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Abstract 

Heterogeneous system architecture (HSA) and OpenCL™ 

define scoped synchronization to facilitate low overhead 

communication across a subset of threads. Scoped synchro-

nization works well for static sharing patterns, where con-

sumer threads are known a priori. It works poorly for dy-

namic sharing patterns (e.g., work stealing) where pro-

grammers cannot use a faster small scope due to the rare 

possibility that the work is stolen by a thread in a distant 

slower scope. This puts programmers in a conundrum: 

optimize the common case by synchronizing at a faster 

small scope or use work stealing at a slower large scope. 

In this paper, we propose to extend scoped synchroniza-

tion with remote-scope promotion. This allows the most 

frequent sharers to synchronize through a small scope. 

Infrequent sharers synchronize by promoting that remote 

small scope to a larger shared scope. Synchronization using 

remote-scope promotion provides performance robustness 

for dynamic workloads, where the benefits provided by 

scoped synchronization and work stealing are hard to antic-

ipate. Compared to a naïve baseline, static scoped synchro-

nization alone achieves a 1.07x speedup on average and 

dynamic work stealing alone achieves a 1.18x speedup on 

average. In contrast, synchronization using remote-scope 

promotion achieves a robust 1.25x speedup on average, 

across a diverse set of graph benchmarks and inputs. 

Categories and Subject Descriptors C.1.4 [Processor 

Architectures]: Parallel Architectures; D.1.3 [Program-

ming Techniques]: Concurrent Programming 

Keywords graphics processing unit (GPU); memory mod-

el; scope promotion; scoped synchronization; work stealing 

1. Introduction 

As processors evolve to support more threads, synchroniz-

ing among those threads becomes increasingly expensive. 

This is particularly true for massively-threaded, through-

put-oriented architectures, such as graphics processing 

units (GPUs), which do not support CPU-style “read-for-

ownership” coherence protocols. Instead, these systems 

maintain coherence by “pushing” data to a common level 

of the memory hierarchy, accessible by all threads, which 

acts as the global coherence point. After synchronizing, 

threads must then ensure that they “pull” data from this 

common memory level (e.g., by invalidating their caches). 

For discrete and integrated GPU architectures, the global 

coherence point occurs at the last level cache (LLC) and 

memory controller, respectively, incurring very high laten-

cy. Many applications cannot amortize these high synchro-

nization delays, which limits their performance on GPUs. 

One approach to reducing synchronization latency is 

scoped synchronization, which partitions threads into sub-

groups called scopes. Threads in the same scope can syn-

chronize with each other through a common, but non-

global (i.e., scoped) coherence point. General-purpose GPU 

(GPGPU) languages like OpenCL 1.2 and CUDA have 

historically provided limited forms of scoped synchroniza-

tion like work-group barriers [1][2]. Recently, heterogene-

ous system architecture (HSA) and OpenCL 2.0 (which 

closely follows HSA) introduced more general scoped 

synchronization primitives based on acquire/release seman-

tics [3]. For example, in HSA, synchronization operations 

are tagged with one of the following scope modifiers: 

work-item (wi, a GPU thread), wavefront (wv), work-group 

(wg), component (cmp), or system (sys). 

Scoped synchronization works well for static communi-

cation patterns, where producers and consumers have well-

defined, stable relationships. Figure 1 (a) depicts an exam-

ple of a static local sharing pattern, where two OpenCL 

work-groups, wg0 and wg1, operate on separate data (data0 

and data1, respectively). Work-items within wg0 use wg-

scoped synchronization to coordinate operations on data0; 



wg-scoped operations are appropriate because only work-

items from wg0 operate on data0. Similarly, work-items in 

wg1 use wg-scoped synchronization to operate on data1. 

Static local sharing is supported in OpenCL 2.0. 

A larger scope (i.e., cmp scope) is required when data 

are shared by work-items in different work-groups. An 

example of this communication pattern, which we call 

dynamic global sharing, is shown in Figure 1 (b). In this 

scenario, work-items in wg0 and wg1 read and write a glob-

al data store. Component scoped synchronization guaran-

tees that reads and writes to the global data store occur at a 

scope that is visible to all of the work-items. Dynamic 

global sharing can be expressed in both OpenCL and 

CUDA [4]. 

A third important sharing pattern is dynamic local, 

which occurs when a subset of work-items frequently ac-

cess data within a smaller scope, but non-local work-items 

occasionally desire ad-hoc access. A common example of 

dynamic local sharing is work stealing, a scheduling policy 

that provides dynamic load balancing and is employed by 

several prominent CPU task runtimes including: Cilk, 

OpenMP, Intel’s Threading Building Blocks (TBB), and 

Microsoft’s Task Parallel Library (TPL) [5][6][7][8]. Fig-

ure 1 (c) illustrates work-groups wg0 and wg1 mostly ac-

cessing their local task queues: task_q0 and task_q1, 

respectively. When a work-item finds its local task queue 

empty, it steals work from another task queue. Stealing 

mitigates load imbalance. 

Ideally, accesses to the local task queue could be opti-

mized with local synchronization. Unfortunately, scoped 

synchronization, as currently defined in HSA 1.0 and 

OpenCL 2.0, cannot efficiently support dynamic local shar-

ing. To understand why, consider the work-stealing scenar-

io depicted in Figure 1 (c). There are two scenarios to con-

sider. First, when a work-item accesses its local task queue, 

it would like to use a smaller scope (e.g., wg scope) to re-

duce synchronization overheads. However, in the second 

scenario where a work-item steals work from another task 

queue, it must use a larger common scope (e.g., cmp scope). 

Scoped synchronization requires producers to synchronize 

at a scope that encompasses all of their consumers. Thus, 

because a stealer can be any work-item in the GPU, a work-

stealing runtime requires all task queue synchronization to 

occur at the larger scope (i.e., cmp scope in this example). 

This means that smaller scopes cannot be used to optimize 

dynamic local sharing patterns like work stealing. 

In this paper, we extend scoped synchronization to sup-

port dynamic local sharing using remote-scope promotion. 

Referring back to Figure 1 (c), work-items in wg1 read 

from task_q0 by promoting the scope (e.g., wg scope) of 

the most recent synchronization event on task_q0 to a 

larger common scope (e.g., cmp scope) that encompasses 

work-items in wg0 and wg1. Similarly, work-items in wg1 

modify task_q0 by promoting the scope of the next future 

synchronization operation on task_q0 to a common scope. 

Remote-scope promotion naturally builds on hardware 

mechanisms prevalent in GPUs today and only requires a 

few minor modifications. Detailed simulation results show 

that remote-scope promotion leads to robust performance 

improvements across a diverse set of graph benchmarks 

and inputs. 

To summarize, our contributions are: 

 We identify that scoped synchronization, as defined in 

HSA 1.0 and OpenCL 2.0, limits dynamic local sharing. 

 We propose a new synchronization semantic—remote-

scope promotion— that allows a work-item to com-

municate outside of its scope hierarchy. 

 We propose a hardware implementation for synchroni-

zation using remote-scope promotion that requires few 

changes to a state-of-the-art GPU. 

 We evaluate our work for several emerging graph work-

loads and show that remote synchronization is 17% 

faster than scoped synchronization alone and 6% faster 

than work stealing alone. 

