are write-through and

write-no-allocate. Acquire and release operations are im-

plemented as described in Section 2. Specifically, an ac-

Table 1. Simulation configuration
8 Compute Units, each configured as described below:

Clock 1GHz, 4 SIMD units

Wavefronts (#/scheduler) 40 (each 64 lanes)/oldest-job first

Data cache
16kB, 64B line, 16-way, 4 cycles, delivers

one line every cycle

Memory Hierarchy

L2 cache 512kB, 64B line, 16-way, 24 cycles

1 Instr. cache/4 CUs 32kB, 64B line, 8-way, 4 cycles

DRAM DDR3, 8 Channels, 500 MHz

Protocol

Write-through, write-no-allocate, acquires

trigger scoped flash invalidate, releases
trigger scoped FIFO flush

Task Runtime

8 task queues
1 work-group/queue,

4 wavefronts/work-group

quire operation invalidates the caches between the ac-

quire’s wavefront up to the scope of the acquire. Every

cache is paired with a FIFO and a release operation flushes

the FIFOs from the release’s wavefront up to the scope of

the release.

We extended the GPU model to support remote-scope

promotion. This required adding the new remote synchro-

nization orders proposed in Section 4.1 to the model and

modifying the L1-data and L2-cache controllers to carry

out remote synchronization, as described in Section 4.2,

whenever they encounter a remote operation.

5.1 Workloads

We selected three applications from the Pannotia bench-

mark suite [19] and evaluated them across a diversity of

inputs. Pannotia is a collection of graph workloads imple-

mented in OpenCL. These applications suffer load imbal-

ance when individual work-items process vertices with

different numbers of neighbors. It is a challenge to predict

the load distributions before running the applications be-

cause the resulting load imbalance is dependent on the

graph input. The graph applications we evaluated are:

Single-source shortest path (SSSP): Given a source

vertex, finds the shortest distances of all other vertices to

the source by gradually expanding vertex frontiers.

Graph coloring (color): Iteratively labels a graph with

different colors. Individual vertices determine if they

should be assigned a new color by evaluating their neigh-

boring vertices each iteration.

PageRank (PR): Estimates the importance of web pag-

es by repeatedly transmitting values among vertices

through edges that represent pages and links, respectively.

The graph inputs are chosen from the 9
th

 and 10
th

 DI-

MACS implementation challenges [20] and a graph for

interacting proteins [21]. The inputs that we evaluated for

each workload are listed in Table 2. We modified the

OpenCL code to use work stealing. Our implementation

follows the lock-free algorithm described by Tsigas and

Cederman [17]. We allocated and associated a task queue

to a work-group composed of four wavefronts. We instanti-

ate eight task queues across the eight CUs. A queue ele-

ment represents the work consumed by all of the work-

items in a work-group. Important operations include: (1)

pop, which dequeues an element from the tail of the local

queue, and (2) steal, which dequeues an element from the

head of a remote queue. Popping and stealing from differ-

ent ends of the queues ensures that these operations conflict

at most once per queue. Pushing to the tail of the local

queue is not necessary for this particular set of workloads.

Initially, each task queue is statically assigned work el-

ements (i.e., the graphs’ vertices are evenly distributed

across the queues). On behalf of the entire work-group, one

work-item pops a queue element from its local queue, and

application-specific information (e.g., parameters and

pointers to the actual work) is provided to all of the work-

items in the work-group. When the local queue is empty a

work-group attempts to steal an element from a remote

queue. The kernel terminates when all of the queues are

empty. During the execution, contention may happen, for

example, when a pop and steal collide and try to dequeue

the same element. The algorithm [17] uses a lock-free solu-

tion to ensure these cases are handled efficiently.

5.2 Evaluation Scenarios

Four scenarios are used to evaluate remote synchronization:

Baseline: In the first scenario, called baseline, stealing

is disabled and global synchronization is used to dequeue

elements. Technically, synchronization can be avoided in

the baseline scenario because our applications don’t

enqueue work, but we are interested in how our technique

applies beyond this particular set of graph applications.

