Recovering Components from Executables
[Cooperative Agreement HR0011-12-2-0012]

Thomas Reps
University of Wisconsin

Thomas Reps
Venkatesh Karthik Srinivasan
Tushar Sharma
Divy Vasal
Aditya Thakur
Evan Driscoll
Project Goals

• Develop a “redeveloper’s workbench”
 Tools to identify and extract components, and establish their behavioral properties
 – Aid in the harvesting of components from an executable
 • identify components
 • make adjustments to components identified
 • issue queries about a component’s properties
 – Queries
 • type information; function prototypes
 • side-effect “footprint”
 • error-triggering properties
Basic scenario
Project Activities

• Component identification
 – Recovering class hierarchies using dynamic analysis
 • group functions into classes
 • identify inheritance and delegation relationships among the inferred classes

• Component extraction
 – Specialization slicing
 • create multiple specialized versions of a procedure, each equipped with a different subset of the original procedure's parameters
 • novel algorithm creates optimal specialization slice
 – Partial evaluation of machine code
 • general method to address extraction, specialization, and optimization of machine code

• Verifying component properties
 – Symbolic abstraction (BET + ONR STTR)
 • methods to obtain most-precise results in abstract interpretation
 • for a given abstract domain, attains the limit of what is achievable by any analysis algorithm
 – Domain-combination technique: combine results from multiple analysis methods
 – Abstract domain of bit-vector inequalities
 • allows a tool to identify inequality invariants for machine arithmetic (arithmetic mod 2^{32} or 2^{64})
 • fills a long-standing need in both source-code and machine-code analysis
 – Format-compatibility checking (ONR)
Outline of Talk

• Review of goals
• Progress (Oct. 2012 - May 2013)
 – Component identification
 • Recovering class hierarchies using dynamic analysis
 – Component extraction
 • Specialization slicing
 • Partial evaluation of machine code
 – Verifying component properties
 • Symbolic abstraction (BET + ONR STTR)
 • Domain-combination technique: combine results from multiple analysis methods
 • Abstract domain of bit-vector inequalities
 • Format-compatibility checking (ONR)
• Recap of publications/submissions
• Recap of plans for 2013
Outline of Talk

- Review of goals
- Progress (Oct. 2012 - May 2013)
 - Component identification
 - Recovering class hierarchies using dynamic analysis
 - Verifying component properties
 - Symbolic abstraction (BET + ONR STTR)
 - Domain-combination technique: combine results from multiple analysis methods
 - Abstract domain of bit-vector inequalities
 - Format-compatibility checking (ONR)
 - Component extraction
 - Specialization slicing
 - Partial evaluation of machine code
- Recap of publications/submissions
- Recap of plans for 2013
Recovering Class Hierarchies

• Given:
 – Stripped binary
• Goals:
 – Group functions in the binary into classes
 – Identify inheritance and composition relationships between inferred classes
Recovering Class Hierarchies

• Why?
 – Reengineering legacy software
 – Understanding architecture of software that lack documentation and source code

• Lego
 – Dynamic analysis tool
 – Recovers software architecture
 – Modulo code coverage
Key Ideas

• “this” pointer idiom
 – Common idiom in object-oriented programming
 – “this” pointer = 1st argument of methods of a class
 – Used to classify sets of functions

• Unique finalizer idiom
 – Unique method in each class (Destructor in C++)
 – Cleans up object
 – Parent-class finalizer called at end of child-class finalizer
 – Used to recover inheritance and composition relationships

```c
void SetID(int nID)
void SetID(Simple* const this, int nID)
```
Lego – 2 Phases

• Phase 1
 – Input: stripped binary and test input
 – Executes given binary under test input
 – Performs dynamic analysis by dynamic binary instrumentation
 – Records methods invoked on allocated objects
 – Output: object-traces (summary of lifetime of every object)

• Phase 2
 – Input: object-traces
 – Uses order of finalizer calls as evidence from object-traces to infer class hierarchies
 – Output: Inferred class hierarchy and composition relationships between inferred classes
Phase 1: Object-Traces

- A sequence of method calls and returns that have the same receiver object
Object Traces – How to get them?

• Instrument binary using PIN to trace:
 – Values of 1st-arguments of methods
 – Method calls and returns
• Emit a trace of \texttt{"this"} pointer, method Call/Return> pairs
• Group methods based on \texttt{"this"}-pointer values
• From the trace, compute \textit{object-traces}, pairs \texttt{<A, S>}
 where
 – A is an object address
 – S is the sequence of method calls/returns that were passed A as
 the value of the \texttt{"this"} pointer (1st argument)
Object-Traces

Emitted Trace

\[\ldots \langle a1, m, C \rangle \ldots \langle a1, n, C \rangle \ldots \langle a1, n, R \rangle \ldots \langle a1, m, R \rangle \ldots \langle a2, m, C \rangle \ldots \langle a2, m, R \rangle \ldots \langle a3, m, C \rangle \ldots \langle a3, m, R \rangle \]

Object Traces

\[\{a1: \langle m, C \rangle, \langle n, C \rangle, \langle n, R \rangle, \langle m, R \rangle\}, \{a2: \langle m, C \rangle, \langle m, R \rangle\}, \{a3: \langle m, C \rangle, \langle m, R \rangle\} \]
Challenges – Blacklisting Methods

• Stand-alone methods and static methods don’t receive a “this” pointer

  ```
  void foo();  static void Car::setInventionYear(int a);
  ```

