
WPDS++ User Manual∗

October 5, 2005

1 Introduction

WPDS++ is an open-source library for implementing Weighted Pushdown Systems (WPDSs). The library is
designed as a set of templated C++ [3] classes. The template parameter is a user-defined implementation of
a bounded idempotent semiring. Though WPDS++ is a general implementation of Weighted Pushdown Sys-
tems, it was designed with the primary purpose of performing interprocedural dataflow analysis of computer
programs. It is assumed that the reader is familiar with both Weighted Pushdown Systems and interproce-
dural dataflow analysis. This user manual does not describe the theoretical underpinnings of Weighted
Pushdown Systems or interprocedural dataflow analysis. For more details on the subject, see [1,2].

2 Implementing a Weight Domain

As described earlier, WPDS++ is a collection of templated C++ class files. The template parameter is a
user-defined implementation of a semiring (whose elements are typically a family of dataflow transformers).
The semiring must implement a certain collection of methods for a WPDS++ application to compile. The
following subsections describe each of these methods. TheT listed in the method signatures refers to the
classname that defines the semiring. Asemiring elementis an instance of the semiring implementation class,
and is referred to byT* .

2.1 One - 1̄

T* T::one() const;

one returns a pointer to thē1 semiring element.

2.2 Zero - 0̄

T* T::zero() const;

zero returns a pointer to thē0 element of the Semiring.

2.3 Combine -⊕
T* T::combine(const T* t) const;

combine takes a semiring element parameter and returns a new semiring element that is the combination
of this and the parametert (*this ⊕ *t). Combine should not overwritethis or input parametert .

∗This material is based upon work supported by the National Science Foundation under Grant No. 9986308. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

1

2.4 Extend -⊗
T* T::extend(const T* t) const;

extend takes a semiring element parameter and returns a new semiring element that is equal tothis
extended by the parametert (this ⊗ t). extend is typically related to functional composition; i.e.,
this ⊗ t is functionally equivalent tot ◦ this . Extend should not overwritethis or input parametert .

2.5 Equal

bool T::equal(T* t) const;

equal returns true if two semiring elements are equal and false otherwise. There is currently no method
specifically designed to deal with partial orders. However, for any two semiring elementsα andβ, α v β
⇔α = (α ⊕ β).

2.6 Print

std::ostream& T::print(std::ostream& o) const;

print writes a semiring element to thestd::ostream parameter, i.e.o. It should return the same
std::ostream when finished.

2.7 Reference Counting

ref_ptr<T>::count_t count;

WPDS++ provides reference counting for user-created semiring elements (instances ofT*). To do this, the
semiring element must have a publicly accessible field namedcount . The classref_ptr<T> defines the
typecount_t for the type of thecount field (it is currently anunsigned int but may change in the
future). For reference counting to work properly,count should be initialized to0. To turn off reference
counting, initializecount to a positive number, e.g.60 .

2.8 The Reach Weight Domain

The following weight domain implements simple reachability. The weight is1̄ if it is reachable by the WPDS
and0̄ otherwise. Using this weight domain is equivalent to using a Pushdown System without weights. All
user created weights are1̄ and (abstractly) unreachable configurations have weight0̄.

#include "ref_ptr.h"

class Reach
{

bool isreached;
public:

ref_ptr< Reach >::count_t count;

Reach(bool b) : isreached(b),count(0) {}

Reach* one() const { return new Reach(true); }

Reach* zero() const { return new Reach(false); }

2

// zero is the annihilator for extend
Reach* extend(Reach* rhs) const {

if(isreached && rhs->isreached)
return one();

else // this or rhs is zero()
return zero();

}

// zero is neutral for combine
Reach* combine(Reach* rhs) const {

if(isreached || rhs->isreached)
return one();

else
return zero();

}

bool equal(Reach* rhs) const {
return (isreached == rhs->isreached);

}

std::ostream& print(std::ostream& o) const {
if(isreached)

o << "ONE";
else

o << "ZERO";
return o;

}
};

3 Creating the Weighted Pushdown System

The transformation from program to WPDS is straightforward. There are three types of rules in the WPDS
corresponding to three types of edges in the program’s callgraph. The type of a rule is distinguished by
the number of stack symbols on the right-hand side of the rule. More precisely, rules with one, two, or
zero right-hand side stack symbol(s) correspond to intraprocedural, interprocedural call, and interprocedural
return edges, respectively. To be clear,Figure 2is a translation of the pseudo code inFigure 1into a WPDS
using theReach semiring.