Scope-only: The second algorithm, called scope-only,

improves on baseline by replacing global synchronization

with scoped synchronization. The scope-only scenario uses

optimizations available in OpenCL 2.0 today.

Steal-only: The third algorithm, called steal-only, im-

proves on baseline by replacing its static scheduling algo-

rithm with work stealing. Again, this can be achieved using

component scoped synchronization in OpenCL 2.0 today.

Rem-sync: Finally, the rem-sync scenario applies both

scopes and work-stealing to the baseline. This is possible

because of the remote-scope promotion technique proposed

in this paper.

6. Results

We find that synchronization using remote-scope promo-

tion is able to achieve the benefits of both work stealing

and scoped synchronization without compromise. Figure 8

compares remote synchronization (rem-sync) to the other

three evaluation scenarios described in Section 5.2. Figure

8 shows that remote synchronization achieves speedups of

on average 1.25x over baseline. In contrast, the average

scope-only speedup is only 1.07x and the average steal-

only speedup is 1.18x. Remote synchronization achieves

higher speedup than both the scope-only and steal-only

scenarios because is able to optimize for both scopes and

dynamic load balancing. As a result, remote synchroniza-

tion always achieves the maximum or better than the scope-

only and steal-only algorithms.

Table 2. Workloads and inputs

Benchmarks Graph Inputs

Single Source Shortest Path

(SSSP)

dip20090126_MAX (1), USA-road-

d.BAY(2), USA-road-d.COL(3)

Graph Coloring (color)
dip20090126_MAX(1), USA-road-d.NY(2),

ecology1(3), G3_circuit(4)

PageRank (PR)
cond-mat-2003(1), small-world(2), coAu-

thorsDBLP(3)

The workload/input combinations in Figure 8 clearly

demonstrate a variety of behaviors. Some cases benefit

from scopes, but are not affected by work stealing. For

example, color-3 realizes a 1.16x speedup from scoped

synchronization but is hardly impacted by work stealing. At

the other extreme is PR-3 which runs more than 1.65x

faster with dynamic load balancing, but is not helped by

scoped synchronization. Workloads, like color-4, that bene-

fit from both work stealing and scoped synchronization are

able to use remote synchronization to optimize both cases

at the same time. The key takeaway of Figure 8 is that the

dynamic behavior of real workloads cannot be predicted

and optimized statically. This fact puts programmers in a

dilemma: whether to optimize for scopes or load balance.

Remote synchronization eliminates this dilemma.

An important question is: why do some workloads do

better with scoped synchronization while others do better

with work stealing? In the following sections, we correlate

the underlying data movement patterns across the different

workload/input combinations to their application behavior.

6.1 Load Balance

Dynamic load balancing is crucial for workloads that have

lop-sided data partitions to process. How evenly work is

distributed across work-groups largely depends on a work-

load’s input set. We would expect work stealing to acceler-

ate inputs that lead to an uneven distribution of work. Fig-

ure 9 shows a box plot that quantifies the load imbalance

for each workload/input combination. The box plot shows

work-group execution times normalized to the baseline.

The boxes in the box plot represent the 25th to 75th percen-

tiles of work-group execution times. The horizontal line

inside the box marks the median. Each box also has two

tails. The bottom tail marks the minimum work-group exe-

cution time and the top tail marks the maximum.

Pannotia workloads execute in iterations. Different itera-

tions may exhibit different load distributions. We find that

many workloads with long top tails correspond to inputs

that suffer load imbalance within an iteration. For example,

SSSP-1, color-1, PR-1, and PR-3 all exhibit long top tails

that are effectively reduced by work stealing. This reduc-

tion in the maximum work-group execution time ultimately

reduces execution time. Interestingly, many of the color

benchmarks exhibit long top tails because one iteration

takes significantly longer than the others, but the intra-

iteration variance is rather small except for color-1, which

does benefit from work stealing. In general, the workloads

with short boxes and tails correspond to inputs that are

Figure 8. Synchronization using remote-scope promotion quantified.