• Lego maintains estimates of allocated address space
 – Stack pointer values during calls and returns
 – Allocated heap objects – instrument new and delete

• If 1st argument’s value of a method is not within allocated address space, method is blacklisted
 – Removed from existing object-traces
 – Never added to future object-traces
Challenges – Object-address Reuse

• Methods of two (or more) unrelated classes appear in same object-trace
• Reuse of stack space for objects on different Activation Records (ARs)
• Reuse of same heap space by heap manager
• Lego versions addresses – increment version of address A when A is deallocated
Challenges – Spurious Traces

- **Spurious traces**
 - Methods of two (or more) unrelated classes appear in the same object-trace
 - Reuse of same stack space by compiler for different objects in different scopes within same AR
 - Locate initializer and finalizer methods to split spurious traces
Phase 2: Object-Trace Fingerprints

- Common semantics of OO languages – derived class’s finalizer calls base finalizer just before returning
- Fingerprint – ‘return-only’ suffix of object-trace
- ‘return-only’ – Methods that were called just before caller returned
- Has methods involved in cleanup of object and inherited parts

```java
class A {
    ~A();
}

class B {
    public A {
        ~B();
    }
}

class C : public B {
    helper();
}

class D : public C {
    ~D();
}
```

- Length indicates possible number of levels in class hierarchy
- Methods in fingerprint – potential finalizers in the class and ancestor classes
Finding Class Hierarchies

- Create a trie from fingerprints
- Associate each object-trace with trie node that accepts object-trace’s fingerprint
- Add methods in each object-trace to associated trie node
- If parent and child nodes have common methods, remove common methods from child
Composition Relationships

- Class A has a member instance of B
- A is responsible for cleaning up B – A’s finalizer calls B’s finalizer
- Record the methods directly called by each method in object-trace
- Conditions for a composition relationship to exist between inferred classes A and B
 - A’s finalizer calls B’s finalizer
 - A is not B’s ancestor or descendant in the inferred hierarchy
Scoring – Ground Truth

ios_base
ios
ostream
ostream

Vehicle
GPS
Road
Bus
Car
SUV

Restricted GT
Partially Restricted GT
Unrestricted GT

Interstate
Arterials
Compact
Local
Scoring

- Precision and Recall
- Can’t treat classes as flat sets of methods – inheritance relationships between classes
- For every path in the GT inheritance hierarchy, find the path in the inferred hierarchy that gives maximum precision and recall

![Diagram of class hierarchy with precision and recall values](attachment:image.png)
Results

Class Hierarchies - Precision

Class Hierarchies - Recall
Outline of Talk

• Review of goals

• Progress (Oct. 2012 - May 2013)
 – Component identification
 • Recovering class hierarchies using dynamic analysis
 – Verifying component properties
 • Symbolic abstraction (BET + ONR STTR)
 • Domain-combination technique: combine results from multiple analysis methods
 • Abstract domain of bit-vector inequalities
 • Format-compatibility checking (ONR)
 – Component extraction
 • Specialization slicing
 • Partial evaluation of machine code

• Recap of publications/submissions

• Recap of plans for 2013
Verifying component properties

- Property holds for all possible inputs
- No null-pointer dereferences
- No accesses outside array bounds
- No stack smashing
- No division by zero

Program statement

```plaintext
while(1) {
    x = input();
    if (x > 0) {
        y = 2*x;
        z = w/y;
    }
}
```

Possible concrete values of y

- y → 2
- y → 8
- y → 42
- y → 178
- ...

Invariant

y > 0

Sign Abstraction: only track whether variable is positive, negative, or zero
Inductive Invariants

Program points

\[P_1 \]
\[P_2 \]
\[P_3 \]

Inductive Invariants

\[I_1 \]
\[I_2 \]
\[I_3 \]

\[\tau_{12} \]
\[\tau_{23} \]
Abstract Interpretation

Concrete

Concrete state C

$[x \rightarrow 2, y \rightarrow 2, z \rightarrow -3]$
$[x \rightarrow 7, y \rightarrow 8, z \rightarrow -6]$

Concrete transformer $\tau: C \rightarrow C$

Concrete execution
- Start with concrete input, one of the possibly infinite set of concrete inputs
- Apply τ for each statement
- Not guaranteed to terminate

Abstract

Abstract state A

$[x > 0, y > 0, z < 0]$

Abstract transformer $\tau^\#: A \rightarrow A$

Abstract execution
- Start with abstract input that represents all possible concrete inputs
- Apply $\tau^\#$ for each statement
- Guaranteed to reach fixpoint

Has to be sound, precise over-approximation
• Define abstract operator $\ast \#$ for each concrete operator \ast in the program

<table>
<thead>
<tr>
<th>$\ast #$</th>
<th>< 0</th>
<th>$= 0$</th>
<th>> 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0</td>
<td>> 0</td>
<td>$= 0$</td>
<td>> 0</td>
</tr>
<tr>
<td>$= 0$</td>
<td>$= 0$</td>
<td>$= 0$</td>
<td>$= 0$</td>
</tr>
<tr>
<td>> 0</td>
<td>< 0</td>
<td>$= 0$</td>
<td>> 0</td>
</tr>
</tbody>
</table>
Transformers via reinterpretation

• Define abstract operator $\ast\#$ for each concrete operator \ast in the program

