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ABSTRACT
When a video is displayed on a smaller display than origi-
nally intended, some of the information in the video is nec-
essarily lost. In this paper, we introduce Video Retargeting
that adapts video to better suit the target display, minimiz-
ing the important information lost. We define a framework
that measures the preservation of the source material, and
methods for estimating the important information in the
video. Video retargeting crops each frame and scales it to
fit the target display. An optimization process minimizes
information loss by balancing the loss of detail due to scal-
ing with the loss of content and composition due to crop-
ping. The cropping window can be moved during a shot
to introduce virtual pans and cuts, subject to constraints
that ensure cinematic plausibility. We demonstrate results
of adapting a variety of source videos to small display sizes.

Categories and Subject Descriptors
I.4.9 [Image Processing and Computer Vision]: Ap-
plications

General Terms
Algorithms, Human Factors

Keywords
Video retargeting, Video editing, Mobile multimedia, Im-
portance estimation

1. INTRODUCTION
Viewing video on small screens is becoming increasingly

common as portable devices become more capable and pop-
ular. Unfortunately, most source material is originally in-
tended for larger displays, such as televisions and theater
screens. If such video is presented näıvely, by simply scal-
ing it to fit the small screen, important parts of the image
become too small to see. To make matters worse, small
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displays often have different aspect ratios than larger ones,
requiring either an anisotropic “squish” or padding the video
to fill the display. Small displays are limited to display less
content than larger ones; our goal is to enable effective small
display by retaining what is important.

This paper considers the problem of video retargeting, that
is, adapting a video so that it is better suited for viewing on
a display different than was originally intended. Video retar-
geting applies two operations to each frame of a video: crop-
ping, which discards information outside of a window and
disturbs the composition of the image; and scaling, which
loses details of the image especially as objects become too
small to recognize, and distorts the image if the scaling is
anisotropic.

In this paper, we introduce an approach for automatically
retargeting video to displays of different sizes and aspect
ratios. This intelligent retargeting solution uses the video
content to determine how to best combine cropping and
scaling: unimportant aspects of the frame are cropped away
so that more important content appears at a larger scale.
We cast the retargeting as an optimization problem: what
new video least damages the content of the original video.
By moving the cropping window, video retargeting can cre-
ate virtual pans and cuts to better portray dynamic shots.
While our focus is on adapting edited films and videos for
small displays, the methods are also applicable for automat-
ically adapting wide format videos (such as feature films) to
other aspect ratios (such as standard television).

Cropping discards considerable information. Not only is
the content of the cropped portion lost, but we also lose the
intended composition of the original frame. Composition
is important in video as filmmakers use it in subtle ways
to convey emotion and story. However, for small devices
the alternative, downsampling the image to a tiny size that
where objects are potentially too small to be recognized, is
often worse. In essence, we choose to selectively lose some
information from cropping in the hope of avoiding losing all
information from scaling. Examples are shown in Figure 1.

In video, the motion on screen has significance beyond
individual frames. Not only do objects move, but also film-
makers move the camera to achieve their desired goals. These
latter effects are often subtle, yet significant: a zoom-in to
create a feeling of connection or the timing of cuts to es-
tablish pacing. Therefore, video retargeting must not only
consider how each frame is cropped, but also how this crop-
ping affects motion. Rather than computing the cropping
for each frame, we must be careful not to introduce new mo-
tions that will be obvious artifacts or significantly destroy



(a) Original DVD Frame 480 × 200 pixels (b) Retarget by scaling

(c) Retarget by letterboxing (d) Retarget by our approach

Figure 1: An example of retargeting a frame of a feature film from a widescreen (2.4:1) DVD to a variety of other devices, both näıvely

and using our approach. Targets are 200 × 150, 160 × 120, and 120 × 120 pixels respectively. Note that while both the left and center

targets have the same 4:3 aspect ratio, the different sizes lead to different retargeting solutions. Source c© 2004 Warner Home Video.

important existing motions. In particular, the cropping win-
dow may be moved either smoothly to introduce a virtual
pan or discontinuously to introduce a virtual cut. However,
the introduction of the virtual camera motions must be cin-
ematically plausible: they must look as if they could have
been part of the original film.

Implementing video retargeting involves two components.
A system must determine what is important in the video
then choose a retargeting that preserves it. In Section 3 we
define a framework where heuristic penalties measure the
amount of information lost due to a retargeting operation.
Video retargeting attempts to find the cropping window for
each frame that minimizes this penalty over the entire video.
In Section 4 we describe how we find solutions to this min-
imization that enforce constraints of cinematic plausibility.
The final sections of the paper present examples and discuss
results.

Automation is important in video retargeting because there
is an ever expanding set of potential target displays. Man-
ual retargeting may provide better results for a specific tar-
get, but our automated video retargeting allows video to
be adapted to a wide variety of devices. For each different
display size and aspect ratio, the system can determine the
best way to retarget the video.

The main contribution of this paper is an approach for
video retargeting that works for edited source material such
as feature films. To do this, we also contribute a novel im-
portance metric that accounts for object and camera motion,
a problem formulation that penalizes various types of loss
and methods for minimizing these penalties subject to the
constraints of cinematic plausibility.