Figure 9. Load imbalance.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

SSSP-1 SSSP-2 SSSP-3 color-1 color-2 color-3 color-4 PR-1 PR-2 PR-3 geo. mean

S
p

e
e

d
u

p

baseline scope-only steal-only rem-sync

0

0.5

1

1.5

2

2.5

3

3.5

b
as

el
in

e

sc
o

p
e-

o
n

ly

st
ea

l-
o

n
ly

re
m

-s
yn

c

b
as

el
in

e

sc
o

p
e-

o
n

ly

st
ea

l-
o

n
ly

re
m

-s
yn

c

b
as

el
in

e

sc
o

p
e-

o
n

ly

st
ea

l-
o

n
ly

re
m

-s
yn

c

b
as

el
in

e

sc
o

p
e-

o
n

ly

st
ea

l-
o

n
ly

re
m

-s
yn

c

b
as

el
in

e

sc
o

p
e-

o
n

ly

st
ea

l-
o

n
ly

re
m

-s
yn

c

b
as

el
in

e

sc
o

p
e-

o
n

ly

st
ea

l-
o

n
ly

re
m

-s
yn

c

b
as

el
in

e

sc
o

p
e-

o
n

ly

st
ea

l-
o

n
ly

re
m

-s
yn

c

b
as

el
in

e

sc
o

p
e-

o
n

ly

st
ea

l-
o

n
ly

re
m

-s
yn

c

b
as

el
in

e

sc
o

p
e-

o
n

ly

st
ea

l-
o

n
ly

re
m

-s
yn

c

b
as

el
in

e

sc
o

p
e-

o
n

ly

st
ea

l-
o

n
ly

re
m

-s
yn

c

SSSP-1 SSSP-2 SSSP-3 color-1 color-2 color-3 color-4 PR-1 PR-2 PR-3

N
o

rm
al

iz
e

d
 W

o
rk

-g
ro

u
p

 E
xe

cu
ti

o
n

 T
im

e

unable to benefit from work stealing because of little varia-

tion in work-group execution time within an iteration.

6.2 Cache Behavior

Scoped synchronization is important for workloads that are

able to take advantage of the combining provided by the

GPU’s L1 caches and FIFOs. When global synchronization

is used frequently, addresses are unable to reside in the L1

caches long enough to achieve effective combining. In turn,

more requests are issued to the L2 cache, which becomes a

bandwidth bottleneck. Figure 10 shows the number of L1

cache misses for each algorithm, normalized to the base-

line. The baseline, which uses cmp-scoped synchronization,

suffers many more L1 cache misses than the scope-only

algorithm, which uses wg-scoped synchronization. The

difference in L1 cache misses indicates which workloads

will benefit from scoped synchronization. Workload/input

combinations that have less than 10% difference in L1

cache misses between the baseline and scope-only scenari-

os, which includes SSSP-1, color-1, PR-1, PR-2, and PR-3

benefit from scoped synchronization less than workloads

with more than 10% difference.

6.3 Limiting Remote Synchronization Overheads

In the dynamic local sharing patterns that remote synchro-

nization is intended for, remote operations should be rare.

For example, in a work stealing runtime, the common case

is to dequeue work from the local queue. Steals only occur

when a local queue becomes empty. The first two columns

in Table 3 show the percentage of queue elements that are

stolen over each workload’s duration. For most workloads,

stealing is negligible, which helps explain why many cases

don’t benefit from work stealing. In contrast, the workloads

with the highest amount of load imbalance—SSSP-1, color-

1, PR-1, and PR-3—execute the largest number of steals.

The surprisingly high number of steals for these workloads

is due to our work-stealing algorithm, which steals one task

queue element at a time. This policy works best when sto-

len tasks generate new local tasks, but this is not the case

for our workloads. Thus, single-element steals occur fre-

quently when there is significant load imbalance. Table 3

also shows the percentages of failed steal operations. Too

many failed steal operations could degrade performance,

but fortunately we do not observe significant failures.

Recall that there are two costs to remote synchroniza-

tion. The first cost is that caches become less effective

(e.g., a remote release will invalidate all non-local caches).