<table>
<thead>
<tr>
<th>$\ast#$</th>
<th>< 0</th>
<th>$= 0$</th>
<th>> 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0</td>
<td>> 0</td>
<td>$= 0$</td>
<td>< 0</td>
</tr>
<tr>
<td>$= 0$</td>
<td>$= 0$</td>
<td>$= 0$</td>
<td>$= 0$</td>
</tr>
<tr>
<td>> 0</td>
<td>< 0</td>
<td>$= 0$</td>
<td>> 0</td>
</tr>
</tbody>
</table>
Transformers via reinterpretation

- Compositionally define abstract transformers for statements using abstract operators

\[a = (x > 0) \times y \times z; \]

\[[x > 0, y > 0, z < 0] \]

\[a = (x > 0) \times y \times z; \]

\[[a < 0, x > 0, y > 0, z < 0] \]
Transformers via reinterpretation

\[\tau: \text{add bh, al} \]

Adds al, the low-order byte of 32-bit register eax, to bh, the second-to-lowest byte of 32-bit register ebx.
Transformers via reinterpretation

\(\tau: \text{add bh, al} \)

\(\mathcal{A}: \text{Conjunctions of bit-vector affine equalities between registers} \)

\[
\text{ebx} - \text{ecx} = 0 \in \mathcal{A}
\]

\[
\text{ebx}' = \left(\left(\text{ebx} \& \#0xFFFF0000 \right) \left(\left(\text{ebx} + 2^8 \times \left(\text{eax} \& \#0xFF \right) \right) \& \#0xFFFF00 \right) \right) \land \text{eax}' = \#\text{eax} \\
\land \text{ecx}' = \#\text{ecx}
\]

Semantics expressed as a formula

\[
2^{24} \text{ebx}' - 2^{24} \text{ecx}' = 0 \in \mathcal{A} \\
\land 2^{16} \text{ebx}' = 2^{16} \text{ecx}' + 2^{24} \text{eax}'
\]

Not the most-precise value

Primed variables represent values in post-state.
Automation of best transformer

\[\tau, \ a \in \mathcal{A} \]

- Ensures correctness
- Ensures precision
- Reduces time to implement primitives

Application of best transformer

DARPA BET IPR

34
Symbolic Abstract Interpretation

Symbolic Concretization
Symbolic Abstract Interpretation

Symbolic Concretization

\[x \geq 2 \land x \leq 10 \]

\{ x \mapsto [2,10] \}
Symbolic Abstract Interpretation

Symbolic Abstraction
Symbolic abstraction \Rightarrow best transformer
Automation of best transformer

\[\tau \quad \alpha \in \mathcal{A} \]

Application of best transformer
Automation of best transformer

\[\varphi_\tau \quad a \in A \]

\[\hat{\alpha} \]

Application of best transformer
Algorithm for $\hat{\alpha}(\varphi)$

\mathcal{C}

φ

SMT Solver

$S \models \varphi$

SMT:= Satisfiability Modulo Theory
RSY algorithm for $\hat{\alpha}(\varphi)$

Smart sampling

Converge “from below”
RSY algorithm for $\hat{\alpha}(\varphi)$

$S \models \varphi$ $
\hat{\gamma}(\text{ans})$

$\beta: \alpha$ for singleton set
RSY algorithm for $\hat{\alpha}(\varphi)$

$\varphi_1 = \varphi \land \neg \hat{\gamma}(\text{ans})$
RSY algorithm for $\hat{\alpha}(\varphi)$

$$\varphi_1 = \varphi \land \neg \hat{\gamma}(\text{ans})$$
RSY algorithm for $\hat{\alpha}(\varphi)$

$\varphi_k = \varphi \land \neg \hat{\gamma}(\text{ans})$ UNSAT
Bilateral algorithm for $\hat{\alpha}(\varphi)$

Converge “from below” and “from above”
Bilateral algorithm for $\hat{\alpha}(\varphi)$

\top \Rightarrow \bot

Stop at any time \Rightarrow sound answer
Bilateral algorithm for $\hat{\alpha}(\varphi)$

Tunable

More time \rightarrow more precision
Bilateral algorithm for $\hat{\alpha}(\varphi)$ [SAS'12]

C $\models \varphi$

$S \models \varphi$

γ (lower)

γ $\models \beta(S)$

$\beta : \alpha$ for singleton set
Bilateral algorithm for $\hat{\alpha}(\varphi)$

$\varphi_1 \equiv \varphi \land \neg \hat{\gamma}(p)$ UNSAT!
Bilateral algorithm for $\hat{\alpha}(\varphi)$ [SAS’12]

$\varphi_1 = \varphi \land \neg \hat{\gamma}(p)$ SAT!
Symbolic abstraction ⇒ Best inductive invariants

- Theoretical limit of attainable precision
- Achieved via repeated application of best transformer
 - That’s it! [TAPAS 2013]
Combination of domains

• Exchange of information among different domains during analysis
• More precision
 – “sum is greater than parts”
 – $x \geq 0, x \text{ odd}$ reduces to $x > 0, x \text{ odd}$
• Enables heterogeneous (“fish-eye”) analysis
Symbolic abstraction \Rightarrow information exchange

\[\mathcal{A}_1 \quad \mathcal{A}_2 \]

\[\mathcal{L} \]

\[\hat{\gamma}_1 (a_1) \land \hat{\gamma}_2 (a_2) \]

\[a_1, a'_1, a_2, a'_2 \]

\[\hat{\alpha}_1, \hat{\alpha}_2 \]
Summary

Symbolic abstraction increases level of automation, and ensures correctness when
• applying abstract transformers,
• computing best inductive invariants, and
• exchanging information among domains