The C++ program inFigure 2creates a WPDS and prints it tostd::out . Some new classes and
types are used in the example program. One class is namedwpds::Semiring . Thewpds::Semiring
class is used by thewpds::WPDS class to call the user-defined semiring methods (in this case, the meth-
ods of classReach). It is instantiated with a semiring element (it is customary to use1̄ for instantia-
tion). A second type used inFigure 2is thewpds::wpds_key_t object. The WPDS++ library only
knows about keys. A key is a way of identifying a state or stack symbol of the WPDS. Each key has a
uniquewpds::key_source object associated with it. Some common sources have been defined like
wpds::string_src andwpds::int_src . User’s can define their own key source by subclassing the
wpds::key_source class (seekey_source.h). The functionstr2key is simply a helpful wrapper
for creating awpds::string_src and returns thewpds::wpds_key_t associated with that object.
A similar function int2key exists for working withwpds::int_src . Once all the keys have been

3

x = 0
y = 0

fun f()
n0: <$ f enter node $>
n1: if(x = 0)
n2: then y := 1
n3: else y := 2
n4: g()
n5: <$ f exit node $>

fun g()
n6: <$ g enter node $>
n7: y := 4
n8: x := 60
n9: <$ g exit node $>

Figure 1: Pseudo code.

defined, the rules are added to the myWpds object.

4 Queries in WPDS++

4.1 Prestar and Poststar

WPDS++ allows for two types of queries,prestarandpoststar. A query takes as input a WPDS, a Configura-
tion Automaton, and a Semiring. A query outputs a new annotated Configuration Automaton. Configuration
Automata are represented by the classwpds::CA . The constructor takes awpds::Semiring as its one
input. Transitions are added to the CA class using thewpds::CA::add method. The following sample
code creates a Configuration Automatonquery , and performs apoststarreachability query with respect to
WPDSmyWpds(created inFigure 2). A prestarquery is performed similarly.

wpds::CA< Reach > query(s);
query.add(p, n[0], accept, reachOne);
query.print(std::cout << "BEFORE\n") << std::endl;
wpds::CA< Reach > answer = wpds::poststar< Reach >(myWpds,query,s);
answer.print(std::cout << "\nAFTER\n") << std::endl;

4.2 Path Summary

A path-summary query is performed on awpds::CA . It annotates the states of the automaton with a semir-
ing element that represents the sum (⊕) over all paths from that state to the accepting state of the automaton.
If there is no accepting state, then every state will be annotated with0̄. The following code illustrates a
path-summary query (again assuming we have the same objects created inFigure 2andsubsection 4.1).
After the path-summary method completes, the code retrieves the weight annotation for statep and writes it
to std::cout .

answer.path_summary();
ref_ptr< Reach > pWeight = answer.state_weight(p);
std::cout << "Weight on state \"p\": ";

4

#include "WPDS.h"
#include "Reach.h"
#include <string>
#include <sstream>

int main()
{

Reach* reachOne = new Reach(true);
wpds::Semiring< Reach > s(reachOne);
wpds::WPDS< Reach > myWpds(s);
wpds::wpds_key_t p = str2key("p");
wpds::wpds_key_t accept = str2key("accept");
wpds::wpds_key_t n[10];
for(int i=0 ; i < 10 ; i++) {

std::stringstream ss;
ss << "n" << i;
n[i] = str2key(ss.str());