1.1 Overview and Example
To motivate and explain our methodology we consider a

feature film in the common 2.4:1 aspect ratio1. To display
the entire frame of the film on a standard television screen

1Modern feature films are presented in a variety of as-
pect ratios, almost all are wider than the 16:9 aspect of
“widescreen” television.

(4:3 aspect ratio), one would either need to “squeeze” the
image considerably (Figure 1(b)), or display the frame as a
narrow band across the frame, padding the frame with blank
space (known as “letterboxing,” see Figure 1(c)). As an al-
ternative, the sides of the film image might be cropped off,
creating an image with 4:3 aspect ratio. When this copped
image is shown on the television display it utilizes the full
height of the screen and is commonly called a fullscreen pre-
sentation.

Fullscreen presentations of movies are created by a process
called pan and scan where an operator chooses how to crop
the image to the required aspect ratio. To our knowledge,
this process is done manually, and typically only involves
cropping the left and right edges. The pan-and-scan oper-
ator chooses what is important in each frame and moves
the cropping window accordingly. Our work automates this
process, and extends it to crop from all edges of the frame.

Pan-and-scan is problematic as it discards a portion of the
original frame, eliminating parts of the image and destroying
the composition of the image. However, a face that is 1/10th
of the vertical size of the frame (or in fullscreen presentation)
would be only 1/18th of a screen tall in letter box. On a
large display, a viewer may be willing to sacrifice the size,
but on a small display even 1/10th of the image may make
the face too small to be recognizable, so a viewer may be
more willing to sacrifice the edges of the image such that
the face is recognizable.

We can be more aggressive in our cropping than tradi-
tional pan and scan by also cropping vertically. While we
may lose more of the original image content and composi-
tion, such aggressive cropping may be justified for a small
display as the important face may not be recognizable oth-
erwise. By appropriately cropping a video, we can retarget
it to a smaller display. Cropping may be useful even if the
source and target video have the same aspect ratio.

Our automatic video retargeting process considers each
shot of the video independently (§4). First, it determines
what are the important parts of each frame (§3). Then for
each shot it determines how to crop the shot so that it best



preserves the content of the original video. Choosing the
cropping requires balancing between a number of compet-
ing goals, such as showing as much of the image as possi-
ble yet not shrinking the important aspects of the image
too much. To perform this balancing, our approach assigns
penalties for many types of information loss, and determines
the cropping by choosing it such that the weighted sum of
the penalties are minimized (§4).

In some cases, a single cropping rectangle is not the best
choice for an entire shot. For example, if an important ob-
ject moves across the source frame, the cropping window
can move with the object so that it is always in view at
an appropriate size. Moving the cropping window creates
effects similar to moving the camera during filming. Our
approach (§4.2) limits the movements it considers to ones
that are cinematically plausible, that is, ones that appear as
if they may have been part of the original film. In general,
we are conservative in not violating the “rules” taught to be-
ginning filmmakers: an experienced filmmaker may violate
these rules to create a dramatic effect, but the retargeting
process should not introduce dramatic effects not present in
the original film. Similarly, our approach considers discon-
tinuous movements of the cropping rectangle to introduce
cuts, however these cuts are applied cautiously to ensure
their cinematic plausibility.

Our implementation of video retargeting first pre-processes
the source video to identify shot boundaries and to identify
the important aspects of it (§3). Once pre-processing is com-
plete, different target video sizes can be produced. Given a
target video size, the system considers each shot, finding
the best static cropping and virtual camera motions, and
selects the one that minimizes information loss. Given a
pre-processed source video, the system can generate videos
retargeted for a variety of different target sizes. For exam-
ple, we retarget DVDs of feature films to sizes appropriate
for small media players , PDAs and cellular phones.

2. RELATED WORK
Feature films are retargeted for television through pan

and scan. To our knowledge, this is done manually by an
operator who decides what to crop. Historically, pan and
scan has only cropped the left and right edges of the frame
to use a fixed scaling. Now that pan and scan is performed
digitally, operators can apply more general zooming if they
want to. Historically, automation has been a minor issue as
pan and scan has only been important in converting films to
television which only needs to be done once and for a single
target. The range of portable device sizes and aspect ratios
make automatic video retargeting important.

A few authors have considered adapting videos to small
devices. Fan et al.[7] and Wang et al. [30] present systems
that retarget video to small devices. Both use an impor-
tance model to determine important aspects of the frame
and apply cropping to remove less important content. Nei-
ther importance model accounts for global motion, nor do
they consider cinematic plausibility in either their impor-
tance model or cropping rules. Because of this, these prior
works are most likely inappropriate for our intended appli-
cation: automatic retargeting of edited video such as feature
films.