Algorithms for symbolic abstraction require
• off-the-shelf SMT solvers, and
• implementation of very few abstract-domain operations
Outline of Talk

• Review of goals
• Progress (Oct. 2012 - May 2013)
 – Component identification
 • Recovering class hierarchies using dynamic analysis
 – Verifying component properties
 • Symbolic abstraction (BET + ONR STTR)
 • Domain-combination technique: combine results from multiple analysis methods
 • Abstract domain of bit-vector inequalities
 • Format-compatibility checking (ONR)
 – Component extraction
 • Specialization slicing
 • Partial evaluation of machine code
• Recap of publications/submissions
• Recap of plans for 2013
Conjunctions of linear inequalities over rationals

\[a_1 x_1 + a_2 x_2 + \ldots + a_k x_k \leq c \]
Limitations of convex polyhedra

• Consider the following code fragment:

\[
\begin{align*}
\text{assume } (0 &\leq low \leq high) ; \\
\text{mid} &= (\text{low} + \text{high}) / 2 ; \\
\text{assert } (0 &\leq low \leq mid \leq high) ;
\end{align*}
\]

• Polyhedral analysis unsoundly verifies that the assert holds.

\[
\begin{align*}
\text{low} &= 1 \\
\text{high} &= \text{INT_MAX} \\
\implies \text{mid} &= \text{INT_MIN} / 2
\end{align*}
\]
Limitations of convex polyhedra

- Effect of the linear transformation might overflow
- Polyhedra expresses constraints over rational not bit-vector integers
Problems with Polyhedra

• Unsound for machine arithmetic
 – machine integers wrap
 – mathematical integers do not

• Solution: Bit-Vector Inequality Domain
Bitvectors (Not so well-behaved . . .)

(a) $x + y + 4 \leq 7$

(b) $x + y \leq 3$
• Split inequality into an equality and an interval by using a view variable
For example, \(a + b \leq 5 \) is changed to \(a + b = s, s \in [0,5] \)

• Examples on previous page:
 \(x + y + 4 \leq 7 \) and \(x + y \leq 3 \) are represented as
 \(x + y = s, s \in [-4,3] \) and \(x + y = s, s \in [0,3] \) respectively.
Bit-Vector Inequality Domain (BVI)

- Use a *Bit-Vector* equality domain for equalities (\mathcal{E}) (King-Sondergaard 2010; Elder et al. 2011)
 - \mathcal{E} is an equality-element over $P \cup S$
- *Bit-Vector* Interval domain (I) on view variables
 - I is an interval-element over S
- P and S are the set of program and view variables, respectively
Bit-Vector Inequality Domain (BVI)

- S, the set of slack variables, is shared between \mathcal{E} and I
- S acts as information exchange between the two domains
 - Example: $\lambda = < a - b = 5 \land a + b = s, s \in [0,5] >$
 - \mathcal{E} specifies the constraints $a - b = 5$ and $a + b = s$
 - I specifies the constraints $s \in [0,5]$
• View variables are defined by integrity constraints

• For example, in \(\lambda, a + b = s \) is an integrity constraint
Symbolic Abstraction

- BVI is a combination of \mathcal{E} and I
- Symbolic abstraction for \mathcal{E} and I is available
- Information exchange is provided through common vocabulary S
- Symbolic abstraction for BVI is automatically available through $\hat{\alpha}(\varphi)$
Preliminary Results

- Setup: View constraints are of the form $s = r$, where r represents the 32-bit register in Machine Architecture (e.g. ia32)
- BVI domain was 3.5 times slower than Bit-Vector equality domain
- BVI more precise than equality domain at 63% of the control points
- BVI’s procedure summaries more precise than that of equality domain at 29% of the procedures
Heuristics

- Heuristics to choose view variables
- View constraints are of the form $s = r$ are not sufficient

```latex
\begin{align*}
a &= 0; \quad b = 0; \\
\text{for } (i = 0; \; i < 100; \; i++) \; \{ \\
\quad &a++; \\
\quad \text{if } (i\%2 == 0) \\
\quad &b++; \\
\} \\
\end{align*}
```

Cannot get the constraint that $0 \leq 2b - a \leq 1$
Heuristics

• Linear expressions in branch predicates and assert statements

• “Invariants” produced by unsound analysis, eg polyhedra
Handling Memory

- Previous analysis only focused on registers
- Memory is treated as flat array in machine code
- Memory constraints represent memory views:
 \[v = mm[e], \text{ where} \]
 \[
 v \text{ is the memory view,} \\
 mm \text{ is the memory map,} \\
 e \text{ is the address.}
 \]
- **Memory domain**: Set of memory constraints
BVMI domain

• BVMI domain is capable of expressing Bit-Vector inequalities over memory variables

• BVMI components
 - \mathcal{E} is an equality-domain element over $P \cup U \cup S$
 - I is an interval-domain element over S
 - M is an memory-domain element over U

• Information exchange happen between \mathcal{E} and I through common variables S and between \mathcal{E} and M through common variables U.
Current Status

• Implementation of BVI is completed

• Undergoing restructuring of code to utilize symbolic abstraction
Future Work

• Implementing heuristics for BVI and BVMI

• Integrating memory domain in the new framework
Recap

• Convex polyhedra doesn’t work for machine integers
• Bit-Vector Inequality Domain (BVI) handles Bit-Vector Inequalities by splitting them into Bit-Vector Equalities and Bit-Vector Intervals
• Memory Variables can be incorporated in a similar fashion by splitting them into Bit-Vector Equalities and Memory Constraints
• Information Exchange between the two domains happen through View Variables
Outline of Talk

• Review of goals
• Progress (Oct. 2012 - May 2013)
 – Component identification
 • Recovering class hierarchies using dynamic analysis
 – Verifying component properties
 • Symbolic abstraction (BET + ONR STTR)
 • Domain-combination technique: combine results from multiple analysis methods
 • Abstract domain of bit-vector inequalities
 • Format-compatibility checking (ONR)
 – Component extraction
 • Specialization slicing
 • Partial evaluation of machine code
• Recap of publications/submissions
• Recap of plans for 2013
Partial Evaluation for Machine-Code

• Slicing has limitations
 – limited semantic information – i.e., just dependence edges
 – no evaluation/simplification

• Partial evaluation: a framework for specializing programs
 – software specialization, optimization, etc.