}

// f intraprocedural
myWpds.add_rule(p, n[0], p, n[1], reachOne);
myWpds.add_rule(p, n[1], p, n[2], reachOne);
myWpds.add_rule(p, n[1], p, n[3], reachOne);
myWpds.add_rule(p, n[2], p, n[4], reachOne);
myWpds.add_rule(p, n[3], p, n[4], reachOne);

// g intraprocedural
myWpds.add_rule(p, n[6], p, n[7], reachOne);
myWpds.add_rule(p, n[7], p, n[8], reachOne);
myWpds.add_rule(p, n[8], p, n[9], reachOne);

// f call g
myWpds.add_rule(p, n[4], p, n[6], n[5], reachOne);

// f return
myWpds.add_rule(p, n[5] , p , reachOne);

// g return
myWpds.add_rule(p, n[9] , p , reachOne);

// Print the WPDS
myWpds.print(std::cout) << std::endl;

return 0;
}

Figure 2: WPDS++ encoding of the pseudo code inFigure 1.

5

pWeight->print(std::cout) << std::endl;

WPDS++ returns weights as values of typeref_ptr<T> (i.e., an instance of theref_ptr class in-
stantiated with the user’s semiring). In most cases, aref_ptr acts like an ordinary C++ pointer. Two addi-
tional methods that might be of interest areref_ptr<T>::is_valid andref_ptr<T>::get_ptr .
ref_ptr<T>::is_valid is a null pointer check, andref_ptr<T>::get_ptr returns the underly-
ing object pointer. There is no guarantee that a pointer retrieved from aref_ptr will remain valid if the
ref_ptr object goes out of scope. For more information seeref_ptr.h .

4.3 Reglang Query

Reglang queries are queries over an automaton with respect to a regular language.1 For example, after a
poststar(prestar) query, the user can ask for the weight that is the sum over all paths that end (begin) in
a configuration in the regular language defined by some automaton (i.e., an object of classwpds::CA).
In terms of interprocedural dataflow analysis, this allows the user to perform stack-qualified queries on a
supplied program. In the current implementation, the regular language is supplied as an object of class
wpds::CA . The weights on thewpds::CA encoding the regular language are silently ignored. The fol-
lowing code performs areglang_query on our running example (Figure 2andsubsection 4.1). It asks
for the weight of functiong’s exit node with calling contextf . Calling contexts are expressed by the return
points of function call sites. The set of function return points is the set consisting of the rightmost stack
symbols of WPDS rules with two right-hand side stack symbols.

wpds::CA< Reach > reglang(s);
Reach *ignored = new Reach(true);
// manually add transitions of the regular expression
reglang.add(str2key("t1") , n[9] , str2key("t2") , ignored);
reglang.add(str2key("t2") , n[5] , str2key("t3") , ignored);
reglang.add_initial_state(str2key("t1"));
reglang.add_final_state(str2key("t3"));
// answer is the same CA from the earlier poststar example
ref_ptr< Reach > reglangWeight = answer.reglang_query(reglang)
std::cout << "Result of reglang_query: ";
reglangWeight->print(std::cout) << std::endl;

References

[1] Thomas Reps, Stefan Schwoon, Somesh Jha, and Dave Melski. Weighted pushdown systems and their
application to interprocedural dataflow analysis.Science of Computer Programming, 2005. to appear.
1

[2] Stefan Schwoon.Model-Checking Pushdown Systems. PhD thesis, Technische Universität München,
2002. 1

[3] Bjarne Stroustrup.The C++ Programming Language. Addison-Wesley Longman Publishing Co., Inc.,
2000. 1

1wpds::CA<T>::reglang query is not currently supported with Visual Studio 6.0

6

	Introduction
	Implementing a Weight Domain
	One - "70161
	Zero - "70160
	Combine -
	Extend -
	Equal
	Print
	Reference Counting
	The Reach Weight Domain

	Creating the Weighted Pushdown System
	Queries in WPDS++
	Prestar and Poststar
	Path Summary
	Reglang Query