Automatic retargeting has been successful for still images.
Several authors, including Chen et al. [5] and Suh et al.
[27], analyze image content to determine important aspects

and crop away less important image regions so that the im-
portant regions appear at a larger scale. While work on
automatic still image retargeting inspired and informs our
approach, the video retargeting problem is more challenging
for a number of reasons including: determining the impor-
tant aspects of a video is difficult (§3), what is important
changes dynamically, and video retargeting has the oppor-
tunity to introduce virtual camera motions.

The image retargeting approach of Santella et al.[25] re-
lies on eye-tracking to determine the important region. It
introduces a number of heuristics for preserving image com-
position in addition to information content, similar to our
efforts to preserve aspects of the video. We must consider
camera motions and other aspects of filmmaking.

An automatic retargeting system requires some “knowl-
edge” of the art of filmmaking so that the alterations it
introduces appear natural rather than as obvious artifacts
of the retargeting process. While books for beginning film-
makers, such as Cantine et al.[4], provide some basic rules
on filmmaking, more advanced texts (such as Katz[14] or
Arijon[1]) show both the limited nature of such rules, as
well as how good filmmakers may break them to achieve de-
sired effects. This has made the art of filmmaking difficult
to codify. There have been two domains where it has been
discussed: creating 3D camera movements (including cuts)
for cinematography of virtual worlds (such as He et al.[9]
and Bares et al.[2]) and automatic video editing.

Systems for automatic video editing have been presented
in a few focussed domains. For personal video collections,
the focus is on selecting clips from a library Girgensohn
et al.[8]. Automatic editing of classroom videos is a sim-
ilar problem to video retargeting as it transforms a video
stream (potentially from multiple cameras) into a video of
the same length by selecting parts of them. Successful sys-
tems, such as Rui et al.[24], Bianchi[3] and Heck et al.[10],
all use heuristics to determine what is most important to
show, and then crop away less important aspects (either by
zooming a camera in real time or by cropping a pre-recorded
frame). Unfortunately, the methods used in classroom auto-
matic video editing systems do not generalize easily as they
rely on the known structure of classroom lectures and the
unedited source material. Our automatic retargeting work
applies to a wide range of video, including edited source
material such as films and television shows.

An alternative to cropping and scaling for retargeting is
to apply non-linear distortions. This has been considered for
still images in Liu et al.[15] and Setlur et al.[26]. Applying
such approaches to video is challenging and may introduce
odd visual effects.

3. IMPORTANCE
The basic idea of video retargeting is to preserve what

is important in video by removing what is not. To auto-
mate retargeting, we must have some method of identifying
what is important in the video. Our approach is to define
penalties for various forms of important information loss and
to find retargeting solutions that minimize these penalties.
This approach provides a flexible framework: we can easily
add new types of penalties as we devise better mechanisms
for measuring the important content lost in a video.

Automatically determining what is important in a video
is difficult and subjective. To truly determine what is most
important to show on screen requires an understanding of



the story of a film: a seemingly unimportant element might
be critical later on. To make matters worse, different viewers
may have different opinions on what is most important.

Automatic image retargeting must also determine what is
important in an image without semantic understanding. Re-
cent results in still image retargeting [5, 15, 26, 27] suggest
two mechanisms work well: specifically recognizable objects
(such as faces) are usually important, and regions of the im-
age that are most likely to attract low-level visual system
are likely to be important.

Determining importance in video is more difficult than
determining importance in its constituent still images for
two reasons: first, there is motion in the frame that carries
meaning; and second, the image is part of a larger context
of the overall video2. In our current work, we consider the
first issue, but not the latter.

The heuristics we use for video retargeting without seman-
tic understanding fall into two categories that extend what
has been applied to still image retargeting. First, we con-
sider the temporally local information of a given frame, that
is the content of the image and its motion. If a part of the
frame is likely to attract a viewer’s attention, we consider
it important to preserve. The methods from still images,
salience and object identification, are extended with motion
features in Section 3.1. Second, we consider more general
types of loss due to retargeting. Retargeting should avoid
things that always lose information, or create results that a
filmmaker would be unlikely to do (or would only do if they
wanted to call attention to something). In Section 3.2, we
describe the specific heuristics used in our prototype. Our
extensible framework allows for new penalties to be added
as we develop a richer set of importance determining mech-
anisms.

The user can add hints to inform the system what is im-
portant. This is valuable as they may have semantic or
contextual information that is unavailable to a purely auto-
matic system, and their effort can be amortized over a set
of retargeting targets. None of the examples in this paper
employ hints.

3.1 Local Importance
Our first heuristic considers each frame without regard

to its context. For each image, we compute an importance
map that for each pixel measures how important that pixel
is likely to be. Our approach is similar to what is used in still
image retargeting: we combine image salience and specific
object detection. For video, we must extend the salience
model to account for motion: certain types of motion are
very likely to draw a viewer’s attention.

The importance map is temporally local: it considers the
content of the frame and a bounded number of neighboring
frames (for motion estimation). It is created as a weighted
linear combination of three components: the image saliency
(SI), motion saliency (SM ) and detected object saliency
(SF ). The first two components are discussed in subsequent
sections. An example of an importance map is shown in
Figure 2.