2. GPU Architecture & Programming 

This section reviews the GPU’s hierarchical design and 

relates it to the GPU’s relaxed memory model. Specifically, 

Section 2.1 describes how the HSA hierarchy maps to GPU 

hardware. Next, Section 2.2 explains how HSA extends 

acquire/release synchronization with scopes, corresponding 

to the HSA hierarchy, to minimize the cost of synchroniza-

tion on GPUs. Finally, Section 2.3 illustrates how GPU 

synchronization is implemented through an example. 

 
Figure 1. (a) Static local sharing. (b) Dynamic global sharing. (c) Dynamic local sharing. 
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2.1 The GPU Hierarchical Memory Model 

GPUs attain high throughput by targeting massively paral-

lel code that can be executed by thousands of threads. The 

GPU programming model incorporates hierarchy to help 

programmers organize threads, called work-items in HSA 

and OpenCL, in a GPU-efficient way. Figure 2 shows the 

HSA hierarchy of work-items [3]. An HSA system is com-

posed of one or more HSA components, defined as a GPU 

for this paper. GPUs execute grids, which are sets of work-

items that execute the same function at the same time. This 

organization, called single instruction multiple thread 

(SIMT), helps GPUs operate efficiently. The work-items 

within a grid are sub-divided into work-groups. Work-items 

within a work-group are scheduled together and can com-

municate with each other much faster than with work-items 

in other work-groups. Finally, an HSA component dynami-

cally partitions work-groups into even smaller sets, called 

wavefronts, to match the GPU’s execution width. 

The example HSA-compatible GPU architecture illus-

trated in Figure 3 corresponds to the software hierarchy of 

work-items. A wavefront executes on single instruction 

multiple data (SIMD) units, which are sets of functional 

units that execute in lockstep. A work-group executes on a 

single compute unit (CU), which is composed of multiple 

SIMD units (four shown). Typically each CU also includes 

a private L1 data cache. CUs within a GPU share a com-

mon L2 cache that is used to communicate across a grid. 

2.2 Scoped Synchronization Overview 

HSA adopts acquire/release semantics from the C++ stand-

ard [9]. First, we describe how acquire/release synchroniza-

tion works in C++. Next, we describe how HSA extends 

these semantics with scopes [10][11]. It is common to cou-

ple a synchronization operation with a memory instruction 

(e.g., load acquire, store release, etc.). Hardware imple-

mentations for acquire and release must do two things. 

First, they must correctly order memory operations around 

synchronization (i.e., acquire and release). This means that 

memory operations that occur after an acquire in program 

order cannot execute before that acquire (i.e., an acquire 

acts as a downward memory fence). Similarly, memory 

operations that occur before a release in program order 

cannot execute after that release (i.e., a release acts as an 

upward memory fence). In this work, GPU work-items 

execute in-order and block on loads; these two properties 

guarantee that a load will never be reordered around a syn-

chronization operation. Stores are ordered by tracking their 

addresses in a hardware first-in/first-out (FIFO) buffer; this 

mechanism is described in detail in Section 2.3. 

The second responsibility of hardware is to ensure that 

consumers see updates to memory made earlier by produc-

ers. Consumer work-items that execute an acquire “pull” 

the current global view of memory. The GPU implements a 

pull by invalidating the consumer’s private caches, which 

prevents reading stale data. Producer work-items execute a 

release to globally “push” their updates to consumers. The 

GPU implements a push by flushing the producer’s dirty 

cached data, to propagate it to consumers. 

To limit synchronization penalties, HSA extends ac-

quire/release semantics with scopes. Specifically, HSA 

defines the following scopes: work-item (wi), wavefront 

(wv), work-group (wg), component (cmp), and system (sys). 

Each scope corresponds to a different granularity of execu-

tion shown in Figure 2. Scopes can be applied to synchro-

nization operations to limit the depth of the hierarchy that 

they synchronize to. For example, wg-scoped synchroniza-

tion only needs to access the respective work-group’s L1 

cache since the entire work-group is scheduled on the same 

CU. Figure 3 shows how scopes are mapped to hardware. 

Sequentially consistent for heterogeneous race free (SC 

for HRF) memory models were proposed to help program-

mers reason about scoped synchronization [10]. They ex-

tend sequentially consistent for data race free (SC for DRF) 

memory models with scoping rules. Two models were 

proposed. HRF-direct requires work-items to communicate 

through the same scope. HRF-indirect extends HRF-direct 

to allow transitive chains of communication through differ-

ent scopes. HRF-Relaxed adds scope inclusion to both 

models [11]. We build on HRF-indirect-relaxed. 

2.3 Scoped Synchronization Implementation 

GPUs use simple write-through mechanisms to implement 

a relaxed memory consistency model. For example, many 

 
Figure 2. HSA’s hierarchy of work-items. 
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Figure 3. An example HSA cache hierarchy. 
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GPU architectures allows stores to complete without wait-

ing for coherence operations, avoiding throughput bottle-

necks caused by invalidation traffic [12]. In contrast, CPUs 

maintain the single-writer/multiple-reader invariant by 

stalling writes until all of their invalidations are acknowl-

edged [13][14]. The GPU approach avoids invalidation 

traffic, but synchronization operations are expensive. In 

particular, release operations must wait until all prior writes 

reach the correct scope. Naïvely this can be achieved by 

tracking each outstanding write and waiting until all out-

standing writes complete. 

A better approach, proposed by Hechtman et al. [15], 

uses a FIFO at each cache level to track dirty addresses. 

This technique is demonstrated in Figure 4. Every write 

inserts its address at the FIFO’s tail (time ❶), and when an 

address reaches the FIFO’s head, its associated cache block 

is written to the next level of the hierarchy (if necessary). 

Release operations are handled by simply inserting flush 

markers into the FIFO (time ❷); the release completes 

when all prior addresses in the FIFO are written through to 

the appropriate scope (time ❸) and the flush marker 

reaches the FIFO’s head. This FIFO approach for releases 

is assumed for this paper. 

Hechtman et al. also proposed to use cache-block inval-

idations, but that adds considerable hardware complexity. 

Instead, we assume acquire operations simply invalidate all 

caches encompassed by the acquire’s scope. Cache invali-

dates effectively “pull” the latest version of data from the 

distant levels of the memory hierarchy by removing closer 

cached data that have become stale. The invalidations 

themselves are cheap (i.e., a single-cycle flash-invalidate), 

but they decrease the effectiveness of caching and cause 

unnecessary inter-wavefront interference. Referring back to 

Figure 4, CU1 performs an acquire by invalidating its L1 

cache (time ❹). The atomic compare-and-swap (CAS) 

operation is performed at the operation’s respective scope. 

Specifically, the L2 cache controller performs the atomic 

read-modify-write (RMW) operation at time ❺ on address 

L. Finally, the value of A is returned at time ❻. 

3. Extending Scoped Synchronization 

Scoped synchronization is an exciting development in GPU 

programming models. Unfortunately, it currently suffers 

some severe programming limitations. Section 3.1 de-

scribes these limitations and Section 3.2 proposes our solu-

tion: synchronization using remote-scope promotion. 

3.1 Limitations of Scoped Synchronization in HSA 1.0 

When using scoped synchronization, programmers must 

manage both the level of visibility and the order of memory 

operations [10]. This is different than non-scoped synchro-

nization, which only requires programmers to reason about 

order. To accommodate scopes, memory models apply 

scope modifiers to memory operations. In HSA, memory 

operations are tagged with one of the following scope mod-

ifiers: work-item (wi), wavefront (wv), work-group (wg), 

component (cmp), and system (sys). 