The second cost is the up-front latency to carry out a re-

mote operation. For example, a remote acquire has to inval-

idate the local scope, flush caches in the remote scope, etc.

These operations can take hundreds of cycles. Surprisingly,

we found that remote synchronization is ~10 times faster

than cmp-scoped synchronization on average. This is be-

cause remote synchronization allows all pop operations to

be performed at work-group scope. Replacing cmp-scoped

synchronization with wg-scoped synchronization reduces

traffic at the cache controllers because there are less evic-

tions, flushes, and synchronization events. So, in reality,

while remote synchronization operations might take more

time to service, they take less time overall because they

spend less time queued at the cache controllers.

7. Related Work

Prior work studied scoped synchronization in the context of

software distributed shared memory for CPUs [22][23].

More recently, Hower et al. developed the sequentially

consistent for heterogeneous-race-free (SC for HRF)

memory model [10] by incorporating scopes into the se-

quentially consistent for data-race-free (SC for DRF)

memory model. Correctly placing synchronization opera-

tions in SC for DRF leads to well-defined behavior. In SC

for HRF, this is not enough. All synchronization operations

must also be labeled with the correct scope. Our work al-

lows a work-item to label a synchronization operation so

that it applies to a scope instance other than its own.

In one embodiment of SC for HRF, called HRF-indirect,

work-items can transitively push values on behalf of other

work-items in their scope instance. HRF-indirect alone is

not sufficient to enable dynamic local sharing because the

transitive push only applies to a work-item’s scope instance

hierarchy. In contrast, remote synchronization allows work-

items to perform synchronization operations in a scope

instance outside of their scope instance hierarchy.

Figure 10. L1 miss rate.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

L
1

 M
is

s
 C

o
u

n
t

baseline scope-only steal-only rem-sync Table 3. Steal behavior
 % of queue elements stolen % of steals that fail

 steal-only rem-sync steal-only rem-sync

SSSP-1 9.0 9.7 1.6 0.7

SSSP-2 0.5 0.6 0.8 3.6

SSSP-3 0.6 0.7 0.6 2.2

color-1 9.6 10.3 0 2.7

color-2 1.2 1.0 0.9 1.1

color-3 0.7 0.4 0 1.2

color-4 1.5 1.4 0.1 0.4

PR-1 5.5 5.5 0 0

PR-2 0.8 0.6 0 0

PR-3 5.1 5.1 0 0

Quickly reacquirable locks (QRL) optimize for dynamic

local sharing patterns on CPUs [24]. QRLs can either be in

a biased state, which reduces the overhead of acquire and

release operations, or in a default state, which treats the

lock normally. To move the QRL from the biased state to

the default state (analogous to a remote acquire in this

paper), a non-biased thread simply updates the state of the

lock using the CPU’s invalidation-based coherence proto-

col. This approach cannot be applied to GPUs because their

caches do not use an invalidation-based protocol.

Other work on GPU synchronization has not considered

scopes. For example, transactional memory (TM) was ex-

tended to GPUs to improve the performance of and simpli-

fy the use of synchronization [25][26]. One could envision

scoped transactions. Singh et al. proposed temporal coher-

ence, which is a time-based self-invalidation coherence

protocol for GPUs [27]. Scopes could potentially be ap-

plied to temporal coherence to reduce self-invalidations.

Previous work surveyed dynamic load-balancing poli-

cies for GPUs. Hower et al. evaluated work sharing with

scoped synchronization [10], but did not consider work

stealing due to limitations in SC for HRF. They found that

it performs well, but our results are even more impressive.

Tseng et al. compared work donation and work stealing on

a GPU without scoped synchronization [28]. Both schedul-

ing policies showed similar performance, but they preferred

work donation because it enables fixed-size queues. How-

ever, neither work donation nor work stealing can use

scopes without support for remote synchronization.

8. Conclusion

This paper proposed a new synchronization semantic: syn-

chronization using remote-scope promotion. The basic idea

is that the work-items that most frequently access shared

data do so at the smallest scope possible. Work-items that

access that shared data less frequently do so by promoting

the small remote scope to a larger compatible scope.