In our current implementation, the only detected objects
are faces. Faces are almost always important, are quickly
recognized by viewers, and usually attract attention. They
are also easily detected automatically. Our implementation

2Including the audio, consider a narration that says “look
at the left side of the image.”

(a) (b) (c) (d)

Figure 2: Salience map for a frame. (a) original frame, (b) im-

age salience SI without center weighting (c) motion salience SM

(d) resulting map S = SI + SM + SF . Note the center weighting

and that the small faces are weighted less than the large one. Not

all small faces are detected. Source video c© 2001 MGM.

uses the method of [29]. The object salience map SF has
value zero for pixels that are not part of a face, and a value
proportional to the area of the face if it is part of one. This
implements the heuristic that larger faces are likely to be
more important.

The importance map is center weighted to add the heuris-
tic that things in the center of the image are more likely to be
important. Therefore, the importance map S is computed
as

S = ωISI + ωMSM + ωF SF

ωI + ωM + ωF = 1

where the ω are the weights for each salience component.

3.1.1 Image Salience
Research in vision science, such as [19, 20], indicates

that saliency can be measured by low-level feature contrast.
Based on this, several methods have been proposed to de-
tect saliency from an image. Itti et al. [13, 12] detect lo-
cal spatial feature discontinuities in a static image pyramid
with a fixed number of scales, as feature contrast maps, and
combine them into a single saliency map. Ma et al. [18]
provide a simpler saliency metric based on heuristics obser-
vation how people perceive images. Hu et al. [11], transform
image features into a 2D space through a polar transforma-
tion, and identify regions by estimating the subspaces. They
consider both the region feature contrast and its geometric
properties to determine the saliency. Our implementation
uses an implementation of Ma’s contrast based method [18]
that weights the center of the image more as described in
[15]. Basically, the method applies a band-pass filter in a
perceptually uniform color space.

3.1.2 Motion Salience
Moving objects usually attract attention [23]. Therefore,

given the observed motion (the optical flow that assigns a
motion vector to each pixel) with an image, we would expect
that regions with motion are likely to be salient. However,
the simple approach of only considering the amount of mo-
tion at each pixel, such as in [17], is insufficient. People are
good at factoring out global motion, such as that induced
by head or camera movements, therefore motion contrast,
not magnitude, is a better predictor of salience [23].

For video retargeting, we use a new motion salience scheme
that is based on motion contrast. Given the optical flow
associated with an image, we first use dominant motion es-
timation to segment the image into a global background3

and foreground regions. The salience for each pixel is then

3The dominant motion may not semantically be the back-
ground.



proportional to the magnitude difference between its mo-
tion and the background motion. For pixels that are in the
background, there will be no difference. To reduce noise
from the fitting of a global motion model, we explicitly set
these values to zero. So given the optical flow MV and the
global motion model MG, both of which provide 2D vec-
tors for each pixel, we compute the motion salience SM at
foreground pixel i, j as:

SM (i, j) =
‖MV (i, j) − MG(i, j)‖

dMVmax

where dMVmax is the maximal difference between a motion
vector and the global motion vector.

Our implementation uses the Lucas and Kanade method [16]
to calculate optical flow in each frame. We model the domi-
nant global motion using a restricted affine model with four
parameters (zoom, rotate, pan, tilt)

MG(x, y) =

»
zoom rotate

−rotate zoom

– »
x
y

–
+

»
pan
tilt

–
.

In practice, the model seems to fit well enough for most
camera motions observed in regular videos and is easy to
estimate. Because we are not performing registration, more
detailed models are not necessary.

Our implementation uses the iterative method of [21] to si-
multaneously perform segmentation and parameter estima-
tion. A variant of the expectation maximization (EM) algo-
rithm, the method alternates estimating the assignment of
pixels into foreground and background and determining the
parameters of the global motion of the background model.
The model is initialized by assigning all pixels to the back-
ground. The following steps are then alternated until the
model sufficiently fits the motion of the assigned pixels, or
too few pixels are left in the background:

1. Estimate the background motion parameters given the
current set of pixels assigned to the background. To fit
the model to the motion vectors, a linear least squares
problem is formed and solved using singular value de-
composition (SVD).

2. For each pixel (i, j), compare its motion MV (i, j) to
the motion predicted by the global model MG(i, j). If
the magnitude of the difference is small, assign it to the
background set, otherwise assign it to the foreground
set.

Because of errors in motion estimation, segmentation, and
background model fitting, the computed motion salience
map SM is often noisy. Band-pass filtering to reduce noise
seems appropriate, as a pixel’s salience should be similar
to pixels on the same object since objects move coherently.
However, a simple filter disregards the fact that neighbor-
ing pixels may be on different objects so filtering reduces
contrast between groups. Therefore, we apply a Bilateral
Filter [28] that takes into account similarity in value as well
as proximity. We apply a Bilater Filter in space and time,
to the motion salience map. Similar to a 3D Gaussian fil-
ter, the Bilateral Filter also takes the weighted average of
each pixels’ neighbors (in space and time) but compute the
weights as a Gaussian function of distance in space, time,
and value.