A scope instance is a particular instantiation of a scope. 

For example, in Figure 5 wg0’s work-group scope instance 

is wg-scope0 and wg1’s work-group scope instance is wg-

scope1. HSA scope modifiers do not allow different scope 

instances to be distinguished. A work-item is associated 

with exactly one scope instance at each level of the scope 

hierarchy. This means that for a particular memory address 

to be visible to a work-item, that address must have been 

“pushed” (i.e., released) to a scope instance that is associat-

ed with (i.e., visible to) that work-item. This is because a 

work-item cannot “pull” (i.e., acquire) from a scope in-

stance with which it is not associated. In other words, HSA 

defines push-pull semantics that require producers to push 

data to a scope that they share with their consumers.  

These semantics make it difficult to optimize dynamic 

local sharing because consumers asynchronously read from 

producers. For example, in a work-stealing runtime, pro-

ducers do not know when a subset of their consumers (i.e., 

the stealers) will read their data. Thus, work-items must 

conservatively push data to a scope that is visible to all 

consumers. Otherwise, a stealer may read stale data. 

This conundrum is demonstrated in Figure 5 (a). Initial-

ly, at time ❶, a queue (task_q0) is instantiated for work-

group 0 (wg0) in the component scope. In the common 

case, wg0 is the only work-group that reads and writes 

task_q0. Thus the programmer would like to use work-

group scoped synchronization to coordinate operations on 

task_q0 (time ❷). Unfortunately, doing so would pre-

clude work-items in a different work-group from stealing 

data from task_q0. For example, if a work-item in work-

group 1 (wg1) were to read from task_q0 (time ❸), it 

might find stale data in the component scope. Note that wg1 

cannot correctly use work-group scoped synchronization to 

operate on wg0’s scope instance. 

It is important to note that the sequence of events in 

Figure 5 (a) would be correct in the absence of scopes. For 

 
Figure 4. GPU release and acquire operation. 
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example, in a traditional CPU, a release operation would 

make data visible to all threads in the system (i.e., all syn-

chronization would occur at an implicit global scope). 

3.2 Motivating Scope Promotion 

Today, HSA requires work-items to synchronize through a 

scope that encompasses all sharers. This is because work-

items are only able to synchronize with other work-items 

that are in the same scope hierarchy. To improve perfor-

mance for dynamic-local sharing, it would be better if 

work-items could synchronize through a scope that encom-

passes the most frequent sharers instead of all possible 

sharers. Scoped synchronization, as defined in HSA and 

OpenCL, implicitly targets scope instances within the call-

er’s scope hierarchy. A key insight is that extending this 

semantic to allow synchronization beyond the caller’s 

scope hierarchy enables better use of scopes. 

Towards this end, we propose synchronization using 

remote-scope promotion: a new semantic that allows a 

work-item to order memory accesses with a scope instance 

outside of its scope hierarchy. To access data in a remote 

scope, a work-item first promotes the remote scope to a 

larger common scope. After the promotion completes, the 

work-item synchronizes through the larger common scope. 

This sequence is shown in Figure 5 (b). At time ❶, wg1 

sends a message to promote wg-scope0 to the shared com-

ponent scope. Promotion is carried out by flushing dirty 

data in wg-scope0 to cmp-scope0 (time ❷). wg1 can then 

pull the data with a cmp-scoped acquire (time ❸). 

A similar procedure is used to modify data in a remote 

scope (e.g., task_q0’s head pointer). First, the data is writ-

ten to a larger shared scope. Then the remote scope is pro-

moted to that larger common scope. Figure 5 (c) illustrates 

how this works. At time ❶, wg1 writes data through to the 

shared component scope; this is achieved by performing a 

cmp-scoped release. Next, wg1 sends a message to promote 

wg-scope0 to the component scope (time ❷). In this case, 

promotion is carried out by invalidating dirty data in wg-

scope0 (time ❸). This sequence guarantees that wg0 will 

read updates written to the component scope by wg1. 

Using scope promotion is surprisingly easy. Consider 

the tricky lock-free code in Figure 6 for stealing from a 

queue. This function is a part of an intricate work-stealing 

algorithm originally proposed by Arora et al. [16] and 

presented in the context of GPUs by Cederman and Tsigas 

[17]. We have augmented the code with remote synchroni-

zation highlighted in bold italics. The primary difference is 

that the synchronization memory operations are trivially 

labeled with a remote memory ordering. Also, these opera-

tions must synchronize through the correct scope. The next 

section defines remote-scope promotion more precisely and 

proposes an implementation. 

4. Remote-Scope Promotion  

Synchronization using remote-scope promotion allows a 

work-item to pull and push data from a scope outside of its 

scope hierarchy without requiring a specific scope instance 

to be explicitly identified. Instead, programmers identify 

the common scope that a work-item shares with the target 

scope instance that the data resides in (e.g., the component 

scope encompasses wg0 and wg1 in the prior example).  

In this section, we extend a current GPU instruction set 

to support remote synchronization and then we describe 

how these instructions can be implemented with only mod-

est changes to current GPUs. 

 
Figure 5. (a) Shortcomings of scoped synchronization. (b) Remote acquire. (c) Remote release. 
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Task steal(Queue *q, Queue_Elem *val) { 
 int tail = remoteRead(q->tail, 
                       acq, wg cmp); 
 int oldHead = q->head; 
 if (tail <= oldHead) 
    return NULL; 
 Task task = q->contents[oldHead]; 
 int newHead = oldHead + 1; 
 
 if (remoteCAS(&q->head, oldHead, newHead, 
               ar, wg cmp)) 
    return task; 
 
 return abort; 
} 

Figure 6. Steal with remote synchronization. 



4.1 Defining Remote-Scope Promotion 

We introduce three remote synchronization operations to 

carry out the promotion semantic described in Section 3.2: 

Remote Acquire (rm_acq) ordering allows consumer 

work-items to acquire data produced at any scope instance. 

A remote acquire operation on address L comprises two 

steps: (1) promote the scope of the last release on address L 

to match the target scope of this remote acquire, (2) per-

form an acquire on address L at the target scope. 

Remote Release (rm_rel) ordering allows work-items 

to propagate their updates to external scope instances. A 

remote release operation on address L comprises two steps: 

(1) perform a release on address L at the target scope, (2) 

promote the scope of the next acquire on address L to 

match to the target scope of this remote release. 

Remote Acquire+Release (rm_ar) ordering combines 

the two remote operations above. To keep the presentation 

both minimal and complete, we label remote RMW opera-

tions with acquire+release ordering.  

4.2 Implementing Remote-Scope Promotion 

Implementing each remote order in a GPU can be thought 

of in terms of sub-operations. This sequence of sub-

operations ensures that proper synchronization is main-

tained without directly involving the work-items in the 

remote scope instance.  

Remote Acquire ordering ensures that writes performed 

at a remote scope instance will be seen by the requestor. 

