
WALi User Manual

Nicholas Kidd
kidd@cs.wisc.edu

February 18, 2008

1 Introduction

WALi1 is an open source library implementation of a Weighted Pushdown
System (WPDS). WPDSs have been shown to be a powerful formalism for
performing interprocedural dataflow analysis [3, 1, 2]. (For a listing of rele-
vant papers see http://www.cs.wisc.edu/wpis/wpds.)

2 Installation

WALi has been compiled on Linux, Cygwin+Windows/XP and using Visual
Studio 2005. In either case, one must first download the WALi source tree.
The latest can be found http://www.cs.wisc.edu/wpis/wpds/wali/WALi-
latest.tar.gz. This link will download a zipped tar file of the WALi source
tree.

2.1 Linux and Cygwin

WALi requires a working Python installation2, the SCons build tool, and
the common utility program curl. The following commands will download
and extract the WALi source tree.

$ cd <place to untar WALi>
$ curl -O http://www.cs.wisc.edu/wpis/wpds/wali/WALi-latest.tar.gz
$ tar zxvf WALi-latest.tar.gz

We will use the name WALiDir to denote the top level directory of the WALi
source tree. It is convention to define an environment variable $WALiDir
that holds this value.

$ cd WALiDir
$ scons

1WALi is short for “Weighted Automaton Library”
2Only Python v2.5 has been fully tested

1

mailto:kidd@cs.wisc.edu
http://www.cs.wisc.edu/wpis/wpds
http://www.cs.wisc.edu/wpis/wpds/wali/WALi-latest.tar.gz
http://www.cs.wisc.edu/wpis/wpds/wali/WALi-latest.tar.gz
http://www.python.org
http://www.scons.org

This will compile and link the WALi library in the directory WALi-1.2/lib.
(For cygwin, a static library is built.)

The WALi source tree comes bundled with some examples and ad-
dons. These can be compiled with the commands scons examples and
scons addons, respectively. The examples include weight domains (§4) for
reachability, kill-gen problems, and affine-relations. The addons includes
C++ code for parsing WPDS queries specified in XML format. The parsing
code makes use of the Apache xerces-c XML parsing libarary.

After compiling the library, the directory $WALiDir/lib should be added
to the environment variable LD_LIBRARY_PATH or PATH for Linux or Cygwin,
respectively.

2.2 Visual Studio

Download and extract the WALi source tree. Underneath the top-level
directory of the WALi source tree, there is a directory named Projects.
Underneath the Projects directory there is a file WALi.vs80.sln, which is
a Visual Studio solution file containing three projects: WALi, LiveVar and
Parse. To incorporate WALi into an existing Visual Studio project, import
the WALi project (WALi.vcproj) if possible, or copy the settings over. Else,
compile the WALi library using the WALi solution and set the include and
library directories for an existing Visual Studio project to the appropriate
place.

3 Interprocedural Control-Flow Graph Encoding

For performing dataflow analysis, the standard practice is to encode the pro-
gram’s interprocedural control flow graph as a single state PDS (see Fig. 1).
The weights that annotate the rules of the PDS are dataflow transform-
ers that encode the effect of (abstractly) executing a program statement
associated with the rule.

Rule Control flow modeled
〈p, n1〉 ↪→ 〈p, n2〉 Intraprocedural edge n1 → n2

〈p, nc〉 ↪→ 〈p, ef rc〉 Call to f , with entry ef , from nc that returns to rc

〈p, xf 〉 ↪→ 〈p, ε〉 Return from f at exit xf

Figure 1: The encoding of an ICFG’s edges as PDS rules.

2

http://xerces.apache.org/xerces-c/

4 Implementing a Weight Domain

A WALi user defines a weight domain D that encodes the desired abstract
domain. D must be a subclass of the provided abstract class wali::SemElem.
Inside of WALi, all instances of SemElem are reference counted. The
reference counting implementation is defined by the C++ template class
wali::ref_ptr<T>. For easier notation, WALi provides the type definition
typedef wali::sem_elem_t wali::ref_ptr<wali::SemElem>. We next
describe each of the methods that must be overridden by the class D.

4.1 One - 1̄

sem_elem_t one() const;

one returns an instance of the 1̄ element.

4.2 Zero - 0̄

sem_elem_t zero() const;

zero returns an instance of the 0̄ element.

4.3 Combine - ⊕

sem_elem_t combine(SemElem * se);

combine returns a new weight that is the combination of this and the
parameter se.

4.4 Extend - ⊗

sem_elem_t extend(SemElem * se);

extend returns a new weight that is equal to this extended by the parameter
se (this ⊗ se). extend is typically related to functional composition. Is
this regard, this ⊗ t is functionally equivalent to t ◦ this.

4.5 Equal

bool equal(SemElem * se) const;

equal returns true if two weights are equal and false if not. There is currently
no method specifically designed to deal with partial orders. However, for
any two semiring elements α and β, α ⊆ β ⇔α = (α ⊕ β).

3

4.6 Print

std::ostream & print(std::ostream & o) const;

print writes a semiring element to the passed in std::ostream parameter. It
should return the same std::ostream when finished.

5 Examples

5.1 Reachability Weight Domain

The following weight domain implements simple reachability. The weight is
1̄ if it is reachable by the WPDS and 0̄ otherwise. The C++ header and
source files are distributed with WALi under the Examples directory.