Figure 3: Cut faces appear unnatural (left), so our system adds

a penalty to avoid them. This often causes the faces to appear

at the edge of the frame (center) so the system penalizes this

as well, leading to more natural framings (right). Source video

c© 2003 20th Century Fox.

3.2 Penalties for Information Loss
Given a source video of dimensions wsource × hsource and

a target video dimension wtarg × htarg, retargeting chooses
a subwindow of the source W that is subsequently scaled to
fit the target. For convenience, rather than parameterizing
W by the corner position (we place the origin at the upper
left), width and height, we choose to parameterize it by
corner position, scale factor s, and anisotropy of scale sa

W = (x, y, w, h) = (x, y, wtarg ∗ s, htarg ∗ s ∗ sa).

For a unity scale factor (s = sa = 1), the source pixels are
copied directly to the target. We do not consider enlarge-
ment (s < 1).

Given a window, we can compute a penalty value for the
amount of “information” that is destroyed on a particular
frame. The total penalty is computed as a weighted sum of
a number of individual penalties. Each penalty pi has an
associated weight ωi. At present, our system considers the
following penalties:

Information cropped: the sum of the importance of the
pixels of the source video that do not appear in the
resulting image

px(W) =

P
(x,y)/∈W S(x, y)

Stotal
,

where S(x, y) is the importance value at pixel (x, y)
and Stotal is the total importance in the shot.

Scaling: as the scale factor increases, information is lost
due to downsampling. We penalize larger scale factors:

ps(W) = |s − 1.0|3,
where s is the scale factor. We choose a cubic cost
function to avoid drastic downsampling.

Pixel Aspect Ratio: while the system can squeeze the
image with an anisotropic scale, such distortions look
odd and are penalized:

pa(W) = |sa − 1.0|3,
where sa is the aspect ratio change factor. We choose
a cubic cost function again to avoid drastic distortion.

Face cut cost: cutting off part of a face is unattractive,
and generally not done by filmmakers [1]. If the win-
dow intersects a located face, we create an image that
is clearly an artifact of the retargeting process losing
cinematic plausibility (Figure 3). For each detected
face, we penalize the system with a constant cost if
part of the face is cut outside the window.



Edge crowding cost: by itself, the face cut penalty tends
to cause faces to appear adjacent to the end of the win-
dow which appears unnatural (Figure 3). We penalize
the system for putting a face too close to the edge of
the frame:

pe(W) =

j
1.0 − d/dmax, d ≤ dmax;
0, else.

,

where d is the smallest distance between the face edge
and the window edge, and dmax is a constant, set em-
pirically in our system to 15 pixels.

Pan and Cut costs: motions of the window between
frames can cause the loss of motion information, so
they are penalized. This is discussed in more detail in
Sections 4.2 and 4.3.

User hint costs: if the user specifies that a particular po-
sition in the frame is important, a window is penalized
if it does not contain the point. Note: none of the
examples in this paper include user specified hints.

There is a weight ωi for each penalty and for each salience
component. This set of weights serves to tune the impor-
tance determination process to balance all of the factors. In
principle, these weights could be tuned to account for viewer
preferences. In practice, we have determined a set of weights
empirically and used them for all of our experiments.

One feature of our approach is that the set of penalties
and salience terms is extensible. New ones can be added
easily, potentially improving the quality of the results.

4. OPTIMIZING RETARGETING
The video retargeting problem is to choose a cropping

window (x, y, s, sa) for each video frame. As described, the
optimal retargeting would be to chose the window such that
the penalty is minimized. However, performing this opti-
mization on each frame independently may cause the crop-
ping window to move around, inducing motion that appears
like camera motion. Therefore, we must limit the motions
introduced by retargeting. Induced motions must be cin-
ematically plausible: they must not be something that a
filmmaker would be unlikely to use, as this would yield re-
sults that would appear as obvious artifacts. We also should
consider the preservation of the motion in the original video
as it is part of the video’s content that should be preserved.

Our approach considers each shot (a duration of the video
taken from a continuous viewpoint) independently. Between
shots, there is already a discontinuity, so we need not worry
about providing continuity across shot boundaries (ramifi-
cations of this are considered in Section 6). Our implemen-
tation automatically breaks a long video into a sequence of
shots using the algorithm of [22]. This simple algorithm is ef-
ficient and robust against object and camera motions. First,
a color histogram is computed for the consecutive frames.
Color is quantized to improve performance. A shot bound-
ary is detected whenever the histogram intersection between
two neighboring frames is below a threshold.

To ensure cinematic plausibility, video retargeting con-
siders each shot as a unit. Rather than solving a large
constrained-optimization problem to determine the window
for each frame in the shot, we restrict the motion to be one
of three shot types that are most common in film: a crop
(the window remains constant over the shot); a pan (the

window moves smoothly over the duration of the shot); and
a cut (a discontinuity is introduced and the shot is divided
into two independent shots). Each shot type has a small
number of parameters (for example, a crop’s parameters are
(x, y, s, sa)). These shot types are detailed in subsequent
sections.