Three sub-operations are required. (rm_acq.1) The first 

step is to promote the scope of the last release to match the 

target scope of this acquire. This is achieved by flushing all 

remote scope instances that are inclusive with the target 

scope. For example, if the target scope is cmp, then all wg, 

wv, and wi scope instances encompassed by the requestor’s 

cmp-scope instance will flush their dirty data out to the 

requestor’s cmp-scope instance. These flushes propagate 

local updates to the target scope. (rm_acq.2) Once these 

flushes complete, an acquire is carried out by invalidating 

the requestor’s scope instances up to the target scope; this 

guarantees that the requestor will see the latest data. 

(rm_acq.3) Finally, the requestor performs the actual 

memory operation, such as a load, at the target scope. 

Remote Release ordering ensures that the writes per-

formed by the requestor are guaranteed to be seen by the 

remote scope instances. Three sub-operations are required. 

(rm_rel.1) First, the requestor performs a release by flush-

ing to the target scope. (rm_rel.2) After the flush com-

pletes, the associated memory operation, such as a store, 

proceeds at the target scope1. (rm_rel.3) Finally, once the 

                                                 
1
 Potential races between the executing the memory operation (step 2) and 

remote invalidations (step 3) are avoided by stalling accesses to the cache 

line at the target scope until the remote operation completes. 

memory operation completes, such as the store becomes 

visible at the target scope, all remote scope instances en-

compassed by the target scope instance are promoted to the 

target scope. This is achieved by invalidating them up to 

the target scope. For example, if the target scope is cmp, 

then all wg, wv, and wi scope instances encompassed by the 

requestor’s cmp-scope instance are invalidated, which guar-

antees that remote work-items will see the latest data. 

Remote Acquire+Release ordering combines the se-

quencing of the other two remote orderings to ensure se-

quentially consistent execution. Logically, this operation 

promotes the remote data to the target scope, performs the 

atomic RMW, and then performs remote invalidations to 

promote the scope of next acquire to the target scope. Four 

sub-operations are required. (rm_ar.1) The first step is to 

flush all of the remote scope instances encompassed by the 

target scope. The requestor also flushes its local data to the 

target scope to ensure correct operation when the remote 

scope instance is the same as the requestor’s scope in-

stance. (rm_ar.2) The requestor also invalidates its local 

data so that it will execute the RMW at the target scope 

(this can occur in parallel with the first sub-operation). 

(rm_ar.3) Next, the actual RMW operation is performed at 

the target scope. (rm_ar.4) Finally the instruction com-

pletes by invalidating all of the remote scope instances that 

are encompassed by the target scope, which guarantees that 

remote work-items will see the update performed by the 

RMW operation. This implementation ensures that all 

RMWs to a particular location are globally ordered. Section 

4.4.1 discusses this requirement in further detail.  

Formalizing Scope Promotion helps to disambiguate 

corner cases and is discussed in the Appendix. Because we 

leverage hierarchical memory that provides transitivity, a 

simple extension of HRF-indirect suffices [10]. Specifical-

ly, we build on an extended version of HRF-indirect called 

HRF-indirect-relaxed [11]. HRF-indirect-relaxed requires 

each synchronizing release-acquire pair in a transitive se-

quence to occur at a compatible scope. Our work leverages 

scope promotion, which allows a work-item to promote the 

scope of another work-item’s acquire/release operations. 

Thus, the formal model extends HRF-indirect-relaxed to 

require each synchronizing pair in a transitive sequence to 

either: (1) have both operations occur at a compatible scope 

(as in HRF-indirect-relaxed), or (2) one operation must be 

remote-scoped to promote the pair to a common scope. 

4.3 An Example of Remote-Scope Promotion 

Figure 7 provides an example of synchronization using 

remote-scope promotion in a GPU composed of two com-

pute units (CUs). We assume the GPU memory system 

presented in Section 2, which includes FIFOs at each level 

of the cache hierarchy to track dirty addresses. The exam-

ple illustrates how a critical section protected by a lock, 



which is frequently accessed by a single work-group, can 

be occasionally accessed in an ad-hoc manner by work-

items outside of that work-group. The example assumes 

that the single work-group frequently accessing the critical 

section is executing on CU0 and the programmer has speci-

fied work-group scope for those synchronizing instructions. 

The work-items outside of that work-group execute on CU1 

and use remote synchronization operations to properly 

synchronize with the work-group accesses. The example 

highlights that the work-items performing the remote syn-

chronization operations encounter the primary performance 

overhead. Meanwhile, the work-group executing on CU0 

encounters minimal overhead using work-group scoped 

instructions in the common case. The text that follows is 

labeled to clarify the corresponding event. 

atomic_ST_rel (store-release on CU0 at wg-scope): The 

example in Figure 7 begins with a work-item executing on 

CU0 reaching the end of a critical section. The work-item 

issues a wg-scoped store release to notify other work-items 

that the critical section is open. Since the store release is at 

the work-group scope, no flush marker is inserted into the 

local FIFO. Instead, the store operation is immediately 

performed at the local L1 cache and the store’s address L is 

inserted into the local FIFO (time ❶). 

atomic_CAS_rm_ar (remote-acquire+release on CU1 at 

cmp-scope): Next, the work-group on CU1 wants to enter 

the critical section. It attempts to do so by using a remote 

synchronization operation to pull the valid data from the 

work-group executing on CU0. Specifically, at time ❷, a 

work-item on CU1 executes a CAS at cmp-scope with re-

mote acquire+release ordering. The sub-operations are 

carried out as follows. (rm_ar.1) First, CU0’s wg-scope 

instance must be promoted (i.e., flushed) to the component 

scope. This is achieved by broadcasting (via the on-chip 

network) a cmp-scope flush marker into all FIFOs in the 

component (including the FIFO of the requestor2). At time 

❸, the remote flush marker reaches the head of its FIFO 

indicating that all prior updates by CU0 have propagated to 

the component scope and CU1 is notified at time ❹. 

(rm_ar.2) At time ❺, CU1 invalidates its local cache3; this 

is required for the RMW to execute at component scope. 

The promotion is complete. 

An important correctness issue is that all RMW opera-

tions must be properly ordered. The remote acquire+release 

operation has temporarily promoted the wg-scope ordering 

point to the component scope. Thus, to maintain a single 

ordering point, all L1 cache controllers connected to the 

encompassing scope (i.e., component in this example) stall 

acquires, releases, and RMWs when they begin processing 

the flush marker sent from CU1. 

(rm_ar.3) At time ❻, CU1 proceeds with the RMW 

(i.e., CAS reads 0 → writes 1) at the L2 cache and the work-

item on CU1 gains access to the critical section. Synchroni-

zation is re-enabled at CU1’s L1 cache. (rm_ar.4) Finally, 

the operation completes by promoting the scope of the next 

acquire to component scope. An invalidation message is 

sent to all remote L1 caches. CU0 receives the message and 

invalidates its L1 caches at time ❼. This ensures that CU0 

will see the latest data at the component scope. The invali-

dation message also re-enables synchronization at the re-

spective wg-scope. It is important to note that this final 

remote invalidation does not stall the remote ac-

quire+release instruction. Rather, it just needs to be per-

formed before the next acquire operation executed by each 

remote CU. 

                                                 
2
 In this example, both work-items reside on different CUs. Flushing the 

dirty data in the requestor’s L1 cache is required when they reside on the 

same CU because the RMW operates directly at the L2 cache. 
3
 The invalidation can execute in parallel with the flushes. 