Remote synchronization optimizes scoped synchroniza-

tion for dynamic local sharing, which occurs when a data

structure is shared by many threads, but a subset of those

threads desire infrequent, ad-choc access. An important

example of this is work stealing. Remote synchronization

robustly supports both scoped synchronization and work

stealing across a diverse set of graph workloads and inputs.

Acknowledgments

We thank the anonymous reviewers for their helpful feed-

back. We also thank Derek Hower for answering our ques-

tions about HRF-Relaxed. Finally, we thank Tony Tye,

Jason Power, and Michael Scott for thoughtful discussions.

AMD, the AMD Arrow logo, and combinations thereof are

trademarks of Advanced Micro Devices, Inc. OpenCL is a

trademark of Apple Inc. used by permission by Khronos.

Appendix: Formalization

We add the notion of scope promotion to HRF-indirect-

relaxed. Before presenting these additions, we give some

background on the existing HRF models and discuss why

we build on HRF-indirect-relaxed in particular.

Prior work proposed two memory models for scoped

synchronization: HRF-direct and HRF-indirect [10]. The

scoping rules are a defining part of these models. Both

models say that a synchronization pair (i.e., a release on an

address, executed by one work-item, followed by an ac-

quire on the same address, executed by another work-item)

must occur at the same scope. HRF-Relaxed extends the

original HRF models by adding scope inclusion, which

occurs when: (1) both scopes in the pair are specified such

that one is a subset of the other, and (2) both scopes include

each work-item in the pair [11]. The HRF-Relaxed paper

uses the following notation for scope inclusion:
≈incl . This expression says that the scope of

the release on location executed by work-item, or

agent, is inclusive with the scope of the acquire

on location executed by work-item, or agent, .
What distinguishes HRF-indirect is that it allows differ-

ent synchronization pairs to the same location to occur at

different scopes; this property is called transitive synchro-

nization. For example, consider the sequence shown in

Figure 11. Work-items A and B first synchronize on loca-

tion L at work-group scope. Then, work-items B and C

synchronize on location L at component scope. This se-

quence, invalid in HRF-direct, is allowed by HRF-indirect.

Transitivity is useful for scope promotion because it de-

fines the case where synchronization first occurs at the

remote scope and then occurs at the promoted scope. Note

that without some sort of scope promotion, there is no way

for an arbitrary work-item (e.g., a stealer) to guarantee that

work-item A work-item B work-item C

❶ atomic_CAS_acq_wg &L, 0, 1
❷ enqueue(task_A);
❸ atomic_ST_rel_wg &L, 0

❹ atomic_CAS_acq_wg &L, 0, 1
❺ enqueue(task_B);
❻ atomic_ST_rel_cmp &L, 0

❼ atomic_CAS_acq_cmp &L, 0, 1
❽ enqueue(task_C);
❾ atomic_ST_rel_cmp &L, 0

Figure 11. Transitive synchronization. A and B are in the same work-group. A, B, and C are in the same component.

the last release occurred at a compatible scope. Thus, we

add scope promotion to HRF-indirect-relaxed.

Adding Scope-Promotion to HRF-indirect-relaxed

An important definition in HRF-indirect-relaxed is scoped

synchronization order, shown in Figure 12, which describes

the order of acquires and releases. We identify where syn-

chronization using remote-scope promotion can violate

scoped synchronization order and then propose an adden-

dum to HRF-indirect-relaxed (Figure 13) to fix the issue.

The definition gives three conditions to establish that a

release on location , , occurs before an acquire on

 , (i.e., ⃗⃗ ⃗⃗ ⃗⃗). First, the two

scopes and must include agent . Note, there is a syn-

chronization order for each agent (i.e., work-item) in the

execution (e.g., the producer work-item that executes the

release and the consumer work-item that executes the ac-

quire). This is depicted in Figure 14. Referring to the fig-

ure, the two scopes are wg0 (i.e., the release executed by

agent 0) and cmp0 (the remote acquire executed by agent 1).

Case 1 shows when agent 0 and agent 1 both execute in

the same work-group, the two scopes include both agents.