For each shot, video retargeting chooses the cropping win-
dow for each frame such that the sum of the penalties for
all of the frames is minimized, subject to the constraint that
the motion of the cropping window is one of the three shot
types. To implement this constrained optimization for a
given shot, for each of the three shot types we determine
the parameter values that give the lowest penalty. Then,
from these three options, we select the one that has the low-
est overall penalty. For each shot type, we use a different
algorithm to find the parameter values that minimize the
penalty.

4.1 Cropping
The simplest method for performing retargeting is to se-

lect a single cropping window for each shot. By not having
the cropping window move within the shot, retargeting does
not introduce any visual motion. Motion in the source video,
both object and camera movements, are preserved.

Choosing the optimal cropping for a shot requires mini-
mizing the penalties across the entire shot. The set of poten-
tial cropping window forms a 4-dimensional space to search,
including the position of the lower left corner of the rect-
angle, (x, y), the scale factor, s, and the anisotropy, sa (a
scaling factor on the width that allows the aspect ratio of
the cropping window to vary from the aspect ratio of the
target). In performing cropping, we minimize the weighted
sum of the penalties (§3.2). Because of the discrete and non-
linear nature of this objective, we have chosen to optimize it
by a brute-force search through the parameter space. Specif-
ically, we step the cropping window position (x, y) pixel by
pixel. We iterate the anisotropy factor sa from 0.8 to 1.2
with step size 0.1, and the scale factor s from 1.0 multiply-
ing by 1.1 until the cropping window outgrows the source
frame.

To efficiently compute the information lost cost for all
of the different windows, we first sum the importance over
each shot to create a single map. For each window, the
information lost can be computed in constant time using a
summed area table [6].

4.2 Virtual Pans
Introducing camera motion must be done carefully to avoid

introducing artifacts or changing the existing cinematogra-
phy. For example, we avoid introducing zooms (changing
the scale s and sa in a shot) as they have strong effects on
the viewer. In practice, we limit ourselves to the most com-
mon camera motion: a horizontal pan. Real cameras create
pans by turning on their tripod. For us, a horizontal pan
means that the horizontal position of the window x changes
over time. We restrict each shot to contain a single pan to
avoid a “ping-pong” effect. Examples of pans are shown in
Figure 4 and Figure 8.

Real cameras have mass and do not accelerate instantly.
Rapid accelerations are so noticeable and disconcering to
viewers that real tripods for film and video are almost always
damped to prevent this. Therefore instant accelerations of
the window would be an obvious artifact of retargeting and



(a) Static Cropping

(b) Virtual Pan

Figure 4: Three frames from a shot where our system uses a

pan to better show moving objects. With a static shot (a), the

system must either show the characters at a small scale, or crop

them. With a pan (b) the system can show the characters across

the entire shot. Source video c© 2004 Warner Home Video.
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Figure 5: Left: the interpolation function has zero initial and

final derivatives, constant acceleration and deceleration, and con-

stant velocity in the middle. Right: the optimal window is deter-

mined for each frame and a smooth curve is fit.

must be avoided. To do this, we define the horizontal posi-
tion of the window to be a function of an appropriate form.
The function depends on 4 parameters: x1 the initial value,
x2 the ending value, t1 the time that the motion begins, and
t2 the time that the motion ends. Specifically, the camera
does not move until t1, then accelerates, holds a constant
velocity, then decelerates until t2, when it holds constant

x(t) =

8<
:

x1 t < t1
(1 − d( t−t1

t2−t1
))x1 + d( t−t1

t2−t1
))x2 t1 ≤ t ≤ t2

x2 t > t2

.

Where d(u) is the interpolation function (depicted in Fig-
ure 5)

d(u) =

8><
>:

u2

2a−2a2 u < a
a

2−2a
+ u−a

1−a
a ≤ u ≤ 1 − a

1 − (1−u)2

2a−2a2 u > 1 − a

,

where a is a constant. Note that for a given t, x(t) is linear
in all parameters except t1 and t2.

To find the optimal horizontal pan, we need to search the
7 parameter space (x1, x2, y, s, a, t1, t2) to find the values
that minimize the penalty over the shot. The brute force
search used in the previous section is intractable. Instead,
we approximate the ideal solution by first finding the opti-
mal window on each frame individually (using the methods

of the previous section) and then fitting the interpolation
curve to this data, as schematized in Figure 5.

Given the optimal window for each frame, we perform
fitting by creating constraints that the top, left, bottom
and right edges of the window on each frame are equal to
their ideal counterparts. Given the optimal window for each
frame, we perform the fitting with the goal that the top,
left, bottom and right edges of the window on each frame
are close to their ideal counterparts as possible. We fit the
curve in a least squares sense. For a given t1 and t2, this
is a linear least squares problem and can be solved analyt-
ically. We exhaustively search the valid range of t1 and t2,
finding the best values of the other 5 parameters for each,
and choose the one with the lowest residual.