• Binding-time analysis
 – what patterns are foo and bar called with?
 • e.g, \{ foo(S,S,D,D), foo(S,D,S,D), bar(S,D), bar(D,S) \}
 – polyvariant binding-time analysis? specialized slicing!

• Design and implement an algorithm for partial evaluation of machine code
Partial Evaluation of Machine code

- **Given:**
 - Machine-code procedure $P(x, y)$
 - Value "a" for x

- **Goals:**
 - Create a specialized procedure $P_a(y)$
 - If the value "b" is supplied for y, $P_a(y)$ computes $P(a,b)$

```
... mov dword [ebp - C],eax
... mov dword [ebp - 8],eax
mov eax,dword [ebp - 8]
mov edx,dword [ebp - C]
add eax, edx
move dword [ebp - 4],eax
leave
ret
```

```
... mov dword [ebp - C],eax
mov eax,dword [ebp - C]
add eax, 2
dword [ebp - 4],eax
leave
ret
```
Partial Evaluation – Why?

• Extraction of functional components
 – gzip executable has code that compresses and decompresses bundled together
 – Partial evaluation with ‘-c’ as the value of compress/decompress flag produces an executable that only compresses

• Binary specialization
 – Produces faster and smaller binaries optimized for a specific task

• Offline optimizer for unoptimized binaries
 – Partial evaluator performs optimizations such as constant propagation and constant folding, loop unrolling, elimination of unreachable/infeasible basic blocks, etc.
Methods

• **Binding-time analysis**
 – Classify instructions as:
 • Static – Instructions that only depend on inputs whose values are known at specialization time (can be evaluated at specialization time)
 • Dynamic – Instructions that are not static

• **Specialization**
 – Evaluate static instructions
 – Simplify dynamic instructions using partial static state
 – Emit residual code (simplified dynamic instructions)
 – Evaluate static jumps to eliminate entire basic blocks
Binding-Time Analysis

• Construct Program Dependence Graph (PDG) for binary
 – Using CodeSurfer/x86
• Add the instructions that initialize dynamic inputs’ memory locations to the slicing criterion
• Compute an interprocedural forward slice
• Instructions included in the slice are dynamic instructions
• Remaining instructions are static (solely depend on static inputs)
Specialization

- Initialize static locations in program state to given values
- Worklist algorithm – <first basic block, initial state> is put in worklist
- Remove an item from worklist
- Static instructions
 - Evaluate and update state
- Dynamic instructions
 - Emit instructions that set up values for static hidden operands (for example, registers and flags)
 - Simplify dynamic instruction to use static values as immediate operands
 - Emit simplified instruction
 - Dynamic jumps – For each target basic block put <basic block, state> in worklist
 - If a <basic block, state> pair was already processed, do not put in worklist
- Keep processing until worklist is empty
Challenges
Outline of Talk

• Review of goals
• Progress (Oct. 2012 - May 2013)
 – Component identification
 • Recovering class hierarchies using dynamic analysis
 – Verifying component properties
 • Symbolic abstraction (BET + ONR STTR)
 • Domain-combination technique: combine results from multiple analysis methods
 • Abstract domain of bit-vector inequalities
 • Format-compatibility checking (ONR)
 – Component extraction
 • Specialization slicing
 • Partial evaluation of machine code
• Recap of publications/submissions
• Recap of plans for 2013
Recap of publications/submissions

Recap of plans for 2013

• Component identification
 – object traces → class hierarchies
• Component extraction
 – partial evaluator for machine code
• Verifying component properties
 – $\tilde{\alpha} \downarrow$
 • separation logic
 • WALi-based and Boogie-based invariant finding
 – bitvector-inequality domain
 – Stretched-TreeIC3
Outline of Talk

• Review of goals

• Progress (Oct. 2012 - May 2013)
 – Component identification
 • Recovering class hierarchies using dynamic analysis
 – Verifying component properties
 • Symbolic abstraction (BET + ONR STTR)
 • Domain-combination technique: combine results from multiple analysis methods
 • Abstract domain of bit-vector inequalities
 • Format-compatibility checking (ONR)
 – Component extraction
 • Specialization slicing
 • Partial evaluation of machine code

• Recap of publications/submissions

• Recap of plans for 2013
Specialization Slicing

• Problem statement
 – Ordinary “closure slices” can have mismatches between call sites and called procedures
 • different call sites have different subsets of the parameters
 – Idea: specialize the called procedures
 – Challenge: find a minimal solution (minimal duplication)
Specialization Slicing

(1) int g1, g2, g3;
(2) void p(int a, int b) {
(3) g1 = a;
(4) g2 = b;
(5) g3 = g2;
(6) }
(7) int main() {
(8) g2 = 100;
(9) p(g2, 2);
(10) p(g2, 3);
(11) p(4, g1+g2);
(12) printf("%d", g2);
(13) }