For this case, remote synchronization adheres to HRF-

indirect-relaxed.

Case 2 shows agent 0 and agent 1 executing in different

work-groups. Both scopes include agent 0, but wg0 does not

include agent 1. To fix this issue, agent 1 promotes the

scope of agent 0’s release. The promotion is signified by

back arrow in the figure, which transforms the scoped syn-

chronization order graph. Specifically, the node corre-

sponding to the most recent release on the same location as

the remote acquire is updated with a promotion semantic.

 The second condition to establish scoped synchroniza-

tion order is that both scopes are inclusive. Using properly

synchronized scope promotion, this is the case. Remote

operations (e.g.,) are scoped to encompass

the releasing scope, .

Finally, the third condition says that the release,

 , must execute before the acquire, , in

the total order of all operations on location (called the

coherence order, or
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗). This means that a work-item

must release a location before another work-item can ac-

quire it. The same is true for scope promotion—a work-

item must release a location before another work-item can

remotely acquire it.

Thus, we add promotion to HRF-indirect-relaxed

(Figure 13) to formalize remote synchronization.

𝑙𝑎𝑠𝑡𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝐴𝑐𝑞𝑆 𝐴 = 𝑅𝑒𝑙𝑆 𝐴 :

(𝑅𝑒𝑙𝑆 𝐴 𝑐𝑜
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐴𝑐𝑞𝑆 𝐴) ⋀ (∄𝑅𝑒𝑙 𝑆 𝐴 :

𝑅𝑒𝑙𝑆 𝐴 𝑐𝑜
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑅𝑒𝑙 𝑆 𝐴 𝑐𝑜

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐴𝑐𝑞𝑆 𝐴)

𝑛𝑒𝑥𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒 𝑅𝑒𝑙𝑆 𝐴 = 𝐴𝑐𝑞𝑆 𝐴 :

(𝑅𝑒𝑙𝑆 𝐴 𝑐𝑜
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐴𝑐𝑞𝑆 𝐴) ⋀ (∄𝐴𝑐𝑞

𝑆 𝐴 :

𝑅𝑒𝑙𝑆 𝐴 𝑐𝑜
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐴𝑐𝑞

𝑆 𝐴 𝑐𝑜
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐴𝑐𝑞𝑆 𝐴)

𝑝𝑟𝑜𝑚𝑜𝑡𝑒(𝑆 𝑆) = 𝑆 𝑖𝑓 𝑆 ⊆ 𝑆

 𝑝𝑟𝑜𝑚𝑜𝑡𝑒(𝑆 𝑆) = 𝑆 𝑖𝑓 𝑆 ⊆ 𝑆 𝑜𝑟 𝑆 ∩ 𝑆 = ∅

I. New Operators for Scope Promotion

Most Recent Release on : Given an acquire memory

action, 𝐴𝑐𝑞𝑆 𝐴 , return the most recent release memory

action, 𝑅𝑒𝑙𝑆 𝐴 , in 𝑐𝑜
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ :

Next Acquire on : Given a release memory action,

𝑅𝑒𝑙𝑆 𝐴 , return the next future acquire memory action,

𝐴𝑐𝑞𝑆 𝐴 , in 𝑐𝑜
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ :

Promote a Scope: Given scopes 𝑆 and 𝑆:

II. New Definitions for Scope Promotion

Remote Acquire: Given a remote acquire memory action,

𝑅𝑚𝐴𝑐𝑞𝑆 𝐴 , and the most recent release memory action

on , 𝑅𝑒𝑙𝑆 𝐴 = 𝑙𝑎𝑠𝑡𝑅𝑒𝑙𝑒𝑎𝑠𝑒(𝑅𝑚𝐴𝑐𝑞𝑆 𝐴), replace

𝑅𝑒𝑙𝑆 𝐴 with 𝑅𝑒𝑙𝑝𝑟𝑜𝑚𝑜𝑡𝑒(𝑆 𝑆) 𝐴 .