 
Figure 7. An example of synchronization using remote-scope promotion in a GPU. 
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atomic_ST_rm_rel (remote-release on CU1 at cmp-

scope): After exiting the critical section, CU1 issues a store 

with remote release ordering to release the lock. The sub-

operations are carried out as follows. (rm_rel.1) At time 

❽, a flush marker is inserted into CU1’s FIFO to release 

updates, local to CU1, to the component scope. At time ❾, 
the flush marker reaches the head of the queue, indicating 

that all prior writes by CU1 are visible at the component 

scope. (rm_rel.2) Now assured that all prior writes are 

visible, at time ❿, CU1 performs the store operation, writ-

ing value ‘0’ to address L. (rm_rel.3) Finally, at time ⓫, 

CU1 completes the remote release by invalidating all re-

mote L1 caches encompassed by the component scope, 

which promotes the next acquire to the component scope. 

This example illustrates that synchronization using re-

mote-scope promotion defers overheads to the infrequent 

case (e.g., stealing) rather than the frequent case (e.g., ac-

cessing the local task queue). In addition, the example 

highlights that remote synchronization seamlessly builds on 

top of current state-of-the-art GPU memory systems (Sec-

tion 2) with only a few additional mechanisms. 

4.4 Hardware Support for Remote Synchronization 

Assuming that GPUs already use per-CU FIFOs to track 

the partial order of writes and releases, remote-scope pro-

motion requires three additional mechanisms. 

The first allows work-items to send commands (e.g., 

flush and invalidate) and acknowledgments (acks) to other 

(non-local) CUs. These messages are distinguished in Fig-

ure 7 by dashed lines. For example, at time ❷, CU1 inserts 

a flush marker into CU0’s FIFO, and at time ❹, CU1 re-

ceives an ack that the remote flush is complete. Similarly, 

at time ⓫, CU1 invalidates CU0’s L1 cache. 

The second hardware mechanism is the ability to lock 

cache lines at the targeted scope for remote-release, as 

described in Section 4.2. Finally, the third hardware mech-

anism is enabling remote-acquire+release to block issuing 

new synchronization operations within the target scope. In 

particular, Section 4.4.1 describes how remote RMW oper-

ations establish a valid coherence order using this third 

mechanism. Alternative solutions may be more efficient, 

but will require more hardware complexity to handle the 

longer duration of remote RMWs and merging multiple 

versions of the cache line within the target scope.  

4.4.1 Digging Deep: Ordering Remote RMWs 

Correctly ordering remote RMWs is particularly dubious 

and requires careful consideration. For instance, Hower et 

al. [10] previously identified that race-free code using 

scoped synchronization must observe a total order of 

RMWs (referred to as atomics in that work). More recently, 

Gaster et al. [11] and the HSA memory model [3] formally 

defined this requirement by stating that a GPU implementa-

tion must provide a “coherent order” for all accesses to a 

single memory location. In addition, they state that “the 

read and write components of an atomic RMW must be 

adjacent in coherent order.” Thus it is necessary for our 

proposed hardware to ensure that all race-free RMW (both 

relaxed and non-relaxed) operations are totally ordered. 

Our implementation adheres to the principles of the 

HRF memory models, including the total order of all 

RMWs. The challenge in ordering RMWs is ensuring that 

they can immediately observe their place in a location’s 

coherent order (for example, atomic increment instructions 

that read the previous value). Therefore, remote RMWs 

must immediately be ordered across all scope instances.  

Our solution is to utilize the previously described remote 

acquire+release ordering rules for all remote RMWs re-

gardless of what ordering the instruction specifies. When a 

remote RMW is being performed, we stall all RMW opera-

tions at L1 caches within the target scope to avoid possible 

conflicts (i.e., remote scope instance modification vs. modi-

fications at the promoted scope). While heavyweight, this 

approach ensures correctness and should not impact per-

formance as long as remote RMWs are used sparingly. 

5. Methodology 

We used gem5 [18] coupled with a proprietary GPU model 

to evaluate synchronization using remote-scope promotion. 

The evaluated GPU is based on the design previously 

shown in Figure 3. It has eight CUs and each CU has four 

SIMD units. 40 hardware wavefront contexts are time-

multiplexed across the four SIMD units using an oldest-

job-first scheduling policy. Each CU has a private L1 data 

cache. There are two instruction caches and each instruc-

tion cache is shared by four CUs. All L1 data caches and 

instruction caches are connected to a unified L2 cache that 

is then connected to system memory. Details about the 

baseline GPU configuration can be found in Table 1. 

The L1 data caches and L2 cache are write-through and 

write-no-allocate. Acquire and release operations are im-

plemented as described in Section 2. Specifically, an ac-

Table 1. Simulation configuration 
8 Compute Units, each configured as described below: 

Clock 1GHz, 4 SIMD units 

Wavefronts (#/scheduler) 40 (each 64 lanes)/oldest-job first 

Data cache 
16kB, 64B line, 16-way, 4 cycles, delivers 

one line every cycle 

Memory Hierarchy 

L2 cache 512kB, 64B line, 16-way, 24 cycles 

1 Instr. cache/4 CUs 32kB, 64B line, 8-way, 4 cycles 

DRAM DDR3, 8 Channels, 500 MHz 

Protocol 

Write-through, write-no-allocate, acquires 

trigger scoped flash invalidate, releases 
trigger scoped FIFO flush 

Task Runtime 

8 task queues 
1 work-group/queue, 

4 wavefronts/work-group 
 



quire operation invalidates the caches between the ac-

quire’s wavefront up to the scope of the acquire. Every 

cache is paired with a FIFO and a release operation flushes 

the FIFOs from the release’s wavefront up to the scope of 

the release. 

We extended the GPU model to support remote-scope 

promotion. This required adding the new remote synchro-

nization orders proposed in Section 4.1 to the model and 

modifying the L1-data and L2-cache controllers to carry 

out remote synchronization, as described in Section 4.2, 

whenever they encounter a remote operation. 

5.1 Workloads 

We selected three applications from the Pannotia bench-

mark suite [19] and evaluated them across a diversity of 

inputs. Pannotia is a collection of graph workloads imple-

mented in OpenCL. These applications suffer load imbal-

ance when individual work-items process vertices with 

different numbers of neighbors. It is a challenge to predict 

the load distributions before running the applications be-

cause the resulting load imbalance is dependent on the 

graph input. The graph applications we evaluated are: 

Single-source shortest path (SSSP): Given a source 

vertex, finds the shortest distances of all other vertices to 

the source by gradually expanding vertex frontiers. 

Graph coloring (color): Iteratively labels a graph with 

different colors. Individual vertices determine if they 

should be assigned a new color by evaluating their neigh-

boring vertices each iteration. 

PageRank (PR): Estimates the importance of web pag-

es by repeatedly transmitting values among vertices 

through edges that represent pages and links, respectively. 

The graph inputs are chosen from the 9
th

 and 10
th

 DI-

MACS implementation challenges [20] and a graph for 

interacting proteins [21]. The inputs that we evaluated for 

each workload are listed in Table 2. We modified the 

OpenCL code to use work stealing. Our implementation 

follows the lock-free algorithm described by Tsigas and 

Cederman [17]. We allocated and associated a task queue 

to a work-group composed of four wavefronts. We instanti-

ate eight task queues across the eight CUs. A queue ele-

ment represents the work consumed by all of the work-

items in a work-group. Important operations include: (1) 

pop, which dequeues an element from the tail of the local 

queue, and (2) steal, which dequeues an element from the 

head of a remote queue. Popping and stealing from differ-

ent ends of the queues ensures that these operations conflict 

at most once per queue. Pushing to the tail of the local 

queue is not necessary for this particular set of workloads. 