Closure slice

(1) int g1, g2;
(2) void p(int a, int b) {
(3) g1 = a;
(4) g2 = b;
(5) }
(6) int main() {
(7) p(2);
(8) p(g2, 3);
(9) p(g1+g2);
(10) printf("%d", g2);
(11) }

Specialized slice

(1) int g1, g2;
(2) void p1(int b) {
(3) g2 = b;
(4) }
(5) void p2(int a, int b) {
(6) g1 = a;
(7) g2 = b;
(8) }
(9) int main() {
(10) p1(2);
(11) p2(g2, 3);
(12) p1(g1+g2);
(13) printf("%d", g2);
(14) }

System Dependence Graph (SDG)
Specialized SDG
Specialization slice of a recursive program

```c
int g1, g2;

void s(int a, int b){
    g1 = b;
    g2 = a;
}

void r(int k) {
    if (k > 0) {
        s(g1, g2);
        r(k-1);
        s(g1, g2);
    }
}

int main() {
    g1 = 1;
    g2 = 2;
    r(3);
    printf("%d\n", g1);
}
```

Calling pattern:

```
(27) (16)(16)*
```

```c
int g1, g2;

void s_1(int b) {
    g1 = b;
}

void s_2(int a) {
    g2 = a;
}

void r_1(int k) {
    if (k > 0) {
        s_2(g1);
        r_2(k-1);
        s_1(g2);
    }
}

void r_2(int k) {
    if (k > 0) {
        s_1(g2);
        r_1(k-1);
        s_2(g1);
    }
}

int main() {
    g1 = 1;
    r_1(3);
    printf("%d\n", g1);
}
```

Calling pattern:

```
(27)(16) (16)(16)*
```
Specialization Slicing

- **Problem statement**
 - Ordinary “closure slices” can have mismatches between call sites and called procedures
 - different call sites have different subsets of the parameters
 - Idea: specialize the called procedures
 - Challenge: find a minimal solution (minimal duplication)

1. In the worst case, specialization causes an exponential increase in size
2. In practice, observed a 9.4% increase
Relatively Few Specialized Procedures
Specialization Slicing

- **Problem statement**
 - Ordinary “closure slices” can have mismatches between call sites and called procedures
 - different call sites have different subsets of the parameters
 - Idea: specialize the called procedures
 - Challenge: find a minimal solution (minimal duplication)

- **Key insight**
 - minimal solution involves solving a partitioning problem on a certain infinite graph
 - problem solvable using PDSs: all node-sets in infinite graph can be represented via FSMs
 - algorithm: a few automata-theoretic operations
Algorithm

Input: SDG S and slicing criterion C

Output: An SDG R for the specialized slice of S with respect to C

// Create A_6, a minimal reverse-deterministic automaton for the stack-configuration slice of S with respect to C

1. $P_S =$ the PDS for S
2. $A_0 =$ a P_S-automaton that accepts C
3. $A_1 =$ Prestar[P_S](A_0)
4. $A_2 =$ reverse(A_1)
5. $A_3 =$ determinize(A_2)
6. $A_4 =$ minimize(A_3)
7. $A_5 =$ reverse(A_4)
8. $A_6 =$ removeEpsilonTransitions(A_5)

// Read out SDG R from A_6

...
Each yellow name has the same set of stack configurations \(\{C_1, C_3\} \).
Such sets are infinite for recursive programs \(\Rightarrow \) FSMs.
Each yellow name has the same set of stack configurations \{C1,C3\}.
Such sets are infinite for recursive programs \(\Rightarrow\) FSMs.
```c
int add(int a, int b) {
    q: return a + b;
}

int mult(int a, int b) {
    int i = 0;
    int ans = 0;
    while (i < a) {
        c5: ans = add(ans, b);
        c6: i = add(i, 1);
    }
    return ans;
}

void tally(int& sum, int& prod, int N) {
    int i = 1;
    while (i <= N) {
        c2: sum = add(sum, i);
        c3: prod = mult(prod, i);
        c4: i = add(i, 1);
    }
}

int main() {
    int sum = 0;
    int prod = 1;
    c1: tally(sum, prod, 10);
    printf("%d ", sum);
    printf("%d ", prod);
}
```

```c
int add(int a, int b) {
    q: return a + b;
}

int mult(int b) {
    int i = 0;
    int ans = 0;
    return;
}

void tally(int& sum, int N) {
    int i = 1;
    while (i <= N) {
        c2: sum = add(sum, i);
        c3: mult(i);
        c4: i = add(i, 1);
    }
}

int main() {
    int sum = 0;
    c1: tally(sum, 10);
    printf("%d ", sum);
}
```
Feature Removal

int g1, g2, g3;
void p(int a, int b) {
 g1 = a;
 g2 = b;
 g3 = g2;
}

int main() {
 g2 = 100;
 p(g2, 2);
 p(g2, 3);
 p(4, g1+g2);
 printf("%d", g2);
}

Forward closure slice

int g1, g2, g3;
void p(int a, int b) {
 g1 = a;
 g2 = b;
 g3 = g2;
}

int main() {
 g2 = 100;
 p(g2, 2);
 p(g2, 3);
 p(4, g1+g2);
 printf("%d", g2);
}

Specialized slice

int g1, g2;
void p1(int a) {
 g1 = a;
}

void p2(int b) {
 g2 = b;
 g3 = g2;
}

int main() {
 g2 = 100;
 p1(g2);
 p2(3);
 p1(4);
}
Unrolled SDG
Complemented Unrolled SDG
1. Infer output format
2. Infer accepted format
3. Check compatibility
Formats are strings over “types”

Header of gzip format:

- **ID** (short)
- **CM** (byte)
- **FG** (byte)
- **M TIME** (word)
- **FG** (byte)
- **OS** (byte)
- **...** (byte)
Current work: enhance format spec

nrows ncols pix11 pix12 pix13 pix14 pix21 pix22 pix23 ...