Remote Release: Given a remote release memory action,

𝑅𝑚𝑅𝑒𝑙𝑆 𝐴 , and the next future acquire memory action

on , 𝐴𝑐𝑞𝑆 𝐴 = 𝑛𝑒𝑥𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒(𝑅𝑚𝑅𝑒𝑙𝑆 𝐴), replace

𝐴𝑐𝑞𝑆 𝐴 with 𝐴𝑐𝑞𝑝𝑟𝑜𝑚𝑜𝑡𝑒(𝑆 𝑆) 𝐴 .

Figure 13. Scope promotion for HRF-indirect-relaxed.

Figure 14. Example synchronization orders.

agent 0 (a0) agent 1 (a1)

ST(&L,0,rel,wg)

ST(&V, 2)

LD(R1, &V)

CAS(&L,0,1,rm_acq,cmp)

cmp0

wg0

a0 a1

cmp0

wg0

a0

wg1

a1

agent 0 (a0) agent 1 (a1)

ST(&V, 2)

LD(R1, &V)

CAS(&L,0,1,acq,cmp)

ST(&L,0,rel,promote(wg,cmp))

Case 1: S=S’ =wg0

Case 2: S’=wg0; S=cmp0

Program Order

Sync. Orderagent

Promote Scope

Legend

Graph
Transformation

Scoped Synchronization Order (𝑠𝑜𝑎⃗⃗ ⃗⃗ ⃗⃗): Given a release

memory action, 𝑅𝑒𝑙𝑆 𝐴 , and an acquire memory action,

𝐴𝑐𝑞𝑆 𝐴 , 𝑅𝑒𝑙𝑆 𝐴 𝑠𝑜𝑎⃗⃗ ⃗⃗ ⃗⃗ 𝐴𝑐𝑞𝑆 𝐴 iff 𝑎 ∈ 𝑆, 𝑎 ∈ 𝑆 ,

𝑅𝑒𝑙𝑆 𝐴 ≈incl 𝐴𝑐𝑞𝑆 𝐴 , and 𝑅𝑒𝑙𝑆 𝐴 𝑐𝑜
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐴𝑐𝑞𝑆 𝐴 .

Scoped synchronization order captures the synchroniza-

tion operations visible to a single agent 𝑎.

Figure 12. Definition of Scoped Synchronization Order.

References

[1] “OpenCL 2.0 Reference Pages.” [Online]. Available:

http://www.khronos.org/registry/cl/sdk/2.0/docs/man/xhtml/.

[2] “CUDA C Programming Guide.” [Online]. Available:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/.

[3] “HSA Programmer’s Reference Manual: HSAIL Virtual ISA

and Programming Model, Compiler Writer’s Guide, and Ob-

ject Format (BRIG) Version 1.0 Provisional,” HSA Founda-

tion, Spring 2013.

[4] T. Aila and S. Laine, “Understanding the Efficiency of Ray

Traversal on GPUs,” In Proceedings of the Conference on

High Performance Graphics, New York, N.Y., USA, 2009,

pp. 145–149.

[5] M. Frigo, C. E. Leiserson, and K. H. Randall, “The Imple-

mentation of the Cilk-5 Multithreaded Language,” In Pro-

ceedings of the ACM SIGPLAN 1998 Conference on Pro-

gramming Language Design and Implementation, New York,

N.Y., USA, 1998, pp. 212–223.

[6] OpenMP Architecture Review Board, “OpenMP Application

Program Interface Version 4.0,” [Online].

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

[7] “Intel Threading Building Blocks.” [Online]. Available:

http://www.threadingbuildingblocks.org/.

[8] D. Leijen, W. Schulte, and S. Burckhardt, “The design of a

task parallel library,” In Proceedings of the 24th ACM SIG-

PLAN conference on Object oriented programming systems

languages and applications, pp. 227-242, 2009.

[9] International Organization for Standardization, “Working

Draft, Standard for Programming Language C++,” [Online].

Available: http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf

[10] D.R. Hower, B.A. Hechtman, B.M. Beckmann, B.R. Gaster,

M.D. Hill, S.K. Reinhardt, and D.A. Wood, “Heterogeneous-

race-free Memory Models,” In The 19th International Con-

ference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS-19), 2014.