Code Listing 5.1 (Weight domain implementing reachability.).
#include "wali/SemElem.hpp"

using wali:: SemElem;
using wali:: sem_elem_t;

class Reach : public wali:: SemElem
{

public:

Reach(bool b) : isreached(b) {}

virtual ~Reach () {}

sem_elem_t one() const { return new Reach(true); }

sem_elem_t zero() const { return new Reach(false); }

// zero is the annihilator for extend

sem_elem_t extend(SemElem* rhs) {
Reach* r = static_cast <Reach*>(rhs);
return new Reach(isreached && r->isreached);

}

// zero is neutral for combine

sem_elem_t combine(SemElem* rhs) {
Reach* r = static_cast <Reach*>(rhs);
return new Reach(isreached || r->isreached);

}

bool equal(SemElem* rhs) const {
Reach* r = static_cast <Reach*>(rhs);

4

return isreached == r->isreached;
}

std:: ostream & print(std:: ostream & o) const {
return (isreached) ? o << "ONE" : o << "ZERO";

}

protected:
bool isreached;

};

Using this weight domain is equivalent to using a Pushdown System with-
out weights. All user created weights are 1̄ and unreachable configurations
(abstractly) have weight 0̄.

6 Creating a Weighted Pushdown System

In this section, we show how to translate pseudo code following pseudo code
is translated into a WPDS using the Reach semiring.

Code Listing 6.1 (Pseudo Code.).
// Pseudo Code //

x = 0
y = 0

fun f()
n0: <$ f enter node $>
n1: if(x = 0)
n2: then y := 1
n3: else y := 2
n4: g()
n5: <$ f exit node $>

fun g()
n6: <$ g enter node $>
n7: y := 4
n8: x := 60
n9: <$ g exit node $>

Code Listing 6.2 (WALi header files).
#include "wali/Common.hpp"
#include "wali/wpds/WPDS.hpp"
#include "wali/wfa/WFA.hpp"
#include "Reach.hpp"

First, a WPDS myWpds is created.

5

Code Listing 6.3 (Define the WPDS object myWpds.).
sem_elem_t reachOne(new Reach(true));
wali::wpds::WPDS myWpds;

Then the “keys” for the program locations are defined.

Code Listing 6.4 (Create Keys for program nodes.).
wali::Key p = wali:: getKey("p");
wali::Key accept = wali:: getKey("accept");
wali::Key n[10];
for(int i=0 ; i < 10 ; i++) {

std:: stringstream ss;
ss << "n" << i;
n[i] = wali:: getKey(ss.str());

}

The state and stack symbols of a WPDS rule have a type wali::Key.
A key is a way of identifying a state or stack symbol of the WPDS. Each
key has a unique wali::KeySource object associated with it. Some common
sources have been defined like wali::StringSource and wali::IntSource.
User’s can define their own key source by subclassing the wali::KeySource
class. The function wali::getKey is simply a helpful wrapper for creating
a keys from C++ types std::string and int.

Once all the keys have been defined, the rules are added to the myWpds
object.

Code Listing 6.5 (Add intraprocedural edges for f and g.).
// f intraprocedural

myWpds.add_rule(p, n[0], p, n[1], reachOne);
myWpds.add_rule(p, n[1], p, n[2], reachOne);
myWpds.add_rule(p, n[1], p, n[3], reachOne);
myWpds.add_rule(p, n[2], p, n[4], reachOne);
myWpds.add_rule(p, n[3], p, n[4], reachOne);

// g intraprocedural

myWpds.add_rule(p, n[6], p, n[7], reachOne);
myWpds.add_rule(p, n[7], p, n[8], reachOne);
myWpds.add_rule(p, n[8], p, n[9], reachOne);

Code Listing 6.6 (Add interprocedural edges for f and g.).
// f calls g

myWpds.add_rule(p, n[4], p, n[6], n[5], reachOne);

// f return

myWpds.add_rule(p, n[5] , p , reachOne);

// g return

myWpds.add_rule(p, n[9] , p , reachOne);

6

Then the initialized WPDS is printed to the standard output channel
and marshalled as XML.

Code Listing 6.7 (Generic output methods.).
// Print the WPDS

myWpds.print(std::cout) << std::endl;

// Marhasll the WPDS as an XML file

std:: ofstream fxml("myWpds.xml");
myWpds.marshall(fxml);
fxml.close ();

7 Querying the WPDS

WALi allows for two types of queries, prestar and poststar. A query takes
as input a WPDS and a weighted finite automaton (WFA). A query outputs
a new annotated WFA. WFAs are represented by the class wali::wfa::WFA.
Transitions are added to the WFA class using the wali::wfa::WFA::addTrans
method. The following sample code computes a prestar and poststar reach-
ability query for the pseudo code (assuming the same objects are created as
in the above C++ program).

Code Listing 7.1 (Prestar query.).
wali::wfa::WFA prequery;
prequery.addTrans(p, n[4], accept , reachOne);
query.add_initial_state(p);
query.add_final_state(accept);
wali::wfa::WFA answer = myWpds.prestar(prequery);
answer.print(std::cout);

Code Listing 7.2 (Poststar query.).
wali::wfa::WFA postquery;
postquery.addTrans(p, n[0], accept , reachOne);
query.add_initial_state(p);
query.add_final_state(accept);
wali::wfa::WFA answer;
myWpds.poststar(query ,answer);
answer.print(std::cout);

References

[1] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems
and their application to interprocedural dataflow analysis. Science of
Computer Programming, 2005.

7

[2] Thomas Reps, Akash Lal, and Nicholas Kidd. Program analysis using
weighted pushdown systems. FSTTCS, 2007. Invited Paper.

[3] Thomas W. Reps, Stefan Schwoon, and Somesh Jha. Weighted pushdown
systems and their application to interprocedural dataflow analysis. In
SAS, 2003.

8

	Introduction
	Installation
	Linux and Cygwin
	Visual Studio

	Interprocedural Control-Flow Graph Encoding
	Implementing a Weight Domain
	One -
	Zero -
	Combine -
	Extend -
	Equal
	Print

	Examples
	Reachability Weight Domain

	Creating a Weighted Pushdown System
	Querying the WPDS