DARPA BET IPR
Current work: enhance format spec

\[\text{nrows \ ncols \ pix11 \ pix12 \ pix13 \ pix14 \ pix21 \ pix22 \ pix23 \ ...} \]
Current work: enhance format spec

nrows ncols pix11 pix12 pix13 pix14 pix21 pix22 pix23 ...

DARPA BET IPR
Current work: enhance format spec

Infer an automaton equivalent to:

```plaintext
nrows: int  ncols: int  ((byte byte byte byte byte) ^ ncols) ^ nrows
```
Roadmap: Inference

Program → Traces → I/O equalities → Inferred XFA

Inputs → ICFG
Roadmap: Compatibility

Producer component → Consumer component

Inferred XFA \subseteq \text{?}

DARPA BET IPR
Prototype essentially done, but not well-tested. Working on performance and on finding tests.
How we do it

nrows: int ncols: int ((byte byte byte)*)*

Exponents start as standard Kleene *, and correspond to program loops.
How we do it

We instrument loops with *trip counts*
We instrument I/O calls to remember values
How we do it

We instrument loops with *trip counts*
We instrument I/O calls to remember values

When two of these are found to always equal, replace the * with an exponent
How we do it

\[\text{nrows: int \hspace{1em} ncols: int \hspace{1em} ((byte \hspace{0.5em} byte \hspace{0.5em} byte)*)}^{\text{nrows}} \]

We instrument loops with *trip counts*

We instrument I/O calls to remember values

When two of these are found to always equal, replace the * with an exponent
We instrument loops with *trip counts*
We instrument I/O calls to remember values

When two of these are found to always equal, replace the * with an exponent
How we do it

\[\text{nrows}: \text{int} \quad \text{ncols}: \text{int} \quad ((\text{byte} \ \text{byte} \ \text{byte})^{\text{ncols}})^{\text{nrows}} \]

We instrument loops with *trip counts*
We instrument I/O calls to remember values

When two of these are found to always equal, replace the * with an exponent
We use Daikon

Daikon identifies *dynamic* invariants

- Hold over all test runs; might not actually be invariants
- Could use statically inferred instead

We wrote our own Daikon front end for machine code

- Assumes debugging information
 - can we remove this restriction?
- Front ends supplied with Daikon not sufficient
 - checks only entry-to-exit invariants, whereas we need
 - loop trip-count instrumentation
 - I/O-to-loop-exit invariants
- Instruments program using Dyninst
Instrumentation remembers I/O vals

If value is returned:
\[
x = \text{read_int}(); \quad x = _	ext{io1} = \text{read_int}();
\]

If value is “returned” via out parameter:
\[
\text{err} = \text{read_int}(&x); \quad \text{err} = \text{read_int}(&x); \quad _\text{io2} = *(&x);
\]

If value is passed by parameter:
\[
\text{write_int}(x); \quad _\text{io3} = x; \quad \text{write_int}(x);
\]
Instrumentation finds trip counts
Instrumentation finds trip counts

On loop entry:
Set trip count to 0

```c
__trip1 = 0;
```
Instrumentation finds trip counts

On loop entry:
Set trip count to 0
__trip1 = 0;

Entering loop body:
Increment trip count
__trip1++;
Instrumentation finds trip counts

On loop entry:
Set trip count to 0
__trip1 = 0;

Entering loop body:
Increment trip count
__trip1++;

On loop exit:
Output current value of variables
Interested in invariants here
print(__io1, __io2, ..., __trip1);

DARPA BET IPR
We use Daikon to find I/O equalities

Instrumented program → Value trace → Dakion dynamic invariant detector → I/O equalities

LOOP_EXIT_A
__io2 = 2
__io4 = 5
__trip_count_A = 5

LOOP_EXIT_B
__io2 = 6
__io4 = 5
__trip_count_B = 6

__trip_count_A = __io4 = 5
__trip_count_B = __io2 = 6
We model programs as XFAs

XFAs: *extended* finite automata

Add separate bounded “data state” to standard FAs
Transformers on transitions describe data-state changes
Symbolic abstraction: Who cares?

- More precise results in abstract interpretation
 - can identify loop and procedure summaries that are more precise than ones obtained via conventional techniques
- Applies to interesting, non-standard logics (we think!)
 - separation logic: memory safety properties
Symbolic abstraction: Who cares?