Initially, each task queue is statically assigned work el-

ements (i.e., the graphs’ vertices are evenly distributed 

across the queues). On behalf of the entire work-group, one 

work-item pops a queue element from its local queue, and 

application-specific information (e.g., parameters and 

pointers to the actual work) is provided to all of the work-

items in the work-group. When the local queue is empty a 

work-group attempts to steal an element from a remote 

queue. The kernel terminates when all of the queues are 

empty. During the execution, contention may happen, for 

example, when a pop and steal collide and try to dequeue 

the same element. The algorithm [17] uses a lock-free solu-

tion to ensure these cases are handled efficiently. 

5.2 Evaluation Scenarios 

Four scenarios are used to evaluate remote synchronization: 

Baseline: In the first scenario, called baseline, stealing 

is disabled and global synchronization is used to dequeue 

elements. Technically, synchronization can be avoided in 

the baseline scenario because our applications don’t 

enqueue work, but we are interested in how our technique 

applies beyond this particular set of graph applications. 

Scope-only: The second algorithm, called scope-only, 

improves on baseline by replacing global synchronization 

with scoped synchronization. The scope-only scenario uses 

optimizations available in OpenCL 2.0 today. 

Steal-only: The third algorithm, called steal-only, im-

proves on baseline by replacing its static scheduling algo-

rithm with work stealing. Again, this can be achieved using 

component scoped synchronization in OpenCL 2.0 today. 

Rem-sync: Finally, the rem-sync scenario applies both 

scopes and work-stealing to the baseline. This is possible 

because of the remote-scope promotion technique proposed 

in this paper. 

6. Results 

We find that synchronization using remote-scope promo-

tion is able to achieve the benefits of both work stealing 

and scoped synchronization without compromise. Figure 8 

compares remote synchronization (rem-sync) to the other 

three evaluation scenarios described in Section 5.2. Figure 

8 shows that remote synchronization achieves speedups of 

on average 1.25x over baseline. In contrast, the average 

scope-only speedup is only 1.07x and the average steal-

only speedup is 1.18x. Remote synchronization achieves 

higher speedup than both the scope-only and steal-only 

scenarios because is able to optimize for both scopes and 

dynamic load balancing. As a result, remote synchroniza-

tion always achieves the maximum or better than the scope-

only and steal-only algorithms. 

Table 2. Workloads and inputs 

Benchmarks Graph Inputs 

Single Source Shortest Path 

(SSSP) 

dip20090126_MAX (1), USA-road-

d.BAY(2), USA-road-d.COL(3) 

Graph Coloring (color) 
dip20090126_MAX(1), USA-road-d.NY(2), 

ecology1(3), G3_circuit(4) 

PageRank (PR) 
cond-mat-2003(1), small-world(2), coAu-

thorsDBLP(3) 
 



The workload/input combinations in Figure 8 clearly 

demonstrate a variety of behaviors. Some cases benefit 

from scopes, but are not affected by work stealing. For 

example, color-3 realizes a 1.16x speedup from scoped 

synchronization but is hardly impacted by work stealing. At 

the other extreme is PR-3 which runs more than 1.65x 

faster with dynamic load balancing, but is not helped by 

scoped synchronization. Workloads, like color-4, that bene-

fit from both work stealing and scoped synchronization are 

able to use remote synchronization to optimize both cases 

at the same time. The key takeaway of Figure 8 is that the 

dynamic behavior of real workloads cannot be predicted 

and optimized statically. This fact puts programmers in a 

dilemma: whether to optimize for scopes or load balance. 

Remote synchronization eliminates this dilemma. 

An important question is: why do some workloads do 

better with scoped synchronization while others do better 

with work stealing? In the following sections, we correlate 

the underlying data movement patterns across the different 

workload/input combinations to their application behavior. 

6.1 Load Balance 

Dynamic load balancing is crucial for workloads that have 

lop-sided data partitions to process. How evenly work is 

distributed across work-groups largely depends on a work-

load’s input set. We would expect work stealing to acceler-

ate inputs that lead to an uneven distribution of work. Fig-

ure 9 shows a box plot that quantifies the load imbalance 

for each workload/input combination. The box plot shows 

work-group execution times normalized to the baseline. 

The boxes in the box plot represent the 25th to 75th percen-

tiles of work-group execution times. The horizontal line 

inside the box marks the median. Each box also has two 

tails. The bottom tail marks the minimum work-group exe-

cution time and the top tail marks the maximum. 

Pannotia workloads execute in iterations. Different itera-

tions may exhibit different load distributions. We find that 

many workloads with long top tails correspond to inputs 

that suffer load imbalance within an iteration. For example, 

SSSP-1, color-1, PR-1, and PR-3 all exhibit long top tails 

that are effectively reduced by work stealing. This reduc-

tion in the maximum work-group execution time ultimately 

reduces execution time. Interestingly, many of the color 

benchmarks exhibit long top tails because one iteration 

takes significantly longer than the others, but the intra-

iteration variance is rather small except for color-1, which 

does benefit from work stealing. In general, the workloads 

with short boxes and tails correspond to inputs that are 

 
Figure 8. Synchronization using remote-scope promotion quantified. 

 
Figure 9. Load imbalance. 
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unable to benefit from work stealing because of little varia-

tion in work-group execution time within an iteration.  

6.2 Cache Behavior 

Scoped synchronization is important for workloads that are 

able to take advantage of the combining provided by the 

GPU’s L1 caches and FIFOs. When global synchronization 

is used frequently, addresses are unable to reside in the L1 

caches long enough to achieve effective combining. In turn, 

more requests are issued to the L2 cache, which becomes a 

bandwidth bottleneck. Figure 10 shows the number of L1 

cache misses for each algorithm, normalized to the base-

line. The baseline, which uses cmp-scoped synchronization, 

suffers many more L1 cache misses than the scope-only 

algorithm, which uses wg-scoped synchronization. The 

difference in L1 cache misses indicates which workloads 

will benefit from scoped synchronization. Workload/input 

combinations that have less than 10% difference in L1 

cache misses between the baseline and scope-only scenari-

os, which includes SSSP-1, color-1, PR-1, PR-2, and PR-3 

benefit from scoped synchronization less than workloads 

with more than 10% difference. 

6.3 Limiting Remote Synchronization Overheads 

In the dynamic local sharing patterns that remote synchro-

nization is intended for, remote operations should be rare. 

For example, in a work stealing runtime, the common case 

is to dequeue work from the local queue. Steals only occur 

when a local queue becomes empty. The first two columns 

in Table 3 show the percentage of queue elements that are 

stolen over each workload’s duration. For most workloads, 

stealing is negligible, which helps explain why many cases 

don’t benefit from work stealing. In contrast, the workloads 

with the highest amount of load imbalance—SSSP-1, color-

1, PR-1, and PR-3—execute the largest number of steals. 

The surprisingly high number of steals for these workloads 

is due to our work-stealing algorithm, which steals one task 

queue element at a time. This policy works best when sto-

len tasks generate new local tasks, but this is not the case 

for our workloads. Thus, single-element steals occur fre-

quently when there is significant load imbalance. Table 3 

also shows the percentages of failed steal operations. Too 

many failed steal operations could degrade performance, 

but fortunately we do not observe significant failures. 