Once the parameters of the optimal panning motion are
computed, the penalty for the retargeted shot using this
movement can be computed by evaluating the penalty terms
(§3.2) and adding an addition “pan” penalty that discour-
ages the addition of camera motion

pp = wp ∗ (t2 − t1),

where wp is a pan penalty coefficient.

4.3 Virtual Cuts
Retargeting can introduce a cut to break a shot into two.

Such cuts must be introduced carefully: discontinuous cam-
era motions can disorient the viewer if they are not done
correctly, and even good cuts effect the pacing of the video.

In principle, we could treat each new sub-shot as a shot
and perform the entire retargeting optimization recursively,
potentially dividing each sub-shot further. In practice, we
restrict ourselves to performing a single cut on each shot,
since finer divisions would have too drastic an impact on
the pacing of the result. We also restrict each subshot to be
retargeted with a crop (the window does not move over the
subshot). This facilitates determining if the cut is good as
we need not worry about motion matching issues.

In introducing a cut we must avoid creating a cut that
stands out as obtrusive to the viewer. We restrict intro-
duced cuts such that the resulting sub-shots are of sufficient
length (63 frames) because shots shorter than this have a
noticeable effect on pacing and are only used very inten-
tionally by filmmakers. Secondly, we avoid making a “jump
cut,” the phenomena where a cut is very jarring to a viewer
if the difference between the two subshots it divides is not
sufficiently different [4].

A cut applied to a shot has nine parameters: the four pa-
rameters of the windows of each subshot, and the time of
the cut tc. To find the optimal retargeting we use an approx-
imation that incorporates some of the constraints that avoid
a jump cut. We note that to be sufficiently different, one
of the subshots must come from the left part of the frame,
while the other must come from the right. We then use the
following three steps:

1. For each frame, we compute a penalty for the best
window for the left and right sides, L(t) and R(t).

2. We determine tc and which side is first by exhaustively
trying all reasonable values of tc and both orderings
to see which leads to the minimum. For example, the



Figure 6: A shot where our system inserts a cut. Top: DVD

frame. Bottom: 2 frames from each of the sub-shots. The horse

(left) only moves (and therefore becomes salient) in the later part

of the shot. Source video c© 2004 Warner Home Video.

left-first penalty for a given tc is

P (tc, left) =

tcX
i=1

L(i) +
nX

i=tc

R(i).

3. We then use the method of Section 4.1 on each subshot.

An example where our system introduces a cut is shown in
Figure 6.

Introducing a cut disturbs the continuity of the original
shot. Also, our simple method of determining the cut does
not account for other preconditions for quality cuts such as
cutting on action [1, 4, 14]. Therefore, we add an additional
penalty pc to the penalty computed from the optimal cut
shot. To further discourage jump cuts, the penalty is pro-
portional to the image similarity between the two subshots
as measured by color histogram intersection [22]. In com-
puting the total penalty for applying a cut to a shot, we
discount the information cropped penalties for the two sub-
shots to account for the fact some of the cropped information
will appear in the other subshot.

5. EXAMPLES
We have implemented the video retargeting methods de-

scribed in the previous sections on Windows-based PCs.
Analysis of the video to determine the local importance is
time consuming as we use inefficient open source implemen-
tations of face finding and optical flow computation. We
perform it as an offline pre-process. Once the importance
information is pre-computed, retargeting requires roughly
3-5 times real time with the unoptimized prototype.

We have used our system to retarget various content from
DVDs to a variety of sizes and aspect ratios. For all of
our tests, the source comes from “widescreen” DVDs that
letterbox the original theatrical presentation. The aspect
ratios of the source material range from 1.85:1 to 2.4:1 (these
DVDs appear letterboxed even on 16:9 TVs). The systems
performs as we would expect: choosing static crops, pans
and cut insertion where appropriate.

target size crops pans cuts failures
120 × 120 141 66 7 22
160 × 120 147 63 4 12
200 × 150 147 67 0 9

Table 1: Shot choices and failure rates on the test set.

Despite its simple importance models and heuristics, our
system often chooses good retargeting solutions. In films,
many shots have a clear focus of attention (as directors want
to facilitate an audience’s comprehension), and our system
can appropriately choose tighter croppings. In other cases,
such as an action scene, importance information is spread
over more of the screen, and our system shows more of the
frame.

On some shots, our system fails to produce a retargeting
solution that conveys the original intent of the shot. On
some of these failures, the system cannot be blamed: the
source material might be such that there is no way to pre-
serve its content in a smaller size. Even a manual pan and
scan operator would need to make a difficult decision to dis-
card something important. Other failures can be directly
traced to system components, e.g. the face detector failing
to identify a poorly lit face, or our heuristics being insuffi-
cient.

To assess our system’s results, we selected 3 movies that
were known to be difficult for fullscreen presentation based
on web critiques of the full screen versions. For efficiency,
and to test the system’s ability to handle different source
size, we first downsampled the movies to various sizes. From
these films we used 214 shots for our tests, and retargeted
each to three different targets: two different sizes of 4:3 dis-
plays (200 × 150 pixels and 160 × 120 pixels), and a square
display like a PDA (120 × 120 pixels). These target sizes
were chosen because their relatioship to the source material
is similar to the relationship of current devices to the most
common source material.