- Win, win, win
- Easier/faster implementation of analysis tools
 - just state concrete (actual!) semantics in logic
 - supply an abstract domain
 - e.g., as a class that meets a specific interface
 - obtain analyzer/decision procedure
- More precise results in abstract interpretation
 - can identify loop and procedure summaries that are more precise than ones obtained via conventional techniques
- Applies to interesting, non-standard logics (we think!)
 - separation logic: memory safety properties
- Improve level of automation for creating analyzers
 - implement analysis tools in a much smaller time-span and with drastically reduced programmer effort
In 1977, Cousot & Cousot gave us a beautiful theory of overapproximation.
In 1979, Cousot & Cousot gave us:
In 1979, Cousot & Cousot gave us:

\[\tau \]

Universe of States
In 2004, Reps, Sagiv, and Yorsh gave us:

Symbolic Abstract Interpretation

Symbolic Concretization

Universe of States
In 2004, Reps, Sagiv, and Yorsh gave us:

Symbolic Abstraction
$\hat{\alpha}^{\uparrow}(\varphi)$

Universe of States

Use SMT solvers to get leverage:
get models of φ

[VMCAI 2004]
\[\hat{\alpha}^\uparrow(\varphi) \]

Universe of States

\[C \]

\[\mathcal{L} \]

\[\mathcal{A} \]

[VMCAI 2004]
\[\hat{\alpha}^{\uparrow}(\varphi) \]

\[C \]

\[L \]

\[A \]

\[S_1 \]

\[\llbracket \varphi \rrbracket \]

\[\varphi_1 \]

Universe of States

\[S_1 \models \varphi_1 \]

\[\beta \]

\[\varphi_1 = \varphi \land \neg \hat{\gamma}(\text{ans}) \]
$\hat{\alpha}^\uparrow(\varphi)$
From “Below” vs. From “Above”

- Reps, Sagiv, and Yorsh 2004: approximation from “below”
- Desirable: approximation from “above”
 - always have safe over-approximation in hand
 - can stop algorithm at any time (e.g., if taking too long)
Stop at any time \(\rightarrow\) sound answer

\[\hat{\alpha}(\varphi)\]

\[\tilde{\alpha}(\varphi)\]

Tunable

More time \(\rightarrow\) more precision
Stålmarck’s method (1989)

Dilemma Rule

- Split
- Propagate
- Merge
Stålmárck's method (1989)

1-saturation
Stålmarck’s method (1989)

2-saturation
Stålmarck’s method for $\tilde{\alpha}^\downarrow$

Dilemma Rule

• Split
• Propagate
• Merge

$\gamma(a_1) \cup \gamma(a_2) \supseteq \gamma(A)$
Stålmarck’s method
Reasoning: Using $\widetilde{\alpha}^\dagger(\varphi)$

\[\widetilde{\alpha}^\dagger(\varphi) = \bot \]

\[\therefore \varphi \text{ is unsatisfiable} \]

Dual use:
- $\tilde{\alpha}$ for abstract interpretation
- Unsat/validity checking for pure logical reasoning
 \[\Rightarrow \text{abstract interpretation in service to logic!} \]

Property verification via model checking:
OK if $\text{Unsat}(\text{Program} \land \text{Bad})$

[CAV 2012]
The importance of data structures

- Classic union-find
 - plus layers
 - plus least-upper bound
- Given UF₁ and UF₂, find the coarsest partition that is finer than UF₁ and UF₂
- Roughly, “confluent, partially-persistent union-find”
Extend WALi to use $\hat{\alpha}$

- Weighted Automaton Library (WALi):
 - supports context-sensitive interprocedural analysis
 - weights = dataflow transformers
 - weighted version of PDSs (à la material on specialized slicing)
- More precise results in abstract interpretation
- Easier implementation of analysis tools
AlphaHat

• AlphaHat technique in three ways
 – WALi + AlphaHat (Aditya Thakur and Junghee Lim)
 • ~October 2012
 – Boogie + AlphaHat for source code (Akash Lal at Microsoft India)
 • ~November 2012
 – Boogie + AlphaHat for machine code (Aditya Thakur and Junghee Lim)
 • ~November 2012
Outline of Talk

• Review of goals
• Progress (Oct. 2012 - May 2013)
 – Component identification
 • Recovering class hierarchies using dynamic analysis
 – Verifying component properties
 • Symbolic abstraction (BET + ONR STTR)
 • Domain-combination technique: combine results from multiple analysis methods
 • Abstract domain of bit-vector inequalities
 • Format-compatibility checking (ONR)
 – Component extraction
 • Specialization slicing
 • Partial evaluation of machine code
• Recap of publications/submissions
• Recap of plans for 2013
char* concat(char* a, char* b)
{
 unsigned size = strlen(a)+strlen(b)+1;
 char* out = (char*)malloc(size*sizeof(char)); // Possible overflow
 for(unsigned i = 0; i < strlen(a); i++) {
 out[i] = a[i]; // Potential memory corruption
 }
 for(unsigned i = 0; i < strlen(b); i++) {
 out[i+strlen(a)] = b[i]; // Potential memory corruption
 }
 out[i+strlen(a)] = '\0';
 return out;
}
Convex Polyhedra

[Figures from Halbwachs et al. FMSD97]

\[P = \left\{ (x, y) \mid \begin{pmatrix} x + y & \geq 1 \\ -x + y & \leq 1 \end{pmatrix} \right\} \]

\[V = \{ v_0 (2, 1), v_1 (1, 2) \} \quad R = \{ r_0 (1, 0), r_1 (1, 1) \} \]

Figure 1: A convex polyhedron and its 2 representations

Figure 2: Intersection and convex hull

Figure 3: Linear transformations
Bitvector Inequality domain

- Conventional domain for representing inequalities
 - polyhedra: conjunctions of linear inequalities
 \[a_1 x_1 + a_2 x_2 + \ldots + a_k x_k \leq c \]
 - operations on polyhedra: linear transformations
 - unsound for machine arithmetic
 - machine integers wrap while mathematical integers do not

- Solution: Bitvector Inequality Domain
Not so well-behaved . . .