Recall that there are two costs to remote synchroniza-

tion. The first cost is that caches become less effective 

(e.g., a remote release will invalidate all non-local caches). 

The second cost is the up-front latency to carry out a re-

mote operation. For example, a remote acquire has to inval-

idate the local scope, flush caches in the remote scope, etc. 

These operations can take hundreds of cycles. Surprisingly, 

we found that remote synchronization is ~10 times faster 

than cmp-scoped synchronization on average. This is be-

cause remote synchronization allows all pop operations to 

be performed at work-group scope. Replacing cmp-scoped 

synchronization with wg-scoped synchronization reduces 

traffic at the cache controllers because there are less evic-

tions, flushes, and synchronization events. So, in reality, 

while remote synchronization operations might take more 

time to service, they take less time overall because they 

spend less time queued at the cache controllers. 

7. Related Work 

Prior work studied scoped synchronization in the context of 

software distributed shared memory for CPUs [22][23]. 

More recently, Hower et al. developed the sequentially 

consistent for heterogeneous-race-free (SC for HRF) 

memory model [10] by incorporating scopes into the se-

quentially consistent for data-race-free (SC for DRF) 

memory model. Correctly placing synchronization opera-

tions in SC for DRF leads to well-defined behavior. In SC 

for HRF, this is not enough. All synchronization operations 

must also be labeled with the correct scope. Our work al-

lows a work-item to label a synchronization operation so 

that it applies to a scope instance other than its own. 

In one embodiment of SC for HRF, called HRF-indirect, 

work-items can transitively push values on behalf of other 

work-items in their scope instance. HRF-indirect alone is 

not sufficient to enable dynamic local sharing because the 

transitive push only applies to a work-item’s scope instance 

hierarchy. In contrast, remote synchronization allows work-

items to perform synchronization operations in a scope 

instance outside of their scope instance hierarchy. 

 
Figure 10. L1 miss rate. 
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 % of queue elements stolen % of steals that fail 

 steal-only rem-sync steal-only rem-sync 

SSSP-1 9.0 9.7 1.6 0.7 

SSSP-2 0.5 0.6 0.8 3.6 

SSSP-3 0.6 0.7 0.6 2.2 

color-1 9.6 10.3 0 2.7 

color-2 1.2 1.0 0.9 1.1 

color-3 0.7 0.4 0 1.2 

color-4 1.5 1.4 0.1 0.4 

PR-1 5.5 5.5 0 0 

PR-2 0.8 0.6 0 0 

PR-3 5.1 5.1 0 0 
 

 



Quickly reacquirable locks (QRL) optimize for dynamic 

local sharing patterns on CPUs [24]. QRLs can either be in 

a biased state, which reduces the overhead of acquire and 

release operations, or in a default state, which treats the 

lock normally. To move the QRL from the biased state to 

the default state (analogous to a remote acquire in this 

paper), a non-biased thread simply updates the state of the 

lock using the CPU’s invalidation-based coherence proto-

col. This approach cannot be applied to GPUs because their 

caches do not use an invalidation-based protocol. 

Other work on GPU synchronization has not considered 

scopes. For example, transactional memory (TM) was ex-

tended to GPUs to improve the performance of and simpli-

fy the use of synchronization [25][26]. One could envision 

scoped transactions. Singh et al. proposed temporal coher-

ence, which is a time-based self-invalidation coherence 

protocol for GPUs [27]. Scopes could potentially be ap-

plied to temporal coherence to reduce self-invalidations.  

Previous work surveyed dynamic load-balancing poli-

cies for GPUs. Hower et al. evaluated work sharing with 

scoped synchronization [10], but did not consider work 

stealing due to limitations in SC for HRF. They found that 

it performs well, but our results are even more impressive. 

Tseng et al. compared work donation and work stealing on 

a GPU without scoped synchronization [28]. Both schedul-

ing policies showed similar performance, but they preferred 

work donation because it enables fixed-size queues. How-

ever, neither work donation nor work stealing can use 

scopes without support for remote synchronization. 

8. Conclusion 

This paper proposed a new synchronization semantic: syn-

chronization using remote-scope promotion. The basic idea 

is that the work-items that most frequently access shared 

data do so at the smallest scope possible. Work-items that 

access that shared data less frequently do so by promoting 

the small remote scope to a larger compatible scope. 

Remote synchronization optimizes scoped synchroniza-

tion for dynamic local sharing, which occurs when a data 

structure is shared by many threads, but a subset of those 

threads desire infrequent, ad-choc access. An important 

example of this is work stealing. Remote synchronization 

robustly supports both scoped synchronization and work 

stealing across a diverse set of graph workloads and inputs. 
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Appendix: Formalization 

We add the notion of scope promotion to HRF-indirect-

relaxed. Before presenting these additions, we give some 

background on the existing HRF models and discuss why 

we build on HRF-indirect-relaxed in particular. 

Prior work proposed two memory models for scoped 

synchronization: HRF-direct and HRF-indirect [10]. The 

scoping rules are a defining part of these models. Both 

models say that a synchronization pair (i.e., a release on an 

address, executed by one work-item, followed by an ac-

quire on the same address, executed by another work-item) 

must occur at the same scope. HRF-Relaxed extends the 

original HRF models by adding scope inclusion, which 

occurs when: (1) both scopes in the pair are specified such 

that one is a subset of the other, and (2) both scopes include 

each work-item in the pair [11]. The HRF-Relaxed paper 

uses the following notation for scope inclusion:           
≈incl            . This expression says that the scope   of 

the release     on location   executed by work-item, or 

agent,   is inclusive with the scope    of the acquire     

on location   executed by work-item, or agent,   . 
What distinguishes HRF-indirect is that it allows differ-

ent synchronization pairs to the same location to occur at 

different scopes; this property is called transitive synchro-

nization. For example, consider the sequence shown in 

Figure 11. Work-items A and B first synchronize on loca-

tion L at work-group scope. Then, work-items B and C 

synchronize on location L at component scope. This se-

quence, invalid in HRF-direct, is allowed by HRF-indirect. 

Transitivity is useful for scope promotion because it de-

fines the case where synchronization first occurs at the 

remote scope and then occurs at the promoted scope. Note 

that without some sort of scope promotion, there is no way 

for an arbitrary work-item (e.g., a stealer) to guarantee that 

work-item A work-item B work-item C 

❶ atomic_CAS_acq_wg &L, 0, 1 
❷ enqueue(task_A); 
❸ atomic_ST_rel_wg &L, 0 

 

 
 

❹ atomic_CAS_acq_wg &L, 0, 1 
❺ enqueue(task_B); 
❻ atomic_ST_rel_cmp &L, 0 

 

 
 

 
 
 

❼ atomic_CAS_acq_cmp &L, 0, 1 
❽ enqueue(task_C); 
❾ atomic_ST_rel_cmp &L, 0 

Figure 11. Transitive synchronization. A and B are in the same work-group. A, B, and C are in the same component. 



the last release occurred at a compatible scope. Thus, we 

add scope promotion to HRF-indirect-relaxed. 