[11] B.R. Gaster, D. Hower, and L. Howes, “HRF-Relaxed:

Adapting HRF to the complexities of industrial heterogene-

ous memory models,” In Transactions on Architecture and

Code Optimization (TACO), 2015.

[12] AMD, “Southern Islands Series Instruction Set Architec-

ture,” 2012.

[13] S. Owens, S. Sarkar, and P. Sewell, “A Better x86 Memory

Model: x86-TSO,” In Proceedings of the Conference on

Theorem Proving in Higher Order Logics, 2009.

[14] D. J. Sorin, M. D. Hill, and D. A. Wood, “A Primer on

Memory Consistency and Cache Coherence,” Morgan and

Claypool, 2011.

[15] B. A. Hechtman, S. Che, D. R. Hower, Y. Tian, B. M.

Beckmann, M. D. Hill, S. K. Reinhardt, and D. A. Wood,

“QuickRelease: A Throughput-oriented Approach to Release

Consistency on GPUs,” presented at the 20th IEEE Interna-

tional Symposium On High Performance Computer Architec-

ture (HPCA-2014).

[16] N.S. Arora, R.D. Blumofe, and C. Greg Plaxton, “Thread

scheduling for multiprogrammed multiprocessors,” In Pro-

ceedings of the ACM Symposium on Parallel Algorithms and

Architectures, ACM, Puerto Vallarta, Mexico, 1998, pp.

119–129.

[17] D. Cederman and P. Tsigas, “Dynamic Load-Balancing

Using Work-Stealing,” In GPU Computing Gems Jade Edi-

tion, Wen-Mei Hwu (Editor-in-Chief), Morgan Kaufmann.

[18] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A.

Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sar-

dashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill,

and D. A. Wood, “The gem5 Simulator,” In SIGARCH Com-

puter Arch. News, vol. 39, no. 2, pp. 1-7, Aug. 2011.

[19] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron,

“Pannotia: Understanding Irregular GPGPU Graph Applica-

tions,” In Proceedings of the International Symposium on

Workload Characterizations, Sept. 2013.

[20] DIMACS Implementation Challenges.

http://dimacs.rutgers.edu/Challenges/

[21] Web resource: http://www.sommer.jp/graphs/

[22] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon, “The

Midway distributed shared memory system,” In Proc. 38th

IEEE Computer Society Int. Conf., pp. 528-537, 1993.

[23] L. Iftode, J. P. Singh, and K. Li, “Scope consistency: a bridge

between release consistency and entry consistency,” In Pro-

ceedings of the eighth annual ACM symposium on Parallel

algorithms and architectures, p.277-287, June 24-26, 1996,

Padua, Italy.

[24] D. Dice, M.S. Moir, and W.N. Scherer III, “Quickly reac-

quirable locks,” US Patent 7,814,488, 2010.

[25] W.W.L. Fung and T.M. Aamodt, “Energy Efficient GPU

Transactional Memory via Space-Time Optimizations,” In

Proceedings of the 46th IEEE/ACM International Symposium

on Microarchitecture (MICRO-46), pp. 408-420, Davis, CA,

Dec. 7-11, 2013.

[26] D. Cederman, P. Tsigas, and M.T. Chaudhry, “Towards a

Software Transactional Memory for Graphics Processors,” In

Proceedings of the 10th Eurographics Symposium on Paral-

lel Graphics and Visualization (EGPGV 2010).

[27] I. Singh, A. Shriraman, W.W.L. Fung, M. O'Connor, and

T.M. Aamodt, “Cache Coherence for GPU Architectures,” In

Proceedings of the 19th IEEE International Symposium on

High-Performance Computer Architecture (HPCA-19), pp.

578-590, Shenzhen, China, Feb. 23-27, 2013.

[28] S. Tzeng, A. Patney, and J.D. Owens, “Task Management for

Irregular-Parallel Workloads on the GPU,” In Proceedings of

High Performance Graphics 2010, pp. 29–37. June 2010.