The shot choices made by our system are listed in Table 1.
Our system chooses static crops the majority of the time.
As the target grows larger, the frequency that cuts are used
decreases. For all of the target sizes, the average anisotropy
used was 1.1, or a 10 percent “squish.”

Result quality was assessed subjectively by the authors.
We consider a retargeting solution for a shot to be a failure
if we prefer a näıve scaling to that solution. On the test set,
our system failed less than 10% of the time. Failures have
two forms: cropping of an important part of the image, and
introduction of a cinematically implausible artifact. Because
the baseline for comparison is a maximal scale, we cannot
fail by scaling too much.

Camera motions are the largest cause of failures due to
cinematic implausibility. Despite our efforts to prevent jump
cuts, almost one third of the cuts made by our system were
distracting, suggesting that we must be even more conserva-
tive about applying cuts. In rare cases pans create cinematic
implausibility by changing the direction of the apparent mo-
tion of a moving object. The most common form of failure,
however, is when the system removes an important element
of the image. This happens when either the system fails to
identify something as important, or incorrectly decides to
focus on some other part of the image.



Figure 7: A clip from a digital camera is retargeted. Despite no

identifyable faces and jerky handheld motion, the system still cor-

rectly applies a pan. Top: range of pan shown on source frames.

Bottom: frames from retargeted result. Source video c© 2006 M.

Gleicher.

5.1 Home Videos
The approach described in this paper addresses the re-

targeting of edited videos such as films and television. Our
approach makes some assumptions that the video is “good.”
For example, we assume that the video is broken into shots
and that within each shot the camera work is intentional
and should be preserved. Amateur “home” videos often fail
to meet these criteria. Digital still cameras and video cam-
era cell phones usually take short clips of video. Retargeting
these clips is important as they are often timely and so users
want to transmit them. Retagreting not only makes the re-
sulting videos more appropriate for portable displays, it can
also make them smaller.

Preliminary experiments show that our retargeting system
can be applied to short clips from small digital cameras.
Despite the jerky, hand-held camera movements these clips
tend to exhibit, the importance finding algorithm provides
reasonable results. An example of a retargeted clip where a
virtual pan is used is shown in Figure 7.

We expect that a real solution for amateur video clip re-
targeting will require new methods that do not make as-
sumptions about the quality of the source cinematography.
However, the importance model from this paper should still
be applicable, as will the general approach of seeking to cre-
ate cinematically plausible virtual camera work.

6. DISCUSSION
Video retargeting is fundamentally limited: we necessarily

must throw away information when presenting a video on a
smaller device. Our ability to do this well is fundamentally
limited by the fact that what is important to preserve de-
pends not only on the low-level visual information that may
be available to an automatic system, but also high level as-
pects of the underlying story.

At present, our system relies on only basic, easy to ob-
tain information about the video’s content. We have chosen
to use only salience, face detection, and dominant motion
direction as this information can be obtained with simple,
robust algorithms. In a sense, our prototype is an experi-
ment of how well we can do video retargeting based on this
limited information.

Incorporating more information poses a number of chal-
lenges. First, we need a method of obtaining the new in-
formation; second, we need mechanisms for evaluating how
much information is lost in a retargeted presentation; and

third, we need mechanisms for incorporating these new met-
rics into our optimization. For example, at present, our sys-
tem identifies faces in the image, but does not distinguish
between them. Computer vision techniques could find fa-
cial motion to identify which face is speaking, allowing the
heuristic that the speaker is more important. Aside from the
obvious caveat that the heuristic is imperfect (sometimes
another character’s reaction is more important), this new
type of information suggests not only new penalty terms,
but also new optimization methods that will encourage “cut
on speaker change.”

There is one category of information that we feel is par-
ticularly important for improving the quality of retargeting:
coverage. At present, our approach treats each salient pixel
and face as independent. There is no notion of something
being the same across frames. If our system were to identify
when important image features are common across multiple
frames, we could introduce metrics that measure the cover-
age of a retargeting. That to give importance that objects
in a shot are seen at some time. For example, in a static
scene, the system might introduce a virtual pan so that the
entire frame is seen more closely.

Presently, our system treats shots independently. Per-
forming analysis across multiple shots may be useful for a
number of reasons. For example, information given in one
shot may be less important to repeat in a later one; or since
a filmmaker may use a repeated shot composition to con-
vey continuity or repetition or allow the viewer to witness
change, cropping these similar shots differently breaks this
rhythm. Therefore, performing video retargeting “globally”
over all shots poses a number of technical challenges to scale
the optimization process as well as a development of schemes
for using the global information.

Better evaluation is necessary for assessing video retar-
geting. Assessing the quality of the results of our system is
difficult. Displaying a video at a small size necessarily dis-
cards information, and the choice in how to do this is sub-
jective. Manual pan-and-scan is sufficiently criticized that
letterbox presentation is preferred by most movie fans, al-
though we feel that the tradeoffs make aggressive retargeting
using cropping important for small devices.
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