Adding Scope-Promotion to HRF-indirect-relaxed 

An important definition in HRF-indirect-relaxed is scoped 

synchronization order, shown in Figure 12, which describes 

the order of acquires and releases. We identify where syn-

chronization using remote-scope promotion can violate 

scoped synchronization order and then propose an adden-

dum to HRF-indirect-relaxed (Figure 13) to fix the issue. 

The definition gives three conditions to establish that a 

release on location  ,          , occurs before an acquire on 

 ,            (i.e.,              ⃗⃗ ⃗⃗ ⃗⃗             ). First, the two 

scopes   and    must include agent  . Note, there is a syn-

chronization order for each agent (i.e., work-item) in the 

execution (e.g., the producer work-item that executes the 

release and the consumer work-item that executes the ac-

quire). This is depicted in Figure 14. Referring to the fig-

ure, the two scopes are wg0 (i.e., the release executed by 

agent 0) and cmp0 (the remote acquire executed by agent 1). 

Case 1 shows when agent 0 and agent 1 both execute in 

the same work-group, the two scopes include both agents. 

For this case, remote synchronization adheres to HRF-

indirect-relaxed. 

Case 2 shows agent 0 and agent 1 executing in different 

work-groups. Both scopes include agent 0, but wg0 does not 

include agent 1. To fix this issue, agent 1 promotes the 

scope of agent 0’s release. The promotion is signified by 

back arrow in the figure, which transforms the scoped syn-

chronization order graph. Specifically, the node corre-

sponding to the most recent release on the same location as 

the remote acquire is updated with a promotion semantic.  

 The second condition to establish scoped synchroniza-

tion order is that both scopes are inclusive. Using properly 

synchronized scope promotion, this is the case. Remote 

operations (e.g.,              ) are scoped to encompass 

the releasing scope,  . 

Finally, the third condition says that the release, 

         , must execute before the acquire,           , in 

the total order of all operations on location   (called the 

coherence order, or     
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗). This means that a work-item 

must release a location before another work-item can ac-

quire it. The same is true for scope promotion—a work-

item must release a location before another work-item can 

remotely acquire it. 

Thus, we add promotion to HRF-indirect-relaxed 

(Figure 13) to formalize remote synchronization. 

𝑙𝑎𝑠𝑡𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝐴𝑐𝑞𝑆 𝐴    = 𝑅𝑒𝑙𝑆 𝐴    : 

(𝑅𝑒𝑙𝑆 𝐴     𝑐𝑜  
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝐴𝑐𝑞𝑆 𝐴   ) ⋀ (∄𝑅𝑒𝑙 𝑆  𝐴     : 

𝑅𝑒𝑙𝑆 𝐴     𝑐𝑜  
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑅𝑒𝑙 𝑆  𝐴      𝑐𝑜  

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝐴𝑐𝑞𝑆 𝐴   ) 

𝑛𝑒𝑥𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒 𝑅𝑒𝑙𝑆 𝐴    =  𝐴𝑐𝑞𝑆 𝐴    : 

(𝑅𝑒𝑙𝑆 𝐴    𝑐𝑜  
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝐴𝑐𝑞𝑆 𝐴    ) ⋀ (∄𝐴𝑐𝑞 

𝑆  𝐴     : 

𝑅𝑒𝑙𝑆 𝐴    𝑐𝑜  
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝐴𝑐𝑞 

𝑆  𝐴      𝑐𝑜  
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝐴𝑐𝑞𝑆 𝐴    ) 

 
𝑝𝑟𝑜𝑚𝑜𝑡𝑒(𝑆  𝑆) = 𝑆      𝑖𝑓 𝑆 ⊆ 𝑆                         

 𝑝𝑟𝑜𝑚𝑜𝑡𝑒(𝑆  𝑆) = 𝑆      𝑖𝑓 𝑆 ⊆ 𝑆 𝑜𝑟 𝑆 ∩ 𝑆 = ∅
 

I. New Operators for Scope Promotion 

Most Recent Release on  : Given an acquire memory 

action, 𝐴𝑐𝑞𝑆 𝐴   , return the most recent release memory 

action, 𝑅𝑒𝑙𝑆 𝐴    , in 𝑐𝑜  
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ : 

 

Next Acquire on  : Given a release memory action, 

𝑅𝑒𝑙𝑆 𝐴   , return the next future acquire memory action, 

𝐴𝑐𝑞𝑆 𝐴    , in 𝑐𝑜  
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ : 

 

Promote a Scope: Given scopes 𝑆  and 𝑆: 

 

II. New Definitions for Scope Promotion 

Remote Acquire: Given a remote acquire memory action, 

𝑅𝑚𝐴𝑐𝑞𝑆 𝐴   , and the most recent release memory action 

on  , 𝑅𝑒𝑙𝑆 𝐴     = 𝑙𝑎𝑠𝑡𝑅𝑒𝑙𝑒𝑎𝑠𝑒(𝑅𝑚𝐴𝑐𝑞𝑆 𝐴   ), replace 

𝑅𝑒𝑙𝑆 𝐴     with 𝑅𝑒𝑙𝑝𝑟𝑜𝑚𝑜𝑡𝑒(𝑆  𝑆) 𝐴    . 
 

Remote Release: Given a remote release memory action, 

𝑅𝑚𝑅𝑒𝑙𝑆 𝐴   , and the next future acquire memory action 

on  , 𝐴𝑐𝑞𝑆 𝐴     = 𝑛𝑒𝑥𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒(𝑅𝑚𝑅𝑒𝑙𝑆 𝐴   ), replace 

𝐴𝑐𝑞𝑆 𝐴     with 𝐴𝑐𝑞𝑝𝑟𝑜𝑚𝑜𝑡𝑒(𝑆  𝑆) 𝐴    . 

Figure 13. Scope promotion for HRF-indirect-relaxed. 
 

 
Figure 14. Example synchronization orders. 

agent 0 (a0) agent 1 (a1)

ST(&L,0,rel,wg)

ST(&V, 2)

LD(R1, &V)

CAS(&L,0,1,rm_acq,cmp)

cmp0

wg0

a0 a1

cmp0

wg0

a0

wg1

a1

agent 0 (a0) agent 1 (a1)

ST(&V, 2)

LD(R1, &V)

CAS(&L,0,1,acq,cmp)

ST(&L,0,rel,promote(wg,cmp))

Case 1: S=S’ =wg0

Case 2: S’=wg0; S=cmp0

Program Order

Sync. Orderagent

Promote Scope

Legend

Graph
Transformation

Scoped Synchronization Order (𝑠𝑜𝑎⃗⃗ ⃗⃗ ⃗⃗  ): Given a release 

memory action, 𝑅𝑒𝑙𝑆 𝐴   , and an acquire memory action, 

𝐴𝑐𝑞𝑆  𝐴    , 𝑅𝑒𝑙𝑆 𝐴    𝑠𝑜𝑎⃗⃗ ⃗⃗ ⃗⃗  𝐴𝑐𝑞𝑆  𝐴     iff 𝑎 ∈ 𝑆, 𝑎 ∈ 𝑆  , 

𝑅𝑒𝑙𝑆 𝐴    ≈incl 𝐴𝑐𝑞𝑆  𝐴    , and 𝑅𝑒𝑙𝑆 𝐴    𝑐𝑜  
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗  𝐴𝑐𝑞𝑆  𝐴    . 

Scoped synchronization order captures the synchroniza-

tion operations visible to a single agent 𝑎. 

Figure 12. Definition of Scoped Synchronization Order. 
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